OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [monitor.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Remote debugging interface for boot monitors, for GDB.
/* Remote debugging interface for boot monitors, for GDB.
 
 
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2006, 2007, 2008, 2009, 2010
   2000, 2001, 2002, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Contributed by Cygnus Support.  Written by Rob Savoye for Cygnus.
   Contributed by Cygnus Support.  Written by Rob Savoye for Cygnus.
   Resurrected from the ashes by Stu Grossman.
   Resurrected from the ashes by Stu Grossman.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
/* This file was derived from various remote-* modules. It is a collection
/* This file was derived from various remote-* modules. It is a collection
   of generic support functions so GDB can talk directly to a ROM based
   of generic support functions so GDB can talk directly to a ROM based
   monitor. This saves use from having to hack an exception based handler
   monitor. This saves use from having to hack an exception based handler
   into existence, and makes for quick porting.
   into existence, and makes for quick porting.
 
 
   This module talks to a debug monitor called 'MONITOR', which
   This module talks to a debug monitor called 'MONITOR', which
   We communicate with MONITOR via either a direct serial line, or a TCP
   We communicate with MONITOR via either a direct serial line, or a TCP
   (or possibly TELNET) stream to a terminal multiplexor,
   (or possibly TELNET) stream to a terminal multiplexor,
   which in turn talks to the target board.  */
   which in turn talks to the target board.  */
 
 
/* FIXME 32x64: This code assumes that registers and addresses are at
/* FIXME 32x64: This code assumes that registers and addresses are at
   most 32 bits long.  If they can be larger, you will need to declare
   most 32 bits long.  If they can be larger, you will need to declare
   values as LONGEST and use %llx or some such to print values when
   values as LONGEST and use %llx or some such to print values when
   building commands to send to the monitor.  Since we don't know of
   building commands to send to the monitor.  Since we don't know of
   any actual 64-bit targets with ROM monitors that use this code,
   any actual 64-bit targets with ROM monitors that use this code,
   it's not an issue right now.  -sts 4/18/96  */
   it's not an issue right now.  -sts 4/18/96  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "target.h"
#include "target.h"
#include "exceptions.h"
#include "exceptions.h"
#include <signal.h>
#include <signal.h>
#include <ctype.h>
#include <ctype.h>
#include "gdb_string.h"
#include "gdb_string.h"
#include <sys/types.h>
#include <sys/types.h>
#include "command.h"
#include "command.h"
#include "serial.h"
#include "serial.h"
#include "monitor.h"
#include "monitor.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "inferior.h"
#include "inferior.h"
#include "gdb_regex.h"
#include "gdb_regex.h"
#include "srec.h"
#include "srec.h"
#include "regcache.h"
#include "regcache.h"
#include "gdbthread.h"
#include "gdbthread.h"
 
 
static char *dev_name;
static char *dev_name;
static struct target_ops *targ_ops;
static struct target_ops *targ_ops;
 
 
static void monitor_interrupt_query (void);
static void monitor_interrupt_query (void);
static void monitor_interrupt_twice (int);
static void monitor_interrupt_twice (int);
static void monitor_stop (ptid_t);
static void monitor_stop (ptid_t);
static void monitor_dump_regs (struct regcache *regcache);
static void monitor_dump_regs (struct regcache *regcache);
 
 
#if 0
#if 0
static int from_hex (int a);
static int from_hex (int a);
#endif
#endif
 
 
static struct monitor_ops *current_monitor;
static struct monitor_ops *current_monitor;
 
 
static int hashmark;            /* flag set by "set hash" */
static int hashmark;            /* flag set by "set hash" */
 
 
static int timeout = 30;
static int timeout = 30;
 
 
static int in_monitor_wait = 0;  /* Non-zero means we are in monitor_wait() */
static int in_monitor_wait = 0;  /* Non-zero means we are in monitor_wait() */
 
 
static void (*ofunc) ();        /* Old SIGINT signal handler */
static void (*ofunc) ();        /* Old SIGINT signal handler */
 
 
static CORE_ADDR *breakaddr;
static CORE_ADDR *breakaddr;
 
 
/* Descriptor for I/O to remote machine.  Initialize it to NULL so
/* Descriptor for I/O to remote machine.  Initialize it to NULL so
   that monitor_open knows that we don't have a file open when the
   that monitor_open knows that we don't have a file open when the
   program starts.  */
   program starts.  */
 
 
static struct serial *monitor_desc = NULL;
static struct serial *monitor_desc = NULL;
 
 
/* Pointer to regexp pattern matching data */
/* Pointer to regexp pattern matching data */
 
 
static struct re_pattern_buffer register_pattern;
static struct re_pattern_buffer register_pattern;
static char register_fastmap[256];
static char register_fastmap[256];
 
 
static struct re_pattern_buffer getmem_resp_delim_pattern;
static struct re_pattern_buffer getmem_resp_delim_pattern;
static char getmem_resp_delim_fastmap[256];
static char getmem_resp_delim_fastmap[256];
 
 
static struct re_pattern_buffer setmem_resp_delim_pattern;
static struct re_pattern_buffer setmem_resp_delim_pattern;
static char setmem_resp_delim_fastmap[256];
static char setmem_resp_delim_fastmap[256];
 
 
static struct re_pattern_buffer setreg_resp_delim_pattern;
static struct re_pattern_buffer setreg_resp_delim_pattern;
static char setreg_resp_delim_fastmap[256];
static char setreg_resp_delim_fastmap[256];
 
 
static int dump_reg_flag;       /* Non-zero means do a dump_registers cmd when
static int dump_reg_flag;       /* Non-zero means do a dump_registers cmd when
                                   monitor_wait wakes up.  */
                                   monitor_wait wakes up.  */
 
 
static int first_time = 0;       /* is this the first time we're executing after
static int first_time = 0;       /* is this the first time we're executing after
                                   gaving created the child proccess? */
                                   gaving created the child proccess? */
 
 
 
 
/* This is the ptid we use while we're connected to a monitor.  Its
/* This is the ptid we use while we're connected to a monitor.  Its
   value is arbitrary, as monitor targets don't have a notion of
   value is arbitrary, as monitor targets don't have a notion of
   processes or threads, but we need something non-null to place in
   processes or threads, but we need something non-null to place in
   inferior_ptid.  */
   inferior_ptid.  */
static ptid_t monitor_ptid;
static ptid_t monitor_ptid;
 
 
#define TARGET_BUF_SIZE 2048
#define TARGET_BUF_SIZE 2048
 
 
/* Monitor specific debugging information.  Typically only useful to
/* Monitor specific debugging information.  Typically only useful to
   the developer of a new monitor interface. */
   the developer of a new monitor interface. */
 
 
static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
 
 
static int monitor_debug_p = 0;
static int monitor_debug_p = 0;
 
 
/* NOTE: This file alternates between monitor_debug_p and remote_debug
/* NOTE: This file alternates between monitor_debug_p and remote_debug
   when determining if debug information is printed.  Perhaps this
   when determining if debug information is printed.  Perhaps this
   could be simplified. */
   could be simplified. */
 
 
static void
static void
monitor_debug (const char *fmt, ...)
monitor_debug (const char *fmt, ...)
{
{
  if (monitor_debug_p)
  if (monitor_debug_p)
    {
    {
      va_list args;
      va_list args;
      va_start (args, fmt);
      va_start (args, fmt);
      vfprintf_filtered (gdb_stdlog, fmt, args);
      vfprintf_filtered (gdb_stdlog, fmt, args);
      va_end (args);
      va_end (args);
    }
    }
}
}
 
 
 
 
/* Convert a string into a printable representation, Return # byte in
/* Convert a string into a printable representation, Return # byte in
   the new string.  When LEN is >0 it specifies the size of the
   the new string.  When LEN is >0 it specifies the size of the
   string.  Otherwize strlen(oldstr) is used. */
   string.  Otherwize strlen(oldstr) is used. */
 
 
static void
static void
monitor_printable_string (char *newstr, char *oldstr, int len)
monitor_printable_string (char *newstr, char *oldstr, int len)
{
{
  int ch;
  int ch;
  int i;
  int i;
 
 
  if (len <= 0)
  if (len <= 0)
    len = strlen (oldstr);
    len = strlen (oldstr);
 
 
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      ch = oldstr[i];
      ch = oldstr[i];
      switch (ch)
      switch (ch)
        {
        {
        default:
        default:
          if (isprint (ch))
          if (isprint (ch))
            *newstr++ = ch;
            *newstr++ = ch;
 
 
          else
          else
            {
            {
              sprintf (newstr, "\\x%02x", ch & 0xff);
              sprintf (newstr, "\\x%02x", ch & 0xff);
              newstr += 4;
              newstr += 4;
            }
            }
          break;
          break;
 
 
        case '\\':
        case '\\':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = '\\';
          break;
          break;
        case '\b':
        case '\b':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = 'b';
          *newstr++ = 'b';
          break;
          break;
        case '\f':
        case '\f':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = 't';
          *newstr++ = 't';
          break;
          break;
        case '\n':
        case '\n':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = 'n';
          *newstr++ = 'n';
          break;
          break;
        case '\r':
        case '\r':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = 'r';
          *newstr++ = 'r';
          break;
          break;
        case '\t':
        case '\t':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = 't';
          *newstr++ = 't';
          break;
          break;
        case '\v':
        case '\v':
          *newstr++ = '\\';
          *newstr++ = '\\';
          *newstr++ = 'v';
          *newstr++ = 'v';
          break;
          break;
        }
        }
    }
    }
 
 
  *newstr++ = '\0';
  *newstr++ = '\0';
}
}
 
 
/* Print monitor errors with a string, converting the string to printable
/* Print monitor errors with a string, converting the string to printable
   representation.  */
   representation.  */
 
 
static void
static void
monitor_error (char *function, char *message,
monitor_error (char *function, char *message,
               CORE_ADDR memaddr, int len, char *string, int final_char)
               CORE_ADDR memaddr, int len, char *string, int final_char)
{
{
  int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
  int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
  char *safe_string = alloca ((real_len * 4) + 1);
  char *safe_string = alloca ((real_len * 4) + 1);
  monitor_printable_string (safe_string, string, real_len);
  monitor_printable_string (safe_string, string, real_len);
 
 
  if (final_char)
  if (final_char)
    error (_("%s (%s): %s: %s%c"),
    error (_("%s (%s): %s: %s%c"),
           function, paddress (target_gdbarch, memaddr),
           function, paddress (target_gdbarch, memaddr),
           message, safe_string, final_char);
           message, safe_string, final_char);
  else
  else
    error (_("%s (%s): %s: %s"),
    error (_("%s (%s): %s: %s"),
           function, paddress (target_gdbarch, memaddr),
           function, paddress (target_gdbarch, memaddr),
           message, safe_string);
           message, safe_string);
}
}
 
 
/* Convert hex digit A to a number.  */
/* Convert hex digit A to a number.  */
 
 
static int
static int
fromhex (int a)
fromhex (int a)
{
{
  if (a >= '0' && a <= '9')
  if (a >= '0' && a <= '9')
    return a - '0';
    return a - '0';
  else if (a >= 'a' && a <= 'f')
  else if (a >= 'a' && a <= 'f')
    return a - 'a' + 10;
    return a - 'a' + 10;
  else if (a >= 'A' && a <= 'F')
  else if (a >= 'A' && a <= 'F')
    return a - 'A' + 10;
    return a - 'A' + 10;
  else
  else
    error (_("Invalid hex digit %d"), a);
    error (_("Invalid hex digit %d"), a);
}
}
 
 
/* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
/* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
 
 
   This function exists to get around the problem that many host platforms
   This function exists to get around the problem that many host platforms
   don't have a printf that can print 64-bit addresses.  The %A format
   don't have a printf that can print 64-bit addresses.  The %A format
   specification is recognized as a special case, and causes the argument
   specification is recognized as a special case, and causes the argument
   to be printed as a 64-bit hexadecimal address.
   to be printed as a 64-bit hexadecimal address.
 
 
   Only format specifiers of the form "[0-9]*[a-z]" are recognized.
   Only format specifiers of the form "[0-9]*[a-z]" are recognized.
   If it is a '%s' format, the argument is a string; otherwise the
   If it is a '%s' format, the argument is a string; otherwise the
   argument is assumed to be a long integer.
   argument is assumed to be a long integer.
 
 
   %% is also turned into a single %.
   %% is also turned into a single %.
 */
 */
 
 
static void
static void
monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
{
{
  int addr_bit = gdbarch_addr_bit (target_gdbarch);
  int addr_bit = gdbarch_addr_bit (target_gdbarch);
  char format[10];
  char format[10];
  char fmt;
  char fmt;
  char *p;
  char *p;
  int i;
  int i;
  long arg_int;
  long arg_int;
  CORE_ADDR arg_addr;
  CORE_ADDR arg_addr;
  char *arg_string;
  char *arg_string;
 
 
  for (p = pattern; *p; p++)
  for (p = pattern; *p; p++)
    {
    {
      if (*p == '%')
      if (*p == '%')
        {
        {
          /* Copy the format specifier to a separate buffer.  */
          /* Copy the format specifier to a separate buffer.  */
          format[0] = *p++;
          format[0] = *p++;
          for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
          for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
               i++, p++)
               i++, p++)
            format[i] = *p;
            format[i] = *p;
          format[i] = fmt = *p;
          format[i] = fmt = *p;
          format[i + 1] = '\0';
          format[i + 1] = '\0';
 
 
          /* Fetch the next argument and print it.  */
          /* Fetch the next argument and print it.  */
          switch (fmt)
          switch (fmt)
            {
            {
            case '%':
            case '%':
              strcpy (sndbuf, "%");
              strcpy (sndbuf, "%");
              break;
              break;
            case 'A':
            case 'A':
              arg_addr = va_arg (args, CORE_ADDR);
              arg_addr = va_arg (args, CORE_ADDR);
              strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
              strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
              break;
              break;
            case 's':
            case 's':
              arg_string = va_arg (args, char *);
              arg_string = va_arg (args, char *);
              sprintf (sndbuf, format, arg_string);
              sprintf (sndbuf, format, arg_string);
              break;
              break;
            default:
            default:
              arg_int = va_arg (args, long);
              arg_int = va_arg (args, long);
              sprintf (sndbuf, format, arg_int);
              sprintf (sndbuf, format, arg_int);
              break;
              break;
            }
            }
          sndbuf += strlen (sndbuf);
          sndbuf += strlen (sndbuf);
        }
        }
      else
      else
        *sndbuf++ = *p;
        *sndbuf++ = *p;
    }
    }
  *sndbuf = '\0';
  *sndbuf = '\0';
}
}
 
 
 
 
/* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
/* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
   Works just like printf.  */
   Works just like printf.  */
 
 
void
void
monitor_printf_noecho (char *pattern,...)
monitor_printf_noecho (char *pattern,...)
{
{
  va_list args;
  va_list args;
  char sndbuf[2000];
  char sndbuf[2000];
  int len;
  int len;
 
 
  va_start (args, pattern);
  va_start (args, pattern);
 
 
  monitor_vsprintf (sndbuf, pattern, args);
  monitor_vsprintf (sndbuf, pattern, args);
 
 
  len = strlen (sndbuf);
  len = strlen (sndbuf);
  if (len + 1 > sizeof sndbuf)
  if (len + 1 > sizeof sndbuf)
    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
 
 
  if (monitor_debug_p)
  if (monitor_debug_p)
    {
    {
      char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
      char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
      monitor_printable_string (safe_string, sndbuf, 0);
      monitor_printable_string (safe_string, sndbuf, 0);
      fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
      fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
    }
    }
 
 
  monitor_write (sndbuf, len);
  monitor_write (sndbuf, len);
}
}
 
 
/* monitor_printf -- Send data to monitor and check the echo.  Works just like
/* monitor_printf -- Send data to monitor and check the echo.  Works just like
   printf.  */
   printf.  */
 
 
void
void
monitor_printf (char *pattern,...)
monitor_printf (char *pattern,...)
{
{
  va_list args;
  va_list args;
  char sndbuf[2000];
  char sndbuf[2000];
  int len;
  int len;
 
 
  va_start (args, pattern);
  va_start (args, pattern);
 
 
  monitor_vsprintf (sndbuf, pattern, args);
  monitor_vsprintf (sndbuf, pattern, args);
 
 
  len = strlen (sndbuf);
  len = strlen (sndbuf);
  if (len + 1 > sizeof sndbuf)
  if (len + 1 > sizeof sndbuf)
    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
 
 
  if (monitor_debug_p)
  if (monitor_debug_p)
    {
    {
      char *safe_string = (char *) alloca ((len * 4) + 1);
      char *safe_string = (char *) alloca ((len * 4) + 1);
      monitor_printable_string (safe_string, sndbuf, 0);
      monitor_printable_string (safe_string, sndbuf, 0);
      fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
      fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
    }
    }
 
 
  monitor_write (sndbuf, len);
  monitor_write (sndbuf, len);
 
 
  /* We used to expect that the next immediate output was the characters we
  /* We used to expect that the next immediate output was the characters we
     just output, but sometimes some extra junk appeared before the characters
     just output, but sometimes some extra junk appeared before the characters
     we expected, like an extra prompt, or a portmaster sending telnet negotiations.
     we expected, like an extra prompt, or a portmaster sending telnet negotiations.
     So, just start searching for what we sent, and skip anything unknown.  */
     So, just start searching for what we sent, and skip anything unknown.  */
  monitor_debug ("ExpectEcho\n");
  monitor_debug ("ExpectEcho\n");
  monitor_expect (sndbuf, (char *) 0, 0);
  monitor_expect (sndbuf, (char *) 0, 0);
}
}
 
 
 
 
/* Write characters to the remote system.  */
/* Write characters to the remote system.  */
 
 
void
void
monitor_write (char *buf, int buflen)
monitor_write (char *buf, int buflen)
{
{
  if (serial_write (monitor_desc, buf, buflen))
  if (serial_write (monitor_desc, buf, buflen))
    fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
    fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
                        safe_strerror (errno));
                        safe_strerror (errno));
}
}
 
 
 
 
/* Read a binary character from the remote system, doing all the fancy
/* Read a binary character from the remote system, doing all the fancy
   timeout stuff, but without interpreting the character in any way,
   timeout stuff, but without interpreting the character in any way,
   and without printing remote debug information.  */
   and without printing remote debug information.  */
 
 
int
int
monitor_readchar (void)
monitor_readchar (void)
{
{
  int c;
  int c;
  int looping;
  int looping;
 
 
  do
  do
    {
    {
      looping = 0;
      looping = 0;
      c = serial_readchar (monitor_desc, timeout);
      c = serial_readchar (monitor_desc, timeout);
 
 
      if (c >= 0)
      if (c >= 0)
        c &= 0xff;              /* don't lose bit 7 */
        c &= 0xff;              /* don't lose bit 7 */
    }
    }
  while (looping);
  while (looping);
 
 
  if (c >= 0)
  if (c >= 0)
    return c;
    return c;
 
 
  if (c == SERIAL_TIMEOUT)
  if (c == SERIAL_TIMEOUT)
    error (_("Timeout reading from remote system."));
    error (_("Timeout reading from remote system."));
 
 
  perror_with_name (_("remote-monitor"));
  perror_with_name (_("remote-monitor"));
}
}
 
 
 
 
/* Read a character from the remote system, doing all the fancy
/* Read a character from the remote system, doing all the fancy
   timeout stuff.  */
   timeout stuff.  */
 
 
static int
static int
readchar (int timeout)
readchar (int timeout)
{
{
  int c;
  int c;
  static enum
  static enum
    {
    {
      last_random, last_nl, last_cr, last_crnl
      last_random, last_nl, last_cr, last_crnl
    }
    }
  state = last_random;
  state = last_random;
  int looping;
  int looping;
 
 
  do
  do
    {
    {
      looping = 0;
      looping = 0;
      c = serial_readchar (monitor_desc, timeout);
      c = serial_readchar (monitor_desc, timeout);
 
 
      if (c >= 0)
      if (c >= 0)
        {
        {
          c &= 0x7f;
          c &= 0x7f;
          /* This seems to interfere with proper function of the
          /* This seems to interfere with proper function of the
             input stream */
             input stream */
          if (monitor_debug_p || remote_debug)
          if (monitor_debug_p || remote_debug)
            {
            {
              char buf[2];
              char buf[2];
              buf[0] = c;
              buf[0] = c;
              buf[1] = '\0';
              buf[1] = '\0';
              puts_debug ("read -->", buf, "<--");
              puts_debug ("read -->", buf, "<--");
            }
            }
 
 
        }
        }
 
 
      /* Canonicialize \n\r combinations into one \r */
      /* Canonicialize \n\r combinations into one \r */
      if ((current_monitor->flags & MO_HANDLE_NL) != 0)
      if ((current_monitor->flags & MO_HANDLE_NL) != 0)
        {
        {
          if ((c == '\r' && state == last_nl)
          if ((c == '\r' && state == last_nl)
              || (c == '\n' && state == last_cr))
              || (c == '\n' && state == last_cr))
            {
            {
              state = last_crnl;
              state = last_crnl;
              looping = 1;
              looping = 1;
            }
            }
          else if (c == '\r')
          else if (c == '\r')
            state = last_cr;
            state = last_cr;
          else if (c != '\n')
          else if (c != '\n')
            state = last_random;
            state = last_random;
          else
          else
            {
            {
              state = last_nl;
              state = last_nl;
              c = '\r';
              c = '\r';
            }
            }
        }
        }
    }
    }
  while (looping);
  while (looping);
 
 
  if (c >= 0)
  if (c >= 0)
    return c;
    return c;
 
 
  if (c == SERIAL_TIMEOUT)
  if (c == SERIAL_TIMEOUT)
#if 0
#if 0
    /* I fail to see how detaching here can be useful */
    /* I fail to see how detaching here can be useful */
    if (in_monitor_wait)        /* Watchdog went off */
    if (in_monitor_wait)        /* Watchdog went off */
      {
      {
        target_mourn_inferior ();
        target_mourn_inferior ();
        error (_("GDB serial timeout has expired.  Target detached."));
        error (_("GDB serial timeout has expired.  Target detached."));
      }
      }
    else
    else
#endif
#endif
      error (_("Timeout reading from remote system."));
      error (_("Timeout reading from remote system."));
 
 
  perror_with_name (_("remote-monitor"));
  perror_with_name (_("remote-monitor"));
}
}
 
 
/* Scan input from the remote system, until STRING is found.  If BUF is non-
/* Scan input from the remote system, until STRING is found.  If BUF is non-
   zero, then collect input until we have collected either STRING or BUFLEN-1
   zero, then collect input until we have collected either STRING or BUFLEN-1
   chars.  In either case we terminate BUF with a 0.  If input overflows BUF
   chars.  In either case we terminate BUF with a 0.  If input overflows BUF
   because STRING can't be found, return -1, else return number of chars in BUF
   because STRING can't be found, return -1, else return number of chars in BUF
   (minus the terminating NUL).  Note that in the non-overflow case, STRING
   (minus the terminating NUL).  Note that in the non-overflow case, STRING
   will be at the end of BUF.  */
   will be at the end of BUF.  */
 
 
int
int
monitor_expect (char *string, char *buf, int buflen)
monitor_expect (char *string, char *buf, int buflen)
{
{
  char *p = string;
  char *p = string;
  int obuflen = buflen;
  int obuflen = buflen;
  int c;
  int c;
 
 
  if (monitor_debug_p)
  if (monitor_debug_p)
    {
    {
      char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
      char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
      monitor_printable_string (safe_string, string, 0);
      monitor_printable_string (safe_string, string, 0);
      fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
      fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
    }
    }
 
 
  immediate_quit++;
  immediate_quit++;
  while (1)
  while (1)
    {
    {
      if (buf)
      if (buf)
        {
        {
          if (buflen < 2)
          if (buflen < 2)
            {
            {
              *buf = '\000';
              *buf = '\000';
              immediate_quit--;
              immediate_quit--;
              return -1;
              return -1;
            }
            }
 
 
          c = readchar (timeout);
          c = readchar (timeout);
          if (c == '\000')
          if (c == '\000')
            continue;
            continue;
          *buf++ = c;
          *buf++ = c;
          buflen--;
          buflen--;
        }
        }
      else
      else
        c = readchar (timeout);
        c = readchar (timeout);
 
 
      /* Don't expect any ^C sent to be echoed */
      /* Don't expect any ^C sent to be echoed */
 
 
      if (*p == '\003' || c == *p)
      if (*p == '\003' || c == *p)
        {
        {
          p++;
          p++;
          if (*p == '\0')
          if (*p == '\0')
            {
            {
              immediate_quit--;
              immediate_quit--;
 
 
              if (buf)
              if (buf)
                {
                {
                  *buf++ = '\000';
                  *buf++ = '\000';
                  return obuflen - buflen;
                  return obuflen - buflen;
                }
                }
              else
              else
                return 0;
                return 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* We got a character that doesn't match the string.  We need to
          /* We got a character that doesn't match the string.  We need to
             back up p, but how far?  If we're looking for "..howdy" and the
             back up p, but how far?  If we're looking for "..howdy" and the
             monitor sends "...howdy"?  There's certainly a match in there,
             monitor sends "...howdy"?  There's certainly a match in there,
             but when we receive the third ".", we won't find it if we just
             but when we receive the third ".", we won't find it if we just
             restart the matching at the beginning of the string.
             restart the matching at the beginning of the string.
 
 
             This is a Boyer-Moore kind of situation.  We want to reset P to
             This is a Boyer-Moore kind of situation.  We want to reset P to
             the end of the longest prefix of STRING that is a suffix of
             the end of the longest prefix of STRING that is a suffix of
             what we've read so far.  In the example above, that would be
             what we've read so far.  In the example above, that would be
             ".." --- the longest prefix of "..howdy" that is a suffix of
             ".." --- the longest prefix of "..howdy" that is a suffix of
             "...".  This longest prefix could be the empty string, if C
             "...".  This longest prefix could be the empty string, if C
             is nowhere to be found in STRING.
             is nowhere to be found in STRING.
 
 
             If this longest prefix is not the empty string, it must contain
             If this longest prefix is not the empty string, it must contain
             C, so let's search from the end of STRING for instances of C,
             C, so let's search from the end of STRING for instances of C,
             and see if the portion of STRING before that is a suffix of
             and see if the portion of STRING before that is a suffix of
             what we read before C.  Actually, we can search backwards from
             what we read before C.  Actually, we can search backwards from
             p, since we know no prefix can be longer than that.
             p, since we know no prefix can be longer than that.
 
 
             Note that we can use STRING itself, along with C, as a record
             Note that we can use STRING itself, along with C, as a record
             of what we've received so far.  :) */
             of what we've received so far.  :) */
          int i;
          int i;
 
 
          for (i = (p - string) - 1; i >= 0; i--)
          for (i = (p - string) - 1; i >= 0; i--)
            if (string[i] == c)
            if (string[i] == c)
              {
              {
                /* Is this prefix a suffix of what we've read so far?
                /* Is this prefix a suffix of what we've read so far?
                   In other words, does
                   In other words, does
                     string[0 .. i-1] == string[p - i, p - 1]? */
                     string[0 .. i-1] == string[p - i, p - 1]? */
                if (! memcmp (string, p - i, i))
                if (! memcmp (string, p - i, i))
                  {
                  {
                    p = string + i + 1;
                    p = string + i + 1;
                    break;
                    break;
                  }
                  }
              }
              }
          if (i < 0)
          if (i < 0)
            p = string;
            p = string;
        }
        }
    }
    }
}
}
 
 
/* Search for a regexp.  */
/* Search for a regexp.  */
 
 
static int
static int
monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
{
{
  char *mybuf;
  char *mybuf;
  char *p;
  char *p;
  monitor_debug ("MON Expecting regexp\n");
  monitor_debug ("MON Expecting regexp\n");
  if (buf)
  if (buf)
    mybuf = buf;
    mybuf = buf;
  else
  else
    {
    {
      mybuf = alloca (TARGET_BUF_SIZE);
      mybuf = alloca (TARGET_BUF_SIZE);
      buflen = TARGET_BUF_SIZE;
      buflen = TARGET_BUF_SIZE;
    }
    }
 
 
  p = mybuf;
  p = mybuf;
  while (1)
  while (1)
    {
    {
      int retval;
      int retval;
 
 
      if (p - mybuf >= buflen)
      if (p - mybuf >= buflen)
        {                       /* Buffer about to overflow */
        {                       /* Buffer about to overflow */
 
 
/* On overflow, we copy the upper half of the buffer to the lower half.  Not
/* On overflow, we copy the upper half of the buffer to the lower half.  Not
   great, but it usually works... */
   great, but it usually works... */
 
 
          memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
          memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
          p = mybuf + buflen / 2;
          p = mybuf + buflen / 2;
        }
        }
 
 
      *p++ = readchar (timeout);
      *p++ = readchar (timeout);
 
 
      retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
      retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
      if (retval >= 0)
      if (retval >= 0)
        return 1;
        return 1;
    }
    }
}
}
 
 
/* Keep discarding input until we see the MONITOR prompt.
/* Keep discarding input until we see the MONITOR prompt.
 
 
   The convention for dealing with the prompt is that you
   The convention for dealing with the prompt is that you
   o give your command
   o give your command
   o *then* wait for the prompt.
   o *then* wait for the prompt.
 
 
   Thus the last thing that a procedure does with the serial line will
   Thus the last thing that a procedure does with the serial line will
   be an monitor_expect_prompt().  Exception: monitor_resume does not
   be an monitor_expect_prompt().  Exception: monitor_resume does not
   wait for the prompt, because the terminal is being handed over to
   wait for the prompt, because the terminal is being handed over to
   the inferior.  However, the next thing which happens after that is
   the inferior.  However, the next thing which happens after that is
   a monitor_wait which does wait for the prompt.  Note that this
   a monitor_wait which does wait for the prompt.  Note that this
   includes abnormal exit, e.g. error().  This is necessary to prevent
   includes abnormal exit, e.g. error().  This is necessary to prevent
   getting into states from which we can't recover.  */
   getting into states from which we can't recover.  */
 
 
int
int
monitor_expect_prompt (char *buf, int buflen)
monitor_expect_prompt (char *buf, int buflen)
{
{
  monitor_debug ("MON Expecting prompt\n");
  monitor_debug ("MON Expecting prompt\n");
  return monitor_expect (current_monitor->prompt, buf, buflen);
  return monitor_expect (current_monitor->prompt, buf, buflen);
}
}
 
 
/* Get N 32-bit words from remote, each preceded by a space, and put
/* Get N 32-bit words from remote, each preceded by a space, and put
   them in registers starting at REGNO.  */
   them in registers starting at REGNO.  */
 
 
#if 0
#if 0
static unsigned long
static unsigned long
get_hex_word (void)
get_hex_word (void)
{
{
  unsigned long val;
  unsigned long val;
  int i;
  int i;
  int ch;
  int ch;
 
 
  do
  do
    ch = readchar (timeout);
    ch = readchar (timeout);
  while (isspace (ch));
  while (isspace (ch));
 
 
  val = from_hex (ch);
  val = from_hex (ch);
 
 
  for (i = 7; i >= 1; i--)
  for (i = 7; i >= 1; i--)
    {
    {
      ch = readchar (timeout);
      ch = readchar (timeout);
      if (!isxdigit (ch))
      if (!isxdigit (ch))
        break;
        break;
      val = (val << 4) | from_hex (ch);
      val = (val << 4) | from_hex (ch);
    }
    }
 
 
  return val;
  return val;
}
}
#endif
#endif
 
 
static void
static void
compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
                 char *fastmap)
                 char *fastmap)
{
{
  int tmp;
  int tmp;
  const char *val;
  const char *val;
 
 
  compiled_pattern->fastmap = fastmap;
  compiled_pattern->fastmap = fastmap;
 
 
  tmp = re_set_syntax (RE_SYNTAX_EMACS);
  tmp = re_set_syntax (RE_SYNTAX_EMACS);
  val = re_compile_pattern (pattern,
  val = re_compile_pattern (pattern,
                            strlen (pattern),
                            strlen (pattern),
                            compiled_pattern);
                            compiled_pattern);
  re_set_syntax (tmp);
  re_set_syntax (tmp);
 
 
  if (val)
  if (val)
    error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
    error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
 
 
  if (fastmap)
  if (fastmap)
    re_compile_fastmap (compiled_pattern);
    re_compile_fastmap (compiled_pattern);
}
}
 
 
/* Open a connection to a remote debugger. NAME is the filename used
/* Open a connection to a remote debugger. NAME is the filename used
   for communication.  */
   for communication.  */
 
 
void
void
monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
{
{
  char *name;
  char *name;
  char **p;
  char **p;
  struct inferior *inf;
  struct inferior *inf;
 
 
  if (mon_ops->magic != MONITOR_OPS_MAGIC)
  if (mon_ops->magic != MONITOR_OPS_MAGIC)
    error (_("Magic number of monitor_ops struct wrong."));
    error (_("Magic number of monitor_ops struct wrong."));
 
 
  targ_ops = mon_ops->target;
  targ_ops = mon_ops->target;
  name = targ_ops->to_shortname;
  name = targ_ops->to_shortname;
 
 
  if (!args)
  if (!args)
    error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
    error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
`target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
`target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
 
 
  target_preopen (from_tty);
  target_preopen (from_tty);
 
 
  /* Setup pattern for register dump */
  /* Setup pattern for register dump */
 
 
  if (mon_ops->register_pattern)
  if (mon_ops->register_pattern)
    compile_pattern (mon_ops->register_pattern, &register_pattern,
    compile_pattern (mon_ops->register_pattern, &register_pattern,
                     register_fastmap);
                     register_fastmap);
 
 
  if (mon_ops->getmem.resp_delim)
  if (mon_ops->getmem.resp_delim)
    compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
    compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
                     getmem_resp_delim_fastmap);
                     getmem_resp_delim_fastmap);
 
 
  if (mon_ops->setmem.resp_delim)
  if (mon_ops->setmem.resp_delim)
    compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
    compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
                     setmem_resp_delim_fastmap);
                     setmem_resp_delim_fastmap);
 
 
  if (mon_ops->setreg.resp_delim)
  if (mon_ops->setreg.resp_delim)
    compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
    compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
                     setreg_resp_delim_fastmap);
                     setreg_resp_delim_fastmap);
 
 
  unpush_target (targ_ops);
  unpush_target (targ_ops);
 
 
  if (dev_name)
  if (dev_name)
    xfree (dev_name);
    xfree (dev_name);
  dev_name = xstrdup (args);
  dev_name = xstrdup (args);
 
 
  monitor_desc = serial_open (dev_name);
  monitor_desc = serial_open (dev_name);
 
 
  if (!monitor_desc)
  if (!monitor_desc)
    perror_with_name (dev_name);
    perror_with_name (dev_name);
 
 
  if (baud_rate != -1)
  if (baud_rate != -1)
    {
    {
      if (serial_setbaudrate (monitor_desc, baud_rate))
      if (serial_setbaudrate (monitor_desc, baud_rate))
        {
        {
          serial_close (monitor_desc);
          serial_close (monitor_desc);
          perror_with_name (dev_name);
          perror_with_name (dev_name);
        }
        }
    }
    }
 
 
  serial_raw (monitor_desc);
  serial_raw (monitor_desc);
 
 
  serial_flush_input (monitor_desc);
  serial_flush_input (monitor_desc);
 
 
  /* some systems only work with 2 stop bits */
  /* some systems only work with 2 stop bits */
 
 
  serial_setstopbits (monitor_desc, mon_ops->stopbits);
  serial_setstopbits (monitor_desc, mon_ops->stopbits);
 
 
  current_monitor = mon_ops;
  current_monitor = mon_ops;
 
 
  /* See if we can wake up the monitor.  First, try sending a stop sequence,
  /* See if we can wake up the monitor.  First, try sending a stop sequence,
     then send the init strings.  Last, remove all breakpoints.  */
     then send the init strings.  Last, remove all breakpoints.  */
 
 
  if (current_monitor->stop)
  if (current_monitor->stop)
    {
    {
      monitor_stop (inferior_ptid);
      monitor_stop (inferior_ptid);
      if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
      if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
        {
        {
          monitor_debug ("EXP Open echo\n");
          monitor_debug ("EXP Open echo\n");
          monitor_expect_prompt (NULL, 0);
          monitor_expect_prompt (NULL, 0);
        }
        }
    }
    }
 
 
  /* wake up the monitor and see if it's alive */
  /* wake up the monitor and see if it's alive */
  for (p = mon_ops->init; *p != NULL; p++)
  for (p = mon_ops->init; *p != NULL; p++)
    {
    {
      /* Some of the characters we send may not be echoed,
      /* Some of the characters we send may not be echoed,
         but we hope to get a prompt at the end of it all. */
         but we hope to get a prompt at the end of it all. */
 
 
      if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
      if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
        monitor_printf (*p);
        monitor_printf (*p);
      else
      else
        monitor_printf_noecho (*p);
        monitor_printf_noecho (*p);
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
    }
    }
 
 
  serial_flush_input (monitor_desc);
  serial_flush_input (monitor_desc);
 
 
  /* Alloc breakpoints */
  /* Alloc breakpoints */
  if (mon_ops->set_break != NULL)
  if (mon_ops->set_break != NULL)
    {
    {
      if (mon_ops->num_breakpoints == 0)
      if (mon_ops->num_breakpoints == 0)
        mon_ops->num_breakpoints = 8;
        mon_ops->num_breakpoints = 8;
 
 
      breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
      breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
      memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
      memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
    }
    }
 
 
  /* Remove all breakpoints */
  /* Remove all breakpoints */
 
 
  if (mon_ops->clr_all_break)
  if (mon_ops->clr_all_break)
    {
    {
      monitor_printf (mon_ops->clr_all_break);
      monitor_printf (mon_ops->clr_all_break);
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
    }
    }
 
 
  if (from_tty)
  if (from_tty)
    printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
    printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
 
 
  push_target (targ_ops);
  push_target (targ_ops);
 
 
  /* Start afresh.  */
  /* Start afresh.  */
  init_thread_list ();
  init_thread_list ();
 
 
  /* Make run command think we are busy...  */
  /* Make run command think we are busy...  */
  inferior_ptid = monitor_ptid;
  inferior_ptid = monitor_ptid;
  inf = current_inferior ();
  inf = current_inferior ();
  inferior_appeared (inf, ptid_get_pid (inferior_ptid));
  inferior_appeared (inf, ptid_get_pid (inferior_ptid));
  add_thread_silent (inferior_ptid);
  add_thread_silent (inferior_ptid);
 
 
  /* Give monitor_wait something to read */
  /* Give monitor_wait something to read */
 
 
  monitor_printf (current_monitor->line_term);
  monitor_printf (current_monitor->line_term);
 
 
  start_remote (from_tty);
  start_remote (from_tty);
}
}
 
 
/* Close out all files and local state before this target loses
/* Close out all files and local state before this target loses
   control.  */
   control.  */
 
 
void
void
monitor_close (int quitting)
monitor_close (int quitting)
{
{
  if (monitor_desc)
  if (monitor_desc)
    serial_close (monitor_desc);
    serial_close (monitor_desc);
 
 
  /* Free breakpoint memory */
  /* Free breakpoint memory */
  if (breakaddr != NULL)
  if (breakaddr != NULL)
    {
    {
      xfree (breakaddr);
      xfree (breakaddr);
      breakaddr = NULL;
      breakaddr = NULL;
    }
    }
 
 
  monitor_desc = NULL;
  monitor_desc = NULL;
 
 
  delete_thread_silent (monitor_ptid);
  delete_thread_silent (monitor_ptid);
  delete_inferior_silent (ptid_get_pid (monitor_ptid));
  delete_inferior_silent (ptid_get_pid (monitor_ptid));
}
}
 
 
/* Terminate the open connection to the remote debugger.  Use this
/* Terminate the open connection to the remote debugger.  Use this
   when you want to detach and do something else with your gdb.  */
   when you want to detach and do something else with your gdb.  */
 
 
static void
static void
monitor_detach (struct target_ops *ops, char *args, int from_tty)
monitor_detach (struct target_ops *ops, char *args, int from_tty)
{
{
  pop_target ();                /* calls monitor_close to do the real work */
  pop_target ();                /* calls monitor_close to do the real work */
  if (from_tty)
  if (from_tty)
    printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
    printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
}
}
 
 
/* Convert VALSTR into the target byte-ordered value of REGNO and store it.  */
/* Convert VALSTR into the target byte-ordered value of REGNO and store it.  */
 
 
char *
char *
monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST val;
  ULONGEST val;
  unsigned char regbuf[MAX_REGISTER_SIZE];
  unsigned char regbuf[MAX_REGISTER_SIZE];
  char *p;
  char *p;
 
 
  val = 0;
  val = 0;
  p = valstr;
  p = valstr;
  while (p && *p != '\0')
  while (p && *p != '\0')
    {
    {
      if (*p == '\r' || *p == '\n')
      if (*p == '\r' || *p == '\n')
        {
        {
          while (*p != '\0')
          while (*p != '\0')
              p++;
              p++;
          break;
          break;
        }
        }
      if (isspace (*p))
      if (isspace (*p))
        {
        {
          p++;
          p++;
          continue;
          continue;
        }
        }
      if (!isxdigit (*p) && *p != 'x')
      if (!isxdigit (*p) && *p != 'x')
        {
        {
          break;
          break;
        }
        }
 
 
      val <<= 4;
      val <<= 4;
      val += fromhex (*p++);
      val += fromhex (*p++);
    }
    }
  monitor_debug ("Supplying Register %d %s\n", regno, valstr);
  monitor_debug ("Supplying Register %d %s\n", regno, valstr);
 
 
  if (val == 0 && valstr == p)
  if (val == 0 && valstr == p)
    error (_("monitor_supply_register (%d):  bad value from monitor: %s."),
    error (_("monitor_supply_register (%d):  bad value from monitor: %s."),
           regno, valstr);
           regno, valstr);
 
 
  /* supply register stores in target byte order, so swap here */
  /* supply register stores in target byte order, so swap here */
 
 
  store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
  store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
                          val);
                          val);
 
 
  regcache_raw_supply (regcache, regno, regbuf);
  regcache_raw_supply (regcache, regno, regbuf);
 
 
  return p;
  return p;
}
}
 
 
/* Tell the remote machine to resume.  */
/* Tell the remote machine to resume.  */
 
 
static void
static void
monitor_resume (struct target_ops *ops,
monitor_resume (struct target_ops *ops,
                ptid_t ptid, int step, enum target_signal sig)
                ptid_t ptid, int step, enum target_signal sig)
{
{
  /* Some monitors require a different command when starting a program */
  /* Some monitors require a different command when starting a program */
  monitor_debug ("MON resume\n");
  monitor_debug ("MON resume\n");
  if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
  if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
    {
    {
      first_time = 0;
      first_time = 0;
      monitor_printf ("run\r");
      monitor_printf ("run\r");
      if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
      if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
        dump_reg_flag = 1;
        dump_reg_flag = 1;
      return;
      return;
    }
    }
  if (step)
  if (step)
    monitor_printf (current_monitor->step);
    monitor_printf (current_monitor->step);
  else
  else
    {
    {
      if (current_monitor->continue_hook)
      if (current_monitor->continue_hook)
        (*current_monitor->continue_hook) ();
        (*current_monitor->continue_hook) ();
      else
      else
        monitor_printf (current_monitor->cont);
        monitor_printf (current_monitor->cont);
      if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
      if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
        dump_reg_flag = 1;
        dump_reg_flag = 1;
    }
    }
}
}
 
 
/* Parse the output of a register dump command.  A monitor specific
/* Parse the output of a register dump command.  A monitor specific
   regexp is used to extract individual register descriptions of the
   regexp is used to extract individual register descriptions of the
   form REG=VAL.  Each description is split up into a name and a value
   form REG=VAL.  Each description is split up into a name and a value
   string which are passed down to monitor specific code.  */
   string which are passed down to monitor specific code.  */
 
 
static void
static void
parse_register_dump (struct regcache *regcache, char *buf, int len)
parse_register_dump (struct regcache *regcache, char *buf, int len)
{
{
  monitor_debug ("MON Parsing  register dump\n");
  monitor_debug ("MON Parsing  register dump\n");
  while (1)
  while (1)
    {
    {
      int regnamelen, vallen;
      int regnamelen, vallen;
      char *regname, *val;
      char *regname, *val;
      /* Element 0 points to start of register name, and element 1
      /* Element 0 points to start of register name, and element 1
         points to the start of the register value.  */
         points to the start of the register value.  */
      struct re_registers register_strings;
      struct re_registers register_strings;
 
 
      memset (&register_strings, 0, sizeof (struct re_registers));
      memset (&register_strings, 0, sizeof (struct re_registers));
 
 
      if (re_search (&register_pattern, buf, len, 0, len,
      if (re_search (&register_pattern, buf, len, 0, len,
                     &register_strings) == -1)
                     &register_strings) == -1)
        break;
        break;
 
 
      regnamelen = register_strings.end[1] - register_strings.start[1];
      regnamelen = register_strings.end[1] - register_strings.start[1];
      regname = buf + register_strings.start[1];
      regname = buf + register_strings.start[1];
      vallen = register_strings.end[2] - register_strings.start[2];
      vallen = register_strings.end[2] - register_strings.start[2];
      val = buf + register_strings.start[2];
      val = buf + register_strings.start[2];
 
 
      current_monitor->supply_register (regcache, regname, regnamelen,
      current_monitor->supply_register (regcache, regname, regnamelen,
                                        val, vallen);
                                        val, vallen);
 
 
      buf += register_strings.end[0];
      buf += register_strings.end[0];
      len -= register_strings.end[0];
      len -= register_strings.end[0];
    }
    }
}
}
 
 
/* Send ^C to target to halt it.  Target will respond, and send us a
/* Send ^C to target to halt it.  Target will respond, and send us a
   packet.  */
   packet.  */
 
 
static void
static void
monitor_interrupt (int signo)
monitor_interrupt (int signo)
{
{
  /* If this doesn't work, try more severe steps.  */
  /* If this doesn't work, try more severe steps.  */
  signal (signo, monitor_interrupt_twice);
  signal (signo, monitor_interrupt_twice);
 
 
  if (monitor_debug_p || remote_debug)
  if (monitor_debug_p || remote_debug)
    fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
    fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
 
 
  target_stop (inferior_ptid);
  target_stop (inferior_ptid);
}
}
 
 
/* The user typed ^C twice.  */
/* The user typed ^C twice.  */
 
 
static void
static void
monitor_interrupt_twice (int signo)
monitor_interrupt_twice (int signo)
{
{
  signal (signo, ofunc);
  signal (signo, ofunc);
 
 
  monitor_interrupt_query ();
  monitor_interrupt_query ();
 
 
  signal (signo, monitor_interrupt);
  signal (signo, monitor_interrupt);
}
}
 
 
/* Ask the user what to do when an interrupt is received.  */
/* Ask the user what to do when an interrupt is received.  */
 
 
static void
static void
monitor_interrupt_query (void)
monitor_interrupt_query (void)
{
{
  target_terminal_ours ();
  target_terminal_ours ();
 
 
  if (query (_("Interrupted while waiting for the program.\n\
  if (query (_("Interrupted while waiting for the program.\n\
Give up (and stop debugging it)? ")))
Give up (and stop debugging it)? ")))
    {
    {
      target_mourn_inferior ();
      target_mourn_inferior ();
      deprecated_throw_reason (RETURN_QUIT);
      deprecated_throw_reason (RETURN_QUIT);
    }
    }
 
 
  target_terminal_inferior ();
  target_terminal_inferior ();
}
}
 
 
static void
static void
monitor_wait_cleanup (void *old_timeout)
monitor_wait_cleanup (void *old_timeout)
{
{
  timeout = *(int *) old_timeout;
  timeout = *(int *) old_timeout;
  signal (SIGINT, ofunc);
  signal (SIGINT, ofunc);
  in_monitor_wait = 0;
  in_monitor_wait = 0;
}
}
 
 
 
 
 
 
static void
static void
monitor_wait_filter (char *buf,
monitor_wait_filter (char *buf,
                     int bufmax,
                     int bufmax,
                     int *ext_resp_len,
                     int *ext_resp_len,
                     struct target_waitstatus *status)
                     struct target_waitstatus *status)
{
{
  int resp_len;
  int resp_len;
  do
  do
    {
    {
      resp_len = monitor_expect_prompt (buf, bufmax);
      resp_len = monitor_expect_prompt (buf, bufmax);
      *ext_resp_len = resp_len;
      *ext_resp_len = resp_len;
 
 
      if (resp_len <= 0)
      if (resp_len <= 0)
        fprintf_unfiltered (gdb_stderr, "monitor_wait:  excessive response from monitor: %s.", buf);
        fprintf_unfiltered (gdb_stderr, "monitor_wait:  excessive response from monitor: %s.", buf);
    }
    }
  while (resp_len < 0);
  while (resp_len < 0);
 
 
  /* Print any output characters that were preceded by ^O.  */
  /* Print any output characters that were preceded by ^O.  */
  /* FIXME - This would be great as a user settabgle flag */
  /* FIXME - This would be great as a user settabgle flag */
  if (monitor_debug_p || remote_debug
  if (monitor_debug_p || remote_debug
      || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
      || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < resp_len - 1; i++)
      for (i = 0; i < resp_len - 1; i++)
        if (buf[i] == 0x0f)
        if (buf[i] == 0x0f)
          putchar_unfiltered (buf[++i]);
          putchar_unfiltered (buf[++i]);
    }
    }
}
}
 
 
 
 
 
 
/* Wait until the remote machine stops, then return, storing status in
/* Wait until the remote machine stops, then return, storing status in
   status just as `wait' would.  */
   status just as `wait' would.  */
 
 
static ptid_t
static ptid_t
monitor_wait (struct target_ops *ops,
monitor_wait (struct target_ops *ops,
              ptid_t ptid, struct target_waitstatus *status, int options)
              ptid_t ptid, struct target_waitstatus *status, int options)
{
{
  int old_timeout = timeout;
  int old_timeout = timeout;
  char buf[TARGET_BUF_SIZE];
  char buf[TARGET_BUF_SIZE];
  int resp_len;
  int resp_len;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
 
 
  status->kind = TARGET_WAITKIND_EXITED;
  status->kind = TARGET_WAITKIND_EXITED;
  status->value.integer = 0;
  status->value.integer = 0;
 
 
  old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
  old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
  monitor_debug ("MON wait\n");
  monitor_debug ("MON wait\n");
 
 
#if 0
#if 0
  /* This is somthing other than a maintenance command */
  /* This is somthing other than a maintenance command */
    in_monitor_wait = 1;
    in_monitor_wait = 1;
  timeout = watchdog > 0 ? watchdog : -1;
  timeout = watchdog > 0 ? watchdog : -1;
#else
#else
  timeout = -1;         /* Don't time out -- user program is running. */
  timeout = -1;         /* Don't time out -- user program is running. */
#endif
#endif
 
 
  ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
  ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
 
 
  if (current_monitor->wait_filter)
  if (current_monitor->wait_filter)
    (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
    (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
  else
  else
    monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
    monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
 
 
#if 0                           /* Transferred to monitor wait filter */
#if 0                           /* Transferred to monitor wait filter */
  do
  do
    {
    {
      resp_len = monitor_expect_prompt (buf, sizeof (buf));
      resp_len = monitor_expect_prompt (buf, sizeof (buf));
 
 
      if (resp_len <= 0)
      if (resp_len <= 0)
        fprintf_unfiltered (gdb_stderr, "monitor_wait:  excessive response from monitor: %s.", buf);
        fprintf_unfiltered (gdb_stderr, "monitor_wait:  excessive response from monitor: %s.", buf);
    }
    }
  while (resp_len < 0);
  while (resp_len < 0);
 
 
  /* Print any output characters that were preceded by ^O.  */
  /* Print any output characters that were preceded by ^O.  */
  /* FIXME - This would be great as a user settabgle flag */
  /* FIXME - This would be great as a user settabgle flag */
  if (monitor_debug_p || remote_debug
  if (monitor_debug_p || remote_debug
      || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
      || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < resp_len - 1; i++)
      for (i = 0; i < resp_len - 1; i++)
        if (buf[i] == 0x0f)
        if (buf[i] == 0x0f)
          putchar_unfiltered (buf[++i]);
          putchar_unfiltered (buf[++i]);
    }
    }
#endif
#endif
 
 
  signal (SIGINT, ofunc);
  signal (SIGINT, ofunc);
 
 
  timeout = old_timeout;
  timeout = old_timeout;
#if 0
#if 0
  if (dump_reg_flag && current_monitor->dump_registers)
  if (dump_reg_flag && current_monitor->dump_registers)
    {
    {
      dump_reg_flag = 0;
      dump_reg_flag = 0;
      monitor_printf (current_monitor->dump_registers);
      monitor_printf (current_monitor->dump_registers);
      resp_len = monitor_expect_prompt (buf, sizeof (buf));
      resp_len = monitor_expect_prompt (buf, sizeof (buf));
    }
    }
 
 
  if (current_monitor->register_pattern)
  if (current_monitor->register_pattern)
    parse_register_dump (get_current_regcache (), buf, resp_len);
    parse_register_dump (get_current_regcache (), buf, resp_len);
#else
#else
  monitor_debug ("Wait fetching registers after stop\n");
  monitor_debug ("Wait fetching registers after stop\n");
  monitor_dump_regs (get_current_regcache ());
  monitor_dump_regs (get_current_regcache ());
#endif
#endif
 
 
  status->kind = TARGET_WAITKIND_STOPPED;
  status->kind = TARGET_WAITKIND_STOPPED;
  status->value.sig = TARGET_SIGNAL_TRAP;
  status->value.sig = TARGET_SIGNAL_TRAP;
 
 
  discard_cleanups (old_chain);
  discard_cleanups (old_chain);
 
 
  in_monitor_wait = 0;
  in_monitor_wait = 0;
 
 
  return inferior_ptid;
  return inferior_ptid;
}
}
 
 
/* Fetch register REGNO, or all registers if REGNO is -1. Returns
/* Fetch register REGNO, or all registers if REGNO is -1. Returns
   errno value.  */
   errno value.  */
 
 
static void
static void
monitor_fetch_register (struct regcache *regcache, int regno)
monitor_fetch_register (struct regcache *regcache, int regno)
{
{
  const char *name;
  const char *name;
  char *zerobuf;
  char *zerobuf;
  char *regbuf;
  char *regbuf;
  int i;
  int i;
 
 
  regbuf  = alloca (MAX_REGISTER_SIZE * 2 + 1);
  regbuf  = alloca (MAX_REGISTER_SIZE * 2 + 1);
  zerobuf = alloca (MAX_REGISTER_SIZE);
  zerobuf = alloca (MAX_REGISTER_SIZE);
  memset (zerobuf, 0, MAX_REGISTER_SIZE);
  memset (zerobuf, 0, MAX_REGISTER_SIZE);
 
 
  if (current_monitor->regname != NULL)
  if (current_monitor->regname != NULL)
    name = current_monitor->regname (regno);
    name = current_monitor->regname (regno);
  else
  else
    name = current_monitor->regnames[regno];
    name = current_monitor->regnames[regno];
  monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
  monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
 
 
  if (!name || (*name == '\0'))
  if (!name || (*name == '\0'))
    {
    {
      monitor_debug ("No register known for %d\n", regno);
      monitor_debug ("No register known for %d\n", regno);
      regcache_raw_supply (regcache, regno, zerobuf);
      regcache_raw_supply (regcache, regno, zerobuf);
      return;
      return;
    }
    }
 
 
  /* send the register examine command */
  /* send the register examine command */
 
 
  monitor_printf (current_monitor->getreg.cmd, name);
  monitor_printf (current_monitor->getreg.cmd, name);
 
 
  /* If RESP_DELIM is specified, we search for that as a leading
  /* If RESP_DELIM is specified, we search for that as a leading
     delimiter for the register value.  Otherwise, we just start
     delimiter for the register value.  Otherwise, we just start
     searching from the start of the buf.  */
     searching from the start of the buf.  */
 
 
  if (current_monitor->getreg.resp_delim)
  if (current_monitor->getreg.resp_delim)
    {
    {
      monitor_debug ("EXP getreg.resp_delim\n");
      monitor_debug ("EXP getreg.resp_delim\n");
      monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
      monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
      /* Handle case of first 32 registers listed in pairs.  */
      /* Handle case of first 32 registers listed in pairs.  */
      if (current_monitor->flags & MO_32_REGS_PAIRED
      if (current_monitor->flags & MO_32_REGS_PAIRED
          && (regno & 1) != 0 && regno < 32)
          && (regno & 1) != 0 && regno < 32)
        {
        {
          monitor_debug ("EXP getreg.resp_delim\n");
          monitor_debug ("EXP getreg.resp_delim\n");
          monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
          monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
        }
        }
    }
    }
 
 
  /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
  /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
  if (current_monitor->flags & MO_HEX_PREFIX)
  if (current_monitor->flags & MO_HEX_PREFIX)
    {
    {
      int c;
      int c;
      c = readchar (timeout);
      c = readchar (timeout);
      while (c == ' ')
      while (c == ' ')
        c = readchar (timeout);
        c = readchar (timeout);
      if ((c == '0') && ((c = readchar (timeout)) == 'x'))
      if ((c == '0') && ((c = readchar (timeout)) == 'x'))
        ;
        ;
      else
      else
        error (_("Bad value returned from monitor while fetching register %x."),
        error (_("Bad value returned from monitor while fetching register %x."),
               regno);
               regno);
    }
    }
 
 
  /* Read upto the maximum number of hex digits for this register, skipping
  /* Read upto the maximum number of hex digits for this register, skipping
     spaces, but stop reading if something else is seen.  Some monitors
     spaces, but stop reading if something else is seen.  Some monitors
     like to drop leading zeros.  */
     like to drop leading zeros.  */
 
 
  for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
  for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
    {
    {
      int c;
      int c;
      c = readchar (timeout);
      c = readchar (timeout);
      while (c == ' ')
      while (c == ' ')
        c = readchar (timeout);
        c = readchar (timeout);
 
 
      if (!isxdigit (c))
      if (!isxdigit (c))
        break;
        break;
 
 
      regbuf[i] = c;
      regbuf[i] = c;
    }
    }
 
 
  regbuf[i] = '\000';           /* terminate the number */
  regbuf[i] = '\000';           /* terminate the number */
  monitor_debug ("REGVAL '%s'\n", regbuf);
  monitor_debug ("REGVAL '%s'\n", regbuf);
 
 
  /* If TERM is present, we wait for that to show up.  Also, (if TERM
  /* If TERM is present, we wait for that to show up.  Also, (if TERM
     is present), we will send TERM_CMD if that is present.  In any
     is present), we will send TERM_CMD if that is present.  In any
     case, we collect all of the output into buf, and then wait for
     case, we collect all of the output into buf, and then wait for
     the normal prompt.  */
     the normal prompt.  */
 
 
  if (current_monitor->getreg.term)
  if (current_monitor->getreg.term)
    {
    {
      monitor_debug ("EXP getreg.term\n");
      monitor_debug ("EXP getreg.term\n");
      monitor_expect (current_monitor->getreg.term, NULL, 0);            /* get response */
      monitor_expect (current_monitor->getreg.term, NULL, 0);            /* get response */
    }
    }
 
 
  if (current_monitor->getreg.term_cmd)
  if (current_monitor->getreg.term_cmd)
    {
    {
      monitor_debug ("EMIT getreg.term.cmd\n");
      monitor_debug ("EMIT getreg.term.cmd\n");
      monitor_printf (current_monitor->getreg.term_cmd);
      monitor_printf (current_monitor->getreg.term_cmd);
    }
    }
  if (!current_monitor->getreg.term ||  /* Already expected or */
  if (!current_monitor->getreg.term ||  /* Already expected or */
      current_monitor->getreg.term_cmd)         /* ack expected */
      current_monitor->getreg.term_cmd)         /* ack expected */
    monitor_expect_prompt (NULL, 0);     /* get response */
    monitor_expect_prompt (NULL, 0);     /* get response */
 
 
  monitor_supply_register (regcache, regno, regbuf);
  monitor_supply_register (regcache, regno, regbuf);
}
}
 
 
/* Sometimes, it takes several commands to dump the registers */
/* Sometimes, it takes several commands to dump the registers */
/* This is a primitive for use by variations of monitor interfaces in
/* This is a primitive for use by variations of monitor interfaces in
   case they need to compose the operation.
   case they need to compose the operation.
 */
 */
int
int
monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
{
{
  char buf[TARGET_BUF_SIZE];
  char buf[TARGET_BUF_SIZE];
  int resp_len;
  int resp_len;
  monitor_printf (block_cmd);
  monitor_printf (block_cmd);
  resp_len = monitor_expect_prompt (buf, sizeof (buf));
  resp_len = monitor_expect_prompt (buf, sizeof (buf));
  parse_register_dump (regcache, buf, resp_len);
  parse_register_dump (regcache, buf, resp_len);
  return 1;
  return 1;
}
}
 
 
 
 
/* Read the remote registers into the block regs.  */
/* Read the remote registers into the block regs.  */
/* Call the specific function if it has been provided */
/* Call the specific function if it has been provided */
 
 
static void
static void
monitor_dump_regs (struct regcache *regcache)
monitor_dump_regs (struct regcache *regcache)
{
{
  char buf[TARGET_BUF_SIZE];
  char buf[TARGET_BUF_SIZE];
  int resp_len;
  int resp_len;
  if (current_monitor->dumpregs)
  if (current_monitor->dumpregs)
    (*(current_monitor->dumpregs)) (regcache);  /* call supplied function */
    (*(current_monitor->dumpregs)) (regcache);  /* call supplied function */
  else if (current_monitor->dump_registers)     /* default version */
  else if (current_monitor->dump_registers)     /* default version */
    {
    {
      monitor_printf (current_monitor->dump_registers);
      monitor_printf (current_monitor->dump_registers);
      resp_len = monitor_expect_prompt (buf, sizeof (buf));
      resp_len = monitor_expect_prompt (buf, sizeof (buf));
      parse_register_dump (regcache, buf, resp_len);
      parse_register_dump (regcache, buf, resp_len);
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));                        /* Need some way to read registers */
    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));                        /* Need some way to read registers */
}
}
 
 
static void
static void
monitor_fetch_registers (struct target_ops *ops,
monitor_fetch_registers (struct target_ops *ops,
                         struct regcache *regcache, int regno)
                         struct regcache *regcache, int regno)
{
{
  monitor_debug ("MON fetchregs\n");
  monitor_debug ("MON fetchregs\n");
  if (current_monitor->getreg.cmd)
  if (current_monitor->getreg.cmd)
    {
    {
      if (regno >= 0)
      if (regno >= 0)
        {
        {
          monitor_fetch_register (regcache, regno);
          monitor_fetch_register (regcache, regno);
          return;
          return;
        }
        }
 
 
      for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
      for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
           regno++)
           regno++)
        monitor_fetch_register (regcache, regno);
        monitor_fetch_register (regcache, regno);
    }
    }
  else
  else
    {
    {
      monitor_dump_regs (regcache);
      monitor_dump_regs (regcache);
    }
    }
}
}
 
 
/* Store register REGNO, or all if REGNO == 0.  Return errno value.  */
/* Store register REGNO, or all if REGNO == 0.  Return errno value.  */
 
 
static void
static void
monitor_store_register (struct regcache *regcache, int regno)
monitor_store_register (struct regcache *regcache, int regno)
{
{
  int reg_size = register_size (get_regcache_arch (regcache), regno);
  int reg_size = register_size (get_regcache_arch (regcache), regno);
  const char *name;
  const char *name;
  ULONGEST val;
  ULONGEST val;
 
 
  if (current_monitor->regname != NULL)
  if (current_monitor->regname != NULL)
    name = current_monitor->regname (regno);
    name = current_monitor->regname (regno);
  else
  else
    name = current_monitor->regnames[regno];
    name = current_monitor->regnames[regno];
 
 
  if (!name || (*name == '\0'))
  if (!name || (*name == '\0'))
    {
    {
      monitor_debug ("MON Cannot store unknown register\n");
      monitor_debug ("MON Cannot store unknown register\n");
      return;
      return;
    }
    }
 
 
  regcache_cooked_read_unsigned (regcache, regno, &val);
  regcache_cooked_read_unsigned (regcache, regno, &val);
  monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
  monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
 
 
  /* send the register deposit command */
  /* send the register deposit command */
 
 
  if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
  if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
    monitor_printf (current_monitor->setreg.cmd, val, name);
    monitor_printf (current_monitor->setreg.cmd, val, name);
  else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
  else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
    monitor_printf (current_monitor->setreg.cmd, name);
    monitor_printf (current_monitor->setreg.cmd, name);
  else
  else
    monitor_printf (current_monitor->setreg.cmd, name, val);
    monitor_printf (current_monitor->setreg.cmd, name, val);
 
 
  if (current_monitor->setreg.resp_delim)
  if (current_monitor->setreg.resp_delim)
    {
    {
      monitor_debug ("EXP setreg.resp_delim\n");
      monitor_debug ("EXP setreg.resp_delim\n");
      monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
      monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
      if (current_monitor->flags & MO_SETREG_INTERACTIVE)
      if (current_monitor->flags & MO_SETREG_INTERACTIVE)
        monitor_printf ("%s\r", phex_nz (val, reg_size));
        monitor_printf ("%s\r", phex_nz (val, reg_size));
    }
    }
  if (current_monitor->setreg.term)
  if (current_monitor->setreg.term)
    {
    {
      monitor_debug ("EXP setreg.term\n");
      monitor_debug ("EXP setreg.term\n");
      monitor_expect (current_monitor->setreg.term, NULL, 0);
      monitor_expect (current_monitor->setreg.term, NULL, 0);
      if (current_monitor->flags & MO_SETREG_INTERACTIVE)
      if (current_monitor->flags & MO_SETREG_INTERACTIVE)
        monitor_printf ("%s\r", phex_nz (val, reg_size));
        monitor_printf ("%s\r", phex_nz (val, reg_size));
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
    }
    }
  else
  else
    monitor_expect_prompt (NULL, 0);
    monitor_expect_prompt (NULL, 0);
  if (current_monitor->setreg.term_cmd)         /* Mode exit required */
  if (current_monitor->setreg.term_cmd)         /* Mode exit required */
    {
    {
      monitor_debug ("EXP setreg_termcmd\n");
      monitor_debug ("EXP setreg_termcmd\n");
      monitor_printf ("%s", current_monitor->setreg.term_cmd);
      monitor_printf ("%s", current_monitor->setreg.term_cmd);
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
    }
    }
}                               /* monitor_store_register */
}                               /* monitor_store_register */
 
 
/* Store the remote registers.  */
/* Store the remote registers.  */
 
 
static void
static void
monitor_store_registers (struct target_ops *ops,
monitor_store_registers (struct target_ops *ops,
                         struct regcache *regcache, int regno)
                         struct regcache *regcache, int regno)
{
{
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      monitor_store_register (regcache, regno);
      monitor_store_register (regcache, regno);
      return;
      return;
    }
    }
 
 
  for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
  for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
       regno++)
       regno++)
    monitor_store_register (regcache, regno);
    monitor_store_register (regcache, regno);
}
}
 
 
/* Get ready to modify the registers array.  On machines which store
/* Get ready to modify the registers array.  On machines which store
   individual registers, this doesn't need to do anything.  On machines
   individual registers, this doesn't need to do anything.  On machines
   which store all the registers in one fell swoop, this makes sure
   which store all the registers in one fell swoop, this makes sure
   that registers contains all the registers from the program being
   that registers contains all the registers from the program being
   debugged.  */
   debugged.  */
 
 
static void
static void
monitor_prepare_to_store (struct regcache *regcache)
monitor_prepare_to_store (struct regcache *regcache)
{
{
  /* Do nothing, since we can store individual regs */
  /* Do nothing, since we can store individual regs */
}
}
 
 
static void
static void
monitor_files_info (struct target_ops *ops)
monitor_files_info (struct target_ops *ops)
{
{
  printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
  printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
}
}
 
 
static int
static int
monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  unsigned int val, hostval;
  unsigned int val, hostval;
  char *cmd;
  char *cmd;
  int i;
  int i;
 
 
  monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
  monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
 
 
  if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
  if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
    memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
    memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
 
 
  /* Use memory fill command for leading 0 bytes.  */
  /* Use memory fill command for leading 0 bytes.  */
 
 
  if (current_monitor->fill)
  if (current_monitor->fill)
    {
    {
      for (i = 0; i < len; i++)
      for (i = 0; i < len; i++)
        if (myaddr[i] != 0)
        if (myaddr[i] != 0)
          break;
          break;
 
 
      if (i > 4)                /* More than 4 zeros is worth doing */
      if (i > 4)                /* More than 4 zeros is worth doing */
        {
        {
          monitor_debug ("MON FILL %d\n", i);
          monitor_debug ("MON FILL %d\n", i);
          if (current_monitor->flags & MO_FILL_USES_ADDR)
          if (current_monitor->flags & MO_FILL_USES_ADDR)
            monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
            monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
          else
          else
            monitor_printf (current_monitor->fill, memaddr, i, 0);
            monitor_printf (current_monitor->fill, memaddr, i, 0);
 
 
          monitor_expect_prompt (NULL, 0);
          monitor_expect_prompt (NULL, 0);
 
 
          return i;
          return i;
        }
        }
    }
    }
 
 
#if 0
#if 0
  /* Can't actually use long longs if VAL is an int (nice idea, though).  */
  /* Can't actually use long longs if VAL is an int (nice idea, though).  */
  if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
  if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
    {
    {
      len = 8;
      len = 8;
      cmd = current_monitor->setmem.cmdll;
      cmd = current_monitor->setmem.cmdll;
    }
    }
  else
  else
#endif
#endif
  if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
  if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
    {
    {
      len = 4;
      len = 4;
      cmd = current_monitor->setmem.cmdl;
      cmd = current_monitor->setmem.cmdl;
    }
    }
  else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
  else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
    {
    {
      len = 2;
      len = 2;
      cmd = current_monitor->setmem.cmdw;
      cmd = current_monitor->setmem.cmdw;
    }
    }
  else
  else
    {
    {
      len = 1;
      len = 1;
      cmd = current_monitor->setmem.cmdb;
      cmd = current_monitor->setmem.cmdb;
    }
    }
 
 
  val = extract_unsigned_integer (myaddr, len, byte_order);
  val = extract_unsigned_integer (myaddr, len, byte_order);
 
 
  if (len == 4)
  if (len == 4)
    {
    {
      hostval = *(unsigned int *) myaddr;
      hostval = *(unsigned int *) myaddr;
      monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
      monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
    }
    }
 
 
 
 
  if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
  if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
    monitor_printf_noecho (cmd, memaddr, val);
    monitor_printf_noecho (cmd, memaddr, val);
  else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
  else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
    {
    {
 
 
      monitor_printf_noecho (cmd, memaddr);
      monitor_printf_noecho (cmd, memaddr);
 
 
      if (current_monitor->setmem.resp_delim)
      if (current_monitor->setmem.resp_delim)
        {
        {
          monitor_debug ("EXP setmem.resp_delim");
          monitor_debug ("EXP setmem.resp_delim");
          monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
          monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
          monitor_printf ("%x\r", val);
          monitor_printf ("%x\r", val);
       }
       }
      if (current_monitor->setmem.term)
      if (current_monitor->setmem.term)
        {
        {
          monitor_debug ("EXP setmem.term");
          monitor_debug ("EXP setmem.term");
          monitor_expect (current_monitor->setmem.term, NULL, 0);
          monitor_expect (current_monitor->setmem.term, NULL, 0);
          monitor_printf ("%x\r", val);
          monitor_printf ("%x\r", val);
        }
        }
      if (current_monitor->setmem.term_cmd)
      if (current_monitor->setmem.term_cmd)
        {                       /* Emit this to get out of the memory editing state */
        {                       /* Emit this to get out of the memory editing state */
          monitor_printf ("%s", current_monitor->setmem.term_cmd);
          monitor_printf ("%s", current_monitor->setmem.term_cmd);
          /* Drop through to expecting a prompt */
          /* Drop through to expecting a prompt */
        }
        }
    }
    }
  else
  else
    monitor_printf (cmd, memaddr, val);
    monitor_printf (cmd, memaddr, val);
 
 
  monitor_expect_prompt (NULL, 0);
  monitor_expect_prompt (NULL, 0);
 
 
  return len;
  return len;
}
}
 
 
 
 
static int
static int
monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
{
{
  unsigned char val;
  unsigned char val;
  int written = 0;
  int written = 0;
  if (len == 0)
  if (len == 0)
    return 0;
    return 0;
  /* Enter the sub mode */
  /* Enter the sub mode */
  monitor_printf (current_monitor->setmem.cmdb, memaddr);
  monitor_printf (current_monitor->setmem.cmdb, memaddr);
  monitor_expect_prompt (NULL, 0);
  monitor_expect_prompt (NULL, 0);
  while (len)
  while (len)
    {
    {
      val = *myaddr;
      val = *myaddr;
      monitor_printf ("%x\r", val);
      monitor_printf ("%x\r", val);
      myaddr++;
      myaddr++;
      memaddr++;
      memaddr++;
      written++;
      written++;
      /* If we wanted to, here we could validate the address */
      /* If we wanted to, here we could validate the address */
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
      len--;
      len--;
    }
    }
  /* Now exit the sub mode */
  /* Now exit the sub mode */
  monitor_printf (current_monitor->getreg.term_cmd);
  monitor_printf (current_monitor->getreg.term_cmd);
  monitor_expect_prompt (NULL, 0);
  monitor_expect_prompt (NULL, 0);
  return written;
  return written;
}
}
 
 
 
 
static void
static void
longlongendswap (unsigned char *a)
longlongendswap (unsigned char *a)
{
{
  int i, j;
  int i, j;
  unsigned char x;
  unsigned char x;
  i = 0;
  i = 0;
  j = 7;
  j = 7;
  while (i < 4)
  while (i < 4)
    {
    {
      x = *(a + i);
      x = *(a + i);
      *(a + i) = *(a + j);
      *(a + i) = *(a + j);
      *(a + j) = x;
      *(a + j) = x;
      i++, j--;
      i++, j--;
    }
    }
}
}
/* Format 32 chars of long long value, advance the pointer */
/* Format 32 chars of long long value, advance the pointer */
static char *hexlate = "0123456789abcdef";
static char *hexlate = "0123456789abcdef";
static char *
static char *
longlong_hexchars (unsigned long long value,
longlong_hexchars (unsigned long long value,
                   char *outbuff)
                   char *outbuff)
{
{
  if (value == 0)
  if (value == 0)
    {
    {
      *outbuff++ = '0';
      *outbuff++ = '0';
      return outbuff;
      return outbuff;
    }
    }
  else
  else
    {
    {
      static unsigned char disbuf[8];   /* disassembly buffer */
      static unsigned char disbuf[8];   /* disassembly buffer */
      unsigned char *scan, *limit;      /* loop controls */
      unsigned char *scan, *limit;      /* loop controls */
      unsigned char c, nib;
      unsigned char c, nib;
      int leadzero = 1;
      int leadzero = 1;
      scan = disbuf;
      scan = disbuf;
      limit = scan + 8;
      limit = scan + 8;
      {
      {
        unsigned long long *dp;
        unsigned long long *dp;
        dp = (unsigned long long *) scan;
        dp = (unsigned long long *) scan;
        *dp = value;
        *dp = value;
      }
      }
      longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
      longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
      while (scan < limit)
      while (scan < limit)
        {
        {
          c = *scan++;          /* a byte of our long long value */
          c = *scan++;          /* a byte of our long long value */
          if (leadzero)
          if (leadzero)
            {
            {
              if (c == 0)
              if (c == 0)
                continue;
                continue;
              else
              else
                leadzero = 0;    /* henceforth we print even zeroes */
                leadzero = 0;    /* henceforth we print even zeroes */
            }
            }
          nib = c >> 4;         /* high nibble bits */
          nib = c >> 4;         /* high nibble bits */
          *outbuff++ = hexlate[nib];
          *outbuff++ = hexlate[nib];
          nib = c & 0x0f;       /* low nibble bits */
          nib = c & 0x0f;       /* low nibble bits */
          *outbuff++ = hexlate[nib];
          *outbuff++ = hexlate[nib];
        }
        }
      return outbuff;
      return outbuff;
    }
    }
}                               /* longlong_hexchars */
}                               /* longlong_hexchars */
 
 
 
 
 
 
/* I am only going to call this when writing virtual byte streams.
/* I am only going to call this when writing virtual byte streams.
   Which possably entails endian conversions
   Which possably entails endian conversions
 */
 */
static int
static int
monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
{
{
  static char hexstage[20];     /* At least 16 digits required, plus null */
  static char hexstage[20];     /* At least 16 digits required, plus null */
  char *endstring;
  char *endstring;
  long long *llptr;
  long long *llptr;
  long long value;
  long long value;
  int written = 0;
  int written = 0;
  llptr = (unsigned long long *) myaddr;
  llptr = (unsigned long long *) myaddr;
  if (len == 0)
  if (len == 0)
    return 0;
    return 0;
  monitor_printf (current_monitor->setmem.cmdll, memaddr);
  monitor_printf (current_monitor->setmem.cmdll, memaddr);
  monitor_expect_prompt (NULL, 0);
  monitor_expect_prompt (NULL, 0);
  while (len >= 8)
  while (len >= 8)
    {
    {
      value = *llptr;
      value = *llptr;
      endstring = longlong_hexchars (*llptr, hexstage);
      endstring = longlong_hexchars (*llptr, hexstage);
      *endstring = '\0';        /* NUll terminate for printf */
      *endstring = '\0';        /* NUll terminate for printf */
      monitor_printf ("%s\r", hexstage);
      monitor_printf ("%s\r", hexstage);
      llptr++;
      llptr++;
      memaddr += 8;
      memaddr += 8;
      written += 8;
      written += 8;
      /* If we wanted to, here we could validate the address */
      /* If we wanted to, here we could validate the address */
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
      len -= 8;
      len -= 8;
    }
    }
  /* Now exit the sub mode */
  /* Now exit the sub mode */
  monitor_printf (current_monitor->getreg.term_cmd);
  monitor_printf (current_monitor->getreg.term_cmd);
  monitor_expect_prompt (NULL, 0);
  monitor_expect_prompt (NULL, 0);
  return written;
  return written;
}                               /* */
}                               /* */
 
 
 
 
 
 
/* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
/* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
/* This is for the large blocks of memory which may occur in downloading.
/* This is for the large blocks of memory which may occur in downloading.
   And for monitors which use interactive entry,
   And for monitors which use interactive entry,
   And for monitors which do not have other downloading methods.
   And for monitors which do not have other downloading methods.
   Without this, we will end up calling monitor_write_memory many times
   Without this, we will end up calling monitor_write_memory many times
   and do the entry and exit of the sub mode many times
   and do the entry and exit of the sub mode many times
   This currently assumes...
   This currently assumes...
   MO_SETMEM_INTERACTIVE
   MO_SETMEM_INTERACTIVE
   ! MO_NO_ECHO_ON_SETMEM
   ! MO_NO_ECHO_ON_SETMEM
   To use this, the you have to patch the monitor_cmds block with
   To use this, the you have to patch the monitor_cmds block with
   this function. Otherwise, its not tuned up for use by all
   this function. Otherwise, its not tuned up for use by all
   monitor variations.
   monitor variations.
 */
 */
 
 
static int
static int
monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
{
{
  int written;
  int written;
  written = 0;
  written = 0;
  /* FIXME: This would be a good place to put the zero test */
  /* FIXME: This would be a good place to put the zero test */
#if 1
#if 1
  if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
  if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
    {
    {
      return monitor_write_memory_longlongs (memaddr, myaddr, len);
      return monitor_write_memory_longlongs (memaddr, myaddr, len);
    }
    }
#endif
#endif
  written = monitor_write_memory_bytes (memaddr, myaddr, len);
  written = monitor_write_memory_bytes (memaddr, myaddr, len);
  return written;
  return written;
}
}
 
 
/* This is an alternate form of monitor_read_memory which is used for monitors
/* This is an alternate form of monitor_read_memory which is used for monitors
   which can only read a single byte/word/etc. at a time.  */
   which can only read a single byte/word/etc. at a time.  */
 
 
static int
static int
monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  unsigned int val;
  unsigned int val;
  char membuf[sizeof (int) * 2 + 1];
  char membuf[sizeof (int) * 2 + 1];
  char *p;
  char *p;
  char *cmd;
  char *cmd;
 
 
  monitor_debug ("MON read single\n");
  monitor_debug ("MON read single\n");
#if 0
#if 0
  /* Can't actually use long longs (nice idea, though).  In fact, the
  /* Can't actually use long longs (nice idea, though).  In fact, the
     call to strtoul below will fail if it tries to convert a value
     call to strtoul below will fail if it tries to convert a value
     that's too big to fit in a long.  */
     that's too big to fit in a long.  */
  if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
  if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
    {
    {
      len = 8;
      len = 8;
      cmd = current_monitor->getmem.cmdll;
      cmd = current_monitor->getmem.cmdll;
    }
    }
  else
  else
#endif
#endif
  if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
  if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
    {
    {
      len = 4;
      len = 4;
      cmd = current_monitor->getmem.cmdl;
      cmd = current_monitor->getmem.cmdl;
    }
    }
  else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
  else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
    {
    {
      len = 2;
      len = 2;
      cmd = current_monitor->getmem.cmdw;
      cmd = current_monitor->getmem.cmdw;
    }
    }
  else
  else
    {
    {
      len = 1;
      len = 1;
      cmd = current_monitor->getmem.cmdb;
      cmd = current_monitor->getmem.cmdb;
    }
    }
 
 
  /* Send the examine command.  */
  /* Send the examine command.  */
 
 
  monitor_printf (cmd, memaddr);
  monitor_printf (cmd, memaddr);
 
 
  /* If RESP_DELIM is specified, we search for that as a leading
  /* If RESP_DELIM is specified, we search for that as a leading
     delimiter for the memory value.  Otherwise, we just start
     delimiter for the memory value.  Otherwise, we just start
     searching from the start of the buf.  */
     searching from the start of the buf.  */
 
 
  if (current_monitor->getmem.resp_delim)
  if (current_monitor->getmem.resp_delim)
    {
    {
      monitor_debug ("EXP getmem.resp_delim\n");
      monitor_debug ("EXP getmem.resp_delim\n");
      monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
      monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
    }
    }
 
 
  /* Now, read the appropriate number of hex digits for this loc,
  /* Now, read the appropriate number of hex digits for this loc,
     skipping spaces.  */
     skipping spaces.  */
 
 
  /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
  /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
  if (current_monitor->flags & MO_HEX_PREFIX)
  if (current_monitor->flags & MO_HEX_PREFIX)
    {
    {
      int c;
      int c;
 
 
      c = readchar (timeout);
      c = readchar (timeout);
      while (c == ' ')
      while (c == ' ')
        c = readchar (timeout);
        c = readchar (timeout);
      if ((c == '0') && ((c = readchar (timeout)) == 'x'))
      if ((c == '0') && ((c = readchar (timeout)) == 'x'))
        ;
        ;
      else
      else
        monitor_error ("monitor_read_memory_single",
        monitor_error ("monitor_read_memory_single",
                       "bad response from monitor",
                       "bad response from monitor",
                       memaddr, 0, NULL, 0);
                       memaddr, 0, NULL, 0);
    }
    }
 
 
  {
  {
    int i;
    int i;
    for (i = 0; i < len * 2; i++)
    for (i = 0; i < len * 2; i++)
      {
      {
        int c;
        int c;
 
 
        while (1)
        while (1)
          {
          {
            c = readchar (timeout);
            c = readchar (timeout);
            if (isxdigit (c))
            if (isxdigit (c))
              break;
              break;
            if (c == ' ')
            if (c == ' ')
              continue;
              continue;
 
 
            monitor_error ("monitor_read_memory_single",
            monitor_error ("monitor_read_memory_single",
                           "bad response from monitor",
                           "bad response from monitor",
                           memaddr, i, membuf, 0);
                           memaddr, i, membuf, 0);
          }
          }
      membuf[i] = c;
      membuf[i] = c;
    }
    }
    membuf[i] = '\000';         /* terminate the number */
    membuf[i] = '\000';         /* terminate the number */
  }
  }
 
 
/* If TERM is present, we wait for that to show up.  Also, (if TERM is
/* If TERM is present, we wait for that to show up.  Also, (if TERM is
   present), we will send TERM_CMD if that is present.  In any case, we collect
   present), we will send TERM_CMD if that is present.  In any case, we collect
   all of the output into buf, and then wait for the normal prompt.  */
   all of the output into buf, and then wait for the normal prompt.  */
 
 
  if (current_monitor->getmem.term)
  if (current_monitor->getmem.term)
    {
    {
      monitor_expect (current_monitor->getmem.term, NULL, 0);    /* get response */
      monitor_expect (current_monitor->getmem.term, NULL, 0);    /* get response */
 
 
      if (current_monitor->getmem.term_cmd)
      if (current_monitor->getmem.term_cmd)
        {
        {
          monitor_printf (current_monitor->getmem.term_cmd);
          monitor_printf (current_monitor->getmem.term_cmd);
          monitor_expect_prompt (NULL, 0);
          monitor_expect_prompt (NULL, 0);
        }
        }
    }
    }
  else
  else
    monitor_expect_prompt (NULL, 0);     /* get response */
    monitor_expect_prompt (NULL, 0);     /* get response */
 
 
  p = membuf;
  p = membuf;
  val = strtoul (membuf, &p, 16);
  val = strtoul (membuf, &p, 16);
 
 
  if (val == 0 && membuf == p)
  if (val == 0 && membuf == p)
    monitor_error ("monitor_read_memory_single",
    monitor_error ("monitor_read_memory_single",
                   "bad value from monitor",
                   "bad value from monitor",
                   memaddr, 0, membuf, 0);
                   memaddr, 0, membuf, 0);
 
 
  /* supply register stores in target byte order, so swap here */
  /* supply register stores in target byte order, so swap here */
 
 
  store_unsigned_integer (myaddr, len, byte_order, val);
  store_unsigned_integer (myaddr, len, byte_order, val);
 
 
  return len;
  return len;
}
}
 
 
/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
   memory at MEMADDR.  Returns length moved.  Currently, we do no more
   memory at MEMADDR.  Returns length moved.  Currently, we do no more
   than 16 bytes at a time.  */
   than 16 bytes at a time.  */
 
 
static int
static int
monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
{
  unsigned int val;
  unsigned int val;
  char buf[512];
  char buf[512];
  char *p, *p1;
  char *p, *p1;
  int resp_len;
  int resp_len;
  int i;
  int i;
  CORE_ADDR dumpaddr;
  CORE_ADDR dumpaddr;
 
 
  if (len <= 0)
  if (len <= 0)
    {
    {
      monitor_debug ("Zero length call to monitor_read_memory\n");
      monitor_debug ("Zero length call to monitor_read_memory\n");
      return 0;
      return 0;
    }
    }
 
 
  monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
  monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
                 paddress (target_gdbarch, memaddr), (long) myaddr, len);
                 paddress (target_gdbarch, memaddr), (long) myaddr, len);
 
 
  if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
  if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
    memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
    memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
 
 
  if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
  if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
    return monitor_read_memory_single (memaddr, myaddr, len);
    return monitor_read_memory_single (memaddr, myaddr, len);
 
 
  len = min (len, 16);
  len = min (len, 16);
 
 
  /* Some dumpers align the first data with the preceeding 16
  /* Some dumpers align the first data with the preceeding 16
     byte boundary. Some print blanks and start at the
     byte boundary. Some print blanks and start at the
     requested boundary. EXACT_DUMPADDR
     requested boundary. EXACT_DUMPADDR
   */
   */
 
 
  dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
  dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
    ? memaddr : memaddr & ~0x0f;
    ? memaddr : memaddr & ~0x0f;
 
 
  /* See if xfer would cross a 16 byte boundary.  If so, clip it.  */
  /* See if xfer would cross a 16 byte boundary.  If so, clip it.  */
  if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
  if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
    len = ((memaddr + len) & ~0xf) - memaddr;
    len = ((memaddr + len) & ~0xf) - memaddr;
 
 
  /* send the memory examine command */
  /* send the memory examine command */
 
 
  if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
  if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
    monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
    monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
  else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
  else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
    monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
    monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
  else
  else
    monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
    monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
 
 
  /* If TERM is present, we wait for that to show up.  Also, (if TERM
  /* If TERM is present, we wait for that to show up.  Also, (if TERM
     is present), we will send TERM_CMD if that is present.  In any
     is present), we will send TERM_CMD if that is present.  In any
     case, we collect all of the output into buf, and then wait for
     case, we collect all of the output into buf, and then wait for
     the normal prompt.  */
     the normal prompt.  */
 
 
  if (current_monitor->getmem.term)
  if (current_monitor->getmem.term)
    {
    {
      resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf);        /* get response */
      resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf);        /* get response */
 
 
      if (resp_len <= 0)
      if (resp_len <= 0)
        monitor_error ("monitor_read_memory",
        monitor_error ("monitor_read_memory",
                       "excessive response from monitor",
                       "excessive response from monitor",
                       memaddr, resp_len, buf, 0);
                       memaddr, resp_len, buf, 0);
 
 
      if (current_monitor->getmem.term_cmd)
      if (current_monitor->getmem.term_cmd)
        {
        {
          serial_write (monitor_desc, current_monitor->getmem.term_cmd,
          serial_write (monitor_desc, current_monitor->getmem.term_cmd,
                        strlen (current_monitor->getmem.term_cmd));
                        strlen (current_monitor->getmem.term_cmd));
          monitor_expect_prompt (NULL, 0);
          monitor_expect_prompt (NULL, 0);
        }
        }
    }
    }
  else
  else
    resp_len = monitor_expect_prompt (buf, sizeof buf);         /* get response */
    resp_len = monitor_expect_prompt (buf, sizeof buf);         /* get response */
 
 
  p = buf;
  p = buf;
 
 
  /* If RESP_DELIM is specified, we search for that as a leading
  /* If RESP_DELIM is specified, we search for that as a leading
     delimiter for the values.  Otherwise, we just start searching
     delimiter for the values.  Otherwise, we just start searching
     from the start of the buf.  */
     from the start of the buf.  */
 
 
  if (current_monitor->getmem.resp_delim)
  if (current_monitor->getmem.resp_delim)
    {
    {
      int retval, tmp;
      int retval, tmp;
      struct re_registers resp_strings;
      struct re_registers resp_strings;
      monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
      monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
 
 
      memset (&resp_strings, 0, sizeof (struct re_registers));
      memset (&resp_strings, 0, sizeof (struct re_registers));
      tmp = strlen (p);
      tmp = strlen (p);
      retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
      retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
                          &resp_strings);
                          &resp_strings);
 
 
      if (retval < 0)
      if (retval < 0)
        monitor_error ("monitor_read_memory",
        monitor_error ("monitor_read_memory",
                       "bad response from monitor",
                       "bad response from monitor",
                       memaddr, resp_len, buf, 0);
                       memaddr, resp_len, buf, 0);
 
 
      p += resp_strings.end[0];
      p += resp_strings.end[0];
#if 0
#if 0
      p = strstr (p, current_monitor->getmem.resp_delim);
      p = strstr (p, current_monitor->getmem.resp_delim);
      if (!p)
      if (!p)
        monitor_error ("monitor_read_memory",
        monitor_error ("monitor_read_memory",
                       "bad response from monitor",
                       "bad response from monitor",
                       memaddr, resp_len, buf, 0);
                       memaddr, resp_len, buf, 0);
      p += strlen (current_monitor->getmem.resp_delim);
      p += strlen (current_monitor->getmem.resp_delim);
#endif
#endif
    }
    }
  monitor_debug ("MON scanning  %d ,%lx '%s'\n", len, (long) p, p);
  monitor_debug ("MON scanning  %d ,%lx '%s'\n", len, (long) p, p);
  if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
  if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
    {
    {
      char c;
      char c;
      int fetched = 0;
      int fetched = 0;
      i = len;
      i = len;
      c = *p;
      c = *p;
 
 
 
 
      while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
      while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
        {
        {
          if (isxdigit (c))
          if (isxdigit (c))
            {
            {
              if ((dumpaddr >= memaddr) && (i > 0))
              if ((dumpaddr >= memaddr) && (i > 0))
                {
                {
                  val = fromhex (c) * 16 + fromhex (*(p + 1));
                  val = fromhex (c) * 16 + fromhex (*(p + 1));
                  *myaddr++ = val;
                  *myaddr++ = val;
                  if (monitor_debug_p || remote_debug)
                  if (monitor_debug_p || remote_debug)
                    fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
                    fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
                  --i;
                  --i;
                  fetched++;
                  fetched++;
                }
                }
              ++dumpaddr;
              ++dumpaddr;
              ++p;
              ++p;
            }
            }
          ++p;                  /* skip a blank or other non hex char */
          ++p;                  /* skip a blank or other non hex char */
          c = *p;
          c = *p;
        }
        }
      if (fetched == 0)
      if (fetched == 0)
        error (_("Failed to read via monitor"));
        error (_("Failed to read via monitor"));
      if (monitor_debug_p || remote_debug)
      if (monitor_debug_p || remote_debug)
        fprintf_unfiltered (gdb_stdlog, "\n");
        fprintf_unfiltered (gdb_stdlog, "\n");
      return fetched;           /* Return the number of bytes actually read */
      return fetched;           /* Return the number of bytes actually read */
    }
    }
  monitor_debug ("MON scanning bytes\n");
  monitor_debug ("MON scanning bytes\n");
 
 
  for (i = len; i > 0; i--)
  for (i = len; i > 0; i--)
    {
    {
      /* Skip non-hex chars, but bomb on end of string and newlines */
      /* Skip non-hex chars, but bomb on end of string and newlines */
 
 
      while (1)
      while (1)
        {
        {
          if (isxdigit (*p))
          if (isxdigit (*p))
            break;
            break;
 
 
          if (*p == '\000' || *p == '\n' || *p == '\r')
          if (*p == '\000' || *p == '\n' || *p == '\r')
            monitor_error ("monitor_read_memory",
            monitor_error ("monitor_read_memory",
                           "badly terminated response from monitor",
                           "badly terminated response from monitor",
                           memaddr, resp_len, buf, 0);
                           memaddr, resp_len, buf, 0);
          p++;
          p++;
        }
        }
 
 
      val = strtoul (p, &p1, 16);
      val = strtoul (p, &p1, 16);
 
 
      if (val == 0 && p == p1)
      if (val == 0 && p == p1)
        monitor_error ("monitor_read_memory",
        monitor_error ("monitor_read_memory",
                       "bad value from monitor",
                       "bad value from monitor",
                       memaddr, resp_len, buf, 0);
                       memaddr, resp_len, buf, 0);
 
 
      *myaddr++ = val;
      *myaddr++ = val;
 
 
      if (i == 1)
      if (i == 1)
        break;
        break;
 
 
      p = p1;
      p = p1;
    }
    }
 
 
  return len;
  return len;
}
}
 
 
/* Transfer LEN bytes between target address MEMADDR and GDB address
/* Transfer LEN bytes between target address MEMADDR and GDB address
   MYADDR.  Returns 0 for success, errno code for failure. TARGET is
   MYADDR.  Returns 0 for success, errno code for failure. TARGET is
   unused. */
   unused. */
 
 
static int
static int
monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
                     struct mem_attrib *attrib, struct target_ops *target)
                     struct mem_attrib *attrib, struct target_ops *target)
{
{
  int res;
  int res;
 
 
  if (write)
  if (write)
    {
    {
      if (current_monitor->flags & MO_HAS_BLOCKWRITES)
      if (current_monitor->flags & MO_HAS_BLOCKWRITES)
        res = monitor_write_memory_block(memaddr, myaddr, len);
        res = monitor_write_memory_block(memaddr, myaddr, len);
      else
      else
        res = monitor_write_memory(memaddr, myaddr, len);
        res = monitor_write_memory(memaddr, myaddr, len);
    }
    }
  else
  else
    {
    {
      res = monitor_read_memory(memaddr, myaddr, len);
      res = monitor_read_memory(memaddr, myaddr, len);
    }
    }
 
 
  return res;
  return res;
}
}
 
 
static void
static void
monitor_kill (struct target_ops *ops)
monitor_kill (struct target_ops *ops)
{
{
  return;                       /* ignore attempts to kill target system */
  return;                       /* ignore attempts to kill target system */
}
}
 
 
/* All we actually do is set the PC to the start address of exec_bfd.  */
/* All we actually do is set the PC to the start address of exec_bfd.  */
 
 
static void
static void
monitor_create_inferior (struct target_ops *ops, char *exec_file,
monitor_create_inferior (struct target_ops *ops, char *exec_file,
                         char *args, char **env, int from_tty)
                         char *args, char **env, int from_tty)
{
{
  if (args && (*args != '\000'))
  if (args && (*args != '\000'))
    error (_("Args are not supported by the monitor."));
    error (_("Args are not supported by the monitor."));
 
 
  first_time = 1;
  first_time = 1;
  clear_proceed_status ();
  clear_proceed_status ();
  regcache_write_pc (get_current_regcache (),
  regcache_write_pc (get_current_regcache (),
                     bfd_get_start_address (exec_bfd));
                     bfd_get_start_address (exec_bfd));
}
}
 
 
/* Clean up when a program exits.
/* Clean up when a program exits.
   The program actually lives on in the remote processor's RAM, and may be
   The program actually lives on in the remote processor's RAM, and may be
   run again without a download.  Don't leave it full of breakpoint
   run again without a download.  Don't leave it full of breakpoint
   instructions.  */
   instructions.  */
 
 
static void
static void
monitor_mourn_inferior (struct target_ops *ops)
monitor_mourn_inferior (struct target_ops *ops)
{
{
  unpush_target (targ_ops);
  unpush_target (targ_ops);
  generic_mourn_inferior ();    /* Do all the proper things now */
  generic_mourn_inferior ();    /* Do all the proper things now */
  delete_thread_silent (monitor_ptid);
  delete_thread_silent (monitor_ptid);
}
}
 
 
/* Tell the monitor to add a breakpoint.  */
/* Tell the monitor to add a breakpoint.  */
 
 
static int
static int
monitor_insert_breakpoint (struct gdbarch *gdbarch,
monitor_insert_breakpoint (struct gdbarch *gdbarch,
                           struct bp_target_info *bp_tgt)
                           struct bp_target_info *bp_tgt)
{
{
  CORE_ADDR addr = bp_tgt->placed_address;
  CORE_ADDR addr = bp_tgt->placed_address;
  int i;
  int i;
  int bplen;
  int bplen;
 
 
  monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
  monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
  if (current_monitor->set_break == NULL)
  if (current_monitor->set_break == NULL)
    error (_("No set_break defined for this monitor"));
    error (_("No set_break defined for this monitor"));
 
 
  if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
  if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
    addr = gdbarch_addr_bits_remove (gdbarch, addr);
    addr = gdbarch_addr_bits_remove (gdbarch, addr);
 
 
  /* Determine appropriate breakpoint size for this address.  */
  /* Determine appropriate breakpoint size for this address.  */
  gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
  gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
  bp_tgt->placed_address = addr;
  bp_tgt->placed_address = addr;
  bp_tgt->placed_size = bplen;
  bp_tgt->placed_size = bplen;
 
 
  for (i = 0; i < current_monitor->num_breakpoints; i++)
  for (i = 0; i < current_monitor->num_breakpoints; i++)
    {
    {
      if (breakaddr[i] == 0)
      if (breakaddr[i] == 0)
        {
        {
          breakaddr[i] = addr;
          breakaddr[i] = addr;
          monitor_printf (current_monitor->set_break, addr);
          monitor_printf (current_monitor->set_break, addr);
          monitor_expect_prompt (NULL, 0);
          monitor_expect_prompt (NULL, 0);
          return 0;
          return 0;
        }
        }
    }
    }
 
 
  error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
  error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
}
}
 
 
/* Tell the monitor to remove a breakpoint.  */
/* Tell the monitor to remove a breakpoint.  */
 
 
static int
static int
monitor_remove_breakpoint (struct gdbarch *gdbarch,
monitor_remove_breakpoint (struct gdbarch *gdbarch,
                           struct bp_target_info *bp_tgt)
                           struct bp_target_info *bp_tgt)
{
{
  CORE_ADDR addr = bp_tgt->placed_address;
  CORE_ADDR addr = bp_tgt->placed_address;
  int i;
  int i;
 
 
  monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
  monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
  if (current_monitor->clr_break == NULL)
  if (current_monitor->clr_break == NULL)
    error (_("No clr_break defined for this monitor"));
    error (_("No clr_break defined for this monitor"));
 
 
  for (i = 0; i < current_monitor->num_breakpoints; i++)
  for (i = 0; i < current_monitor->num_breakpoints; i++)
    {
    {
      if (breakaddr[i] == addr)
      if (breakaddr[i] == addr)
        {
        {
          breakaddr[i] = 0;
          breakaddr[i] = 0;
          /* some monitors remove breakpoints based on the address */
          /* some monitors remove breakpoints based on the address */
          if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
          if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
            monitor_printf (current_monitor->clr_break, addr);
            monitor_printf (current_monitor->clr_break, addr);
          else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
          else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
            monitor_printf (current_monitor->clr_break, i + 1);
            monitor_printf (current_monitor->clr_break, i + 1);
          else
          else
            monitor_printf (current_monitor->clr_break, i);
            monitor_printf (current_monitor->clr_break, i);
          monitor_expect_prompt (NULL, 0);
          monitor_expect_prompt (NULL, 0);
          return 0;
          return 0;
        }
        }
    }
    }
  fprintf_unfiltered (gdb_stderr,
  fprintf_unfiltered (gdb_stderr,
                      "Can't find breakpoint associated with %s\n",
                      "Can't find breakpoint associated with %s\n",
                      paddress (gdbarch, addr));
                      paddress (gdbarch, addr));
  return 1;
  return 1;
}
}
 
 
/* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
/* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
   an S-record.  Return non-zero if the ACK is received properly.  */
   an S-record.  Return non-zero if the ACK is received properly.  */
 
 
static int
static int
monitor_wait_srec_ack (void)
monitor_wait_srec_ack (void)
{
{
  int ch;
  int ch;
 
 
  if (current_monitor->flags & MO_SREC_ACK_PLUS)
  if (current_monitor->flags & MO_SREC_ACK_PLUS)
    {
    {
      return (readchar (timeout) == '+');
      return (readchar (timeout) == '+');
    }
    }
  else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
  else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
    {
    {
      /* Eat two backspaces, a "rotating" char (|/-\), and a space.  */
      /* Eat two backspaces, a "rotating" char (|/-\), and a space.  */
      if ((ch = readchar (1)) < 0)
      if ((ch = readchar (1)) < 0)
        return 0;
        return 0;
      if ((ch = readchar (1)) < 0)
      if ((ch = readchar (1)) < 0)
        return 0;
        return 0;
      if ((ch = readchar (1)) < 0)
      if ((ch = readchar (1)) < 0)
        return 0;
        return 0;
      if ((ch = readchar (1)) < 0)
      if ((ch = readchar (1)) < 0)
        return 0;
        return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* monitor_load -- download a file. */
/* monitor_load -- download a file. */
 
 
static void
static void
monitor_load (char *file, int from_tty)
monitor_load (char *file, int from_tty)
{
{
  monitor_debug ("MON load\n");
  monitor_debug ("MON load\n");
 
 
  if (current_monitor->load_routine)
  if (current_monitor->load_routine)
    current_monitor->load_routine (monitor_desc, file, hashmark);
    current_monitor->load_routine (monitor_desc, file, hashmark);
  else
  else
    {                           /* The default is ascii S-records */
    {                           /* The default is ascii S-records */
      int n;
      int n;
      unsigned long load_offset;
      unsigned long load_offset;
      char buf[128];
      char buf[128];
 
 
      /* enable user to specify address for downloading as 2nd arg to load */
      /* enable user to specify address for downloading as 2nd arg to load */
      n = sscanf (file, "%s 0x%lx", buf, &load_offset);
      n = sscanf (file, "%s 0x%lx", buf, &load_offset);
      if (n > 1)
      if (n > 1)
        file = buf;
        file = buf;
      else
      else
        load_offset = 0;
        load_offset = 0;
 
 
      monitor_printf (current_monitor->load);
      monitor_printf (current_monitor->load);
      if (current_monitor->loadresp)
      if (current_monitor->loadresp)
        monitor_expect (current_monitor->loadresp, NULL, 0);
        monitor_expect (current_monitor->loadresp, NULL, 0);
 
 
      load_srec (monitor_desc, file, (bfd_vma) load_offset,
      load_srec (monitor_desc, file, (bfd_vma) load_offset,
                 32, SREC_ALL, hashmark,
                 32, SREC_ALL, hashmark,
                 current_monitor->flags & MO_SREC_ACK ?
                 current_monitor->flags & MO_SREC_ACK ?
                 monitor_wait_srec_ack : NULL);
                 monitor_wait_srec_ack : NULL);
 
 
      monitor_expect_prompt (NULL, 0);
      monitor_expect_prompt (NULL, 0);
    }
    }
 
 
  /* Finally, make the PC point at the start address */
  /* Finally, make the PC point at the start address */
  if (exec_bfd)
  if (exec_bfd)
    regcache_write_pc (get_current_regcache (),
    regcache_write_pc (get_current_regcache (),
                       bfd_get_start_address (exec_bfd));
                       bfd_get_start_address (exec_bfd));
 
 
  /* There used to be code here which would clear inferior_ptid and
  /* There used to be code here which would clear inferior_ptid and
     call clear_symtab_users.  None of that should be necessary:
     call clear_symtab_users.  None of that should be necessary:
     monitor targets should behave like remote protocol targets, and
     monitor targets should behave like remote protocol targets, and
     since generic_load does none of those things, this function
     since generic_load does none of those things, this function
     shouldn't either.
     shouldn't either.
 
 
     Furthermore, clearing inferior_ptid is *incorrect*.  After doing
     Furthermore, clearing inferior_ptid is *incorrect*.  After doing
     a load, we still have a valid connection to the monitor, with a
     a load, we still have a valid connection to the monitor, with a
     live processor state to fiddle with.  The user can type
     live processor state to fiddle with.  The user can type
     `continue' or `jump *start' and make the program run.  If they do
     `continue' or `jump *start' and make the program run.  If they do
     these things, however, GDB will be talking to a running program
     these things, however, GDB will be talking to a running program
     while inferior_ptid is null_ptid; this makes things like
     while inferior_ptid is null_ptid; this makes things like
     reinit_frame_cache very confused.  */
     reinit_frame_cache very confused.  */
}
}
 
 
static void
static void
monitor_stop (ptid_t ptid)
monitor_stop (ptid_t ptid)
{
{
  monitor_debug ("MON stop\n");
  monitor_debug ("MON stop\n");
  if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
  if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
    serial_send_break (monitor_desc);
    serial_send_break (monitor_desc);
  if (current_monitor->stop)
  if (current_monitor->stop)
    monitor_printf_noecho (current_monitor->stop);
    monitor_printf_noecho (current_monitor->stop);
}
}
 
 
/* Put a COMMAND string out to MONITOR.  Output from MONITOR is placed
/* Put a COMMAND string out to MONITOR.  Output from MONITOR is placed
   in OUTPUT until the prompt is seen. FIXME: We read the characters
   in OUTPUT until the prompt is seen. FIXME: We read the characters
   ourseleves here cause of a nasty echo.  */
   ourseleves here cause of a nasty echo.  */
 
 
static void
static void
monitor_rcmd (char *command,
monitor_rcmd (char *command,
              struct ui_file *outbuf)
              struct ui_file *outbuf)
{
{
  char *p;
  char *p;
  int resp_len;
  int resp_len;
  char buf[1000];
  char buf[1000];
 
 
  if (monitor_desc == NULL)
  if (monitor_desc == NULL)
    error (_("monitor target not open."));
    error (_("monitor target not open."));
 
 
  p = current_monitor->prompt;
  p = current_monitor->prompt;
 
 
  /* Send the command.  Note that if no args were supplied, then we're
  /* Send the command.  Note that if no args were supplied, then we're
     just sending the monitor a newline, which is sometimes useful.  */
     just sending the monitor a newline, which is sometimes useful.  */
 
 
  monitor_printf ("%s\r", (command ? command : ""));
  monitor_printf ("%s\r", (command ? command : ""));
 
 
  resp_len = monitor_expect_prompt (buf, sizeof buf);
  resp_len = monitor_expect_prompt (buf, sizeof buf);
 
 
  fputs_unfiltered (buf, outbuf);       /* Output the response */
  fputs_unfiltered (buf, outbuf);       /* Output the response */
}
}
 
 
/* Convert hex digit A to a number.  */
/* Convert hex digit A to a number.  */
 
 
#if 0
#if 0
static int
static int
from_hex (int a)
from_hex (int a)
{
{
  if (a >= '0' && a <= '9')
  if (a >= '0' && a <= '9')
    return a - '0';
    return a - '0';
  if (a >= 'a' && a <= 'f')
  if (a >= 'a' && a <= 'f')
    return a - 'a' + 10;
    return a - 'a' + 10;
  if (a >= 'A' && a <= 'F')
  if (a >= 'A' && a <= 'F')
    return a - 'A' + 10;
    return a - 'A' + 10;
 
 
  error (_("Reply contains invalid hex digit 0x%x"), a);
  error (_("Reply contains invalid hex digit 0x%x"), a);
}
}
#endif
#endif
 
 
char *
char *
monitor_get_dev_name (void)
monitor_get_dev_name (void)
{
{
  return dev_name;
  return dev_name;
}
}
 
 
/* Check to see if a thread is still alive.  */
/* Check to see if a thread is still alive.  */
 
 
static int
static int
monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
{
{
  if (ptid_equal (ptid, monitor_ptid))
  if (ptid_equal (ptid, monitor_ptid))
    /* The monitor's task is always alive.  */
    /* The monitor's task is always alive.  */
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Convert a thread ID to a string.  Returns the string in a static
/* Convert a thread ID to a string.  Returns the string in a static
   buffer.  */
   buffer.  */
 
 
static char *
static char *
monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
{
{
  static char buf[64];
  static char buf[64];
 
 
  if (ptid_equal (monitor_ptid, ptid))
  if (ptid_equal (monitor_ptid, ptid))
    {
    {
      xsnprintf (buf, sizeof buf, "Thread <main>");
      xsnprintf (buf, sizeof buf, "Thread <main>");
      return buf;
      return buf;
    }
    }
 
 
  return normal_pid_to_str (ptid);
  return normal_pid_to_str (ptid);
}
}
 
 
static struct target_ops monitor_ops;
static struct target_ops monitor_ops;
 
 
static void
static void
init_base_monitor_ops (void)
init_base_monitor_ops (void)
{
{
  monitor_ops.to_close = monitor_close;
  monitor_ops.to_close = monitor_close;
  monitor_ops.to_detach = monitor_detach;
  monitor_ops.to_detach = monitor_detach;
  monitor_ops.to_resume = monitor_resume;
  monitor_ops.to_resume = monitor_resume;
  monitor_ops.to_wait = monitor_wait;
  monitor_ops.to_wait = monitor_wait;
  monitor_ops.to_fetch_registers = monitor_fetch_registers;
  monitor_ops.to_fetch_registers = monitor_fetch_registers;
  monitor_ops.to_store_registers = monitor_store_registers;
  monitor_ops.to_store_registers = monitor_store_registers;
  monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
  monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
  monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
  monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
  monitor_ops.to_files_info = monitor_files_info;
  monitor_ops.to_files_info = monitor_files_info;
  monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
  monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
  monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
  monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
  monitor_ops.to_kill = monitor_kill;
  monitor_ops.to_kill = monitor_kill;
  monitor_ops.to_load = monitor_load;
  monitor_ops.to_load = monitor_load;
  monitor_ops.to_create_inferior = monitor_create_inferior;
  monitor_ops.to_create_inferior = monitor_create_inferior;
  monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
  monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
  monitor_ops.to_stop = monitor_stop;
  monitor_ops.to_stop = monitor_stop;
  monitor_ops.to_rcmd = monitor_rcmd;
  monitor_ops.to_rcmd = monitor_rcmd;
  monitor_ops.to_log_command = serial_log_command;
  monitor_ops.to_log_command = serial_log_command;
  monitor_ops.to_thread_alive = monitor_thread_alive;
  monitor_ops.to_thread_alive = monitor_thread_alive;
  monitor_ops.to_pid_to_str = monitor_pid_to_str;
  monitor_ops.to_pid_to_str = monitor_pid_to_str;
  monitor_ops.to_stratum = process_stratum;
  monitor_ops.to_stratum = process_stratum;
  monitor_ops.to_has_all_memory = default_child_has_all_memory;
  monitor_ops.to_has_all_memory = default_child_has_all_memory;
  monitor_ops.to_has_memory = default_child_has_memory;
  monitor_ops.to_has_memory = default_child_has_memory;
  monitor_ops.to_has_stack = default_child_has_stack;
  monitor_ops.to_has_stack = default_child_has_stack;
  monitor_ops.to_has_registers = default_child_has_registers;
  monitor_ops.to_has_registers = default_child_has_registers;
  monitor_ops.to_has_execution = default_child_has_execution;
  monitor_ops.to_has_execution = default_child_has_execution;
  monitor_ops.to_magic = OPS_MAGIC;
  monitor_ops.to_magic = OPS_MAGIC;
}                               /* init_base_monitor_ops */
}                               /* init_base_monitor_ops */
 
 
/* Init the target_ops structure pointed at by OPS */
/* Init the target_ops structure pointed at by OPS */
 
 
void
void
init_monitor_ops (struct target_ops *ops)
init_monitor_ops (struct target_ops *ops)
{
{
  if (monitor_ops.to_magic != OPS_MAGIC)
  if (monitor_ops.to_magic != OPS_MAGIC)
    init_base_monitor_ops ();
    init_base_monitor_ops ();
 
 
  memcpy (ops, &monitor_ops, sizeof monitor_ops);
  memcpy (ops, &monitor_ops, sizeof monitor_ops);
}
}
 
 
/* Define additional commands that are usually only used by monitors.  */
/* Define additional commands that are usually only used by monitors.  */
 
 
extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
 
 
void
void
_initialize_remote_monitors (void)
_initialize_remote_monitors (void)
{
{
  init_base_monitor_ops ();
  init_base_monitor_ops ();
  add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
  add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
Set display of activity while downloading a file."), _("\
Set display of activity while downloading a file."), _("\
Show display of activity while downloading a file."), _("\
Show display of activity while downloading a file."), _("\
When enabled, a hashmark \'#\' is displayed."),
When enabled, a hashmark \'#\' is displayed."),
                           NULL,
                           NULL,
                           NULL, /* FIXME: i18n: */
                           NULL, /* FIXME: i18n: */
                           &setlist, &showlist);
                           &setlist, &showlist);
 
 
  add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
  add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
Set debugging of remote monitor communication."), _("\
Set debugging of remote monitor communication."), _("\
Show debugging of remote monitor communication."), _("\
Show debugging of remote monitor communication."), _("\
When enabled, communication between GDB and the remote monitor\n\
When enabled, communication between GDB and the remote monitor\n\
is displayed."),
is displayed."),
                            NULL,
                            NULL,
                            NULL, /* FIXME: i18n: */
                            NULL, /* FIXME: i18n: */
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
 
 
  /* Yes, 42000 is arbitrary.  The only sense out of it, is that it
  /* Yes, 42000 is arbitrary.  The only sense out of it, is that it
     isn't 0.  */
     isn't 0.  */
  monitor_ptid = ptid_build (42000, 0, 42000);
  monitor_ptid = ptid_build (42000, 0, 42000);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.