OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [nto-procfs.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Machine independent support for QNX Neutrino /proc (process file system)
/* Machine independent support for QNX Neutrino /proc (process file system)
   for GDB.  Written by Colin Burgess at QNX Software Systems Limited.
   for GDB.  Written by Colin Burgess at QNX Software Systems Limited.
 
 
   Copyright (C) 2003, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2003, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Contributed by QNX Software Systems Ltd.
   Contributed by QNX Software Systems Ltd.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
 
 
#include <fcntl.h>
#include <fcntl.h>
#include <spawn.h>
#include <spawn.h>
#include <sys/debug.h>
#include <sys/debug.h>
#include <sys/procfs.h>
#include <sys/procfs.h>
#include <sys/neutrino.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>
#include <sys/syspage.h>
#include "gdb_dirent.h"
#include "gdb_dirent.h"
#include <sys/netmgr.h>
#include <sys/netmgr.h>
 
 
#include "exceptions.h"
#include "exceptions.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "inferior.h"
#include "inferior.h"
#include "target.h"
#include "target.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdbthread.h"
#include "gdbthread.h"
#include "nto-tdep.h"
#include "nto-tdep.h"
#include "command.h"
#include "command.h"
#include "regcache.h"
#include "regcache.h"
#include "solib.h"
#include "solib.h"
 
 
#define NULL_PID                0
#define NULL_PID                0
#define _DEBUG_FLAG_TRACE       (_DEBUG_FLAG_TRACE_EXEC|_DEBUG_FLAG_TRACE_RD|\
#define _DEBUG_FLAG_TRACE       (_DEBUG_FLAG_TRACE_EXEC|_DEBUG_FLAG_TRACE_RD|\
                _DEBUG_FLAG_TRACE_WR|_DEBUG_FLAG_TRACE_MODIFY)
                _DEBUG_FLAG_TRACE_WR|_DEBUG_FLAG_TRACE_MODIFY)
 
 
static struct target_ops procfs_ops;
static struct target_ops procfs_ops;
 
 
int ctl_fd;
int ctl_fd;
 
 
static void (*ofunc) ();
static void (*ofunc) ();
 
 
static procfs_run run;
static procfs_run run;
 
 
static void procfs_open (char *, int);
static void procfs_open (char *, int);
 
 
static int procfs_can_run (void);
static int procfs_can_run (void);
 
 
static int procfs_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
static int procfs_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
                               struct mem_attrib *attrib,
                               struct mem_attrib *attrib,
                               struct target_ops *);
                               struct target_ops *);
 
 
static void notice_signals (void);
static void notice_signals (void);
 
 
static void init_procfs_ops (void);
static void init_procfs_ops (void);
 
 
static ptid_t do_attach (ptid_t ptid);
static ptid_t do_attach (ptid_t ptid);
 
 
static int procfs_can_use_hw_breakpoint (int, int, int);
static int procfs_can_use_hw_breakpoint (int, int, int);
 
 
static int procfs_insert_hw_watchpoint (CORE_ADDR addr, int len, int type);
static int procfs_insert_hw_watchpoint (CORE_ADDR addr, int len, int type);
 
 
static int procfs_remove_hw_watchpoint (CORE_ADDR addr, int len, int type);
static int procfs_remove_hw_watchpoint (CORE_ADDR addr, int len, int type);
 
 
static int procfs_stopped_by_watchpoint (void);
static int procfs_stopped_by_watchpoint (void);
 
 
/* These two globals are only ever set in procfs_open(), but are
/* These two globals are only ever set in procfs_open(), but are
   referenced elsewhere.  'nto_procfs_node' is a flag used to say
   referenced elsewhere.  'nto_procfs_node' is a flag used to say
   whether we are local, or we should get the current node descriptor
   whether we are local, or we should get the current node descriptor
   for the remote QNX node.  */
   for the remote QNX node.  */
static char nto_procfs_path[PATH_MAX] = { "/proc" };
static char nto_procfs_path[PATH_MAX] = { "/proc" };
static unsigned nto_procfs_node = ND_LOCAL_NODE;
static unsigned nto_procfs_node = ND_LOCAL_NODE;
 
 
/* Return the current QNX Node, or error out.  This is a simple
/* Return the current QNX Node, or error out.  This is a simple
   wrapper for the netmgr_strtond() function.  The reason this
   wrapper for the netmgr_strtond() function.  The reason this
   is required is because QNX node descriptors are transient so
   is required is because QNX node descriptors are transient so
   we have to re-acquire them every time.  */
   we have to re-acquire them every time.  */
static unsigned
static unsigned
nto_node (void)
nto_node (void)
{
{
  unsigned node;
  unsigned node;
 
 
  if (ND_NODE_CMP (nto_procfs_node, ND_LOCAL_NODE) == 0)
  if (ND_NODE_CMP (nto_procfs_node, ND_LOCAL_NODE) == 0)
    return ND_LOCAL_NODE;
    return ND_LOCAL_NODE;
 
 
  node = netmgr_strtond (nto_procfs_path, 0);
  node = netmgr_strtond (nto_procfs_path, 0);
  if (node == -1)
  if (node == -1)
    error (_("Lost the QNX node.  Debug session probably over."));
    error (_("Lost the QNX node.  Debug session probably over."));
 
 
  return (node);
  return (node);
}
}
 
 
static enum gdb_osabi
static enum gdb_osabi
procfs_is_nto_target (bfd *abfd)
procfs_is_nto_target (bfd *abfd)
{
{
  return GDB_OSABI_QNXNTO;
  return GDB_OSABI_QNXNTO;
}
}
 
 
/* This is called when we call 'target procfs <arg>' from the (gdb) prompt.
/* This is called when we call 'target procfs <arg>' from the (gdb) prompt.
   For QNX6 (nto), the only valid arg will be a QNX node string,
   For QNX6 (nto), the only valid arg will be a QNX node string,
   eg: "/net/some_node".  If arg is not a valid QNX node, we will
   eg: "/net/some_node".  If arg is not a valid QNX node, we will
   default to local.  */
   default to local.  */
static void
static void
procfs_open (char *arg, int from_tty)
procfs_open (char *arg, int from_tty)
{
{
  char *nodestr;
  char *nodestr;
  char *endstr;
  char *endstr;
  char buffer[50];
  char buffer[50];
  int fd, total_size;
  int fd, total_size;
  procfs_sysinfo *sysinfo;
  procfs_sysinfo *sysinfo;
  struct cleanup *cleanups;
  struct cleanup *cleanups;
 
 
  nto_is_nto_target = procfs_is_nto_target;
  nto_is_nto_target = procfs_is_nto_target;
 
 
  /* Set the default node used for spawning to this one,
  /* Set the default node used for spawning to this one,
     and only override it if there is a valid arg.  */
     and only override it if there is a valid arg.  */
 
 
  nto_procfs_node = ND_LOCAL_NODE;
  nto_procfs_node = ND_LOCAL_NODE;
  nodestr = arg ? xstrdup (arg) : arg;
  nodestr = arg ? xstrdup (arg) : arg;
 
 
  init_thread_list ();
  init_thread_list ();
 
 
  if (nodestr)
  if (nodestr)
    {
    {
      nto_procfs_node = netmgr_strtond (nodestr, &endstr);
      nto_procfs_node = netmgr_strtond (nodestr, &endstr);
      if (nto_procfs_node == -1)
      if (nto_procfs_node == -1)
        {
        {
          if (errno == ENOTSUP)
          if (errno == ENOTSUP)
            printf_filtered ("QNX Net Manager not found.\n");
            printf_filtered ("QNX Net Manager not found.\n");
          printf_filtered ("Invalid QNX node %s: error %d (%s).\n", nodestr,
          printf_filtered ("Invalid QNX node %s: error %d (%s).\n", nodestr,
                           errno, safe_strerror (errno));
                           errno, safe_strerror (errno));
          xfree (nodestr);
          xfree (nodestr);
          nodestr = NULL;
          nodestr = NULL;
          nto_procfs_node = ND_LOCAL_NODE;
          nto_procfs_node = ND_LOCAL_NODE;
        }
        }
      else if (*endstr)
      else if (*endstr)
        {
        {
          if (*(endstr - 1) == '/')
          if (*(endstr - 1) == '/')
            *(endstr - 1) = 0;
            *(endstr - 1) = 0;
          else
          else
            *endstr = 0;
            *endstr = 0;
        }
        }
    }
    }
  snprintf (nto_procfs_path, PATH_MAX - 1, "%s%s", nodestr ? nodestr : "",
  snprintf (nto_procfs_path, PATH_MAX - 1, "%s%s", nodestr ? nodestr : "",
            "/proc");
            "/proc");
  if (nodestr)
  if (nodestr)
    xfree (nodestr);
    xfree (nodestr);
 
 
  fd = open (nto_procfs_path, O_RDONLY);
  fd = open (nto_procfs_path, O_RDONLY);
  if (fd == -1)
  if (fd == -1)
    {
    {
      printf_filtered ("Error opening %s : %d (%s)\n", nto_procfs_path, errno,
      printf_filtered ("Error opening %s : %d (%s)\n", nto_procfs_path, errno,
                       safe_strerror (errno));
                       safe_strerror (errno));
      error (_("Invalid procfs arg"));
      error (_("Invalid procfs arg"));
    }
    }
  cleanups = make_cleanup_close (fd);
  cleanups = make_cleanup_close (fd);
 
 
  sysinfo = (void *) buffer;
  sysinfo = (void *) buffer;
  if (devctl (fd, DCMD_PROC_SYSINFO, sysinfo, sizeof buffer, 0) != EOK)
  if (devctl (fd, DCMD_PROC_SYSINFO, sysinfo, sizeof buffer, 0) != EOK)
    {
    {
      printf_filtered ("Error getting size: %d (%s)\n", errno,
      printf_filtered ("Error getting size: %d (%s)\n", errno,
                       safe_strerror (errno));
                       safe_strerror (errno));
      error (_("Devctl failed."));
      error (_("Devctl failed."));
    }
    }
  else
  else
    {
    {
      total_size = sysinfo->total_size;
      total_size = sysinfo->total_size;
      sysinfo = alloca (total_size);
      sysinfo = alloca (total_size);
      if (!sysinfo)
      if (!sysinfo)
        {
        {
          printf_filtered ("Memory error: %d (%s)\n", errno,
          printf_filtered ("Memory error: %d (%s)\n", errno,
                           safe_strerror (errno));
                           safe_strerror (errno));
          error (_("alloca failed."));
          error (_("alloca failed."));
        }
        }
      else
      else
        {
        {
          if (devctl (fd, DCMD_PROC_SYSINFO, sysinfo, total_size, 0) != EOK)
          if (devctl (fd, DCMD_PROC_SYSINFO, sysinfo, total_size, 0) != EOK)
            {
            {
              printf_filtered ("Error getting sysinfo: %d (%s)\n", errno,
              printf_filtered ("Error getting sysinfo: %d (%s)\n", errno,
                               safe_strerror (errno));
                               safe_strerror (errno));
              error (_("Devctl failed."));
              error (_("Devctl failed."));
            }
            }
          else
          else
            {
            {
              if (sysinfo->type !=
              if (sysinfo->type !=
                  nto_map_arch_to_cputype (gdbarch_bfd_arch_info
                  nto_map_arch_to_cputype (gdbarch_bfd_arch_info
                                           (target_gdbarch)->arch_name))
                                           (target_gdbarch)->arch_name))
                error (_("Invalid target CPU."));
                error (_("Invalid target CPU."));
            }
            }
        }
        }
    }
    }
  do_cleanups (cleanups);
  do_cleanups (cleanups);
  printf_filtered ("Debugging using %s\n", nto_procfs_path);
  printf_filtered ("Debugging using %s\n", nto_procfs_path);
}
}
 
 
static void
static void
procfs_set_thread (ptid_t ptid)
procfs_set_thread (ptid_t ptid)
{
{
  pid_t tid;
  pid_t tid;
 
 
  tid = ptid_get_tid (ptid);
  tid = ptid_get_tid (ptid);
  devctl (ctl_fd, DCMD_PROC_CURTHREAD, &tid, sizeof (tid), 0);
  devctl (ctl_fd, DCMD_PROC_CURTHREAD, &tid, sizeof (tid), 0);
}
}
 
 
/*  Return nonzero if the thread TH is still alive.  */
/*  Return nonzero if the thread TH is still alive.  */
static int
static int
procfs_thread_alive (struct target_ops *ops, ptid_t ptid)
procfs_thread_alive (struct target_ops *ops, ptid_t ptid)
{
{
  pid_t tid;
  pid_t tid;
  pid_t pid;
  pid_t pid;
  procfs_status status;
  procfs_status status;
  int err;
  int err;
 
 
  tid = ptid_get_tid (ptid);
  tid = ptid_get_tid (ptid);
  pid = ptid_get_pid (ptid);
  pid = ptid_get_pid (ptid);
 
 
  if (kill (pid, 0) == -1)
  if (kill (pid, 0) == -1)
    return 0;
    return 0;
 
 
  status.tid = tid;
  status.tid = tid;
  if ((err = devctl (ctl_fd, DCMD_PROC_TIDSTATUS,
  if ((err = devctl (ctl_fd, DCMD_PROC_TIDSTATUS,
                     &status, sizeof (status), 0)) != EOK)
                     &status, sizeof (status), 0)) != EOK)
    return 0;
    return 0;
 
 
  /* Thread is alive or dead but not yet joined,
  /* Thread is alive or dead but not yet joined,
     or dead and there is an alive (or dead unjoined) thread with
     or dead and there is an alive (or dead unjoined) thread with
     higher tid.
     higher tid.
 
 
     If the tid is not the same as requested, requested tid is dead.  */
     If the tid is not the same as requested, requested tid is dead.  */
  return (status.tid == tid) && (status.state != STATE_DEAD);
  return (status.tid == tid) && (status.state != STATE_DEAD);
}
}
 
 
static void
static void
update_thread_private_data_name (struct thread_info *new_thread,
update_thread_private_data_name (struct thread_info *new_thread,
                                 const char *newname)
                                 const char *newname)
{
{
  int newnamelen;
  int newnamelen;
  struct private_thread_info *pti;
  struct private_thread_info *pti;
 
 
  gdb_assert (newname != NULL);
  gdb_assert (newname != NULL);
  gdb_assert (new_thread != NULL);
  gdb_assert (new_thread != NULL);
  newnamelen = strlen (newname);
  newnamelen = strlen (newname);
  if (!new_thread->private)
  if (!new_thread->private)
    {
    {
      new_thread->private = xmalloc (offsetof (struct private_thread_info,
      new_thread->private = xmalloc (offsetof (struct private_thread_info,
                                               name)
                                               name)
                                     + newnamelen + 1);
                                     + newnamelen + 1);
      memcpy (new_thread->private->name, newname, newnamelen + 1);
      memcpy (new_thread->private->name, newname, newnamelen + 1);
    }
    }
  else if (strcmp (newname, new_thread->private->name) != 0)
  else if (strcmp (newname, new_thread->private->name) != 0)
    {
    {
      /* Reallocate if neccessary.  */
      /* Reallocate if neccessary.  */
      int oldnamelen = strlen (new_thread->private->name);
      int oldnamelen = strlen (new_thread->private->name);
 
 
      if (oldnamelen < newnamelen)
      if (oldnamelen < newnamelen)
        new_thread->private = xrealloc (new_thread->private,
        new_thread->private = xrealloc (new_thread->private,
                                        offsetof (struct private_thread_info,
                                        offsetof (struct private_thread_info,
                                                  name)
                                                  name)
                                        + newnamelen + 1);
                                        + newnamelen + 1);
      memcpy (new_thread->private->name, newname, newnamelen + 1);
      memcpy (new_thread->private->name, newname, newnamelen + 1);
    }
    }
}
}
 
 
static void
static void
update_thread_private_data (struct thread_info *new_thread,
update_thread_private_data (struct thread_info *new_thread,
                            pthread_t tid, int state, int flags)
                            pthread_t tid, int state, int flags)
{
{
  struct private_thread_info *pti;
  struct private_thread_info *pti;
  procfs_info pidinfo;
  procfs_info pidinfo;
  struct _thread_name *tn;
  struct _thread_name *tn;
  procfs_threadctl tctl;
  procfs_threadctl tctl;
 
 
#if _NTO_VERSION > 630
#if _NTO_VERSION > 630
  gdb_assert (new_thread != NULL);
  gdb_assert (new_thread != NULL);
 
 
  if (devctl (ctl_fd, DCMD_PROC_INFO, &pidinfo,
  if (devctl (ctl_fd, DCMD_PROC_INFO, &pidinfo,
              sizeof(pidinfo), 0) != EOK)
              sizeof(pidinfo), 0) != EOK)
    return;
    return;
 
 
  memset (&tctl, 0, sizeof (tctl));
  memset (&tctl, 0, sizeof (tctl));
  tctl.cmd = _NTO_TCTL_NAME;
  tctl.cmd = _NTO_TCTL_NAME;
  tn = (struct _thread_name *) (&tctl.data);
  tn = (struct _thread_name *) (&tctl.data);
 
 
  /* Fetch name for the given thread.  */
  /* Fetch name for the given thread.  */
  tctl.tid = tid;
  tctl.tid = tid;
  tn->name_buf_len = sizeof (tctl.data) - sizeof (*tn);
  tn->name_buf_len = sizeof (tctl.data) - sizeof (*tn);
  tn->new_name_len = -1; /* Getting, not setting.  */
  tn->new_name_len = -1; /* Getting, not setting.  */
  if (devctl (ctl_fd, DCMD_PROC_THREADCTL, &tctl, sizeof (tctl), NULL) != EOK)
  if (devctl (ctl_fd, DCMD_PROC_THREADCTL, &tctl, sizeof (tctl), NULL) != EOK)
    tn->name_buf[0] = '\0';
    tn->name_buf[0] = '\0';
 
 
  tn->name_buf[_NTO_THREAD_NAME_MAX] = '\0';
  tn->name_buf[_NTO_THREAD_NAME_MAX] = '\0';
 
 
  update_thread_private_data_name (new_thread, tn->name_buf);
  update_thread_private_data_name (new_thread, tn->name_buf);
 
 
  pti = (struct private_thread_info *) new_thread->private;
  pti = (struct private_thread_info *) new_thread->private;
  pti->tid = tid;
  pti->tid = tid;
  pti->state = state;
  pti->state = state;
  pti->flags = flags;
  pti->flags = flags;
#endif /* _NTO_VERSION */
#endif /* _NTO_VERSION */
}
}
 
 
void
void
procfs_find_new_threads (struct target_ops *ops)
procfs_find_new_threads (struct target_ops *ops)
{
{
  procfs_status status;
  procfs_status status;
  pid_t pid;
  pid_t pid;
  ptid_t ptid;
  ptid_t ptid;
  pthread_t tid;
  pthread_t tid;
  struct thread_info *new_thread;
  struct thread_info *new_thread;
 
 
  if (ctl_fd == -1)
  if (ctl_fd == -1)
    return;
    return;
 
 
  pid = ptid_get_pid (inferior_ptid);
  pid = ptid_get_pid (inferior_ptid);
 
 
  status.tid = 1;
  status.tid = 1;
 
 
  for (tid = 1;; ++tid)
  for (tid = 1;; ++tid)
    {
    {
      if (status.tid == tid
      if (status.tid == tid
          && (devctl (ctl_fd, DCMD_PROC_TIDSTATUS, &status, sizeof (status), 0)
          && (devctl (ctl_fd, DCMD_PROC_TIDSTATUS, &status, sizeof (status), 0)
              != EOK))
              != EOK))
        break;
        break;
      if (status.tid != tid)
      if (status.tid != tid)
        /* The reason why this would not be equal is that devctl might have
        /* The reason why this would not be equal is that devctl might have
           returned different tid, meaning the requested tid no longer exists
           returned different tid, meaning the requested tid no longer exists
           (e.g. thread exited).  */
           (e.g. thread exited).  */
        continue;
        continue;
      ptid = ptid_build (pid, 0, tid);
      ptid = ptid_build (pid, 0, tid);
      new_thread = find_thread_ptid (ptid);
      new_thread = find_thread_ptid (ptid);
      if (!new_thread)
      if (!new_thread)
        new_thread = add_thread (ptid);
        new_thread = add_thread (ptid);
      update_thread_private_data (new_thread, tid, status.state, 0);
      update_thread_private_data (new_thread, tid, status.state, 0);
      status.tid++;
      status.tid++;
    }
    }
  return;
  return;
}
}
 
 
static void
static void
do_closedir_cleanup (void *dir)
do_closedir_cleanup (void *dir)
{
{
  closedir (dir);
  closedir (dir);
}
}
 
 
void
void
procfs_pidlist (char *args, int from_tty)
procfs_pidlist (char *args, int from_tty)
{
{
  DIR *dp = NULL;
  DIR *dp = NULL;
  struct dirent *dirp = NULL;
  struct dirent *dirp = NULL;
  char buf[512];
  char buf[512];
  procfs_info *pidinfo = NULL;
  procfs_info *pidinfo = NULL;
  procfs_debuginfo *info = NULL;
  procfs_debuginfo *info = NULL;
  procfs_status *status = NULL;
  procfs_status *status = NULL;
  pid_t num_threads = 0;
  pid_t num_threads = 0;
  pid_t pid;
  pid_t pid;
  char name[512];
  char name[512];
  struct cleanup *cleanups;
  struct cleanup *cleanups;
 
 
  dp = opendir (nto_procfs_path);
  dp = opendir (nto_procfs_path);
  if (dp == NULL)
  if (dp == NULL)
    {
    {
      fprintf_unfiltered (gdb_stderr, "failed to opendir \"%s\" - %d (%s)",
      fprintf_unfiltered (gdb_stderr, "failed to opendir \"%s\" - %d (%s)",
                          nto_procfs_path, errno, safe_strerror (errno));
                          nto_procfs_path, errno, safe_strerror (errno));
      return;
      return;
    }
    }
 
 
  cleanups = make_cleanup (do_closedir_cleanup, dp);
  cleanups = make_cleanup (do_closedir_cleanup, dp);
 
 
  /* Start scan at first pid.  */
  /* Start scan at first pid.  */
  rewinddir (dp);
  rewinddir (dp);
 
 
  do
  do
    {
    {
      int fd;
      int fd;
      struct cleanup *inner_cleanup;
      struct cleanup *inner_cleanup;
 
 
      /* Get the right pid and procfs path for the pid.  */
      /* Get the right pid and procfs path for the pid.  */
      do
      do
        {
        {
          dirp = readdir (dp);
          dirp = readdir (dp);
          if (dirp == NULL)
          if (dirp == NULL)
            {
            {
              do_cleanups (cleanups);
              do_cleanups (cleanups);
              return;
              return;
            }
            }
          snprintf (buf, 511, "%s/%s/as", nto_procfs_path, dirp->d_name);
          snprintf (buf, 511, "%s/%s/as", nto_procfs_path, dirp->d_name);
          pid = atoi (dirp->d_name);
          pid = atoi (dirp->d_name);
        }
        }
      while (pid == 0);
      while (pid == 0);
 
 
      /* Open the procfs path. */
      /* Open the procfs path. */
      fd = open (buf, O_RDONLY);
      fd = open (buf, O_RDONLY);
      if (fd == -1)
      if (fd == -1)
        {
        {
          fprintf_unfiltered (gdb_stderr, "failed to open %s - %d (%s)\n",
          fprintf_unfiltered (gdb_stderr, "failed to open %s - %d (%s)\n",
                              buf, errno, safe_strerror (errno));
                              buf, errno, safe_strerror (errno));
          do_cleanups (cleanups);
          do_cleanups (cleanups);
          return;
          return;
        }
        }
      inner_cleanup = make_cleanup_close (fd);
      inner_cleanup = make_cleanup_close (fd);
 
 
      pidinfo = (procfs_info *) buf;
      pidinfo = (procfs_info *) buf;
      if (devctl (fd, DCMD_PROC_INFO, pidinfo, sizeof (buf), 0) != EOK)
      if (devctl (fd, DCMD_PROC_INFO, pidinfo, sizeof (buf), 0) != EOK)
        {
        {
          fprintf_unfiltered (gdb_stderr,
          fprintf_unfiltered (gdb_stderr,
                              "devctl DCMD_PROC_INFO failed - %d (%s)\n",
                              "devctl DCMD_PROC_INFO failed - %d (%s)\n",
                              errno, safe_strerror (errno));
                              errno, safe_strerror (errno));
          break;
          break;
        }
        }
      num_threads = pidinfo->num_threads;
      num_threads = pidinfo->num_threads;
 
 
      info = (procfs_debuginfo *) buf;
      info = (procfs_debuginfo *) buf;
      if (devctl (fd, DCMD_PROC_MAPDEBUG_BASE, info, sizeof (buf), 0) != EOK)
      if (devctl (fd, DCMD_PROC_MAPDEBUG_BASE, info, sizeof (buf), 0) != EOK)
        strcpy (name, "unavailable");
        strcpy (name, "unavailable");
      else
      else
        strcpy (name, info->path);
        strcpy (name, info->path);
 
 
      /* Collect state info on all the threads.  */
      /* Collect state info on all the threads.  */
      status = (procfs_status *) buf;
      status = (procfs_status *) buf;
      for (status->tid = 1; status->tid <= num_threads; status->tid++)
      for (status->tid = 1; status->tid <= num_threads; status->tid++)
        {
        {
          if (devctl (fd, DCMD_PROC_TIDSTATUS, status, sizeof (buf), 0) != EOK
          if (devctl (fd, DCMD_PROC_TIDSTATUS, status, sizeof (buf), 0) != EOK
              && status->tid != 0)
              && status->tid != 0)
            break;
            break;
          if (status->tid != 0)
          if (status->tid != 0)
            printf_filtered ("%s - %d/%d\n", name, pid, status->tid);
            printf_filtered ("%s - %d/%d\n", name, pid, status->tid);
        }
        }
 
 
      do_cleanups (inner_cleanup);
      do_cleanups (inner_cleanup);
    }
    }
  while (dirp != NULL);
  while (dirp != NULL);
 
 
  do_cleanups (cleanups);
  do_cleanups (cleanups);
  return;
  return;
}
}
 
 
void
void
procfs_meminfo (char *args, int from_tty)
procfs_meminfo (char *args, int from_tty)
{
{
  procfs_mapinfo *mapinfos = NULL;
  procfs_mapinfo *mapinfos = NULL;
  static int num_mapinfos = 0;
  static int num_mapinfos = 0;
  procfs_mapinfo *mapinfo_p, *mapinfo_p2;
  procfs_mapinfo *mapinfo_p, *mapinfo_p2;
  int flags = ~0, err, num, i, j;
  int flags = ~0, err, num, i, j;
 
 
  struct
  struct
  {
  {
    procfs_debuginfo info;
    procfs_debuginfo info;
    char buff[_POSIX_PATH_MAX];
    char buff[_POSIX_PATH_MAX];
  } map;
  } map;
 
 
  struct info
  struct info
  {
  {
    unsigned addr;
    unsigned addr;
    unsigned size;
    unsigned size;
    unsigned flags;
    unsigned flags;
    unsigned debug_vaddr;
    unsigned debug_vaddr;
    unsigned long long offset;
    unsigned long long offset;
  };
  };
 
 
  struct printinfo
  struct printinfo
  {
  {
    unsigned long long ino;
    unsigned long long ino;
    unsigned dev;
    unsigned dev;
    struct info text;
    struct info text;
    struct info data;
    struct info data;
    char name[256];
    char name[256];
  } printme;
  } printme;
 
 
  /* Get the number of map entrys.  */
  /* Get the number of map entrys.  */
  err = devctl (ctl_fd, DCMD_PROC_MAPINFO, NULL, 0, &num);
  err = devctl (ctl_fd, DCMD_PROC_MAPINFO, NULL, 0, &num);
  if (err != EOK)
  if (err != EOK)
    {
    {
      printf ("failed devctl num mapinfos - %d (%s)\n", err,
      printf ("failed devctl num mapinfos - %d (%s)\n", err,
              safe_strerror (err));
              safe_strerror (err));
      return;
      return;
    }
    }
 
 
  mapinfos = xmalloc (num * sizeof (procfs_mapinfo));
  mapinfos = xmalloc (num * sizeof (procfs_mapinfo));
 
 
  num_mapinfos = num;
  num_mapinfos = num;
  mapinfo_p = mapinfos;
  mapinfo_p = mapinfos;
 
 
  /* Fill the map entrys.  */
  /* Fill the map entrys.  */
  err = devctl (ctl_fd, DCMD_PROC_MAPINFO, mapinfo_p, num
  err = devctl (ctl_fd, DCMD_PROC_MAPINFO, mapinfo_p, num
                * sizeof (procfs_mapinfo), &num);
                * sizeof (procfs_mapinfo), &num);
  if (err != EOK)
  if (err != EOK)
    {
    {
      printf ("failed devctl mapinfos - %d (%s)\n", err, safe_strerror (err));
      printf ("failed devctl mapinfos - %d (%s)\n", err, safe_strerror (err));
      xfree (mapinfos);
      xfree (mapinfos);
      return;
      return;
    }
    }
 
 
  num = min (num, num_mapinfos);
  num = min (num, num_mapinfos);
 
 
  /* Run through the list of mapinfos, and store the data and text info
  /* Run through the list of mapinfos, and store the data and text info
     so we can print it at the bottom of the loop.  */
     so we can print it at the bottom of the loop.  */
  for (mapinfo_p = mapinfos, i = 0; i < num; i++, mapinfo_p++)
  for (mapinfo_p = mapinfos, i = 0; i < num; i++, mapinfo_p++)
    {
    {
      if (!(mapinfo_p->flags & flags))
      if (!(mapinfo_p->flags & flags))
        mapinfo_p->ino = 0;
        mapinfo_p->ino = 0;
 
 
      if (mapinfo_p->ino == 0)   /* Already visited.  */
      if (mapinfo_p->ino == 0)   /* Already visited.  */
        continue;
        continue;
 
 
      map.info.vaddr = mapinfo_p->vaddr;
      map.info.vaddr = mapinfo_p->vaddr;
 
 
      err = devctl (ctl_fd, DCMD_PROC_MAPDEBUG, &map, sizeof (map), 0);
      err = devctl (ctl_fd, DCMD_PROC_MAPDEBUG, &map, sizeof (map), 0);
      if (err != EOK)
      if (err != EOK)
        continue;
        continue;
 
 
      memset (&printme, 0, sizeof printme);
      memset (&printme, 0, sizeof printme);
      printme.dev = mapinfo_p->dev;
      printme.dev = mapinfo_p->dev;
      printme.ino = mapinfo_p->ino;
      printme.ino = mapinfo_p->ino;
      printme.text.addr = mapinfo_p->vaddr;
      printme.text.addr = mapinfo_p->vaddr;
      printme.text.size = mapinfo_p->size;
      printme.text.size = mapinfo_p->size;
      printme.text.flags = mapinfo_p->flags;
      printme.text.flags = mapinfo_p->flags;
      printme.text.offset = mapinfo_p->offset;
      printme.text.offset = mapinfo_p->offset;
      printme.text.debug_vaddr = map.info.vaddr;
      printme.text.debug_vaddr = map.info.vaddr;
      strcpy (printme.name, map.info.path);
      strcpy (printme.name, map.info.path);
 
 
      /* Check for matching data.  */
      /* Check for matching data.  */
      for (mapinfo_p2 = mapinfos, j = 0; j < num; j++, mapinfo_p2++)
      for (mapinfo_p2 = mapinfos, j = 0; j < num; j++, mapinfo_p2++)
        {
        {
          if (mapinfo_p2->vaddr != mapinfo_p->vaddr
          if (mapinfo_p2->vaddr != mapinfo_p->vaddr
              && mapinfo_p2->ino == mapinfo_p->ino
              && mapinfo_p2->ino == mapinfo_p->ino
              && mapinfo_p2->dev == mapinfo_p->dev)
              && mapinfo_p2->dev == mapinfo_p->dev)
            {
            {
              map.info.vaddr = mapinfo_p2->vaddr;
              map.info.vaddr = mapinfo_p2->vaddr;
              err =
              err =
                devctl (ctl_fd, DCMD_PROC_MAPDEBUG, &map, sizeof (map), 0);
                devctl (ctl_fd, DCMD_PROC_MAPDEBUG, &map, sizeof (map), 0);
              if (err != EOK)
              if (err != EOK)
                continue;
                continue;
 
 
              if (strcmp (map.info.path, printme.name))
              if (strcmp (map.info.path, printme.name))
                continue;
                continue;
 
 
              /* Lower debug_vaddr is always text, if nessessary, swap.  */
              /* Lower debug_vaddr is always text, if nessessary, swap.  */
              if ((int) map.info.vaddr < (int) printme.text.debug_vaddr)
              if ((int) map.info.vaddr < (int) printme.text.debug_vaddr)
                {
                {
                  memcpy (&(printme.data), &(printme.text),
                  memcpy (&(printme.data), &(printme.text),
                          sizeof (printme.data));
                          sizeof (printme.data));
                  printme.text.addr = mapinfo_p2->vaddr;
                  printme.text.addr = mapinfo_p2->vaddr;
                  printme.text.size = mapinfo_p2->size;
                  printme.text.size = mapinfo_p2->size;
                  printme.text.flags = mapinfo_p2->flags;
                  printme.text.flags = mapinfo_p2->flags;
                  printme.text.offset = mapinfo_p2->offset;
                  printme.text.offset = mapinfo_p2->offset;
                  printme.text.debug_vaddr = map.info.vaddr;
                  printme.text.debug_vaddr = map.info.vaddr;
                }
                }
              else
              else
                {
                {
                  printme.data.addr = mapinfo_p2->vaddr;
                  printme.data.addr = mapinfo_p2->vaddr;
                  printme.data.size = mapinfo_p2->size;
                  printme.data.size = mapinfo_p2->size;
                  printme.data.flags = mapinfo_p2->flags;
                  printme.data.flags = mapinfo_p2->flags;
                  printme.data.offset = mapinfo_p2->offset;
                  printme.data.offset = mapinfo_p2->offset;
                  printme.data.debug_vaddr = map.info.vaddr;
                  printme.data.debug_vaddr = map.info.vaddr;
                }
                }
              mapinfo_p2->ino = 0;
              mapinfo_p2->ino = 0;
            }
            }
        }
        }
      mapinfo_p->ino = 0;
      mapinfo_p->ino = 0;
 
 
      printf_filtered ("%s\n", printme.name);
      printf_filtered ("%s\n", printme.name);
      printf_filtered ("\ttext=%08x bytes @ 0x%08x\n", printme.text.size,
      printf_filtered ("\ttext=%08x bytes @ 0x%08x\n", printme.text.size,
                       printme.text.addr);
                       printme.text.addr);
      printf_filtered ("\t\tflags=%08x\n", printme.text.flags);
      printf_filtered ("\t\tflags=%08x\n", printme.text.flags);
      printf_filtered ("\t\tdebug=%08x\n", printme.text.debug_vaddr);
      printf_filtered ("\t\tdebug=%08x\n", printme.text.debug_vaddr);
      printf_filtered ("\t\toffset=%016llx\n", printme.text.offset);
      printf_filtered ("\t\toffset=%016llx\n", printme.text.offset);
      if (printme.data.size)
      if (printme.data.size)
        {
        {
          printf_filtered ("\tdata=%08x bytes @ 0x%08x\n", printme.data.size,
          printf_filtered ("\tdata=%08x bytes @ 0x%08x\n", printme.data.size,
                           printme.data.addr);
                           printme.data.addr);
          printf_filtered ("\t\tflags=%08x\n", printme.data.flags);
          printf_filtered ("\t\tflags=%08x\n", printme.data.flags);
          printf_filtered ("\t\tdebug=%08x\n", printme.data.debug_vaddr);
          printf_filtered ("\t\tdebug=%08x\n", printme.data.debug_vaddr);
          printf_filtered ("\t\toffset=%016llx\n", printme.data.offset);
          printf_filtered ("\t\toffset=%016llx\n", printme.data.offset);
        }
        }
      printf_filtered ("\tdev=0x%x\n", printme.dev);
      printf_filtered ("\tdev=0x%x\n", printme.dev);
      printf_filtered ("\tino=0x%x\n", (unsigned int) printme.ino);
      printf_filtered ("\tino=0x%x\n", (unsigned int) printme.ino);
    }
    }
  xfree (mapinfos);
  xfree (mapinfos);
  return;
  return;
}
}
 
 
/* Print status information about what we're accessing.  */
/* Print status information about what we're accessing.  */
static void
static void
procfs_files_info (struct target_ops *ignore)
procfs_files_info (struct target_ops *ignore)
{
{
  struct inferior *inf = current_inferior ();
  struct inferior *inf = current_inferior ();
 
 
  printf_unfiltered ("\tUsing the running image of %s %s via %s.\n",
  printf_unfiltered ("\tUsing the running image of %s %s via %s.\n",
                     inf->attach_flag ? "attached" : "child",
                     inf->attach_flag ? "attached" : "child",
                     target_pid_to_str (inferior_ptid), nto_procfs_path);
                     target_pid_to_str (inferior_ptid), nto_procfs_path);
}
}
 
 
/* Mark our target-struct as eligible for stray "run" and "attach" commands.  */
/* Mark our target-struct as eligible for stray "run" and "attach" commands.  */
static int
static int
procfs_can_run (void)
procfs_can_run (void)
{
{
  return 1;
  return 1;
}
}
 
 
/* Attach to process PID, then initialize for debugging it.  */
/* Attach to process PID, then initialize for debugging it.  */
static void
static void
procfs_attach (struct target_ops *ops, char *args, int from_tty)
procfs_attach (struct target_ops *ops, char *args, int from_tty)
{
{
  char *exec_file;
  char *exec_file;
  int pid;
  int pid;
  struct inferior *inf;
  struct inferior *inf;
 
 
  pid = parse_pid_to_attach (args);
  pid = parse_pid_to_attach (args);
 
 
  if (pid == getpid ())
  if (pid == getpid ())
    error (_("Attaching GDB to itself is not a good idea..."));
    error (_("Attaching GDB to itself is not a good idea..."));
 
 
  if (from_tty)
  if (from_tty)
    {
    {
      exec_file = (char *) get_exec_file (0);
      exec_file = (char *) get_exec_file (0);
 
 
      if (exec_file)
      if (exec_file)
        printf_unfiltered ("Attaching to program `%s', %s\n", exec_file,
        printf_unfiltered ("Attaching to program `%s', %s\n", exec_file,
                           target_pid_to_str (pid_to_ptid (pid)));
                           target_pid_to_str (pid_to_ptid (pid)));
      else
      else
        printf_unfiltered ("Attaching to %s\n",
        printf_unfiltered ("Attaching to %s\n",
                           target_pid_to_str (pid_to_ptid (pid)));
                           target_pid_to_str (pid_to_ptid (pid)));
 
 
      gdb_flush (gdb_stdout);
      gdb_flush (gdb_stdout);
    }
    }
  inferior_ptid = do_attach (pid_to_ptid (pid));
  inferior_ptid = do_attach (pid_to_ptid (pid));
  inf = current_inferior ();
  inf = current_inferior ();
  inferior_appeared (inf, pid);
  inferior_appeared (inf, pid);
  inf->attach_flag = 1;
  inf->attach_flag = 1;
 
 
  push_target (ops);
  push_target (ops);
 
 
  procfs_find_new_threads (ops);
  procfs_find_new_threads (ops);
}
}
 
 
static void
static void
procfs_post_attach (pid_t pid)
procfs_post_attach (pid_t pid)
{
{
  if (exec_bfd)
  if (exec_bfd)
    solib_create_inferior_hook (0);
    solib_create_inferior_hook (0);
}
}
 
 
static ptid_t
static ptid_t
do_attach (ptid_t ptid)
do_attach (ptid_t ptid)
{
{
  procfs_status status;
  procfs_status status;
  struct sigevent event;
  struct sigevent event;
  char path[PATH_MAX];
  char path[PATH_MAX];
 
 
  snprintf (path, PATH_MAX - 1, "%s/%d/as", nto_procfs_path, PIDGET (ptid));
  snprintf (path, PATH_MAX - 1, "%s/%d/as", nto_procfs_path, PIDGET (ptid));
  ctl_fd = open (path, O_RDWR);
  ctl_fd = open (path, O_RDWR);
  if (ctl_fd == -1)
  if (ctl_fd == -1)
    error (_("Couldn't open proc file %s, error %d (%s)"), path, errno,
    error (_("Couldn't open proc file %s, error %d (%s)"), path, errno,
           safe_strerror (errno));
           safe_strerror (errno));
  if (devctl (ctl_fd, DCMD_PROC_STOP, &status, sizeof (status), 0) != EOK)
  if (devctl (ctl_fd, DCMD_PROC_STOP, &status, sizeof (status), 0) != EOK)
    error (_("Couldn't stop process"));
    error (_("Couldn't stop process"));
 
 
  /* Define a sigevent for process stopped notification.  */
  /* Define a sigevent for process stopped notification.  */
  event.sigev_notify = SIGEV_SIGNAL_THREAD;
  event.sigev_notify = SIGEV_SIGNAL_THREAD;
  event.sigev_signo = SIGUSR1;
  event.sigev_signo = SIGUSR1;
  event.sigev_code = 0;
  event.sigev_code = 0;
  event.sigev_value.sival_ptr = NULL;
  event.sigev_value.sival_ptr = NULL;
  event.sigev_priority = -1;
  event.sigev_priority = -1;
  devctl (ctl_fd, DCMD_PROC_EVENT, &event, sizeof (event), 0);
  devctl (ctl_fd, DCMD_PROC_EVENT, &event, sizeof (event), 0);
 
 
  if (devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0) == EOK
  if (devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0) == EOK
      && status.flags & _DEBUG_FLAG_STOPPED)
      && status.flags & _DEBUG_FLAG_STOPPED)
    SignalKill (nto_node (), PIDGET (ptid), 0, SIGCONT, 0, 0);
    SignalKill (nto_node (), PIDGET (ptid), 0, SIGCONT, 0, 0);
  nto_init_solib_absolute_prefix ();
  nto_init_solib_absolute_prefix ();
  return ptid_build (PIDGET (ptid), 0, status.tid);
  return ptid_build (PIDGET (ptid), 0, status.tid);
}
}
 
 
/* Ask the user what to do when an interrupt is received.  */
/* Ask the user what to do when an interrupt is received.  */
static void
static void
interrupt_query (void)
interrupt_query (void)
{
{
  target_terminal_ours ();
  target_terminal_ours ();
 
 
  if (query (_("Interrupted while waiting for the program.\n\
  if (query (_("Interrupted while waiting for the program.\n\
Give up (and stop debugging it)? ")))
Give up (and stop debugging it)? ")))
    {
    {
      target_mourn_inferior ();
      target_mourn_inferior ();
      deprecated_throw_reason (RETURN_QUIT);
      deprecated_throw_reason (RETURN_QUIT);
    }
    }
 
 
  target_terminal_inferior ();
  target_terminal_inferior ();
}
}
 
 
/* The user typed ^C twice.  */
/* The user typed ^C twice.  */
static void
static void
nto_interrupt_twice (int signo)
nto_interrupt_twice (int signo)
{
{
  signal (signo, ofunc);
  signal (signo, ofunc);
  interrupt_query ();
  interrupt_query ();
  signal (signo, nto_interrupt_twice);
  signal (signo, nto_interrupt_twice);
}
}
 
 
static void
static void
nto_interrupt (int signo)
nto_interrupt (int signo)
{
{
  /* If this doesn't work, try more severe steps.  */
  /* If this doesn't work, try more severe steps.  */
  signal (signo, nto_interrupt_twice);
  signal (signo, nto_interrupt_twice);
 
 
  target_stop (inferior_ptid);
  target_stop (inferior_ptid);
}
}
 
 
static ptid_t
static ptid_t
procfs_wait (struct target_ops *ops,
procfs_wait (struct target_ops *ops,
             ptid_t ptid, struct target_waitstatus *ourstatus, int options)
             ptid_t ptid, struct target_waitstatus *ourstatus, int options)
{
{
  sigset_t set;
  sigset_t set;
  siginfo_t info;
  siginfo_t info;
  procfs_status status;
  procfs_status status;
  static int exit_signo = 0;     /* To track signals that cause termination.  */
  static int exit_signo = 0;     /* To track signals that cause termination.  */
 
 
  ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
  ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
 
 
  if (ptid_equal (inferior_ptid, null_ptid))
  if (ptid_equal (inferior_ptid, null_ptid))
    {
    {
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->value.sig = TARGET_SIGNAL_0;
      ourstatus->value.sig = TARGET_SIGNAL_0;
      exit_signo = 0;
      exit_signo = 0;
      return null_ptid;
      return null_ptid;
    }
    }
 
 
  sigemptyset (&set);
  sigemptyset (&set);
  sigaddset (&set, SIGUSR1);
  sigaddset (&set, SIGUSR1);
 
 
  devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0);
  devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0);
  while (!(status.flags & _DEBUG_FLAG_ISTOP))
  while (!(status.flags & _DEBUG_FLAG_ISTOP))
    {
    {
      ofunc = (void (*)()) signal (SIGINT, nto_interrupt);
      ofunc = (void (*)()) signal (SIGINT, nto_interrupt);
      sigwaitinfo (&set, &info);
      sigwaitinfo (&set, &info);
      signal (SIGINT, ofunc);
      signal (SIGINT, ofunc);
      devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0);
      devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0);
    }
    }
 
 
  if (status.flags & _DEBUG_FLAG_SSTEP)
  if (status.flags & _DEBUG_FLAG_SSTEP)
    {
    {
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->value.sig = TARGET_SIGNAL_TRAP;
      ourstatus->value.sig = TARGET_SIGNAL_TRAP;
    }
    }
  /* Was it a breakpoint?  */
  /* Was it a breakpoint?  */
  else if (status.flags & _DEBUG_FLAG_TRACE)
  else if (status.flags & _DEBUG_FLAG_TRACE)
    {
    {
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->value.sig = TARGET_SIGNAL_TRAP;
      ourstatus->value.sig = TARGET_SIGNAL_TRAP;
    }
    }
  else if (status.flags & _DEBUG_FLAG_ISTOP)
  else if (status.flags & _DEBUG_FLAG_ISTOP)
    {
    {
      switch (status.why)
      switch (status.why)
        {
        {
        case _DEBUG_WHY_SIGNALLED:
        case _DEBUG_WHY_SIGNALLED:
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->value.sig =
          ourstatus->value.sig =
            target_signal_from_host (status.info.si_signo);
            target_signal_from_host (status.info.si_signo);
          exit_signo = 0;
          exit_signo = 0;
          break;
          break;
        case _DEBUG_WHY_FAULTED:
        case _DEBUG_WHY_FAULTED:
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          if (status.info.si_signo == SIGTRAP)
          if (status.info.si_signo == SIGTRAP)
            {
            {
              ourstatus->value.sig = 0;
              ourstatus->value.sig = 0;
              exit_signo = 0;
              exit_signo = 0;
            }
            }
          else
          else
            {
            {
              ourstatus->value.sig =
              ourstatus->value.sig =
                target_signal_from_host (status.info.si_signo);
                target_signal_from_host (status.info.si_signo);
              exit_signo = ourstatus->value.sig;
              exit_signo = ourstatus->value.sig;
            }
            }
          break;
          break;
 
 
        case _DEBUG_WHY_TERMINATED:
        case _DEBUG_WHY_TERMINATED:
          {
          {
            int waitval = 0;
            int waitval = 0;
 
 
            waitpid (PIDGET (inferior_ptid), &waitval, WNOHANG);
            waitpid (PIDGET (inferior_ptid), &waitval, WNOHANG);
            if (exit_signo)
            if (exit_signo)
              {
              {
                /* Abnormal death.  */
                /* Abnormal death.  */
                ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
                ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
                ourstatus->value.sig = exit_signo;
                ourstatus->value.sig = exit_signo;
              }
              }
            else
            else
              {
              {
                /* Normal death.  */
                /* Normal death.  */
                ourstatus->kind = TARGET_WAITKIND_EXITED;
                ourstatus->kind = TARGET_WAITKIND_EXITED;
                ourstatus->value.integer = WEXITSTATUS (waitval);
                ourstatus->value.integer = WEXITSTATUS (waitval);
              }
              }
            exit_signo = 0;
            exit_signo = 0;
            break;
            break;
          }
          }
 
 
        case _DEBUG_WHY_REQUESTED:
        case _DEBUG_WHY_REQUESTED:
          /* We are assuming a requested stop is due to a SIGINT.  */
          /* We are assuming a requested stop is due to a SIGINT.  */
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->value.sig = TARGET_SIGNAL_INT;
          ourstatus->value.sig = TARGET_SIGNAL_INT;
          exit_signo = 0;
          exit_signo = 0;
          break;
          break;
        }
        }
    }
    }
 
 
  return ptid_build (status.pid, 0, status.tid);
  return ptid_build (status.pid, 0, status.tid);
}
}
 
 
/* Read the current values of the inferior's registers, both the
/* Read the current values of the inferior's registers, both the
   general register set and floating point registers (if supported)
   general register set and floating point registers (if supported)
   and update gdb's idea of their current values.  */
   and update gdb's idea of their current values.  */
static void
static void
procfs_fetch_registers (struct target_ops *ops,
procfs_fetch_registers (struct target_ops *ops,
                        struct regcache *regcache, int regno)
                        struct regcache *regcache, int regno)
{
{
  union
  union
  {
  {
    procfs_greg greg;
    procfs_greg greg;
    procfs_fpreg fpreg;
    procfs_fpreg fpreg;
    procfs_altreg altreg;
    procfs_altreg altreg;
  }
  }
  reg;
  reg;
  int regsize;
  int regsize;
 
 
  procfs_set_thread (inferior_ptid);
  procfs_set_thread (inferior_ptid);
  if (devctl (ctl_fd, DCMD_PROC_GETGREG, &reg, sizeof (reg), &regsize) == EOK)
  if (devctl (ctl_fd, DCMD_PROC_GETGREG, &reg, sizeof (reg), &regsize) == EOK)
    nto_supply_gregset (regcache, (char *) &reg.greg);
    nto_supply_gregset (regcache, (char *) &reg.greg);
  if (devctl (ctl_fd, DCMD_PROC_GETFPREG, &reg, sizeof (reg), &regsize)
  if (devctl (ctl_fd, DCMD_PROC_GETFPREG, &reg, sizeof (reg), &regsize)
      == EOK)
      == EOK)
    nto_supply_fpregset (regcache, (char *) &reg.fpreg);
    nto_supply_fpregset (regcache, (char *) &reg.fpreg);
  if (devctl (ctl_fd, DCMD_PROC_GETALTREG, &reg, sizeof (reg), &regsize)
  if (devctl (ctl_fd, DCMD_PROC_GETALTREG, &reg, sizeof (reg), &regsize)
      == EOK)
      == EOK)
    nto_supply_altregset (regcache, (char *) &reg.altreg);
    nto_supply_altregset (regcache, (char *) &reg.altreg);
}
}
 
 
/* Copy LEN bytes to/from inferior's memory starting at MEMADDR
/* Copy LEN bytes to/from inferior's memory starting at MEMADDR
   from/to debugger memory starting at MYADDR.  Copy from inferior
   from/to debugger memory starting at MYADDR.  Copy from inferior
   if DOWRITE is zero or to inferior if DOWRITE is nonzero.
   if DOWRITE is zero or to inferior if DOWRITE is nonzero.
 
 
   Returns the length copied, which is either the LEN argument or
   Returns the length copied, which is either the LEN argument or
   zero.  This xfer function does not do partial moves, since procfs_ops
   zero.  This xfer function does not do partial moves, since procfs_ops
   doesn't allow memory operations to cross below us in the target stack
   doesn't allow memory operations to cross below us in the target stack
   anyway.  */
   anyway.  */
static int
static int
procfs_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int dowrite,
procfs_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int dowrite,
                    struct mem_attrib *attrib, struct target_ops *target)
                    struct mem_attrib *attrib, struct target_ops *target)
{
{
  int nbytes = 0;
  int nbytes = 0;
 
 
  if (lseek (ctl_fd, (off_t) memaddr, SEEK_SET) == (off_t) memaddr)
  if (lseek (ctl_fd, (off_t) memaddr, SEEK_SET) == (off_t) memaddr)
    {
    {
      if (dowrite)
      if (dowrite)
        nbytes = write (ctl_fd, myaddr, len);
        nbytes = write (ctl_fd, myaddr, len);
      else
      else
        nbytes = read (ctl_fd, myaddr, len);
        nbytes = read (ctl_fd, myaddr, len);
      if (nbytes < 0)
      if (nbytes < 0)
        nbytes = 0;
        nbytes = 0;
    }
    }
  return (nbytes);
  return (nbytes);
}
}
 
 
/* Take a program previously attached to and detaches it.
/* Take a program previously attached to and detaches it.
   The program resumes execution and will no longer stop
   The program resumes execution and will no longer stop
   on signals, etc.  We'd better not have left any breakpoints
   on signals, etc.  We'd better not have left any breakpoints
   in the program or it'll die when it hits one.  */
   in the program or it'll die when it hits one.  */
static void
static void
procfs_detach (struct target_ops *ops, char *args, int from_tty)
procfs_detach (struct target_ops *ops, char *args, int from_tty)
{
{
  int siggnal = 0;
  int siggnal = 0;
  int pid;
  int pid;
 
 
  if (from_tty)
  if (from_tty)
    {
    {
      char *exec_file = get_exec_file (0);
      char *exec_file = get_exec_file (0);
      if (exec_file == 0)
      if (exec_file == 0)
        exec_file = "";
        exec_file = "";
      printf_unfiltered ("Detaching from program: %s %s\n",
      printf_unfiltered ("Detaching from program: %s %s\n",
                         exec_file, target_pid_to_str (inferior_ptid));
                         exec_file, target_pid_to_str (inferior_ptid));
      gdb_flush (gdb_stdout);
      gdb_flush (gdb_stdout);
    }
    }
  if (args)
  if (args)
    siggnal = atoi (args);
    siggnal = atoi (args);
 
 
  if (siggnal)
  if (siggnal)
    SignalKill (nto_node (), PIDGET (inferior_ptid), 0, siggnal, 0, 0);
    SignalKill (nto_node (), PIDGET (inferior_ptid), 0, siggnal, 0, 0);
 
 
  close (ctl_fd);
  close (ctl_fd);
  ctl_fd = -1;
  ctl_fd = -1;
 
 
  pid = ptid_get_pid (inferior_ptid);
  pid = ptid_get_pid (inferior_ptid);
  inferior_ptid = null_ptid;
  inferior_ptid = null_ptid;
  detach_inferior (pid);
  detach_inferior (pid);
  init_thread_list ();
  init_thread_list ();
  unpush_target (&procfs_ops);  /* Pop out of handling an inferior.  */
  unpush_target (&procfs_ops);  /* Pop out of handling an inferior.  */
}
}
 
 
static int
static int
procfs_breakpoint (CORE_ADDR addr, int type, int size)
procfs_breakpoint (CORE_ADDR addr, int type, int size)
{
{
  procfs_break brk;
  procfs_break brk;
 
 
  brk.type = type;
  brk.type = type;
  brk.addr = addr;
  brk.addr = addr;
  brk.size = size;
  brk.size = size;
  errno = devctl (ctl_fd, DCMD_PROC_BREAK, &brk, sizeof (brk), 0);
  errno = devctl (ctl_fd, DCMD_PROC_BREAK, &brk, sizeof (brk), 0);
  if (errno != EOK)
  if (errno != EOK)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
static int
static int
procfs_insert_breakpoint (struct gdbarch *gdbarch,
procfs_insert_breakpoint (struct gdbarch *gdbarch,
                          struct bp_target_info *bp_tgt)
                          struct bp_target_info *bp_tgt)
{
{
  return procfs_breakpoint (bp_tgt->placed_address, _DEBUG_BREAK_EXEC, 0);
  return procfs_breakpoint (bp_tgt->placed_address, _DEBUG_BREAK_EXEC, 0);
}
}
 
 
static int
static int
procfs_remove_breakpoint (struct gdbarch *gdbarch,
procfs_remove_breakpoint (struct gdbarch *gdbarch,
                          struct bp_target_info *bp_tgt)
                          struct bp_target_info *bp_tgt)
{
{
  return procfs_breakpoint (bp_tgt->placed_address, _DEBUG_BREAK_EXEC, -1);
  return procfs_breakpoint (bp_tgt->placed_address, _DEBUG_BREAK_EXEC, -1);
}
}
 
 
static int
static int
procfs_insert_hw_breakpoint (struct gdbarch *gdbarch,
procfs_insert_hw_breakpoint (struct gdbarch *gdbarch,
                             struct bp_target_info *bp_tgt)
                             struct bp_target_info *bp_tgt)
{
{
  return procfs_breakpoint (bp_tgt->placed_address,
  return procfs_breakpoint (bp_tgt->placed_address,
                            _DEBUG_BREAK_EXEC | _DEBUG_BREAK_HW, 0);
                            _DEBUG_BREAK_EXEC | _DEBUG_BREAK_HW, 0);
}
}
 
 
static int
static int
procfs_remove_hw_breakpoint (struct gdbarch *gdbarch,
procfs_remove_hw_breakpoint (struct gdbarch *gdbarch,
                             struct bp_target_info *bp_tgt)
                             struct bp_target_info *bp_tgt)
{
{
  return procfs_breakpoint (bp_tgt->placed_address,
  return procfs_breakpoint (bp_tgt->placed_address,
                            _DEBUG_BREAK_EXEC | _DEBUG_BREAK_HW, -1);
                            _DEBUG_BREAK_EXEC | _DEBUG_BREAK_HW, -1);
}
}
 
 
static void
static void
procfs_resume (struct target_ops *ops,
procfs_resume (struct target_ops *ops,
               ptid_t ptid, int step, enum target_signal signo)
               ptid_t ptid, int step, enum target_signal signo)
{
{
  int signal_to_pass;
  int signal_to_pass;
  procfs_status status;
  procfs_status status;
  sigset_t *run_fault = (sigset_t *) (void *) &run.fault;
  sigset_t *run_fault = (sigset_t *) (void *) &run.fault;
 
 
  if (ptid_equal (inferior_ptid, null_ptid))
  if (ptid_equal (inferior_ptid, null_ptid))
    return;
    return;
 
 
  procfs_set_thread (ptid_equal (ptid, minus_one_ptid) ? inferior_ptid :
  procfs_set_thread (ptid_equal (ptid, minus_one_ptid) ? inferior_ptid :
                     ptid);
                     ptid);
 
 
  run.flags = _DEBUG_RUN_FAULT | _DEBUG_RUN_TRACE;
  run.flags = _DEBUG_RUN_FAULT | _DEBUG_RUN_TRACE;
  if (step)
  if (step)
    run.flags |= _DEBUG_RUN_STEP;
    run.flags |= _DEBUG_RUN_STEP;
 
 
  sigemptyset (run_fault);
  sigemptyset (run_fault);
  sigaddset (run_fault, FLTBPT);
  sigaddset (run_fault, FLTBPT);
  sigaddset (run_fault, FLTTRACE);
  sigaddset (run_fault, FLTTRACE);
  sigaddset (run_fault, FLTILL);
  sigaddset (run_fault, FLTILL);
  sigaddset (run_fault, FLTPRIV);
  sigaddset (run_fault, FLTPRIV);
  sigaddset (run_fault, FLTBOUNDS);
  sigaddset (run_fault, FLTBOUNDS);
  sigaddset (run_fault, FLTIOVF);
  sigaddset (run_fault, FLTIOVF);
  sigaddset (run_fault, FLTIZDIV);
  sigaddset (run_fault, FLTIZDIV);
  sigaddset (run_fault, FLTFPE);
  sigaddset (run_fault, FLTFPE);
  /* Peter V will be changing this at some point.  */
  /* Peter V will be changing this at some point.  */
  sigaddset (run_fault, FLTPAGE);
  sigaddset (run_fault, FLTPAGE);
 
 
  run.flags |= _DEBUG_RUN_ARM;
  run.flags |= _DEBUG_RUN_ARM;
 
 
  sigemptyset (&run.trace);
  sigemptyset (&run.trace);
  notice_signals ();
  notice_signals ();
  signal_to_pass = target_signal_to_host (signo);
  signal_to_pass = target_signal_to_host (signo);
 
 
  if (signal_to_pass)
  if (signal_to_pass)
    {
    {
      devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0);
      devctl (ctl_fd, DCMD_PROC_STATUS, &status, sizeof (status), 0);
      signal_to_pass = target_signal_to_host (signo);
      signal_to_pass = target_signal_to_host (signo);
      if (status.why & (_DEBUG_WHY_SIGNALLED | _DEBUG_WHY_FAULTED))
      if (status.why & (_DEBUG_WHY_SIGNALLED | _DEBUG_WHY_FAULTED))
        {
        {
          if (signal_to_pass != status.info.si_signo)
          if (signal_to_pass != status.info.si_signo)
            {
            {
              SignalKill (nto_node (), PIDGET (inferior_ptid), 0,
              SignalKill (nto_node (), PIDGET (inferior_ptid), 0,
                          signal_to_pass, 0, 0);
                          signal_to_pass, 0, 0);
              run.flags |= _DEBUG_RUN_CLRFLT | _DEBUG_RUN_CLRSIG;
              run.flags |= _DEBUG_RUN_CLRFLT | _DEBUG_RUN_CLRSIG;
            }
            }
          else                  /* Let it kill the program without telling us.  */
          else                  /* Let it kill the program without telling us.  */
            sigdelset (&run.trace, signal_to_pass);
            sigdelset (&run.trace, signal_to_pass);
        }
        }
    }
    }
  else
  else
    run.flags |= _DEBUG_RUN_CLRSIG | _DEBUG_RUN_CLRFLT;
    run.flags |= _DEBUG_RUN_CLRSIG | _DEBUG_RUN_CLRFLT;
 
 
  errno = devctl (ctl_fd, DCMD_PROC_RUN, &run, sizeof (run), 0);
  errno = devctl (ctl_fd, DCMD_PROC_RUN, &run, sizeof (run), 0);
  if (errno != EOK)
  if (errno != EOK)
    {
    {
      perror ("run error!\n");
      perror ("run error!\n");
      return;
      return;
    }
    }
}
}
 
 
static void
static void
procfs_mourn_inferior (struct target_ops *ops)
procfs_mourn_inferior (struct target_ops *ops)
{
{
  if (!ptid_equal (inferior_ptid, null_ptid))
  if (!ptid_equal (inferior_ptid, null_ptid))
    {
    {
      SignalKill (nto_node (), PIDGET (inferior_ptid), 0, SIGKILL, 0, 0);
      SignalKill (nto_node (), PIDGET (inferior_ptid), 0, SIGKILL, 0, 0);
      close (ctl_fd);
      close (ctl_fd);
    }
    }
  inferior_ptid = null_ptid;
  inferior_ptid = null_ptid;
  init_thread_list ();
  init_thread_list ();
  unpush_target (&procfs_ops);
  unpush_target (&procfs_ops);
  generic_mourn_inferior ();
  generic_mourn_inferior ();
}
}
 
 
/* This function breaks up an argument string into an argument
/* This function breaks up an argument string into an argument
   vector suitable for passing to execvp().
   vector suitable for passing to execvp().
   E.g., on "run a b c d" this routine would get as input
   E.g., on "run a b c d" this routine would get as input
   the string "a b c d", and as output it would fill in argv with
   the string "a b c d", and as output it would fill in argv with
   the four arguments "a", "b", "c", "d".  The only additional
   the four arguments "a", "b", "c", "d".  The only additional
   functionality is simple quoting.  The gdb command:
   functionality is simple quoting.  The gdb command:
        run a "b c d" f
        run a "b c d" f
   will fill in argv with the three args "a", "b c d", "e".  */
   will fill in argv with the three args "a", "b c d", "e".  */
static void
static void
breakup_args (char *scratch, char **argv)
breakup_args (char *scratch, char **argv)
{
{
  char *pp, *cp = scratch;
  char *pp, *cp = scratch;
  char quoting = 0;
  char quoting = 0;
 
 
  for (;;)
  for (;;)
    {
    {
      /* Scan past leading separators.  */
      /* Scan past leading separators.  */
      quoting = 0;
      quoting = 0;
      while (*cp == ' ' || *cp == '\t' || *cp == '\n')
      while (*cp == ' ' || *cp == '\t' || *cp == '\n')
        cp++;
        cp++;
 
 
      /* Break if at end of string.  */
      /* Break if at end of string.  */
      if (*cp == '\0')
      if (*cp == '\0')
        break;
        break;
 
 
      /* Take an arg.  */
      /* Take an arg.  */
      if (*cp == '"')
      if (*cp == '"')
        {
        {
          cp++;
          cp++;
          quoting = strchr (cp, '"') ? 1 : 0;
          quoting = strchr (cp, '"') ? 1 : 0;
        }
        }
 
 
      *argv++ = cp;
      *argv++ = cp;
 
 
      /* Scan for next arg separator.  */
      /* Scan for next arg separator.  */
      pp = cp;
      pp = cp;
      if (quoting)
      if (quoting)
        cp = strchr (pp, '"');
        cp = strchr (pp, '"');
      if ((cp == NULL) || (!quoting))
      if ((cp == NULL) || (!quoting))
        cp = strchr (pp, ' ');
        cp = strchr (pp, ' ');
      if (cp == NULL)
      if (cp == NULL)
        cp = strchr (pp, '\t');
        cp = strchr (pp, '\t');
      if (cp == NULL)
      if (cp == NULL)
        cp = strchr (pp, '\n');
        cp = strchr (pp, '\n');
 
 
      /* No separators => end of string => break.  */
      /* No separators => end of string => break.  */
      if (cp == NULL)
      if (cp == NULL)
        {
        {
          pp = cp;
          pp = cp;
          break;
          break;
        }
        }
 
 
      /* Replace the separator with a terminator.  */
      /* Replace the separator with a terminator.  */
      *cp++ = '\0';
      *cp++ = '\0';
    }
    }
 
 
  /* Execv requires a null-terminated arg vector.  */
  /* Execv requires a null-terminated arg vector.  */
  *argv = NULL;
  *argv = NULL;
}
}
 
 
static void
static void
procfs_create_inferior (struct target_ops *ops, char *exec_file,
procfs_create_inferior (struct target_ops *ops, char *exec_file,
                        char *allargs, char **env, int from_tty)
                        char *allargs, char **env, int from_tty)
{
{
  struct inheritance inherit;
  struct inheritance inherit;
  pid_t pid;
  pid_t pid;
  int flags, errn;
  int flags, errn;
  char **argv, *args;
  char **argv, *args;
  const char *in = "", *out = "", *err = "";
  const char *in = "", *out = "", *err = "";
  int fd, fds[3];
  int fd, fds[3];
  sigset_t set;
  sigset_t set;
  const char *inferior_io_terminal = get_inferior_io_terminal ();
  const char *inferior_io_terminal = get_inferior_io_terminal ();
  struct inferior *inf;
  struct inferior *inf;
 
 
  argv = xmalloc (((strlen (allargs) + 1) / (unsigned) 2 + 2) *
  argv = xmalloc (((strlen (allargs) + 1) / (unsigned) 2 + 2) *
                  sizeof (*argv));
                  sizeof (*argv));
  argv[0] = get_exec_file (1);
  argv[0] = get_exec_file (1);
  if (!argv[0])
  if (!argv[0])
    {
    {
      if (exec_file)
      if (exec_file)
        argv[0] = exec_file;
        argv[0] = exec_file;
      else
      else
        return;
        return;
    }
    }
 
 
  args = xstrdup (allargs);
  args = xstrdup (allargs);
  breakup_args (args, exec_file ? &argv[1] : &argv[0]);
  breakup_args (args, exec_file ? &argv[1] : &argv[0]);
 
 
  argv = nto_parse_redirection (argv, &in, &out, &err);
  argv = nto_parse_redirection (argv, &in, &out, &err);
 
 
  fds[0] = STDIN_FILENO;
  fds[0] = STDIN_FILENO;
  fds[1] = STDOUT_FILENO;
  fds[1] = STDOUT_FILENO;
  fds[2] = STDERR_FILENO;
  fds[2] = STDERR_FILENO;
 
 
  /* If the user specified I/O via gdb's --tty= arg, use it, but only
  /* If the user specified I/O via gdb's --tty= arg, use it, but only
     if the i/o is not also being specified via redirection.  */
     if the i/o is not also being specified via redirection.  */
  if (inferior_io_terminal)
  if (inferior_io_terminal)
    {
    {
      if (!in[0])
      if (!in[0])
        in = inferior_io_terminal;
        in = inferior_io_terminal;
      if (!out[0])
      if (!out[0])
        out = inferior_io_terminal;
        out = inferior_io_terminal;
      if (!err[0])
      if (!err[0])
        err = inferior_io_terminal;
        err = inferior_io_terminal;
    }
    }
 
 
  if (in[0])
  if (in[0])
    {
    {
      fd = open (in, O_RDONLY);
      fd = open (in, O_RDONLY);
      if (fd == -1)
      if (fd == -1)
        perror (in);
        perror (in);
      else
      else
        fds[0] = fd;
        fds[0] = fd;
    }
    }
  if (out[0])
  if (out[0])
    {
    {
      fd = open (out, O_WRONLY);
      fd = open (out, O_WRONLY);
      if (fd == -1)
      if (fd == -1)
        perror (out);
        perror (out);
      else
      else
        fds[1] = fd;
        fds[1] = fd;
    }
    }
  if (err[0])
  if (err[0])
    {
    {
      fd = open (err, O_WRONLY);
      fd = open (err, O_WRONLY);
      if (fd == -1)
      if (fd == -1)
        perror (err);
        perror (err);
      else
      else
        fds[2] = fd;
        fds[2] = fd;
    }
    }
 
 
  /* Clear any pending SIGUSR1's but keep the behavior the same.  */
  /* Clear any pending SIGUSR1's but keep the behavior the same.  */
  signal (SIGUSR1, signal (SIGUSR1, SIG_IGN));
  signal (SIGUSR1, signal (SIGUSR1, SIG_IGN));
 
 
  sigemptyset (&set);
  sigemptyset (&set);
  sigaddset (&set, SIGUSR1);
  sigaddset (&set, SIGUSR1);
  sigprocmask (SIG_UNBLOCK, &set, NULL);
  sigprocmask (SIG_UNBLOCK, &set, NULL);
 
 
  memset (&inherit, 0, sizeof (inherit));
  memset (&inherit, 0, sizeof (inherit));
 
 
  if (ND_NODE_CMP (nto_procfs_node, ND_LOCAL_NODE) != 0)
  if (ND_NODE_CMP (nto_procfs_node, ND_LOCAL_NODE) != 0)
    {
    {
      inherit.nd = nto_node ();
      inherit.nd = nto_node ();
      inherit.flags |= SPAWN_SETND;
      inherit.flags |= SPAWN_SETND;
      inherit.flags &= ~SPAWN_EXEC;
      inherit.flags &= ~SPAWN_EXEC;
    }
    }
  inherit.flags |= SPAWN_SETGROUP | SPAWN_HOLD;
  inherit.flags |= SPAWN_SETGROUP | SPAWN_HOLD;
  inherit.pgroup = SPAWN_NEWPGROUP;
  inherit.pgroup = SPAWN_NEWPGROUP;
  pid = spawnp (argv[0], 3, fds, &inherit, argv,
  pid = spawnp (argv[0], 3, fds, &inherit, argv,
                ND_NODE_CMP (nto_procfs_node, ND_LOCAL_NODE) == 0 ? env : 0);
                ND_NODE_CMP (nto_procfs_node, ND_LOCAL_NODE) == 0 ? env : 0);
  xfree (args);
  xfree (args);
 
 
  sigprocmask (SIG_BLOCK, &set, NULL);
  sigprocmask (SIG_BLOCK, &set, NULL);
 
 
  if (pid == -1)
  if (pid == -1)
    error (_("Error spawning %s: %d (%s)"), argv[0], errno,
    error (_("Error spawning %s: %d (%s)"), argv[0], errno,
           safe_strerror (errno));
           safe_strerror (errno));
 
 
  if (fds[0] != STDIN_FILENO)
  if (fds[0] != STDIN_FILENO)
    close (fds[0]);
    close (fds[0]);
  if (fds[1] != STDOUT_FILENO)
  if (fds[1] != STDOUT_FILENO)
    close (fds[1]);
    close (fds[1]);
  if (fds[2] != STDERR_FILENO)
  if (fds[2] != STDERR_FILENO)
    close (fds[2]);
    close (fds[2]);
 
 
  inferior_ptid = do_attach (pid_to_ptid (pid));
  inferior_ptid = do_attach (pid_to_ptid (pid));
  procfs_find_new_threads (ops);
  procfs_find_new_threads (ops);
 
 
  inf = current_inferior ();
  inf = current_inferior ();
  inferior_appeared (inf, pid);
  inferior_appeared (inf, pid);
  inf->attach_flag = 0;
  inf->attach_flag = 0;
 
 
  flags = _DEBUG_FLAG_KLC;      /* Kill-on-Last-Close flag.  */
  flags = _DEBUG_FLAG_KLC;      /* Kill-on-Last-Close flag.  */
  errn = devctl (ctl_fd, DCMD_PROC_SET_FLAG, &flags, sizeof (flags), 0);
  errn = devctl (ctl_fd, DCMD_PROC_SET_FLAG, &flags, sizeof (flags), 0);
  if (errn != EOK)
  if (errn != EOK)
    {
    {
      /* FIXME: expected warning?  */
      /* FIXME: expected warning?  */
      /* warning( "Failed to set Kill-on-Last-Close flag: errno = %d(%s)\n",
      /* warning( "Failed to set Kill-on-Last-Close flag: errno = %d(%s)\n",
         errn, strerror(errn) ); */
         errn, strerror(errn) ); */
    }
    }
  push_target (ops);
  push_target (ops);
  target_terminal_init ();
  target_terminal_init ();
 
 
  if (exec_bfd != NULL
  if (exec_bfd != NULL
      || (symfile_objfile != NULL && symfile_objfile->obfd != NULL))
      || (symfile_objfile != NULL && symfile_objfile->obfd != NULL))
    solib_create_inferior_hook (0);
    solib_create_inferior_hook (0);
}
}
 
 
static void
static void
procfs_stop (ptid_t ptid)
procfs_stop (ptid_t ptid)
{
{
  devctl (ctl_fd, DCMD_PROC_STOP, NULL, 0, 0);
  devctl (ctl_fd, DCMD_PROC_STOP, NULL, 0, 0);
}
}
 
 
static void
static void
procfs_kill_inferior (struct target_ops *ops)
procfs_kill_inferior (struct target_ops *ops)
{
{
  target_mourn_inferior ();
  target_mourn_inferior ();
}
}
 
 
/* Store register REGNO, or all registers if REGNO == -1, from the contents
/* Store register REGNO, or all registers if REGNO == -1, from the contents
   of REGISTERS.  */
   of REGISTERS.  */
static void
static void
procfs_prepare_to_store (struct regcache *regcache)
procfs_prepare_to_store (struct regcache *regcache)
{
{
}
}
 
 
/* Fill buf with regset and return devctl cmd to do the setting.  Return
/* Fill buf with regset and return devctl cmd to do the setting.  Return
   -1 if we fail to get the regset.  Store size of regset in regsize.  */
   -1 if we fail to get the regset.  Store size of regset in regsize.  */
static int
static int
get_regset (int regset, char *buf, int bufsize, int *regsize)
get_regset (int regset, char *buf, int bufsize, int *regsize)
{
{
  int dev_get, dev_set;
  int dev_get, dev_set;
  switch (regset)
  switch (regset)
    {
    {
    case NTO_REG_GENERAL:
    case NTO_REG_GENERAL:
      dev_get = DCMD_PROC_GETGREG;
      dev_get = DCMD_PROC_GETGREG;
      dev_set = DCMD_PROC_SETGREG;
      dev_set = DCMD_PROC_SETGREG;
      break;
      break;
 
 
    case NTO_REG_FLOAT:
    case NTO_REG_FLOAT:
      dev_get = DCMD_PROC_GETFPREG;
      dev_get = DCMD_PROC_GETFPREG;
      dev_set = DCMD_PROC_SETFPREG;
      dev_set = DCMD_PROC_SETFPREG;
      break;
      break;
 
 
    case NTO_REG_ALT:
    case NTO_REG_ALT:
      dev_get = DCMD_PROC_GETALTREG;
      dev_get = DCMD_PROC_GETALTREG;
      dev_set = DCMD_PROC_SETALTREG;
      dev_set = DCMD_PROC_SETALTREG;
      break;
      break;
 
 
    case NTO_REG_SYSTEM:
    case NTO_REG_SYSTEM:
    default:
    default:
      return -1;
      return -1;
    }
    }
  if (devctl (ctl_fd, dev_get, buf, bufsize, regsize) != EOK)
  if (devctl (ctl_fd, dev_get, buf, bufsize, regsize) != EOK)
    return -1;
    return -1;
 
 
  return dev_set;
  return dev_set;
}
}
 
 
void
void
procfs_store_registers (struct target_ops *ops,
procfs_store_registers (struct target_ops *ops,
                        struct regcache *regcache, int regno)
                        struct regcache *regcache, int regno)
{
{
  union
  union
  {
  {
    procfs_greg greg;
    procfs_greg greg;
    procfs_fpreg fpreg;
    procfs_fpreg fpreg;
    procfs_altreg altreg;
    procfs_altreg altreg;
  }
  }
  reg;
  reg;
  unsigned off;
  unsigned off;
  int len, regset, regsize, dev_set, err;
  int len, regset, regsize, dev_set, err;
  char *data;
  char *data;
 
 
  if (ptid_equal (inferior_ptid, null_ptid))
  if (ptid_equal (inferior_ptid, null_ptid))
    return;
    return;
  procfs_set_thread (inferior_ptid);
  procfs_set_thread (inferior_ptid);
 
 
  if (regno == -1)
  if (regno == -1)
    {
    {
      for (regset = NTO_REG_GENERAL; regset < NTO_REG_END; regset++)
      for (regset = NTO_REG_GENERAL; regset < NTO_REG_END; regset++)
        {
        {
          dev_set = get_regset (regset, (char *) &reg,
          dev_set = get_regset (regset, (char *) &reg,
                                sizeof (reg), &regsize);
                                sizeof (reg), &regsize);
          if (dev_set == -1)
          if (dev_set == -1)
            continue;
            continue;
 
 
          if (nto_regset_fill (regcache, regset, (char *) &reg) == -1)
          if (nto_regset_fill (regcache, regset, (char *) &reg) == -1)
            continue;
            continue;
 
 
          err = devctl (ctl_fd, dev_set, &reg, regsize, 0);
          err = devctl (ctl_fd, dev_set, &reg, regsize, 0);
          if (err != EOK)
          if (err != EOK)
            fprintf_unfiltered (gdb_stderr,
            fprintf_unfiltered (gdb_stderr,
                                "Warning unable to write regset %d: %s\n",
                                "Warning unable to write regset %d: %s\n",
                                regno, safe_strerror (err));
                                regno, safe_strerror (err));
        }
        }
    }
    }
  else
  else
    {
    {
      regset = nto_regset_id (regno);
      regset = nto_regset_id (regno);
      if (regset == -1)
      if (regset == -1)
        return;
        return;
 
 
      dev_set = get_regset (regset, (char *) &reg, sizeof (reg), &regsize);
      dev_set = get_regset (regset, (char *) &reg, sizeof (reg), &regsize);
      if (dev_set == -1)
      if (dev_set == -1)
        return;
        return;
 
 
      len = nto_register_area (get_regcache_arch (regcache),
      len = nto_register_area (get_regcache_arch (regcache),
                               regno, regset, &off);
                               regno, regset, &off);
 
 
      if (len < 1)
      if (len < 1)
        return;
        return;
 
 
      regcache_raw_collect (regcache, regno, (char *) &reg + off);
      regcache_raw_collect (regcache, regno, (char *) &reg + off);
 
 
      err = devctl (ctl_fd, dev_set, &reg, regsize, 0);
      err = devctl (ctl_fd, dev_set, &reg, regsize, 0);
      if (err != EOK)
      if (err != EOK)
        fprintf_unfiltered (gdb_stderr,
        fprintf_unfiltered (gdb_stderr,
                            "Warning unable to write regset %d: %s\n", regno,
                            "Warning unable to write regset %d: %s\n", regno,
                            safe_strerror (err));
                            safe_strerror (err));
    }
    }
}
}
 
 
static void
static void
notice_signals (void)
notice_signals (void)
{
{
  int signo;
  int signo;
 
 
  for (signo = 1; signo < NSIG; signo++)
  for (signo = 1; signo < NSIG; signo++)
    {
    {
      if (signal_stop_state (target_signal_from_host (signo)) == 0
      if (signal_stop_state (target_signal_from_host (signo)) == 0
          && signal_print_state (target_signal_from_host (signo)) == 0
          && signal_print_state (target_signal_from_host (signo)) == 0
          && signal_pass_state (target_signal_from_host (signo)) == 1)
          && signal_pass_state (target_signal_from_host (signo)) == 1)
        sigdelset (&run.trace, signo);
        sigdelset (&run.trace, signo);
      else
      else
        sigaddset (&run.trace, signo);
        sigaddset (&run.trace, signo);
    }
    }
}
}
 
 
/* When the user changes the state of gdb's signal handling via the
/* When the user changes the state of gdb's signal handling via the
   "handle" command, this function gets called to see if any change
   "handle" command, this function gets called to see if any change
   in the /proc interface is required.  It is also called internally
   in the /proc interface is required.  It is also called internally
   by other /proc interface functions to initialize the state of
   by other /proc interface functions to initialize the state of
   the traced signal set.  */
   the traced signal set.  */
static void
static void
procfs_notice_signals (ptid_t ptid)
procfs_notice_signals (ptid_t ptid)
{
{
  sigemptyset (&run.trace);
  sigemptyset (&run.trace);
  notice_signals ();
  notice_signals ();
}
}
 
 
static struct tidinfo *
static struct tidinfo *
procfs_thread_info (pid_t pid, short tid)
procfs_thread_info (pid_t pid, short tid)
{
{
/* NYI */
/* NYI */
  return NULL;
  return NULL;
}
}
 
 
char *
char *
procfs_pid_to_str (struct target_ops *ops, ptid_t ptid)
procfs_pid_to_str (struct target_ops *ops, ptid_t ptid)
{
{
  static char buf[1024];
  static char buf[1024];
  int pid, tid, n;
  int pid, tid, n;
  struct tidinfo *tip;
  struct tidinfo *tip;
 
 
  pid = ptid_get_pid (ptid);
  pid = ptid_get_pid (ptid);
  tid = ptid_get_tid (ptid);
  tid = ptid_get_tid (ptid);
 
 
  n = snprintf (buf, 1023, "process %d", pid);
  n = snprintf (buf, 1023, "process %d", pid);
 
 
#if 0                           /* NYI */
#if 0                           /* NYI */
  tip = procfs_thread_info (pid, tid);
  tip = procfs_thread_info (pid, tid);
  if (tip != NULL)
  if (tip != NULL)
    snprintf (&buf[n], 1023, " (state = 0x%02x)", tip->state);
    snprintf (&buf[n], 1023, " (state = 0x%02x)", tip->state);
#endif
#endif
 
 
  return buf;
  return buf;
}
}
 
 
static void
static void
init_procfs_ops (void)
init_procfs_ops (void)
{
{
  procfs_ops.to_shortname = "procfs";
  procfs_ops.to_shortname = "procfs";
  procfs_ops.to_longname = "QNX Neutrino procfs child process";
  procfs_ops.to_longname = "QNX Neutrino procfs child process";
  procfs_ops.to_doc =
  procfs_ops.to_doc =
    "QNX Neutrino procfs child process (started by the \"run\" command).\n\
    "QNX Neutrino procfs child process (started by the \"run\" command).\n\
        target procfs <node>";
        target procfs <node>";
  procfs_ops.to_open = procfs_open;
  procfs_ops.to_open = procfs_open;
  procfs_ops.to_attach = procfs_attach;
  procfs_ops.to_attach = procfs_attach;
  procfs_ops.to_post_attach = procfs_post_attach;
  procfs_ops.to_post_attach = procfs_post_attach;
  procfs_ops.to_detach = procfs_detach;
  procfs_ops.to_detach = procfs_detach;
  procfs_ops.to_resume = procfs_resume;
  procfs_ops.to_resume = procfs_resume;
  procfs_ops.to_wait = procfs_wait;
  procfs_ops.to_wait = procfs_wait;
  procfs_ops.to_fetch_registers = procfs_fetch_registers;
  procfs_ops.to_fetch_registers = procfs_fetch_registers;
  procfs_ops.to_store_registers = procfs_store_registers;
  procfs_ops.to_store_registers = procfs_store_registers;
  procfs_ops.to_prepare_to_store = procfs_prepare_to_store;
  procfs_ops.to_prepare_to_store = procfs_prepare_to_store;
  procfs_ops.deprecated_xfer_memory = procfs_xfer_memory;
  procfs_ops.deprecated_xfer_memory = procfs_xfer_memory;
  procfs_ops.to_files_info = procfs_files_info;
  procfs_ops.to_files_info = procfs_files_info;
  procfs_ops.to_insert_breakpoint = procfs_insert_breakpoint;
  procfs_ops.to_insert_breakpoint = procfs_insert_breakpoint;
  procfs_ops.to_remove_breakpoint = procfs_remove_breakpoint;
  procfs_ops.to_remove_breakpoint = procfs_remove_breakpoint;
  procfs_ops.to_can_use_hw_breakpoint = procfs_can_use_hw_breakpoint;
  procfs_ops.to_can_use_hw_breakpoint = procfs_can_use_hw_breakpoint;
  procfs_ops.to_insert_hw_breakpoint = procfs_insert_hw_breakpoint;
  procfs_ops.to_insert_hw_breakpoint = procfs_insert_hw_breakpoint;
  procfs_ops.to_remove_hw_breakpoint = procfs_remove_breakpoint;
  procfs_ops.to_remove_hw_breakpoint = procfs_remove_breakpoint;
  procfs_ops.to_insert_watchpoint = procfs_insert_hw_watchpoint;
  procfs_ops.to_insert_watchpoint = procfs_insert_hw_watchpoint;
  procfs_ops.to_remove_watchpoint = procfs_remove_hw_watchpoint;
  procfs_ops.to_remove_watchpoint = procfs_remove_hw_watchpoint;
  procfs_ops.to_stopped_by_watchpoint = procfs_stopped_by_watchpoint;
  procfs_ops.to_stopped_by_watchpoint = procfs_stopped_by_watchpoint;
  procfs_ops.to_terminal_init = terminal_init_inferior;
  procfs_ops.to_terminal_init = terminal_init_inferior;
  procfs_ops.to_terminal_inferior = terminal_inferior;
  procfs_ops.to_terminal_inferior = terminal_inferior;
  procfs_ops.to_terminal_ours_for_output = terminal_ours_for_output;
  procfs_ops.to_terminal_ours_for_output = terminal_ours_for_output;
  procfs_ops.to_terminal_ours = terminal_ours;
  procfs_ops.to_terminal_ours = terminal_ours;
  procfs_ops.to_terminal_info = child_terminal_info;
  procfs_ops.to_terminal_info = child_terminal_info;
  procfs_ops.to_kill = procfs_kill_inferior;
  procfs_ops.to_kill = procfs_kill_inferior;
  procfs_ops.to_create_inferior = procfs_create_inferior;
  procfs_ops.to_create_inferior = procfs_create_inferior;
  procfs_ops.to_mourn_inferior = procfs_mourn_inferior;
  procfs_ops.to_mourn_inferior = procfs_mourn_inferior;
  procfs_ops.to_can_run = procfs_can_run;
  procfs_ops.to_can_run = procfs_can_run;
  procfs_ops.to_notice_signals = procfs_notice_signals;
  procfs_ops.to_notice_signals = procfs_notice_signals;
  procfs_ops.to_thread_alive = procfs_thread_alive;
  procfs_ops.to_thread_alive = procfs_thread_alive;
  procfs_ops.to_find_new_threads = procfs_find_new_threads;
  procfs_ops.to_find_new_threads = procfs_find_new_threads;
  procfs_ops.to_pid_to_str = procfs_pid_to_str;
  procfs_ops.to_pid_to_str = procfs_pid_to_str;
  procfs_ops.to_stop = procfs_stop;
  procfs_ops.to_stop = procfs_stop;
  procfs_ops.to_stratum = process_stratum;
  procfs_ops.to_stratum = process_stratum;
  procfs_ops.to_has_all_memory = default_child_has_all_memory;
  procfs_ops.to_has_all_memory = default_child_has_all_memory;
  procfs_ops.to_has_memory = default_child_has_memory;
  procfs_ops.to_has_memory = default_child_has_memory;
  procfs_ops.to_has_stack = default_child_has_stack;
  procfs_ops.to_has_stack = default_child_has_stack;
  procfs_ops.to_has_registers = default_child_has_registers;
  procfs_ops.to_has_registers = default_child_has_registers;
  procfs_ops.to_has_execution = default_child_has_execution;
  procfs_ops.to_has_execution = default_child_has_execution;
  procfs_ops.to_magic = OPS_MAGIC;
  procfs_ops.to_magic = OPS_MAGIC;
  procfs_ops.to_have_continuable_watchpoint = 1;
  procfs_ops.to_have_continuable_watchpoint = 1;
  procfs_ops.to_extra_thread_info = nto_extra_thread_info;
  procfs_ops.to_extra_thread_info = nto_extra_thread_info;
}
}
 
 
#define OSTYPE_NTO 1
#define OSTYPE_NTO 1
 
 
void
void
_initialize_procfs (void)
_initialize_procfs (void)
{
{
  sigset_t set;
  sigset_t set;
 
 
  init_procfs_ops ();
  init_procfs_ops ();
  add_target (&procfs_ops);
  add_target (&procfs_ops);
 
 
  /* We use SIGUSR1 to gain control after we block waiting for a process.
  /* We use SIGUSR1 to gain control after we block waiting for a process.
     We use sigwaitevent to wait.  */
     We use sigwaitevent to wait.  */
  sigemptyset (&set);
  sigemptyset (&set);
  sigaddset (&set, SIGUSR1);
  sigaddset (&set, SIGUSR1);
  sigprocmask (SIG_BLOCK, &set, NULL);
  sigprocmask (SIG_BLOCK, &set, NULL);
 
 
  /* Set up trace and fault sets, as gdb expects them.  */
  /* Set up trace and fault sets, as gdb expects them.  */
  sigemptyset (&run.trace);
  sigemptyset (&run.trace);
 
 
  /* Stuff some information.  */
  /* Stuff some information.  */
  nto_cpuinfo_flags = SYSPAGE_ENTRY (cpuinfo)->flags;
  nto_cpuinfo_flags = SYSPAGE_ENTRY (cpuinfo)->flags;
  nto_cpuinfo_valid = 1;
  nto_cpuinfo_valid = 1;
 
 
  add_info ("pidlist", procfs_pidlist, _("pidlist"));
  add_info ("pidlist", procfs_pidlist, _("pidlist"));
  add_info ("meminfo", procfs_meminfo, _("memory information"));
  add_info ("meminfo", procfs_meminfo, _("memory information"));
 
 
  nto_is_nto_target = procfs_is_nto_target;
  nto_is_nto_target = procfs_is_nto_target;
}
}
 
 
 
 
static int
static int
procfs_hw_watchpoint (int addr, int len, int type)
procfs_hw_watchpoint (int addr, int len, int type)
{
{
  procfs_break brk;
  procfs_break brk;
 
 
  switch (type)
  switch (type)
    {
    {
    case 1:                     /* Read.  */
    case 1:                     /* Read.  */
      brk.type = _DEBUG_BREAK_RD;
      brk.type = _DEBUG_BREAK_RD;
      break;
      break;
    case 2:                     /* Read/Write.  */
    case 2:                     /* Read/Write.  */
      brk.type = _DEBUG_BREAK_RW;
      brk.type = _DEBUG_BREAK_RW;
      break;
      break;
    default:                    /* Modify.  */
    default:                    /* Modify.  */
/* FIXME: brk.type = _DEBUG_BREAK_RWM gives EINVAL for some reason.  */
/* FIXME: brk.type = _DEBUG_BREAK_RWM gives EINVAL for some reason.  */
      brk.type = _DEBUG_BREAK_RW;
      brk.type = _DEBUG_BREAK_RW;
    }
    }
  brk.type |= _DEBUG_BREAK_HW;  /* Always ask for HW.  */
  brk.type |= _DEBUG_BREAK_HW;  /* Always ask for HW.  */
  brk.addr = addr;
  brk.addr = addr;
  brk.size = len;
  brk.size = len;
 
 
  errno = devctl (ctl_fd, DCMD_PROC_BREAK, &brk, sizeof (brk), 0);
  errno = devctl (ctl_fd, DCMD_PROC_BREAK, &brk, sizeof (brk), 0);
  if (errno != EOK)
  if (errno != EOK)
    {
    {
      perror ("Failed to set hardware watchpoint");
      perror ("Failed to set hardware watchpoint");
      return -1;
      return -1;
    }
    }
  return 0;
  return 0;
}
}
 
 
static int
static int
procfs_can_use_hw_breakpoint (int type, int cnt, int othertype)
procfs_can_use_hw_breakpoint (int type, int cnt, int othertype)
{
{
  return 1;
  return 1;
}
}
 
 
static int
static int
procfs_remove_hw_watchpoint (CORE_ADDR addr, int len, int type)
procfs_remove_hw_watchpoint (CORE_ADDR addr, int len, int type)
{
{
  return procfs_hw_watchpoint (addr, -1, type);
  return procfs_hw_watchpoint (addr, -1, type);
}
}
 
 
static int
static int
procfs_insert_hw_watchpoint (CORE_ADDR addr, int len, int type)
procfs_insert_hw_watchpoint (CORE_ADDR addr, int len, int type)
{
{
  return procfs_hw_watchpoint (addr, len, type);
  return procfs_hw_watchpoint (addr, len, type);
}
}
 
 
static int
static int
procfs_stopped_by_watchpoint (void)
procfs_stopped_by_watchpoint (void)
{
{
  return 0;
  return 0;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.