OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [mips-tdep.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
 
 
   Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   2010 Free Software Foundation, Inc.
   2010 Free Software Foundation, Inc.
 
 
   Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
   Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
   and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
   and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "symtab.h"
#include "symtab.h"
#include "value.h"
#include "value.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "language.h"
#include "language.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "target.h"
#include "target.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regcache.h"
#include "osabi.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "mips-tdep.h"
#include "block.h"
#include "block.h"
#include "reggroups.h"
#include "reggroups.h"
#include "opcode/mips.h"
#include "opcode/mips.h"
#include "elf/mips.h"
#include "elf/mips.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "symcat.h"
#include "symcat.h"
#include "sim-regno.h"
#include "sim-regno.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "trad-frame.h"
#include "infcall.h"
#include "infcall.h"
#include "floatformat.h"
#include "floatformat.h"
#include "remote.h"
#include "remote.h"
#include "target-descriptions.h"
#include "target-descriptions.h"
#include "dwarf2-frame.h"
#include "dwarf2-frame.h"
#include "user-regs.h"
#include "user-regs.h"
#include "valprint.h"
#include "valprint.h"
 
 
static const struct objfile_data *mips_pdr_data;
static const struct objfile_data *mips_pdr_data;
 
 
static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
 
 
/* A useful bit in the CP0 status register (MIPS_PS_REGNUM).  */
/* A useful bit in the CP0 status register (MIPS_PS_REGNUM).  */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip.  */
/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip.  */
#define ST0_FR (1 << 26)
#define ST0_FR (1 << 26)
 
 
/* The sizes of floating point registers.  */
/* The sizes of floating point registers.  */
 
 
enum
enum
{
{
  MIPS_FPU_SINGLE_REGSIZE = 4,
  MIPS_FPU_SINGLE_REGSIZE = 4,
  MIPS_FPU_DOUBLE_REGSIZE = 8
  MIPS_FPU_DOUBLE_REGSIZE = 8
};
};
 
 
enum
enum
{
{
  MIPS32_REGSIZE = 4,
  MIPS32_REGSIZE = 4,
  MIPS64_REGSIZE = 8
  MIPS64_REGSIZE = 8
};
};
 
 
static const char *mips_abi_string;
static const char *mips_abi_string;
 
 
static const char *mips_abi_strings[] = {
static const char *mips_abi_strings[] = {
  "auto",
  "auto",
  "n32",
  "n32",
  "o32",
  "o32",
  "n64",
  "n64",
  "o64",
  "o64",
  "eabi32",
  "eabi32",
  "eabi64",
  "eabi64",
  NULL
  NULL
};
};
 
 
/* The standard register names, and all the valid aliases for them.  */
/* The standard register names, and all the valid aliases for them.  */
struct register_alias
struct register_alias
{
{
  const char *name;
  const char *name;
  int regnum;
  int regnum;
};
};
 
 
/* Aliases for o32 and most other ABIs.  */
/* Aliases for o32 and most other ABIs.  */
const struct register_alias mips_o32_aliases[] = {
const struct register_alias mips_o32_aliases[] = {
  { "ta0", 12 },
  { "ta0", 12 },
  { "ta1", 13 },
  { "ta1", 13 },
  { "ta2", 14 },
  { "ta2", 14 },
  { "ta3", 15 }
  { "ta3", 15 }
};
};
 
 
/* Aliases for n32 and n64.  */
/* Aliases for n32 and n64.  */
const struct register_alias mips_n32_n64_aliases[] = {
const struct register_alias mips_n32_n64_aliases[] = {
  { "ta0", 8 },
  { "ta0", 8 },
  { "ta1", 9 },
  { "ta1", 9 },
  { "ta2", 10 },
  { "ta2", 10 },
  { "ta3", 11 }
  { "ta3", 11 }
};
};
 
 
/* Aliases for ABI-independent registers.  */
/* Aliases for ABI-independent registers.  */
const struct register_alias mips_register_aliases[] = {
const struct register_alias mips_register_aliases[] = {
  /* The architecture manuals specify these ABI-independent names for
  /* The architecture manuals specify these ABI-independent names for
     the GPRs.  */
     the GPRs.  */
#define R(n) { "r" #n, n }
#define R(n) { "r" #n, n }
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R
#undef R
 
 
  /* k0 and k1 are sometimes called these instead (for "kernel
  /* k0 and k1 are sometimes called these instead (for "kernel
     temp").  */
     temp").  */
  { "kt0", 26 },
  { "kt0", 26 },
  { "kt1", 27 },
  { "kt1", 27 },
 
 
  /* This is the traditional GDB name for the CP0 status register.  */
  /* This is the traditional GDB name for the CP0 status register.  */
  { "sr", MIPS_PS_REGNUM },
  { "sr", MIPS_PS_REGNUM },
 
 
  /* This is the traditional GDB name for the CP0 BadVAddr register.  */
  /* This is the traditional GDB name for the CP0 BadVAddr register.  */
  { "bad", MIPS_EMBED_BADVADDR_REGNUM },
  { "bad", MIPS_EMBED_BADVADDR_REGNUM },
 
 
  /* This is the traditional GDB name for the FCSR.  */
  /* This is the traditional GDB name for the FCSR.  */
  { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
  { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
};
};
 
 
const struct register_alias mips_numeric_register_aliases[] = {
const struct register_alias mips_numeric_register_aliases[] = {
#define R(n) { #n, n }
#define R(n) { #n, n }
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
  R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
#undef R
#undef R
};
};
 
 
#ifndef MIPS_DEFAULT_FPU_TYPE
#ifndef MIPS_DEFAULT_FPU_TYPE
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
#endif
#endif
static int mips_fpu_type_auto = 1;
static int mips_fpu_type_auto = 1;
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
 
 
static int mips_debug = 0;
static int mips_debug = 0;
 
 
/* Properties (for struct target_desc) describing the g/G packet
/* Properties (for struct target_desc) describing the g/G packet
   layout.  */
   layout.  */
#define PROPERTY_GP32 "internal: transfers-32bit-registers"
#define PROPERTY_GP32 "internal: transfers-32bit-registers"
#define PROPERTY_GP64 "internal: transfers-64bit-registers"
#define PROPERTY_GP64 "internal: transfers-64bit-registers"
 
 
struct target_desc *mips_tdesc_gp32;
struct target_desc *mips_tdesc_gp32;
struct target_desc *mips_tdesc_gp64;
struct target_desc *mips_tdesc_gp64;
 
 
const struct mips_regnum *
const struct mips_regnum *
mips_regnum (struct gdbarch *gdbarch)
mips_regnum (struct gdbarch *gdbarch)
{
{
  return gdbarch_tdep (gdbarch)->regnum;
  return gdbarch_tdep (gdbarch)->regnum;
}
}
 
 
static int
static int
mips_fpa0_regnum (struct gdbarch *gdbarch)
mips_fpa0_regnum (struct gdbarch *gdbarch)
{
{
  return mips_regnum (gdbarch)->fp0 + 12;
  return mips_regnum (gdbarch)->fp0 + 12;
}
}
 
 
#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
                     == MIPS_ABI_EABI32 \
                     == MIPS_ABI_EABI32 \
                   || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
                   || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
 
 
#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
 
 
#define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
#define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
 
 
#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
 
 
/* MIPS16 function addresses are odd (bit 0 is set).  Here are some
/* MIPS16 function addresses are odd (bit 0 is set).  Here are some
   functions to test, set, or clear bit 0 of addresses.  */
   functions to test, set, or clear bit 0 of addresses.  */
 
 
static CORE_ADDR
static CORE_ADDR
is_mips16_addr (CORE_ADDR addr)
is_mips16_addr (CORE_ADDR addr)
{
{
  return ((addr) & 1);
  return ((addr) & 1);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
unmake_mips16_addr (CORE_ADDR addr)
unmake_mips16_addr (CORE_ADDR addr)
{
{
  return ((addr) & ~(CORE_ADDR) 1);
  return ((addr) & ~(CORE_ADDR) 1);
}
}
 
 
/* Return the MIPS ABI associated with GDBARCH.  */
/* Return the MIPS ABI associated with GDBARCH.  */
enum mips_abi
enum mips_abi
mips_abi (struct gdbarch *gdbarch)
mips_abi (struct gdbarch *gdbarch)
{
{
  return gdbarch_tdep (gdbarch)->mips_abi;
  return gdbarch_tdep (gdbarch)->mips_abi;
}
}
 
 
int
int
mips_isa_regsize (struct gdbarch *gdbarch)
mips_isa_regsize (struct gdbarch *gdbarch)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  /* If we know how big the registers are, use that size.  */
  /* If we know how big the registers are, use that size.  */
  if (tdep->register_size_valid_p)
  if (tdep->register_size_valid_p)
    return tdep->register_size;
    return tdep->register_size;
 
 
  /* Fall back to the previous behavior.  */
  /* Fall back to the previous behavior.  */
  return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
  return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
          / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
          / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
}
}
 
 
/* Return the currently configured (or set) saved register size. */
/* Return the currently configured (or set) saved register size. */
 
 
unsigned int
unsigned int
mips_abi_regsize (struct gdbarch *gdbarch)
mips_abi_regsize (struct gdbarch *gdbarch)
{
{
  switch (mips_abi (gdbarch))
  switch (mips_abi (gdbarch))
    {
    {
    case MIPS_ABI_EABI32:
    case MIPS_ABI_EABI32:
    case MIPS_ABI_O32:
    case MIPS_ABI_O32:
      return 4;
      return 4;
    case MIPS_ABI_N32:
    case MIPS_ABI_N32:
    case MIPS_ABI_N64:
    case MIPS_ABI_N64:
    case MIPS_ABI_O64:
    case MIPS_ABI_O64:
    case MIPS_ABI_EABI64:
    case MIPS_ABI_EABI64:
      return 8;
      return 8;
    case MIPS_ABI_UNKNOWN:
    case MIPS_ABI_UNKNOWN:
    case MIPS_ABI_LAST:
    case MIPS_ABI_LAST:
    default:
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
    }
}
}
 
 
/* Functions for setting and testing a bit in a minimal symbol that
/* Functions for setting and testing a bit in a minimal symbol that
   marks it as 16-bit function.  The MSB of the minimal symbol's
   marks it as 16-bit function.  The MSB of the minimal symbol's
   "info" field is used for this purpose.
   "info" field is used for this purpose.
 
 
   gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
   gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
   i.e. refers to a 16-bit function, and sets a "special" bit in a
   i.e. refers to a 16-bit function, and sets a "special" bit in a
   minimal symbol to mark it as a 16-bit function
   minimal symbol to mark it as a 16-bit function
 
 
   MSYMBOL_IS_SPECIAL   tests the "special" bit in a minimal symbol  */
   MSYMBOL_IS_SPECIAL   tests the "special" bit in a minimal symbol  */
 
 
static void
static void
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
{
{
  if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
  if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
    {
    {
      MSYMBOL_TARGET_FLAG_1 (msym) = 1;
      MSYMBOL_TARGET_FLAG_1 (msym) = 1;
      SYMBOL_VALUE_ADDRESS (msym) |= 1;
      SYMBOL_VALUE_ADDRESS (msym) |= 1;
    }
    }
}
}
 
 
static int
static int
msymbol_is_special (struct minimal_symbol *msym)
msymbol_is_special (struct minimal_symbol *msym)
{
{
  return MSYMBOL_TARGET_FLAG_1 (msym);
  return MSYMBOL_TARGET_FLAG_1 (msym);
}
}
 
 
/* XFER a value from the big/little/left end of the register.
/* XFER a value from the big/little/left end of the register.
   Depending on the size of the value it might occupy the entire
   Depending on the size of the value it might occupy the entire
   register or just part of it.  Make an allowance for this, aligning
   register or just part of it.  Make an allowance for this, aligning
   things accordingly.  */
   things accordingly.  */
 
 
static void
static void
mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
                    int reg_num, int length,
                    int reg_num, int length,
                    enum bfd_endian endian, gdb_byte *in,
                    enum bfd_endian endian, gdb_byte *in,
                    const gdb_byte *out, int buf_offset)
                    const gdb_byte *out, int buf_offset)
{
{
  int reg_offset = 0;
  int reg_offset = 0;
 
 
  gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
  gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
  /* Need to transfer the left or right part of the register, based on
  /* Need to transfer the left or right part of the register, based on
     the targets byte order.  */
     the targets byte order.  */
  switch (endian)
  switch (endian)
    {
    {
    case BFD_ENDIAN_BIG:
    case BFD_ENDIAN_BIG:
      reg_offset = register_size (gdbarch, reg_num) - length;
      reg_offset = register_size (gdbarch, reg_num) - length;
      break;
      break;
    case BFD_ENDIAN_LITTLE:
    case BFD_ENDIAN_LITTLE:
      reg_offset = 0;
      reg_offset = 0;
      break;
      break;
    case BFD_ENDIAN_UNKNOWN:    /* Indicates no alignment.  */
    case BFD_ENDIAN_UNKNOWN:    /* Indicates no alignment.  */
      reg_offset = 0;
      reg_offset = 0;
      break;
      break;
    default:
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
    }
  if (mips_debug)
  if (mips_debug)
    fprintf_unfiltered (gdb_stderr,
    fprintf_unfiltered (gdb_stderr,
                        "xfer $%d, reg offset %d, buf offset %d, length %d, ",
                        "xfer $%d, reg offset %d, buf offset %d, length %d, ",
                        reg_num, reg_offset, buf_offset, length);
                        reg_num, reg_offset, buf_offset, length);
  if (mips_debug && out != NULL)
  if (mips_debug && out != NULL)
    {
    {
      int i;
      int i;
      fprintf_unfiltered (gdb_stdlog, "out ");
      fprintf_unfiltered (gdb_stdlog, "out ");
      for (i = 0; i < length; i++)
      for (i = 0; i < length; i++)
        fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
        fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
    }
    }
  if (in != NULL)
  if (in != NULL)
    regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
    regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
                               in + buf_offset);
                               in + buf_offset);
  if (out != NULL)
  if (out != NULL)
    regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
    regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
                                out + buf_offset);
                                out + buf_offset);
  if (mips_debug && in != NULL)
  if (mips_debug && in != NULL)
    {
    {
      int i;
      int i;
      fprintf_unfiltered (gdb_stdlog, "in ");
      fprintf_unfiltered (gdb_stdlog, "in ");
      for (i = 0; i < length; i++)
      for (i = 0; i < length; i++)
        fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
        fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
    }
    }
  if (mips_debug)
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog, "\n");
    fprintf_unfiltered (gdb_stdlog, "\n");
}
}
 
 
/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
   compatiblity mode.  A return value of 1 means that we have
   compatiblity mode.  A return value of 1 means that we have
   physical 64-bit registers, but should treat them as 32-bit registers.  */
   physical 64-bit registers, but should treat them as 32-bit registers.  */
 
 
static int
static int
mips2_fp_compat (struct frame_info *frame)
mips2_fp_compat (struct frame_info *frame)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
  /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
     meaningful.  */
     meaningful.  */
  if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
  if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
    return 0;
    return 0;
 
 
#if 0
#if 0
  /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
  /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
     in all the places we deal with FP registers.  PR gdb/413.  */
     in all the places we deal with FP registers.  PR gdb/413.  */
  /* Otherwise check the FR bit in the status register - it controls
  /* Otherwise check the FR bit in the status register - it controls
     the FP compatiblity mode.  If it is clear we are in compatibility
     the FP compatiblity mode.  If it is clear we are in compatibility
     mode.  */
     mode.  */
  if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
  if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
    return 1;
    return 1;
#endif
#endif
 
 
  return 0;
  return 0;
}
}
 
 
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
 
 
static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
 
 
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
 
 
/* The list of available "set mips " and "show mips " commands */
/* The list of available "set mips " and "show mips " commands */
 
 
static struct cmd_list_element *setmipscmdlist = NULL;
static struct cmd_list_element *setmipscmdlist = NULL;
static struct cmd_list_element *showmipscmdlist = NULL;
static struct cmd_list_element *showmipscmdlist = NULL;
 
 
/* Integer registers 0 thru 31 are handled explicitly by
/* Integer registers 0 thru 31 are handled explicitly by
   mips_register_name().  Processor specific registers 32 and above
   mips_register_name().  Processor specific registers 32 and above
   are listed in the following tables.  */
   are listed in the following tables.  */
 
 
enum
enum
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
 
 
/* Generic MIPS.  */
/* Generic MIPS.  */
 
 
static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "sr", "lo", "hi", "bad", "cause", "pc",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "fsr", "fir", "" /*"fp" */ , "",
  "fsr", "fir", "" /*"fp" */ , "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
};
};
 
 
/* Names of IDT R3041 registers.  */
/* Names of IDT R3041 registers.  */
 
 
static const char *mips_r3041_reg_names[] = {
static const char *mips_r3041_reg_names[] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "sr", "lo", "hi", "bad", "cause", "pc",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "fsr", "fir", "", /*"fp" */ "",
  "fsr", "fir", "", /*"fp" */ "",
  "", "", "bus", "ccfg", "", "", "", "",
  "", "", "bus", "ccfg", "", "", "", "",
  "", "", "port", "cmp", "", "", "epc", "prid",
  "", "", "port", "cmp", "", "", "epc", "prid",
};
};
 
 
/* Names of tx39 registers.  */
/* Names of tx39 registers.  */
 
 
static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "sr", "lo", "hi", "bad", "cause", "pc",
  "sr", "lo", "hi", "bad", "cause", "pc",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "",
  "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "config", "cache", "debug", "depc", "epc", ""
  "", "", "config", "cache", "debug", "depc", "epc", ""
};
};
 
 
/* Names of IRIX registers.  */
/* Names of IRIX registers.  */
static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
  "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
  "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
};
};
 
 
 
 
/* Return the name of the register corresponding to REGNO.  */
/* Return the name of the register corresponding to REGNO.  */
static const char *
static const char *
mips_register_name (struct gdbarch *gdbarch, int regno)
mips_register_name (struct gdbarch *gdbarch, int regno)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* GPR names for all ABIs other than n32/n64.  */
  /* GPR names for all ABIs other than n32/n64.  */
  static char *mips_gpr_names[] = {
  static char *mips_gpr_names[] = {
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
    "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
  };
  };
 
 
  /* GPR names for n32 and n64 ABIs.  */
  /* GPR names for n32 and n64 ABIs.  */
  static char *mips_n32_n64_gpr_names[] = {
  static char *mips_n32_n64_gpr_names[] = {
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
    "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
    "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
    "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
  };
  };
 
 
  enum mips_abi abi = mips_abi (gdbarch);
  enum mips_abi abi = mips_abi (gdbarch);
 
 
  /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
  /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
     but then don't make the raw register names visible.  */
     but then don't make the raw register names visible.  */
  int rawnum = regno % gdbarch_num_regs (gdbarch);
  int rawnum = regno % gdbarch_num_regs (gdbarch);
  if (regno < gdbarch_num_regs (gdbarch))
  if (regno < gdbarch_num_regs (gdbarch))
    return "";
    return "";
 
 
  /* The MIPS integer registers are always mapped from 0 to 31.  The
  /* The MIPS integer registers are always mapped from 0 to 31.  The
     names of the registers (which reflects the conventions regarding
     names of the registers (which reflects the conventions regarding
     register use) vary depending on the ABI.  */
     register use) vary depending on the ABI.  */
  if (0 <= rawnum && rawnum < 32)
  if (0 <= rawnum && rawnum < 32)
    {
    {
      if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
      if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
        return mips_n32_n64_gpr_names[rawnum];
        return mips_n32_n64_gpr_names[rawnum];
      else
      else
        return mips_gpr_names[rawnum];
        return mips_gpr_names[rawnum];
    }
    }
  else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
  else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, rawnum);
    return tdesc_register_name (gdbarch, rawnum);
  else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
  else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
    {
    {
      gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
      gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
      return tdep->mips_processor_reg_names[rawnum - 32];
      return tdep->mips_processor_reg_names[rawnum - 32];
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("mips_register_name: bad register number %d"), rawnum);
                    _("mips_register_name: bad register number %d"), rawnum);
}
}
 
 
/* Return the groups that a MIPS register can be categorised into.  */
/* Return the groups that a MIPS register can be categorised into.  */
 
 
static int
static int
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
                          struct reggroup *reggroup)
                          struct reggroup *reggroup)
{
{
  int vector_p;
  int vector_p;
  int float_p;
  int float_p;
  int raw_p;
  int raw_p;
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  if (reggroup == all_reggroup)
  if (reggroup == all_reggroup)
    return pseudo;
    return pseudo;
  vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
  vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
  float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
  float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
  /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
  /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
     (gdbarch), as not all architectures are multi-arch.  */
     (gdbarch), as not all architectures are multi-arch.  */
  raw_p = rawnum < gdbarch_num_regs (gdbarch);
  raw_p = rawnum < gdbarch_num_regs (gdbarch);
  if (gdbarch_register_name (gdbarch, regnum) == NULL
  if (gdbarch_register_name (gdbarch, regnum) == NULL
      || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
      || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
    return 0;
    return 0;
  if (reggroup == float_reggroup)
  if (reggroup == float_reggroup)
    return float_p && pseudo;
    return float_p && pseudo;
  if (reggroup == vector_reggroup)
  if (reggroup == vector_reggroup)
    return vector_p && pseudo;
    return vector_p && pseudo;
  if (reggroup == general_reggroup)
  if (reggroup == general_reggroup)
    return (!vector_p && !float_p) && pseudo;
    return (!vector_p && !float_p) && pseudo;
  /* Save the pseudo registers.  Need to make certain that any code
  /* Save the pseudo registers.  Need to make certain that any code
     extracting register values from a saved register cache also uses
     extracting register values from a saved register cache also uses
     pseudo registers.  */
     pseudo registers.  */
  if (reggroup == save_reggroup)
  if (reggroup == save_reggroup)
    return raw_p && pseudo;
    return raw_p && pseudo;
  /* Restore the same pseudo register.  */
  /* Restore the same pseudo register.  */
  if (reggroup == restore_reggroup)
  if (reggroup == restore_reggroup)
    return raw_p && pseudo;
    return raw_p && pseudo;
  return 0;
  return 0;
}
}
 
 
/* Return the groups that a MIPS register can be categorised into.
/* Return the groups that a MIPS register can be categorised into.
   This version is only used if we have a target description which
   This version is only used if we have a target description which
   describes real registers (and their groups).  */
   describes real registers (and their groups).  */
 
 
static int
static int
mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
                                struct reggroup *reggroup)
                                struct reggroup *reggroup)
{
{
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int rawnum = regnum % gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  int pseudo = regnum / gdbarch_num_regs (gdbarch);
  int ret;
  int ret;
 
 
  /* Only save, restore, and display the pseudo registers.  Need to
  /* Only save, restore, and display the pseudo registers.  Need to
     make certain that any code extracting register values from a
     make certain that any code extracting register values from a
     saved register cache also uses pseudo registers.
     saved register cache also uses pseudo registers.
 
 
     Note: saving and restoring the pseudo registers is slightly
     Note: saving and restoring the pseudo registers is slightly
     strange; if we have 64 bits, we should save and restore all
     strange; if we have 64 bits, we should save and restore all
     64 bits.  But this is hard and has little benefit.  */
     64 bits.  But this is hard and has little benefit.  */
  if (!pseudo)
  if (!pseudo)
    return 0;
    return 0;
 
 
  ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
  ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
  if (ret != -1)
  if (ret != -1)
    return ret;
    return ret;
 
 
  return mips_register_reggroup_p (gdbarch, regnum, reggroup);
  return mips_register_reggroup_p (gdbarch, regnum, reggroup);
}
}
 
 
/* Map the symbol table registers which live in the range [1 *
/* Map the symbol table registers which live in the range [1 *
   gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
   gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
   registers.  Take care of alignment and size problems.  */
   registers.  Take care of alignment and size problems.  */
 
 
static void
static void
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
                           int cookednum, gdb_byte *buf)
                           int cookednum, gdb_byte *buf)
{
{
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
              && cookednum < 2 * gdbarch_num_regs (gdbarch));
              && cookednum < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
    regcache_raw_read (regcache, rawnum, buf);
    regcache_raw_read (regcache, rawnum, buf);
  else if (register_size (gdbarch, rawnum) >
  else if (register_size (gdbarch, rawnum) >
           register_size (gdbarch, cookednum))
           register_size (gdbarch, cookednum))
    {
    {
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
          || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
          || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
        regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
        regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
      else
      else
        regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
        regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));
    internal_error (__FILE__, __LINE__, _("bad register size"));
}
}
 
 
static void
static void
mips_pseudo_register_write (struct gdbarch *gdbarch,
mips_pseudo_register_write (struct gdbarch *gdbarch,
                            struct regcache *regcache, int cookednum,
                            struct regcache *regcache, int cookednum,
                            const gdb_byte *buf)
                            const gdb_byte *buf)
{
{
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  int rawnum = cookednum % gdbarch_num_regs (gdbarch);
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
  gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
              && cookednum < 2 * gdbarch_num_regs (gdbarch));
              && cookednum < 2 * gdbarch_num_regs (gdbarch));
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
  if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
    regcache_raw_write (regcache, rawnum, buf);
    regcache_raw_write (regcache, rawnum, buf);
  else if (register_size (gdbarch, rawnum) >
  else if (register_size (gdbarch, rawnum) >
           register_size (gdbarch, cookednum))
           register_size (gdbarch, cookednum))
    {
    {
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
      if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
          || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
          || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
        regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
        regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
      else
      else
        regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
        regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__, _("bad register size"));
    internal_error (__FILE__, __LINE__, _("bad register size"));
}
}
 
 
/* Table to translate MIPS16 register field to actual register number.  */
/* Table to translate MIPS16 register field to actual register number.  */
static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
 
 
/* Heuristic_proc_start may hunt through the text section for a long
/* Heuristic_proc_start may hunt through the text section for a long
   time across a 2400 baud serial line.  Allows the user to limit this
   time across a 2400 baud serial line.  Allows the user to limit this
   search.  */
   search.  */
 
 
static unsigned int heuristic_fence_post = 0;
static unsigned int heuristic_fence_post = 0;
 
 
/* Number of bytes of storage in the actual machine representation for
/* Number of bytes of storage in the actual machine representation for
   register N.  NOTE: This defines the pseudo register type so need to
   register N.  NOTE: This defines the pseudo register type so need to
   rebuild the architecture vector.  */
   rebuild the architecture vector.  */
 
 
static int mips64_transfers_32bit_regs_p = 0;
static int mips64_transfers_32bit_regs_p = 0;
 
 
static void
static void
set_mips64_transfers_32bit_regs (char *args, int from_tty,
set_mips64_transfers_32bit_regs (char *args, int from_tty,
                                 struct cmd_list_element *c)
                                 struct cmd_list_element *c)
{
{
  struct gdbarch_info info;
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  gdbarch_info_init (&info);
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
  if (!gdbarch_update_p (info))
    {
    {
      mips64_transfers_32bit_regs_p = 0;
      mips64_transfers_32bit_regs_p = 0;
      error (_("32-bit compatibility mode not supported"));
      error (_("32-bit compatibility mode not supported"));
    }
    }
}
}
 
 
/* Convert to/from a register and the corresponding memory value.  */
/* Convert to/from a register and the corresponding memory value.  */
 
 
static int
static int
mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
{
{
  return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
  return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
          && register_size (gdbarch, regnum) == 4
          && register_size (gdbarch, regnum) == 4
          && (regnum % gdbarch_num_regs (gdbarch))
          && (regnum % gdbarch_num_regs (gdbarch))
                >= mips_regnum (gdbarch)->fp0
                >= mips_regnum (gdbarch)->fp0
          && (regnum % gdbarch_num_regs (gdbarch))
          && (regnum % gdbarch_num_regs (gdbarch))
                < mips_regnum (gdbarch)->fp0 + 32
                < mips_regnum (gdbarch)->fp0 + 32
          && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
          && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
}
}
 
 
static void
static void
mips_register_to_value (struct frame_info *frame, int regnum,
mips_register_to_value (struct frame_info *frame, int regnum,
                        struct type *type, gdb_byte *to)
                        struct type *type, gdb_byte *to)
{
{
  get_frame_register (frame, regnum + 0, to + 4);
  get_frame_register (frame, regnum + 0, to + 4);
  get_frame_register (frame, regnum + 1, to + 0);
  get_frame_register (frame, regnum + 1, to + 0);
}
}
 
 
static void
static void
mips_value_to_register (struct frame_info *frame, int regnum,
mips_value_to_register (struct frame_info *frame, int regnum,
                        struct type *type, const gdb_byte *from)
                        struct type *type, const gdb_byte *from)
{
{
  put_frame_register (frame, regnum + 0, from + 4);
  put_frame_register (frame, regnum + 0, from + 4);
  put_frame_register (frame, regnum + 1, from + 0);
  put_frame_register (frame, regnum + 1, from + 0);
}
}
 
 
/* Return the GDB type object for the "standard" data type of data in
/* Return the GDB type object for the "standard" data type of data in
   register REG.  */
   register REG.  */
 
 
static struct type *
static struct type *
mips_register_type (struct gdbarch *gdbarch, int regnum)
mips_register_type (struct gdbarch *gdbarch, int regnum)
{
{
  gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
  gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
  if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
  if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
      && (regnum % gdbarch_num_regs (gdbarch))
      && (regnum % gdbarch_num_regs (gdbarch))
         < mips_regnum (gdbarch)->fp0 + 32)
         < mips_regnum (gdbarch)->fp0 + 32)
    {
    {
      /* The floating-point registers raw, or cooked, always match
      /* The floating-point registers raw, or cooked, always match
         mips_isa_regsize(), and also map 1:1, byte for byte.  */
         mips_isa_regsize(), and also map 1:1, byte for byte.  */
      if (mips_isa_regsize (gdbarch) == 4)
      if (mips_isa_regsize (gdbarch) == 4)
        return builtin_type (gdbarch)->builtin_float;
        return builtin_type (gdbarch)->builtin_float;
      else
      else
        return builtin_type (gdbarch)->builtin_double;
        return builtin_type (gdbarch)->builtin_double;
    }
    }
  else if (regnum < gdbarch_num_regs (gdbarch))
  else if (regnum < gdbarch_num_regs (gdbarch))
    {
    {
      /* The raw or ISA registers.  These are all sized according to
      /* The raw or ISA registers.  These are all sized according to
         the ISA regsize.  */
         the ISA regsize.  */
      if (mips_isa_regsize (gdbarch) == 4)
      if (mips_isa_regsize (gdbarch) == 4)
        return builtin_type (gdbarch)->builtin_int32;
        return builtin_type (gdbarch)->builtin_int32;
      else
      else
        return builtin_type (gdbarch)->builtin_int64;
        return builtin_type (gdbarch)->builtin_int64;
    }
    }
  else
  else
    {
    {
      /* The cooked or ABI registers.  These are sized according to
      /* The cooked or ABI registers.  These are sized according to
         the ABI (with a few complications).  */
         the ABI (with a few complications).  */
      if (regnum >= (gdbarch_num_regs (gdbarch)
      if (regnum >= (gdbarch_num_regs (gdbarch)
                     + mips_regnum (gdbarch)->fp_control_status)
                     + mips_regnum (gdbarch)->fp_control_status)
          && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
          && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
        /* The pseudo/cooked view of the embedded registers is always
        /* The pseudo/cooked view of the embedded registers is always
           32-bit.  The raw view is handled below.  */
           32-bit.  The raw view is handled below.  */
        return builtin_type (gdbarch)->builtin_int32;
        return builtin_type (gdbarch)->builtin_int32;
      else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
      else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
        /* The target, while possibly using a 64-bit register buffer,
        /* The target, while possibly using a 64-bit register buffer,
           is only transfering 32-bits of each integer register.
           is only transfering 32-bits of each integer register.
           Reflect this in the cooked/pseudo (ABI) register value.  */
           Reflect this in the cooked/pseudo (ABI) register value.  */
        return builtin_type (gdbarch)->builtin_int32;
        return builtin_type (gdbarch)->builtin_int32;
      else if (mips_abi_regsize (gdbarch) == 4)
      else if (mips_abi_regsize (gdbarch) == 4)
        /* The ABI is restricted to 32-bit registers (the ISA could be
        /* The ABI is restricted to 32-bit registers (the ISA could be
           32- or 64-bit).  */
           32- or 64-bit).  */
        return builtin_type (gdbarch)->builtin_int32;
        return builtin_type (gdbarch)->builtin_int32;
      else
      else
        /* 64-bit ABI.  */
        /* 64-bit ABI.  */
        return builtin_type (gdbarch)->builtin_int64;
        return builtin_type (gdbarch)->builtin_int64;
    }
    }
}
}
 
 
/* Return the GDB type for the pseudo register REGNUM, which is the
/* Return the GDB type for the pseudo register REGNUM, which is the
   ABI-level view.  This function is only called if there is a target
   ABI-level view.  This function is only called if there is a target
   description which includes registers, so we know precisely the
   description which includes registers, so we know precisely the
   types of hardware registers.  */
   types of hardware registers.  */
 
 
static struct type *
static struct type *
mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
{
  const int num_regs = gdbarch_num_regs (gdbarch);
  const int num_regs = gdbarch_num_regs (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int rawnum = regnum % num_regs;
  int rawnum = regnum % num_regs;
  struct type *rawtype;
  struct type *rawtype;
 
 
  gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
  gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
 
 
  /* Absent registers are still absent.  */
  /* Absent registers are still absent.  */
  rawtype = gdbarch_register_type (gdbarch, rawnum);
  rawtype = gdbarch_register_type (gdbarch, rawnum);
  if (TYPE_LENGTH (rawtype) == 0)
  if (TYPE_LENGTH (rawtype) == 0)
    return rawtype;
    return rawtype;
 
 
  if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
  if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
    /* Present the floating point registers however the hardware did;
    /* Present the floating point registers however the hardware did;
       do not try to convert between FPU layouts.  */
       do not try to convert between FPU layouts.  */
    return rawtype;
    return rawtype;
 
 
  if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
  if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
    {
    {
      /* The pseudo/cooked view of embedded registers is always
      /* The pseudo/cooked view of embedded registers is always
         32-bit, even if the target transfers 64-bit values for them.
         32-bit, even if the target transfers 64-bit values for them.
         New targets relying on XML descriptions should only transfer
         New targets relying on XML descriptions should only transfer
         the necessary 32 bits, but older versions of GDB expected 64,
         the necessary 32 bits, but older versions of GDB expected 64,
         so allow the target to provide 64 bits without interfering
         so allow the target to provide 64 bits without interfering
         with the displayed type.  */
         with the displayed type.  */
      return builtin_type (gdbarch)->builtin_int32;
      return builtin_type (gdbarch)->builtin_int32;
    }
    }
 
 
  /* Use pointer types for registers if we can.  For n32 we can not,
  /* Use pointer types for registers if we can.  For n32 we can not,
     since we do not have a 64-bit pointer type.  */
     since we do not have a 64-bit pointer type.  */
  if (mips_abi_regsize (gdbarch)
  if (mips_abi_regsize (gdbarch)
      == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
      == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
    {
    {
      if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
      if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
        return builtin_type (gdbarch)->builtin_data_ptr;
        return builtin_type (gdbarch)->builtin_data_ptr;
      else if (rawnum == MIPS_EMBED_PC_REGNUM)
      else if (rawnum == MIPS_EMBED_PC_REGNUM)
        return builtin_type (gdbarch)->builtin_func_ptr;
        return builtin_type (gdbarch)->builtin_func_ptr;
    }
    }
 
 
  if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
  if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
      && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
      && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_int32;
    return builtin_type (gdbarch)->builtin_int32;
 
 
  /* For all other registers, pass through the hardware type.  */
  /* For all other registers, pass through the hardware type.  */
  return rawtype;
  return rawtype;
}
}
 
 
/* Should the upper word of 64-bit addresses be zeroed? */
/* Should the upper word of 64-bit addresses be zeroed? */
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
 
 
static int
static int
mips_mask_address_p (struct gdbarch_tdep *tdep)
mips_mask_address_p (struct gdbarch_tdep *tdep)
{
{
  switch (mask_address_var)
  switch (mask_address_var)
    {
    {
    case AUTO_BOOLEAN_TRUE:
    case AUTO_BOOLEAN_TRUE:
      return 1;
      return 1;
    case AUTO_BOOLEAN_FALSE:
    case AUTO_BOOLEAN_FALSE:
      return 0;
      return 0;
      break;
      break;
    case AUTO_BOOLEAN_AUTO:
    case AUTO_BOOLEAN_AUTO:
      return tdep->default_mask_address_p;
      return tdep->default_mask_address_p;
    default:
    default:
      internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
      internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
      return -1;
      return -1;
    }
    }
}
}
 
 
static void
static void
show_mask_address (struct ui_file *file, int from_tty,
show_mask_address (struct ui_file *file, int from_tty,
                   struct cmd_list_element *c, const char *value)
                   struct cmd_list_element *c, const char *value)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
 
 
  deprecated_show_value_hack (file, from_tty, c, value);
  deprecated_show_value_hack (file, from_tty, c, value);
  switch (mask_address_var)
  switch (mask_address_var)
    {
    {
    case AUTO_BOOLEAN_TRUE:
    case AUTO_BOOLEAN_TRUE:
      printf_filtered ("The 32 bit mips address mask is enabled\n");
      printf_filtered ("The 32 bit mips address mask is enabled\n");
      break;
      break;
    case AUTO_BOOLEAN_FALSE:
    case AUTO_BOOLEAN_FALSE:
      printf_filtered ("The 32 bit mips address mask is disabled\n");
      printf_filtered ("The 32 bit mips address mask is disabled\n");
      break;
      break;
    case AUTO_BOOLEAN_AUTO:
    case AUTO_BOOLEAN_AUTO:
      printf_filtered
      printf_filtered
        ("The 32 bit address mask is set automatically.  Currently %s\n",
        ("The 32 bit address mask is set automatically.  Currently %s\n",
         mips_mask_address_p (tdep) ? "enabled" : "disabled");
         mips_mask_address_p (tdep) ? "enabled" : "disabled");
      break;
      break;
    default:
    default:
      internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
      internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
      break;
      break;
    }
    }
}
}
 
 
/* Tell if the program counter value in MEMADDR is in a MIPS16 function.  */
/* Tell if the program counter value in MEMADDR is in a MIPS16 function.  */
 
 
int
int
mips_pc_is_mips16 (CORE_ADDR memaddr)
mips_pc_is_mips16 (CORE_ADDR memaddr)
{
{
  struct minimal_symbol *sym;
  struct minimal_symbol *sym;
 
 
  /* If bit 0 of the address is set, assume this is a MIPS16 address. */
  /* If bit 0 of the address is set, assume this is a MIPS16 address. */
  if (is_mips16_addr (memaddr))
  if (is_mips16_addr (memaddr))
    return 1;
    return 1;
 
 
  /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
  /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
     the high bit of the info field.  Use this to decide if the function is
     the high bit of the info field.  Use this to decide if the function is
     MIPS16 or normal MIPS.  */
     MIPS16 or normal MIPS.  */
  sym = lookup_minimal_symbol_by_pc (memaddr);
  sym = lookup_minimal_symbol_by_pc (memaddr);
  if (sym)
  if (sym)
    return msymbol_is_special (sym);
    return msymbol_is_special (sym);
  else
  else
    return 0;
    return 0;
}
}
 
 
/* MIPS believes that the PC has a sign extended value.  Perhaps the
/* MIPS believes that the PC has a sign extended value.  Perhaps the
   all registers should be sign extended for simplicity? */
   all registers should be sign extended for simplicity? */
 
 
static CORE_ADDR
static CORE_ADDR
mips_read_pc (struct regcache *regcache)
mips_read_pc (struct regcache *regcache)
{
{
  ULONGEST pc;
  ULONGEST pc;
  int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
  int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
  regcache_cooked_read_signed (regcache, regnum, &pc);
  regcache_cooked_read_signed (regcache, regnum, &pc);
  return pc;
  return pc;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_signed
  return frame_unwind_register_signed
           (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
           (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_signed
  return frame_unwind_register_signed
           (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
           (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
}
}
 
 
/* Assuming THIS_FRAME is a dummy, return the frame ID of that
/* Assuming THIS_FRAME is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   dummy frame.  The frame ID's base needs to match the TOS value
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   breakpoint.  */
   breakpoint.  */
 
 
static struct frame_id
static struct frame_id
mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  return frame_id_build
  return frame_id_build
           (get_frame_register_signed (this_frame,
           (get_frame_register_signed (this_frame,
                                       gdbarch_num_regs (gdbarch)
                                       gdbarch_num_regs (gdbarch)
                                       + MIPS_SP_REGNUM),
                                       + MIPS_SP_REGNUM),
            get_frame_pc (this_frame));
            get_frame_pc (this_frame));
}
}
 
 
static void
static void
mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
{
  int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
  int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
  regcache_cooked_write_unsigned (regcache, regnum, pc);
  regcache_cooked_write_unsigned (regcache, regnum, pc);
}
}
 
 
/* Fetch and return instruction from the specified location.  If the PC
/* Fetch and return instruction from the specified location.  If the PC
   is odd, assume it's a MIPS16 instruction; otherwise MIPS32.  */
   is odd, assume it's a MIPS16 instruction; otherwise MIPS32.  */
 
 
static ULONGEST
static ULONGEST
mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[MIPS_INSN32_SIZE];
  gdb_byte buf[MIPS_INSN32_SIZE];
  int instlen;
  int instlen;
  int status;
  int status;
 
 
  if (mips_pc_is_mips16 (addr))
  if (mips_pc_is_mips16 (addr))
    {
    {
      instlen = MIPS_INSN16_SIZE;
      instlen = MIPS_INSN16_SIZE;
      addr = unmake_mips16_addr (addr);
      addr = unmake_mips16_addr (addr);
    }
    }
  else
  else
    instlen = MIPS_INSN32_SIZE;
    instlen = MIPS_INSN32_SIZE;
  status = target_read_memory (addr, buf, instlen);
  status = target_read_memory (addr, buf, instlen);
  if (status)
  if (status)
    memory_error (status, addr);
    memory_error (status, addr);
  return extract_unsigned_integer (buf, instlen, byte_order);
  return extract_unsigned_integer (buf, instlen, byte_order);
}
}
 
 
/* These the fields of 32 bit mips instructions */
/* These the fields of 32 bit mips instructions */
#define mips32_op(x) (x >> 26)
#define mips32_op(x) (x >> 26)
#define itype_op(x) (x >> 26)
#define itype_op(x) (x >> 26)
#define itype_rs(x) ((x >> 21) & 0x1f)
#define itype_rs(x) ((x >> 21) & 0x1f)
#define itype_rt(x) ((x >> 16) & 0x1f)
#define itype_rt(x) ((x >> 16) & 0x1f)
#define itype_immediate(x) (x & 0xffff)
#define itype_immediate(x) (x & 0xffff)
 
 
#define jtype_op(x) (x >> 26)
#define jtype_op(x) (x >> 26)
#define jtype_target(x) (x & 0x03ffffff)
#define jtype_target(x) (x & 0x03ffffff)
 
 
#define rtype_op(x) (x >> 26)
#define rtype_op(x) (x >> 26)
#define rtype_rs(x) ((x >> 21) & 0x1f)
#define rtype_rs(x) ((x >> 21) & 0x1f)
#define rtype_rt(x) ((x >> 16) & 0x1f)
#define rtype_rt(x) ((x >> 16) & 0x1f)
#define rtype_rd(x) ((x >> 11) & 0x1f)
#define rtype_rd(x) ((x >> 11) & 0x1f)
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_shamt(x) ((x >> 6) & 0x1f)
#define rtype_funct(x) (x & 0x3f)
#define rtype_funct(x) (x & 0x3f)
 
 
static LONGEST
static LONGEST
mips32_relative_offset (ULONGEST inst)
mips32_relative_offset (ULONGEST inst)
{
{
  return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
  return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
}
}
 
 
/* Determine where to set a single step breakpoint while considering
/* Determine where to set a single step breakpoint while considering
   branch prediction.  */
   branch prediction.  */
static CORE_ADDR
static CORE_ADDR
mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  unsigned long inst;
  unsigned long inst;
  int op;
  int op;
  inst = mips_fetch_instruction (gdbarch, pc);
  inst = mips_fetch_instruction (gdbarch, pc);
  if ((inst & 0xe0000000) != 0)  /* Not a special, jump or branch instruction */
  if ((inst & 0xe0000000) != 0)  /* Not a special, jump or branch instruction */
    {
    {
      if (itype_op (inst) >> 2 == 5)
      if (itype_op (inst) >> 2 == 5)
        /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
        /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
        {
        {
          op = (itype_op (inst) & 0x03);
          op = (itype_op (inst) & 0x03);
          switch (op)
          switch (op)
            {
            {
            case 0:              /* BEQL */
            case 0:              /* BEQL */
              goto equal_branch;
              goto equal_branch;
            case 1:             /* BNEL */
            case 1:             /* BNEL */
              goto neq_branch;
              goto neq_branch;
            case 2:             /* BLEZL */
            case 2:             /* BLEZL */
              goto less_branch;
              goto less_branch;
            case 3:             /* BGTZL */
            case 3:             /* BGTZL */
              goto greater_branch;
              goto greater_branch;
            default:
            default:
              pc += 4;
              pc += 4;
            }
            }
        }
        }
      else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
      else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
        /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
        /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
        {
        {
          int tf = itype_rt (inst) & 0x01;
          int tf = itype_rt (inst) & 0x01;
          int cnum = itype_rt (inst) >> 2;
          int cnum = itype_rt (inst) >> 2;
          int fcrcs =
          int fcrcs =
            get_frame_register_signed (frame,
            get_frame_register_signed (frame,
                                       mips_regnum (get_frame_arch (frame))->
                                       mips_regnum (get_frame_arch (frame))->
                                                fp_control_status);
                                                fp_control_status);
          int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
          int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
 
 
          if (((cond >> cnum) & 0x01) == tf)
          if (((cond >> cnum) & 0x01) == tf)
            pc += mips32_relative_offset (inst) + 4;
            pc += mips32_relative_offset (inst) + 4;
          else
          else
            pc += 8;
            pc += 8;
        }
        }
      else
      else
        pc += 4;                /* Not a branch, next instruction is easy */
        pc += 4;                /* Not a branch, next instruction is easy */
    }
    }
  else
  else
    {                           /* This gets way messy */
    {                           /* This gets way messy */
 
 
      /* Further subdivide into SPECIAL, REGIMM and other */
      /* Further subdivide into SPECIAL, REGIMM and other */
      switch (op = itype_op (inst) & 0x07)      /* extract bits 28,27,26 */
      switch (op = itype_op (inst) & 0x07)      /* extract bits 28,27,26 */
        {
        {
        case 0:          /* SPECIAL */
        case 0:          /* SPECIAL */
          op = rtype_funct (inst);
          op = rtype_funct (inst);
          switch (op)
          switch (op)
            {
            {
            case 8:             /* JR */
            case 8:             /* JR */
            case 9:             /* JALR */
            case 9:             /* JALR */
              /* Set PC to that address */
              /* Set PC to that address */
              pc = get_frame_register_signed (frame, rtype_rs (inst));
              pc = get_frame_register_signed (frame, rtype_rs (inst));
              break;
              break;
            case 12:            /* SYSCALL */
            case 12:            /* SYSCALL */
              {
              {
                struct gdbarch_tdep *tdep;
                struct gdbarch_tdep *tdep;
 
 
                tdep = gdbarch_tdep (get_frame_arch (frame));
                tdep = gdbarch_tdep (get_frame_arch (frame));
                if (tdep->syscall_next_pc != NULL)
                if (tdep->syscall_next_pc != NULL)
                  pc = tdep->syscall_next_pc (frame);
                  pc = tdep->syscall_next_pc (frame);
                else
                else
                  pc += 4;
                  pc += 4;
              }
              }
              break;
              break;
            default:
            default:
              pc += 4;
              pc += 4;
            }
            }
 
 
          break;                /* end SPECIAL */
          break;                /* end SPECIAL */
        case 1:         /* REGIMM */
        case 1:         /* REGIMM */
          {
          {
            op = itype_rt (inst);       /* branch condition */
            op = itype_rt (inst);       /* branch condition */
            switch (op)
            switch (op)
              {
              {
              case 0:            /* BLTZ */
              case 0:            /* BLTZ */
              case 2:           /* BLTZL */
              case 2:           /* BLTZL */
              case 16:          /* BLTZAL */
              case 16:          /* BLTZAL */
              case 18:          /* BLTZALL */
              case 18:          /* BLTZALL */
              less_branch:
              less_branch:
                if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
                if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
                  pc += mips32_relative_offset (inst) + 4;
                  pc += mips32_relative_offset (inst) + 4;
                else
                else
                  pc += 8;      /* after the delay slot */
                  pc += 8;      /* after the delay slot */
                break;
                break;
              case 1:           /* BGEZ */
              case 1:           /* BGEZ */
              case 3:           /* BGEZL */
              case 3:           /* BGEZL */
              case 17:          /* BGEZAL */
              case 17:          /* BGEZAL */
              case 19:          /* BGEZALL */
              case 19:          /* BGEZALL */
                if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
                if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
                  pc += mips32_relative_offset (inst) + 4;
                  pc += mips32_relative_offset (inst) + 4;
                else
                else
                  pc += 8;      /* after the delay slot */
                  pc += 8;      /* after the delay slot */
                break;
                break;
                /* All of the other instructions in the REGIMM category */
                /* All of the other instructions in the REGIMM category */
              default:
              default:
                pc += 4;
                pc += 4;
              }
              }
          }
          }
          break;                /* end REGIMM */
          break;                /* end REGIMM */
        case 2:         /* J */
        case 2:         /* J */
        case 3:         /* JAL */
        case 3:         /* JAL */
          {
          {
            unsigned long reg;
            unsigned long reg;
            reg = jtype_target (inst) << 2;
            reg = jtype_target (inst) << 2;
            /* Upper four bits get never changed... */
            /* Upper four bits get never changed... */
            pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
            pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
          }
          }
          break;
          break;
          /* FIXME case JALX : */
          /* FIXME case JALX : */
          {
          {
            unsigned long reg;
            unsigned long reg;
            reg = jtype_target (inst) << 2;
            reg = jtype_target (inst) << 2;
            pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1;        /* yes, +1 */
            pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1;        /* yes, +1 */
            /* Add 1 to indicate 16 bit mode - Invert ISA mode */
            /* Add 1 to indicate 16 bit mode - Invert ISA mode */
          }
          }
          break;                /* The new PC will be alternate mode */
          break;                /* The new PC will be alternate mode */
        case 4:         /* BEQ, BEQL */
        case 4:         /* BEQ, BEQL */
        equal_branch:
        equal_branch:
          if (get_frame_register_signed (frame, itype_rs (inst)) ==
          if (get_frame_register_signed (frame, itype_rs (inst)) ==
              get_frame_register_signed (frame, itype_rt (inst)))
              get_frame_register_signed (frame, itype_rt (inst)))
            pc += mips32_relative_offset (inst) + 4;
            pc += mips32_relative_offset (inst) + 4;
          else
          else
            pc += 8;
            pc += 8;
          break;
          break;
        case 5:         /* BNE, BNEL */
        case 5:         /* BNE, BNEL */
        neq_branch:
        neq_branch:
          if (get_frame_register_signed (frame, itype_rs (inst)) !=
          if (get_frame_register_signed (frame, itype_rs (inst)) !=
              get_frame_register_signed (frame, itype_rt (inst)))
              get_frame_register_signed (frame, itype_rt (inst)))
            pc += mips32_relative_offset (inst) + 4;
            pc += mips32_relative_offset (inst) + 4;
          else
          else
            pc += 8;
            pc += 8;
          break;
          break;
        case 6:         /* BLEZ, BLEZL */
        case 6:         /* BLEZ, BLEZL */
          if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
          if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
            pc += mips32_relative_offset (inst) + 4;
            pc += mips32_relative_offset (inst) + 4;
          else
          else
            pc += 8;
            pc += 8;
          break;
          break;
        case 7:
        case 7:
        default:
        default:
        greater_branch: /* BGTZ, BGTZL */
        greater_branch: /* BGTZ, BGTZL */
          if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
          if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
            pc += mips32_relative_offset (inst) + 4;
            pc += mips32_relative_offset (inst) + 4;
          else
          else
            pc += 8;
            pc += 8;
          break;
          break;
        }                       /* switch */
        }                       /* switch */
    }                           /* else */
    }                           /* else */
  return pc;
  return pc;
}                               /* mips32_next_pc */
}                               /* mips32_next_pc */
 
 
/* Decoding the next place to set a breakpoint is irregular for the
/* Decoding the next place to set a breakpoint is irregular for the
   mips 16 variant, but fortunately, there fewer instructions. We have to cope
   mips 16 variant, but fortunately, there fewer instructions. We have to cope
   ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
   ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
   We dont want to set a single step instruction on the extend instruction
   We dont want to set a single step instruction on the extend instruction
   either.
   either.
 */
 */
 
 
/* Lots of mips16 instruction formats */
/* Lots of mips16 instruction formats */
/* Predicting jumps requires itype,ritype,i8type
/* Predicting jumps requires itype,ritype,i8type
   and their extensions      extItype,extritype,extI8type
   and their extensions      extItype,extritype,extI8type
 */
 */
enum mips16_inst_fmts
enum mips16_inst_fmts
{
{
  itype,                        /* 0  immediate 5,10 */
  itype,                        /* 0  immediate 5,10 */
  ritype,                       /* 1   5,3,8 */
  ritype,                       /* 1   5,3,8 */
  rrtype,                       /* 2   5,3,3,5 */
  rrtype,                       /* 2   5,3,3,5 */
  rritype,                      /* 3   5,3,3,5 */
  rritype,                      /* 3   5,3,3,5 */
  rrrtype,                      /* 4   5,3,3,3,2 */
  rrrtype,                      /* 4   5,3,3,3,2 */
  rriatype,                     /* 5   5,3,3,1,4 */
  rriatype,                     /* 5   5,3,3,1,4 */
  shifttype,                    /* 6   5,3,3,3,2 */
  shifttype,                    /* 6   5,3,3,3,2 */
  i8type,                       /* 7   5,3,8 */
  i8type,                       /* 7   5,3,8 */
  i8movtype,                    /* 8   5,3,3,5 */
  i8movtype,                    /* 8   5,3,3,5 */
  i8mov32rtype,                 /* 9   5,3,5,3 */
  i8mov32rtype,                 /* 9   5,3,5,3 */
  i64type,                      /* 10  5,3,8 */
  i64type,                      /* 10  5,3,8 */
  ri64type,                     /* 11  5,3,3,5 */
  ri64type,                     /* 11  5,3,3,5 */
  jalxtype,                     /* 12  5,1,5,5,16 - a 32 bit instruction */
  jalxtype,                     /* 12  5,1,5,5,16 - a 32 bit instruction */
  exiItype,                     /* 13  5,6,5,5,1,1,1,1,1,1,5 */
  exiItype,                     /* 13  5,6,5,5,1,1,1,1,1,1,5 */
  extRitype,                    /* 14  5,6,5,5,3,1,1,1,5 */
  extRitype,                    /* 14  5,6,5,5,3,1,1,1,5 */
  extRRItype,                   /* 15  5,5,5,5,3,3,5 */
  extRRItype,                   /* 15  5,5,5,5,3,3,5 */
  extRRIAtype,                  /* 16  5,7,4,5,3,3,1,4 */
  extRRIAtype,                  /* 16  5,7,4,5,3,3,1,4 */
  EXTshifttype,                 /* 17  5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
  EXTshifttype,                 /* 17  5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
  extI8type,                    /* 18  5,6,5,5,3,1,1,1,5 */
  extI8type,                    /* 18  5,6,5,5,3,1,1,1,5 */
  extI64type,                   /* 19  5,6,5,5,3,1,1,1,5 */
  extI64type,                   /* 19  5,6,5,5,3,1,1,1,5 */
  extRi64type,                  /* 20  5,6,5,5,3,3,5 */
  extRi64type,                  /* 20  5,6,5,5,3,3,5 */
  extshift64type                /* 21  5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
  extshift64type                /* 21  5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
};
};
/* I am heaping all the fields of the formats into one structure and
/* I am heaping all the fields of the formats into one structure and
   then, only the fields which are involved in instruction extension */
   then, only the fields which are involved in instruction extension */
struct upk_mips16
struct upk_mips16
{
{
  CORE_ADDR offset;
  CORE_ADDR offset;
  unsigned int regx;            /* Function in i8 type */
  unsigned int regx;            /* Function in i8 type */
  unsigned int regy;
  unsigned int regy;
};
};
 
 
 
 
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
   for the bits which make up the immediate extension.  */
   for the bits which make up the immediate extension.  */
 
 
static CORE_ADDR
static CORE_ADDR
extended_offset (unsigned int extension)
extended_offset (unsigned int extension)
{
{
  CORE_ADDR value;
  CORE_ADDR value;
  value = (extension >> 21) & 0x3f;     /* * extract 15:11 */
  value = (extension >> 21) & 0x3f;     /* * extract 15:11 */
  value = value << 6;
  value = value << 6;
  value |= (extension >> 16) & 0x1f;    /* extrace 10:5 */
  value |= (extension >> 16) & 0x1f;    /* extrace 10:5 */
  value = value << 5;
  value = value << 5;
  value |= extension & 0x01f;   /* extract 4:0 */
  value |= extension & 0x01f;   /* extract 4:0 */
  return value;
  return value;
}
}
 
 
/* Only call this function if you know that this is an extendable
/* Only call this function if you know that this is an extendable
   instruction.  It won't malfunction, but why make excess remote memory
   instruction.  It won't malfunction, but why make excess remote memory
   references?  If the immediate operands get sign extended or something,
   references?  If the immediate operands get sign extended or something,
   do it after the extension is performed.  */
   do it after the extension is performed.  */
/* FIXME: Every one of these cases needs to worry about sign extension
/* FIXME: Every one of these cases needs to worry about sign extension
   when the offset is to be used in relative addressing.  */
   when the offset is to be used in relative addressing.  */
 
 
static unsigned int
static unsigned int
fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[8];
  gdb_byte buf[8];
  pc &= 0xfffffffe;             /* clear the low order bit */
  pc &= 0xfffffffe;             /* clear the low order bit */
  target_read_memory (pc, buf, 2);
  target_read_memory (pc, buf, 2);
  return extract_unsigned_integer (buf, 2, byte_order);
  return extract_unsigned_integer (buf, 2, byte_order);
}
}
 
 
static void
static void
unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
               unsigned int extension,
               unsigned int extension,
               unsigned int inst,
               unsigned int inst,
               enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
               enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
{
{
  CORE_ADDR offset;
  CORE_ADDR offset;
  int regx;
  int regx;
  int regy;
  int regy;
  switch (insn_format)
  switch (insn_format)
    {
    {
    case itype:
    case itype:
      {
      {
        CORE_ADDR value;
        CORE_ADDR value;
        if (extension)
        if (extension)
          {
          {
            value = extended_offset (extension);
            value = extended_offset (extension);
            value = value << 11;        /* rom for the original value */
            value = value << 11;        /* rom for the original value */
            value |= inst & 0x7ff;      /* eleven bits from instruction */
            value |= inst & 0x7ff;      /* eleven bits from instruction */
          }
          }
        else
        else
          {
          {
            value = inst & 0x7ff;
            value = inst & 0x7ff;
            /* FIXME : Consider sign extension */
            /* FIXME : Consider sign extension */
          }
          }
        offset = value;
        offset = value;
        regx = -1;
        regx = -1;
        regy = -1;
        regy = -1;
      }
      }
      break;
      break;
    case ritype:
    case ritype:
    case i8type:
    case i8type:
      {                         /* A register identifier and an offset */
      {                         /* A register identifier and an offset */
        /* Most of the fields are the same as I type but the
        /* Most of the fields are the same as I type but the
           immediate value is of a different length */
           immediate value is of a different length */
        CORE_ADDR value;
        CORE_ADDR value;
        if (extension)
        if (extension)
          {
          {
            value = extended_offset (extension);
            value = extended_offset (extension);
            value = value << 8; /* from the original instruction */
            value = value << 8; /* from the original instruction */
            value |= inst & 0xff;       /* eleven bits from instruction */
            value |= inst & 0xff;       /* eleven bits from instruction */
            regx = (extension >> 8) & 0x07;     /* or i8 funct */
            regx = (extension >> 8) & 0x07;     /* or i8 funct */
            if (value & 0x4000) /* test the sign bit , bit 26 */
            if (value & 0x4000) /* test the sign bit , bit 26 */
              {
              {
                value &= ~0x3fff;       /* remove the sign bit */
                value &= ~0x3fff;       /* remove the sign bit */
                value = -value;
                value = -value;
              }
              }
          }
          }
        else
        else
          {
          {
            value = inst & 0xff;        /* 8 bits */
            value = inst & 0xff;        /* 8 bits */
            regx = (inst >> 8) & 0x07;  /* or i8 funct */
            regx = (inst >> 8) & 0x07;  /* or i8 funct */
            /* FIXME: Do sign extension , this format needs it */
            /* FIXME: Do sign extension , this format needs it */
            if (value & 0x80)   /* THIS CONFUSES ME */
            if (value & 0x80)   /* THIS CONFUSES ME */
              {
              {
                value &= 0xef;  /* remove the sign bit */
                value &= 0xef;  /* remove the sign bit */
                value = -value;
                value = -value;
              }
              }
          }
          }
        offset = value;
        offset = value;
        regy = -1;
        regy = -1;
        break;
        break;
      }
      }
    case jalxtype:
    case jalxtype:
      {
      {
        unsigned long value;
        unsigned long value;
        unsigned int nexthalf;
        unsigned int nexthalf;
        value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
        value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
        value = value << 16;
        value = value << 16;
        nexthalf = mips_fetch_instruction (gdbarch, pc + 2);    /* low bit still set */
        nexthalf = mips_fetch_instruction (gdbarch, pc + 2);    /* low bit still set */
        value |= nexthalf;
        value |= nexthalf;
        offset = value;
        offset = value;
        regx = -1;
        regx = -1;
        regy = -1;
        regy = -1;
        break;
        break;
      }
      }
    default:
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
    }
  upk->offset = offset;
  upk->offset = offset;
  upk->regx = regx;
  upk->regx = regx;
  upk->regy = regy;
  upk->regy = regy;
}
}
 
 
 
 
static CORE_ADDR
static CORE_ADDR
add_offset_16 (CORE_ADDR pc, int offset)
add_offset_16 (CORE_ADDR pc, int offset)
{
{
  return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
  return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
}
}
 
 
static CORE_ADDR
static CORE_ADDR
extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
                         unsigned int extension, unsigned int insn)
                         unsigned int extension, unsigned int insn)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int op = (insn >> 11);
  int op = (insn >> 11);
  switch (op)
  switch (op)
    {
    {
    case 2:                     /* Branch */
    case 2:                     /* Branch */
      {
      {
        CORE_ADDR offset;
        CORE_ADDR offset;
        struct upk_mips16 upk;
        struct upk_mips16 upk;
        unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
        unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
        offset = upk.offset;
        offset = upk.offset;
        if (offset & 0x800)
        if (offset & 0x800)
          {
          {
            offset &= 0xeff;
            offset &= 0xeff;
            offset = -offset;
            offset = -offset;
          }
          }
        pc += (offset << 1) + 2;
        pc += (offset << 1) + 2;
        break;
        break;
      }
      }
    case 3:                     /* JAL , JALX - Watch out, these are 32 bit instruction */
    case 3:                     /* JAL , JALX - Watch out, these are 32 bit instruction */
      {
      {
        struct upk_mips16 upk;
        struct upk_mips16 upk;
        unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
        unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
        pc = add_offset_16 (pc, upk.offset);
        pc = add_offset_16 (pc, upk.offset);
        if ((insn >> 10) & 0x01)        /* Exchange mode */
        if ((insn >> 10) & 0x01)        /* Exchange mode */
          pc = pc & ~0x01;      /* Clear low bit, indicate 32 bit mode */
          pc = pc & ~0x01;      /* Clear low bit, indicate 32 bit mode */
        else
        else
          pc |= 0x01;
          pc |= 0x01;
        break;
        break;
      }
      }
    case 4:                     /* beqz */
    case 4:                     /* beqz */
      {
      {
        struct upk_mips16 upk;
        struct upk_mips16 upk;
        int reg;
        int reg;
        unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
        unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
        reg = get_frame_register_signed (frame, upk.regx);
        reg = get_frame_register_signed (frame, upk.regx);
        if (reg == 0)
        if (reg == 0)
          pc += (upk.offset << 1) + 2;
          pc += (upk.offset << 1) + 2;
        else
        else
          pc += 2;
          pc += 2;
        break;
        break;
      }
      }
    case 5:                     /* bnez */
    case 5:                     /* bnez */
      {
      {
        struct upk_mips16 upk;
        struct upk_mips16 upk;
        int reg;
        int reg;
        unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
        unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
        reg = get_frame_register_signed (frame, upk.regx);
        reg = get_frame_register_signed (frame, upk.regx);
        if (reg != 0)
        if (reg != 0)
          pc += (upk.offset << 1) + 2;
          pc += (upk.offset << 1) + 2;
        else
        else
          pc += 2;
          pc += 2;
        break;
        break;
      }
      }
    case 12:                    /* I8 Formats btez btnez */
    case 12:                    /* I8 Formats btez btnez */
      {
      {
        struct upk_mips16 upk;
        struct upk_mips16 upk;
        int reg;
        int reg;
        unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
        unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
        /* upk.regx contains the opcode */
        /* upk.regx contains the opcode */
        reg = get_frame_register_signed (frame, 24);  /* Test register is 24 */
        reg = get_frame_register_signed (frame, 24);  /* Test register is 24 */
        if (((upk.regx == 0) && (reg == 0))       /* BTEZ */
        if (((upk.regx == 0) && (reg == 0))       /* BTEZ */
            || ((upk.regx == 1) && (reg != 0)))  /* BTNEZ */
            || ((upk.regx == 1) && (reg != 0)))  /* BTNEZ */
          /* pc = add_offset_16(pc,upk.offset) ; */
          /* pc = add_offset_16(pc,upk.offset) ; */
          pc += (upk.offset << 1) + 2;
          pc += (upk.offset << 1) + 2;
        else
        else
          pc += 2;
          pc += 2;
        break;
        break;
      }
      }
    case 29:                    /* RR Formats JR, JALR, JALR-RA */
    case 29:                    /* RR Formats JR, JALR, JALR-RA */
      {
      {
        struct upk_mips16 upk;
        struct upk_mips16 upk;
        /* upk.fmt = rrtype; */
        /* upk.fmt = rrtype; */
        op = insn & 0x1f;
        op = insn & 0x1f;
        if (op == 0)
        if (op == 0)
          {
          {
            int reg;
            int reg;
            upk.regx = (insn >> 8) & 0x07;
            upk.regx = (insn >> 8) & 0x07;
            upk.regy = (insn >> 5) & 0x07;
            upk.regy = (insn >> 5) & 0x07;
            switch (upk.regy)
            switch (upk.regy)
              {
              {
              case 0:
              case 0:
                reg = upk.regx;
                reg = upk.regx;
                break;
                break;
              case 1:
              case 1:
                reg = 31;
                reg = 31;
                break;          /* Function return instruction */
                break;          /* Function return instruction */
              case 2:
              case 2:
                reg = upk.regx;
                reg = upk.regx;
                break;
                break;
              default:
              default:
                reg = 31;
                reg = 31;
                break;          /* BOGUS Guess */
                break;          /* BOGUS Guess */
              }
              }
            pc = get_frame_register_signed (frame, reg);
            pc = get_frame_register_signed (frame, reg);
          }
          }
        else
        else
          pc += 2;
          pc += 2;
        break;
        break;
      }
      }
    case 30:
    case 30:
      /* This is an instruction extension.  Fetch the real instruction
      /* This is an instruction extension.  Fetch the real instruction
         (which follows the extension) and decode things based on
         (which follows the extension) and decode things based on
         that. */
         that. */
      {
      {
        pc += 2;
        pc += 2;
        pc = extended_mips16_next_pc (frame, pc, insn,
        pc = extended_mips16_next_pc (frame, pc, insn,
                                      fetch_mips_16 (gdbarch, pc));
                                      fetch_mips_16 (gdbarch, pc));
        break;
        break;
      }
      }
    default:
    default:
      {
      {
        pc += 2;
        pc += 2;
        break;
        break;
      }
      }
    }
    }
  return pc;
  return pc;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  unsigned int insn = fetch_mips_16 (gdbarch, pc);
  unsigned int insn = fetch_mips_16 (gdbarch, pc);
  return extended_mips16_next_pc (frame, pc, 0, insn);
  return extended_mips16_next_pc (frame, pc, 0, insn);
}
}
 
 
/* The mips_next_pc function supports single_step when the remote
/* The mips_next_pc function supports single_step when the remote
   target monitor or stub is not developed enough to do a single_step.
   target monitor or stub is not developed enough to do a single_step.
   It works by decoding the current instruction and predicting where a
   It works by decoding the current instruction and predicting where a
   branch will go. This isnt hard because all the data is available.
   branch will go. This isnt hard because all the data is available.
   The MIPS32 and MIPS16 variants are quite different.  */
   The MIPS32 and MIPS16 variants are quite different.  */
static CORE_ADDR
static CORE_ADDR
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
{
  if (is_mips16_addr (pc))
  if (is_mips16_addr (pc))
    return mips16_next_pc (frame, pc);
    return mips16_next_pc (frame, pc);
  else
  else
    return mips32_next_pc (frame, pc);
    return mips32_next_pc (frame, pc);
}
}
 
 
struct mips_frame_cache
struct mips_frame_cache
{
{
  CORE_ADDR base;
  CORE_ADDR base;
  struct trad_frame_saved_reg *saved_regs;
  struct trad_frame_saved_reg *saved_regs;
};
};
 
 
/* Set a register's saved stack address in temp_saved_regs.  If an
/* Set a register's saved stack address in temp_saved_regs.  If an
   address has already been set for this register, do nothing; this
   address has already been set for this register, do nothing; this
   way we will only recognize the first save of a given register in a
   way we will only recognize the first save of a given register in a
   function prologue.
   function prologue.
 
 
   For simplicity, save the address in both [0 .. gdbarch_num_regs) and
   For simplicity, save the address in both [0 .. gdbarch_num_regs) and
   [gdbarch_num_regs .. 2*gdbarch_num_regs).
   [gdbarch_num_regs .. 2*gdbarch_num_regs).
   Strictly speaking, only the second range is used as it is only second
   Strictly speaking, only the second range is used as it is only second
   range (the ABI instead of ISA registers) that comes into play when finding
   range (the ABI instead of ISA registers) that comes into play when finding
   saved registers in a frame.  */
   saved registers in a frame.  */
 
 
static void
static void
set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
                int regnum, CORE_ADDR offset)
                int regnum, CORE_ADDR offset)
{
{
  if (this_cache != NULL
  if (this_cache != NULL
      && this_cache->saved_regs[regnum].addr == -1)
      && this_cache->saved_regs[regnum].addr == -1)
    {
    {
      this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
      this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
        = offset;
        = offset;
      this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
      this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
        = offset;
        = offset;
    }
    }
}
}
 
 
 
 
/* Fetch the immediate value from a MIPS16 instruction.
/* Fetch the immediate value from a MIPS16 instruction.
   If the previous instruction was an EXTEND, use it to extend
   If the previous instruction was an EXTEND, use it to extend
   the upper bits of the immediate value.  This is a helper function
   the upper bits of the immediate value.  This is a helper function
   for mips16_scan_prologue.  */
   for mips16_scan_prologue.  */
 
 
static int
static int
mips16_get_imm (unsigned short prev_inst,       /* previous instruction */
mips16_get_imm (unsigned short prev_inst,       /* previous instruction */
                unsigned short inst,    /* current instruction */
                unsigned short inst,    /* current instruction */
                int nbits,      /* number of bits in imm field */
                int nbits,      /* number of bits in imm field */
                int scale,      /* scale factor to be applied to imm */
                int scale,      /* scale factor to be applied to imm */
                int is_signed)  /* is the imm field signed? */
                int is_signed)  /* is the imm field signed? */
{
{
  int offset;
  int offset;
 
 
  if ((prev_inst & 0xf800) == 0xf000)   /* prev instruction was EXTEND? */
  if ((prev_inst & 0xf800) == 0xf000)   /* prev instruction was EXTEND? */
    {
    {
      offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
      offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
      if (offset & 0x8000)      /* check for negative extend */
      if (offset & 0x8000)      /* check for negative extend */
        offset = 0 - (0x10000 - (offset & 0xffff));
        offset = 0 - (0x10000 - (offset & 0xffff));
      return offset | (inst & 0x1f);
      return offset | (inst & 0x1f);
    }
    }
  else
  else
    {
    {
      int max_imm = 1 << nbits;
      int max_imm = 1 << nbits;
      int mask = max_imm - 1;
      int mask = max_imm - 1;
      int sign_bit = max_imm >> 1;
      int sign_bit = max_imm >> 1;
 
 
      offset = inst & mask;
      offset = inst & mask;
      if (is_signed && (offset & sign_bit))
      if (is_signed && (offset & sign_bit))
        offset = 0 - (max_imm - offset);
        offset = 0 - (max_imm - offset);
      return offset * scale;
      return offset * scale;
    }
    }
}
}
 
 
 
 
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
   the associated FRAME_CACHE if not null.
   the associated FRAME_CACHE if not null.
   Return the address of the first instruction past the prologue.  */
   Return the address of the first instruction past the prologue.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips16_scan_prologue (struct gdbarch *gdbarch,
mips16_scan_prologue (struct gdbarch *gdbarch,
                      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct frame_info *this_frame,
                      struct frame_info *this_frame,
                      struct mips_frame_cache *this_cache)
                      struct mips_frame_cache *this_cache)
{
{
  CORE_ADDR cur_pc;
  CORE_ADDR cur_pc;
  CORE_ADDR frame_addr = 0;      /* Value of $r17, used as frame pointer */
  CORE_ADDR frame_addr = 0;      /* Value of $r17, used as frame pointer */
  CORE_ADDR sp;
  CORE_ADDR sp;
  long frame_offset = 0;        /* Size of stack frame.  */
  long frame_offset = 0;        /* Size of stack frame.  */
  long frame_adjust = 0;        /* Offset of FP from SP.  */
  long frame_adjust = 0;        /* Offset of FP from SP.  */
  int frame_reg = MIPS_SP_REGNUM;
  int frame_reg = MIPS_SP_REGNUM;
  unsigned short prev_inst = 0;  /* saved copy of previous instruction */
  unsigned short prev_inst = 0;  /* saved copy of previous instruction */
  unsigned inst = 0;             /* current instruction */
  unsigned inst = 0;             /* current instruction */
  unsigned entry_inst = 0;       /* the entry instruction */
  unsigned entry_inst = 0;       /* the entry instruction */
  unsigned save_inst = 0;        /* the save instruction */
  unsigned save_inst = 0;        /* the save instruction */
  int reg, offset;
  int reg, offset;
 
 
  int extend_bytes = 0;
  int extend_bytes = 0;
  int prev_extend_bytes;
  int prev_extend_bytes;
  CORE_ADDR end_prologue_addr = 0;
  CORE_ADDR end_prologue_addr = 0;
 
 
  /* Can be called when there's no process, and hence when there's no
  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
     THIS_FRAME.  */
  if (this_frame != NULL)
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
    sp = get_frame_register_signed (this_frame,
                                    gdbarch_num_regs (gdbarch)
                                    gdbarch_num_regs (gdbarch)
                                    + MIPS_SP_REGNUM);
                                    + MIPS_SP_REGNUM);
  else
  else
    sp = 0;
    sp = 0;
 
 
  if (limit_pc > start_pc + 200)
  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;
    limit_pc = start_pc + 200;
 
 
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
    {
    {
      /* Save the previous instruction.  If it's an EXTEND, we'll extract
      /* Save the previous instruction.  If it's an EXTEND, we'll extract
         the immediate offset extension from it in mips16_get_imm.  */
         the immediate offset extension from it in mips16_get_imm.  */
      prev_inst = inst;
      prev_inst = inst;
 
 
      /* Fetch and decode the instruction.   */
      /* Fetch and decode the instruction.   */
      inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
      inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
 
 
      /* Normally we ignore extend instructions.  However, if it is
      /* Normally we ignore extend instructions.  However, if it is
         not followed by a valid prologue instruction, then this
         not followed by a valid prologue instruction, then this
         instruction is not part of the prologue either.  We must
         instruction is not part of the prologue either.  We must
         remember in this case to adjust the end_prologue_addr back
         remember in this case to adjust the end_prologue_addr back
         over the extend.  */
         over the extend.  */
      if ((inst & 0xf800) == 0xf000)    /* extend */
      if ((inst & 0xf800) == 0xf000)    /* extend */
        {
        {
          extend_bytes = MIPS_INSN16_SIZE;
          extend_bytes = MIPS_INSN16_SIZE;
          continue;
          continue;
        }
        }
 
 
      prev_extend_bytes = extend_bytes;
      prev_extend_bytes = extend_bytes;
      extend_bytes = 0;
      extend_bytes = 0;
 
 
      if ((inst & 0xff00) == 0x6300     /* addiu sp */
      if ((inst & 0xff00) == 0x6300     /* addiu sp */
          || (inst & 0xff00) == 0xfb00) /* daddiu sp */
          || (inst & 0xff00) == 0xfb00) /* daddiu sp */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
          offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
          if (offset < 0)        /* negative stack adjustment? */
          if (offset < 0)        /* negative stack adjustment? */
            frame_offset -= offset;
            frame_offset -= offset;
          else
          else
            /* Exit loop if a positive stack adjustment is found, which
            /* Exit loop if a positive stack adjustment is found, which
               usually means that the stack cleanup code in the function
               usually means that the stack cleanup code in the function
               epilogue is reached.  */
               epilogue is reached.  */
            break;
            break;
        }
        }
      else if ((inst & 0xf800) == 0xd000)       /* sw reg,n($sp) */
      else if ((inst & 0xf800) == 0xd000)       /* sw reg,n($sp) */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
          offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
          reg = mips16_to_32_reg[(inst & 0x700) >> 8];
          reg = mips16_to_32_reg[(inst & 0x700) >> 8];
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
        }
        }
      else if ((inst & 0xff00) == 0xf900)       /* sd reg,n($sp) */
      else if ((inst & 0xff00) == 0xf900)       /* sd reg,n($sp) */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
          offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
          reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
          reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
        }
        }
      else if ((inst & 0xff00) == 0x6200)       /* sw $ra,n($sp) */
      else if ((inst & 0xff00) == 0x6200)       /* sw $ra,n($sp) */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
          offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
        }
        }
      else if ((inst & 0xff00) == 0xfa00)       /* sd $ra,n($sp) */
      else if ((inst & 0xff00) == 0xfa00)       /* sd $ra,n($sp) */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
          offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
        }
        }
      else if (inst == 0x673d)  /* move $s1, $sp */
      else if (inst == 0x673d)  /* move $s1, $sp */
        {
        {
          frame_addr = sp;
          frame_addr = sp;
          frame_reg = 17;
          frame_reg = 17;
        }
        }
      else if ((inst & 0xff00) == 0x0100)       /* addiu $s1,sp,n */
      else if ((inst & 0xff00) == 0x0100)       /* addiu $s1,sp,n */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
          offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
          frame_addr = sp + offset;
          frame_addr = sp + offset;
          frame_reg = 17;
          frame_reg = 17;
          frame_adjust = offset;
          frame_adjust = offset;
        }
        }
      else if ((inst & 0xFF00) == 0xd900)       /* sw reg,offset($s1) */
      else if ((inst & 0xFF00) == 0xd900)       /* sw reg,offset($s1) */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
          offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
          reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
          reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
          set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
          set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
        }
        }
      else if ((inst & 0xFF00) == 0x7900)       /* sd reg,offset($s1) */
      else if ((inst & 0xFF00) == 0x7900)       /* sd reg,offset($s1) */
        {
        {
          offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
          offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
          reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
          reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
          set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
          set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
        }
        }
      else if ((inst & 0xf81f) == 0xe809
      else if ((inst & 0xf81f) == 0xe809
               && (inst & 0x700) != 0x700)      /* entry */
               && (inst & 0x700) != 0x700)      /* entry */
        entry_inst = inst;      /* save for later processing */
        entry_inst = inst;      /* save for later processing */
      else if ((inst & 0xff80) == 0x6480)       /* save */
      else if ((inst & 0xff80) == 0x6480)       /* save */
        {
        {
          save_inst = inst;     /* save for later processing */
          save_inst = inst;     /* save for later processing */
          if (prev_extend_bytes)                /* extend */
          if (prev_extend_bytes)                /* extend */
            save_inst |= prev_inst << 16;
            save_inst |= prev_inst << 16;
        }
        }
      else if ((inst & 0xf800) == 0x1800)       /* jal(x) */
      else if ((inst & 0xf800) == 0x1800)       /* jal(x) */
        cur_pc += MIPS_INSN16_SIZE;     /* 32-bit instruction */
        cur_pc += MIPS_INSN16_SIZE;     /* 32-bit instruction */
      else if ((inst & 0xff1c) == 0x6704)       /* move reg,$a0-$a3 */
      else if ((inst & 0xff1c) == 0x6704)       /* move reg,$a0-$a3 */
        {
        {
          /* This instruction is part of the prologue, but we don't
          /* This instruction is part of the prologue, but we don't
             need to do anything special to handle it.  */
             need to do anything special to handle it.  */
        }
        }
      else
      else
        {
        {
          /* This instruction is not an instruction typically found
          /* This instruction is not an instruction typically found
             in a prologue, so we must have reached the end of the
             in a prologue, so we must have reached the end of the
             prologue.  */
             prologue.  */
          if (end_prologue_addr == 0)
          if (end_prologue_addr == 0)
            end_prologue_addr = cur_pc - prev_extend_bytes;
            end_prologue_addr = cur_pc - prev_extend_bytes;
        }
        }
    }
    }
 
 
  /* The entry instruction is typically the first instruction in a function,
  /* The entry instruction is typically the first instruction in a function,
     and it stores registers at offsets relative to the value of the old SP
     and it stores registers at offsets relative to the value of the old SP
     (before the prologue).  But the value of the sp parameter to this
     (before the prologue).  But the value of the sp parameter to this
     function is the new SP (after the prologue has been executed).  So we
     function is the new SP (after the prologue has been executed).  So we
     can't calculate those offsets until we've seen the entire prologue,
     can't calculate those offsets until we've seen the entire prologue,
     and can calculate what the old SP must have been. */
     and can calculate what the old SP must have been. */
  if (entry_inst != 0)
  if (entry_inst != 0)
    {
    {
      int areg_count = (entry_inst >> 8) & 7;
      int areg_count = (entry_inst >> 8) & 7;
      int sreg_count = (entry_inst >> 6) & 3;
      int sreg_count = (entry_inst >> 6) & 3;
 
 
      /* The entry instruction always subtracts 32 from the SP.  */
      /* The entry instruction always subtracts 32 from the SP.  */
      frame_offset += 32;
      frame_offset += 32;
 
 
      /* Now we can calculate what the SP must have been at the
      /* Now we can calculate what the SP must have been at the
         start of the function prologue.  */
         start of the function prologue.  */
      sp += frame_offset;
      sp += frame_offset;
 
 
      /* Check if a0-a3 were saved in the caller's argument save area.  */
      /* Check if a0-a3 were saved in the caller's argument save area.  */
      for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
      for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          offset += mips_abi_regsize (gdbarch);
          offset += mips_abi_regsize (gdbarch);
        }
        }
 
 
      /* Check if the ra register was pushed on the stack.  */
      /* Check if the ra register was pushed on the stack.  */
      offset = -4;
      offset = -4;
      if (entry_inst & 0x20)
      if (entry_inst & 0x20)
        {
        {
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
 
 
      /* Check if the s0 and s1 registers were pushed on the stack.  */
      /* Check if the s0 and s1 registers were pushed on the stack.  */
      for (reg = 16; reg < sreg_count + 16; reg++)
      for (reg = 16; reg < sreg_count + 16; reg++)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
    }
    }
 
 
  /* The SAVE instruction is similar to ENTRY, except that defined by the
  /* The SAVE instruction is similar to ENTRY, except that defined by the
     MIPS16e ASE of the MIPS Architecture.  Unlike with ENTRY though, the
     MIPS16e ASE of the MIPS Architecture.  Unlike with ENTRY though, the
     size of the frame is specified as an immediate field of instruction
     size of the frame is specified as an immediate field of instruction
     and an extended variation exists which lets additional registers and
     and an extended variation exists which lets additional registers and
     frame space to be specified.  The instruction always treats registers
     frame space to be specified.  The instruction always treats registers
     as 32-bit so its usefulness for 64-bit ABIs is questionable.  */
     as 32-bit so its usefulness for 64-bit ABIs is questionable.  */
  if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
  if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
    {
    {
      static int args_table[16] = {
      static int args_table[16] = {
        0, 0, 0, 0, 1, 1, 1, 1,
        0, 0, 0, 0, 1, 1, 1, 1,
        2, 2, 2, 0, 3, 3, 4, -1,
        2, 2, 2, 0, 3, 3, 4, -1,
      };
      };
      static int astatic_table[16] = {
      static int astatic_table[16] = {
        0, 1, 2, 3, 0, 1, 2, 3,
        0, 1, 2, 3, 0, 1, 2, 3,
        0, 1, 2, 4, 0, 1, 0, -1,
        0, 1, 2, 4, 0, 1, 0, -1,
      };
      };
      int aregs = (save_inst >> 16) & 0xf;
      int aregs = (save_inst >> 16) & 0xf;
      int xsregs = (save_inst >> 24) & 0x7;
      int xsregs = (save_inst >> 24) & 0x7;
      int args = args_table[aregs];
      int args = args_table[aregs];
      int astatic = astatic_table[aregs];
      int astatic = astatic_table[aregs];
      long frame_size;
      long frame_size;
 
 
      if (args < 0)
      if (args < 0)
        {
        {
          warning (_("Invalid number of argument registers encoded in SAVE."));
          warning (_("Invalid number of argument registers encoded in SAVE."));
          args = 0;
          args = 0;
        }
        }
      if (astatic < 0)
      if (astatic < 0)
        {
        {
          warning (_("Invalid number of static registers encoded in SAVE."));
          warning (_("Invalid number of static registers encoded in SAVE."));
          astatic = 0;
          astatic = 0;
        }
        }
 
 
      /* For standard SAVE the frame size of 0 means 128.  */
      /* For standard SAVE the frame size of 0 means 128.  */
      frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
      frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
      if (frame_size == 0 && (save_inst >> 16) == 0)
      if (frame_size == 0 && (save_inst >> 16) == 0)
        frame_size = 16;
        frame_size = 16;
      frame_size *= 8;
      frame_size *= 8;
      frame_offset += frame_size;
      frame_offset += frame_size;
 
 
      /* Now we can calculate what the SP must have been at the
      /* Now we can calculate what the SP must have been at the
         start of the function prologue.  */
         start of the function prologue.  */
      sp += frame_offset;
      sp += frame_offset;
 
 
      /* Check if A0-A3 were saved in the caller's argument save area.  */
      /* Check if A0-A3 were saved in the caller's argument save area.  */
      for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
      for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          offset += mips_abi_regsize (gdbarch);
          offset += mips_abi_regsize (gdbarch);
        }
        }
 
 
      offset = -4;
      offset = -4;
 
 
      /* Check if the RA register was pushed on the stack.  */
      /* Check if the RA register was pushed on the stack.  */
      if (save_inst & 0x40)
      if (save_inst & 0x40)
        {
        {
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
          set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
 
 
      /* Check if the S8 register was pushed on the stack.  */
      /* Check if the S8 register was pushed on the stack.  */
      if (xsregs > 6)
      if (xsregs > 6)
        {
        {
          set_reg_offset (gdbarch, this_cache, 30, sp + offset);
          set_reg_offset (gdbarch, this_cache, 30, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
          xsregs--;
          xsregs--;
        }
        }
      /* Check if S2-S7 were pushed on the stack.  */
      /* Check if S2-S7 were pushed on the stack.  */
      for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
      for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
 
 
      /* Check if the S1 register was pushed on the stack.  */
      /* Check if the S1 register was pushed on the stack.  */
      if (save_inst & 0x10)
      if (save_inst & 0x10)
        {
        {
          set_reg_offset (gdbarch, this_cache, 17, sp + offset);
          set_reg_offset (gdbarch, this_cache, 17, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
      /* Check if the S0 register was pushed on the stack.  */
      /* Check if the S0 register was pushed on the stack.  */
      if (save_inst & 0x20)
      if (save_inst & 0x20)
        {
        {
          set_reg_offset (gdbarch, this_cache, 16, sp + offset);
          set_reg_offset (gdbarch, this_cache, 16, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
 
 
      /* Check if A0-A3 were pushed on the stack.  */
      /* Check if A0-A3 were pushed on the stack.  */
      for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
      for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          set_reg_offset (gdbarch, this_cache, reg, sp + offset);
          offset -= mips_abi_regsize (gdbarch);
          offset -= mips_abi_regsize (gdbarch);
        }
        }
    }
    }
 
 
  if (this_cache != NULL)
  if (this_cache != NULL)
    {
    {
      this_cache->base =
      this_cache->base =
        (get_frame_register_signed (this_frame,
        (get_frame_register_signed (this_frame,
                                    gdbarch_num_regs (gdbarch) + frame_reg)
                                    gdbarch_num_regs (gdbarch) + frame_reg)
         + frame_offset - frame_adjust);
         + frame_offset - frame_adjust);
      /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
      /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
         be able to get rid of the assignment below, evetually. But it's
         be able to get rid of the assignment below, evetually. But it's
         still needed for now.  */
         still needed for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
                             + mips_regnum (gdbarch)->pc]
                             + mips_regnum (gdbarch)->pc]
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
    }
    }
 
 
  /* If we didn't reach the end of the prologue when scanning the function
  /* If we didn't reach the end of the prologue when scanning the function
     instructions, then set end_prologue_addr to the address of the
     instructions, then set end_prologue_addr to the address of the
     instruction immediately after the last one we scanned.  */
     instruction immediately after the last one we scanned.  */
  if (end_prologue_addr == 0)
  if (end_prologue_addr == 0)
    end_prologue_addr = cur_pc;
    end_prologue_addr = cur_pc;
 
 
  return end_prologue_addr;
  return end_prologue_addr;
}
}
 
 
/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
   Procedures that use the 32-bit instruction set are handled by the
   Procedures that use the 32-bit instruction set are handled by the
   mips_insn32 unwinder.  */
   mips_insn32 unwinder.  */
 
 
static struct mips_frame_cache *
static struct mips_frame_cache *
mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
{
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;
  struct mips_frame_cache *cache;
 
 
  if ((*this_cache) != NULL)
  if ((*this_cache) != NULL)
    return (*this_cache);
    return (*this_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
 
 
  /* Analyze the function prologue.  */
  /* Analyze the function prologue.  */
  {
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;
    CORE_ADDR start_addr;
 
 
    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
    if (start_addr == 0)
      start_addr = heuristic_proc_start (gdbarch, pc);
      start_addr = heuristic_proc_start (gdbarch, pc);
    /* We can't analyze the prologue if we couldn't find the begining
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
       of the function.  */
    if (start_addr == 0)
    if (start_addr == 0)
      return cache;
      return cache;
 
 
    mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
    mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
  }
  }
 
 
  /* gdbarch_sp_regnum contains the value and not the address.  */
  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
  trad_frame_set_value (cache->saved_regs,
                        gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
                        gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
                        cache->base);
                        cache->base);
 
 
  return (*this_cache);
  return (*this_cache);
}
}
 
 
static void
static void
mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
                           struct frame_id *this_id)
                           struct frame_id *this_id)
{
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
                                                           this_cache);
                                                           this_cache);
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (info->base == 0)
  if (info->base == 0)
    return;
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}
}
 
 
static struct value *
static struct value *
mips_insn16_frame_prev_register (struct frame_info *this_frame,
mips_insn16_frame_prev_register (struct frame_info *this_frame,
                                 void **this_cache, int regnum)
                                 void **this_cache, int regnum)
{
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
                                                           this_cache);
                                                           this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
}
 
 
static int
static int
mips_insn16_frame_sniffer (const struct frame_unwind *self,
mips_insn16_frame_sniffer (const struct frame_unwind *self,
                           struct frame_info *this_frame, void **this_cache)
                           struct frame_info *this_frame, void **this_cache)
{
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips16 (pc))
  if (mips_pc_is_mips16 (pc))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
static const struct frame_unwind mips_insn16_frame_unwind =
static const struct frame_unwind mips_insn16_frame_unwind =
{
{
  NORMAL_FRAME,
  NORMAL_FRAME,
  mips_insn16_frame_this_id,
  mips_insn16_frame_this_id,
  mips_insn16_frame_prev_register,
  mips_insn16_frame_prev_register,
  NULL,
  NULL,
  mips_insn16_frame_sniffer
  mips_insn16_frame_sniffer
};
};
 
 
static CORE_ADDR
static CORE_ADDR
mips_insn16_frame_base_address (struct frame_info *this_frame,
mips_insn16_frame_base_address (struct frame_info *this_frame,
                                void **this_cache)
                                void **this_cache)
{
{
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
  struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
                                                           this_cache);
                                                           this_cache);
  return info->base;
  return info->base;
}
}
 
 
static const struct frame_base mips_insn16_frame_base =
static const struct frame_base mips_insn16_frame_base =
{
{
  &mips_insn16_frame_unwind,
  &mips_insn16_frame_unwind,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address,
  mips_insn16_frame_base_address
  mips_insn16_frame_base_address
};
};
 
 
static const struct frame_base *
static const struct frame_base *
mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
{
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (mips_pc_is_mips16 (pc))
  if (mips_pc_is_mips16 (pc))
    return &mips_insn16_frame_base;
    return &mips_insn16_frame_base;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Mark all the registers as unset in the saved_regs array
/* Mark all the registers as unset in the saved_regs array
   of THIS_CACHE.  Do nothing if THIS_CACHE is null.  */
   of THIS_CACHE.  Do nothing if THIS_CACHE is null.  */
 
 
static void
static void
reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
{
{
  if (this_cache == NULL || this_cache->saved_regs == NULL)
  if (this_cache == NULL || this_cache->saved_regs == NULL)
    return;
    return;
 
 
  {
  {
    const int num_regs = gdbarch_num_regs (gdbarch);
    const int num_regs = gdbarch_num_regs (gdbarch);
    int i;
    int i;
 
 
    for (i = 0; i < num_regs; i++)
    for (i = 0; i < num_regs; i++)
      {
      {
        this_cache->saved_regs[i].addr = -1;
        this_cache->saved_regs[i].addr = -1;
      }
      }
  }
  }
}
}
 
 
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
   the associated FRAME_CACHE if not null.
   the associated FRAME_CACHE if not null.
   Return the address of the first instruction past the prologue.  */
   Return the address of the first instruction past the prologue.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips32_scan_prologue (struct gdbarch *gdbarch,
mips32_scan_prologue (struct gdbarch *gdbarch,
                      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct frame_info *this_frame,
                      struct frame_info *this_frame,
                      struct mips_frame_cache *this_cache)
                      struct mips_frame_cache *this_cache)
{
{
  CORE_ADDR cur_pc;
  CORE_ADDR cur_pc;
  CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
  CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
  CORE_ADDR sp;
  CORE_ADDR sp;
  long frame_offset;
  long frame_offset;
  int  frame_reg = MIPS_SP_REGNUM;
  int  frame_reg = MIPS_SP_REGNUM;
 
 
  CORE_ADDR end_prologue_addr = 0;
  CORE_ADDR end_prologue_addr = 0;
  int seen_sp_adjust = 0;
  int seen_sp_adjust = 0;
  int load_immediate_bytes = 0;
  int load_immediate_bytes = 0;
  int in_delay_slot = 0;
  int in_delay_slot = 0;
  int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
  int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
 
 
  /* Can be called when there's no process, and hence when there's no
  /* Can be called when there's no process, and hence when there's no
     THIS_FRAME.  */
     THIS_FRAME.  */
  if (this_frame != NULL)
  if (this_frame != NULL)
    sp = get_frame_register_signed (this_frame,
    sp = get_frame_register_signed (this_frame,
                                    gdbarch_num_regs (gdbarch)
                                    gdbarch_num_regs (gdbarch)
                                    + MIPS_SP_REGNUM);
                                    + MIPS_SP_REGNUM);
  else
  else
    sp = 0;
    sp = 0;
 
 
  if (limit_pc > start_pc + 200)
  if (limit_pc > start_pc + 200)
    limit_pc = start_pc + 200;
    limit_pc = start_pc + 200;
 
 
restart:
restart:
 
 
  frame_offset = 0;
  frame_offset = 0;
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
  for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
    {
    {
      unsigned long inst, high_word, low_word;
      unsigned long inst, high_word, low_word;
      int reg;
      int reg;
 
 
      /* Fetch the instruction.   */
      /* Fetch the instruction.   */
      inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
      inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
 
 
      /* Save some code by pre-extracting some useful fields.  */
      /* Save some code by pre-extracting some useful fields.  */
      high_word = (inst >> 16) & 0xffff;
      high_word = (inst >> 16) & 0xffff;
      low_word = inst & 0xffff;
      low_word = inst & 0xffff;
      reg = high_word & 0x1f;
      reg = high_word & 0x1f;
 
 
      if (high_word == 0x27bd   /* addiu $sp,$sp,-i */
      if (high_word == 0x27bd   /* addiu $sp,$sp,-i */
          || high_word == 0x23bd        /* addi $sp,$sp,-i */
          || high_word == 0x23bd        /* addi $sp,$sp,-i */
          || high_word == 0x67bd)       /* daddiu $sp,$sp,-i */
          || high_word == 0x67bd)       /* daddiu $sp,$sp,-i */
        {
        {
          if (low_word & 0x8000)        /* negative stack adjustment? */
          if (low_word & 0x8000)        /* negative stack adjustment? */
            frame_offset += 0x10000 - low_word;
            frame_offset += 0x10000 - low_word;
          else
          else
            /* Exit loop if a positive stack adjustment is found, which
            /* Exit loop if a positive stack adjustment is found, which
               usually means that the stack cleanup code in the function
               usually means that the stack cleanup code in the function
               epilogue is reached.  */
               epilogue is reached.  */
            break;
            break;
          seen_sp_adjust = 1;
          seen_sp_adjust = 1;
        }
        }
      else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
      else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
               && !regsize_is_64_bits)
               && !regsize_is_64_bits)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
          set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
        }
        }
      else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
      else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
               && regsize_is_64_bits)
               && regsize_is_64_bits)
        {
        {
          /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra.  */
          /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra.  */
          set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
          set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
        }
        }
      else if (high_word == 0x27be)     /* addiu $30,$sp,size */
      else if (high_word == 0x27be)     /* addiu $30,$sp,size */
        {
        {
          /* Old gcc frame, r30 is virtual frame pointer.  */
          /* Old gcc frame, r30 is virtual frame pointer.  */
          if ((long) low_word != frame_offset)
          if ((long) low_word != frame_offset)
            frame_addr = sp + low_word;
            frame_addr = sp + low_word;
          else if (this_frame && frame_reg == MIPS_SP_REGNUM)
          else if (this_frame && frame_reg == MIPS_SP_REGNUM)
            {
            {
              unsigned alloca_adjust;
              unsigned alloca_adjust;
 
 
              frame_reg = 30;
              frame_reg = 30;
              frame_addr = get_frame_register_signed
              frame_addr = get_frame_register_signed
                (this_frame, gdbarch_num_regs (gdbarch) + 30);
                (this_frame, gdbarch_num_regs (gdbarch) + 30);
 
 
              alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
              alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
              if (alloca_adjust > 0)
              if (alloca_adjust > 0)
                {
                {
                  /* FP > SP + frame_size. This may be because of
                  /* FP > SP + frame_size. This may be because of
                     an alloca or somethings similar.  Fix sp to
                     an alloca or somethings similar.  Fix sp to
                     "pre-alloca" value, and try again.  */
                     "pre-alloca" value, and try again.  */
                  sp += alloca_adjust;
                  sp += alloca_adjust;
                  /* Need to reset the status of all registers.  Otherwise,
                  /* Need to reset the status of all registers.  Otherwise,
                     we will hit a guard that prevents the new address
                     we will hit a guard that prevents the new address
                     for each register to be recomputed during the second
                     for each register to be recomputed during the second
                     pass.  */
                     pass.  */
                  reset_saved_regs (gdbarch, this_cache);
                  reset_saved_regs (gdbarch, this_cache);
                  goto restart;
                  goto restart;
                }
                }
            }
            }
        }
        }
      /* move $30,$sp.  With different versions of gas this will be either
      /* move $30,$sp.  With different versions of gas this will be either
         `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
         `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
         Accept any one of these.  */
         Accept any one of these.  */
      else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
      else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
        {
        {
          /* New gcc frame, virtual frame pointer is at r30 + frame_size.  */
          /* New gcc frame, virtual frame pointer is at r30 + frame_size.  */
          if (this_frame && frame_reg == MIPS_SP_REGNUM)
          if (this_frame && frame_reg == MIPS_SP_REGNUM)
            {
            {
              unsigned alloca_adjust;
              unsigned alloca_adjust;
 
 
              frame_reg = 30;
              frame_reg = 30;
              frame_addr = get_frame_register_signed
              frame_addr = get_frame_register_signed
                (this_frame, gdbarch_num_regs (gdbarch) + 30);
                (this_frame, gdbarch_num_regs (gdbarch) + 30);
 
 
              alloca_adjust = (unsigned) (frame_addr - sp);
              alloca_adjust = (unsigned) (frame_addr - sp);
              if (alloca_adjust > 0)
              if (alloca_adjust > 0)
                {
                {
                  /* FP > SP + frame_size. This may be because of
                  /* FP > SP + frame_size. This may be because of
                     an alloca or somethings similar.  Fix sp to
                     an alloca or somethings similar.  Fix sp to
                     "pre-alloca" value, and try again.  */
                     "pre-alloca" value, and try again.  */
                  sp = frame_addr;
                  sp = frame_addr;
                  /* Need to reset the status of all registers.  Otherwise,
                  /* Need to reset the status of all registers.  Otherwise,
                     we will hit a guard that prevents the new address
                     we will hit a guard that prevents the new address
                     for each register to be recomputed during the second
                     for each register to be recomputed during the second
                     pass.  */
                     pass.  */
                  reset_saved_regs (gdbarch, this_cache);
                  reset_saved_regs (gdbarch, this_cache);
                  goto restart;
                  goto restart;
                }
                }
            }
            }
        }
        }
      else if ((high_word & 0xFFE0) == 0xafc0   /* sw reg,offset($30) */
      else if ((high_word & 0xFFE0) == 0xafc0   /* sw reg,offset($30) */
               && !regsize_is_64_bits)
               && !regsize_is_64_bits)
        {
        {
          set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
          set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
        }
        }
      else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
      else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
               || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
               || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
               || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
               || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
               || high_word == 0x3c1c /* lui $gp,n */
               || high_word == 0x3c1c /* lui $gp,n */
               || high_word == 0x279c /* addiu $gp,$gp,n */
               || high_word == 0x279c /* addiu $gp,$gp,n */
               || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
               || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
               || inst == 0x033ce021 /* addu $gp,$t9,$gp */
               || inst == 0x033ce021 /* addu $gp,$t9,$gp */
              )
              )
       {
       {
         /* These instructions are part of the prologue, but we don't
         /* These instructions are part of the prologue, but we don't
            need to do anything special to handle them.  */
            need to do anything special to handle them.  */
       }
       }
      /* The instructions below load $at or $t0 with an immediate
      /* The instructions below load $at or $t0 with an immediate
         value in preparation for a stack adjustment via
         value in preparation for a stack adjustment via
         subu $sp,$sp,[$at,$t0]. These instructions could also
         subu $sp,$sp,[$at,$t0]. These instructions could also
         initialize a local variable, so we accept them only before
         initialize a local variable, so we accept them only before
         a stack adjustment instruction was seen.  */
         a stack adjustment instruction was seen.  */
      else if (!seen_sp_adjust
      else if (!seen_sp_adjust
               && (high_word == 0x3c01 /* lui $at,n */
               && (high_word == 0x3c01 /* lui $at,n */
                   || high_word == 0x3c08 /* lui $t0,n */
                   || high_word == 0x3c08 /* lui $t0,n */
                   || high_word == 0x3421 /* ori $at,$at,n */
                   || high_word == 0x3421 /* ori $at,$at,n */
                   || high_word == 0x3508 /* ori $t0,$t0,n */
                   || high_word == 0x3508 /* ori $t0,$t0,n */
                   || high_word == 0x3401 /* ori $at,$zero,n */
                   || high_word == 0x3401 /* ori $at,$zero,n */
                   || high_word == 0x3408 /* ori $t0,$zero,n */
                   || high_word == 0x3408 /* ori $t0,$zero,n */
                  ))
                  ))
       {
       {
          load_immediate_bytes += MIPS_INSN32_SIZE;             /* FIXME!  */
          load_immediate_bytes += MIPS_INSN32_SIZE;             /* FIXME!  */
       }
       }
      else
      else
       {
       {
         /* This instruction is not an instruction typically found
         /* This instruction is not an instruction typically found
            in a prologue, so we must have reached the end of the
            in a prologue, so we must have reached the end of the
            prologue.  */
            prologue.  */
         /* FIXME: brobecker/2004-10-10: Can't we just break out of this
         /* FIXME: brobecker/2004-10-10: Can't we just break out of this
            loop now?  Why would we need to continue scanning the function
            loop now?  Why would we need to continue scanning the function
            instructions?  */
            instructions?  */
         if (end_prologue_addr == 0)
         if (end_prologue_addr == 0)
           end_prologue_addr = cur_pc;
           end_prologue_addr = cur_pc;
 
 
         /* Check for branches and jumps.  For now, only jump to
         /* Check for branches and jumps.  For now, only jump to
            register are caught (i.e. returns).  */
            register are caught (i.e. returns).  */
         if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
         if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
           in_delay_slot = 1;
           in_delay_slot = 1;
       }
       }
 
 
      /* If the previous instruction was a jump, we must have reached
      /* If the previous instruction was a jump, we must have reached
         the end of the prologue by now.  Stop scanning so that we do
         the end of the prologue by now.  Stop scanning so that we do
         not go past the function return.  */
         not go past the function return.  */
      if (in_delay_slot)
      if (in_delay_slot)
        break;
        break;
    }
    }
 
 
  if (this_cache != NULL)
  if (this_cache != NULL)
    {
    {
      this_cache->base =
      this_cache->base =
        (get_frame_register_signed (this_frame,
        (get_frame_register_signed (this_frame,
                                    gdbarch_num_regs (gdbarch) + frame_reg)
                                    gdbarch_num_regs (gdbarch) + frame_reg)
         + frame_offset);
         + frame_offset);
      /* FIXME: brobecker/2004-09-15: We should be able to get rid of
      /* FIXME: brobecker/2004-09-15: We should be able to get rid of
         this assignment below, eventually.  But it's still needed
         this assignment below, eventually.  But it's still needed
         for now.  */
         for now.  */
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
      this_cache->saved_regs[gdbarch_num_regs (gdbarch)
                             + mips_regnum (gdbarch)->pc]
                             + mips_regnum (gdbarch)->pc]
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
        = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
                                 + MIPS_RA_REGNUM];
                                 + MIPS_RA_REGNUM];
    }
    }
 
 
  /* If we didn't reach the end of the prologue when scanning the function
  /* If we didn't reach the end of the prologue when scanning the function
     instructions, then set end_prologue_addr to the address of the
     instructions, then set end_prologue_addr to the address of the
     instruction immediately after the last one we scanned.  */
     instruction immediately after the last one we scanned.  */
  /* brobecker/2004-10-10: I don't think this would ever happen, but
  /* brobecker/2004-10-10: I don't think this would ever happen, but
     we may as well be careful and do our best if we have a null
     we may as well be careful and do our best if we have a null
     end_prologue_addr.  */
     end_prologue_addr.  */
  if (end_prologue_addr == 0)
  if (end_prologue_addr == 0)
    end_prologue_addr = cur_pc;
    end_prologue_addr = cur_pc;
 
 
  /* In a frameless function, we might have incorrectly
  /* In a frameless function, we might have incorrectly
     skipped some load immediate instructions. Undo the skipping
     skipped some load immediate instructions. Undo the skipping
     if the load immediate was not followed by a stack adjustment.  */
     if the load immediate was not followed by a stack adjustment.  */
  if (load_immediate_bytes && !seen_sp_adjust)
  if (load_immediate_bytes && !seen_sp_adjust)
    end_prologue_addr -= load_immediate_bytes;
    end_prologue_addr -= load_immediate_bytes;
 
 
  return end_prologue_addr;
  return end_prologue_addr;
}
}
 
 
/* Heuristic unwinder for procedures using 32-bit instructions (covers
/* Heuristic unwinder for procedures using 32-bit instructions (covers
   both 32-bit and 64-bit MIPS ISAs).  Procedures using 16-bit
   both 32-bit and 64-bit MIPS ISAs).  Procedures using 16-bit
   instructions (a.k.a. MIPS16) are handled by the mips_insn16
   instructions (a.k.a. MIPS16) are handled by the mips_insn16
   unwinder.  */
   unwinder.  */
 
 
static struct mips_frame_cache *
static struct mips_frame_cache *
mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct mips_frame_cache *cache;
  struct mips_frame_cache *cache;
 
 
  if ((*this_cache) != NULL)
  if ((*this_cache) != NULL)
    return (*this_cache);
    return (*this_cache);
 
 
  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
  (*this_cache) = cache;
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
 
 
  /* Analyze the function prologue.  */
  /* Analyze the function prologue.  */
  {
  {
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    const CORE_ADDR pc = get_frame_address_in_block (this_frame);
    CORE_ADDR start_addr;
    CORE_ADDR start_addr;
 
 
    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    find_pc_partial_function (pc, NULL, &start_addr, NULL);
    if (start_addr == 0)
    if (start_addr == 0)
      start_addr = heuristic_proc_start (gdbarch, pc);
      start_addr = heuristic_proc_start (gdbarch, pc);
    /* We can't analyze the prologue if we couldn't find the begining
    /* We can't analyze the prologue if we couldn't find the begining
       of the function.  */
       of the function.  */
    if (start_addr == 0)
    if (start_addr == 0)
      return cache;
      return cache;
 
 
    mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
    mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
  }
  }
 
 
  /* gdbarch_sp_regnum contains the value and not the address.  */
  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs,
  trad_frame_set_value (cache->saved_regs,
                        gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
                        gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
                        cache->base);
                        cache->base);
 
 
  return (*this_cache);
  return (*this_cache);
}
}
 
 
static void
static void
mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
                           struct frame_id *this_id)
                           struct frame_id *this_id)
{
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
                                                           this_cache);
                                                           this_cache);
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (info->base == 0)
  if (info->base == 0)
    return;
    return;
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}
}
 
 
static struct value *
static struct value *
mips_insn32_frame_prev_register (struct frame_info *this_frame,
mips_insn32_frame_prev_register (struct frame_info *this_frame,
                                 void **this_cache, int regnum)
                                 void **this_cache, int regnum)
{
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
                                                           this_cache);
                                                           this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
}
 
 
static int
static int
mips_insn32_frame_sniffer (const struct frame_unwind *self,
mips_insn32_frame_sniffer (const struct frame_unwind *self,
                           struct frame_info *this_frame, void **this_cache)
                           struct frame_info *this_frame, void **this_cache)
{
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (! mips_pc_is_mips16 (pc))
  if (! mips_pc_is_mips16 (pc))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
static const struct frame_unwind mips_insn32_frame_unwind =
static const struct frame_unwind mips_insn32_frame_unwind =
{
{
  NORMAL_FRAME,
  NORMAL_FRAME,
  mips_insn32_frame_this_id,
  mips_insn32_frame_this_id,
  mips_insn32_frame_prev_register,
  mips_insn32_frame_prev_register,
  NULL,
  NULL,
  mips_insn32_frame_sniffer
  mips_insn32_frame_sniffer
};
};
 
 
static CORE_ADDR
static CORE_ADDR
mips_insn32_frame_base_address (struct frame_info *this_frame,
mips_insn32_frame_base_address (struct frame_info *this_frame,
                                void **this_cache)
                                void **this_cache)
{
{
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
  struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
                                                           this_cache);
                                                           this_cache);
  return info->base;
  return info->base;
}
}
 
 
static const struct frame_base mips_insn32_frame_base =
static const struct frame_base mips_insn32_frame_base =
{
{
  &mips_insn32_frame_unwind,
  &mips_insn32_frame_unwind,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address,
  mips_insn32_frame_base_address
  mips_insn32_frame_base_address
};
};
 
 
static const struct frame_base *
static const struct frame_base *
mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
{
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  CORE_ADDR pc = get_frame_pc (this_frame);
  if (! mips_pc_is_mips16 (pc))
  if (! mips_pc_is_mips16 (pc))
    return &mips_insn32_frame_base;
    return &mips_insn32_frame_base;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
static struct trad_frame_cache *
static struct trad_frame_cache *
mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
{
{
  CORE_ADDR pc;
  CORE_ADDR pc;
  CORE_ADDR start_addr;
  CORE_ADDR start_addr;
  CORE_ADDR stack_addr;
  CORE_ADDR stack_addr;
  struct trad_frame_cache *this_trad_cache;
  struct trad_frame_cache *this_trad_cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int num_regs = gdbarch_num_regs (gdbarch);
  int num_regs = gdbarch_num_regs (gdbarch);
 
 
  if ((*this_cache) != NULL)
  if ((*this_cache) != NULL)
    return (*this_cache);
    return (*this_cache);
  this_trad_cache = trad_frame_cache_zalloc (this_frame);
  this_trad_cache = trad_frame_cache_zalloc (this_frame);
  (*this_cache) = this_trad_cache;
  (*this_cache) = this_trad_cache;
 
 
  /* The return address is in the link register.  */
  /* The return address is in the link register.  */
  trad_frame_set_reg_realreg (this_trad_cache,
  trad_frame_set_reg_realreg (this_trad_cache,
                              gdbarch_pc_regnum (gdbarch),
                              gdbarch_pc_regnum (gdbarch),
                              num_regs + MIPS_RA_REGNUM);
                              num_regs + MIPS_RA_REGNUM);
 
 
  /* Frame ID, since it's a frameless / stackless function, no stack
  /* Frame ID, since it's a frameless / stackless function, no stack
     space is allocated and SP on entry is the current SP.  */
     space is allocated and SP on entry is the current SP.  */
  pc = get_frame_pc (this_frame);
  pc = get_frame_pc (this_frame);
  find_pc_partial_function (pc, NULL, &start_addr, NULL);
  find_pc_partial_function (pc, NULL, &start_addr, NULL);
  stack_addr = get_frame_register_signed (this_frame,
  stack_addr = get_frame_register_signed (this_frame,
                                          num_regs + MIPS_SP_REGNUM);
                                          num_regs + MIPS_SP_REGNUM);
  trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
  trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
 
 
  /* Assume that the frame's base is the same as the
  /* Assume that the frame's base is the same as the
     stack-pointer.  */
     stack-pointer.  */
  trad_frame_set_this_base (this_trad_cache, stack_addr);
  trad_frame_set_this_base (this_trad_cache, stack_addr);
 
 
  return this_trad_cache;
  return this_trad_cache;
}
}
 
 
static void
static void
mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
                         struct frame_id *this_id)
                         struct frame_id *this_id)
{
{
  struct trad_frame_cache *this_trad_cache
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
    = mips_stub_frame_cache (this_frame, this_cache);
  trad_frame_get_id (this_trad_cache, this_id);
  trad_frame_get_id (this_trad_cache, this_id);
}
}
 
 
static struct value *
static struct value *
mips_stub_frame_prev_register (struct frame_info *this_frame,
mips_stub_frame_prev_register (struct frame_info *this_frame,
                               void **this_cache, int regnum)
                               void **this_cache, int regnum)
{
{
  struct trad_frame_cache *this_trad_cache
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
    = mips_stub_frame_cache (this_frame, this_cache);
  return trad_frame_get_register (this_trad_cache, this_frame, regnum);
  return trad_frame_get_register (this_trad_cache, this_frame, regnum);
}
}
 
 
static int
static int
mips_stub_frame_sniffer (const struct frame_unwind *self,
mips_stub_frame_sniffer (const struct frame_unwind *self,
                         struct frame_info *this_frame, void **this_cache)
                         struct frame_info *this_frame, void **this_cache)
{
{
  gdb_byte dummy[4];
  gdb_byte dummy[4];
  struct obj_section *s;
  struct obj_section *s;
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  struct minimal_symbol *msym;
  struct minimal_symbol *msym;
 
 
  /* Use the stub unwinder for unreadable code.  */
  /* Use the stub unwinder for unreadable code.  */
  if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
  if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
    return 1;
    return 1;
 
 
  if (in_plt_section (pc, NULL))
  if (in_plt_section (pc, NULL))
    return 1;
    return 1;
 
 
  /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs.  */
  /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs.  */
  s = find_pc_section (pc);
  s = find_pc_section (pc);
 
 
  if (s != NULL
  if (s != NULL
      && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
      && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
                 ".MIPS.stubs") == 0)
                 ".MIPS.stubs") == 0)
    return 1;
    return 1;
 
 
  /* Calling a PIC function from a non-PIC function passes through a
  /* Calling a PIC function from a non-PIC function passes through a
     stub.  The stub for foo is named ".pic.foo".  */
     stub.  The stub for foo is named ".pic.foo".  */
  msym = lookup_minimal_symbol_by_pc (pc);
  msym = lookup_minimal_symbol_by_pc (pc);
  if (msym != NULL
  if (msym != NULL
      && SYMBOL_LINKAGE_NAME (msym) != NULL
      && SYMBOL_LINKAGE_NAME (msym) != NULL
      && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
      && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
static const struct frame_unwind mips_stub_frame_unwind =
static const struct frame_unwind mips_stub_frame_unwind =
{
{
  NORMAL_FRAME,
  NORMAL_FRAME,
  mips_stub_frame_this_id,
  mips_stub_frame_this_id,
  mips_stub_frame_prev_register,
  mips_stub_frame_prev_register,
  NULL,
  NULL,
  mips_stub_frame_sniffer
  mips_stub_frame_sniffer
};
};
 
 
static CORE_ADDR
static CORE_ADDR
mips_stub_frame_base_address (struct frame_info *this_frame,
mips_stub_frame_base_address (struct frame_info *this_frame,
                              void **this_cache)
                              void **this_cache)
{
{
  struct trad_frame_cache *this_trad_cache
  struct trad_frame_cache *this_trad_cache
    = mips_stub_frame_cache (this_frame, this_cache);
    = mips_stub_frame_cache (this_frame, this_cache);
  return trad_frame_get_this_base (this_trad_cache);
  return trad_frame_get_this_base (this_trad_cache);
}
}
 
 
static const struct frame_base mips_stub_frame_base =
static const struct frame_base mips_stub_frame_base =
{
{
  &mips_stub_frame_unwind,
  &mips_stub_frame_unwind,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address,
  mips_stub_frame_base_address
  mips_stub_frame_base_address
};
};
 
 
static const struct frame_base *
static const struct frame_base *
mips_stub_frame_base_sniffer (struct frame_info *this_frame)
mips_stub_frame_base_sniffer (struct frame_info *this_frame)
{
{
  if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
  if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
    return &mips_stub_frame_base;
    return &mips_stub_frame_base;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* mips_addr_bits_remove - remove useless address bits  */
/* mips_addr_bits_remove - remove useless address bits  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
  if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
    /* This hack is a work-around for existing boards using PMON, the
    /* This hack is a work-around for existing boards using PMON, the
       simulator, and any other 64-bit targets that doesn't have true
       simulator, and any other 64-bit targets that doesn't have true
       64-bit addressing.  On these targets, the upper 32 bits of
       64-bit addressing.  On these targets, the upper 32 bits of
       addresses are ignored by the hardware.  Thus, the PC or SP are
       addresses are ignored by the hardware.  Thus, the PC or SP are
       likely to have been sign extended to all 1s by instruction
       likely to have been sign extended to all 1s by instruction
       sequences that load 32-bit addresses.  For example, a typical
       sequences that load 32-bit addresses.  For example, a typical
       piece of code that loads an address is this:
       piece of code that loads an address is this:
 
 
       lui $r2, <upper 16 bits>
       lui $r2, <upper 16 bits>
       ori $r2, <lower 16 bits>
       ori $r2, <lower 16 bits>
 
 
       But the lui sign-extends the value such that the upper 32 bits
       But the lui sign-extends the value such that the upper 32 bits
       may be all 1s.  The workaround is simply to mask off these
       may be all 1s.  The workaround is simply to mask off these
       bits.  In the future, gcc may be changed to support true 64-bit
       bits.  In the future, gcc may be changed to support true 64-bit
       addressing, and this masking will have to be disabled.  */
       addressing, and this masking will have to be disabled.  */
    return addr &= 0xffffffffUL;
    return addr &= 0xffffffffUL;
  else
  else
    return addr;
    return addr;
}
}
 
 
/* Instructions used during single-stepping of atomic sequences.  */
/* Instructions used during single-stepping of atomic sequences.  */
#define LL_OPCODE 0x30
#define LL_OPCODE 0x30
#define LLD_OPCODE 0x34
#define LLD_OPCODE 0x34
#define SC_OPCODE 0x38
#define SC_OPCODE 0x38
#define SCD_OPCODE 0x3c
#define SCD_OPCODE 0x3c
 
 
/* Checks for an atomic sequence of instructions beginning with a LL/LLD
/* Checks for an atomic sequence of instructions beginning with a LL/LLD
   instruction and ending with a SC/SCD instruction.  If such a sequence
   instruction and ending with a SC/SCD instruction.  If such a sequence
   is found, attempt to step through it.  A breakpoint is placed at the end of
   is found, attempt to step through it.  A breakpoint is placed at the end of
   the sequence.  */
   the sequence.  */
 
 
static int
static int
deal_with_atomic_sequence (struct gdbarch *gdbarch,
deal_with_atomic_sequence (struct gdbarch *gdbarch,
                           struct address_space *aspace, CORE_ADDR pc)
                           struct address_space *aspace, CORE_ADDR pc)
{
{
  CORE_ADDR breaks[2] = {-1, -1};
  CORE_ADDR breaks[2] = {-1, -1};
  CORE_ADDR loc = pc;
  CORE_ADDR loc = pc;
  CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination.  */
  CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination.  */
  unsigned long insn;
  unsigned long insn;
  int insn_count;
  int insn_count;
  int index;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
 
 
  if (pc & 0x01)
  if (pc & 0x01)
    return 0;
    return 0;
 
 
  insn = mips_fetch_instruction (gdbarch, loc);
  insn = mips_fetch_instruction (gdbarch, loc);
  /* Assume all atomic sequences start with a ll/lld instruction.  */
  /* Assume all atomic sequences start with a ll/lld instruction.  */
  if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
  if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
    return 0;
    return 0;
 
 
  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
     instructions.  */
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
    {
      int is_branch = 0;
      int is_branch = 0;
      loc += MIPS_INSN32_SIZE;
      loc += MIPS_INSN32_SIZE;
      insn = mips_fetch_instruction (gdbarch, loc);
      insn = mips_fetch_instruction (gdbarch, loc);
 
 
      /* Assume that there is at most one branch in the atomic
      /* Assume that there is at most one branch in the atomic
         sequence.  If a branch is found, put a breakpoint in its
         sequence.  If a branch is found, put a breakpoint in its
         destination address.  */
         destination address.  */
      switch (itype_op (insn))
      switch (itype_op (insn))
        {
        {
        case 0: /* SPECIAL */
        case 0: /* SPECIAL */
          if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
          if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
            return 0; /* fallback to the standard single-step code. */
            return 0; /* fallback to the standard single-step code. */
          break;
          break;
        case 1: /* REGIMM */
        case 1: /* REGIMM */
          is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
          is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
          break;
          break;
        case 2: /* J */
        case 2: /* J */
        case 3: /* JAL */
        case 3: /* JAL */
          return 0; /* fallback to the standard single-step code. */
          return 0; /* fallback to the standard single-step code. */
        case 4: /* BEQ */
        case 4: /* BEQ */
        case 5: /* BNE */
        case 5: /* BNE */
        case 6: /* BLEZ */
        case 6: /* BLEZ */
        case 7: /* BGTZ */
        case 7: /* BGTZ */
        case 20: /* BEQL */
        case 20: /* BEQL */
        case 21: /* BNEL */
        case 21: /* BNEL */
        case 22: /* BLEZL */
        case 22: /* BLEZL */
        case 23: /* BGTTL */
        case 23: /* BGTTL */
          is_branch = 1;
          is_branch = 1;
          break;
          break;
        case 17: /* COP1 */
        case 17: /* COP1 */
        case 18: /* COP2 */
        case 18: /* COP2 */
        case 19: /* COP3 */
        case 19: /* COP3 */
          is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
          is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
          break;
          break;
        }
        }
      if (is_branch)
      if (is_branch)
        {
        {
          branch_bp = loc + mips32_relative_offset (insn) + 4;
          branch_bp = loc + mips32_relative_offset (insn) + 4;
          if (last_breakpoint >= 1)
          if (last_breakpoint >= 1)
            return 0; /* More than one branch found, fallback to the
            return 0; /* More than one branch found, fallback to the
                         standard single-step code.  */
                         standard single-step code.  */
          breaks[1] = branch_bp;
          breaks[1] = branch_bp;
          last_breakpoint++;
          last_breakpoint++;
        }
        }
 
 
      if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
      if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
        break;
        break;
    }
    }
 
 
  /* Assume that the atomic sequence ends with a sc/scd instruction.  */
  /* Assume that the atomic sequence ends with a sc/scd instruction.  */
  if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
  if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
    return 0;
    return 0;
 
 
  loc += MIPS_INSN32_SIZE;
  loc += MIPS_INSN32_SIZE;
 
 
  /* Insert a breakpoint right after the end of the atomic sequence.  */
  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;
  breaks[0] = loc;
 
 
  /* Check for duplicated breakpoints.  Check also for a breakpoint
  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) in the atomic sequence */
     placed (branch instruction's destination) in the atomic sequence */
  if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
  if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
    last_breakpoint = 0;
    last_breakpoint = 0;
 
 
  /* Effectively inserts the breakpoints.  */
  /* Effectively inserts the breakpoints.  */
  for (index = 0; index <= last_breakpoint; index++)
  for (index = 0; index <= last_breakpoint; index++)
    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
 
 
  return 1;
  return 1;
}
}
 
 
/* mips_software_single_step() is called just before we want to resume
/* mips_software_single_step() is called just before we want to resume
   the inferior, if we want to single-step it but there is no hardware
   the inferior, if we want to single-step it but there is no hardware
   or kernel single-step support (MIPS on GNU/Linux for example).  We find
   or kernel single-step support (MIPS on GNU/Linux for example).  We find
   the target of the coming instruction and breakpoint it.  */
   the target of the coming instruction and breakpoint it.  */
 
 
int
int
mips_software_single_step (struct frame_info *frame)
mips_software_single_step (struct frame_info *frame)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct address_space *aspace = get_frame_address_space (frame);
  struct address_space *aspace = get_frame_address_space (frame);
  CORE_ADDR pc, next_pc;
  CORE_ADDR pc, next_pc;
 
 
  pc = get_frame_pc (frame);
  pc = get_frame_pc (frame);
  if (deal_with_atomic_sequence (gdbarch, aspace, pc))
  if (deal_with_atomic_sequence (gdbarch, aspace, pc))
    return 1;
    return 1;
 
 
  next_pc = mips_next_pc (frame, pc);
  next_pc = mips_next_pc (frame, pc);
 
 
  insert_single_step_breakpoint (gdbarch, aspace, next_pc);
  insert_single_step_breakpoint (gdbarch, aspace, next_pc);
  return 1;
  return 1;
}
}
 
 
/* Test whether the PC points to the return instruction at the
/* Test whether the PC points to the return instruction at the
   end of a function. */
   end of a function. */
 
 
static int
static int
mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  if (mips_pc_is_mips16 (pc))
  if (mips_pc_is_mips16 (pc))
    /* This mips16 case isn't necessarily reliable.  Sometimes the compiler
    /* This mips16 case isn't necessarily reliable.  Sometimes the compiler
       generates a "jr $ra"; other times it generates code to load
       generates a "jr $ra"; other times it generates code to load
       the return address from the stack to an accessible register (such
       the return address from the stack to an accessible register (such
       as $a3), then a "jr" using that register.  This second case
       as $a3), then a "jr" using that register.  This second case
       is almost impossible to distinguish from an indirect jump
       is almost impossible to distinguish from an indirect jump
       used for switch statements, so we don't even try.  */
       used for switch statements, so we don't even try.  */
    return mips_fetch_instruction (gdbarch, pc) == 0xe820;      /* jr $ra */
    return mips_fetch_instruction (gdbarch, pc) == 0xe820;      /* jr $ra */
  else
  else
    return mips_fetch_instruction (gdbarch, pc) == 0x3e00008;   /* jr $ra */
    return mips_fetch_instruction (gdbarch, pc) == 0x3e00008;   /* jr $ra */
}
}
 
 
 
 
/* This fencepost looks highly suspicious to me.  Removing it also
/* This fencepost looks highly suspicious to me.  Removing it also
   seems suspicious as it could affect remote debugging across serial
   seems suspicious as it could affect remote debugging across serial
   lines.  */
   lines.  */
 
 
static CORE_ADDR
static CORE_ADDR
heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR start_pc;
  CORE_ADDR start_pc;
  CORE_ADDR fence;
  CORE_ADDR fence;
  int instlen;
  int instlen;
  int seen_adjsp = 0;
  int seen_adjsp = 0;
  struct inferior *inf;
  struct inferior *inf;
 
 
  pc = gdbarch_addr_bits_remove (gdbarch, pc);
  pc = gdbarch_addr_bits_remove (gdbarch, pc);
  start_pc = pc;
  start_pc = pc;
  fence = start_pc - heuristic_fence_post;
  fence = start_pc - heuristic_fence_post;
  if (start_pc == 0)
  if (start_pc == 0)
    return 0;
    return 0;
 
 
  if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
  if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
    fence = VM_MIN_ADDRESS;
    fence = VM_MIN_ADDRESS;
 
 
  instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
  instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
 
 
  inf = current_inferior ();
  inf = current_inferior ();
 
 
  /* search back for previous return */
  /* search back for previous return */
  for (start_pc -= instlen;; start_pc -= instlen)
  for (start_pc -= instlen;; start_pc -= instlen)
    if (start_pc < fence)
    if (start_pc < fence)
      {
      {
        /* It's not clear to me why we reach this point when
        /* It's not clear to me why we reach this point when
           stop_soon, but with this test, at least we
           stop_soon, but with this test, at least we
           don't print out warnings for every child forked (eg, on
           don't print out warnings for every child forked (eg, on
           decstation).  22apr93 rich@cygnus.com.  */
           decstation).  22apr93 rich@cygnus.com.  */
        if (inf->stop_soon == NO_STOP_QUIETLY)
        if (inf->stop_soon == NO_STOP_QUIETLY)
          {
          {
            static int blurb_printed = 0;
            static int blurb_printed = 0;
 
 
            warning (_("GDB can't find the start of the function at %s."),
            warning (_("GDB can't find the start of the function at %s."),
                     paddress (gdbarch, pc));
                     paddress (gdbarch, pc));
 
 
            if (!blurb_printed)
            if (!blurb_printed)
              {
              {
                /* This actually happens frequently in embedded
                /* This actually happens frequently in embedded
                   development, when you first connect to a board
                   development, when you first connect to a board
                   and your stack pointer and pc are nowhere in
                   and your stack pointer and pc are nowhere in
                   particular.  This message needs to give people
                   particular.  This message needs to give people
                   in that situation enough information to
                   in that situation enough information to
                   determine that it's no big deal.  */
                   determine that it's no big deal.  */
                printf_filtered ("\n\
                printf_filtered ("\n\
    GDB is unable to find the start of the function at %s\n\
    GDB is unable to find the start of the function at %s\n\
and thus can't determine the size of that function's stack frame.\n\
and thus can't determine the size of that function's stack frame.\n\
This means that GDB may be unable to access that stack frame, or\n\
This means that GDB may be unable to access that stack frame, or\n\
the frames below it.\n\
the frames below it.\n\
    This problem is most likely caused by an invalid program counter or\n\
    This problem is most likely caused by an invalid program counter or\n\
stack pointer.\n\
stack pointer.\n\
    However, if you think GDB should simply search farther back\n\
    However, if you think GDB should simply search farther back\n\
from %s for code which looks like the beginning of a\n\
from %s for code which looks like the beginning of a\n\
function, you can increase the range of the search using the `set\n\
function, you can increase the range of the search using the `set\n\
heuristic-fence-post' command.\n",
heuristic-fence-post' command.\n",
                        paddress (gdbarch, pc), paddress (gdbarch, pc));
                        paddress (gdbarch, pc), paddress (gdbarch, pc));
                blurb_printed = 1;
                blurb_printed = 1;
              }
              }
          }
          }
 
 
        return 0;
        return 0;
      }
      }
    else if (mips_pc_is_mips16 (start_pc))
    else if (mips_pc_is_mips16 (start_pc))
      {
      {
        unsigned short inst;
        unsigned short inst;
 
 
        /* On MIPS16, any one of the following is likely to be the
        /* On MIPS16, any one of the following is likely to be the
           start of a function:
           start of a function:
           extend save
           extend save
           save
           save
           entry
           entry
           addiu sp,-n
           addiu sp,-n
           daddiu sp,-n
           daddiu sp,-n
           extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'  */
           extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'  */
        inst = mips_fetch_instruction (gdbarch, start_pc);
        inst = mips_fetch_instruction (gdbarch, start_pc);
        if ((inst & 0xff80) == 0x6480)          /* save */
        if ((inst & 0xff80) == 0x6480)          /* save */
          {
          {
            if (start_pc - instlen >= fence)
            if (start_pc - instlen >= fence)
              {
              {
                inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
                inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
                if ((inst & 0xf800) == 0xf000)  /* extend */
                if ((inst & 0xf800) == 0xf000)  /* extend */
                  start_pc -= instlen;
                  start_pc -= instlen;
              }
              }
            break;
            break;
          }
          }
        else if (((inst & 0xf81f) == 0xe809
        else if (((inst & 0xf81f) == 0xe809
                  && (inst & 0x700) != 0x700)   /* entry */
                  && (inst & 0x700) != 0x700)   /* entry */
                 || (inst & 0xff80) == 0x6380   /* addiu sp,-n */
                 || (inst & 0xff80) == 0x6380   /* addiu sp,-n */
                 || (inst & 0xff80) == 0xfb80   /* daddiu sp,-n */
                 || (inst & 0xff80) == 0xfb80   /* daddiu sp,-n */
                 || ((inst & 0xf810) == 0xf010 && seen_adjsp))  /* extend -n */
                 || ((inst & 0xf810) == 0xf010 && seen_adjsp))  /* extend -n */
          break;
          break;
        else if ((inst & 0xff00) == 0x6300      /* addiu sp */
        else if ((inst & 0xff00) == 0x6300      /* addiu sp */
                 || (inst & 0xff00) == 0xfb00)  /* daddiu sp */
                 || (inst & 0xff00) == 0xfb00)  /* daddiu sp */
          seen_adjsp = 1;
          seen_adjsp = 1;
        else
        else
          seen_adjsp = 0;
          seen_adjsp = 0;
      }
      }
    else if (mips_about_to_return (gdbarch, start_pc))
    else if (mips_about_to_return (gdbarch, start_pc))
      {
      {
        /* Skip return and its delay slot.  */
        /* Skip return and its delay slot.  */
        start_pc += 2 * MIPS_INSN32_SIZE;
        start_pc += 2 * MIPS_INSN32_SIZE;
        break;
        break;
      }
      }
 
 
  return start_pc;
  return start_pc;
}
}
 
 
struct mips_objfile_private
struct mips_objfile_private
{
{
  bfd_size_type size;
  bfd_size_type size;
  char *contents;
  char *contents;
};
};
 
 
/* According to the current ABI, should the type be passed in a
/* According to the current ABI, should the type be passed in a
   floating-point register (assuming that there is space)?  When there
   floating-point register (assuming that there is space)?  When there
   is no FPU, FP are not even considered as possible candidates for
   is no FPU, FP are not even considered as possible candidates for
   FP registers and, consequently this returns false - forces FP
   FP registers and, consequently this returns false - forces FP
   arguments into integer registers. */
   arguments into integer registers. */
 
 
static int
static int
fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
                   struct type *arg_type)
                   struct type *arg_type)
{
{
  return ((typecode == TYPE_CODE_FLT
  return ((typecode == TYPE_CODE_FLT
           || (MIPS_EABI (gdbarch)
           || (MIPS_EABI (gdbarch)
               && (typecode == TYPE_CODE_STRUCT
               && (typecode == TYPE_CODE_STRUCT
                   || typecode == TYPE_CODE_UNION)
                   || typecode == TYPE_CODE_UNION)
               && TYPE_NFIELDS (arg_type) == 1
               && TYPE_NFIELDS (arg_type) == 1
               && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
               && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
               == TYPE_CODE_FLT))
               == TYPE_CODE_FLT))
          && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
          && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
}
}
 
 
/* On o32, argument passing in GPRs depends on the alignment of the type being
/* On o32, argument passing in GPRs depends on the alignment of the type being
   passed.  Return 1 if this type must be aligned to a doubleword boundary. */
   passed.  Return 1 if this type must be aligned to a doubleword boundary. */
 
 
static int
static int
mips_type_needs_double_align (struct type *type)
mips_type_needs_double_align (struct type *type)
{
{
  enum type_code typecode = TYPE_CODE (type);
  enum type_code typecode = TYPE_CODE (type);
 
 
  if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
  if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
    return 1;
    return 1;
  else if (typecode == TYPE_CODE_STRUCT)
  else if (typecode == TYPE_CODE_STRUCT)
    {
    {
      if (TYPE_NFIELDS (type) < 1)
      if (TYPE_NFIELDS (type) < 1)
        return 0;
        return 0;
      return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
      return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
    }
    }
  else if (typecode == TYPE_CODE_UNION)
  else if (typecode == TYPE_CODE_UNION)
    {
    {
      int i, n;
      int i, n;
 
 
      n = TYPE_NFIELDS (type);
      n = TYPE_NFIELDS (type);
      for (i = 0; i < n; i++)
      for (i = 0; i < n; i++)
        if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
        if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
          return 1;
          return 1;
      return 0;
      return 0;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Adjust the address downward (direction of stack growth) so that it
/* Adjust the address downward (direction of stack growth) so that it
   is correctly aligned for a new stack frame.  */
   is correctly aligned for a new stack frame.  */
static CORE_ADDR
static CORE_ADDR
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
{
  return align_down (addr, 16);
  return align_down (addr, 16);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                           struct regcache *regcache, CORE_ADDR bp_addr,
                           struct regcache *regcache, CORE_ADDR bp_addr,
                           int nargs, struct value **args, CORE_ADDR sp,
                           int nargs, struct value **args, CORE_ADDR sp,
                           int struct_return, CORE_ADDR struct_addr)
                           int struct_return, CORE_ADDR struct_addr)
{
{
  int argreg;
  int argreg;
  int float_argreg;
  int float_argreg;
  int argnum;
  int argnum;
  int len = 0;
  int len = 0;
  int stack_offset = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  int regsize = mips_abi_regsize (gdbarch);
  int regsize = mips_abi_regsize (gdbarch);
 
 
  /* For shared libraries, "t9" needs to point at the function
  /* For shared libraries, "t9" needs to point at the function
     address.  */
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
 
 
  /* Set the return address register to point to the entry point of
  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
 
 
  /* First ensure that the stack and structure return address (if any)
  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */
     aligned, so we round to this widest known alignment.  */
 
 
  sp = align_down (sp, 16);
  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);
  struct_addr = align_down (struct_addr, 16);
 
 
  /* Now make space on the stack for the args.  We allocate more
  /* Now make space on the stack for the args.  We allocate more
     than necessary for EABI, because the first few arguments are
     than necessary for EABI, because the first few arguments are
     passed in registers, but that's OK.  */
     passed in registers, but that's OK.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
  sp -= align_up (len, 16);
  sp -= align_up (len, 16);
 
 
  if (mips_debug)
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
                        "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
                        paddress (gdbarch, sp), (long) align_up (len, 16));
                        paddress (gdbarch, sp), (long) align_up (len, 16));
 
 
  /* Initialize the integer and float register pointers.  */
  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);
  float_argreg = mips_fpa0_regnum (gdbarch);
 
 
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
  if (struct_return)
    {
    {
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_eabi_push_dummy_call: struct_return reg=%d %s\n",
                            "mips_eabi_push_dummy_call: struct_return reg=%d %s\n",
                            argreg, paddress (gdbarch, struct_addr));
                            argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    }
    }
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      const gdb_byte *val;
      const gdb_byte *val;
      gdb_byte valbuf[MAX_REGISTER_SIZE];
      gdb_byte valbuf[MAX_REGISTER_SIZE];
      struct value *arg = args[argnum];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
 
 
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_eabi_push_dummy_call: %d len=%d type=%d",
                            "mips_eabi_push_dummy_call: %d len=%d type=%d",
                            argnum + 1, len, (int) typecode);
                            argnum + 1, len, (int) typecode);
 
 
      /* The EABI passes structures that do not fit in a register by
      /* The EABI passes structures that do not fit in a register by
         reference.  */
         reference.  */
      if (len > regsize
      if (len > regsize
          && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
          && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
        {
        {
          store_unsigned_integer (valbuf, regsize, byte_order,
          store_unsigned_integer (valbuf, regsize, byte_order,
                                  value_address (arg));
                                  value_address (arg));
          typecode = TYPE_CODE_PTR;
          typecode = TYPE_CODE_PTR;
          len = regsize;
          len = regsize;
          val = valbuf;
          val = valbuf;
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stdlog, " push");
            fprintf_unfiltered (gdb_stdlog, " push");
        }
        }
      else
      else
        val = value_contents (arg);
        val = value_contents (arg);
 
 
      /* 32-bit ABIs always start floating point arguments in an
      /* 32-bit ABIs always start floating point arguments in an
         even-numbered floating point register.  Round the FP register
         even-numbered floating point register.  Round the FP register
         up before the check to see if there are any FP registers
         up before the check to see if there are any FP registers
         left.  Non MIPS_EABI targets also pass the FP in the integer
         left.  Non MIPS_EABI targets also pass the FP in the integer
         registers so also round up normal registers.  */
         registers so also round up normal registers.  */
      if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
      if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
        {
        {
          if ((float_argreg & 1))
          if ((float_argreg & 1))
            float_argreg++;
            float_argreg++;
        }
        }
 
 
      /* Floating point arguments passed in registers have to be
      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         the low word, and the odd register gets the high word.
         On non-EABI processors, the first two floating point arguments are
         On non-EABI processors, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */
         because those registers are normally skipped.  */
      /* MIPS_EABI squeezes a struct that contains a single floating
      /* MIPS_EABI squeezes a struct that contains a single floating
         point value into an FP register instead of pushing it onto the
         point value into an FP register instead of pushing it onto the
         stack.  */
         stack.  */
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
          && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
          && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
        {
        {
          /* EABI32 will pass doubles in consecutive registers, even on
          /* EABI32 will pass doubles in consecutive registers, even on
             64-bit cores.  At one time, we used to check the size of
             64-bit cores.  At one time, we used to check the size of
             `float_argreg' to determine whether or not to pass doubles
             `float_argreg' to determine whether or not to pass doubles
             in consecutive registers, but this is not sufficient for
             in consecutive registers, but this is not sufficient for
             making the ABI determination.  */
             making the ABI determination.  */
          if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
          if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
            {
            {
              int low_offset = gdbarch_byte_order (gdbarch)
              int low_offset = gdbarch_byte_order (gdbarch)
                               == BFD_ENDIAN_BIG ? 4 : 0;
                               == BFD_ENDIAN_BIG ? 4 : 0;
              unsigned long regval;
              unsigned long regval;
 
 
              /* Write the low word of the double to the even register(s).  */
              /* Write the low word of the double to the even register(s).  */
              regval = extract_unsigned_integer (val + low_offset,
              regval = extract_unsigned_integer (val + low_offset,
                                                 4, byte_order);
                                                 4, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, 4));
                                    float_argreg, phex (regval, 4));
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
 
 
              /* Write the high word of the double to the odd register(s).  */
              /* Write the high word of the double to the odd register(s).  */
              regval = extract_unsigned_integer (val + 4 - low_offset,
              regval = extract_unsigned_integer (val + 4 - low_offset,
                                                 4, byte_order);
                                                 4, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, 4));
                                    float_argreg, phex (regval, 4));
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
            }
            }
          else
          else
            {
            {
              /* This is a floating point value that fits entirely
              /* This is a floating point value that fits entirely
                 in a single register.  */
                 in a single register.  */
              /* On 32 bit ABI's the float_argreg is further adjusted
              /* On 32 bit ABI's the float_argreg is further adjusted
                 above to ensure that it is even register aligned.  */
                 above to ensure that it is even register aligned.  */
              LONGEST regval = extract_unsigned_integer (val, len, byte_order);
              LONGEST regval = extract_unsigned_integer (val, len, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, len));
                                    float_argreg, phex (regval, len));
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
            }
            }
        }
        }
      else
      else
        {
        {
          /* Copy the argument to general registers or the stack in
          /* Copy the argument to general registers or the stack in
             register-sized pieces.  Large arguments are split between
             register-sized pieces.  Large arguments are split between
             registers and stack.  */
             registers and stack.  */
          /* Note: structs whose size is not a multiple of regsize
          /* Note: structs whose size is not a multiple of regsize
             are treated specially: Irix cc passes
             are treated specially: Irix cc passes
             them in registers where gcc sometimes puts them on the
             them in registers where gcc sometimes puts them on the
             stack.  For maximum compatibility, we will put them in
             stack.  For maximum compatibility, we will put them in
             both places.  */
             both places.  */
          int odd_sized_struct = (len > regsize && len % regsize != 0);
          int odd_sized_struct = (len > regsize && len % regsize != 0);
 
 
          /* Note: Floating-point values that didn't fit into an FP
          /* Note: Floating-point values that didn't fit into an FP
             register are only written to memory.  */
             register are only written to memory.  */
          while (len > 0)
          while (len > 0)
            {
            {
              /* Remember if the argument was written to the stack.  */
              /* Remember if the argument was written to the stack.  */
              int stack_used_p = 0;
              int stack_used_p = 0;
              int partial_len = (len < regsize ? len : regsize);
              int partial_len = (len < regsize ? len : regsize);
 
 
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                                    partial_len);
                                    partial_len);
 
 
              /* Write this portion of the argument to the stack.  */
              /* Write this portion of the argument to the stack.  */
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
                  || odd_sized_struct
                  || odd_sized_struct
                  || fp_register_arg_p (gdbarch, typecode, arg_type))
                  || fp_register_arg_p (gdbarch, typecode, arg_type))
                {
                {
                  /* Should shorter than int integer values be
                  /* Should shorter than int integer values be
                     promoted to int before being stored? */
                     promoted to int before being stored? */
                  int longword_offset = 0;
                  int longword_offset = 0;
                  CORE_ADDR addr;
                  CORE_ADDR addr;
                  stack_used_p = 1;
                  stack_used_p = 1;
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
                    {
                    {
                      if (regsize == 8
                      if (regsize == 8
                          && (typecode == TYPE_CODE_INT
                          && (typecode == TYPE_CODE_INT
                              || typecode == TYPE_CODE_PTR
                              || typecode == TYPE_CODE_PTR
                              || typecode == TYPE_CODE_FLT) && len <= 4)
                              || typecode == TYPE_CODE_FLT) && len <= 4)
                        longword_offset = regsize - len;
                        longword_offset = regsize - len;
                      else if ((typecode == TYPE_CODE_STRUCT
                      else if ((typecode == TYPE_CODE_STRUCT
                                || typecode == TYPE_CODE_UNION)
                                || typecode == TYPE_CODE_UNION)
                               && TYPE_LENGTH (arg_type) < regsize)
                               && TYPE_LENGTH (arg_type) < regsize)
                        longword_offset = regsize - len;
                        longword_offset = regsize - len;
                    }
                    }
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                                          paddress (gdbarch, stack_offset));
                                          paddress (gdbarch, stack_offset));
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                                          paddress (gdbarch, longword_offset));
                                          paddress (gdbarch, longword_offset));
                    }
                    }
 
 
                  addr = sp + stack_offset + longword_offset;
                  addr = sp + stack_offset + longword_offset;
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      int i;
                      int i;
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                                          paddress (gdbarch, addr));
                                          paddress (gdbarch, addr));
                      for (i = 0; i < partial_len; i++)
                      for (i = 0; i < partial_len; i++)
                        {
                        {
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                                              val[i] & 0xff);
                                              val[i] & 0xff);
                        }
                        }
                    }
                    }
                  write_memory (addr, val, partial_len);
                  write_memory (addr, val, partial_len);
                }
                }
 
 
              /* Note!!! This is NOT an else clause.  Odd sized
              /* Note!!! This is NOT an else clause.  Odd sized
                 structs may go thru BOTH paths.  Floating point
                 structs may go thru BOTH paths.  Floating point
                 arguments will not.  */
                 arguments will not.  */
              /* Write this portion of the argument to a general
              /* Write this portion of the argument to a general
                 purpose register.  */
                 purpose register.  */
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
                  && !fp_register_arg_p (gdbarch, typecode, arg_type))
                  && !fp_register_arg_p (gdbarch, typecode, arg_type))
                {
                {
                  LONGEST regval =
                  LONGEST regval =
                    extract_unsigned_integer (val, partial_len, byte_order);
                    extract_unsigned_integer (val, partial_len, byte_order);
 
 
                  if (mips_debug)
                  if (mips_debug)
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                                      argreg,
                                      argreg,
                                      phex (regval, regsize));
                                      phex (regval, regsize));
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  argreg++;
                  argreg++;
                }
                }
 
 
              len -= partial_len;
              len -= partial_len;
              val += partial_len;
              val += partial_len;
 
 
              /* Compute the the offset into the stack at which we
              /* Compute the the offset into the stack at which we
                 will copy the next parameter.
                 will copy the next parameter.
 
 
                 In the new EABI (and the NABI32), the stack_offset
                 In the new EABI (and the NABI32), the stack_offset
                 only needs to be adjusted when it has been used.  */
                 only needs to be adjusted when it has been used.  */
 
 
              if (stack_used_p)
              if (stack_used_p)
                stack_offset += align_up (partial_len, regsize);
                stack_offset += align_up (partial_len, regsize);
            }
            }
        }
        }
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog, "\n");
        fprintf_unfiltered (gdb_stdlog, "\n");
    }
    }
 
 
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
 
 
  /* Return adjusted stack pointer.  */
  /* Return adjusted stack pointer.  */
  return sp;
  return sp;
}
}
 
 
/* Determine the return value convention being used.  */
/* Determine the return value convention being used.  */
 
 
static enum return_value_convention
static enum return_value_convention
mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
                        struct type *type, struct regcache *regcache,
                        struct type *type, struct regcache *regcache,
                        gdb_byte *readbuf, const gdb_byte *writebuf)
                        gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int fp_return_type = 0;
  int fp_return_type = 0;
  int offset, regnum, xfer;
  int offset, regnum, xfer;
 
 
  if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
  if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
 
 
  /* Floating point type?  */
  /* Floating point type?  */
  if (tdep->mips_fpu_type != MIPS_FPU_NONE)
  if (tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
    {
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
        fp_return_type = 1;
        fp_return_type = 1;
      /* Structs with a single field of float type
      /* Structs with a single field of float type
         are returned in a floating point register.  */
         are returned in a floating point register.  */
      if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
      if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION)
           || TYPE_CODE (type) == TYPE_CODE_UNION)
          && TYPE_NFIELDS (type) == 1)
          && TYPE_NFIELDS (type) == 1)
        {
        {
          struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
          struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
 
 
          if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
          if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
            fp_return_type = 1;
            fp_return_type = 1;
        }
        }
    }
    }
 
 
  if (fp_return_type)
  if (fp_return_type)
    {
    {
      /* A floating-point value belongs in the least significant part
      /* A floating-point value belongs in the least significant part
         of FP0/FP1.  */
         of FP0/FP1.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      regnum = mips_regnum (gdbarch)->fp0;
      regnum = mips_regnum (gdbarch)->fp0;
    }
    }
  else
  else
    {
    {
      /* An integer value goes in V0/V1.  */
      /* An integer value goes in V0/V1.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
        fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
      regnum = MIPS_V0_REGNUM;
      regnum = MIPS_V0_REGNUM;
    }
    }
  for (offset = 0;
  for (offset = 0;
       offset < TYPE_LENGTH (type);
       offset < TYPE_LENGTH (type);
       offset += mips_abi_regsize (gdbarch), regnum++)
       offset += mips_abi_regsize (gdbarch), regnum++)
    {
    {
      xfer = mips_abi_regsize (gdbarch);
      xfer = mips_abi_regsize (gdbarch);
      if (offset + xfer > TYPE_LENGTH (type))
      if (offset + xfer > TYPE_LENGTH (type))
        xfer = TYPE_LENGTH (type) - offset;
        xfer = TYPE_LENGTH (type) - offset;
      mips_xfer_register (gdbarch, regcache,
      mips_xfer_register (gdbarch, regcache,
                          gdbarch_num_regs (gdbarch) + regnum, xfer,
                          gdbarch_num_regs (gdbarch) + regnum, xfer,
                          gdbarch_byte_order (gdbarch), readbuf, writebuf,
                          gdbarch_byte_order (gdbarch), readbuf, writebuf,
                          offset);
                          offset);
    }
    }
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
 
 
/* N32/N64 ABI stuff.  */
/* N32/N64 ABI stuff.  */
 
 
/* Search for a naturally aligned double at OFFSET inside a struct
/* Search for a naturally aligned double at OFFSET inside a struct
   ARG_TYPE.  The N32 / N64 ABIs pass these in floating point
   ARG_TYPE.  The N32 / N64 ABIs pass these in floating point
   registers.  */
   registers.  */
 
 
static int
static int
mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
                            int offset)
                            int offset)
{
{
  int i;
  int i;
 
 
  if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
    return 0;
    return 0;
 
 
  if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
  if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
    return 0;
    return 0;
 
 
  if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
  if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
    return 0;
    return 0;
 
 
  for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
  for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
    {
    {
      int pos;
      int pos;
      struct type *field_type;
      struct type *field_type;
 
 
      /* We're only looking at normal fields.  */
      /* We're only looking at normal fields.  */
      if (field_is_static (&TYPE_FIELD (arg_type, i))
      if (field_is_static (&TYPE_FIELD (arg_type, i))
          || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
          || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
        continue;
        continue;
 
 
      /* If we have gone past the offset, there is no double to pass.  */
      /* If we have gone past the offset, there is no double to pass.  */
      pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
      pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
      if (pos > offset)
      if (pos > offset)
        return 0;
        return 0;
 
 
      field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
      field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
 
 
      /* If this field is entirely before the requested offset, go
      /* If this field is entirely before the requested offset, go
         on to the next one.  */
         on to the next one.  */
      if (pos + TYPE_LENGTH (field_type) <= offset)
      if (pos + TYPE_LENGTH (field_type) <= offset)
        continue;
        continue;
 
 
      /* If this is our special aligned double, we can stop.  */
      /* If this is our special aligned double, we can stop.  */
      if (TYPE_CODE (field_type) == TYPE_CODE_FLT
      if (TYPE_CODE (field_type) == TYPE_CODE_FLT
          && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
          && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
        return 1;
        return 1;
 
 
      /* This field starts at or before the requested offset, and
      /* This field starts at or before the requested offset, and
         overlaps it.  If it is a structure, recurse inwards.  */
         overlaps it.  If it is a structure, recurse inwards.  */
      return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
      return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                             struct regcache *regcache, CORE_ADDR bp_addr,
                             struct regcache *regcache, CORE_ADDR bp_addr,
                             int nargs, struct value **args, CORE_ADDR sp,
                             int nargs, struct value **args, CORE_ADDR sp,
                             int struct_return, CORE_ADDR struct_addr)
                             int struct_return, CORE_ADDR struct_addr)
{
{
  int argreg;
  int argreg;
  int float_argreg;
  int float_argreg;
  int argnum;
  int argnum;
  int len = 0;
  int len = 0;
  int stack_offset = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
 
 
  /* For shared libraries, "t9" needs to point at the function
  /* For shared libraries, "t9" needs to point at the function
     address.  */
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
 
 
  /* Set the return address register to point to the entry point of
  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
 
 
  /* First ensure that the stack and structure return address (if any)
  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */
     aligned, so we round to this widest known alignment.  */
 
 
  sp = align_down (sp, 16);
  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);
  struct_addr = align_down (struct_addr, 16);
 
 
  /* Now make space on the stack for the args.  */
  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
  sp -= align_up (len, 16);
  sp -= align_up (len, 16);
 
 
  if (mips_debug)
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
                        "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
                        paddress (gdbarch, sp), (long) align_up (len, 16));
                        paddress (gdbarch, sp), (long) align_up (len, 16));
 
 
  /* Initialize the integer and float register pointers.  */
  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);
  float_argreg = mips_fpa0_regnum (gdbarch);
 
 
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
  if (struct_return)
    {
    {
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_n32n64_push_dummy_call: struct_return reg=%d %s\n",
                            "mips_n32n64_push_dummy_call: struct_return reg=%d %s\n",
                            argreg, paddress (gdbarch, struct_addr));
                            argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    }
    }
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      const gdb_byte *val;
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
 
 
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_n32n64_push_dummy_call: %d len=%d type=%d",
                            "mips_n32n64_push_dummy_call: %d len=%d type=%d",
                            argnum + 1, len, (int) typecode);
                            argnum + 1, len, (int) typecode);
 
 
      val = value_contents (arg);
      val = value_contents (arg);
 
 
      /* A 128-bit long double value requires an even-odd pair of
      /* A 128-bit long double value requires an even-odd pair of
         floating-point registers.  */
         floating-point registers.  */
      if (len == 16
      if (len == 16
          && fp_register_arg_p (gdbarch, typecode, arg_type)
          && fp_register_arg_p (gdbarch, typecode, arg_type)
          && (float_argreg & 1))
          && (float_argreg & 1))
        {
        {
          float_argreg++;
          float_argreg++;
          argreg++;
          argreg++;
        }
        }
 
 
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
          && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
          && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
        {
        {
          /* This is a floating point value that fits entirely
          /* This is a floating point value that fits entirely
             in a single register or a pair of registers.  */
             in a single register or a pair of registers.  */
          int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
          int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
          LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
          LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
            fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                float_argreg, phex (regval, reglen));
                                float_argreg, phex (regval, reglen));
          regcache_cooked_write_unsigned (regcache, float_argreg, regval);
          regcache_cooked_write_unsigned (regcache, float_argreg, regval);
 
 
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
            fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                                argreg, phex (regval, reglen));
                                argreg, phex (regval, reglen));
          regcache_cooked_write_unsigned (regcache, argreg, regval);
          regcache_cooked_write_unsigned (regcache, argreg, regval);
          float_argreg++;
          float_argreg++;
          argreg++;
          argreg++;
          if (len == 16)
          if (len == 16)
            {
            {
              regval = extract_unsigned_integer (val + reglen,
              regval = extract_unsigned_integer (val + reglen,
                                                 reglen, byte_order);
                                                 reglen, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, reglen));
                                    float_argreg, phex (regval, reglen));
              regcache_cooked_write_unsigned (regcache, float_argreg, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg, regval);
 
 
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                                    argreg, phex (regval, reglen));
                                    argreg, phex (regval, reglen));
              regcache_cooked_write_unsigned (regcache, argreg, regval);
              regcache_cooked_write_unsigned (regcache, argreg, regval);
              float_argreg++;
              float_argreg++;
              argreg++;
              argreg++;
            }
            }
        }
        }
      else
      else
        {
        {
          /* Copy the argument to general registers or the stack in
          /* Copy the argument to general registers or the stack in
             register-sized pieces.  Large arguments are split between
             register-sized pieces.  Large arguments are split between
             registers and stack.  */
             registers and stack.  */
          /* For N32/N64, structs, unions, or other composite types are
          /* For N32/N64, structs, unions, or other composite types are
             treated as a sequence of doublewords, and are passed in integer
             treated as a sequence of doublewords, and are passed in integer
             or floating point registers as though they were simple scalar
             or floating point registers as though they were simple scalar
             parameters to the extent that they fit, with any excess on the
             parameters to the extent that they fit, with any excess on the
             stack packed according to the normal memory layout of the
             stack packed according to the normal memory layout of the
             object.
             object.
             The caller does not reserve space for the register arguments;
             The caller does not reserve space for the register arguments;
             the callee is responsible for reserving it if required.  */
             the callee is responsible for reserving it if required.  */
          /* Note: Floating-point values that didn't fit into an FP
          /* Note: Floating-point values that didn't fit into an FP
             register are only written to memory.  */
             register are only written to memory.  */
          while (len > 0)
          while (len > 0)
            {
            {
              /* Remember if the argument was written to the stack.  */
              /* Remember if the argument was written to the stack.  */
              int stack_used_p = 0;
              int stack_used_p = 0;
              int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
              int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
 
 
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                                    partial_len);
                                    partial_len);
 
 
              if (fp_register_arg_p (gdbarch, typecode, arg_type))
              if (fp_register_arg_p (gdbarch, typecode, arg_type))
                gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
                gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
 
 
              /* Write this portion of the argument to the stack.  */
              /* Write this portion of the argument to the stack.  */
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
                {
                {
                  /* Should shorter than int integer values be
                  /* Should shorter than int integer values be
                     promoted to int before being stored? */
                     promoted to int before being stored? */
                  int longword_offset = 0;
                  int longword_offset = 0;
                  CORE_ADDR addr;
                  CORE_ADDR addr;
                  stack_used_p = 1;
                  stack_used_p = 1;
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
                    {
                    {
                      if ((typecode == TYPE_CODE_INT
                      if ((typecode == TYPE_CODE_INT
                           || typecode == TYPE_CODE_PTR)
                           || typecode == TYPE_CODE_PTR)
                          && len <= 4)
                          && len <= 4)
                        longword_offset = MIPS64_REGSIZE - len;
                        longword_offset = MIPS64_REGSIZE - len;
                    }
                    }
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                                          paddress (gdbarch, stack_offset));
                                          paddress (gdbarch, stack_offset));
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                                          paddress (gdbarch, longword_offset));
                                          paddress (gdbarch, longword_offset));
                    }
                    }
 
 
                  addr = sp + stack_offset + longword_offset;
                  addr = sp + stack_offset + longword_offset;
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      int i;
                      int i;
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                                          paddress (gdbarch, addr));
                                          paddress (gdbarch, addr));
                      for (i = 0; i < partial_len; i++)
                      for (i = 0; i < partial_len; i++)
                        {
                        {
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                                              val[i] & 0xff);
                                              val[i] & 0xff);
                        }
                        }
                    }
                    }
                  write_memory (addr, val, partial_len);
                  write_memory (addr, val, partial_len);
                }
                }
 
 
              /* Note!!! This is NOT an else clause.  Odd sized
              /* Note!!! This is NOT an else clause.  Odd sized
                 structs may go thru BOTH paths.  */
                 structs may go thru BOTH paths.  */
              /* Write this portion of the argument to a general
              /* Write this portion of the argument to a general
                 purpose register.  */
                 purpose register.  */
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
                {
                {
                  LONGEST regval;
                  LONGEST regval;
 
 
                  /* Sign extend pointers, 32-bit integers and signed
                  /* Sign extend pointers, 32-bit integers and signed
                     16-bit and 8-bit integers; everything else is taken
                     16-bit and 8-bit integers; everything else is taken
                     as is.  */
                     as is.  */
 
 
                  if ((partial_len == 4
                  if ((partial_len == 4
                       && (typecode == TYPE_CODE_PTR
                       && (typecode == TYPE_CODE_PTR
                           || typecode == TYPE_CODE_INT))
                           || typecode == TYPE_CODE_INT))
                      || (partial_len < 4
                      || (partial_len < 4
                          && typecode == TYPE_CODE_INT
                          && typecode == TYPE_CODE_INT
                          && !TYPE_UNSIGNED (arg_type)))
                          && !TYPE_UNSIGNED (arg_type)))
                    regval = extract_signed_integer (val, partial_len,
                    regval = extract_signed_integer (val, partial_len,
                                                     byte_order);
                                                     byte_order);
                  else
                  else
                    regval = extract_unsigned_integer (val, partial_len,
                    regval = extract_unsigned_integer (val, partial_len,
                                                       byte_order);
                                                       byte_order);
 
 
                  /* A non-floating-point argument being passed in a
                  /* A non-floating-point argument being passed in a
                     general register.  If a struct or union, and if
                     general register.  If a struct or union, and if
                     the remaining length is smaller than the register
                     the remaining length is smaller than the register
                     size, we have to adjust the register value on
                     size, we have to adjust the register value on
                     big endian targets.
                     big endian targets.
 
 
                     It does not seem to be necessary to do the
                     It does not seem to be necessary to do the
                     same for integral types.  */
                     same for integral types.  */
 
 
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
                      && partial_len < MIPS64_REGSIZE
                      && partial_len < MIPS64_REGSIZE
                      && (typecode == TYPE_CODE_STRUCT
                      && (typecode == TYPE_CODE_STRUCT
                          || typecode == TYPE_CODE_UNION))
                          || typecode == TYPE_CODE_UNION))
                    regval <<= ((MIPS64_REGSIZE - partial_len)
                    regval <<= ((MIPS64_REGSIZE - partial_len)
                                * TARGET_CHAR_BIT);
                                * TARGET_CHAR_BIT);
 
 
                  if (mips_debug)
                  if (mips_debug)
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                                      argreg,
                                      argreg,
                                      phex (regval, MIPS64_REGSIZE));
                                      phex (regval, MIPS64_REGSIZE));
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
 
 
                  if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
                  if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
                                                  TYPE_LENGTH (arg_type) - len))
                                                  TYPE_LENGTH (arg_type) - len))
                    {
                    {
                      if (mips_debug)
                      if (mips_debug)
                        fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
                        fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
                                          float_argreg,
                                          float_argreg,
                                          phex (regval, MIPS64_REGSIZE));
                                          phex (regval, MIPS64_REGSIZE));
                      regcache_cooked_write_unsigned (regcache, float_argreg,
                      regcache_cooked_write_unsigned (regcache, float_argreg,
                                                      regval);
                                                      regval);
                    }
                    }
 
 
                  float_argreg++;
                  float_argreg++;
                  argreg++;
                  argreg++;
                }
                }
 
 
              len -= partial_len;
              len -= partial_len;
              val += partial_len;
              val += partial_len;
 
 
              /* Compute the the offset into the stack at which we
              /* Compute the the offset into the stack at which we
                 will copy the next parameter.
                 will copy the next parameter.
 
 
                 In N32 (N64?), the stack_offset only needs to be
                 In N32 (N64?), the stack_offset only needs to be
                 adjusted when it has been used.  */
                 adjusted when it has been used.  */
 
 
              if (stack_used_p)
              if (stack_used_p)
                stack_offset += align_up (partial_len, MIPS64_REGSIZE);
                stack_offset += align_up (partial_len, MIPS64_REGSIZE);
            }
            }
        }
        }
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog, "\n");
        fprintf_unfiltered (gdb_stdlog, "\n");
    }
    }
 
 
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
 
 
  /* Return adjusted stack pointer.  */
  /* Return adjusted stack pointer.  */
  return sp;
  return sp;
}
}
 
 
static enum return_value_convention
static enum return_value_convention
mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
                          struct type *type, struct regcache *regcache,
                          struct type *type, struct regcache *regcache,
                          gdb_byte *readbuf, const gdb_byte *writebuf)
                          gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
  /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
 
 
     Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
     Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
     if needed), as appropriate for the type.  Composite results (struct,
     if needed), as appropriate for the type.  Composite results (struct,
     union, or array) are returned in $2/$f0 and $3/$f2 according to the
     union, or array) are returned in $2/$f0 and $3/$f2 according to the
     following rules:
     following rules:
 
 
     * A struct with only one or two floating point fields is returned in $f0
     * A struct with only one or two floating point fields is returned in $f0
     (and $f2 if necessary).  This is a generalization of the Fortran COMPLEX
     (and $f2 if necessary).  This is a generalization of the Fortran COMPLEX
     case.
     case.
 
 
     * Any other composite results of at most 128 bits are returned in
     * Any other composite results of at most 128 bits are returned in
     $2 (first 64 bits) and $3 (remainder, if necessary).
     $2 (first 64 bits) and $3 (remainder, if necessary).
 
 
     * Larger composite results are handled by converting the function to a
     * Larger composite results are handled by converting the function to a
     procedure with an implicit first parameter, which is a pointer to an area
     procedure with an implicit first parameter, which is a pointer to an area
     reserved by the caller to receive the result.  [The o32-bit ABI requires
     reserved by the caller to receive the result.  [The o32-bit ABI requires
     that all composite results be handled by conversion to implicit first
     that all composite results be handled by conversion to implicit first
     parameters.  The MIPS/SGI Fortran implementation has always made a
     parameters.  The MIPS/SGI Fortran implementation has always made a
     specific exception to return COMPLEX results in the floating point
     specific exception to return COMPLEX results in the floating point
     registers.]  */
     registers.]  */
 
 
  if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
  if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
           && TYPE_LENGTH (type) == 16
           && TYPE_LENGTH (type) == 16
           && tdep->mips_fpu_type != MIPS_FPU_NONE)
           && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
    {
      /* A 128-bit floating-point value fills both $f0 and $f2.  The
      /* A 128-bit floating-point value fills both $f0 and $f2.  The
         two registers are used in the same as memory order, so the
         two registers are used in the same as memory order, so the
         eight bytes with the lower memory address are in $f0.  */
         eight bytes with the lower memory address are in $f0.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
        fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
      mips_xfer_register (gdbarch, regcache,
      mips_xfer_register (gdbarch, regcache,
                          gdbarch_num_regs (gdbarch)
                          gdbarch_num_regs (gdbarch)
                          + mips_regnum (gdbarch)->fp0,
                          + mips_regnum (gdbarch)->fp0,
                          8, gdbarch_byte_order (gdbarch),
                          8, gdbarch_byte_order (gdbarch),
                          readbuf, writebuf, 0);
                          readbuf, writebuf, 0);
      mips_xfer_register (gdbarch, regcache,
      mips_xfer_register (gdbarch, regcache,
                          gdbarch_num_regs (gdbarch)
                          gdbarch_num_regs (gdbarch)
                          + mips_regnum (gdbarch)->fp0 + 2,
                          + mips_regnum (gdbarch)->fp0 + 2,
                          8, gdbarch_byte_order (gdbarch),
                          8, gdbarch_byte_order (gdbarch),
                          readbuf ? readbuf + 8 : readbuf,
                          readbuf ? readbuf + 8 : readbuf,
                          writebuf ? writebuf + 8 : writebuf, 0);
                          writebuf ? writebuf + 8 : writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
           && tdep->mips_fpu_type != MIPS_FPU_NONE)
           && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
    {
      /* A single or double floating-point value that fits in FP0.  */
      /* A single or double floating-point value that fits in FP0.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
      mips_xfer_register (gdbarch, regcache,
                          gdbarch_num_regs (gdbarch)
                          gdbarch_num_regs (gdbarch)
                          + mips_regnum (gdbarch)->fp0,
                          + mips_regnum (gdbarch)->fp0,
                          TYPE_LENGTH (type),
                          TYPE_LENGTH (type),
                          gdbarch_byte_order (gdbarch),
                          gdbarch_byte_order (gdbarch),
                          readbuf, writebuf, 0);
                          readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           && TYPE_NFIELDS (type) <= 2
           && TYPE_NFIELDS (type) <= 2
           && TYPE_NFIELDS (type) >= 1
           && TYPE_NFIELDS (type) >= 1
           && ((TYPE_NFIELDS (type) == 1
           && ((TYPE_NFIELDS (type) == 1
                && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
                && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
                    == TYPE_CODE_FLT))
                    == TYPE_CODE_FLT))
               || (TYPE_NFIELDS (type) == 2
               || (TYPE_NFIELDS (type) == 2
                   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
                   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
                       == TYPE_CODE_FLT)
                       == TYPE_CODE_FLT)
                   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
                   && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
                       == TYPE_CODE_FLT))))
                       == TYPE_CODE_FLT))))
    {
    {
      /* A struct that contains one or two floats.  Each value is part
      /* A struct that contains one or two floats.  Each value is part
         in the least significant part of their floating point
         in the least significant part of their floating point
         register (or GPR, for soft float).  */
         register (or GPR, for soft float).  */
      int regnum;
      int regnum;
      int field;
      int field;
      for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
      for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
                                ? mips_regnum (gdbarch)->fp0
                                ? mips_regnum (gdbarch)->fp0
                                : MIPS_V0_REGNUM);
                                : MIPS_V0_REGNUM);
           field < TYPE_NFIELDS (type); field++, regnum += 2)
           field < TYPE_NFIELDS (type); field++, regnum += 2)
        {
        {
          int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
          int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
                        / TARGET_CHAR_BIT);
                        / TARGET_CHAR_BIT);
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
            fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
                                offset);
                                offset);
          if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
          if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
            {
            {
              /* A 16-byte long double field goes in two consecutive
              /* A 16-byte long double field goes in two consecutive
                 registers.  */
                 registers.  */
              mips_xfer_register (gdbarch, regcache,
              mips_xfer_register (gdbarch, regcache,
                                  gdbarch_num_regs (gdbarch) + regnum,
                                  gdbarch_num_regs (gdbarch) + regnum,
                                  8,
                                  8,
                                  gdbarch_byte_order (gdbarch),
                                  gdbarch_byte_order (gdbarch),
                                  readbuf, writebuf, offset);
                                  readbuf, writebuf, offset);
              mips_xfer_register (gdbarch, regcache,
              mips_xfer_register (gdbarch, regcache,
                                  gdbarch_num_regs (gdbarch) + regnum + 1,
                                  gdbarch_num_regs (gdbarch) + regnum + 1,
                                  8,
                                  8,
                                  gdbarch_byte_order (gdbarch),
                                  gdbarch_byte_order (gdbarch),
                                  readbuf, writebuf, offset + 8);
                                  readbuf, writebuf, offset + 8);
            }
            }
          else
          else
            mips_xfer_register (gdbarch, regcache,
            mips_xfer_register (gdbarch, regcache,
                                gdbarch_num_regs (gdbarch) + regnum,
                                gdbarch_num_regs (gdbarch) + regnum,
                                TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
                                TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
                                gdbarch_byte_order (gdbarch),
                                gdbarch_byte_order (gdbarch),
                                readbuf, writebuf, offset);
                                readbuf, writebuf, offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION
           || TYPE_CODE (type) == TYPE_CODE_UNION
           || TYPE_CODE (type) == TYPE_CODE_ARRAY)
           || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
    {
      /* A composite type.  Extract the left justified value,
      /* A composite type.  Extract the left justified value,
         regardless of the byte order.  I.e. DO NOT USE
         regardless of the byte order.  I.e. DO NOT USE
         mips_xfer_lower.  */
         mips_xfer_lower.  */
      int offset;
      int offset;
      int regnum;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
           offset < TYPE_LENGTH (type);
           offset < TYPE_LENGTH (type);
           offset += register_size (gdbarch, regnum), regnum++)
           offset += register_size (gdbarch, regnum), regnum++)
        {
        {
          int xfer = register_size (gdbarch, regnum);
          int xfer = register_size (gdbarch, regnum);
          if (offset + xfer > TYPE_LENGTH (type))
          if (offset + xfer > TYPE_LENGTH (type))
            xfer = TYPE_LENGTH (type) - offset;
            xfer = TYPE_LENGTH (type) - offset;
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
            fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
                                offset, xfer, regnum);
                                offset, xfer, regnum);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch) + regnum,
                              gdbarch_num_regs (gdbarch) + regnum,
                              xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
                              xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
                              offset);
                              offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  else
  else
    {
    {
      /* A scalar extract each part but least-significant-byte
      /* A scalar extract each part but least-significant-byte
         justified.  */
         justified.  */
      int offset;
      int offset;
      int regnum;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
           offset < TYPE_LENGTH (type);
           offset < TYPE_LENGTH (type);
           offset += register_size (gdbarch, regnum), regnum++)
           offset += register_size (gdbarch, regnum), regnum++)
        {
        {
          int xfer = register_size (gdbarch, regnum);
          int xfer = register_size (gdbarch, regnum);
          if (offset + xfer > TYPE_LENGTH (type))
          if (offset + xfer > TYPE_LENGTH (type))
            xfer = TYPE_LENGTH (type) - offset;
            xfer = TYPE_LENGTH (type) - offset;
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
            fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
                                offset, xfer, regnum);
                                offset, xfer, regnum);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch) + regnum,
                              gdbarch_num_regs (gdbarch) + regnum,
                              xfer, gdbarch_byte_order (gdbarch),
                              xfer, gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, offset);
                              readbuf, writebuf, offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
}
}
 
 
/* O32 ABI stuff.  */
/* O32 ABI stuff.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                          struct regcache *regcache, CORE_ADDR bp_addr,
                          struct regcache *regcache, CORE_ADDR bp_addr,
                          int nargs, struct value **args, CORE_ADDR sp,
                          int nargs, struct value **args, CORE_ADDR sp,
                          int struct_return, CORE_ADDR struct_addr)
                          int struct_return, CORE_ADDR struct_addr)
{
{
  int argreg;
  int argreg;
  int float_argreg;
  int float_argreg;
  int argnum;
  int argnum;
  int len = 0;
  int len = 0;
  int stack_offset = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
 
 
  /* For shared libraries, "t9" needs to point at the function
  /* For shared libraries, "t9" needs to point at the function
     address.  */
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
 
 
  /* Set the return address register to point to the entry point of
  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
 
 
  /* First ensure that the stack and structure return address (if any)
  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */
     aligned, so we round to this widest known alignment.  */
 
 
  sp = align_down (sp, 16);
  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);
  struct_addr = align_down (struct_addr, 16);
 
 
  /* Now make space on the stack for the args.  */
  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      struct type *arg_type = check_typedef (value_type (args[argnum]));
      struct type *arg_type = check_typedef (value_type (args[argnum]));
      int arglen = TYPE_LENGTH (arg_type);
      int arglen = TYPE_LENGTH (arg_type);
 
 
      /* Align to double-word if necessary.  */
      /* Align to double-word if necessary.  */
      if (mips_type_needs_double_align (arg_type))
      if (mips_type_needs_double_align (arg_type))
        len = align_up (len, MIPS32_REGSIZE * 2);
        len = align_up (len, MIPS32_REGSIZE * 2);
      /* Allocate space on the stack.  */
      /* Allocate space on the stack.  */
      len += align_up (arglen, MIPS32_REGSIZE);
      len += align_up (arglen, MIPS32_REGSIZE);
    }
    }
  sp -= align_up (len, 16);
  sp -= align_up (len, 16);
 
 
  if (mips_debug)
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
                        "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
                        paddress (gdbarch, sp), (long) align_up (len, 16));
                        paddress (gdbarch, sp), (long) align_up (len, 16));
 
 
  /* Initialize the integer and float register pointers.  */
  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);
  float_argreg = mips_fpa0_regnum (gdbarch);
 
 
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
  if (struct_return)
    {
    {
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_o32_push_dummy_call: struct_return reg=%d %s\n",
                            "mips_o32_push_dummy_call: struct_return reg=%d %s\n",
                            argreg, paddress (gdbarch, struct_addr));
                            argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      stack_offset += MIPS32_REGSIZE;
      stack_offset += MIPS32_REGSIZE;
    }
    }
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      const gdb_byte *val;
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
 
 
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_o32_push_dummy_call: %d len=%d type=%d",
                            "mips_o32_push_dummy_call: %d len=%d type=%d",
                            argnum + 1, len, (int) typecode);
                            argnum + 1, len, (int) typecode);
 
 
      val = value_contents (arg);
      val = value_contents (arg);
 
 
      /* 32-bit ABIs always start floating point arguments in an
      /* 32-bit ABIs always start floating point arguments in an
         even-numbered floating point register.  Round the FP register
         even-numbered floating point register.  Round the FP register
         up before the check to see if there are any FP registers
         up before the check to see if there are any FP registers
         left.  O32/O64 targets also pass the FP in the integer
         left.  O32/O64 targets also pass the FP in the integer
         registers so also round up normal registers.  */
         registers so also round up normal registers.  */
      if (fp_register_arg_p (gdbarch, typecode, arg_type))
      if (fp_register_arg_p (gdbarch, typecode, arg_type))
        {
        {
          if ((float_argreg & 1))
          if ((float_argreg & 1))
            float_argreg++;
            float_argreg++;
        }
        }
 
 
      /* Floating point arguments passed in registers have to be
      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         the low word, and the odd register gets the high word.
         On O32/O64, the first two floating point arguments are
         On O32/O64, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */
         because those registers are normally skipped.  */
 
 
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
          && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
          && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
        {
        {
          if (register_size (gdbarch, float_argreg) < 8 && len == 8)
          if (register_size (gdbarch, float_argreg) < 8 && len == 8)
            {
            {
              int low_offset = gdbarch_byte_order (gdbarch)
              int low_offset = gdbarch_byte_order (gdbarch)
                               == BFD_ENDIAN_BIG ? 4 : 0;
                               == BFD_ENDIAN_BIG ? 4 : 0;
              unsigned long regval;
              unsigned long regval;
 
 
              /* Write the low word of the double to the even register(s).  */
              /* Write the low word of the double to the even register(s).  */
              regval = extract_unsigned_integer (val + low_offset,
              regval = extract_unsigned_integer (val + low_offset,
                                                 4, byte_order);
                                                 4, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, 4));
                                    float_argreg, phex (regval, 4));
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                                    argreg, phex (regval, 4));
                                    argreg, phex (regval, 4));
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
 
 
              /* Write the high word of the double to the odd register(s).  */
              /* Write the high word of the double to the odd register(s).  */
              regval = extract_unsigned_integer (val + 4 - low_offset,
              regval = extract_unsigned_integer (val + 4 - low_offset,
                                                 4, byte_order);
                                                 4, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, 4));
                                    float_argreg, phex (regval, 4));
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
 
 
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                                    argreg, phex (regval, 4));
                                    argreg, phex (regval, 4));
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
            }
            }
          else
          else
            {
            {
              /* This is a floating point value that fits entirely
              /* This is a floating point value that fits entirely
                 in a single register.  */
                 in a single register.  */
              /* On 32 bit ABI's the float_argreg is further adjusted
              /* On 32 bit ABI's the float_argreg is further adjusted
                 above to ensure that it is even register aligned.  */
                 above to ensure that it is even register aligned.  */
              LONGEST regval = extract_unsigned_integer (val, len, byte_order);
              LONGEST regval = extract_unsigned_integer (val, len, byte_order);
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                    float_argreg, phex (regval, len));
                                    float_argreg, phex (regval, len));
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
              /* Although two FP registers are reserved for each
              /* Although two FP registers are reserved for each
                 argument, only one corresponding integer register is
                 argument, only one corresponding integer register is
                 reserved.  */
                 reserved.  */
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                                    argreg, phex (regval, len));
                                    argreg, phex (regval, len));
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
              regcache_cooked_write_unsigned (regcache, argreg++, regval);
            }
            }
          /* Reserve space for the FP register.  */
          /* Reserve space for the FP register.  */
          stack_offset += align_up (len, MIPS32_REGSIZE);
          stack_offset += align_up (len, MIPS32_REGSIZE);
        }
        }
      else
      else
        {
        {
          /* Copy the argument to general registers or the stack in
          /* Copy the argument to general registers or the stack in
             register-sized pieces.  Large arguments are split between
             register-sized pieces.  Large arguments are split between
             registers and stack.  */
             registers and stack.  */
          /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
          /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
             are treated specially: Irix cc passes
             are treated specially: Irix cc passes
             them in registers where gcc sometimes puts them on the
             them in registers where gcc sometimes puts them on the
             stack.  For maximum compatibility, we will put them in
             stack.  For maximum compatibility, we will put them in
             both places.  */
             both places.  */
          int odd_sized_struct = (len > MIPS32_REGSIZE
          int odd_sized_struct = (len > MIPS32_REGSIZE
                                  && len % MIPS32_REGSIZE != 0);
                                  && len % MIPS32_REGSIZE != 0);
          /* Structures should be aligned to eight bytes (even arg registers)
          /* Structures should be aligned to eight bytes (even arg registers)
             on MIPS_ABI_O32, if their first member has double precision.  */
             on MIPS_ABI_O32, if their first member has double precision.  */
          if (mips_type_needs_double_align (arg_type))
          if (mips_type_needs_double_align (arg_type))
            {
            {
              if ((argreg & 1))
              if ((argreg & 1))
                {
                {
                  argreg++;
                  argreg++;
                  stack_offset += MIPS32_REGSIZE;
                  stack_offset += MIPS32_REGSIZE;
                }
                }
            }
            }
          while (len > 0)
          while (len > 0)
            {
            {
              /* Remember if the argument was written to the stack.  */
              /* Remember if the argument was written to the stack.  */
              int stack_used_p = 0;
              int stack_used_p = 0;
              int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
              int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
 
 
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                                    partial_len);
                                    partial_len);
 
 
              /* Write this portion of the argument to the stack.  */
              /* Write this portion of the argument to the stack.  */
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
                  || odd_sized_struct)
                  || odd_sized_struct)
                {
                {
                  /* Should shorter than int integer values be
                  /* Should shorter than int integer values be
                     promoted to int before being stored? */
                     promoted to int before being stored? */
                  int longword_offset = 0;
                  int longword_offset = 0;
                  CORE_ADDR addr;
                  CORE_ADDR addr;
                  stack_used_p = 1;
                  stack_used_p = 1;
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                                          paddress (gdbarch, stack_offset));
                                          paddress (gdbarch, stack_offset));
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                                          paddress (gdbarch, longword_offset));
                                          paddress (gdbarch, longword_offset));
                    }
                    }
 
 
                  addr = sp + stack_offset + longword_offset;
                  addr = sp + stack_offset + longword_offset;
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      int i;
                      int i;
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                                          paddress (gdbarch, addr));
                                          paddress (gdbarch, addr));
                      for (i = 0; i < partial_len; i++)
                      for (i = 0; i < partial_len; i++)
                        {
                        {
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                                              val[i] & 0xff);
                                              val[i] & 0xff);
                        }
                        }
                    }
                    }
                  write_memory (addr, val, partial_len);
                  write_memory (addr, val, partial_len);
                }
                }
 
 
              /* Note!!! This is NOT an else clause.  Odd sized
              /* Note!!! This is NOT an else clause.  Odd sized
                 structs may go thru BOTH paths.  */
                 structs may go thru BOTH paths.  */
              /* Write this portion of the argument to a general
              /* Write this portion of the argument to a general
                 purpose register.  */
                 purpose register.  */
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
                {
                {
                  LONGEST regval = extract_signed_integer (val, partial_len,
                  LONGEST regval = extract_signed_integer (val, partial_len,
                                                           byte_order);
                                                           byte_order);
                  /* Value may need to be sign extended, because
                  /* Value may need to be sign extended, because
                     mips_isa_regsize() != mips_abi_regsize().  */
                     mips_isa_regsize() != mips_abi_regsize().  */
 
 
                  /* A non-floating-point argument being passed in a
                  /* A non-floating-point argument being passed in a
                     general register.  If a struct or union, and if
                     general register.  If a struct or union, and if
                     the remaining length is smaller than the register
                     the remaining length is smaller than the register
                     size, we have to adjust the register value on
                     size, we have to adjust the register value on
                     big endian targets.
                     big endian targets.
 
 
                     It does not seem to be necessary to do the
                     It does not seem to be necessary to do the
                     same for integral types.
                     same for integral types.
 
 
                     Also don't do this adjustment on O64 binaries.
                     Also don't do this adjustment on O64 binaries.
 
 
                     cagney/2001-07-23: gdb/179: Also, GCC, when
                     cagney/2001-07-23: gdb/179: Also, GCC, when
                     outputting LE O32 with sizeof (struct) <
                     outputting LE O32 with sizeof (struct) <
                     mips_abi_regsize(), generates a left shift
                     mips_abi_regsize(), generates a left shift
                     as part of storing the argument in a register
                     as part of storing the argument in a register
                     (the left shift isn't generated when
                     (the left shift isn't generated when
                     sizeof (struct) >= mips_abi_regsize()).  Since
                     sizeof (struct) >= mips_abi_regsize()).  Since
                     it is quite possible that this is GCC
                     it is quite possible that this is GCC
                     contradicting the LE/O32 ABI, GDB has not been
                     contradicting the LE/O32 ABI, GDB has not been
                     adjusted to accommodate this.  Either someone
                     adjusted to accommodate this.  Either someone
                     needs to demonstrate that the LE/O32 ABI
                     needs to demonstrate that the LE/O32 ABI
                     specifies such a left shift OR this new ABI gets
                     specifies such a left shift OR this new ABI gets
                     identified as such and GDB gets tweaked
                     identified as such and GDB gets tweaked
                     accordingly.  */
                     accordingly.  */
 
 
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
                      && partial_len < MIPS32_REGSIZE
                      && partial_len < MIPS32_REGSIZE
                      && (typecode == TYPE_CODE_STRUCT
                      && (typecode == TYPE_CODE_STRUCT
                          || typecode == TYPE_CODE_UNION))
                          || typecode == TYPE_CODE_UNION))
                    regval <<= ((MIPS32_REGSIZE - partial_len)
                    regval <<= ((MIPS32_REGSIZE - partial_len)
                                * TARGET_CHAR_BIT);
                                * TARGET_CHAR_BIT);
 
 
                  if (mips_debug)
                  if (mips_debug)
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                                      argreg,
                                      argreg,
                                      phex (regval, MIPS32_REGSIZE));
                                      phex (regval, MIPS32_REGSIZE));
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  argreg++;
                  argreg++;
 
 
                  /* Prevent subsequent floating point arguments from
                  /* Prevent subsequent floating point arguments from
                     being passed in floating point registers.  */
                     being passed in floating point registers.  */
                  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
                  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
                }
                }
 
 
              len -= partial_len;
              len -= partial_len;
              val += partial_len;
              val += partial_len;
 
 
              /* Compute the the offset into the stack at which we
              /* Compute the the offset into the stack at which we
                 will copy the next parameter.
                 will copy the next parameter.
 
 
                 In older ABIs, the caller reserved space for
                 In older ABIs, the caller reserved space for
                 registers that contained arguments.  This was loosely
                 registers that contained arguments.  This was loosely
                 refered to as their "home".  Consequently, space is
                 refered to as their "home".  Consequently, space is
                 always allocated.  */
                 always allocated.  */
 
 
              stack_offset += align_up (partial_len, MIPS32_REGSIZE);
              stack_offset += align_up (partial_len, MIPS32_REGSIZE);
            }
            }
        }
        }
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog, "\n");
        fprintf_unfiltered (gdb_stdlog, "\n");
    }
    }
 
 
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
 
 
  /* Return adjusted stack pointer.  */
  /* Return adjusted stack pointer.  */
  return sp;
  return sp;
}
}
 
 
static enum return_value_convention
static enum return_value_convention
mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
                       struct type *type, struct regcache *regcache,
                       struct type *type, struct regcache *regcache,
                       gdb_byte *readbuf, const gdb_byte *writebuf)
                       gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
           && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
           && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
    {
      /* A single-precision floating-point value.  It fits in the
      /* A single-precision floating-point value.  It fits in the
         least significant part of FP0.  */
         least significant part of FP0.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
      mips_xfer_register (gdbarch, regcache,
                          gdbarch_num_regs (gdbarch)
                          gdbarch_num_regs (gdbarch)
                            + mips_regnum (gdbarch)->fp0,
                            + mips_regnum (gdbarch)->fp0,
                          TYPE_LENGTH (type),
                          TYPE_LENGTH (type),
                          gdbarch_byte_order (gdbarch),
                          gdbarch_byte_order (gdbarch),
                          readbuf, writebuf, 0);
                          readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
  else if (TYPE_CODE (type) == TYPE_CODE_FLT
           && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
           && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
    {
      /* A double-precision floating-point value.  The most
      /* A double-precision floating-point value.  The most
         significant part goes in FP1, and the least significant in
         significant part goes in FP1, and the least significant in
         FP0.  */
         FP0.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
        fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
      switch (gdbarch_byte_order (gdbarch))
      switch (gdbarch_byte_order (gdbarch))
        {
        {
        case BFD_ENDIAN_LITTLE:
        case BFD_ENDIAN_LITTLE:
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch)
                              gdbarch_num_regs (gdbarch)
                                + mips_regnum (gdbarch)->fp0 +
                                + mips_regnum (gdbarch)->fp0 +
                              0, 4, gdbarch_byte_order (gdbarch),
                              0, 4, gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, 0);
                              readbuf, writebuf, 0);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch)
                              gdbarch_num_regs (gdbarch)
                                + mips_regnum (gdbarch)->fp0 + 1,
                                + mips_regnum (gdbarch)->fp0 + 1,
                              4, gdbarch_byte_order (gdbarch),
                              4, gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, 4);
                              readbuf, writebuf, 4);
          break;
          break;
        case BFD_ENDIAN_BIG:
        case BFD_ENDIAN_BIG:
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch)
                              gdbarch_num_regs (gdbarch)
                                + mips_regnum (gdbarch)->fp0 + 1,
                                + mips_regnum (gdbarch)->fp0 + 1,
                              4, gdbarch_byte_order (gdbarch),
                              4, gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, 0);
                              readbuf, writebuf, 0);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch)
                              gdbarch_num_regs (gdbarch)
                                + mips_regnum (gdbarch)->fp0 + 0,
                                + mips_regnum (gdbarch)->fp0 + 0,
                              4, gdbarch_byte_order (gdbarch),
                              4, gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, 4);
                              readbuf, writebuf, 4);
          break;
          break;
        default:
        default:
          internal_error (__FILE__, __LINE__, _("bad switch"));
          internal_error (__FILE__, __LINE__, _("bad switch"));
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
#if 0
#if 0
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           && TYPE_NFIELDS (type) <= 2
           && TYPE_NFIELDS (type) <= 2
           && TYPE_NFIELDS (type) >= 1
           && TYPE_NFIELDS (type) >= 1
           && ((TYPE_NFIELDS (type) == 1
           && ((TYPE_NFIELDS (type) == 1
                && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
                && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
                    == TYPE_CODE_FLT))
                    == TYPE_CODE_FLT))
               || (TYPE_NFIELDS (type) == 2
               || (TYPE_NFIELDS (type) == 2
                   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
                   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
                       == TYPE_CODE_FLT)
                       == TYPE_CODE_FLT)
                   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
                   && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
                       == TYPE_CODE_FLT)))
                       == TYPE_CODE_FLT)))
           && tdep->mips_fpu_type != MIPS_FPU_NONE)
           && tdep->mips_fpu_type != MIPS_FPU_NONE)
    {
    {
      /* A struct that contains one or two floats.  Each value is part
      /* A struct that contains one or two floats.  Each value is part
         in the least significant part of their floating point
         in the least significant part of their floating point
         register..  */
         register..  */
      gdb_byte reg[MAX_REGISTER_SIZE];
      gdb_byte reg[MAX_REGISTER_SIZE];
      int regnum;
      int regnum;
      int field;
      int field;
      for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
      for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
           field < TYPE_NFIELDS (type); field++, regnum += 2)
           field < TYPE_NFIELDS (type); field++, regnum += 2)
        {
        {
          int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
          int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
                        / TARGET_CHAR_BIT);
                        / TARGET_CHAR_BIT);
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
            fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
                                offset);
                                offset);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch) + regnum,
                              gdbarch_num_regs (gdbarch) + regnum,
                              TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
                              TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
                              gdbarch_byte_order (gdbarch),
                              gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, offset);
                              readbuf, writebuf, offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
#endif
#endif
#if 0
#if 0
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION)
           || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
    {
      /* A structure or union.  Extract the left justified value,
      /* A structure or union.  Extract the left justified value,
         regardless of the byte order.  I.e. DO NOT USE
         regardless of the byte order.  I.e. DO NOT USE
         mips_xfer_lower.  */
         mips_xfer_lower.  */
      int offset;
      int offset;
      int regnum;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
           offset < TYPE_LENGTH (type);
           offset < TYPE_LENGTH (type);
           offset += register_size (gdbarch, regnum), regnum++)
           offset += register_size (gdbarch, regnum), regnum++)
        {
        {
          int xfer = register_size (gdbarch, regnum);
          int xfer = register_size (gdbarch, regnum);
          if (offset + xfer > TYPE_LENGTH (type))
          if (offset + xfer > TYPE_LENGTH (type))
            xfer = TYPE_LENGTH (type) - offset;
            xfer = TYPE_LENGTH (type) - offset;
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
            fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
                                offset, xfer, regnum);
                                offset, xfer, regnum);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch) + regnum, xfer,
                              gdbarch_num_regs (gdbarch) + regnum, xfer,
                              BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
                              BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
#endif
#endif
  else
  else
    {
    {
      /* A scalar extract each part but least-significant-byte
      /* A scalar extract each part but least-significant-byte
         justified.  o32 thinks registers are 4 byte, regardless of
         justified.  o32 thinks registers are 4 byte, regardless of
         the ISA.  */
         the ISA.  */
      int offset;
      int offset;
      int regnum;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
           offset < TYPE_LENGTH (type);
           offset < TYPE_LENGTH (type);
           offset += MIPS32_REGSIZE, regnum++)
           offset += MIPS32_REGSIZE, regnum++)
        {
        {
          int xfer = MIPS32_REGSIZE;
          int xfer = MIPS32_REGSIZE;
          if (offset + xfer > TYPE_LENGTH (type))
          if (offset + xfer > TYPE_LENGTH (type))
            xfer = TYPE_LENGTH (type) - offset;
            xfer = TYPE_LENGTH (type) - offset;
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
            fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
                                offset, xfer, regnum);
                                offset, xfer, regnum);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch) + regnum, xfer,
                              gdbarch_num_regs (gdbarch) + regnum, xfer,
                              gdbarch_byte_order (gdbarch),
                              gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, offset);
                              readbuf, writebuf, offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
}
}
 
 
/* O64 ABI.  This is a hacked up kind of 64-bit version of the o32
/* O64 ABI.  This is a hacked up kind of 64-bit version of the o32
   ABI.  */
   ABI.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                          struct regcache *regcache, CORE_ADDR bp_addr,
                          struct regcache *regcache, CORE_ADDR bp_addr,
                          int nargs,
                          int nargs,
                          struct value **args, CORE_ADDR sp,
                          struct value **args, CORE_ADDR sp,
                          int struct_return, CORE_ADDR struct_addr)
                          int struct_return, CORE_ADDR struct_addr)
{
{
  int argreg;
  int argreg;
  int float_argreg;
  int float_argreg;
  int argnum;
  int argnum;
  int len = 0;
  int len = 0;
  int stack_offset = 0;
  int stack_offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
 
 
  /* For shared libraries, "t9" needs to point at the function
  /* For shared libraries, "t9" needs to point at the function
     address.  */
     address.  */
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
  regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
 
 
  /* Set the return address register to point to the entry point of
  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
  regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
 
 
  /* First ensure that the stack and structure return address (if any)
  /* First ensure that the stack and structure return address (if any)
     are properly aligned.  The stack has to be at least 64-bit
     are properly aligned.  The stack has to be at least 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned even on 32-bit machines, because doubles must be 64-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned.  For n32 and n64, stack frames need to be 128-bit
     aligned, so we round to this widest known alignment.  */
     aligned, so we round to this widest known alignment.  */
 
 
  sp = align_down (sp, 16);
  sp = align_down (sp, 16);
  struct_addr = align_down (struct_addr, 16);
  struct_addr = align_down (struct_addr, 16);
 
 
  /* Now make space on the stack for the args.  */
  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      struct type *arg_type = check_typedef (value_type (args[argnum]));
      struct type *arg_type = check_typedef (value_type (args[argnum]));
      int arglen = TYPE_LENGTH (arg_type);
      int arglen = TYPE_LENGTH (arg_type);
 
 
      /* Allocate space on the stack.  */
      /* Allocate space on the stack.  */
      len += align_up (arglen, MIPS64_REGSIZE);
      len += align_up (arglen, MIPS64_REGSIZE);
    }
    }
  sp -= align_up (len, 16);
  sp -= align_up (len, 16);
 
 
  if (mips_debug)
  if (mips_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
                        "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
                        paddress (gdbarch, sp), (long) align_up (len, 16));
                        paddress (gdbarch, sp), (long) align_up (len, 16));
 
 
  /* Initialize the integer and float register pointers.  */
  /* Initialize the integer and float register pointers.  */
  argreg = MIPS_A0_REGNUM;
  argreg = MIPS_A0_REGNUM;
  float_argreg = mips_fpa0_regnum (gdbarch);
  float_argreg = mips_fpa0_regnum (gdbarch);
 
 
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  /* The struct_return pointer occupies the first parameter-passing reg.  */
  if (struct_return)
  if (struct_return)
    {
    {
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_o64_push_dummy_call: struct_return reg=%d %s\n",
                            "mips_o64_push_dummy_call: struct_return reg=%d %s\n",
                            argreg, paddress (gdbarch, struct_addr));
                            argreg, paddress (gdbarch, struct_addr));
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
      stack_offset += MIPS64_REGSIZE;
      stack_offset += MIPS64_REGSIZE;
    }
    }
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop thru args
     registers, and push the rest onto the stack.  Loop thru args
     from first to last.  */
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      const gdb_byte *val;
      const gdb_byte *val;
      struct value *arg = args[argnum];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
 
 
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog,
        fprintf_unfiltered (gdb_stdlog,
                            "mips_o64_push_dummy_call: %d len=%d type=%d",
                            "mips_o64_push_dummy_call: %d len=%d type=%d",
                            argnum + 1, len, (int) typecode);
                            argnum + 1, len, (int) typecode);
 
 
      val = value_contents (arg);
      val = value_contents (arg);
 
 
      /* Floating point arguments passed in registers have to be
      /* Floating point arguments passed in registers have to be
         treated specially.  On 32-bit architectures, doubles
         treated specially.  On 32-bit architectures, doubles
         are passed in register pairs; the even register gets
         are passed in register pairs; the even register gets
         the low word, and the odd register gets the high word.
         the low word, and the odd register gets the high word.
         On O32/O64, the first two floating point arguments are
         On O32/O64, the first two floating point arguments are
         also copied to general registers, because MIPS16 functions
         also copied to general registers, because MIPS16 functions
         don't use float registers for arguments.  This duplication of
         don't use float registers for arguments.  This duplication of
         arguments in general registers can't hurt non-MIPS16 functions
         arguments in general registers can't hurt non-MIPS16 functions
         because those registers are normally skipped.  */
         because those registers are normally skipped.  */
 
 
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
      if (fp_register_arg_p (gdbarch, typecode, arg_type)
          && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
          && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
        {
        {
          LONGEST regval = extract_unsigned_integer (val, len, byte_order);
          LONGEST regval = extract_unsigned_integer (val, len, byte_order);
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
            fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
                                float_argreg, phex (regval, len));
                                float_argreg, phex (regval, len));
          regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
          regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
            fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
                                argreg, phex (regval, len));
                                argreg, phex (regval, len));
          regcache_cooked_write_unsigned (regcache, argreg, regval);
          regcache_cooked_write_unsigned (regcache, argreg, regval);
          argreg++;
          argreg++;
          /* Reserve space for the FP register.  */
          /* Reserve space for the FP register.  */
          stack_offset += align_up (len, MIPS64_REGSIZE);
          stack_offset += align_up (len, MIPS64_REGSIZE);
        }
        }
      else
      else
        {
        {
          /* Copy the argument to general registers or the stack in
          /* Copy the argument to general registers or the stack in
             register-sized pieces.  Large arguments are split between
             register-sized pieces.  Large arguments are split between
             registers and stack.  */
             registers and stack.  */
          /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
          /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
             are treated specially: Irix cc passes them in registers
             are treated specially: Irix cc passes them in registers
             where gcc sometimes puts them on the stack.  For maximum
             where gcc sometimes puts them on the stack.  For maximum
             compatibility, we will put them in both places.  */
             compatibility, we will put them in both places.  */
          int odd_sized_struct = (len > MIPS64_REGSIZE
          int odd_sized_struct = (len > MIPS64_REGSIZE
                                  && len % MIPS64_REGSIZE != 0);
                                  && len % MIPS64_REGSIZE != 0);
          while (len > 0)
          while (len > 0)
            {
            {
              /* Remember if the argument was written to the stack.  */
              /* Remember if the argument was written to the stack.  */
              int stack_used_p = 0;
              int stack_used_p = 0;
              int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
              int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
 
 
              if (mips_debug)
              if (mips_debug)
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
                                    partial_len);
                                    partial_len);
 
 
              /* Write this portion of the argument to the stack.  */
              /* Write this portion of the argument to the stack.  */
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
              if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
                  || odd_sized_struct)
                  || odd_sized_struct)
                {
                {
                  /* Should shorter than int integer values be
                  /* Should shorter than int integer values be
                     promoted to int before being stored? */
                     promoted to int before being stored? */
                  int longword_offset = 0;
                  int longword_offset = 0;
                  CORE_ADDR addr;
                  CORE_ADDR addr;
                  stack_used_p = 1;
                  stack_used_p = 1;
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
                    {
                    {
                      if ((typecode == TYPE_CODE_INT
                      if ((typecode == TYPE_CODE_INT
                           || typecode == TYPE_CODE_PTR
                           || typecode == TYPE_CODE_PTR
                           || typecode == TYPE_CODE_FLT)
                           || typecode == TYPE_CODE_FLT)
                          && len <= 4)
                          && len <= 4)
                        longword_offset = MIPS64_REGSIZE - len;
                        longword_offset = MIPS64_REGSIZE - len;
                    }
                    }
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
                                          paddress (gdbarch, stack_offset));
                                          paddress (gdbarch, stack_offset));
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                      fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
                                          paddress (gdbarch, longword_offset));
                                          paddress (gdbarch, longword_offset));
                    }
                    }
 
 
                  addr = sp + stack_offset + longword_offset;
                  addr = sp + stack_offset + longword_offset;
 
 
                  if (mips_debug)
                  if (mips_debug)
                    {
                    {
                      int i;
                      int i;
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                      fprintf_unfiltered (gdb_stdlog, " @%s ",
                                          paddress (gdbarch, addr));
                                          paddress (gdbarch, addr));
                      for (i = 0; i < partial_len; i++)
                      for (i = 0; i < partial_len; i++)
                        {
                        {
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                          fprintf_unfiltered (gdb_stdlog, "%02x",
                                              val[i] & 0xff);
                                              val[i] & 0xff);
                        }
                        }
                    }
                    }
                  write_memory (addr, val, partial_len);
                  write_memory (addr, val, partial_len);
                }
                }
 
 
              /* Note!!! This is NOT an else clause.  Odd sized
              /* Note!!! This is NOT an else clause.  Odd sized
                 structs may go thru BOTH paths.  */
                 structs may go thru BOTH paths.  */
              /* Write this portion of the argument to a general
              /* Write this portion of the argument to a general
                 purpose register.  */
                 purpose register.  */
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
              if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
                {
                {
                  LONGEST regval = extract_signed_integer (val, partial_len,
                  LONGEST regval = extract_signed_integer (val, partial_len,
                                                           byte_order);
                                                           byte_order);
                  /* Value may need to be sign extended, because
                  /* Value may need to be sign extended, because
                     mips_isa_regsize() != mips_abi_regsize().  */
                     mips_isa_regsize() != mips_abi_regsize().  */
 
 
                  /* A non-floating-point argument being passed in a
                  /* A non-floating-point argument being passed in a
                     general register.  If a struct or union, and if
                     general register.  If a struct or union, and if
                     the remaining length is smaller than the register
                     the remaining length is smaller than the register
                     size, we have to adjust the register value on
                     size, we have to adjust the register value on
                     big endian targets.
                     big endian targets.
 
 
                     It does not seem to be necessary to do the
                     It does not seem to be necessary to do the
                     same for integral types. */
                     same for integral types. */
 
 
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
                  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
                      && partial_len < MIPS64_REGSIZE
                      && partial_len < MIPS64_REGSIZE
                      && (typecode == TYPE_CODE_STRUCT
                      && (typecode == TYPE_CODE_STRUCT
                          || typecode == TYPE_CODE_UNION))
                          || typecode == TYPE_CODE_UNION))
                    regval <<= ((MIPS64_REGSIZE - partial_len)
                    regval <<= ((MIPS64_REGSIZE - partial_len)
                                * TARGET_CHAR_BIT);
                                * TARGET_CHAR_BIT);
 
 
                  if (mips_debug)
                  if (mips_debug)
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                    fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
                                      argreg,
                                      argreg,
                                      phex (regval, MIPS64_REGSIZE));
                                      phex (regval, MIPS64_REGSIZE));
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  regcache_cooked_write_unsigned (regcache, argreg, regval);
                  argreg++;
                  argreg++;
 
 
                  /* Prevent subsequent floating point arguments from
                  /* Prevent subsequent floating point arguments from
                     being passed in floating point registers.  */
                     being passed in floating point registers.  */
                  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
                  float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
                }
                }
 
 
              len -= partial_len;
              len -= partial_len;
              val += partial_len;
              val += partial_len;
 
 
              /* Compute the the offset into the stack at which we
              /* Compute the the offset into the stack at which we
                 will copy the next parameter.
                 will copy the next parameter.
 
 
                 In older ABIs, the caller reserved space for
                 In older ABIs, the caller reserved space for
                 registers that contained arguments.  This was loosely
                 registers that contained arguments.  This was loosely
                 refered to as their "home".  Consequently, space is
                 refered to as their "home".  Consequently, space is
                 always allocated.  */
                 always allocated.  */
 
 
              stack_offset += align_up (partial_len, MIPS64_REGSIZE);
              stack_offset += align_up (partial_len, MIPS64_REGSIZE);
            }
            }
        }
        }
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stdlog, "\n");
        fprintf_unfiltered (gdb_stdlog, "\n");
    }
    }
 
 
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
  regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
 
 
  /* Return adjusted stack pointer.  */
  /* Return adjusted stack pointer.  */
  return sp;
  return sp;
}
}
 
 
static enum return_value_convention
static enum return_value_convention
mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
                       struct type *type, struct regcache *regcache,
                       struct type *type, struct regcache *regcache,
                       gdb_byte *readbuf, const gdb_byte *writebuf)
                       gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
  else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
  else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
    {
    {
      /* A floating-point value.  It fits in the least significant
      /* A floating-point value.  It fits in the least significant
         part of FP0.  */
         part of FP0.  */
      if (mips_debug)
      if (mips_debug)
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
        fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
      mips_xfer_register (gdbarch, regcache,
      mips_xfer_register (gdbarch, regcache,
                          gdbarch_num_regs (gdbarch)
                          gdbarch_num_regs (gdbarch)
                            + mips_regnum (gdbarch)->fp0,
                            + mips_regnum (gdbarch)->fp0,
                          TYPE_LENGTH (type),
                          TYPE_LENGTH (type),
                          gdbarch_byte_order (gdbarch),
                          gdbarch_byte_order (gdbarch),
                          readbuf, writebuf, 0);
                          readbuf, writebuf, 0);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  else
  else
    {
    {
      /* A scalar extract each part but least-significant-byte
      /* A scalar extract each part but least-significant-byte
         justified. */
         justified. */
      int offset;
      int offset;
      int regnum;
      int regnum;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
      for (offset = 0, regnum = MIPS_V0_REGNUM;
           offset < TYPE_LENGTH (type);
           offset < TYPE_LENGTH (type);
           offset += MIPS64_REGSIZE, regnum++)
           offset += MIPS64_REGSIZE, regnum++)
        {
        {
          int xfer = MIPS64_REGSIZE;
          int xfer = MIPS64_REGSIZE;
          if (offset + xfer > TYPE_LENGTH (type))
          if (offset + xfer > TYPE_LENGTH (type))
            xfer = TYPE_LENGTH (type) - offset;
            xfer = TYPE_LENGTH (type) - offset;
          if (mips_debug)
          if (mips_debug)
            fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
            fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
                                offset, xfer, regnum);
                                offset, xfer, regnum);
          mips_xfer_register (gdbarch, regcache,
          mips_xfer_register (gdbarch, regcache,
                              gdbarch_num_regs (gdbarch) + regnum,
                              gdbarch_num_regs (gdbarch) + regnum,
                              xfer, gdbarch_byte_order (gdbarch),
                              xfer, gdbarch_byte_order (gdbarch),
                              readbuf, writebuf, offset);
                              readbuf, writebuf, offset);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
}
}
 
 
/* Floating point register management.
/* Floating point register management.
 
 
   Background: MIPS1 & 2 fp registers are 32 bits wide.  To support
   Background: MIPS1 & 2 fp registers are 32 bits wide.  To support
   64bit operations, these early MIPS cpus treat fp register pairs
   64bit operations, these early MIPS cpus treat fp register pairs
   (f0,f1) as a single register (d0).  Later MIPS cpu's have 64 bit fp
   (f0,f1) as a single register (d0).  Later MIPS cpu's have 64 bit fp
   registers and offer a compatibility mode that emulates the MIPS2 fp
   registers and offer a compatibility mode that emulates the MIPS2 fp
   model.  When operating in MIPS2 fp compat mode, later cpu's split
   model.  When operating in MIPS2 fp compat mode, later cpu's split
   double precision floats into two 32-bit chunks and store them in
   double precision floats into two 32-bit chunks and store them in
   consecutive fp regs.  To display 64-bit floats stored in this
   consecutive fp regs.  To display 64-bit floats stored in this
   fashion, we have to combine 32 bits from f0 and 32 bits from f1.
   fashion, we have to combine 32 bits from f0 and 32 bits from f1.
   Throw in user-configurable endianness and you have a real mess.
   Throw in user-configurable endianness and you have a real mess.
 
 
   The way this works is:
   The way this works is:
     - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
     - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
       double-precision value will be split across two logical registers.
       double-precision value will be split across two logical registers.
       The lower-numbered logical register will hold the low-order bits,
       The lower-numbered logical register will hold the low-order bits,
       regardless of the processor's endianness.
       regardless of the processor's endianness.
     - If we are on a 64-bit processor, and we are looking for a
     - If we are on a 64-bit processor, and we are looking for a
       single-precision value, it will be in the low ordered bits
       single-precision value, it will be in the low ordered bits
       of a 64-bit GPR (after mfc1, for example) or a 64-bit register
       of a 64-bit GPR (after mfc1, for example) or a 64-bit register
       save slot in memory.
       save slot in memory.
     - If we are in 64-bit mode, everything is straightforward.
     - If we are in 64-bit mode, everything is straightforward.
 
 
   Note that this code only deals with "live" registers at the top of the
   Note that this code only deals with "live" registers at the top of the
   stack.  We will attempt to deal with saved registers later, when
   stack.  We will attempt to deal with saved registers later, when
   the raw/cooked register interface is in place. (We need a general
   the raw/cooked register interface is in place. (We need a general
   interface that can deal with dynamic saved register sizes -- fp
   interface that can deal with dynamic saved register sizes -- fp
   regs could be 32 bits wide in one frame and 64 on the frame above
   regs could be 32 bits wide in one frame and 64 on the frame above
   and below).  */
   and below).  */
 
 
/* Copy a 32-bit single-precision value from the current frame
/* Copy a 32-bit single-precision value from the current frame
   into rare_buffer.  */
   into rare_buffer.  */
 
 
static void
static void
mips_read_fp_register_single (struct frame_info *frame, int regno,
mips_read_fp_register_single (struct frame_info *frame, int regno,
                              gdb_byte *rare_buffer)
                              gdb_byte *rare_buffer)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int raw_size = register_size (gdbarch, regno);
  int raw_size = register_size (gdbarch, regno);
  gdb_byte *raw_buffer = alloca (raw_size);
  gdb_byte *raw_buffer = alloca (raw_size);
 
 
  if (!frame_register_read (frame, regno, raw_buffer))
  if (!frame_register_read (frame, regno, raw_buffer))
    error (_("can't read register %d (%s)"),
    error (_("can't read register %d (%s)"),
           regno, gdbarch_register_name (gdbarch, regno));
           regno, gdbarch_register_name (gdbarch, regno));
  if (raw_size == 8)
  if (raw_size == 8)
    {
    {
      /* We have a 64-bit value for this register.  Find the low-order
      /* We have a 64-bit value for this register.  Find the low-order
         32 bits.  */
         32 bits.  */
      int offset;
      int offset;
 
 
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
        offset = 4;
        offset = 4;
      else
      else
        offset = 0;
        offset = 0;
 
 
      memcpy (rare_buffer, raw_buffer + offset, 4);
      memcpy (rare_buffer, raw_buffer + offset, 4);
    }
    }
  else
  else
    {
    {
      memcpy (rare_buffer, raw_buffer, 4);
      memcpy (rare_buffer, raw_buffer, 4);
    }
    }
}
}
 
 
/* Copy a 64-bit double-precision value from the current frame into
/* Copy a 64-bit double-precision value from the current frame into
   rare_buffer.  This may include getting half of it from the next
   rare_buffer.  This may include getting half of it from the next
   register.  */
   register.  */
 
 
static void
static void
mips_read_fp_register_double (struct frame_info *frame, int regno,
mips_read_fp_register_double (struct frame_info *frame, int regno,
                              gdb_byte *rare_buffer)
                              gdb_byte *rare_buffer)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int raw_size = register_size (gdbarch, regno);
  int raw_size = register_size (gdbarch, regno);
 
 
  if (raw_size == 8 && !mips2_fp_compat (frame))
  if (raw_size == 8 && !mips2_fp_compat (frame))
    {
    {
      /* We have a 64-bit value for this register, and we should use
      /* We have a 64-bit value for this register, and we should use
         all 64 bits.  */
         all 64 bits.  */
      if (!frame_register_read (frame, regno, rare_buffer))
      if (!frame_register_read (frame, regno, rare_buffer))
        error (_("can't read register %d (%s)"),
        error (_("can't read register %d (%s)"),
               regno, gdbarch_register_name (gdbarch, regno));
               regno, gdbarch_register_name (gdbarch, regno));
    }
    }
  else
  else
    {
    {
      int rawnum = regno % gdbarch_num_regs (gdbarch);
      int rawnum = regno % gdbarch_num_regs (gdbarch);
 
 
      if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
      if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
        internal_error (__FILE__, __LINE__,
        internal_error (__FILE__, __LINE__,
                        _("mips_read_fp_register_double: bad access to "
                        _("mips_read_fp_register_double: bad access to "
                        "odd-numbered FP register"));
                        "odd-numbered FP register"));
 
 
      /* mips_read_fp_register_single will find the correct 32 bits from
      /* mips_read_fp_register_single will find the correct 32 bits from
         each register.  */
         each register.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
        {
        {
          mips_read_fp_register_single (frame, regno, rare_buffer + 4);
          mips_read_fp_register_single (frame, regno, rare_buffer + 4);
          mips_read_fp_register_single (frame, regno + 1, rare_buffer);
          mips_read_fp_register_single (frame, regno + 1, rare_buffer);
        }
        }
      else
      else
        {
        {
          mips_read_fp_register_single (frame, regno, rare_buffer);
          mips_read_fp_register_single (frame, regno, rare_buffer);
          mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
          mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
        }
        }
    }
    }
}
}
 
 
static void
static void
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
                        int regnum)
                        int regnum)
{                               /* do values for FP (float) regs */
{                               /* do values for FP (float) regs */
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte *raw_buffer;
  gdb_byte *raw_buffer;
  double doub, flt1;    /* doubles extracted from raw hex data */
  double doub, flt1;    /* doubles extracted from raw hex data */
  int inv1, inv2;
  int inv1, inv2;
 
 
  raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
  raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
 
 
  fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
  fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
  fprintf_filtered (file, "%*s",
  fprintf_filtered (file, "%*s",
                    4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
                    4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
                    "");
                    "");
 
 
  if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
  if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
    {
    {
      struct value_print_options opts;
      struct value_print_options opts;
 
 
      /* 4-byte registers: Print hex and floating.  Also print even
      /* 4-byte registers: Print hex and floating.  Also print even
         numbered registers as doubles.  */
         numbered registers as doubles.  */
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv1);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv1);
 
 
      get_formatted_print_options (&opts, 'x');
      get_formatted_print_options (&opts, 'x');
      print_scalar_formatted (raw_buffer,
      print_scalar_formatted (raw_buffer,
                              builtin_type (gdbarch)->builtin_uint32,
                              builtin_type (gdbarch)->builtin_uint32,
                              &opts, 'w', file);
                              &opts, 'w', file);
 
 
      fprintf_filtered (file, " flt: ");
      fprintf_filtered (file, " flt: ");
      if (inv1)
      if (inv1)
        fprintf_filtered (file, " <invalid float> ");
        fprintf_filtered (file, " <invalid float> ");
      else
      else
        fprintf_filtered (file, "%-17.9g", flt1);
        fprintf_filtered (file, "%-17.9g", flt1);
 
 
      if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
      if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
        {
        {
          mips_read_fp_register_double (frame, regnum, raw_buffer);
          mips_read_fp_register_double (frame, regnum, raw_buffer);
          doub = unpack_double (builtin_type (gdbarch)->builtin_double,
          doub = unpack_double (builtin_type (gdbarch)->builtin_double,
                                raw_buffer, &inv2);
                                raw_buffer, &inv2);
 
 
          fprintf_filtered (file, " dbl: ");
          fprintf_filtered (file, " dbl: ");
          if (inv2)
          if (inv2)
            fprintf_filtered (file, "<invalid double>");
            fprintf_filtered (file, "<invalid double>");
          else
          else
            fprintf_filtered (file, "%-24.17g", doub);
            fprintf_filtered (file, "%-24.17g", doub);
        }
        }
    }
    }
  else
  else
    {
    {
      struct value_print_options opts;
      struct value_print_options opts;
 
 
      /* Eight byte registers: print each one as hex, float and double.  */
      /* Eight byte registers: print each one as hex, float and double.  */
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      mips_read_fp_register_single (frame, regnum, raw_buffer);
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
      flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
                            raw_buffer, &inv1);
                            raw_buffer, &inv1);
 
 
      mips_read_fp_register_double (frame, regnum, raw_buffer);
      mips_read_fp_register_double (frame, regnum, raw_buffer);
      doub = unpack_double (builtin_type (gdbarch)->builtin_double,
      doub = unpack_double (builtin_type (gdbarch)->builtin_double,
                            raw_buffer, &inv2);
                            raw_buffer, &inv2);
 
 
      get_formatted_print_options (&opts, 'x');
      get_formatted_print_options (&opts, 'x');
      print_scalar_formatted (raw_buffer,
      print_scalar_formatted (raw_buffer,
                              builtin_type (gdbarch)->builtin_uint64,
                              builtin_type (gdbarch)->builtin_uint64,
                              &opts, 'g', file);
                              &opts, 'g', file);
 
 
      fprintf_filtered (file, " flt: ");
      fprintf_filtered (file, " flt: ");
      if (inv1)
      if (inv1)
        fprintf_filtered (file, "<invalid float>");
        fprintf_filtered (file, "<invalid float>");
      else
      else
        fprintf_filtered (file, "%-17.9g", flt1);
        fprintf_filtered (file, "%-17.9g", flt1);
 
 
      fprintf_filtered (file, " dbl: ");
      fprintf_filtered (file, " dbl: ");
      if (inv2)
      if (inv2)
        fprintf_filtered (file, "<invalid double>");
        fprintf_filtered (file, "<invalid double>");
      else
      else
        fprintf_filtered (file, "%-24.17g", doub);
        fprintf_filtered (file, "%-24.17g", doub);
    }
    }
}
}
 
 
static void
static void
mips_print_register (struct ui_file *file, struct frame_info *frame,
mips_print_register (struct ui_file *file, struct frame_info *frame,
                     int regnum)
                     int regnum)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte raw_buffer[MAX_REGISTER_SIZE];
  gdb_byte raw_buffer[MAX_REGISTER_SIZE];
  int offset;
  int offset;
  struct value_print_options opts;
  struct value_print_options opts;
 
 
  if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
  if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
    {
    {
      mips_print_fp_register (file, frame, regnum);
      mips_print_fp_register (file, frame, regnum);
      return;
      return;
    }
    }
 
 
  /* Get the data in raw format.  */
  /* Get the data in raw format.  */
  if (!frame_register_read (frame, regnum, raw_buffer))
  if (!frame_register_read (frame, regnum, raw_buffer))
    {
    {
      fprintf_filtered (file, "%s: [Invalid]",
      fprintf_filtered (file, "%s: [Invalid]",
                        gdbarch_register_name (gdbarch, regnum));
                        gdbarch_register_name (gdbarch, regnum));
      return;
      return;
    }
    }
 
 
  fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
  fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
 
 
  /* The problem with printing numeric register names (r26, etc.) is that
  /* The problem with printing numeric register names (r26, etc.) is that
     the user can't use them on input.  Probably the best solution is to
     the user can't use them on input.  Probably the best solution is to
     fix it so that either the numeric or the funky (a2, etc.) names
     fix it so that either the numeric or the funky (a2, etc.) names
     are accepted on input.  */
     are accepted on input.  */
  if (regnum < MIPS_NUMREGS)
  if (regnum < MIPS_NUMREGS)
    fprintf_filtered (file, "(r%d): ", regnum);
    fprintf_filtered (file, "(r%d): ", regnum);
  else
  else
    fprintf_filtered (file, ": ");
    fprintf_filtered (file, ": ");
 
 
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    offset =
    offset =
      register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
      register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
  else
  else
    offset = 0;
    offset = 0;
 
 
  get_formatted_print_options (&opts, 'x');
  get_formatted_print_options (&opts, 'x');
  print_scalar_formatted (raw_buffer + offset,
  print_scalar_formatted (raw_buffer + offset,
                          register_type (gdbarch, regnum), &opts, 0,
                          register_type (gdbarch, regnum), &opts, 0,
                          file);
                          file);
}
}
 
 
/* Replacement for generic do_registers_info.
/* Replacement for generic do_registers_info.
   Print regs in pretty columns.  */
   Print regs in pretty columns.  */
 
 
static int
static int
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
print_fp_register_row (struct ui_file *file, struct frame_info *frame,
                       int regnum)
                       int regnum)
{
{
  fprintf_filtered (file, " ");
  fprintf_filtered (file, " ");
  mips_print_fp_register (file, frame, regnum);
  mips_print_fp_register (file, frame, regnum);
  fprintf_filtered (file, "\n");
  fprintf_filtered (file, "\n");
  return regnum + 1;
  return regnum + 1;
}
}
 
 
 
 
/* Print a row's worth of GP (int) registers, with name labels above */
/* Print a row's worth of GP (int) registers, with name labels above */
 
 
static int
static int
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
print_gp_register_row (struct ui_file *file, struct frame_info *frame,
                       int start_regnum)
                       int start_regnum)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  /* do values for GP (int) regs */
  /* do values for GP (int) regs */
  gdb_byte raw_buffer[MAX_REGISTER_SIZE];
  gdb_byte raw_buffer[MAX_REGISTER_SIZE];
  int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8);        /* display cols per row */
  int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8);        /* display cols per row */
  int col, byte;
  int col, byte;
  int regnum;
  int regnum;
 
 
  /* For GP registers, we print a separate row of names above the vals */
  /* For GP registers, we print a separate row of names above the vals */
  for (col = 0, regnum = start_regnum;
  for (col = 0, regnum = start_regnum;
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
                               + gdbarch_num_pseudo_regs (gdbarch);
                               + gdbarch_num_pseudo_regs (gdbarch);
       regnum++)
       regnum++)
    {
    {
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
        continue;               /* unused register */
        continue;               /* unused register */
      if (TYPE_CODE (register_type (gdbarch, regnum)) ==
      if (TYPE_CODE (register_type (gdbarch, regnum)) ==
          TYPE_CODE_FLT)
          TYPE_CODE_FLT)
        break;                  /* end the row: reached FP register */
        break;                  /* end the row: reached FP register */
      /* Large registers are handled separately.  */
      /* Large registers are handled separately.  */
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
        {
        {
          if (col > 0)
          if (col > 0)
            break;              /* End the row before this register.  */
            break;              /* End the row before this register.  */
 
 
          /* Print this register on a row by itself.  */
          /* Print this register on a row by itself.  */
          mips_print_register (file, frame, regnum);
          mips_print_register (file, frame, regnum);
          fprintf_filtered (file, "\n");
          fprintf_filtered (file, "\n");
          return regnum + 1;
          return regnum + 1;
        }
        }
      if (col == 0)
      if (col == 0)
        fprintf_filtered (file, "     ");
        fprintf_filtered (file, "     ");
      fprintf_filtered (file,
      fprintf_filtered (file,
                        mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
                        mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
                        gdbarch_register_name (gdbarch, regnum));
                        gdbarch_register_name (gdbarch, regnum));
      col++;
      col++;
    }
    }
 
 
  if (col == 0)
  if (col == 0)
    return regnum;
    return regnum;
 
 
  /* print the R0 to R31 names */
  /* print the R0 to R31 names */
  if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
  if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
    fprintf_filtered (file, "\n R%-4d",
    fprintf_filtered (file, "\n R%-4d",
                      start_regnum % gdbarch_num_regs (gdbarch));
                      start_regnum % gdbarch_num_regs (gdbarch));
  else
  else
    fprintf_filtered (file, "\n      ");
    fprintf_filtered (file, "\n      ");
 
 
  /* now print the values in hex, 4 or 8 to the row */
  /* now print the values in hex, 4 or 8 to the row */
  for (col = 0, regnum = start_regnum;
  for (col = 0, regnum = start_regnum;
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
       col < ncols && regnum < gdbarch_num_regs (gdbarch)
                               + gdbarch_num_pseudo_regs (gdbarch);
                               + gdbarch_num_pseudo_regs (gdbarch);
       regnum++)
       regnum++)
    {
    {
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
      if (*gdbarch_register_name (gdbarch, regnum) == '\0')
        continue;               /* unused register */
        continue;               /* unused register */
      if (TYPE_CODE (register_type (gdbarch, regnum)) ==
      if (TYPE_CODE (register_type (gdbarch, regnum)) ==
          TYPE_CODE_FLT)
          TYPE_CODE_FLT)
        break;                  /* end row: reached FP register */
        break;                  /* end row: reached FP register */
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
      if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
        break;                  /* End row: large register.  */
        break;                  /* End row: large register.  */
 
 
      /* OK: get the data in raw format.  */
      /* OK: get the data in raw format.  */
      if (!frame_register_read (frame, regnum, raw_buffer))
      if (!frame_register_read (frame, regnum, raw_buffer))
        error (_("can't read register %d (%s)"),
        error (_("can't read register %d (%s)"),
               regnum, gdbarch_register_name (gdbarch, regnum));
               regnum, gdbarch_register_name (gdbarch, regnum));
      /* pad small registers */
      /* pad small registers */
      for (byte = 0;
      for (byte = 0;
           byte < (mips_abi_regsize (gdbarch)
           byte < (mips_abi_regsize (gdbarch)
                   - register_size (gdbarch, regnum)); byte++)
                   - register_size (gdbarch, regnum)); byte++)
        printf_filtered ("  ");
        printf_filtered ("  ");
      /* Now print the register value in hex, endian order. */
      /* Now print the register value in hex, endian order. */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
        for (byte =
        for (byte =
             register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
             register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
             byte < register_size (gdbarch, regnum); byte++)
             byte < register_size (gdbarch, regnum); byte++)
          fprintf_filtered (file, "%02x", raw_buffer[byte]);
          fprintf_filtered (file, "%02x", raw_buffer[byte]);
      else
      else
        for (byte = register_size (gdbarch, regnum) - 1;
        for (byte = register_size (gdbarch, regnum) - 1;
             byte >= 0; byte--)
             byte >= 0; byte--)
          fprintf_filtered (file, "%02x", raw_buffer[byte]);
          fprintf_filtered (file, "%02x", raw_buffer[byte]);
      fprintf_filtered (file, " ");
      fprintf_filtered (file, " ");
      col++;
      col++;
    }
    }
  if (col > 0)                   /* ie. if we actually printed anything... */
  if (col > 0)                   /* ie. if we actually printed anything... */
    fprintf_filtered (file, "\n");
    fprintf_filtered (file, "\n");
 
 
  return regnum;
  return regnum;
}
}
 
 
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
 
 
static void
static void
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
                           struct frame_info *frame, int regnum, int all)
                           struct frame_info *frame, int regnum, int all)
{
{
  if (regnum != -1)             /* do one specified register */
  if (regnum != -1)             /* do one specified register */
    {
    {
      gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
      gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
        error (_("Not a valid register for the current processor type"));
        error (_("Not a valid register for the current processor type"));
 
 
      mips_print_register (file, frame, regnum);
      mips_print_register (file, frame, regnum);
      fprintf_filtered (file, "\n");
      fprintf_filtered (file, "\n");
    }
    }
  else
  else
    /* do all (or most) registers */
    /* do all (or most) registers */
    {
    {
      regnum = gdbarch_num_regs (gdbarch);
      regnum = gdbarch_num_regs (gdbarch);
      while (regnum < gdbarch_num_regs (gdbarch)
      while (regnum < gdbarch_num_regs (gdbarch)
                      + gdbarch_num_pseudo_regs (gdbarch))
                      + gdbarch_num_pseudo_regs (gdbarch))
        {
        {
          if (TYPE_CODE (register_type (gdbarch, regnum)) ==
          if (TYPE_CODE (register_type (gdbarch, regnum)) ==
              TYPE_CODE_FLT)
              TYPE_CODE_FLT)
            {
            {
              if (all)          /* true for "INFO ALL-REGISTERS" command */
              if (all)          /* true for "INFO ALL-REGISTERS" command */
                regnum = print_fp_register_row (file, frame, regnum);
                regnum = print_fp_register_row (file, frame, regnum);
              else
              else
                regnum += MIPS_NUMREGS; /* skip floating point regs */
                regnum += MIPS_NUMREGS; /* skip floating point regs */
            }
            }
          else
          else
            regnum = print_gp_register_row (file, frame, regnum);
            regnum = print_gp_register_row (file, frame, regnum);
        }
        }
    }
    }
}
}
 
 
/* Is this a branch with a delay slot?  */
/* Is this a branch with a delay slot?  */
 
 
static int
static int
is_delayed (unsigned long insn)
is_delayed (unsigned long insn)
{
{
  int i;
  int i;
  for (i = 0; i < NUMOPCODES; ++i)
  for (i = 0; i < NUMOPCODES; ++i)
    if (mips_opcodes[i].pinfo != INSN_MACRO
    if (mips_opcodes[i].pinfo != INSN_MACRO
        && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
        && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
      break;
      break;
  return (i < NUMOPCODES
  return (i < NUMOPCODES
          && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
          && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
                                       | INSN_COND_BRANCH_DELAY
                                       | INSN_COND_BRANCH_DELAY
                                       | INSN_COND_BRANCH_LIKELY)));
                                       | INSN_COND_BRANCH_LIKELY)));
}
}
 
 
static int
static int
mips_single_step_through_delay (struct gdbarch *gdbarch,
mips_single_step_through_delay (struct gdbarch *gdbarch,
                                struct frame_info *frame)
                                struct frame_info *frame)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR pc = get_frame_pc (frame);
  CORE_ADDR pc = get_frame_pc (frame);
  gdb_byte buf[MIPS_INSN32_SIZE];
  gdb_byte buf[MIPS_INSN32_SIZE];
 
 
  /* There is no branch delay slot on MIPS16.  */
  /* There is no branch delay slot on MIPS16.  */
  if (mips_pc_is_mips16 (pc))
  if (mips_pc_is_mips16 (pc))
    return 0;
    return 0;
 
 
  if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
  if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
    return 0;
    return 0;
 
 
  if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
  if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
    /* If error reading memory, guess that it is not a delayed
    /* If error reading memory, guess that it is not a delayed
       branch.  */
       branch.  */
    return 0;
    return 0;
  return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
  return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
}
}
 
 
/* To skip prologues, I use this predicate.  Returns either PC itself
/* To skip prologues, I use this predicate.  Returns either PC itself
   if the code at PC does not look like a function prologue; otherwise
   if the code at PC does not look like a function prologue; otherwise
   returns an address that (if we're lucky) follows the prologue.  If
   returns an address that (if we're lucky) follows the prologue.  If
   LENIENT, then we must skip everything which is involved in setting
   LENIENT, then we must skip everything which is involved in setting
   up the frame (it's OK to skip more, just so long as we don't skip
   up the frame (it's OK to skip more, just so long as we don't skip
   anything which might clobber the registers which are being saved.
   anything which might clobber the registers which are being saved.
   We must skip more in the case where part of the prologue is in the
   We must skip more in the case where part of the prologue is in the
   delay slot of a non-prologue instruction).  */
   delay slot of a non-prologue instruction).  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR limit_pc;
  CORE_ADDR limit_pc;
  CORE_ADDR func_addr;
  CORE_ADDR func_addr;
 
 
  /* See if we can determine the end of the prologue via the symbol table.
  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
    {
      CORE_ADDR post_prologue_pc
      CORE_ADDR post_prologue_pc
        = skip_prologue_using_sal (gdbarch, func_addr);
        = skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
      if (post_prologue_pc != 0)
        return max (pc, post_prologue_pc);
        return max (pc, post_prologue_pc);
    }
    }
 
 
  /* Can't determine prologue from the symbol table, need to examine
  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */
     instructions.  */
 
 
  /* Find an upper limit on the function prologue using the debug
  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
  if (limit_pc == 0)
    limit_pc = pc + 100;          /* Magic.  */
    limit_pc = pc + 100;          /* Magic.  */
 
 
  if (mips_pc_is_mips16 (pc))
  if (mips_pc_is_mips16 (pc))
    return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
    return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
  else
  else
    return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
    return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
}
}
 
 
/* Check whether the PC is in a function epilogue (32-bit version).
/* Check whether the PC is in a function epilogue (32-bit version).
   This is a helper function for mips_in_function_epilogue_p.  */
   This is a helper function for mips_in_function_epilogue_p.  */
static int
static int
mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR func_addr = 0, func_end = 0;
  CORE_ADDR func_addr = 0, func_end = 0;
 
 
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      /* The MIPS epilogue is max. 12 bytes long.  */
      /* The MIPS epilogue is max. 12 bytes long.  */
      CORE_ADDR addr = func_end - 12;
      CORE_ADDR addr = func_end - 12;
 
 
      if (addr < func_addr + 4)
      if (addr < func_addr + 4)
        addr = func_addr + 4;
        addr = func_addr + 4;
      if (pc < addr)
      if (pc < addr)
        return 0;
        return 0;
 
 
      for (; pc < func_end; pc += MIPS_INSN32_SIZE)
      for (; pc < func_end; pc += MIPS_INSN32_SIZE)
        {
        {
          unsigned long high_word;
          unsigned long high_word;
          unsigned long inst;
          unsigned long inst;
 
 
          inst = mips_fetch_instruction (gdbarch, pc);
          inst = mips_fetch_instruction (gdbarch, pc);
          high_word = (inst >> 16) & 0xffff;
          high_word = (inst >> 16) & 0xffff;
 
 
          if (high_word != 0x27bd       /* addiu $sp,$sp,offset */
          if (high_word != 0x27bd       /* addiu $sp,$sp,offset */
              && high_word != 0x67bd    /* daddiu $sp,$sp,offset */
              && high_word != 0x67bd    /* daddiu $sp,$sp,offset */
              && inst != 0x03e00008     /* jr $ra */
              && inst != 0x03e00008     /* jr $ra */
              && inst != 0x00000000)    /* nop */
              && inst != 0x00000000)    /* nop */
            return 0;
            return 0;
        }
        }
 
 
      return 1;
      return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Check whether the PC is in a function epilogue (16-bit version).
/* Check whether the PC is in a function epilogue (16-bit version).
   This is a helper function for mips_in_function_epilogue_p.  */
   This is a helper function for mips_in_function_epilogue_p.  */
static int
static int
mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR func_addr = 0, func_end = 0;
  CORE_ADDR func_addr = 0, func_end = 0;
 
 
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      /* The MIPS epilogue is max. 12 bytes long.  */
      /* The MIPS epilogue is max. 12 bytes long.  */
      CORE_ADDR addr = func_end - 12;
      CORE_ADDR addr = func_end - 12;
 
 
      if (addr < func_addr + 4)
      if (addr < func_addr + 4)
        addr = func_addr + 4;
        addr = func_addr + 4;
      if (pc < addr)
      if (pc < addr)
        return 0;
        return 0;
 
 
      for (; pc < func_end; pc += MIPS_INSN16_SIZE)
      for (; pc < func_end; pc += MIPS_INSN16_SIZE)
        {
        {
          unsigned short inst;
          unsigned short inst;
 
 
          inst = mips_fetch_instruction (gdbarch, pc);
          inst = mips_fetch_instruction (gdbarch, pc);
 
 
          if ((inst & 0xf800) == 0xf000)        /* extend */
          if ((inst & 0xf800) == 0xf000)        /* extend */
            continue;
            continue;
 
 
          if (inst != 0x6300            /* addiu $sp,offset */
          if (inst != 0x6300            /* addiu $sp,offset */
              && inst != 0xfb00         /* daddiu $sp,$sp,offset */
              && inst != 0xfb00         /* daddiu $sp,$sp,offset */
              && inst != 0xe820         /* jr $ra */
              && inst != 0xe820         /* jr $ra */
              && inst != 0xe8a0         /* jrc $ra */
              && inst != 0xe8a0         /* jrc $ra */
              && inst != 0x6500)        /* nop */
              && inst != 0x6500)        /* nop */
            return 0;
            return 0;
        }
        }
 
 
      return 1;
      return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* The epilogue is defined here as the area at the end of a function,
/* The epilogue is defined here as the area at the end of a function,
   after an instruction which destroys the function's stack frame.  */
   after an instruction which destroys the function's stack frame.  */
static int
static int
mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  if (mips_pc_is_mips16 (pc))
  if (mips_pc_is_mips16 (pc))
    return mips16_in_function_epilogue_p (gdbarch, pc);
    return mips16_in_function_epilogue_p (gdbarch, pc);
  else
  else
    return mips32_in_function_epilogue_p (gdbarch, pc);
    return mips32_in_function_epilogue_p (gdbarch, pc);
}
}
 
 
/* Root of all "set mips "/"show mips " commands. This will eventually be
/* Root of all "set mips "/"show mips " commands. This will eventually be
   used for all MIPS-specific commands.  */
   used for all MIPS-specific commands.  */
 
 
static void
static void
show_mips_command (char *args, int from_tty)
show_mips_command (char *args, int from_tty)
{
{
  help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
  help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
}
}
 
 
static void
static void
set_mips_command (char *args, int from_tty)
set_mips_command (char *args, int from_tty)
{
{
  printf_unfiltered
  printf_unfiltered
    ("\"set mips\" must be followed by an appropriate subcommand.\n");
    ("\"set mips\" must be followed by an appropriate subcommand.\n");
  help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
  help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
}
}
 
 
/* Commands to show/set the MIPS FPU type.  */
/* Commands to show/set the MIPS FPU type.  */
 
 
static void
static void
show_mipsfpu_command (char *args, int from_tty)
show_mipsfpu_command (char *args, int from_tty)
{
{
  char *fpu;
  char *fpu;
 
 
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
    {
    {
      printf_unfiltered
      printf_unfiltered
        ("The MIPS floating-point coprocessor is unknown "
        ("The MIPS floating-point coprocessor is unknown "
         "because the current architecture is not MIPS.\n");
         "because the current architecture is not MIPS.\n");
      return;
      return;
    }
    }
 
 
  switch (MIPS_FPU_TYPE (target_gdbarch))
  switch (MIPS_FPU_TYPE (target_gdbarch))
    {
    {
    case MIPS_FPU_SINGLE:
    case MIPS_FPU_SINGLE:
      fpu = "single-precision";
      fpu = "single-precision";
      break;
      break;
    case MIPS_FPU_DOUBLE:
    case MIPS_FPU_DOUBLE:
      fpu = "double-precision";
      fpu = "double-precision";
      break;
      break;
    case MIPS_FPU_NONE:
    case MIPS_FPU_NONE:
      fpu = "absent (none)";
      fpu = "absent (none)";
      break;
      break;
    default:
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
    }
  if (mips_fpu_type_auto)
  if (mips_fpu_type_auto)
    printf_unfiltered
    printf_unfiltered
      ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
      ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
       fpu);
       fpu);
  else
  else
    printf_unfiltered
    printf_unfiltered
      ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
      ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
}
}
 
 
 
 
static void
static void
set_mipsfpu_command (char *args, int from_tty)
set_mipsfpu_command (char *args, int from_tty)
{
{
  printf_unfiltered
  printf_unfiltered
    ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
    ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
  show_mipsfpu_command (args, from_tty);
  show_mipsfpu_command (args, from_tty);
}
}
 
 
static void
static void
set_mipsfpu_single_command (char *args, int from_tty)
set_mipsfpu_single_command (char *args, int from_tty)
{
{
  struct gdbarch_info info;
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_SINGLE;
  mips_fpu_type = MIPS_FPU_SINGLE;
  mips_fpu_type_auto = 0;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}
}
 
 
static void
static void
set_mipsfpu_double_command (char *args, int from_tty)
set_mipsfpu_double_command (char *args, int from_tty)
{
{
  struct gdbarch_info info;
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_DOUBLE;
  mips_fpu_type = MIPS_FPU_DOUBLE;
  mips_fpu_type_auto = 0;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}
}
 
 
static void
static void
set_mipsfpu_none_command (char *args, int from_tty)
set_mipsfpu_none_command (char *args, int from_tty)
{
{
  struct gdbarch_info info;
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  gdbarch_info_init (&info);
  mips_fpu_type = MIPS_FPU_NONE;
  mips_fpu_type = MIPS_FPU_NONE;
  mips_fpu_type_auto = 0;
  mips_fpu_type_auto = 0;
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
  /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
     instead of relying on globals.  Doing that would let generic code
     instead of relying on globals.  Doing that would let generic code
     handle the search for this specific architecture.  */
     handle the search for this specific architecture.  */
  if (!gdbarch_update_p (info))
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
    internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
}
}
 
 
static void
static void
set_mipsfpu_auto_command (char *args, int from_tty)
set_mipsfpu_auto_command (char *args, int from_tty)
{
{
  mips_fpu_type_auto = 1;
  mips_fpu_type_auto = 1;
}
}
 
 
/* Attempt to identify the particular processor model by reading the
/* Attempt to identify the particular processor model by reading the
   processor id.  NOTE: cagney/2003-11-15: Firstly it isn't clear that
   processor id.  NOTE: cagney/2003-11-15: Firstly it isn't clear that
   the relevant processor still exists (it dates back to '94) and
   the relevant processor still exists (it dates back to '94) and
   secondly this is not the way to do this.  The processor type should
   secondly this is not the way to do this.  The processor type should
   be set by forcing an architecture change.  */
   be set by forcing an architecture change.  */
 
 
void
void
deprecated_mips_set_processor_regs_hack (void)
deprecated_mips_set_processor_regs_hack (void)
{
{
  struct regcache *regcache = get_current_regcache ();
  struct regcache *regcache = get_current_regcache ();
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST prid;
  ULONGEST prid;
 
 
  regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
  regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
  if ((prid & ~0xf) == 0x700)
  if ((prid & ~0xf) == 0x700)
    tdep->mips_processor_reg_names = mips_r3041_reg_names;
    tdep->mips_processor_reg_names = mips_r3041_reg_names;
}
}
 
 
/* Just like reinit_frame_cache, but with the right arguments to be
/* Just like reinit_frame_cache, but with the right arguments to be
   callable as an sfunc.  */
   callable as an sfunc.  */
 
 
static void
static void
reinit_frame_cache_sfunc (char *args, int from_tty,
reinit_frame_cache_sfunc (char *args, int from_tty,
                          struct cmd_list_element *c)
                          struct cmd_list_element *c)
{
{
  reinit_frame_cache ();
  reinit_frame_cache ();
}
}
 
 
static int
static int
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
{
{
  /* FIXME: cagney/2003-06-26: Is this even necessary?  The
  /* FIXME: cagney/2003-06-26: Is this even necessary?  The
     disassembler needs to be able to locally determine the ISA, and
     disassembler needs to be able to locally determine the ISA, and
     not rely on GDB.  Otherwize the stand-alone 'objdump -d' will not
     not rely on GDB.  Otherwize the stand-alone 'objdump -d' will not
     work.  */
     work.  */
  if (mips_pc_is_mips16 (memaddr))
  if (mips_pc_is_mips16 (memaddr))
    info->mach = bfd_mach_mips16;
    info->mach = bfd_mach_mips16;
 
 
  /* Round down the instruction address to the appropriate boundary.  */
  /* Round down the instruction address to the appropriate boundary.  */
  memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
  memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
 
 
  /* Set the disassembler options.  */
  /* Set the disassembler options.  */
  if (!info->disassembler_options)
  if (!info->disassembler_options)
    /* This string is not recognized explicitly by the disassembler,
    /* This string is not recognized explicitly by the disassembler,
       but it tells the disassembler to not try to guess the ABI from
       but it tells the disassembler to not try to guess the ABI from
       the bfd elf headers, such that, if the user overrides the ABI
       the bfd elf headers, such that, if the user overrides the ABI
       of a program linked as NewABI, the disassembly will follow the
       of a program linked as NewABI, the disassembly will follow the
       register naming conventions specified by the user.  */
       register naming conventions specified by the user.  */
    info->disassembler_options = "gpr-names=32";
    info->disassembler_options = "gpr-names=32";
 
 
  /* Call the appropriate disassembler based on the target endian-ness.  */
  /* Call the appropriate disassembler based on the target endian-ness.  */
  if (info->endian == BFD_ENDIAN_BIG)
  if (info->endian == BFD_ENDIAN_BIG)
    return print_insn_big_mips (memaddr, info);
    return print_insn_big_mips (memaddr, info);
  else
  else
    return print_insn_little_mips (memaddr, info);
    return print_insn_little_mips (memaddr, info);
}
}
 
 
static int
static int
gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
{
{
  /* Set up the disassembler info, so that we get the right
  /* Set up the disassembler info, so that we get the right
     register names from libopcodes.  */
     register names from libopcodes.  */
  info->disassembler_options = "gpr-names=n32";
  info->disassembler_options = "gpr-names=n32";
  info->flavour = bfd_target_elf_flavour;
  info->flavour = bfd_target_elf_flavour;
 
 
  return gdb_print_insn_mips (memaddr, info);
  return gdb_print_insn_mips (memaddr, info);
}
}
 
 
static int
static int
gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
{
{
  /* Set up the disassembler info, so that we get the right
  /* Set up the disassembler info, so that we get the right
     register names from libopcodes.  */
     register names from libopcodes.  */
  info->disassembler_options = "gpr-names=64";
  info->disassembler_options = "gpr-names=64";
  info->flavour = bfd_target_elf_flavour;
  info->flavour = bfd_target_elf_flavour;
 
 
  return gdb_print_insn_mips (memaddr, info);
  return gdb_print_insn_mips (memaddr, info);
}
}
 
 
/* This function implements gdbarch_breakpoint_from_pc.  It uses the program
/* This function implements gdbarch_breakpoint_from_pc.  It uses the program
   counter value to determine whether a 16- or 32-bit breakpoint should be used.
   counter value to determine whether a 16- or 32-bit breakpoint should be used.
   It returns a pointer to a string of bytes that encode a breakpoint
   It returns a pointer to a string of bytes that encode a breakpoint
   instruction, stores the length of the string to *lenptr, and adjusts pc (if
   instruction, stores the length of the string to *lenptr, and adjusts pc (if
   necessary) to point to the actual memory location where the breakpoint
   necessary) to point to the actual memory location where the breakpoint
   should be inserted.  */
   should be inserted.  */
 
 
static const gdb_byte *
static const gdb_byte *
mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
{
{
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
    {
      if (mips_pc_is_mips16 (*pcptr))
      if (mips_pc_is_mips16 (*pcptr))
        {
        {
          static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
          static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
          *pcptr = unmake_mips16_addr (*pcptr);
          *pcptr = unmake_mips16_addr (*pcptr);
          *lenptr = sizeof (mips16_big_breakpoint);
          *lenptr = sizeof (mips16_big_breakpoint);
          return mips16_big_breakpoint;
          return mips16_big_breakpoint;
        }
        }
      else
      else
        {
        {
          /* The IDT board uses an unusual breakpoint value, and
          /* The IDT board uses an unusual breakpoint value, and
             sometimes gets confused when it sees the usual MIPS
             sometimes gets confused when it sees the usual MIPS
             breakpoint instruction.  */
             breakpoint instruction.  */
          static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
          static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
          static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
          static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
          static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
          static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
          /* Likewise, IRIX appears to expect a different breakpoint,
          /* Likewise, IRIX appears to expect a different breakpoint,
             although this is not apparent until you try to use pthreads. */
             although this is not apparent until you try to use pthreads. */
          static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
          static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
 
 
          *lenptr = sizeof (big_breakpoint);
          *lenptr = sizeof (big_breakpoint);
 
 
          if (strcmp (target_shortname, "mips") == 0)
          if (strcmp (target_shortname, "mips") == 0)
            return idt_big_breakpoint;
            return idt_big_breakpoint;
          else if (strcmp (target_shortname, "ddb") == 0
          else if (strcmp (target_shortname, "ddb") == 0
                   || strcmp (target_shortname, "pmon") == 0
                   || strcmp (target_shortname, "pmon") == 0
                   || strcmp (target_shortname, "lsi") == 0)
                   || strcmp (target_shortname, "lsi") == 0)
            return pmon_big_breakpoint;
            return pmon_big_breakpoint;
          else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
          else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
            return irix_big_breakpoint;
            return irix_big_breakpoint;
          else
          else
            return big_breakpoint;
            return big_breakpoint;
        }
        }
    }
    }
  else
  else
    {
    {
      if (mips_pc_is_mips16 (*pcptr))
      if (mips_pc_is_mips16 (*pcptr))
        {
        {
          static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
          static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
          *pcptr = unmake_mips16_addr (*pcptr);
          *pcptr = unmake_mips16_addr (*pcptr);
          *lenptr = sizeof (mips16_little_breakpoint);
          *lenptr = sizeof (mips16_little_breakpoint);
          return mips16_little_breakpoint;
          return mips16_little_breakpoint;
        }
        }
      else
      else
        {
        {
          static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
          static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
          static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
          static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
          static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
          static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
 
 
          *lenptr = sizeof (little_breakpoint);
          *lenptr = sizeof (little_breakpoint);
 
 
          if (strcmp (target_shortname, "mips") == 0)
          if (strcmp (target_shortname, "mips") == 0)
            return idt_little_breakpoint;
            return idt_little_breakpoint;
          else if (strcmp (target_shortname, "ddb") == 0
          else if (strcmp (target_shortname, "ddb") == 0
                   || strcmp (target_shortname, "pmon") == 0
                   || strcmp (target_shortname, "pmon") == 0
                   || strcmp (target_shortname, "lsi") == 0)
                   || strcmp (target_shortname, "lsi") == 0)
            return pmon_little_breakpoint;
            return pmon_little_breakpoint;
          else
          else
            return little_breakpoint;
            return little_breakpoint;
        }
        }
    }
    }
}
}
 
 
/* If PC is in a mips16 call or return stub, return the address of the target
/* If PC is in a mips16 call or return stub, return the address of the target
   PC, which is either the callee or the caller.  There are several
   PC, which is either the callee or the caller.  There are several
   cases which must be handled:
   cases which must be handled:
 
 
   * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
   * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
   target PC is in $31 ($ra).
   target PC is in $31 ($ra).
   * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
   * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
   and the target PC is in $2.
   and the target PC is in $2.
   * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
   * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
   before the jal instruction, this is effectively a call stub
   before the jal instruction, this is effectively a call stub
   and the the target PC is in $2.  Otherwise this is effectively
   and the the target PC is in $2.  Otherwise this is effectively
   a return stub and the target PC is in $18.
   a return stub and the target PC is in $18.
 
 
   See the source code for the stubs in gcc/config/mips/mips16.S for
   See the source code for the stubs in gcc/config/mips/mips16.S for
   gory details.  */
   gory details.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  char *name;
  char *name;
  CORE_ADDR start_addr;
  CORE_ADDR start_addr;
 
 
  /* Find the starting address and name of the function containing the PC.  */
  /* Find the starting address and name of the function containing the PC.  */
  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
    return 0;
    return 0;
 
 
  /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
  /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
     target PC is in $31 ($ra).  */
     target PC is in $31 ($ra).  */
  if (strcmp (name, "__mips16_ret_sf") == 0
  if (strcmp (name, "__mips16_ret_sf") == 0
      || strcmp (name, "__mips16_ret_df") == 0)
      || strcmp (name, "__mips16_ret_df") == 0)
    return get_frame_register_signed (frame, MIPS_RA_REGNUM);
    return get_frame_register_signed (frame, MIPS_RA_REGNUM);
 
 
  if (strncmp (name, "__mips16_call_stub_", 19) == 0)
  if (strncmp (name, "__mips16_call_stub_", 19) == 0)
    {
    {
      /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
      /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
         and the target PC is in $2.  */
         and the target PC is in $2.  */
      if (name[19] >= '0' && name[19] <= '9')
      if (name[19] >= '0' && name[19] <= '9')
        return get_frame_register_signed (frame, 2);
        return get_frame_register_signed (frame, 2);
 
 
      /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
      /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
         before the jal instruction, this is effectively a call stub
         before the jal instruction, this is effectively a call stub
         and the the target PC is in $2.  Otherwise this is effectively
         and the the target PC is in $2.  Otherwise this is effectively
         a return stub and the target PC is in $18.  */
         a return stub and the target PC is in $18.  */
      else if (name[19] == 's' || name[19] == 'd')
      else if (name[19] == 's' || name[19] == 'd')
        {
        {
          if (pc == start_addr)
          if (pc == start_addr)
            {
            {
              /* Check if the target of the stub is a compiler-generated
              /* Check if the target of the stub is a compiler-generated
                 stub.  Such a stub for a function bar might have a name
                 stub.  Such a stub for a function bar might have a name
                 like __fn_stub_bar, and might look like this:
                 like __fn_stub_bar, and might look like this:
                 mfc1    $4,$f13
                 mfc1    $4,$f13
                 mfc1    $5,$f12
                 mfc1    $5,$f12
                 mfc1    $6,$f15
                 mfc1    $6,$f15
                 mfc1    $7,$f14
                 mfc1    $7,$f14
                 la      $1,bar   (becomes a lui/addiu pair)
                 la      $1,bar   (becomes a lui/addiu pair)
                 jr      $1
                 jr      $1
                 So scan down to the lui/addi and extract the target
                 So scan down to the lui/addi and extract the target
                 address from those two instructions.  */
                 address from those two instructions.  */
 
 
              CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
              CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
              ULONGEST inst;
              ULONGEST inst;
              int i;
              int i;
 
 
              /* See if the name of the target function is  __fn_stub_*.  */
              /* See if the name of the target function is  __fn_stub_*.  */
              if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
              if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
                  0)
                  0)
                return target_pc;
                return target_pc;
              if (strncmp (name, "__fn_stub_", 10) != 0
              if (strncmp (name, "__fn_stub_", 10) != 0
                  && strcmp (name, "etext") != 0
                  && strcmp (name, "etext") != 0
                  && strcmp (name, "_etext") != 0)
                  && strcmp (name, "_etext") != 0)
                return target_pc;
                return target_pc;
 
 
              /* Scan through this _fn_stub_ code for the lui/addiu pair.
              /* Scan through this _fn_stub_ code for the lui/addiu pair.
                 The limit on the search is arbitrarily set to 20
                 The limit on the search is arbitrarily set to 20
                 instructions.  FIXME.  */
                 instructions.  FIXME.  */
              for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
              for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
                {
                {
                  inst = mips_fetch_instruction (gdbarch, target_pc);
                  inst = mips_fetch_instruction (gdbarch, target_pc);
                  if ((inst & 0xffff0000) == 0x3c010000)        /* lui $at */
                  if ((inst & 0xffff0000) == 0x3c010000)        /* lui $at */
                    pc = (inst << 16) & 0xffff0000;     /* high word */
                    pc = (inst << 16) & 0xffff0000;     /* high word */
                  else if ((inst & 0xffff0000) == 0x24210000)   /* addiu $at */
                  else if ((inst & 0xffff0000) == 0x24210000)   /* addiu $at */
                    return pc | (inst & 0xffff);        /* low word */
                    return pc | (inst & 0xffff);        /* low word */
                }
                }
 
 
              /* Couldn't find the lui/addui pair, so return stub address.  */
              /* Couldn't find the lui/addui pair, so return stub address.  */
              return target_pc;
              return target_pc;
            }
            }
          else
          else
            /* This is the 'return' part of a call stub.  The return
            /* This is the 'return' part of a call stub.  The return
               address is in $r18.  */
               address is in $r18.  */
            return get_frame_register_signed (frame, 18);
            return get_frame_register_signed (frame, 18);
        }
        }
    }
    }
  return 0;                      /* not a stub */
  return 0;                      /* not a stub */
}
}
 
 
/* If the current PC is the start of a non-PIC-to-PIC stub, return the
/* If the current PC is the start of a non-PIC-to-PIC stub, return the
   PC of the stub target.  The stub just loads $t9 and jumps to it,
   PC of the stub target.  The stub just loads $t9 and jumps to it,
   so that $t9 has the correct value at function entry.  */
   so that $t9 has the correct value at function entry.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct minimal_symbol *msym;
  struct minimal_symbol *msym;
  int i;
  int i;
  gdb_byte stub_code[16];
  gdb_byte stub_code[16];
  int32_t stub_words[4];
  int32_t stub_words[4];
 
 
  /* The stub for foo is named ".pic.foo", and is either two
  /* The stub for foo is named ".pic.foo", and is either two
     instructions inserted before foo or a three instruction sequence
     instructions inserted before foo or a three instruction sequence
     which jumps to foo.  */
     which jumps to foo.  */
  msym = lookup_minimal_symbol_by_pc (pc);
  msym = lookup_minimal_symbol_by_pc (pc);
  if (msym == NULL
  if (msym == NULL
      || SYMBOL_VALUE_ADDRESS (msym) != pc
      || SYMBOL_VALUE_ADDRESS (msym) != pc
      || SYMBOL_LINKAGE_NAME (msym) == NULL
      || SYMBOL_LINKAGE_NAME (msym) == NULL
      || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
      || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
    return 0;
    return 0;
 
 
  /* A two-instruction header.  */
  /* A two-instruction header.  */
  if (MSYMBOL_SIZE (msym) == 8)
  if (MSYMBOL_SIZE (msym) == 8)
    return pc + 8;
    return pc + 8;
 
 
  /* A three-instruction (plus delay slot) trampoline.  */
  /* A three-instruction (plus delay slot) trampoline.  */
  if (MSYMBOL_SIZE (msym) == 16)
  if (MSYMBOL_SIZE (msym) == 16)
    {
    {
      if (target_read_memory (pc, stub_code, 16) != 0)
      if (target_read_memory (pc, stub_code, 16) != 0)
        return 0;
        return 0;
      for (i = 0; i < 4; i++)
      for (i = 0; i < 4; i++)
        stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
        stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
                                                  4, byte_order);
                                                  4, byte_order);
 
 
      /* A stub contains these instructions:
      /* A stub contains these instructions:
         lui    t9, %hi(target)
         lui    t9, %hi(target)
         j      target
         j      target
          addiu t9, t9, %lo(target)
          addiu t9, t9, %lo(target)
         nop
         nop
 
 
         This works even for N64, since stubs are only generated with
         This works even for N64, since stubs are only generated with
         -msym32.  */
         -msym32.  */
      if ((stub_words[0] & 0xffff0000U) == 0x3c190000
      if ((stub_words[0] & 0xffff0000U) == 0x3c190000
          && (stub_words[1] & 0xfc000000U) == 0x08000000
          && (stub_words[1] & 0xfc000000U) == 0x08000000
          && (stub_words[2] & 0xffff0000U) == 0x27390000
          && (stub_words[2] & 0xffff0000U) == 0x27390000
          && stub_words[3] == 0x00000000)
          && stub_words[3] == 0x00000000)
        return (((stub_words[0] & 0x0000ffff) << 16)
        return (((stub_words[0] & 0x0000ffff) << 16)
                + (stub_words[2] & 0x0000ffff));
                + (stub_words[2] & 0x0000ffff));
    }
    }
 
 
  /* Not a recognized stub.  */
  /* Not a recognized stub.  */
  return 0;
  return 0;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
{
  CORE_ADDR target_pc;
  CORE_ADDR target_pc;
 
 
  target_pc = mips_skip_mips16_trampoline_code (frame, pc);
  target_pc = mips_skip_mips16_trampoline_code (frame, pc);
  if (target_pc)
  if (target_pc)
    return target_pc;
    return target_pc;
 
 
  target_pc = find_solib_trampoline_target (frame, pc);
  target_pc = find_solib_trampoline_target (frame, pc);
  if (target_pc)
  if (target_pc)
    return target_pc;
    return target_pc;
 
 
  target_pc = mips_skip_pic_trampoline_code (frame, pc);
  target_pc = mips_skip_pic_trampoline_code (frame, pc);
  if (target_pc)
  if (target_pc)
    return target_pc;
    return target_pc;
 
 
  return 0;
  return 0;
}
}
 
 
/* Convert a dbx stab register number (from `r' declaration) to a GDB
/* Convert a dbx stab register number (from `r' declaration) to a GDB
   [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */
   [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */
 
 
static int
static int
mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
{
  int regnum;
  int regnum;
  if (num >= 0 && num < 32)
  if (num >= 0 && num < 32)
    regnum = num;
    regnum = num;
  else if (num >= 38 && num < 70)
  else if (num >= 38 && num < 70)
    regnum = num + mips_regnum (gdbarch)->fp0 - 38;
    regnum = num + mips_regnum (gdbarch)->fp0 - 38;
  else if (num == 70)
  else if (num == 70)
    regnum = mips_regnum (gdbarch)->hi;
    regnum = mips_regnum (gdbarch)->hi;
  else if (num == 71)
  else if (num == 71)
    regnum = mips_regnum (gdbarch)->lo;
    regnum = mips_regnum (gdbarch)->lo;
  else
  else
    /* This will hopefully (eventually) provoke a warning.  Should
    /* This will hopefully (eventually) provoke a warning.  Should
       we be calling complaint() here?  */
       we be calling complaint() here?  */
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
  return gdbarch_num_regs (gdbarch) + regnum;
  return gdbarch_num_regs (gdbarch) + regnum;
}
}
 
 
 
 
/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
   gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */
   gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM.  */
 
 
static int
static int
mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
{
  int regnum;
  int regnum;
  if (num >= 0 && num < 32)
  if (num >= 0 && num < 32)
    regnum = num;
    regnum = num;
  else if (num >= 32 && num < 64)
  else if (num >= 32 && num < 64)
    regnum = num + mips_regnum (gdbarch)->fp0 - 32;
    regnum = num + mips_regnum (gdbarch)->fp0 - 32;
  else if (num == 64)
  else if (num == 64)
    regnum = mips_regnum (gdbarch)->hi;
    regnum = mips_regnum (gdbarch)->hi;
  else if (num == 65)
  else if (num == 65)
    regnum = mips_regnum (gdbarch)->lo;
    regnum = mips_regnum (gdbarch)->lo;
  else
  else
    /* This will hopefully (eventually) provoke a warning.  Should we
    /* This will hopefully (eventually) provoke a warning.  Should we
       be calling complaint() here?  */
       be calling complaint() here?  */
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
    return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
  return gdbarch_num_regs (gdbarch) + regnum;
  return gdbarch_num_regs (gdbarch) + regnum;
}
}
 
 
static int
static int
mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
{
  /* Only makes sense to supply raw registers.  */
  /* Only makes sense to supply raw registers.  */
  gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
  gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
  /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
  /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
     decide if it is valid.  Should instead define a standard sim/gdb
     decide if it is valid.  Should instead define a standard sim/gdb
     register numbering scheme.  */
     register numbering scheme.  */
  if (gdbarch_register_name (gdbarch,
  if (gdbarch_register_name (gdbarch,
                             gdbarch_num_regs (gdbarch) + regnum) != NULL
                             gdbarch_num_regs (gdbarch) + regnum) != NULL
      && gdbarch_register_name (gdbarch,
      && gdbarch_register_name (gdbarch,
                                gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
                                gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
    return regnum;
    return regnum;
  else
  else
    return LEGACY_SIM_REGNO_IGNORE;
    return LEGACY_SIM_REGNO_IGNORE;
}
}
 
 
 
 
/* Convert an integer into an address.  Extracting the value signed
/* Convert an integer into an address.  Extracting the value signed
   guarantees a correctly sign extended address.  */
   guarantees a correctly sign extended address.  */
 
 
static CORE_ADDR
static CORE_ADDR
mips_integer_to_address (struct gdbarch *gdbarch,
mips_integer_to_address (struct gdbarch *gdbarch,
                         struct type *type, const gdb_byte *buf)
                         struct type *type, const gdb_byte *buf)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
}
}
 
 
/* Dummy virtual frame pointer method.  This is no more or less accurate
/* Dummy virtual frame pointer method.  This is no more or less accurate
   than most other architectures; we just need to be explicit about it,
   than most other architectures; we just need to be explicit about it,
   because the pseudo-register gdbarch_sp_regnum will otherwise lead to
   because the pseudo-register gdbarch_sp_regnum will otherwise lead to
   an assertion failure.  */
   an assertion failure.  */
 
 
static void
static void
mips_virtual_frame_pointer (struct gdbarch *gdbarch,
mips_virtual_frame_pointer (struct gdbarch *gdbarch,
                            CORE_ADDR pc, int *reg, LONGEST *offset)
                            CORE_ADDR pc, int *reg, LONGEST *offset)
{
{
  *reg = MIPS_SP_REGNUM;
  *reg = MIPS_SP_REGNUM;
  *offset = 0;
  *offset = 0;
}
}
 
 
static void
static void
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
{
{
  enum mips_abi *abip = (enum mips_abi *) obj;
  enum mips_abi *abip = (enum mips_abi *) obj;
  const char *name = bfd_get_section_name (abfd, sect);
  const char *name = bfd_get_section_name (abfd, sect);
 
 
  if (*abip != MIPS_ABI_UNKNOWN)
  if (*abip != MIPS_ABI_UNKNOWN)
    return;
    return;
 
 
  if (strncmp (name, ".mdebug.", 8) != 0)
  if (strncmp (name, ".mdebug.", 8) != 0)
    return;
    return;
 
 
  if (strcmp (name, ".mdebug.abi32") == 0)
  if (strcmp (name, ".mdebug.abi32") == 0)
    *abip = MIPS_ABI_O32;
    *abip = MIPS_ABI_O32;
  else if (strcmp (name, ".mdebug.abiN32") == 0)
  else if (strcmp (name, ".mdebug.abiN32") == 0)
    *abip = MIPS_ABI_N32;
    *abip = MIPS_ABI_N32;
  else if (strcmp (name, ".mdebug.abi64") == 0)
  else if (strcmp (name, ".mdebug.abi64") == 0)
    *abip = MIPS_ABI_N64;
    *abip = MIPS_ABI_N64;
  else if (strcmp (name, ".mdebug.abiO64") == 0)
  else if (strcmp (name, ".mdebug.abiO64") == 0)
    *abip = MIPS_ABI_O64;
    *abip = MIPS_ABI_O64;
  else if (strcmp (name, ".mdebug.eabi32") == 0)
  else if (strcmp (name, ".mdebug.eabi32") == 0)
    *abip = MIPS_ABI_EABI32;
    *abip = MIPS_ABI_EABI32;
  else if (strcmp (name, ".mdebug.eabi64") == 0)
  else if (strcmp (name, ".mdebug.eabi64") == 0)
    *abip = MIPS_ABI_EABI64;
    *abip = MIPS_ABI_EABI64;
  else
  else
    warning (_("unsupported ABI %s."), name + 8);
    warning (_("unsupported ABI %s."), name + 8);
}
}
 
 
static void
static void
mips_find_long_section (bfd *abfd, asection *sect, void *obj)
mips_find_long_section (bfd *abfd, asection *sect, void *obj)
{
{
  int *lbp = (int *) obj;
  int *lbp = (int *) obj;
  const char *name = bfd_get_section_name (abfd, sect);
  const char *name = bfd_get_section_name (abfd, sect);
 
 
  if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
  if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
    *lbp = 32;
    *lbp = 32;
  else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
  else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
    *lbp = 64;
    *lbp = 64;
  else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
  else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
    warning (_("unrecognized .gcc_compiled_longXX"));
    warning (_("unrecognized .gcc_compiled_longXX"));
}
}
 
 
static enum mips_abi
static enum mips_abi
global_mips_abi (void)
global_mips_abi (void)
{
{
  int i;
  int i;
 
 
  for (i = 0; mips_abi_strings[i] != NULL; i++)
  for (i = 0; mips_abi_strings[i] != NULL; i++)
    if (mips_abi_strings[i] == mips_abi_string)
    if (mips_abi_strings[i] == mips_abi_string)
      return (enum mips_abi) i;
      return (enum mips_abi) i;
 
 
  internal_error (__FILE__, __LINE__, _("unknown ABI string"));
  internal_error (__FILE__, __LINE__, _("unknown ABI string"));
}
}
 
 
static void
static void
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
mips_register_g_packet_guesses (struct gdbarch *gdbarch)
{
{
  /* If the size matches the set of 32-bit or 64-bit integer registers,
  /* If the size matches the set of 32-bit or 64-bit integer registers,
     assume that's what we've got.  */
     assume that's what we've got.  */
  register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
  register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
 
 
  /* If the size matches the full set of registers GDB traditionally
  /* If the size matches the full set of registers GDB traditionally
     knows about, including floating point, for either 32-bit or
     knows about, including floating point, for either 32-bit or
     64-bit, assume that's what we've got.  */
     64-bit, assume that's what we've got.  */
  register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
  register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
  register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
 
 
  /* Otherwise we don't have a useful guess.  */
  /* Otherwise we don't have a useful guess.  */
}
}
 
 
static struct value *
static struct value *
value_of_mips_user_reg (struct frame_info *frame, const void *baton)
value_of_mips_user_reg (struct frame_info *frame, const void *baton)
{
{
  const int *reg_p = baton;
  const int *reg_p = baton;
  return value_of_register (*reg_p, frame);
  return value_of_register (*reg_p, frame);
}
}
 
 
static struct gdbarch *
static struct gdbarch *
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
  int elf_flags;
  int elf_flags;
  enum mips_abi mips_abi, found_abi, wanted_abi;
  enum mips_abi mips_abi, found_abi, wanted_abi;
  int i, num_regs;
  int i, num_regs;
  enum mips_fpu_type fpu_type;
  enum mips_fpu_type fpu_type;
  struct tdesc_arch_data *tdesc_data = NULL;
  struct tdesc_arch_data *tdesc_data = NULL;
  int elf_fpu_type = 0;
  int elf_fpu_type = 0;
 
 
  /* Check any target description for validity.  */
  /* Check any target description for validity.  */
  if (tdesc_has_registers (info.target_desc))
  if (tdesc_has_registers (info.target_desc))
    {
    {
      static const char *const mips_gprs[] = {
      static const char *const mips_gprs[] = {
        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
        "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
        "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
        "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
        "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
        "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
        "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
        "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
      };
      };
      static const char *const mips_fprs[] = {
      static const char *const mips_fprs[] = {
        "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
        "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
        "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
        "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
        "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
        "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
        "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
        "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
      };
      };
 
 
      const struct tdesc_feature *feature;
      const struct tdesc_feature *feature;
      int valid_p;
      int valid_p;
 
 
      feature = tdesc_find_feature (info.target_desc,
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.mips.cpu");
                                    "org.gnu.gdb.mips.cpu");
      if (feature == NULL)
      if (feature == NULL)
        return NULL;
        return NULL;
 
 
      tdesc_data = tdesc_data_alloc ();
      tdesc_data = tdesc_data_alloc ();
 
 
      valid_p = 1;
      valid_p = 1;
      for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
      for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
                                            mips_gprs[i]);
                                            mips_gprs[i]);
 
 
 
 
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_LO_REGNUM, "lo");
                                          MIPS_EMBED_LO_REGNUM, "lo");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_HI_REGNUM, "hi");
                                          MIPS_EMBED_HI_REGNUM, "hi");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_PC_REGNUM, "pc");
                                          MIPS_EMBED_PC_REGNUM, "pc");
 
 
      if (!valid_p)
      if (!valid_p)
        {
        {
          tdesc_data_cleanup (tdesc_data);
          tdesc_data_cleanup (tdesc_data);
          return NULL;
          return NULL;
        }
        }
 
 
      feature = tdesc_find_feature (info.target_desc,
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.mips.cp0");
                                    "org.gnu.gdb.mips.cp0");
      if (feature == NULL)
      if (feature == NULL)
        {
        {
          tdesc_data_cleanup (tdesc_data);
          tdesc_data_cleanup (tdesc_data);
          return NULL;
          return NULL;
        }
        }
 
 
      valid_p = 1;
      valid_p = 1;
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_BADVADDR_REGNUM,
                                          MIPS_EMBED_BADVADDR_REGNUM,
                                          "badvaddr");
                                          "badvaddr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_PS_REGNUM, "status");
                                          MIPS_PS_REGNUM, "status");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_CAUSE_REGNUM, "cause");
                                          MIPS_EMBED_CAUSE_REGNUM, "cause");
 
 
      if (!valid_p)
      if (!valid_p)
        {
        {
          tdesc_data_cleanup (tdesc_data);
          tdesc_data_cleanup (tdesc_data);
          return NULL;
          return NULL;
        }
        }
 
 
      /* FIXME drow/2007-05-17: The FPU should be optional.  The MIPS
      /* FIXME drow/2007-05-17: The FPU should be optional.  The MIPS
         backend is not prepared for that, though.  */
         backend is not prepared for that, though.  */
      feature = tdesc_find_feature (info.target_desc,
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.mips.fpu");
                                    "org.gnu.gdb.mips.fpu");
      if (feature == NULL)
      if (feature == NULL)
        {
        {
          tdesc_data_cleanup (tdesc_data);
          tdesc_data_cleanup (tdesc_data);
          return NULL;
          return NULL;
        }
        }
 
 
      valid_p = 1;
      valid_p = 1;
      for (i = 0; i < 32; i++)
      for (i = 0; i < 32; i++)
        valid_p &= tdesc_numbered_register (feature, tdesc_data,
        valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                            i + MIPS_EMBED_FP0_REGNUM,
                                            i + MIPS_EMBED_FP0_REGNUM,
                                            mips_fprs[i]);
                                            mips_fprs[i]);
 
 
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
                                          MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
                                          MIPS_EMBED_FP0_REGNUM + 33, "fir");
                                          MIPS_EMBED_FP0_REGNUM + 33, "fir");
 
 
      if (!valid_p)
      if (!valid_p)
        {
        {
          tdesc_data_cleanup (tdesc_data);
          tdesc_data_cleanup (tdesc_data);
          return NULL;
          return NULL;
        }
        }
 
 
      /* It would be nice to detect an attempt to use a 64-bit ABI
      /* It would be nice to detect an attempt to use a 64-bit ABI
         when only 32-bit registers are provided.  */
         when only 32-bit registers are provided.  */
    }
    }
 
 
  /* First of all, extract the elf_flags, if available.  */
  /* First of all, extract the elf_flags, if available.  */
  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_flags = elf_elfheader (info.abfd)->e_flags;
    elf_flags = elf_elfheader (info.abfd)->e_flags;
  else if (arches != NULL)
  else if (arches != NULL)
    elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
    elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
  else
  else
    elf_flags = 0;
    elf_flags = 0;
  if (gdbarch_debug)
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
                        "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
 
 
  /* Check ELF_FLAGS to see if it specifies the ABI being used.  */
  /* Check ELF_FLAGS to see if it specifies the ABI being used.  */
  switch ((elf_flags & EF_MIPS_ABI))
  switch ((elf_flags & EF_MIPS_ABI))
    {
    {
    case E_MIPS_ABI_O32:
    case E_MIPS_ABI_O32:
      found_abi = MIPS_ABI_O32;
      found_abi = MIPS_ABI_O32;
      break;
      break;
    case E_MIPS_ABI_O64:
    case E_MIPS_ABI_O64:
      found_abi = MIPS_ABI_O64;
      found_abi = MIPS_ABI_O64;
      break;
      break;
    case E_MIPS_ABI_EABI32:
    case E_MIPS_ABI_EABI32:
      found_abi = MIPS_ABI_EABI32;
      found_abi = MIPS_ABI_EABI32;
      break;
      break;
    case E_MIPS_ABI_EABI64:
    case E_MIPS_ABI_EABI64:
      found_abi = MIPS_ABI_EABI64;
      found_abi = MIPS_ABI_EABI64;
      break;
      break;
    default:
    default:
      if ((elf_flags & EF_MIPS_ABI2))
      if ((elf_flags & EF_MIPS_ABI2))
        found_abi = MIPS_ABI_N32;
        found_abi = MIPS_ABI_N32;
      else
      else
        found_abi = MIPS_ABI_UNKNOWN;
        found_abi = MIPS_ABI_UNKNOWN;
      break;
      break;
    }
    }
 
 
  /* GCC creates a pseudo-section whose name describes the ABI.  */
  /* GCC creates a pseudo-section whose name describes the ABI.  */
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
    bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
    bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
 
 
  /* If we have no useful BFD information, use the ABI from the last
  /* If we have no useful BFD information, use the ABI from the last
     MIPS architecture (if there is one).  */
     MIPS architecture (if there is one).  */
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
  if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
    found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
    found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
 
 
  /* Try the architecture for any hint of the correct ABI.  */
  /* Try the architecture for any hint of the correct ABI.  */
  if (found_abi == MIPS_ABI_UNKNOWN
  if (found_abi == MIPS_ABI_UNKNOWN
      && info.bfd_arch_info != NULL
      && info.bfd_arch_info != NULL
      && info.bfd_arch_info->arch == bfd_arch_mips)
      && info.bfd_arch_info->arch == bfd_arch_mips)
    {
    {
      switch (info.bfd_arch_info->mach)
      switch (info.bfd_arch_info->mach)
        {
        {
        case bfd_mach_mips3900:
        case bfd_mach_mips3900:
          found_abi = MIPS_ABI_EABI32;
          found_abi = MIPS_ABI_EABI32;
          break;
          break;
        case bfd_mach_mips4100:
        case bfd_mach_mips4100:
        case bfd_mach_mips5000:
        case bfd_mach_mips5000:
          found_abi = MIPS_ABI_EABI64;
          found_abi = MIPS_ABI_EABI64;
          break;
          break;
        case bfd_mach_mips8000:
        case bfd_mach_mips8000:
        case bfd_mach_mips10000:
        case bfd_mach_mips10000:
          /* On Irix, ELF64 executables use the N64 ABI.  The
          /* On Irix, ELF64 executables use the N64 ABI.  The
             pseudo-sections which describe the ABI aren't present
             pseudo-sections which describe the ABI aren't present
             on IRIX.  (Even for executables created by gcc.)  */
             on IRIX.  (Even for executables created by gcc.)  */
          if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
          if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
              && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
              && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
            found_abi = MIPS_ABI_N64;
            found_abi = MIPS_ABI_N64;
          else
          else
            found_abi = MIPS_ABI_N32;
            found_abi = MIPS_ABI_N32;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Default 64-bit objects to N64 instead of O32.  */
  /* Default 64-bit objects to N64 instead of O32.  */
  if (found_abi == MIPS_ABI_UNKNOWN
  if (found_abi == MIPS_ABI_UNKNOWN
      && info.abfd != NULL
      && info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
      && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
    found_abi = MIPS_ABI_N64;
    found_abi = MIPS_ABI_N64;
 
 
  if (gdbarch_debug)
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
                        found_abi);
                        found_abi);
 
 
  /* What has the user specified from the command line?  */
  /* What has the user specified from the command line?  */
  wanted_abi = global_mips_abi ();
  wanted_abi = global_mips_abi ();
  if (gdbarch_debug)
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
                        wanted_abi);
                        wanted_abi);
 
 
  /* Now that we have found what the ABI for this binary would be,
  /* Now that we have found what the ABI for this binary would be,
     check whether the user is overriding it.  */
     check whether the user is overriding it.  */
  if (wanted_abi != MIPS_ABI_UNKNOWN)
  if (wanted_abi != MIPS_ABI_UNKNOWN)
    mips_abi = wanted_abi;
    mips_abi = wanted_abi;
  else if (found_abi != MIPS_ABI_UNKNOWN)
  else if (found_abi != MIPS_ABI_UNKNOWN)
    mips_abi = found_abi;
    mips_abi = found_abi;
  else
  else
    mips_abi = MIPS_ABI_O32;
    mips_abi = MIPS_ABI_O32;
  if (gdbarch_debug)
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
    fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
                        mips_abi);
                        mips_abi);
 
 
  /* Also used when doing an architecture lookup.  */
  /* Also used when doing an architecture lookup.  */
  if (gdbarch_debug)
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
                        "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
                        mips64_transfers_32bit_regs_p);
                        mips64_transfers_32bit_regs_p);
 
 
  /* Determine the MIPS FPU type.  */
  /* Determine the MIPS FPU type.  */
#ifdef HAVE_ELF
#ifdef HAVE_ELF
  if (info.abfd
  if (info.abfd
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
    elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
                                             Tag_GNU_MIPS_ABI_FP);
                                             Tag_GNU_MIPS_ABI_FP);
#endif /* HAVE_ELF */
#endif /* HAVE_ELF */
 
 
  if (!mips_fpu_type_auto)
  if (!mips_fpu_type_auto)
    fpu_type = mips_fpu_type;
    fpu_type = mips_fpu_type;
  else if (elf_fpu_type != 0)
  else if (elf_fpu_type != 0)
    {
    {
      switch (elf_fpu_type)
      switch (elf_fpu_type)
        {
        {
        case 1:
        case 1:
          fpu_type = MIPS_FPU_DOUBLE;
          fpu_type = MIPS_FPU_DOUBLE;
          break;
          break;
        case 2:
        case 2:
          fpu_type = MIPS_FPU_SINGLE;
          fpu_type = MIPS_FPU_SINGLE;
          break;
          break;
        case 3:
        case 3:
        default:
        default:
          /* Soft float or unknown.  */
          /* Soft float or unknown.  */
          fpu_type = MIPS_FPU_NONE;
          fpu_type = MIPS_FPU_NONE;
          break;
          break;
        }
        }
    }
    }
  else if (info.bfd_arch_info != NULL
  else if (info.bfd_arch_info != NULL
           && info.bfd_arch_info->arch == bfd_arch_mips)
           && info.bfd_arch_info->arch == bfd_arch_mips)
    switch (info.bfd_arch_info->mach)
    switch (info.bfd_arch_info->mach)
      {
      {
      case bfd_mach_mips3900:
      case bfd_mach_mips3900:
      case bfd_mach_mips4100:
      case bfd_mach_mips4100:
      case bfd_mach_mips4111:
      case bfd_mach_mips4111:
      case bfd_mach_mips4120:
      case bfd_mach_mips4120:
        fpu_type = MIPS_FPU_NONE;
        fpu_type = MIPS_FPU_NONE;
        break;
        break;
      case bfd_mach_mips4650:
      case bfd_mach_mips4650:
        fpu_type = MIPS_FPU_SINGLE;
        fpu_type = MIPS_FPU_SINGLE;
        break;
        break;
      default:
      default:
        fpu_type = MIPS_FPU_DOUBLE;
        fpu_type = MIPS_FPU_DOUBLE;
        break;
        break;
      }
      }
  else if (arches != NULL)
  else if (arches != NULL)
    fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
    fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
  else
  else
    fpu_type = MIPS_FPU_DOUBLE;
    fpu_type = MIPS_FPU_DOUBLE;
  if (gdbarch_debug)
  if (gdbarch_debug)
    fprintf_unfiltered (gdb_stdlog,
    fprintf_unfiltered (gdb_stdlog,
                        "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
                        "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
 
 
  /* Check for blatant incompatibilities.  */
  /* Check for blatant incompatibilities.  */
 
 
  /* If we have only 32-bit registers, then we can't debug a 64-bit
  /* If we have only 32-bit registers, then we can't debug a 64-bit
     ABI.  */
     ABI.  */
  if (info.target_desc
  if (info.target_desc
      && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
      && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
      && mips_abi != MIPS_ABI_EABI32
      && mips_abi != MIPS_ABI_EABI32
      && mips_abi != MIPS_ABI_O32)
      && mips_abi != MIPS_ABI_O32)
    {
    {
      if (tdesc_data != NULL)
      if (tdesc_data != NULL)
        tdesc_data_cleanup (tdesc_data);
        tdesc_data_cleanup (tdesc_data);
      return NULL;
      return NULL;
    }
    }
 
 
  /* try to find a pre-existing architecture */
  /* try to find a pre-existing architecture */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
    {
      /* MIPS needs to be pedantic about which ABI the object is
      /* MIPS needs to be pedantic about which ABI the object is
         using.  */
         using.  */
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
        continue;
        continue;
      if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
      if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
        continue;
        continue;
      /* Need to be pedantic about which register virtual size is
      /* Need to be pedantic about which register virtual size is
         used.  */
         used.  */
      if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
      if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
          != mips64_transfers_32bit_regs_p)
          != mips64_transfers_32bit_regs_p)
        continue;
        continue;
      /* Be pedantic about which FPU is selected.  */
      /* Be pedantic about which FPU is selected.  */
      if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
      if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
        continue;
        continue;
 
 
      if (tdesc_data != NULL)
      if (tdesc_data != NULL)
        tdesc_data_cleanup (tdesc_data);
        tdesc_data_cleanup (tdesc_data);
      return arches->gdbarch;
      return arches->gdbarch;
    }
    }
 
 
  /* Need a new architecture.  Fill in a target specific vector.  */
  /* Need a new architecture.  Fill in a target specific vector.  */
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;
  tdep->elf_flags = elf_flags;
  tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
  tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
  tdep->found_abi = found_abi;
  tdep->found_abi = found_abi;
  tdep->mips_abi = mips_abi;
  tdep->mips_abi = mips_abi;
  tdep->mips_fpu_type = fpu_type;
  tdep->mips_fpu_type = fpu_type;
  tdep->register_size_valid_p = 0;
  tdep->register_size_valid_p = 0;
  tdep->register_size = 0;
  tdep->register_size = 0;
 
 
  if (info.target_desc)
  if (info.target_desc)
    {
    {
      /* Some useful properties can be inferred from the target.  */
      /* Some useful properties can be inferred from the target.  */
      if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
      if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
        {
        {
          tdep->register_size_valid_p = 1;
          tdep->register_size_valid_p = 1;
          tdep->register_size = 4;
          tdep->register_size = 4;
        }
        }
      else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
      else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
        {
        {
          tdep->register_size_valid_p = 1;
          tdep->register_size_valid_p = 1;
          tdep->register_size = 8;
          tdep->register_size = 8;
        }
        }
    }
    }
 
 
  /* Initially set everything according to the default ABI/ISA.  */
  /* Initially set everything according to the default ABI/ISA.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
  set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
  set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
  set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
  set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
 
 
  set_gdbarch_elf_make_msymbol_special (gdbarch,
  set_gdbarch_elf_make_msymbol_special (gdbarch,
                                        mips_elf_make_msymbol_special);
                                        mips_elf_make_msymbol_special);
 
 
  /* Fill in the OS dependant register numbers and names.  */
  /* Fill in the OS dependant register numbers and names.  */
  {
  {
    const char **reg_names;
    const char **reg_names;
    struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
    struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
                                                         struct mips_regnum);
                                                         struct mips_regnum);
    if (tdesc_has_registers (info.target_desc))
    if (tdesc_has_registers (info.target_desc))
      {
      {
        regnum->lo = MIPS_EMBED_LO_REGNUM;
        regnum->lo = MIPS_EMBED_LO_REGNUM;
        regnum->hi = MIPS_EMBED_HI_REGNUM;
        regnum->hi = MIPS_EMBED_HI_REGNUM;
        regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
        regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
        regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
        regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
        regnum->pc = MIPS_EMBED_PC_REGNUM;
        regnum->pc = MIPS_EMBED_PC_REGNUM;
        regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
        regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
        regnum->fp_control_status = 70;
        regnum->fp_control_status = 70;
        regnum->fp_implementation_revision = 71;
        regnum->fp_implementation_revision = 71;
        num_regs = MIPS_LAST_EMBED_REGNUM + 1;
        num_regs = MIPS_LAST_EMBED_REGNUM + 1;
        reg_names = NULL;
        reg_names = NULL;
      }
      }
    else if (info.osabi == GDB_OSABI_IRIX)
    else if (info.osabi == GDB_OSABI_IRIX)
      {
      {
        regnum->fp0 = 32;
        regnum->fp0 = 32;
        regnum->pc = 64;
        regnum->pc = 64;
        regnum->cause = 65;
        regnum->cause = 65;
        regnum->badvaddr = 66;
        regnum->badvaddr = 66;
        regnum->hi = 67;
        regnum->hi = 67;
        regnum->lo = 68;
        regnum->lo = 68;
        regnum->fp_control_status = 69;
        regnum->fp_control_status = 69;
        regnum->fp_implementation_revision = 70;
        regnum->fp_implementation_revision = 70;
        num_regs = 71;
        num_regs = 71;
        reg_names = mips_irix_reg_names;
        reg_names = mips_irix_reg_names;
      }
      }
    else
    else
      {
      {
        regnum->lo = MIPS_EMBED_LO_REGNUM;
        regnum->lo = MIPS_EMBED_LO_REGNUM;
        regnum->hi = MIPS_EMBED_HI_REGNUM;
        regnum->hi = MIPS_EMBED_HI_REGNUM;
        regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
        regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
        regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
        regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
        regnum->pc = MIPS_EMBED_PC_REGNUM;
        regnum->pc = MIPS_EMBED_PC_REGNUM;
        regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
        regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
        regnum->fp_control_status = 70;
        regnum->fp_control_status = 70;
        regnum->fp_implementation_revision = 71;
        regnum->fp_implementation_revision = 71;
        num_regs = 90;
        num_regs = 90;
        if (info.bfd_arch_info != NULL
        if (info.bfd_arch_info != NULL
            && info.bfd_arch_info->mach == bfd_mach_mips3900)
            && info.bfd_arch_info->mach == bfd_mach_mips3900)
          reg_names = mips_tx39_reg_names;
          reg_names = mips_tx39_reg_names;
        else
        else
          reg_names = mips_generic_reg_names;
          reg_names = mips_generic_reg_names;
      }
      }
    /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
    /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
       replaced by gdbarch_read_pc?  */
       replaced by gdbarch_read_pc?  */
    set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
    set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
    set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
    set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
    set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
    set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
    set_gdbarch_num_regs (gdbarch, num_regs);
    set_gdbarch_num_regs (gdbarch, num_regs);
    set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
    set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
    set_gdbarch_register_name (gdbarch, mips_register_name);
    set_gdbarch_register_name (gdbarch, mips_register_name);
    set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
    set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
    tdep->mips_processor_reg_names = reg_names;
    tdep->mips_processor_reg_names = reg_names;
    tdep->regnum = regnum;
    tdep->regnum = regnum;
  }
  }
 
 
  switch (mips_abi)
  switch (mips_abi)
    {
    {
    case MIPS_ABI_O32:
    case MIPS_ABI_O32:
      set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
      set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_o32_return_value);
      set_gdbarch_return_value (gdbarch, mips_o32_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->default_mask_address_p = 0;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
      break;
    case MIPS_ABI_O64:
    case MIPS_ABI_O64:
      set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
      set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_o64_return_value);
      set_gdbarch_return_value (gdbarch, mips_o64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
      tdep->default_mask_address_p = 0;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
      break;
    case MIPS_ABI_EABI32:
    case MIPS_ABI_EABI32:
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
      break;
    case MIPS_ABI_EABI64:
    case MIPS_ABI_EABI64:
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      break;
      break;
    case MIPS_ABI_N32:
    case MIPS_ABI_N32:
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_long_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      break;
      break;
    case MIPS_ABI_N64:
    case MIPS_ABI_N64:
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
      tdep->default_mask_address_p = 0;
      tdep->default_mask_address_p = 0;
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_bit (gdbarch, 128);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
      break;
      break;
    default:
    default:
      internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
      internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
    }
    }
 
 
  /* GCC creates a pseudo-section whose name specifies the size of
  /* GCC creates a pseudo-section whose name specifies the size of
     longs, since -mlong32 or -mlong64 may be used independent of
     longs, since -mlong32 or -mlong64 may be used independent of
     other options.  How those options affect pointer sizes is ABI and
     other options.  How those options affect pointer sizes is ABI and
     architecture dependent, so use them to override the default sizes
     architecture dependent, so use them to override the default sizes
     set by the ABI.  This table shows the relationship between ABI,
     set by the ABI.  This table shows the relationship between ABI,
     -mlongXX, and size of pointers:
     -mlongXX, and size of pointers:
 
 
     ABI                -mlongXX        ptr bits
     ABI                -mlongXX        ptr bits
     ---                --------        --------
     ---                --------        --------
     o32                32              32
     o32                32              32
     o32                64              32
     o32                64              32
     n32                32              32
     n32                32              32
     n32                64              64
     n32                64              64
     o64                32              32
     o64                32              32
     o64                64              64
     o64                64              64
     n64                32              32
     n64                32              32
     n64                64              64
     n64                64              64
     eabi32             32              32
     eabi32             32              32
     eabi32             64              32
     eabi32             64              32
     eabi64             32              32
     eabi64             32              32
     eabi64             64              64
     eabi64             64              64
 
 
    Note that for o32 and eabi32, pointers are always 32 bits
    Note that for o32 and eabi32, pointers are always 32 bits
    regardless of any -mlongXX option.  For all others, pointers and
    regardless of any -mlongXX option.  For all others, pointers and
    longs are the same, as set by -mlongXX or set by defaults.
    longs are the same, as set by -mlongXX or set by defaults.
 */
 */
 
 
  if (info.abfd != NULL)
  if (info.abfd != NULL)
    {
    {
      int long_bit = 0;
      int long_bit = 0;
 
 
      bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
      bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
      if (long_bit)
      if (long_bit)
        {
        {
          set_gdbarch_long_bit (gdbarch, long_bit);
          set_gdbarch_long_bit (gdbarch, long_bit);
          switch (mips_abi)
          switch (mips_abi)
            {
            {
            case MIPS_ABI_O32:
            case MIPS_ABI_O32:
            case MIPS_ABI_EABI32:
            case MIPS_ABI_EABI32:
              break;
              break;
            case MIPS_ABI_N32:
            case MIPS_ABI_N32:
            case MIPS_ABI_O64:
            case MIPS_ABI_O64:
            case MIPS_ABI_N64:
            case MIPS_ABI_N64:
            case MIPS_ABI_EABI64:
            case MIPS_ABI_EABI64:
              set_gdbarch_ptr_bit (gdbarch, long_bit);
              set_gdbarch_ptr_bit (gdbarch, long_bit);
              break;
              break;
            default:
            default:
              internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
              internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
            }
            }
        }
        }
    }
    }
 
 
  /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
  /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
     that could indicate -gp32 BUT gas/config/tc-mips.c contains the
     that could indicate -gp32 BUT gas/config/tc-mips.c contains the
     comment:
     comment:
 
 
     ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
     ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
     flag in object files because to do so would make it impossible to
     flag in object files because to do so would make it impossible to
     link with libraries compiled without "-gp32".  This is
     link with libraries compiled without "-gp32".  This is
     unnecessarily restrictive.
     unnecessarily restrictive.
 
 
     We could solve this problem by adding "-gp32" multilibs to gcc,
     We could solve this problem by adding "-gp32" multilibs to gcc,
     but to set this flag before gcc is built with such multilibs will
     but to set this flag before gcc is built with such multilibs will
     break too many systems.''
     break too many systems.''
 
 
     But even more unhelpfully, the default linker output target for
     But even more unhelpfully, the default linker output target for
     mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
     mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
     for 64-bit programs - you need to change the ABI to change this,
     for 64-bit programs - you need to change the ABI to change this,
     and not all gcc targets support that currently.  Therefore using
     and not all gcc targets support that currently.  Therefore using
     this flag to detect 32-bit mode would do the wrong thing given
     this flag to detect 32-bit mode would do the wrong thing given
     the current gcc - it would make GDB treat these 64-bit programs
     the current gcc - it would make GDB treat these 64-bit programs
     as 32-bit programs by default.  */
     as 32-bit programs by default.  */
 
 
  set_gdbarch_read_pc (gdbarch, mips_read_pc);
  set_gdbarch_read_pc (gdbarch, mips_read_pc);
  set_gdbarch_write_pc (gdbarch, mips_write_pc);
  set_gdbarch_write_pc (gdbarch, mips_write_pc);
 
 
  /* Add/remove bits from an address.  The MIPS needs be careful to
  /* Add/remove bits from an address.  The MIPS needs be careful to
     ensure that all 32 bit addresses are sign extended to 64 bits.  */
     ensure that all 32 bit addresses are sign extended to 64 bits.  */
  set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
  set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
 
 
  /* Unwind the frame.  */
  /* Unwind the frame.  */
  set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
  set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
  set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
  set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
 
 
  /* Map debug register numbers onto internal register numbers.  */
  /* Map debug register numbers onto internal register numbers.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
  set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
  set_gdbarch_ecoff_reg_to_regnum (gdbarch,
  set_gdbarch_ecoff_reg_to_regnum (gdbarch,
                                   mips_dwarf_dwarf2_ecoff_reg_to_regnum);
                                   mips_dwarf_dwarf2_ecoff_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
                                    mips_dwarf_dwarf2_ecoff_reg_to_regnum);
                                    mips_dwarf_dwarf2_ecoff_reg_to_regnum);
  set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
  set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
 
 
  /* MIPS version of CALL_DUMMY */
  /* MIPS version of CALL_DUMMY */
 
 
  /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
  /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
     replaced by a command, and all targets will default to on stack
     replaced by a command, and all targets will default to on stack
     (regardless of the stack's execute status).  */
     (regardless of the stack's execute status).  */
  set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
  set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
  set_gdbarch_frame_align (gdbarch, mips_frame_align);
  set_gdbarch_frame_align (gdbarch, mips_frame_align);
 
 
  set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
  set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
  set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
  set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
  set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
 
 
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
 
 
  set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
 
 
  set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
  set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
 
 
  set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
  set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
  set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
  set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
  set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
  set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
 
 
  set_gdbarch_register_type (gdbarch, mips_register_type);
  set_gdbarch_register_type (gdbarch, mips_register_type);
 
 
  set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
  set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
 
 
  if (mips_abi == MIPS_ABI_N32)
  if (mips_abi == MIPS_ABI_N32)
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
  else if (mips_abi == MIPS_ABI_N64)
  else if (mips_abi == MIPS_ABI_N64)
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
  else
  else
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
 
 
  /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
  /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
     HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
     HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
     need to all be folded into the target vector.  Since they are
     need to all be folded into the target vector.  Since they are
     being used as guards for target_stopped_by_watchpoint, why not have
     being used as guards for target_stopped_by_watchpoint, why not have
     target_stopped_by_watchpoint return the type of watchpoint that the code
     target_stopped_by_watchpoint return the type of watchpoint that the code
     is sitting on?  */
     is sitting on?  */
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
 
 
  set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
  set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
 
 
  set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
  set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
 
 
  /* Virtual tables.  */
  /* Virtual tables.  */
  set_gdbarch_vbit_in_delta (gdbarch, 1);
  set_gdbarch_vbit_in_delta (gdbarch, 1);
 
 
  mips_register_g_packet_guesses (gdbarch);
  mips_register_g_packet_guesses (gdbarch);
 
 
  /* Hook in OS ABI-specific overrides, if they have been registered.  */
  /* Hook in OS ABI-specific overrides, if they have been registered.  */
  info.tdep_info = (void *) tdesc_data;
  info.tdep_info = (void *) tdesc_data;
  gdbarch_init_osabi (info, gdbarch);
  gdbarch_init_osabi (info, gdbarch);
 
 
  /* Unwind the frame.  */
  /* Unwind the frame.  */
  dwarf2_append_unwinders (gdbarch);
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
  frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
 
 
  if (tdesc_data)
  if (tdesc_data)
    {
    {
      set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
      set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
 
 
      /* Override the normal target description methods to handle our
      /* Override the normal target description methods to handle our
         dual real and pseudo registers.  */
         dual real and pseudo registers.  */
      set_gdbarch_register_name (gdbarch, mips_register_name);
      set_gdbarch_register_name (gdbarch, mips_register_name);
      set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
      set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
 
 
      num_regs = gdbarch_num_regs (gdbarch);
      num_regs = gdbarch_num_regs (gdbarch);
      set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
      set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
      set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
      set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
      set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
      set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
    }
    }
 
 
  /* Add ABI-specific aliases for the registers.  */
  /* Add ABI-specific aliases for the registers.  */
  if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
  if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
    for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
    for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
      user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
      user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
                    value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
                    value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
  else
  else
    for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
    for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
      user_reg_add (gdbarch, mips_o32_aliases[i].name,
      user_reg_add (gdbarch, mips_o32_aliases[i].name,
                    value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
                    value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
 
 
  /* Add some other standard aliases.  */
  /* Add some other standard aliases.  */
  for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
  for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
    user_reg_add (gdbarch, mips_register_aliases[i].name,
    user_reg_add (gdbarch, mips_register_aliases[i].name,
                  value_of_mips_user_reg, &mips_register_aliases[i].regnum);
                  value_of_mips_user_reg, &mips_register_aliases[i].regnum);
 
 
  for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
  for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
    user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
    user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
                  value_of_mips_user_reg,
                  value_of_mips_user_reg,
                  &mips_numeric_register_aliases[i].regnum);
                  &mips_numeric_register_aliases[i].regnum);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
static void
static void
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
{
  struct gdbarch_info info;
  struct gdbarch_info info;
 
 
  /* Force the architecture to update, and (if it's a MIPS architecture)
  /* Force the architecture to update, and (if it's a MIPS architecture)
     mips_gdbarch_init will take care of the rest.  */
     mips_gdbarch_init will take care of the rest.  */
  gdbarch_info_init (&info);
  gdbarch_info_init (&info);
  gdbarch_update_p (info);
  gdbarch_update_p (info);
}
}
 
 
/* Print out which MIPS ABI is in use.  */
/* Print out which MIPS ABI is in use.  */
 
 
static void
static void
show_mips_abi (struct ui_file *file,
show_mips_abi (struct ui_file *file,
               int from_tty,
               int from_tty,
               struct cmd_list_element *ignored_cmd,
               struct cmd_list_element *ignored_cmd,
               const char *ignored_value)
               const char *ignored_value)
{
{
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
    fprintf_filtered
    fprintf_filtered
      (file,
      (file,
       "The MIPS ABI is unknown because the current architecture "
       "The MIPS ABI is unknown because the current architecture "
       "is not MIPS.\n");
       "is not MIPS.\n");
  else
  else
    {
    {
      enum mips_abi global_abi = global_mips_abi ();
      enum mips_abi global_abi = global_mips_abi ();
      enum mips_abi actual_abi = mips_abi (target_gdbarch);
      enum mips_abi actual_abi = mips_abi (target_gdbarch);
      const char *actual_abi_str = mips_abi_strings[actual_abi];
      const char *actual_abi_str = mips_abi_strings[actual_abi];
 
 
      if (global_abi == MIPS_ABI_UNKNOWN)
      if (global_abi == MIPS_ABI_UNKNOWN)
        fprintf_filtered
        fprintf_filtered
          (file,
          (file,
           "The MIPS ABI is set automatically (currently \"%s\").\n",
           "The MIPS ABI is set automatically (currently \"%s\").\n",
           actual_abi_str);
           actual_abi_str);
      else if (global_abi == actual_abi)
      else if (global_abi == actual_abi)
        fprintf_filtered
        fprintf_filtered
          (file,
          (file,
           "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
           "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
           actual_abi_str);
           actual_abi_str);
      else
      else
        {
        {
          /* Probably shouldn't happen...  */
          /* Probably shouldn't happen...  */
          fprintf_filtered
          fprintf_filtered
            (file,
            (file,
             "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
             "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
             actual_abi_str, mips_abi_strings[global_abi]);
             actual_abi_str, mips_abi_strings[global_abi]);
        }
        }
    }
    }
}
}
 
 
static void
static void
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep != NULL)
  if (tdep != NULL)
    {
    {
      int ef_mips_arch;
      int ef_mips_arch;
      int ef_mips_32bitmode;
      int ef_mips_32bitmode;
      /* Determine the ISA.  */
      /* Determine the ISA.  */
      switch (tdep->elf_flags & EF_MIPS_ARCH)
      switch (tdep->elf_flags & EF_MIPS_ARCH)
        {
        {
        case E_MIPS_ARCH_1:
        case E_MIPS_ARCH_1:
          ef_mips_arch = 1;
          ef_mips_arch = 1;
          break;
          break;
        case E_MIPS_ARCH_2:
        case E_MIPS_ARCH_2:
          ef_mips_arch = 2;
          ef_mips_arch = 2;
          break;
          break;
        case E_MIPS_ARCH_3:
        case E_MIPS_ARCH_3:
          ef_mips_arch = 3;
          ef_mips_arch = 3;
          break;
          break;
        case E_MIPS_ARCH_4:
        case E_MIPS_ARCH_4:
          ef_mips_arch = 4;
          ef_mips_arch = 4;
          break;
          break;
        default:
        default:
          ef_mips_arch = 0;
          ef_mips_arch = 0;
          break;
          break;
        }
        }
      /* Determine the size of a pointer.  */
      /* Determine the size of a pointer.  */
      ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
      ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
      fprintf_unfiltered (file,
      fprintf_unfiltered (file,
                          "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
                          "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
                          tdep->elf_flags);
                          tdep->elf_flags);
      fprintf_unfiltered (file,
      fprintf_unfiltered (file,
                          "mips_dump_tdep: ef_mips_32bitmode = %d\n",
                          "mips_dump_tdep: ef_mips_32bitmode = %d\n",
                          ef_mips_32bitmode);
                          ef_mips_32bitmode);
      fprintf_unfiltered (file,
      fprintf_unfiltered (file,
                          "mips_dump_tdep: ef_mips_arch = %d\n",
                          "mips_dump_tdep: ef_mips_arch = %d\n",
                          ef_mips_arch);
                          ef_mips_arch);
      fprintf_unfiltered (file,
      fprintf_unfiltered (file,
                          "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
                          "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
                          tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
                          tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
      fprintf_unfiltered (file,
      fprintf_unfiltered (file,
                          "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
                          "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
                          mips_mask_address_p (tdep),
                          mips_mask_address_p (tdep),
                          tdep->default_mask_address_p);
                          tdep->default_mask_address_p);
    }
    }
  fprintf_unfiltered (file,
  fprintf_unfiltered (file,
                      "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
                      "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
                      MIPS_DEFAULT_FPU_TYPE,
                      MIPS_DEFAULT_FPU_TYPE,
                      (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
                      (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
                       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
                       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
                       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
                       : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
                       : "???"));
                       : "???"));
  fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
  fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
                      MIPS_EABI (gdbarch));
                      MIPS_EABI (gdbarch));
  fprintf_unfiltered (file,
  fprintf_unfiltered (file,
                      "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
                      "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
                      MIPS_FPU_TYPE (gdbarch),
                      MIPS_FPU_TYPE (gdbarch),
                      (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
                      (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
                       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
                       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
                       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
                       : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
                       : "???"));
                       : "???"));
}
}
 
 
extern initialize_file_ftype _initialize_mips_tdep;     /* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_mips_tdep;     /* -Wmissing-prototypes */
 
 
void
void
_initialize_mips_tdep (void)
_initialize_mips_tdep (void)
{
{
  static struct cmd_list_element *mipsfpulist = NULL;
  static struct cmd_list_element *mipsfpulist = NULL;
  struct cmd_list_element *c;
  struct cmd_list_element *c;
 
 
  mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
  mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
  if (MIPS_ABI_LAST + 1
  if (MIPS_ABI_LAST + 1
      != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
      != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
    internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
    internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
 
 
  gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
  gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
 
 
  mips_pdr_data = register_objfile_data ();
  mips_pdr_data = register_objfile_data ();
 
 
  /* Create feature sets with the appropriate properties.  The values
  /* Create feature sets with the appropriate properties.  The values
     are not important.  */
     are not important.  */
  mips_tdesc_gp32 = allocate_target_description ();
  mips_tdesc_gp32 = allocate_target_description ();
  set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
  set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
 
 
  mips_tdesc_gp64 = allocate_target_description ();
  mips_tdesc_gp64 = allocate_target_description ();
  set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
  set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
 
 
  /* Add root prefix command for all "set mips"/"show mips" commands */
  /* Add root prefix command for all "set mips"/"show mips" commands */
  add_prefix_cmd ("mips", no_class, set_mips_command,
  add_prefix_cmd ("mips", no_class, set_mips_command,
                  _("Various MIPS specific commands."),
                  _("Various MIPS specific commands."),
                  &setmipscmdlist, "set mips ", 0, &setlist);
                  &setmipscmdlist, "set mips ", 0, &setlist);
 
 
  add_prefix_cmd ("mips", no_class, show_mips_command,
  add_prefix_cmd ("mips", no_class, show_mips_command,
                  _("Various MIPS specific commands."),
                  _("Various MIPS specific commands."),
                  &showmipscmdlist, "show mips ", 0, &showlist);
                  &showmipscmdlist, "show mips ", 0, &showlist);
 
 
  /* Allow the user to override the ABI. */
  /* Allow the user to override the ABI. */
  add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
  add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
                        &mips_abi_string, _("\
                        &mips_abi_string, _("\
Set the MIPS ABI used by this program."), _("\
Set the MIPS ABI used by this program."), _("\
Show the MIPS ABI used by this program."), _("\
Show the MIPS ABI used by this program."), _("\
This option can be set to one of:\n\
This option can be set to one of:\n\
  auto  - the default ABI associated with the current binary\n\
  auto  - the default ABI associated with the current binary\n\
  o32\n\
  o32\n\
  o64\n\
  o64\n\
  n32\n\
  n32\n\
  n64\n\
  n64\n\
  eabi32\n\
  eabi32\n\
  eabi64"),
  eabi64"),
                        mips_abi_update,
                        mips_abi_update,
                        show_mips_abi,
                        show_mips_abi,
                        &setmipscmdlist, &showmipscmdlist);
                        &setmipscmdlist, &showmipscmdlist);
 
 
  /* Let the user turn off floating point and set the fence post for
  /* Let the user turn off floating point and set the fence post for
     heuristic_proc_start.  */
     heuristic_proc_start.  */
 
 
  add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
  add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
                  _("Set use of MIPS floating-point coprocessor."),
                  _("Set use of MIPS floating-point coprocessor."),
                  &mipsfpulist, "set mipsfpu ", 0, &setlist);
                  &mipsfpulist, "set mipsfpu ", 0, &setlist);
  add_cmd ("single", class_support, set_mipsfpu_single_command,
  add_cmd ("single", class_support, set_mipsfpu_single_command,
           _("Select single-precision MIPS floating-point coprocessor."),
           _("Select single-precision MIPS floating-point coprocessor."),
           &mipsfpulist);
           &mipsfpulist);
  add_cmd ("double", class_support, set_mipsfpu_double_command,
  add_cmd ("double", class_support, set_mipsfpu_double_command,
           _("Select double-precision MIPS floating-point coprocessor."),
           _("Select double-precision MIPS floating-point coprocessor."),
           &mipsfpulist);
           &mipsfpulist);
  add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
  add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
  add_cmd ("none", class_support, set_mipsfpu_none_command,
  add_cmd ("none", class_support, set_mipsfpu_none_command,
           _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
           _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
  add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
  add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
  add_cmd ("auto", class_support, set_mipsfpu_auto_command,
  add_cmd ("auto", class_support, set_mipsfpu_auto_command,
           _("Select MIPS floating-point coprocessor automatically."),
           _("Select MIPS floating-point coprocessor automatically."),
           &mipsfpulist);
           &mipsfpulist);
  add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
  add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
           _("Show current use of MIPS floating-point coprocessor target."),
           _("Show current use of MIPS floating-point coprocessor target."),
           &showlist);
           &showlist);
 
 
  /* We really would like to have both "0" and "unlimited" work, but
  /* We really would like to have both "0" and "unlimited" work, but
     command.c doesn't deal with that.  So make it a var_zinteger
     command.c doesn't deal with that.  So make it a var_zinteger
     because the user can always use "999999" or some such for unlimited.  */
     because the user can always use "999999" or some such for unlimited.  */
  add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
  add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
                            &heuristic_fence_post, _("\
                            &heuristic_fence_post, _("\
Set the distance searched for the start of a function."), _("\
Set the distance searched for the start of a function."), _("\
Show the distance searched for the start of a function."), _("\
Show the distance searched for the start of a function."), _("\
If you are debugging a stripped executable, GDB needs to search through the\n\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function.  This command sets the distance of the\n\
program for the start of a function.  This command sets the distance of the\n\
search.  The only need to set it is when debugging a stripped executable."),
search.  The only need to set it is when debugging a stripped executable."),
                            reinit_frame_cache_sfunc,
                            reinit_frame_cache_sfunc,
                            NULL, /* FIXME: i18n: The distance searched for the start of a function is %s.  */
                            NULL, /* FIXME: i18n: The distance searched for the start of a function is %s.  */
                            &setlist, &showlist);
                            &setlist, &showlist);
 
 
  /* Allow the user to control whether the upper bits of 64-bit
  /* Allow the user to control whether the upper bits of 64-bit
     addresses should be zeroed.  */
     addresses should be zeroed.  */
  add_setshow_auto_boolean_cmd ("mask-address", no_class,
  add_setshow_auto_boolean_cmd ("mask-address", no_class,
                                &mask_address_var, _("\
                                &mask_address_var, _("\
Set zeroing of upper 32 bits of 64-bit addresses."), _("\
Set zeroing of upper 32 bits of 64-bit addresses."), _("\
Show zeroing of upper 32 bits of 64-bit addresses."), _("\
Show zeroing of upper 32 bits of 64-bit addresses."), _("\
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
allow GDB to determine the correct value."),
allow GDB to determine the correct value."),
                                NULL, show_mask_address,
                                NULL, show_mask_address,
                                &setmipscmdlist, &showmipscmdlist);
                                &setmipscmdlist, &showmipscmdlist);
 
 
  /* Allow the user to control the size of 32 bit registers within the
  /* Allow the user to control the size of 32 bit registers within the
     raw remote packet.  */
     raw remote packet.  */
  add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
  add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
                           &mips64_transfers_32bit_regs_p, _("\
                           &mips64_transfers_32bit_regs_p, _("\
Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
                           _("\
                           _("\
Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
                           _("\
                           _("\
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
64 bits for others.  Use \"off\" to disable compatibility mode"),
64 bits for others.  Use \"off\" to disable compatibility mode"),
                           set_mips64_transfers_32bit_regs,
                           set_mips64_transfers_32bit_regs,
                           NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.  */
                           NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.  */
                           &setlist, &showlist);
                           &setlist, &showlist);
 
 
  /* Debug this files internals. */
  /* Debug this files internals. */
  add_setshow_zinteger_cmd ("mips", class_maintenance,
  add_setshow_zinteger_cmd ("mips", class_maintenance,
                            &mips_debug, _("\
                            &mips_debug, _("\
Set mips debugging."), _("\
Set mips debugging."), _("\
Show mips debugging."), _("\
Show mips debugging."), _("\
When non-zero, mips specific debugging is enabled."),
When non-zero, mips specific debugging is enabled."),
                            NULL,
                            NULL,
                            NULL, /* FIXME: i18n: Mips debugging is currently %s.  */
                            NULL, /* FIXME: i18n: Mips debugging is currently %s.  */
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.