OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [parse.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Parse expressions for GDB.
/* Parse expressions for GDB.
 
 
   Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2004, 2005, 2007, 2008, 2009, 2010
   1998, 1999, 2000, 2001, 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Modified from expread.y by the Department of Computer Science at the
   Modified from expread.y by the Department of Computer Science at the
   State University of New York at Buffalo, 1991.
   State University of New York at Buffalo, 1991.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
/* Parse an expression from text in a string,
/* Parse an expression from text in a string,
   and return the result as a  struct expression  pointer.
   and return the result as a  struct expression  pointer.
   That structure contains arithmetic operations in reverse polish,
   That structure contains arithmetic operations in reverse polish,
   with constants represented by operations that are followed by special data.
   with constants represented by operations that are followed by special data.
   See expression.h for the details of the format.
   See expression.h for the details of the format.
   What is important here is that it can be built up sequentially
   What is important here is that it can be built up sequentially
   during the process of parsing; the lower levels of the tree always
   during the process of parsing; the lower levels of the tree always
   come first in the result.  */
   come first in the result.  */
 
 
#include "defs.h"
#include "defs.h"
#include <ctype.h>
#include <ctype.h>
#include "arch-utils.h"
#include "arch-utils.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame.h"
#include "expression.h"
#include "expression.h"
#include "value.h"
#include "value.h"
#include "command.h"
#include "command.h"
#include "language.h"
#include "language.h"
#include "f-lang.h"
#include "f-lang.h"
#include "parser-defs.h"
#include "parser-defs.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "symfile.h"            /* for overlay functions */
#include "symfile.h"            /* for overlay functions */
#include "inferior.h"
#include "inferior.h"
#include "doublest.h"
#include "doublest.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "block.h"
#include "block.h"
#include "source.h"
#include "source.h"
#include "objfiles.h"
#include "objfiles.h"
#include "exceptions.h"
#include "exceptions.h"
#include "user-regs.h"
#include "user-regs.h"
 
 
/* Standard set of definitions for printing, dumping, prefixifying,
/* Standard set of definitions for printing, dumping, prefixifying,
 * and evaluating expressions.  */
 * and evaluating expressions.  */
 
 
const struct exp_descriptor exp_descriptor_standard =
const struct exp_descriptor exp_descriptor_standard =
  {
  {
    print_subexp_standard,
    print_subexp_standard,
    operator_length_standard,
    operator_length_standard,
    op_name_standard,
    op_name_standard,
    dump_subexp_body_standard,
    dump_subexp_body_standard,
    evaluate_subexp_standard
    evaluate_subexp_standard
  };
  };


/* Global variables declared in parser-defs.h (and commented there).  */
/* Global variables declared in parser-defs.h (and commented there).  */
struct expression *expout;
struct expression *expout;
int expout_size;
int expout_size;
int expout_ptr;
int expout_ptr;
struct block *expression_context_block;
struct block *expression_context_block;
CORE_ADDR expression_context_pc;
CORE_ADDR expression_context_pc;
struct block *innermost_block;
struct block *innermost_block;
int arglist_len;
int arglist_len;
union type_stack_elt *type_stack;
union type_stack_elt *type_stack;
int type_stack_depth, type_stack_size;
int type_stack_depth, type_stack_size;
char *lexptr;
char *lexptr;
char *prev_lexptr;
char *prev_lexptr;
int paren_depth;
int paren_depth;
int comma_terminates;
int comma_terminates;
 
 
/* True if parsing an expression to find a field reference.  This is
/* True if parsing an expression to find a field reference.  This is
   only used by completion.  */
   only used by completion.  */
int in_parse_field;
int in_parse_field;
 
 
/* The index of the last struct expression directly before a '.' or
/* The index of the last struct expression directly before a '.' or
   '->'.  This is set when parsing and is only used when completing a
   '->'.  This is set when parsing and is only used when completing a
   field name.  It is -1 if no dereference operation was found.  */
   field name.  It is -1 if no dereference operation was found.  */
static int expout_last_struct = -1;
static int expout_last_struct = -1;
 
 
/* A temporary buffer for identifiers, so we can null-terminate them.
/* A temporary buffer for identifiers, so we can null-terminate them.
 
 
   We allocate this with xrealloc.  parse_exp_1 used to allocate with
   We allocate this with xrealloc.  parse_exp_1 used to allocate with
   alloca, using the size of the whole expression as a conservative
   alloca, using the size of the whole expression as a conservative
   estimate of the space needed.  However, macro expansion can
   estimate of the space needed.  However, macro expansion can
   introduce names longer than the original expression; there's no
   introduce names longer than the original expression; there's no
   practical way to know beforehand how large that might be.  */
   practical way to know beforehand how large that might be.  */
char *namecopy;
char *namecopy;
size_t namecopy_size;
size_t namecopy_size;


static int expressiondebug = 0;
static int expressiondebug = 0;
static void
static void
show_expressiondebug (struct ui_file *file, int from_tty,
show_expressiondebug (struct ui_file *file, int from_tty,
                      struct cmd_list_element *c, const char *value)
                      struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
  fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
}
}
 
 
 
 
/* Non-zero if an expression parser should set yydebug.  */
/* Non-zero if an expression parser should set yydebug.  */
int parser_debug;
int parser_debug;
 
 
static void
static void
show_parserdebug (struct ui_file *file, int from_tty,
show_parserdebug (struct ui_file *file, int from_tty,
                  struct cmd_list_element *c, const char *value)
                  struct cmd_list_element *c, const char *value)
{
{
  fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
  fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
}
}
 
 
 
 
static void free_funcalls (void *ignore);
static void free_funcalls (void *ignore);
 
 
static int prefixify_expression (struct expression *);
static int prefixify_expression (struct expression *);
 
 
static int prefixify_subexp (struct expression *, struct expression *, int,
static int prefixify_subexp (struct expression *, struct expression *, int,
                             int);
                             int);
 
 
static struct expression *parse_exp_in_context (char **, struct block *, int,
static struct expression *parse_exp_in_context (char **, struct block *, int,
                                                int, int *);
                                                int, int *);
 
 
void _initialize_parse (void);
void _initialize_parse (void);
 
 
/* Data structure for saving values of arglist_len for function calls whose
/* Data structure for saving values of arglist_len for function calls whose
   arguments contain other function calls.  */
   arguments contain other function calls.  */
 
 
struct funcall
struct funcall
  {
  {
    struct funcall *next;
    struct funcall *next;
    int arglist_len;
    int arglist_len;
  };
  };
 
 
static struct funcall *funcall_chain;
static struct funcall *funcall_chain;
 
 
/* Begin counting arguments for a function call,
/* Begin counting arguments for a function call,
   saving the data about any containing call.  */
   saving the data about any containing call.  */
 
 
void
void
start_arglist (void)
start_arglist (void)
{
{
  struct funcall *new;
  struct funcall *new;
 
 
  new = (struct funcall *) xmalloc (sizeof (struct funcall));
  new = (struct funcall *) xmalloc (sizeof (struct funcall));
  new->next = funcall_chain;
  new->next = funcall_chain;
  new->arglist_len = arglist_len;
  new->arglist_len = arglist_len;
  arglist_len = 0;
  arglist_len = 0;
  funcall_chain = new;
  funcall_chain = new;
}
}
 
 
/* Return the number of arguments in a function call just terminated,
/* Return the number of arguments in a function call just terminated,
   and restore the data for the containing function call.  */
   and restore the data for the containing function call.  */
 
 
int
int
end_arglist (void)
end_arglist (void)
{
{
  int val = arglist_len;
  int val = arglist_len;
  struct funcall *call = funcall_chain;
  struct funcall *call = funcall_chain;
  funcall_chain = call->next;
  funcall_chain = call->next;
  arglist_len = call->arglist_len;
  arglist_len = call->arglist_len;
  xfree (call);
  xfree (call);
  return val;
  return val;
}
}
 
 
/* Free everything in the funcall chain.
/* Free everything in the funcall chain.
   Used when there is an error inside parsing.  */
   Used when there is an error inside parsing.  */
 
 
static void
static void
free_funcalls (void *ignore)
free_funcalls (void *ignore)
{
{
  struct funcall *call, *next;
  struct funcall *call, *next;
 
 
  for (call = funcall_chain; call; call = next)
  for (call = funcall_chain; call; call = next)
    {
    {
      next = call->next;
      next = call->next;
      xfree (call);
      xfree (call);
    }
    }
}
}


/* This page contains the functions for adding data to the  struct expression
/* This page contains the functions for adding data to the  struct expression
   being constructed.  */
   being constructed.  */
 
 
/* Add one element to the end of the expression.  */
/* Add one element to the end of the expression.  */
 
 
/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
   a register through here */
   a register through here */
 
 
void
void
write_exp_elt (union exp_element expelt)
write_exp_elt (union exp_element expelt)
{
{
  if (expout_ptr >= expout_size)
  if (expout_ptr >= expout_size)
    {
    {
      expout_size *= 2;
      expout_size *= 2;
      expout = (struct expression *)
      expout = (struct expression *)
        xrealloc ((char *) expout, sizeof (struct expression)
        xrealloc ((char *) expout, sizeof (struct expression)
                  + EXP_ELEM_TO_BYTES (expout_size));
                  + EXP_ELEM_TO_BYTES (expout_size));
    }
    }
  expout->elts[expout_ptr++] = expelt;
  expout->elts[expout_ptr++] = expelt;
}
}
 
 
void
void
write_exp_elt_opcode (enum exp_opcode expelt)
write_exp_elt_opcode (enum exp_opcode expelt)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
 
 
  tmp.opcode = expelt;
  tmp.opcode = expelt;
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_sym (struct symbol *expelt)
write_exp_elt_sym (struct symbol *expelt)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
 
 
  tmp.symbol = expelt;
  tmp.symbol = expelt;
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_block (struct block *b)
write_exp_elt_block (struct block *b)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
  tmp.block = b;
  tmp.block = b;
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_objfile (struct objfile *objfile)
write_exp_elt_objfile (struct objfile *objfile)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
  tmp.objfile = objfile;
  tmp.objfile = objfile;
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_longcst (LONGEST expelt)
write_exp_elt_longcst (LONGEST expelt)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
 
 
  tmp.longconst = expelt;
  tmp.longconst = expelt;
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_dblcst (DOUBLEST expelt)
write_exp_elt_dblcst (DOUBLEST expelt)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
 
 
  tmp.doubleconst = expelt;
  tmp.doubleconst = expelt;
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_decfloatcst (gdb_byte expelt[16])
write_exp_elt_decfloatcst (gdb_byte expelt[16])
{
{
  union exp_element tmp;
  union exp_element tmp;
  int index;
  int index;
 
 
  for (index = 0; index < 16; index++)
  for (index = 0; index < 16; index++)
    tmp.decfloatconst[index] = expelt[index];
    tmp.decfloatconst[index] = expelt[index];
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_type (struct type *expelt)
write_exp_elt_type (struct type *expelt)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
 
 
  tmp.type = expelt;
  tmp.type = expelt;
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
void
void
write_exp_elt_intern (struct internalvar *expelt)
write_exp_elt_intern (struct internalvar *expelt)
{
{
  union exp_element tmp;
  union exp_element tmp;
  memset (&tmp, 0, sizeof (union exp_element));
  memset (&tmp, 0, sizeof (union exp_element));
 
 
  tmp.internalvar = expelt;
  tmp.internalvar = expelt;
 
 
  write_exp_elt (tmp);
  write_exp_elt (tmp);
}
}
 
 
/* Add a string constant to the end of the expression.
/* Add a string constant to the end of the expression.
 
 
   String constants are stored by first writing an expression element
   String constants are stored by first writing an expression element
   that contains the length of the string, then stuffing the string
   that contains the length of the string, then stuffing the string
   constant itself into however many expression elements are needed
   constant itself into however many expression elements are needed
   to hold it, and then writing another expression element that contains
   to hold it, and then writing another expression element that contains
   the length of the string.  I.E. an expression element at each end of
   the length of the string.  I.E. an expression element at each end of
   the string records the string length, so you can skip over the
   the string records the string length, so you can skip over the
   expression elements containing the actual string bytes from either
   expression elements containing the actual string bytes from either
   end of the string.  Note that this also allows gdb to handle
   end of the string.  Note that this also allows gdb to handle
   strings with embedded null bytes, as is required for some languages.
   strings with embedded null bytes, as is required for some languages.
 
 
   Don't be fooled by the fact that the string is null byte terminated,
   Don't be fooled by the fact that the string is null byte terminated,
   this is strictly for the convenience of debugging gdb itself.
   this is strictly for the convenience of debugging gdb itself.
   Gdb does not depend up the string being null terminated, since the
   Gdb does not depend up the string being null terminated, since the
   actual length is recorded in expression elements at each end of the
   actual length is recorded in expression elements at each end of the
   string.  The null byte is taken into consideration when computing how
   string.  The null byte is taken into consideration when computing how
   many expression elements are required to hold the string constant, of
   many expression elements are required to hold the string constant, of
   course. */
   course. */
 
 
 
 
void
void
write_exp_string (struct stoken str)
write_exp_string (struct stoken str)
{
{
  int len = str.length;
  int len = str.length;
  int lenelt;
  int lenelt;
  char *strdata;
  char *strdata;
 
 
  /* Compute the number of expression elements required to hold the string
  /* Compute the number of expression elements required to hold the string
     (including a null byte terminator), along with one expression element
     (including a null byte terminator), along with one expression element
     at each end to record the actual string length (not including the
     at each end to record the actual string length (not including the
     null byte terminator). */
     null byte terminator). */
 
 
  lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
  lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
 
 
  /* Ensure that we have enough available expression elements to store
  /* Ensure that we have enough available expression elements to store
     everything. */
     everything. */
 
 
  if ((expout_ptr + lenelt) >= expout_size)
  if ((expout_ptr + lenelt) >= expout_size)
    {
    {
      expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
      expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
      expout = (struct expression *)
      expout = (struct expression *)
        xrealloc ((char *) expout, (sizeof (struct expression)
        xrealloc ((char *) expout, (sizeof (struct expression)
                                    + EXP_ELEM_TO_BYTES (expout_size)));
                                    + EXP_ELEM_TO_BYTES (expout_size)));
    }
    }
 
 
  /* Write the leading length expression element (which advances the current
  /* Write the leading length expression element (which advances the current
     expression element index), then write the string constant followed by a
     expression element index), then write the string constant followed by a
     terminating null byte, and then write the trailing length expression
     terminating null byte, and then write the trailing length expression
     element. */
     element. */
 
 
  write_exp_elt_longcst ((LONGEST) len);
  write_exp_elt_longcst ((LONGEST) len);
  strdata = (char *) &expout->elts[expout_ptr];
  strdata = (char *) &expout->elts[expout_ptr];
  memcpy (strdata, str.ptr, len);
  memcpy (strdata, str.ptr, len);
  *(strdata + len) = '\0';
  *(strdata + len) = '\0';
  expout_ptr += lenelt - 2;
  expout_ptr += lenelt - 2;
  write_exp_elt_longcst ((LONGEST) len);
  write_exp_elt_longcst ((LONGEST) len);
}
}
 
 
/* Add a vector of string constants to the end of the expression.
/* Add a vector of string constants to the end of the expression.
 
 
   This adds an OP_STRING operation, but encodes the contents
   This adds an OP_STRING operation, but encodes the contents
   differently from write_exp_string.  The language is expected to
   differently from write_exp_string.  The language is expected to
   handle evaluation of this expression itself.
   handle evaluation of this expression itself.
 
 
   After the usual OP_STRING header, TYPE is written into the
   After the usual OP_STRING header, TYPE is written into the
   expression as a long constant.  The interpretation of this field is
   expression as a long constant.  The interpretation of this field is
   up to the language evaluator.
   up to the language evaluator.
 
 
   Next, each string in VEC is written.  The length is written as a
   Next, each string in VEC is written.  The length is written as a
   long constant, followed by the contents of the string.  */
   long constant, followed by the contents of the string.  */
 
 
void
void
write_exp_string_vector (int type, struct stoken_vector *vec)
write_exp_string_vector (int type, struct stoken_vector *vec)
{
{
  int i, n_slots, len;
  int i, n_slots, len;
 
 
  /* Compute the size.  We compute the size in number of slots to
  /* Compute the size.  We compute the size in number of slots to
     avoid issues with string padding.  */
     avoid issues with string padding.  */
  n_slots = 0;
  n_slots = 0;
  for (i = 0; i < vec->len; ++i)
  for (i = 0; i < vec->len; ++i)
    {
    {
      /* One slot for the length of this element, plus the number of
      /* One slot for the length of this element, plus the number of
         slots needed for this string.  */
         slots needed for this string.  */
      n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
      n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
    }
    }
 
 
  /* One more slot for the type of the string.  */
  /* One more slot for the type of the string.  */
  ++n_slots;
  ++n_slots;
 
 
  /* Now compute a phony string length.  */
  /* Now compute a phony string length.  */
  len = EXP_ELEM_TO_BYTES (n_slots) - 1;
  len = EXP_ELEM_TO_BYTES (n_slots) - 1;
 
 
  n_slots += 4;
  n_slots += 4;
  if ((expout_ptr + n_slots) >= expout_size)
  if ((expout_ptr + n_slots) >= expout_size)
    {
    {
      expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
      expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
      expout = (struct expression *)
      expout = (struct expression *)
        xrealloc ((char *) expout, (sizeof (struct expression)
        xrealloc ((char *) expout, (sizeof (struct expression)
                                    + EXP_ELEM_TO_BYTES (expout_size)));
                                    + EXP_ELEM_TO_BYTES (expout_size)));
    }
    }
 
 
  write_exp_elt_opcode (OP_STRING);
  write_exp_elt_opcode (OP_STRING);
  write_exp_elt_longcst (len);
  write_exp_elt_longcst (len);
  write_exp_elt_longcst (type);
  write_exp_elt_longcst (type);
 
 
  for (i = 0; i < vec->len; ++i)
  for (i = 0; i < vec->len; ++i)
    {
    {
      write_exp_elt_longcst (vec->tokens[i].length);
      write_exp_elt_longcst (vec->tokens[i].length);
      memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
      memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
              vec->tokens[i].length);
              vec->tokens[i].length);
      expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
      expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
    }
    }
 
 
  write_exp_elt_longcst (len);
  write_exp_elt_longcst (len);
  write_exp_elt_opcode (OP_STRING);
  write_exp_elt_opcode (OP_STRING);
}
}
 
 
/* Add a bitstring constant to the end of the expression.
/* Add a bitstring constant to the end of the expression.
 
 
   Bitstring constants are stored by first writing an expression element
   Bitstring constants are stored by first writing an expression element
   that contains the length of the bitstring (in bits), then stuffing the
   that contains the length of the bitstring (in bits), then stuffing the
   bitstring constant itself into however many expression elements are
   bitstring constant itself into however many expression elements are
   needed to hold it, and then writing another expression element that
   needed to hold it, and then writing another expression element that
   contains the length of the bitstring.  I.E. an expression element at
   contains the length of the bitstring.  I.E. an expression element at
   each end of the bitstring records the bitstring length, so you can skip
   each end of the bitstring records the bitstring length, so you can skip
   over the expression elements containing the actual bitstring bytes from
   over the expression elements containing the actual bitstring bytes from
   either end of the bitstring. */
   either end of the bitstring. */
 
 
void
void
write_exp_bitstring (struct stoken str)
write_exp_bitstring (struct stoken str)
{
{
  int bits = str.length;        /* length in bits */
  int bits = str.length;        /* length in bits */
  int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
  int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
  int lenelt;
  int lenelt;
  char *strdata;
  char *strdata;
 
 
  /* Compute the number of expression elements required to hold the bitstring,
  /* Compute the number of expression elements required to hold the bitstring,
     along with one expression element at each end to record the actual
     along with one expression element at each end to record the actual
     bitstring length in bits. */
     bitstring length in bits. */
 
 
  lenelt = 2 + BYTES_TO_EXP_ELEM (len);
  lenelt = 2 + BYTES_TO_EXP_ELEM (len);
 
 
  /* Ensure that we have enough available expression elements to store
  /* Ensure that we have enough available expression elements to store
     everything. */
     everything. */
 
 
  if ((expout_ptr + lenelt) >= expout_size)
  if ((expout_ptr + lenelt) >= expout_size)
    {
    {
      expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
      expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
      expout = (struct expression *)
      expout = (struct expression *)
        xrealloc ((char *) expout, (sizeof (struct expression)
        xrealloc ((char *) expout, (sizeof (struct expression)
                                    + EXP_ELEM_TO_BYTES (expout_size)));
                                    + EXP_ELEM_TO_BYTES (expout_size)));
    }
    }
 
 
  /* Write the leading length expression element (which advances the current
  /* Write the leading length expression element (which advances the current
     expression element index), then write the bitstring constant, and then
     expression element index), then write the bitstring constant, and then
     write the trailing length expression element. */
     write the trailing length expression element. */
 
 
  write_exp_elt_longcst ((LONGEST) bits);
  write_exp_elt_longcst ((LONGEST) bits);
  strdata = (char *) &expout->elts[expout_ptr];
  strdata = (char *) &expout->elts[expout_ptr];
  memcpy (strdata, str.ptr, len);
  memcpy (strdata, str.ptr, len);
  expout_ptr += lenelt - 2;
  expout_ptr += lenelt - 2;
  write_exp_elt_longcst ((LONGEST) bits);
  write_exp_elt_longcst ((LONGEST) bits);
}
}
 
 
/* Add the appropriate elements for a minimal symbol to the end of
/* Add the appropriate elements for a minimal symbol to the end of
   the expression.  */
   the expression.  */
 
 
void
void
write_exp_msymbol (struct minimal_symbol *msymbol)
write_exp_msymbol (struct minimal_symbol *msymbol)
{
{
  struct objfile *objfile = msymbol_objfile (msymbol);
  struct objfile *objfile = msymbol_objfile (msymbol);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
 
 
  CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
  CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
  struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
  struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
  enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
  enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  /* The minimal symbol might point to a function descriptor;
  /* The minimal symbol might point to a function descriptor;
     resolve it to the actual code address instead.  */
     resolve it to the actual code address instead.  */
  pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
  pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
  if (pc != addr)
  if (pc != addr)
    {
    {
      /* In this case, assume we have a code symbol instead of
      /* In this case, assume we have a code symbol instead of
         a data symbol.  */
         a data symbol.  */
      type = mst_text;
      type = mst_text;
      section = NULL;
      section = NULL;
      addr = pc;
      addr = pc;
    }
    }
 
 
  if (overlay_debugging)
  if (overlay_debugging)
    addr = symbol_overlayed_address (addr, section);
    addr = symbol_overlayed_address (addr, section);
 
 
  write_exp_elt_opcode (OP_LONG);
  write_exp_elt_opcode (OP_LONG);
  /* Let's make the type big enough to hold a 64-bit address.  */
  /* Let's make the type big enough to hold a 64-bit address.  */
  write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
  write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
  write_exp_elt_longcst ((LONGEST) addr);
  write_exp_elt_longcst ((LONGEST) addr);
  write_exp_elt_opcode (OP_LONG);
  write_exp_elt_opcode (OP_LONG);
 
 
  if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
  if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
    {
    {
      write_exp_elt_opcode (UNOP_MEMVAL_TLS);
      write_exp_elt_opcode (UNOP_MEMVAL_TLS);
      write_exp_elt_objfile (objfile);
      write_exp_elt_objfile (objfile);
      write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
      write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
      write_exp_elt_opcode (UNOP_MEMVAL_TLS);
      write_exp_elt_opcode (UNOP_MEMVAL_TLS);
      return;
      return;
    }
    }
 
 
  write_exp_elt_opcode (UNOP_MEMVAL);
  write_exp_elt_opcode (UNOP_MEMVAL);
  switch (type)
  switch (type)
    {
    {
    case mst_text:
    case mst_text:
    case mst_file_text:
    case mst_file_text:
    case mst_solib_trampoline:
    case mst_solib_trampoline:
      write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
      write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
      break;
      break;
 
 
    case mst_data:
    case mst_data:
    case mst_file_data:
    case mst_file_data:
    case mst_bss:
    case mst_bss:
    case mst_file_bss:
    case mst_file_bss:
      write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
      write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
      break;
      break;
 
 
    default:
    default:
      write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
      write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
      break;
      break;
    }
    }
  write_exp_elt_opcode (UNOP_MEMVAL);
  write_exp_elt_opcode (UNOP_MEMVAL);
}
}
 
 
/* Mark the current index as the starting location of a structure
/* Mark the current index as the starting location of a structure
   expression.  This is used when completing on field names.  */
   expression.  This is used when completing on field names.  */
 
 
void
void
mark_struct_expression (void)
mark_struct_expression (void)
{
{
  expout_last_struct = expout_ptr;
  expout_last_struct = expout_ptr;
}
}
 
 


/* Recognize tokens that start with '$'.  These include:
/* Recognize tokens that start with '$'.  These include:
 
 
   $regname     A native register name or a "standard
   $regname     A native register name or a "standard
   register name".
   register name".
 
 
   $variable    A convenience variable with a name chosen
   $variable    A convenience variable with a name chosen
   by the user.
   by the user.
 
 
   $digits              Value history with index <digits>, starting
   $digits              Value history with index <digits>, starting
   from the first value which has index 1.
   from the first value which has index 1.
 
 
   $$digits     Value history with index <digits> relative
   $$digits     Value history with index <digits> relative
   to the last value.  I.E. $$0 is the last
   to the last value.  I.E. $$0 is the last
   value, $$1 is the one previous to that, $$2
   value, $$1 is the one previous to that, $$2
   is the one previous to $$1, etc.
   is the one previous to $$1, etc.
 
 
   $ | $0 | $$0 The last value in the value history.
   $ | $0 | $$0 The last value in the value history.
 
 
   $$           An abbreviation for the second to the last
   $$           An abbreviation for the second to the last
   value in the value history, I.E. $$1
   value in the value history, I.E. $$1
 
 
 */
 */
 
 
void
void
write_dollar_variable (struct stoken str)
write_dollar_variable (struct stoken str)
{
{
  struct symbol *sym = NULL;
  struct symbol *sym = NULL;
  struct minimal_symbol *msym = NULL;
  struct minimal_symbol *msym = NULL;
  struct internalvar *isym = NULL;
  struct internalvar *isym = NULL;
 
 
  /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
  /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
     and $$digits (equivalent to $<-digits> if you could type that). */
     and $$digits (equivalent to $<-digits> if you could type that). */
 
 
  int negate = 0;
  int negate = 0;
  int i = 1;
  int i = 1;
  /* Double dollar means negate the number and add -1 as well.
  /* Double dollar means negate the number and add -1 as well.
     Thus $$ alone means -1.  */
     Thus $$ alone means -1.  */
  if (str.length >= 2 && str.ptr[1] == '$')
  if (str.length >= 2 && str.ptr[1] == '$')
    {
    {
      negate = 1;
      negate = 1;
      i = 2;
      i = 2;
    }
    }
  if (i == str.length)
  if (i == str.length)
    {
    {
      /* Just dollars (one or two) */
      /* Just dollars (one or two) */
      i = -negate;
      i = -negate;
      goto handle_last;
      goto handle_last;
    }
    }
  /* Is the rest of the token digits?  */
  /* Is the rest of the token digits?  */
  for (; i < str.length; i++)
  for (; i < str.length; i++)
    if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
    if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
      break;
      break;
  if (i == str.length)
  if (i == str.length)
    {
    {
      i = atoi (str.ptr + 1 + negate);
      i = atoi (str.ptr + 1 + negate);
      if (negate)
      if (negate)
        i = -i;
        i = -i;
      goto handle_last;
      goto handle_last;
    }
    }
 
 
  /* Handle tokens that refer to machine registers:
  /* Handle tokens that refer to machine registers:
     $ followed by a register name.  */
     $ followed by a register name.  */
  i = user_reg_map_name_to_regnum (parse_gdbarch,
  i = user_reg_map_name_to_regnum (parse_gdbarch,
                                   str.ptr + 1, str.length - 1);
                                   str.ptr + 1, str.length - 1);
  if (i >= 0)
  if (i >= 0)
    goto handle_register;
    goto handle_register;
 
 
  /* Any names starting with $ are probably debugger internal variables.  */
  /* Any names starting with $ are probably debugger internal variables.  */
 
 
  isym = lookup_only_internalvar (copy_name (str) + 1);
  isym = lookup_only_internalvar (copy_name (str) + 1);
  if (isym)
  if (isym)
    {
    {
      write_exp_elt_opcode (OP_INTERNALVAR);
      write_exp_elt_opcode (OP_INTERNALVAR);
      write_exp_elt_intern (isym);
      write_exp_elt_intern (isym);
      write_exp_elt_opcode (OP_INTERNALVAR);
      write_exp_elt_opcode (OP_INTERNALVAR);
      return;
      return;
    }
    }
 
 
  /* On some systems, such as HP-UX and hppa-linux, certain system routines
  /* On some systems, such as HP-UX and hppa-linux, certain system routines
     have names beginning with $ or $$.  Check for those, first. */
     have names beginning with $ or $$.  Check for those, first. */
 
 
  sym = lookup_symbol (copy_name (str), (struct block *) NULL,
  sym = lookup_symbol (copy_name (str), (struct block *) NULL,
                       VAR_DOMAIN, (int *) NULL);
                       VAR_DOMAIN, (int *) NULL);
  if (sym)
  if (sym)
    {
    {
      write_exp_elt_opcode (OP_VAR_VALUE);
      write_exp_elt_opcode (OP_VAR_VALUE);
      write_exp_elt_block (block_found);        /* set by lookup_symbol */
      write_exp_elt_block (block_found);        /* set by lookup_symbol */
      write_exp_elt_sym (sym);
      write_exp_elt_sym (sym);
      write_exp_elt_opcode (OP_VAR_VALUE);
      write_exp_elt_opcode (OP_VAR_VALUE);
      return;
      return;
    }
    }
  msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
  msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
  if (msym)
  if (msym)
    {
    {
      write_exp_msymbol (msym);
      write_exp_msymbol (msym);
      return;
      return;
    }
    }
 
 
  /* Any other names are assumed to be debugger internal variables.  */
  /* Any other names are assumed to be debugger internal variables.  */
 
 
  write_exp_elt_opcode (OP_INTERNALVAR);
  write_exp_elt_opcode (OP_INTERNALVAR);
  write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
  write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
  write_exp_elt_opcode (OP_INTERNALVAR);
  write_exp_elt_opcode (OP_INTERNALVAR);
  return;
  return;
handle_last:
handle_last:
  write_exp_elt_opcode (OP_LAST);
  write_exp_elt_opcode (OP_LAST);
  write_exp_elt_longcst ((LONGEST) i);
  write_exp_elt_longcst ((LONGEST) i);
  write_exp_elt_opcode (OP_LAST);
  write_exp_elt_opcode (OP_LAST);
  return;
  return;
handle_register:
handle_register:
  write_exp_elt_opcode (OP_REGISTER);
  write_exp_elt_opcode (OP_REGISTER);
  str.length--;
  str.length--;
  str.ptr++;
  str.ptr++;
  write_exp_string (str);
  write_exp_string (str);
  write_exp_elt_opcode (OP_REGISTER);
  write_exp_elt_opcode (OP_REGISTER);
  return;
  return;
}
}
 
 
 
 
char *
char *
find_template_name_end (char *p)
find_template_name_end (char *p)
{
{
  int depth = 1;
  int depth = 1;
  int just_seen_right = 0;
  int just_seen_right = 0;
  int just_seen_colon = 0;
  int just_seen_colon = 0;
  int just_seen_space = 0;
  int just_seen_space = 0;
 
 
  if (!p || (*p != '<'))
  if (!p || (*p != '<'))
    return 0;
    return 0;
 
 
  while (*++p)
  while (*++p)
    {
    {
      switch (*p)
      switch (*p)
        {
        {
        case '\'':
        case '\'':
        case '\"':
        case '\"':
        case '{':
        case '{':
        case '}':
        case '}':
          /* In future, may want to allow these?? */
          /* In future, may want to allow these?? */
          return 0;
          return 0;
        case '<':
        case '<':
          depth++;              /* start nested template */
          depth++;              /* start nested template */
          if (just_seen_colon || just_seen_right || just_seen_space)
          if (just_seen_colon || just_seen_right || just_seen_space)
            return 0;            /* but not after : or :: or > or space */
            return 0;            /* but not after : or :: or > or space */
          break;
          break;
        case '>':
        case '>':
          if (just_seen_colon || just_seen_right)
          if (just_seen_colon || just_seen_right)
            return 0;            /* end a (nested?) template */
            return 0;            /* end a (nested?) template */
          just_seen_right = 1;  /* but not after : or :: */
          just_seen_right = 1;  /* but not after : or :: */
          if (--depth == 0)      /* also disallow >>, insist on > > */
          if (--depth == 0)      /* also disallow >>, insist on > > */
            return ++p;         /* if outermost ended, return */
            return ++p;         /* if outermost ended, return */
          break;
          break;
        case ':':
        case ':':
          if (just_seen_space || (just_seen_colon > 1))
          if (just_seen_space || (just_seen_colon > 1))
            return 0;            /* nested class spec coming up */
            return 0;            /* nested class spec coming up */
          just_seen_colon++;    /* we allow :: but not :::: */
          just_seen_colon++;    /* we allow :: but not :::: */
          break;
          break;
        case ' ':
        case ' ':
          break;
          break;
        default:
        default:
          if (!((*p >= 'a' && *p <= 'z') ||     /* allow token chars */
          if (!((*p >= 'a' && *p <= 'z') ||     /* allow token chars */
                (*p >= 'A' && *p <= 'Z') ||
                (*p >= 'A' && *p <= 'Z') ||
                (*p >= '0' && *p <= '9') ||
                (*p >= '0' && *p <= '9') ||
                (*p == '_') || (*p == ',') ||   /* commas for template args */
                (*p == '_') || (*p == ',') ||   /* commas for template args */
                (*p == '&') || (*p == '*') ||   /* pointer and ref types */
                (*p == '&') || (*p == '*') ||   /* pointer and ref types */
                (*p == '(') || (*p == ')') ||   /* function types */
                (*p == '(') || (*p == ')') ||   /* function types */
                (*p == '[') || (*p == ']')))    /* array types */
                (*p == '[') || (*p == ']')))    /* array types */
            return 0;
            return 0;
        }
        }
      if (*p != ' ')
      if (*p != ' ')
        just_seen_space = 0;
        just_seen_space = 0;
      if (*p != ':')
      if (*p != ':')
        just_seen_colon = 0;
        just_seen_colon = 0;
      if (*p != '>')
      if (*p != '>')
        just_seen_right = 0;
        just_seen_right = 0;
    }
    }
  return 0;
  return 0;
}
}


 
 
 
 
/* Return a null-terminated temporary copy of the name
/* Return a null-terminated temporary copy of the name
   of a string token.  */
   of a string token.  */
 
 
char *
char *
copy_name (struct stoken token)
copy_name (struct stoken token)
{
{
  /* Make sure there's enough space for the token.  */
  /* Make sure there's enough space for the token.  */
  if (namecopy_size < token.length + 1)
  if (namecopy_size < token.length + 1)
    {
    {
      namecopy_size = token.length + 1;
      namecopy_size = token.length + 1;
      namecopy = xrealloc (namecopy, token.length + 1);
      namecopy = xrealloc (namecopy, token.length + 1);
    }
    }
 
 
  memcpy (namecopy, token.ptr, token.length);
  memcpy (namecopy, token.ptr, token.length);
  namecopy[token.length] = 0;
  namecopy[token.length] = 0;
 
 
  return namecopy;
  return namecopy;
}
}


/* Reverse an expression from suffix form (in which it is constructed)
/* Reverse an expression from suffix form (in which it is constructed)
   to prefix form (in which we can conveniently print or execute it).
   to prefix form (in which we can conveniently print or execute it).
   Ordinarily this always returns -1.  However, if EXPOUT_LAST_STRUCT
   Ordinarily this always returns -1.  However, if EXPOUT_LAST_STRUCT
   is not -1 (i.e., we are trying to complete a field name), it will
   is not -1 (i.e., we are trying to complete a field name), it will
   return the index of the subexpression which is the left-hand-side
   return the index of the subexpression which is the left-hand-side
   of the struct operation at EXPOUT_LAST_STRUCT.  */
   of the struct operation at EXPOUT_LAST_STRUCT.  */
 
 
static int
static int
prefixify_expression (struct expression *expr)
prefixify_expression (struct expression *expr)
{
{
  int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
  int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
  struct expression *temp;
  struct expression *temp;
  int inpos = expr->nelts, outpos = 0;
  int inpos = expr->nelts, outpos = 0;
 
 
  temp = (struct expression *) alloca (len);
  temp = (struct expression *) alloca (len);
 
 
  /* Copy the original expression into temp.  */
  /* Copy the original expression into temp.  */
  memcpy (temp, expr, len);
  memcpy (temp, expr, len);
 
 
  return prefixify_subexp (temp, expr, inpos, outpos);
  return prefixify_subexp (temp, expr, inpos, outpos);
}
}
 
 
/* Return the number of exp_elements in the postfix subexpression
/* Return the number of exp_elements in the postfix subexpression
   of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
   of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
 
 
int
int
length_of_subexp (struct expression *expr, int endpos)
length_of_subexp (struct expression *expr, int endpos)
{
{
  int oplen, args, i;
  int oplen, args, i;
 
 
  operator_length (expr, endpos, &oplen, &args);
  operator_length (expr, endpos, &oplen, &args);
 
 
  while (args > 0)
  while (args > 0)
    {
    {
      oplen += length_of_subexp (expr, endpos - oplen);
      oplen += length_of_subexp (expr, endpos - oplen);
      args--;
      args--;
    }
    }
 
 
  return oplen;
  return oplen;
}
}
 
 
/* Sets *OPLENP to the length of the operator whose (last) index is
/* Sets *OPLENP to the length of the operator whose (last) index is
   ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
   ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
   operator takes.  */
   operator takes.  */
 
 
void
void
operator_length (struct expression *expr, int endpos, int *oplenp, int *argsp)
operator_length (struct expression *expr, int endpos, int *oplenp, int *argsp)
{
{
  expr->language_defn->la_exp_desc->operator_length (expr, endpos,
  expr->language_defn->la_exp_desc->operator_length (expr, endpos,
                                                     oplenp, argsp);
                                                     oplenp, argsp);
}
}
 
 
/* Default value for operator_length in exp_descriptor vectors.  */
/* Default value for operator_length in exp_descriptor vectors.  */
 
 
void
void
operator_length_standard (struct expression *expr, int endpos,
operator_length_standard (struct expression *expr, int endpos,
                          int *oplenp, int *argsp)
                          int *oplenp, int *argsp)
{
{
  int oplen = 1;
  int oplen = 1;
  int args = 0;
  int args = 0;
  enum f90_range_type range_type;
  enum f90_range_type range_type;
  int i;
  int i;
 
 
  if (endpos < 1)
  if (endpos < 1)
    error (_("?error in operator_length_standard"));
    error (_("?error in operator_length_standard"));
 
 
  i = (int) expr->elts[endpos - 1].opcode;
  i = (int) expr->elts[endpos - 1].opcode;
 
 
  switch (i)
  switch (i)
    {
    {
      /* C++  */
      /* C++  */
    case OP_SCOPE:
    case OP_SCOPE:
      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
      oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
      break;
      break;
 
 
    case OP_LONG:
    case OP_LONG:
    case OP_DOUBLE:
    case OP_DOUBLE:
    case OP_DECFLOAT:
    case OP_DECFLOAT:
    case OP_VAR_VALUE:
    case OP_VAR_VALUE:
      oplen = 4;
      oplen = 4;
      break;
      break;
 
 
    case OP_TYPE:
    case OP_TYPE:
    case OP_BOOL:
    case OP_BOOL:
    case OP_LAST:
    case OP_LAST:
    case OP_INTERNALVAR:
    case OP_INTERNALVAR:
      oplen = 3;
      oplen = 3;
      break;
      break;
 
 
    case OP_COMPLEX:
    case OP_COMPLEX:
      oplen = 3;
      oplen = 3;
      args = 2;
      args = 2;
      break;
      break;
 
 
    case OP_FUNCALL:
    case OP_FUNCALL:
    case OP_F77_UNDETERMINED_ARGLIST:
    case OP_F77_UNDETERMINED_ARGLIST:
      oplen = 3;
      oplen = 3;
      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
      break;
      break;
 
 
    case TYPE_INSTANCE:
    case TYPE_INSTANCE:
      oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
      args = 1;
      args = 1;
      break;
      break;
 
 
    case OP_OBJC_MSGCALL:       /* Objective C message (method) call */
    case OP_OBJC_MSGCALL:       /* Objective C message (method) call */
      oplen = 4;
      oplen = 4;
      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
      break;
      break;
 
 
    case UNOP_MAX:
    case UNOP_MAX:
    case UNOP_MIN:
    case UNOP_MIN:
      oplen = 3;
      oplen = 3;
      break;
      break;
 
 
    case BINOP_VAL:
    case BINOP_VAL:
    case UNOP_CAST:
    case UNOP_CAST:
    case UNOP_DYNAMIC_CAST:
    case UNOP_DYNAMIC_CAST:
    case UNOP_REINTERPRET_CAST:
    case UNOP_REINTERPRET_CAST:
    case UNOP_MEMVAL:
    case UNOP_MEMVAL:
      oplen = 3;
      oplen = 3;
      args = 1;
      args = 1;
      break;
      break;
 
 
    case UNOP_MEMVAL_TLS:
    case UNOP_MEMVAL_TLS:
      oplen = 4;
      oplen = 4;
      args = 1;
      args = 1;
      break;
      break;
 
 
    case UNOP_ABS:
    case UNOP_ABS:
    case UNOP_CAP:
    case UNOP_CAP:
    case UNOP_CHR:
    case UNOP_CHR:
    case UNOP_FLOAT:
    case UNOP_FLOAT:
    case UNOP_HIGH:
    case UNOP_HIGH:
    case UNOP_ODD:
    case UNOP_ODD:
    case UNOP_ORD:
    case UNOP_ORD:
    case UNOP_TRUNC:
    case UNOP_TRUNC:
      oplen = 1;
      oplen = 1;
      args = 1;
      args = 1;
      break;
      break;
 
 
    case OP_LABELED:
    case OP_LABELED:
    case STRUCTOP_STRUCT:
    case STRUCTOP_STRUCT:
    case STRUCTOP_PTR:
    case STRUCTOP_PTR:
      args = 1;
      args = 1;
      /* fall through */
      /* fall through */
    case OP_REGISTER:
    case OP_REGISTER:
    case OP_M2_STRING:
    case OP_M2_STRING:
    case OP_STRING:
    case OP_STRING:
    case OP_OBJC_NSSTRING:      /* Objective C Foundation Class NSString constant */
    case OP_OBJC_NSSTRING:      /* Objective C Foundation Class NSString constant */
    case OP_OBJC_SELECTOR:      /* Objective C "@selector" pseudo-op */
    case OP_OBJC_SELECTOR:      /* Objective C "@selector" pseudo-op */
    case OP_NAME:
    case OP_NAME:
      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
      oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
      break;
      break;
 
 
    case OP_BITSTRING:
    case OP_BITSTRING:
      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
      oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
      oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
      break;
      break;
 
 
    case OP_ARRAY:
    case OP_ARRAY:
      oplen = 4;
      oplen = 4;
      args = longest_to_int (expr->elts[endpos - 2].longconst);
      args = longest_to_int (expr->elts[endpos - 2].longconst);
      args -= longest_to_int (expr->elts[endpos - 3].longconst);
      args -= longest_to_int (expr->elts[endpos - 3].longconst);
      args += 1;
      args += 1;
      break;
      break;
 
 
    case TERNOP_COND:
    case TERNOP_COND:
    case TERNOP_SLICE:
    case TERNOP_SLICE:
    case TERNOP_SLICE_COUNT:
    case TERNOP_SLICE_COUNT:
      args = 3;
      args = 3;
      break;
      break;
 
 
      /* Modula-2 */
      /* Modula-2 */
    case MULTI_SUBSCRIPT:
    case MULTI_SUBSCRIPT:
      oplen = 3;
      oplen = 3;
      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
      break;
      break;
 
 
    case BINOP_ASSIGN_MODIFY:
    case BINOP_ASSIGN_MODIFY:
      oplen = 3;
      oplen = 3;
      args = 2;
      args = 2;
      break;
      break;
 
 
      /* C++ */
      /* C++ */
    case OP_THIS:
    case OP_THIS:
    case OP_OBJC_SELF:
    case OP_OBJC_SELF:
      oplen = 2;
      oplen = 2;
      break;
      break;
 
 
    case OP_F90_RANGE:
    case OP_F90_RANGE:
      oplen = 3;
      oplen = 3;
 
 
      range_type = longest_to_int (expr->elts[endpos - 2].longconst);
      range_type = longest_to_int (expr->elts[endpos - 2].longconst);
      switch (range_type)
      switch (range_type)
        {
        {
        case LOW_BOUND_DEFAULT:
        case LOW_BOUND_DEFAULT:
        case HIGH_BOUND_DEFAULT:
        case HIGH_BOUND_DEFAULT:
          args = 1;
          args = 1;
          break;
          break;
        case BOTH_BOUND_DEFAULT:
        case BOTH_BOUND_DEFAULT:
          args = 0;
          args = 0;
          break;
          break;
        case NONE_BOUND_DEFAULT:
        case NONE_BOUND_DEFAULT:
          args = 2;
          args = 2;
          break;
          break;
        }
        }
 
 
      break;
      break;
 
 
    default:
    default:
      args = 1 + (i < (int) BINOP_END);
      args = 1 + (i < (int) BINOP_END);
    }
    }
 
 
  *oplenp = oplen;
  *oplenp = oplen;
  *argsp = args;
  *argsp = args;
}
}
 
 
/* Copy the subexpression ending just before index INEND in INEXPR
/* Copy the subexpression ending just before index INEND in INEXPR
   into OUTEXPR, starting at index OUTBEG.
   into OUTEXPR, starting at index OUTBEG.
   In the process, convert it from suffix to prefix form.
   In the process, convert it from suffix to prefix form.
   If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
   If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
   Otherwise, it returns the index of the subexpression which is the
   Otherwise, it returns the index of the subexpression which is the
   left-hand-side of the expression at EXPOUT_LAST_STRUCT.  */
   left-hand-side of the expression at EXPOUT_LAST_STRUCT.  */
 
 
static int
static int
prefixify_subexp (struct expression *inexpr,
prefixify_subexp (struct expression *inexpr,
                  struct expression *outexpr, int inend, int outbeg)
                  struct expression *outexpr, int inend, int outbeg)
{
{
  int oplen;
  int oplen;
  int args;
  int args;
  int i;
  int i;
  int *arglens;
  int *arglens;
  enum exp_opcode opcode;
  enum exp_opcode opcode;
  int result = -1;
  int result = -1;
 
 
  operator_length (inexpr, inend, &oplen, &args);
  operator_length (inexpr, inend, &oplen, &args);
 
 
  /* Copy the final operator itself, from the end of the input
  /* Copy the final operator itself, from the end of the input
     to the beginning of the output.  */
     to the beginning of the output.  */
  inend -= oplen;
  inend -= oplen;
  memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
  memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
          EXP_ELEM_TO_BYTES (oplen));
          EXP_ELEM_TO_BYTES (oplen));
  outbeg += oplen;
  outbeg += oplen;
 
 
  if (expout_last_struct == inend)
  if (expout_last_struct == inend)
    result = outbeg - oplen;
    result = outbeg - oplen;
 
 
  /* Find the lengths of the arg subexpressions.  */
  /* Find the lengths of the arg subexpressions.  */
  arglens = (int *) alloca (args * sizeof (int));
  arglens = (int *) alloca (args * sizeof (int));
  for (i = args - 1; i >= 0; i--)
  for (i = args - 1; i >= 0; i--)
    {
    {
      oplen = length_of_subexp (inexpr, inend);
      oplen = length_of_subexp (inexpr, inend);
      arglens[i] = oplen;
      arglens[i] = oplen;
      inend -= oplen;
      inend -= oplen;
    }
    }
 
 
  /* Now copy each subexpression, preserving the order of
  /* Now copy each subexpression, preserving the order of
     the subexpressions, but prefixifying each one.
     the subexpressions, but prefixifying each one.
     In this loop, inend starts at the beginning of
     In this loop, inend starts at the beginning of
     the expression this level is working on
     the expression this level is working on
     and marches forward over the arguments.
     and marches forward over the arguments.
     outbeg does similarly in the output.  */
     outbeg does similarly in the output.  */
  for (i = 0; i < args; i++)
  for (i = 0; i < args; i++)
    {
    {
      int r;
      int r;
      oplen = arglens[i];
      oplen = arglens[i];
      inend += oplen;
      inend += oplen;
      r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
      r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
      if (r != -1)
      if (r != -1)
        {
        {
          /* Return immediately.  We probably have only parsed a
          /* Return immediately.  We probably have only parsed a
             partial expression, so we don't want to try to reverse
             partial expression, so we don't want to try to reverse
             the other operands.  */
             the other operands.  */
          return r;
          return r;
        }
        }
      outbeg += oplen;
      outbeg += oplen;
    }
    }
 
 
  return result;
  return result;
}
}


/* This page contains the two entry points to this file.  */
/* This page contains the two entry points to this file.  */
 
 
/* Read an expression from the string *STRINGPTR points to,
/* Read an expression from the string *STRINGPTR points to,
   parse it, and return a pointer to a  struct expression  that we malloc.
   parse it, and return a pointer to a  struct expression  that we malloc.
   Use block BLOCK as the lexical context for variable names;
   Use block BLOCK as the lexical context for variable names;
   if BLOCK is zero, use the block of the selected stack frame.
   if BLOCK is zero, use the block of the selected stack frame.
   Meanwhile, advance *STRINGPTR to point after the expression,
   Meanwhile, advance *STRINGPTR to point after the expression,
   at the first nonwhite character that is not part of the expression
   at the first nonwhite character that is not part of the expression
   (possibly a null character).
   (possibly a null character).
 
 
   If COMMA is nonzero, stop if a comma is reached.  */
   If COMMA is nonzero, stop if a comma is reached.  */
 
 
struct expression *
struct expression *
parse_exp_1 (char **stringptr, struct block *block, int comma)
parse_exp_1 (char **stringptr, struct block *block, int comma)
{
{
  return parse_exp_in_context (stringptr, block, comma, 0, NULL);
  return parse_exp_in_context (stringptr, block, comma, 0, NULL);
}
}
 
 
/* As for parse_exp_1, except that if VOID_CONTEXT_P, then
/* As for parse_exp_1, except that if VOID_CONTEXT_P, then
   no value is expected from the expression.
   no value is expected from the expression.
   OUT_SUBEXP is set when attempting to complete a field name; in this
   OUT_SUBEXP is set when attempting to complete a field name; in this
   case it is set to the index of the subexpression on the
   case it is set to the index of the subexpression on the
   left-hand-side of the struct op.  If not doing such completion, it
   left-hand-side of the struct op.  If not doing such completion, it
   is left untouched.  */
   is left untouched.  */
 
 
static struct expression *
static struct expression *
parse_exp_in_context (char **stringptr, struct block *block, int comma,
parse_exp_in_context (char **stringptr, struct block *block, int comma,
                      int void_context_p, int *out_subexp)
                      int void_context_p, int *out_subexp)
{
{
  volatile struct gdb_exception except;
  volatile struct gdb_exception except;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  int subexp;
  int subexp;
 
 
  lexptr = *stringptr;
  lexptr = *stringptr;
  prev_lexptr = NULL;
  prev_lexptr = NULL;
 
 
  paren_depth = 0;
  paren_depth = 0;
  type_stack_depth = 0;
  type_stack_depth = 0;
  expout_last_struct = -1;
  expout_last_struct = -1;
 
 
  comma_terminates = comma;
  comma_terminates = comma;
 
 
  if (lexptr == 0 || *lexptr == 0)
  if (lexptr == 0 || *lexptr == 0)
    error_no_arg (_("expression to compute"));
    error_no_arg (_("expression to compute"));
 
 
  old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
  old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
  funcall_chain = 0;
  funcall_chain = 0;
 
 
  expression_context_block = block;
  expression_context_block = block;
 
 
  /* If no context specified, try using the current frame, if any.  */
  /* If no context specified, try using the current frame, if any.  */
  if (!expression_context_block)
  if (!expression_context_block)
    expression_context_block = get_selected_block (&expression_context_pc);
    expression_context_block = get_selected_block (&expression_context_pc);
  else
  else
    expression_context_pc = BLOCK_START (expression_context_block);
    expression_context_pc = BLOCK_START (expression_context_block);
 
 
  /* Fall back to using the current source static context, if any.  */
  /* Fall back to using the current source static context, if any.  */
 
 
  if (!expression_context_block)
  if (!expression_context_block)
    {
    {
      struct symtab_and_line cursal = get_current_source_symtab_and_line ();
      struct symtab_and_line cursal = get_current_source_symtab_and_line ();
      if (cursal.symtab)
      if (cursal.symtab)
        expression_context_block
        expression_context_block
          = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
          = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
      if (expression_context_block)
      if (expression_context_block)
        expression_context_pc = BLOCK_START (expression_context_block);
        expression_context_pc = BLOCK_START (expression_context_block);
    }
    }
 
 
  expout_size = 10;
  expout_size = 10;
  expout_ptr = 0;
  expout_ptr = 0;
  expout = (struct expression *)
  expout = (struct expression *)
    xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
    xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
  expout->language_defn = current_language;
  expout->language_defn = current_language;
  expout->gdbarch = get_current_arch ();
  expout->gdbarch = get_current_arch ();
 
 
  TRY_CATCH (except, RETURN_MASK_ALL)
  TRY_CATCH (except, RETURN_MASK_ALL)
    {
    {
      if (current_language->la_parser ())
      if (current_language->la_parser ())
        current_language->la_error (NULL);
        current_language->la_error (NULL);
    }
    }
  if (except.reason < 0)
  if (except.reason < 0)
    {
    {
      if (! in_parse_field)
      if (! in_parse_field)
        {
        {
          xfree (expout);
          xfree (expout);
          throw_exception (except);
          throw_exception (except);
        }
        }
    }
    }
 
 
  discard_cleanups (old_chain);
  discard_cleanups (old_chain);
 
 
  /* Record the actual number of expression elements, and then
  /* Record the actual number of expression elements, and then
     reallocate the expression memory so that we free up any
     reallocate the expression memory so that we free up any
     excess elements. */
     excess elements. */
 
 
  expout->nelts = expout_ptr;
  expout->nelts = expout_ptr;
  expout = (struct expression *)
  expout = (struct expression *)
    xrealloc ((char *) expout,
    xrealloc ((char *) expout,
              sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
              sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
 
 
  /* Convert expression from postfix form as generated by yacc
  /* Convert expression from postfix form as generated by yacc
     parser, to a prefix form. */
     parser, to a prefix form. */
 
 
  if (expressiondebug)
  if (expressiondebug)
    dump_raw_expression (expout, gdb_stdlog,
    dump_raw_expression (expout, gdb_stdlog,
                         "before conversion to prefix form");
                         "before conversion to prefix form");
 
 
  subexp = prefixify_expression (expout);
  subexp = prefixify_expression (expout);
  if (out_subexp)
  if (out_subexp)
    *out_subexp = subexp;
    *out_subexp = subexp;
 
 
  current_language->la_post_parser (&expout, void_context_p);
  current_language->la_post_parser (&expout, void_context_p);
 
 
  if (expressiondebug)
  if (expressiondebug)
    dump_prefix_expression (expout, gdb_stdlog);
    dump_prefix_expression (expout, gdb_stdlog);
 
 
  *stringptr = lexptr;
  *stringptr = lexptr;
  return expout;
  return expout;
}
}
 
 
/* Parse STRING as an expression, and complain if this fails
/* Parse STRING as an expression, and complain if this fails
   to use up all of the contents of STRING.  */
   to use up all of the contents of STRING.  */
 
 
struct expression *
struct expression *
parse_expression (char *string)
parse_expression (char *string)
{
{
  struct expression *exp;
  struct expression *exp;
  exp = parse_exp_1 (&string, 0, 0);
  exp = parse_exp_1 (&string, 0, 0);
  if (*string)
  if (*string)
    error (_("Junk after end of expression."));
    error (_("Junk after end of expression."));
  return exp;
  return exp;
}
}
 
 
/* Parse STRING as an expression.  If parsing ends in the middle of a
/* Parse STRING as an expression.  If parsing ends in the middle of a
   field reference, return the type of the left-hand-side of the
   field reference, return the type of the left-hand-side of the
   reference; furthermore, if the parsing ends in the field name,
   reference; furthermore, if the parsing ends in the field name,
   return the field name in *NAME.  In all other cases, return NULL.
   return the field name in *NAME.  In all other cases, return NULL.
   Returned non-NULL *NAME must be freed by the caller.  */
   Returned non-NULL *NAME must be freed by the caller.  */
 
 
struct type *
struct type *
parse_field_expression (char *string, char **name)
parse_field_expression (char *string, char **name)
{
{
  struct expression *exp = NULL;
  struct expression *exp = NULL;
  struct value *val;
  struct value *val;
  int subexp;
  int subexp;
  volatile struct gdb_exception except;
  volatile struct gdb_exception except;
 
 
  TRY_CATCH (except, RETURN_MASK_ALL)
  TRY_CATCH (except, RETURN_MASK_ALL)
    {
    {
      in_parse_field = 1;
      in_parse_field = 1;
      exp = parse_exp_in_context (&string, 0, 0, 0, &subexp);
      exp = parse_exp_in_context (&string, 0, 0, 0, &subexp);
    }
    }
  in_parse_field = 0;
  in_parse_field = 0;
  if (except.reason < 0 || ! exp)
  if (except.reason < 0 || ! exp)
    return NULL;
    return NULL;
  if (expout_last_struct == -1)
  if (expout_last_struct == -1)
    {
    {
      xfree (exp);
      xfree (exp);
      return NULL;
      return NULL;
    }
    }
 
 
  *name = extract_field_op (exp, &subexp);
  *name = extract_field_op (exp, &subexp);
  if (!*name)
  if (!*name)
    {
    {
      xfree (exp);
      xfree (exp);
      return NULL;
      return NULL;
    }
    }
  /* (*NAME) is a part of the EXP memory block freed below.  */
  /* (*NAME) is a part of the EXP memory block freed below.  */
  *name = xstrdup (*name);
  *name = xstrdup (*name);
 
 
  val = evaluate_subexpression_type (exp, subexp);
  val = evaluate_subexpression_type (exp, subexp);
  xfree (exp);
  xfree (exp);
 
 
  return value_type (val);
  return value_type (val);
}
}
 
 
/* A post-parser that does nothing */
/* A post-parser that does nothing */
 
 
void
void
null_post_parser (struct expression **exp, int void_context_p)
null_post_parser (struct expression **exp, int void_context_p)
{
{
}
}


/* Stuff for maintaining a stack of types.  Currently just used by C, but
/* Stuff for maintaining a stack of types.  Currently just used by C, but
   probably useful for any language which declares its types "backwards".  */
   probably useful for any language which declares its types "backwards".  */
 
 
static void
static void
check_type_stack_depth (void)
check_type_stack_depth (void)
{
{
  if (type_stack_depth == type_stack_size)
  if (type_stack_depth == type_stack_size)
    {
    {
      type_stack_size *= 2;
      type_stack_size *= 2;
      type_stack = (union type_stack_elt *)
      type_stack = (union type_stack_elt *)
        xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
        xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
    }
    }
}
}
 
 
void
void
push_type (enum type_pieces tp)
push_type (enum type_pieces tp)
{
{
  check_type_stack_depth ();
  check_type_stack_depth ();
  type_stack[type_stack_depth++].piece = tp;
  type_stack[type_stack_depth++].piece = tp;
}
}
 
 
void
void
push_type_int (int n)
push_type_int (int n)
{
{
  check_type_stack_depth ();
  check_type_stack_depth ();
  type_stack[type_stack_depth++].int_val = n;
  type_stack[type_stack_depth++].int_val = n;
}
}
 
 
void
void
push_type_address_space (char *string)
push_type_address_space (char *string)
{
{
  push_type_int (address_space_name_to_int (parse_gdbarch, string));
  push_type_int (address_space_name_to_int (parse_gdbarch, string));
}
}
 
 
enum type_pieces
enum type_pieces
pop_type (void)
pop_type (void)
{
{
  if (type_stack_depth)
  if (type_stack_depth)
    return type_stack[--type_stack_depth].piece;
    return type_stack[--type_stack_depth].piece;
  return tp_end;
  return tp_end;
}
}
 
 
int
int
pop_type_int (void)
pop_type_int (void)
{
{
  if (type_stack_depth)
  if (type_stack_depth)
    return type_stack[--type_stack_depth].int_val;
    return type_stack[--type_stack_depth].int_val;
  /* "Can't happen".  */
  /* "Can't happen".  */
  return 0;
  return 0;
}
}
 
 
/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
   as modified by all the stuff on the stack.  */
   as modified by all the stuff on the stack.  */
struct type *
struct type *
follow_types (struct type *follow_type)
follow_types (struct type *follow_type)
{
{
  int done = 0;
  int done = 0;
  int make_const = 0;
  int make_const = 0;
  int make_volatile = 0;
  int make_volatile = 0;
  int make_addr_space = 0;
  int make_addr_space = 0;
  int array_size;
  int array_size;
 
 
  while (!done)
  while (!done)
    switch (pop_type ())
    switch (pop_type ())
      {
      {
      case tp_end:
      case tp_end:
        done = 1;
        done = 1;
        if (make_const)
        if (make_const)
          follow_type = make_cv_type (make_const,
          follow_type = make_cv_type (make_const,
                                      TYPE_VOLATILE (follow_type),
                                      TYPE_VOLATILE (follow_type),
                                      follow_type, 0);
                                      follow_type, 0);
        if (make_volatile)
        if (make_volatile)
          follow_type = make_cv_type (TYPE_CONST (follow_type),
          follow_type = make_cv_type (TYPE_CONST (follow_type),
                                      make_volatile,
                                      make_volatile,
                                      follow_type, 0);
                                      follow_type, 0);
        if (make_addr_space)
        if (make_addr_space)
          follow_type = make_type_with_address_space (follow_type,
          follow_type = make_type_with_address_space (follow_type,
                                                      make_addr_space);
                                                      make_addr_space);
        make_const = make_volatile = 0;
        make_const = make_volatile = 0;
        make_addr_space = 0;
        make_addr_space = 0;
        break;
        break;
      case tp_const:
      case tp_const:
        make_const = 1;
        make_const = 1;
        break;
        break;
      case tp_volatile:
      case tp_volatile:
        make_volatile = 1;
        make_volatile = 1;
        break;
        break;
      case tp_space_identifier:
      case tp_space_identifier:
        make_addr_space = pop_type_int ();
        make_addr_space = pop_type_int ();
        break;
        break;
      case tp_pointer:
      case tp_pointer:
        follow_type = lookup_pointer_type (follow_type);
        follow_type = lookup_pointer_type (follow_type);
        if (make_const)
        if (make_const)
          follow_type = make_cv_type (make_const,
          follow_type = make_cv_type (make_const,
                                      TYPE_VOLATILE (follow_type),
                                      TYPE_VOLATILE (follow_type),
                                      follow_type, 0);
                                      follow_type, 0);
        if (make_volatile)
        if (make_volatile)
          follow_type = make_cv_type (TYPE_CONST (follow_type),
          follow_type = make_cv_type (TYPE_CONST (follow_type),
                                      make_volatile,
                                      make_volatile,
                                      follow_type, 0);
                                      follow_type, 0);
        if (make_addr_space)
        if (make_addr_space)
          follow_type = make_type_with_address_space (follow_type,
          follow_type = make_type_with_address_space (follow_type,
                                                      make_addr_space);
                                                      make_addr_space);
        make_const = make_volatile = 0;
        make_const = make_volatile = 0;
        make_addr_space = 0;
        make_addr_space = 0;
        break;
        break;
      case tp_reference:
      case tp_reference:
        follow_type = lookup_reference_type (follow_type);
        follow_type = lookup_reference_type (follow_type);
        if (make_const)
        if (make_const)
          follow_type = make_cv_type (make_const,
          follow_type = make_cv_type (make_const,
                                      TYPE_VOLATILE (follow_type),
                                      TYPE_VOLATILE (follow_type),
                                      follow_type, 0);
                                      follow_type, 0);
        if (make_volatile)
        if (make_volatile)
          follow_type = make_cv_type (TYPE_CONST (follow_type),
          follow_type = make_cv_type (TYPE_CONST (follow_type),
                                      make_volatile,
                                      make_volatile,
                                      follow_type, 0);
                                      follow_type, 0);
        if (make_addr_space)
        if (make_addr_space)
          follow_type = make_type_with_address_space (follow_type,
          follow_type = make_type_with_address_space (follow_type,
                                                      make_addr_space);
                                                      make_addr_space);
        make_const = make_volatile = 0;
        make_const = make_volatile = 0;
        make_addr_space = 0;
        make_addr_space = 0;
        break;
        break;
      case tp_array:
      case tp_array:
        array_size = pop_type_int ();
        array_size = pop_type_int ();
        /* FIXME-type-allocation: need a way to free this type when we are
        /* FIXME-type-allocation: need a way to free this type when we are
           done with it.  */
           done with it.  */
        follow_type =
        follow_type =
          lookup_array_range_type (follow_type,
          lookup_array_range_type (follow_type,
                                   0, array_size >= 0 ? array_size - 1 : 0);
                                   0, array_size >= 0 ? array_size - 1 : 0);
        if (array_size < 0)
        if (array_size < 0)
          TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
          TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
        break;
        break;
      case tp_function:
      case tp_function:
        /* FIXME-type-allocation: need a way to free this type when we are
        /* FIXME-type-allocation: need a way to free this type when we are
           done with it.  */
           done with it.  */
        follow_type = lookup_function_type (follow_type);
        follow_type = lookup_function_type (follow_type);
        break;
        break;
      }
      }
  return follow_type;
  return follow_type;
}
}


/* This function avoids direct calls to fprintf
/* This function avoids direct calls to fprintf
   in the parser generated debug code.  */
   in the parser generated debug code.  */
void
void
parser_fprintf (FILE *x, const char *y, ...)
parser_fprintf (FILE *x, const char *y, ...)
{
{
  va_list args;
  va_list args;
  va_start (args, y);
  va_start (args, y);
  if (x == stderr)
  if (x == stderr)
    vfprintf_unfiltered (gdb_stderr, y, args);
    vfprintf_unfiltered (gdb_stderr, y, args);
  else
  else
    {
    {
      fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
      fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
      vfprintf_unfiltered (gdb_stderr, y, args);
      vfprintf_unfiltered (gdb_stderr, y, args);
    }
    }
  va_end (args);
  va_end (args);
}
}
 
 
void
void
_initialize_parse (void)
_initialize_parse (void)
{
{
  type_stack_size = 80;
  type_stack_size = 80;
  type_stack_depth = 0;
  type_stack_depth = 0;
  type_stack = (union type_stack_elt *)
  type_stack = (union type_stack_elt *)
    xmalloc (type_stack_size * sizeof (*type_stack));
    xmalloc (type_stack_size * sizeof (*type_stack));
 
 
  add_setshow_zinteger_cmd ("expression", class_maintenance,
  add_setshow_zinteger_cmd ("expression", class_maintenance,
                            &expressiondebug, _("\
                            &expressiondebug, _("\
Set expression debugging."), _("\
Set expression debugging."), _("\
Show expression debugging."), _("\
Show expression debugging."), _("\
When non-zero, the internal representation of expressions will be printed."),
When non-zero, the internal representation of expressions will be printed."),
                            NULL,
                            NULL,
                            show_expressiondebug,
                            show_expressiondebug,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
  add_setshow_boolean_cmd ("parser", class_maintenance,
  add_setshow_boolean_cmd ("parser", class_maintenance,
                            &parser_debug, _("\
                            &parser_debug, _("\
Set parser debugging."), _("\
Set parser debugging."), _("\
Show parser debugging."), _("\
Show parser debugging."), _("\
When non-zero, expression parser tracing will be enabled."),
When non-zero, expression parser tracing will be enabled."),
                            NULL,
                            NULL,
                            show_parserdebug,
                            show_parserdebug,
                            &setdebuglist, &showdebuglist);
                            &setdebuglist, &showdebuglist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.