OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [ppc-linux-nat.c] - Diff between revs 227 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 227 Rev 816
/* PPC GNU/Linux native support.
/* PPC GNU/Linux native support.
 
 
   Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
   Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
   2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
   2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "regcache.h"
#include "regcache.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "target.h"
#include "target.h"
#include "linux-nat.h"
#include "linux-nat.h"
 
 
#include <stdint.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/param.h>
#include <signal.h>
#include <signal.h>
#include <sys/user.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/ioctl.h>
#include "gdb_wait.h"
#include "gdb_wait.h"
#include <fcntl.h>
#include <fcntl.h>
#include <sys/procfs.h>
#include <sys/procfs.h>
#include <sys/ptrace.h>
#include <sys/ptrace.h>
 
 
/* Prototypes for supply_gregset etc. */
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
#include "gregset.h"
#include "ppc-tdep.h"
#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"
#include "ppc-linux-tdep.h"
 
 
/* Required when using the AUXV.  */
/* Required when using the AUXV.  */
#include "elf/common.h"
#include "elf/common.h"
#include "auxv.h"
#include "auxv.h"
 
 
/* This sometimes isn't defined.  */
/* This sometimes isn't defined.  */
#ifndef PT_ORIG_R3
#ifndef PT_ORIG_R3
#define PT_ORIG_R3 34
#define PT_ORIG_R3 34
#endif
#endif
#ifndef PT_TRAP
#ifndef PT_TRAP
#define PT_TRAP 40
#define PT_TRAP 40
#endif
#endif
 
 
/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
   If they aren't, we can provide them ourselves (their values are fixed
   If they aren't, we can provide them ourselves (their values are fixed
   because they are part of the kernel ABI).  They are used in the AT_HWCAP
   because they are part of the kernel ABI).  They are used in the AT_HWCAP
   entry of the AUXV.  */
   entry of the AUXV.  */
#ifndef PPC_FEATURE_CELL
#ifndef PPC_FEATURE_CELL
#define PPC_FEATURE_CELL 0x00010000
#define PPC_FEATURE_CELL 0x00010000
#endif
#endif
#ifndef PPC_FEATURE_BOOKE
#ifndef PPC_FEATURE_BOOKE
#define PPC_FEATURE_BOOKE 0x00008000
#define PPC_FEATURE_BOOKE 0x00008000
#endif
#endif
#ifndef PPC_FEATURE_HAS_DFP
#ifndef PPC_FEATURE_HAS_DFP
#define PPC_FEATURE_HAS_DFP     0x00000400  /* Decimal Floating Point.  */
#define PPC_FEATURE_HAS_DFP     0x00000400  /* Decimal Floating Point.  */
#endif
#endif
 
 
/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
   configure time check.  Some older glibc's (for instance 2.2.1)
   configure time check.  Some older glibc's (for instance 2.2.1)
   don't have a specific powerpc version of ptrace.h, and fall back on
   don't have a specific powerpc version of ptrace.h, and fall back on
   a generic one.  In such cases, sys/ptrace.h defines
   a generic one.  In such cases, sys/ptrace.h defines
   PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
   PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
   ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
   ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
   PTRACE_SETVRREGS to be.  This also makes a configury check pretty
   PTRACE_SETVRREGS to be.  This also makes a configury check pretty
   much useless.  */
   much useless.  */
 
 
/* These definitions should really come from the glibc header files,
/* These definitions should really come from the glibc header files,
   but Glibc doesn't know about the vrregs yet.  */
   but Glibc doesn't know about the vrregs yet.  */
#ifndef PTRACE_GETVRREGS
#ifndef PTRACE_GETVRREGS
#define PTRACE_GETVRREGS 18
#define PTRACE_GETVRREGS 18
#define PTRACE_SETVRREGS 19
#define PTRACE_SETVRREGS 19
#endif
#endif
 
 
/* PTRACE requests for POWER7 VSX registers.  */
/* PTRACE requests for POWER7 VSX registers.  */
#ifndef PTRACE_GETVSXREGS
#ifndef PTRACE_GETVSXREGS
#define PTRACE_GETVSXREGS 27
#define PTRACE_GETVSXREGS 27
#define PTRACE_SETVSXREGS 28
#define PTRACE_SETVSXREGS 28
#endif
#endif
 
 
/* Similarly for the ptrace requests for getting / setting the SPE
/* Similarly for the ptrace requests for getting / setting the SPE
   registers (ev0 -- ev31, acc, and spefscr).  See the description of
   registers (ev0 -- ev31, acc, and spefscr).  See the description of
   gdb_evrregset_t for details.  */
   gdb_evrregset_t for details.  */
#ifndef PTRACE_GETEVRREGS
#ifndef PTRACE_GETEVRREGS
#define PTRACE_GETEVRREGS 20
#define PTRACE_GETEVRREGS 20
#define PTRACE_SETEVRREGS 21
#define PTRACE_SETEVRREGS 21
#endif
#endif
 
 
/* Similarly for the hardware watchpoint support.  */
/* Similarly for the hardware watchpoint support.  */
#ifndef PTRACE_GET_DEBUGREG
#ifndef PTRACE_GET_DEBUGREG
#define PTRACE_GET_DEBUGREG    25
#define PTRACE_GET_DEBUGREG    25
#endif
#endif
#ifndef PTRACE_SET_DEBUGREG
#ifndef PTRACE_SET_DEBUGREG
#define PTRACE_SET_DEBUGREG    26
#define PTRACE_SET_DEBUGREG    26
#endif
#endif
#ifndef PTRACE_GETSIGINFO
#ifndef PTRACE_GETSIGINFO
#define PTRACE_GETSIGINFO    0x4202
#define PTRACE_GETSIGINFO    0x4202
#endif
#endif
 
 
/* Similarly for the general-purpose (gp0 -- gp31)
/* Similarly for the general-purpose (gp0 -- gp31)
   and floating-point registers (fp0 -- fp31).  */
   and floating-point registers (fp0 -- fp31).  */
#ifndef PTRACE_GETREGS
#ifndef PTRACE_GETREGS
#define PTRACE_GETREGS 12
#define PTRACE_GETREGS 12
#endif
#endif
#ifndef PTRACE_SETREGS
#ifndef PTRACE_SETREGS
#define PTRACE_SETREGS 13
#define PTRACE_SETREGS 13
#endif
#endif
#ifndef PTRACE_GETFPREGS
#ifndef PTRACE_GETFPREGS
#define PTRACE_GETFPREGS 14
#define PTRACE_GETFPREGS 14
#endif
#endif
#ifndef PTRACE_SETFPREGS
#ifndef PTRACE_SETFPREGS
#define PTRACE_SETFPREGS 15
#define PTRACE_SETFPREGS 15
#endif
#endif
 
 
/* This oddity is because the Linux kernel defines elf_vrregset_t as
/* This oddity is because the Linux kernel defines elf_vrregset_t as
   an array of 33 16 bytes long elements.  I.e. it leaves out vrsave.
   an array of 33 16 bytes long elements.  I.e. it leaves out vrsave.
   However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
   However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
   the vrsave as an extra 4 bytes at the end.  I opted for creating a
   the vrsave as an extra 4 bytes at the end.  I opted for creating a
   flat array of chars, so that it is easier to manipulate for gdb.
   flat array of chars, so that it is easier to manipulate for gdb.
 
 
   There are 32 vector registers 16 bytes longs, plus a VSCR register
   There are 32 vector registers 16 bytes longs, plus a VSCR register
   which is only 4 bytes long, but is fetched as a 16 bytes
   which is only 4 bytes long, but is fetched as a 16 bytes
   quantity. Up to here we have the elf_vrregset_t structure.
   quantity. Up to here we have the elf_vrregset_t structure.
   Appended to this there is space for the VRSAVE register: 4 bytes.
   Appended to this there is space for the VRSAVE register: 4 bytes.
   Even though this vrsave register is not included in the regset
   Even though this vrsave register is not included in the regset
   typedef, it is handled by the ptrace requests.
   typedef, it is handled by the ptrace requests.
 
 
   Note that GNU/Linux doesn't support little endian PPC hardware,
   Note that GNU/Linux doesn't support little endian PPC hardware,
   therefore the offset at which the real value of the VSCR register
   therefore the offset at which the real value of the VSCR register
   is located will be always 12 bytes.
   is located will be always 12 bytes.
 
 
   The layout is like this (where x is the actual value of the vscr reg): */
   The layout is like this (where x is the actual value of the vscr reg): */
 
 
/* *INDENT-OFF* */
/* *INDENT-OFF* */
/*
/*
   |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
   |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
   <------->     <-------><-------><->
   <------->     <-------><-------><->
     VR0           VR31     VSCR    VRSAVE
     VR0           VR31     VSCR    VRSAVE
*/
*/
/* *INDENT-ON* */
/* *INDENT-ON* */
 
 
#define SIZEOF_VRREGS 33*16+4
#define SIZEOF_VRREGS 33*16+4
 
 
typedef char gdb_vrregset_t[SIZEOF_VRREGS];
typedef char gdb_vrregset_t[SIZEOF_VRREGS];
 
 
/* This is the layout of the POWER7 VSX registers and the way they overlap
/* This is the layout of the POWER7 VSX registers and the way they overlap
   with the existing FPR and VMX registers.
   with the existing FPR and VMX registers.
 
 
                    VSR doubleword 0               VSR doubleword 1
                    VSR doubleword 0               VSR doubleword 1
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[0]  |             FPR[0]            |                              |
   VSR[0]  |             FPR[0]            |                              |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[1]  |             FPR[1]            |                              |
   VSR[1]  |             FPR[1]            |                              |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
           |              ...              |                              |
           |              ...              |                              |
           |              ...              |                              |
           |              ...              |                              |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[30] |             FPR[30]           |                              |
   VSR[30] |             FPR[30]           |                              |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[31] |             FPR[31]           |                              |
   VSR[31] |             FPR[31]           |                              |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[32] |                             VR[0]                            |
   VSR[32] |                             VR[0]                            |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[33] |                             VR[1]                            |
   VSR[33] |                             VR[1]                            |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
           |                              ...                             |
           |                              ...                             |
           |                              ...                             |
           |                              ...                             |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[62] |                             VR[30]                           |
   VSR[62] |                             VR[30]                           |
           ----------------------------------------------------------------
           ----------------------------------------------------------------
   VSR[63] |                             VR[31]                           |
   VSR[63] |                             VR[31]                           |
          ----------------------------------------------------------------
          ----------------------------------------------------------------
 
 
   VSX has 64 128bit registers.  The first 32 registers overlap with
   VSX has 64 128bit registers.  The first 32 registers overlap with
   the FP registers (doubleword 0) and hence extend them with additional
   the FP registers (doubleword 0) and hence extend them with additional
   64 bits (doubleword 1).  The other 32 regs overlap with the VMX
   64 bits (doubleword 1).  The other 32 regs overlap with the VMX
   registers.  */
   registers.  */
#define SIZEOF_VSXREGS 32*8
#define SIZEOF_VSXREGS 32*8
 
 
typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
 
 
/* On PPC processors that support the the Signal Processing Extension
/* On PPC processors that support the the Signal Processing Extension
   (SPE) APU, the general-purpose registers are 64 bits long.
   (SPE) APU, the general-purpose registers are 64 bits long.
   However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
   However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
   ptrace calls only access the lower half of each register, to allow
   ptrace calls only access the lower half of each register, to allow
   them to behave the same way they do on non-SPE systems.  There's a
   them to behave the same way they do on non-SPE systems.  There's a
   separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
   separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
   read and write the top halves of all the general-purpose registers
   read and write the top halves of all the general-purpose registers
   at once, along with some SPE-specific registers.
   at once, along with some SPE-specific registers.
 
 
   GDB itself continues to claim the general-purpose registers are 32
   GDB itself continues to claim the general-purpose registers are 32
   bits long.  It has unnamed raw registers that hold the upper halves
   bits long.  It has unnamed raw registers that hold the upper halves
   of the gprs, and the the full 64-bit SIMD views of the registers,
   of the gprs, and the the full 64-bit SIMD views of the registers,
   'ev0' -- 'ev31', are pseudo-registers that splice the top and
   'ev0' -- 'ev31', are pseudo-registers that splice the top and
   bottom halves together.
   bottom halves together.
 
 
   This is the structure filled in by PTRACE_GETEVRREGS and written to
   This is the structure filled in by PTRACE_GETEVRREGS and written to
   the inferior's registers by PTRACE_SETEVRREGS.  */
   the inferior's registers by PTRACE_SETEVRREGS.  */
struct gdb_evrregset_t
struct gdb_evrregset_t
{
{
  unsigned long evr[32];
  unsigned long evr[32];
  unsigned long long acc;
  unsigned long long acc;
  unsigned long spefscr;
  unsigned long spefscr;
};
};
 
 
/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
   PTRACE_SETVSXREGS requests, for reading and writing the VSX
   PTRACE_SETVSXREGS requests, for reading and writing the VSX
   POWER7 registers 0 through 31.  Zero if we've tried one of them and
   POWER7 registers 0 through 31.  Zero if we've tried one of them and
   gotten an error.  Note that VSX registers 32 through 63 overlap
   gotten an error.  Note that VSX registers 32 through 63 overlap
   with VR registers 0 through 31.  */
   with VR registers 0 through 31.  */
int have_ptrace_getsetvsxregs = 1;
int have_ptrace_getsetvsxregs = 1;
 
 
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
   PTRACE_SETVRREGS requests, for reading and writing the Altivec
   PTRACE_SETVRREGS requests, for reading and writing the Altivec
   registers.  Zero if we've tried one of them and gotten an
   registers.  Zero if we've tried one of them and gotten an
   error.  */
   error.  */
int have_ptrace_getvrregs = 1;
int have_ptrace_getvrregs = 1;
 
 
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests, for reading and writing the SPE
   PTRACE_SETEVRREGS requests, for reading and writing the SPE
   registers.  Zero if we've tried one of them and gotten an
   registers.  Zero if we've tried one of them and gotten an
   error.  */
   error.  */
int have_ptrace_getsetevrregs = 1;
int have_ptrace_getsetevrregs = 1;
 
 
/* Non-zero if our kernel may support the PTRACE_GETREGS and
/* Non-zero if our kernel may support the PTRACE_GETREGS and
   PTRACE_SETREGS requests, for reading and writing the
   PTRACE_SETREGS requests, for reading and writing the
   general-purpose registers.  Zero if we've tried one of
   general-purpose registers.  Zero if we've tried one of
   them and gotten an error.  */
   them and gotten an error.  */
int have_ptrace_getsetregs = 1;
int have_ptrace_getsetregs = 1;
 
 
/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
   PTRACE_SETFPREGS requests, for reading and writing the
   PTRACE_SETFPREGS requests, for reading and writing the
   floating-pointers registers.  Zero if we've tried one of
   floating-pointers registers.  Zero if we've tried one of
   them and gotten an error.  */
   them and gotten an error.  */
int have_ptrace_getsetfpregs = 1;
int have_ptrace_getsetfpregs = 1;
 
 
/* *INDENT-OFF* */
/* *INDENT-OFF* */
/* registers layout, as presented by the ptrace interface:
/* registers layout, as presented by the ptrace interface:
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
/* *INDENT_ON * */
/* *INDENT_ON * */
 
 
static int
static int
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
{
{
  int u_addr = -1;
  int u_addr = -1;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
  /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
     interface, and not the wordsize of the program's ABI.  */
     interface, and not the wordsize of the program's ABI.  */
  int wordsize = sizeof (long);
  int wordsize = sizeof (long);
 
 
  /* General purpose registers occupy 1 slot each in the buffer */
  /* General purpose registers occupy 1 slot each in the buffer */
  if (regno >= tdep->ppc_gp0_regnum
  if (regno >= tdep->ppc_gp0_regnum
      && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
      && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
    u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
    u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
 
 
  /* Floating point regs: eight bytes each in both 32- and 64-bit
  /* Floating point regs: eight bytes each in both 32- and 64-bit
     ptrace interfaces.  Thus, two slots each in 32-bit interface, one
     ptrace interfaces.  Thus, two slots each in 32-bit interface, one
     slot each in 64-bit interface.  */
     slot each in 64-bit interface.  */
  if (tdep->ppc_fp0_regnum >= 0
  if (tdep->ppc_fp0_regnum >= 0
      && regno >= tdep->ppc_fp0_regnum
      && regno >= tdep->ppc_fp0_regnum
      && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
      && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
    u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
    u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
 
 
  /* UISA special purpose registers: 1 slot each */
  /* UISA special purpose registers: 1 slot each */
  if (regno == gdbarch_pc_regnum (gdbarch))
  if (regno == gdbarch_pc_regnum (gdbarch))
    u_addr = PT_NIP * wordsize;
    u_addr = PT_NIP * wordsize;
  if (regno == tdep->ppc_lr_regnum)
  if (regno == tdep->ppc_lr_regnum)
    u_addr = PT_LNK * wordsize;
    u_addr = PT_LNK * wordsize;
  if (regno == tdep->ppc_cr_regnum)
  if (regno == tdep->ppc_cr_regnum)
    u_addr = PT_CCR * wordsize;
    u_addr = PT_CCR * wordsize;
  if (regno == tdep->ppc_xer_regnum)
  if (regno == tdep->ppc_xer_regnum)
    u_addr = PT_XER * wordsize;
    u_addr = PT_XER * wordsize;
  if (regno == tdep->ppc_ctr_regnum)
  if (regno == tdep->ppc_ctr_regnum)
    u_addr = PT_CTR * wordsize;
    u_addr = PT_CTR * wordsize;
#ifdef PT_MQ
#ifdef PT_MQ
  if (regno == tdep->ppc_mq_regnum)
  if (regno == tdep->ppc_mq_regnum)
    u_addr = PT_MQ * wordsize;
    u_addr = PT_MQ * wordsize;
#endif
#endif
  if (regno == tdep->ppc_ps_regnum)
  if (regno == tdep->ppc_ps_regnum)
    u_addr = PT_MSR * wordsize;
    u_addr = PT_MSR * wordsize;
  if (regno == PPC_ORIG_R3_REGNUM)
  if (regno == PPC_ORIG_R3_REGNUM)
    u_addr = PT_ORIG_R3 * wordsize;
    u_addr = PT_ORIG_R3 * wordsize;
  if (regno == PPC_TRAP_REGNUM)
  if (regno == PPC_TRAP_REGNUM)
    u_addr = PT_TRAP * wordsize;
    u_addr = PT_TRAP * wordsize;
  if (tdep->ppc_fpscr_regnum >= 0
  if (tdep->ppc_fpscr_regnum >= 0
      && regno == tdep->ppc_fpscr_regnum)
      && regno == tdep->ppc_fpscr_regnum)
    {
    {
      /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
      /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
         kernel headers incorrectly contained the 32-bit definition of
         kernel headers incorrectly contained the 32-bit definition of
         PT_FPSCR.  For the 32-bit definition, floating-point
         PT_FPSCR.  For the 32-bit definition, floating-point
         registers occupy two 32-bit "slots", and the FPSCR lives in
         registers occupy two 32-bit "slots", and the FPSCR lives in
         the second half of such a slot-pair (hence +1).  For 64-bit,
         the second half of such a slot-pair (hence +1).  For 64-bit,
         the FPSCR instead occupies the full 64-bit 2-word-slot and
         the FPSCR instead occupies the full 64-bit 2-word-slot and
         hence no adjustment is necessary.  Hack around this.  */
         hence no adjustment is necessary.  Hack around this.  */
      if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
      if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
        u_addr = (48 + 32) * wordsize;
        u_addr = (48 + 32) * wordsize;
      /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
      /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
         slot and not just its second word.  The PT_FPSCR supplied when
         slot and not just its second word.  The PT_FPSCR supplied when
         GDB is compiled as a 32-bit app doesn't reflect this.  */
         GDB is compiled as a 32-bit app doesn't reflect this.  */
      else if (wordsize == 4 && register_size (gdbarch, regno) == 8
      else if (wordsize == 4 && register_size (gdbarch, regno) == 8
               && PT_FPSCR == (48 + 2*32 + 1))
               && PT_FPSCR == (48 + 2*32 + 1))
        u_addr = (48 + 2*32) * wordsize;
        u_addr = (48 + 2*32) * wordsize;
      else
      else
        u_addr = PT_FPSCR * wordsize;
        u_addr = PT_FPSCR * wordsize;
    }
    }
  return u_addr;
  return u_addr;
}
}
 
 
/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
   registers set mechanism, as opposed to the interface for all the
   registers set mechanism, as opposed to the interface for all the
   other registers, that stores/fetches each register individually.  */
   other registers, that stores/fetches each register individually.  */
static void
static void
fetch_vsx_register (struct regcache *regcache, int tid, int regno)
fetch_vsx_register (struct regcache *regcache, int tid, int regno)
{
{
  int ret;
  int ret;
  gdb_vsxregset_t regs;
  gdb_vsxregset_t regs;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
 
 
  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetvsxregs = 0;
          have_ptrace_getsetvsxregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Unable to fetch VSX register"));
      perror_with_name (_("Unable to fetch VSX register"));
    }
    }
 
 
  regcache_raw_supply (regcache, regno,
  regcache_raw_supply (regcache, regno,
                       regs + (regno - tdep->ppc_vsr0_upper_regnum)
                       regs + (regno - tdep->ppc_vsr0_upper_regnum)
                       * vsxregsize);
                       * vsxregsize);
}
}
 
 
/* The Linux kernel ptrace interface for AltiVec registers uses the
/* The Linux kernel ptrace interface for AltiVec registers uses the
   registers set mechanism, as opposed to the interface for all the
   registers set mechanism, as opposed to the interface for all the
   other registers, that stores/fetches each register individually.  */
   other registers, that stores/fetches each register individually.  */
static void
static void
fetch_altivec_register (struct regcache *regcache, int tid, int regno)
fetch_altivec_register (struct regcache *regcache, int tid, int regno)
{
{
  int ret;
  int ret;
  int offset = 0;
  int offset = 0;
  gdb_vrregset_t regs;
  gdb_vrregset_t regs;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
 
 
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getvrregs = 0;
          have_ptrace_getvrregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Unable to fetch AltiVec register"));
      perror_with_name (_("Unable to fetch AltiVec register"));
    }
    }
 
 
  /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
  /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
     long on the hardware.  We deal only with the lower 4 bytes of the
     long on the hardware.  We deal only with the lower 4 bytes of the
     vector.  VRSAVE is at the end of the array in a 4 bytes slot, so
     vector.  VRSAVE is at the end of the array in a 4 bytes slot, so
     there is no need to define an offset for it.  */
     there is no need to define an offset for it.  */
  if (regno == (tdep->ppc_vrsave_regnum - 1))
  if (regno == (tdep->ppc_vrsave_regnum - 1))
    offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
    offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
 
 
  regcache_raw_supply (regcache, regno,
  regcache_raw_supply (regcache, regno,
                       regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
                       regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
}
}
 
 
/* Fetch the top 32 bits of TID's general-purpose registers and the
/* Fetch the top 32 bits of TID's general-purpose registers and the
   SPE-specific registers, and place the results in EVRREGSET.  If we
   SPE-specific registers, and place the results in EVRREGSET.  If we
   don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
   don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
   zeros.
   zeros.
 
 
   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   set_spe_registers.  */
   set_spe_registers.  */
static void
static void
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
{
  if (have_ptrace_getsetevrregs)
  if (have_ptrace_getsetevrregs)
    {
    {
      if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
      if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
        return;
        return;
      else
      else
        {
        {
          /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
          /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
             we just return zeros.  */
             we just return zeros.  */
          if (errno == EIO)
          if (errno == EIO)
            have_ptrace_getsetevrregs = 0;
            have_ptrace_getsetevrregs = 0;
          else
          else
            /* Anything else needs to be reported.  */
            /* Anything else needs to be reported.  */
            perror_with_name (_("Unable to fetch SPE registers"));
            perror_with_name (_("Unable to fetch SPE registers"));
        }
        }
    }
    }
 
 
  memset (evrregset, 0, sizeof (*evrregset));
  memset (evrregset, 0, sizeof (*evrregset));
}
}
 
 
/* Supply values from TID for SPE-specific raw registers: the upper
/* Supply values from TID for SPE-specific raw registers: the upper
   halves of the GPRs, the accumulator, and the spefscr.  REGNO must
   halves of the GPRs, the accumulator, and the spefscr.  REGNO must
   be the number of an upper half register, acc, spefscr, or -1 to
   be the number of an upper half register, acc, spefscr, or -1 to
   supply the values of all registers.  */
   supply the values of all registers.  */
static void
static void
fetch_spe_register (struct regcache *regcache, int tid, int regno)
fetch_spe_register (struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdb_evrregset_t evrregs;
  struct gdb_evrregset_t evrregs;
 
 
  gdb_assert (sizeof (evrregs.evr[0])
  gdb_assert (sizeof (evrregs.evr[0])
              == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
              == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
  gdb_assert (sizeof (evrregs.acc)
  gdb_assert (sizeof (evrregs.acc)
              == register_size (gdbarch, tdep->ppc_acc_regnum));
              == register_size (gdbarch, tdep->ppc_acc_regnum));
  gdb_assert (sizeof (evrregs.spefscr)
  gdb_assert (sizeof (evrregs.spefscr)
              == register_size (gdbarch, tdep->ppc_spefscr_regnum));
              == register_size (gdbarch, tdep->ppc_spefscr_regnum));
 
 
  get_spe_registers (tid, &evrregs);
  get_spe_registers (tid, &evrregs);
 
 
  if (regno == -1)
  if (regno == -1)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < ppc_num_gprs; i++)
      for (i = 0; i < ppc_num_gprs; i++)
        regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
        regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
                             &evrregs.evr[i]);
                             &evrregs.evr[i]);
    }
    }
  else if (tdep->ppc_ev0_upper_regnum <= regno
  else if (tdep->ppc_ev0_upper_regnum <= regno
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    regcache_raw_supply (regcache, regno,
    regcache_raw_supply (regcache, regno,
                         &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
                         &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
 
 
  if (regno == -1
  if (regno == -1
      || regno == tdep->ppc_acc_regnum)
      || regno == tdep->ppc_acc_regnum)
    regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
    regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
 
 
  if (regno == -1
  if (regno == -1
      || regno == tdep->ppc_spefscr_regnum)
      || regno == tdep->ppc_spefscr_regnum)
    regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
    regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
                         &evrregs.spefscr);
                         &evrregs.spefscr);
}
}
 
 
static void
static void
fetch_register (struct regcache *regcache, int tid, int regno)
fetch_register (struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
  CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
  int bytes_transferred;
  int bytes_transferred;
  unsigned int offset;         /* Offset of registers within the u area. */
  unsigned int offset;         /* Offset of registers within the u area. */
  char buf[MAX_REGISTER_SIZE];
  char buf[MAX_REGISTER_SIZE];
 
 
  if (altivec_register_p (gdbarch, regno))
  if (altivec_register_p (gdbarch, regno))
    {
    {
      /* If this is the first time through, or if it is not the first
      /* If this is the first time through, or if it is not the first
         time through, and we have comfirmed that there is kernel
         time through, and we have comfirmed that there is kernel
         support for such a ptrace request, then go and fetch the
         support for such a ptrace request, then go and fetch the
         register.  */
         register.  */
      if (have_ptrace_getvrregs)
      if (have_ptrace_getvrregs)
       {
       {
         fetch_altivec_register (regcache, tid, regno);
         fetch_altivec_register (regcache, tid, regno);
         return;
         return;
       }
       }
     /* If we have discovered that there is no ptrace support for
     /* If we have discovered that there is no ptrace support for
        AltiVec registers, fall through and return zeroes, because
        AltiVec registers, fall through and return zeroes, because
        regaddr will be -1 in this case.  */
        regaddr will be -1 in this case.  */
    }
    }
  if (vsx_register_p (gdbarch, regno))
  if (vsx_register_p (gdbarch, regno))
    {
    {
      if (have_ptrace_getsetvsxregs)
      if (have_ptrace_getsetvsxregs)
        {
        {
          fetch_vsx_register (regcache, tid, regno);
          fetch_vsx_register (regcache, tid, regno);
          return;
          return;
        }
        }
    }
    }
  else if (spe_register_p (gdbarch, regno))
  else if (spe_register_p (gdbarch, regno))
    {
    {
      fetch_spe_register (regcache, tid, regno);
      fetch_spe_register (regcache, tid, regno);
      return;
      return;
    }
    }
 
 
  if (regaddr == -1)
  if (regaddr == -1)
    {
    {
      memset (buf, '\0', register_size (gdbarch, regno));   /* Supply zeroes */
      memset (buf, '\0', register_size (gdbarch, regno));   /* Supply zeroes */
      regcache_raw_supply (regcache, regno, buf);
      regcache_raw_supply (regcache, regno, buf);
      return;
      return;
    }
    }
 
 
  /* Read the raw register using sizeof(long) sized chunks.  On a
  /* Read the raw register using sizeof(long) sized chunks.  On a
     32-bit platform, 64-bit floating-point registers will require two
     32-bit platform, 64-bit floating-point registers will require two
     transfers.  */
     transfers.  */
  for (bytes_transferred = 0;
  for (bytes_transferred = 0;
       bytes_transferred < register_size (gdbarch, regno);
       bytes_transferred < register_size (gdbarch, regno);
       bytes_transferred += sizeof (long))
       bytes_transferred += sizeof (long))
    {
    {
      errno = 0;
      errno = 0;
      *(long *) &buf[bytes_transferred]
      *(long *) &buf[bytes_transferred]
        = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
        = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
      regaddr += sizeof (long);
      regaddr += sizeof (long);
      if (errno != 0)
      if (errno != 0)
        {
        {
          char message[128];
          char message[128];
          sprintf (message, "reading register %s (#%d)",
          sprintf (message, "reading register %s (#%d)",
                   gdbarch_register_name (gdbarch, regno), regno);
                   gdbarch_register_name (gdbarch, regno), regno);
          perror_with_name (message);
          perror_with_name (message);
        }
        }
    }
    }
 
 
  /* Now supply the register.  Keep in mind that the regcache's idea
  /* Now supply the register.  Keep in mind that the regcache's idea
     of the register's size may not be a multiple of sizeof
     of the register's size may not be a multiple of sizeof
     (long).  */
     (long).  */
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
    {
    {
      /* Little-endian values are always found at the left end of the
      /* Little-endian values are always found at the left end of the
         bytes transferred.  */
         bytes transferred.  */
      regcache_raw_supply (regcache, regno, buf);
      regcache_raw_supply (regcache, regno, buf);
    }
    }
  else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
    {
      /* Big-endian values are found at the right end of the bytes
      /* Big-endian values are found at the right end of the bytes
         transferred.  */
         transferred.  */
      size_t padding = (bytes_transferred - register_size (gdbarch, regno));
      size_t padding = (bytes_transferred - register_size (gdbarch, regno));
      regcache_raw_supply (regcache, regno, buf + padding);
      regcache_raw_supply (regcache, regno, buf + padding);
    }
    }
  else
  else
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("fetch_register: unexpected byte order: %d"),
                    _("fetch_register: unexpected byte order: %d"),
                    gdbarch_byte_order (gdbarch));
                    gdbarch_byte_order (gdbarch));
}
}
 
 
static void
static void
supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
{
{
  int i;
  int i;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
 
 
  for (i = 0; i < ppc_num_vshrs; i++)
  for (i = 0; i < ppc_num_vshrs; i++)
    {
    {
        regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
        regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
                             *vsxregsetp + i * vsxregsize);
                             *vsxregsetp + i * vsxregsize);
    }
    }
}
}
 
 
static void
static void
supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
{
{
  int i;
  int i;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
  int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
  int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
 
 
  for (i = 0; i < num_of_vrregs; i++)
  for (i = 0; i < num_of_vrregs; i++)
    {
    {
      /* The last 2 registers of this set are only 32 bit long, not
      /* The last 2 registers of this set are only 32 bit long, not
         128.  However an offset is necessary only for VSCR because it
         128.  However an offset is necessary only for VSCR because it
         occupies a whole vector, while VRSAVE occupies a full 4 bytes
         occupies a whole vector, while VRSAVE occupies a full 4 bytes
         slot.  */
         slot.  */
      if (i == (num_of_vrregs - 2))
      if (i == (num_of_vrregs - 2))
        regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
        regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
                             *vrregsetp + i * vrregsize + offset);
                             *vrregsetp + i * vrregsize + offset);
      else
      else
        regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
        regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
                             *vrregsetp + i * vrregsize);
                             *vrregsetp + i * vrregsize);
    }
    }
}
}
 
 
static void
static void
fetch_vsx_registers (struct regcache *regcache, int tid)
fetch_vsx_registers (struct regcache *regcache, int tid)
{
{
  int ret;
  int ret;
  gdb_vsxregset_t regs;
  gdb_vsxregset_t regs;
 
 
  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetvsxregs = 0;
          have_ptrace_getsetvsxregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Unable to fetch VSX registers"));
      perror_with_name (_("Unable to fetch VSX registers"));
    }
    }
  supply_vsxregset (regcache, &regs);
  supply_vsxregset (regcache, &regs);
}
}
 
 
static void
static void
fetch_altivec_registers (struct regcache *regcache, int tid)
fetch_altivec_registers (struct regcache *regcache, int tid)
{
{
  int ret;
  int ret;
  gdb_vrregset_t regs;
  gdb_vrregset_t regs;
 
 
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getvrregs = 0;
          have_ptrace_getvrregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Unable to fetch AltiVec registers"));
      perror_with_name (_("Unable to fetch AltiVec registers"));
    }
    }
  supply_vrregset (regcache, &regs);
  supply_vrregset (regcache, &regs);
}
}
 
 
/* This function actually issues the request to ptrace, telling
/* This function actually issues the request to ptrace, telling
   it to get all general-purpose registers and put them into the
   it to get all general-purpose registers and put them into the
   specified regset.
   specified regset.
 
 
   If the ptrace request does not exist, this function returns 0
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache gets filled and 1 is returned.  */
   succeeds, then the regcache gets filled and 1 is returned.  */
static int
static int
fetch_all_gp_regs (struct regcache *regcache, int tid)
fetch_all_gp_regs (struct regcache *regcache, int tid)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_gregset_t gregset;
  gdb_gregset_t gregset;
 
 
  if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
  if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetregs = 0;
          have_ptrace_getsetregs = 0;
          return 0;
          return 0;
        }
        }
      perror_with_name (_("Couldn't get general-purpose registers."));
      perror_with_name (_("Couldn't get general-purpose registers."));
    }
    }
 
 
  supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
  supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
 
 
  return 1;
  return 1;
}
}
 
 
/* This is a wrapper for the fetch_all_gp_regs function.  It is
/* This is a wrapper for the fetch_all_gp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   responsible for verifying if this target has the ptrace request
   that can be used to fetch all general-purpose registers at one
   that can be used to fetch all general-purpose registers at one
   shot.  If it doesn't, then we should fetch them using the
   shot.  If it doesn't, then we should fetch them using the
   old-fashioned way, which is to iterate over the registers and
   old-fashioned way, which is to iterate over the registers and
   request them one by one.  */
   request them one by one.  */
static void
static void
fetch_gp_regs (struct regcache *regcache, int tid)
fetch_gp_regs (struct regcache *regcache, int tid)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;
  int i;
 
 
  if (have_ptrace_getsetregs)
  if (have_ptrace_getsetregs)
    if (fetch_all_gp_regs (regcache, tid))
    if (fetch_all_gp_regs (regcache, tid))
      return;
      return;
 
 
  /* If we've hit this point, it doesn't really matter which
  /* If we've hit this point, it doesn't really matter which
     architecture we are using.  We just need to read the
     architecture we are using.  We just need to read the
     registers in the "old-fashioned way".  */
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_gprs; i++)
  for (i = 0; i < ppc_num_gprs; i++)
    fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
    fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
}
}
 
 
/* This function actually issues the request to ptrace, telling
/* This function actually issues the request to ptrace, telling
   it to get all floating-point registers and put them into the
   it to get all floating-point registers and put them into the
   specified regset.
   specified regset.
 
 
   If the ptrace request does not exist, this function returns 0
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache gets filled and 1 is returned.  */
   succeeds, then the regcache gets filled and 1 is returned.  */
static int
static int
fetch_all_fp_regs (struct regcache *regcache, int tid)
fetch_all_fp_regs (struct regcache *regcache, int tid)
{
{
  gdb_fpregset_t fpregs;
  gdb_fpregset_t fpregs;
 
 
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetfpregs = 0;
          have_ptrace_getsetfpregs = 0;
          return 0;
          return 0;
        }
        }
      perror_with_name (_("Couldn't get floating-point registers."));
      perror_with_name (_("Couldn't get floating-point registers."));
    }
    }
 
 
  supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
  supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
 
 
  return 1;
  return 1;
}
}
 
 
/* This is a wrapper for the fetch_all_fp_regs function.  It is
/* This is a wrapper for the fetch_all_fp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   responsible for verifying if this target has the ptrace request
   that can be used to fetch all floating-point registers at one
   that can be used to fetch all floating-point registers at one
   shot.  If it doesn't, then we should fetch them using the
   shot.  If it doesn't, then we should fetch them using the
   old-fashioned way, which is to iterate over the registers and
   old-fashioned way, which is to iterate over the registers and
   request them one by one.  */
   request them one by one.  */
static void
static void
fetch_fp_regs (struct regcache *regcache, int tid)
fetch_fp_regs (struct regcache *regcache, int tid)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;
  int i;
 
 
  if (have_ptrace_getsetfpregs)
  if (have_ptrace_getsetfpregs)
    if (fetch_all_fp_regs (regcache, tid))
    if (fetch_all_fp_regs (regcache, tid))
      return;
      return;
 
 
  /* If we've hit this point, it doesn't really matter which
  /* If we've hit this point, it doesn't really matter which
     architecture we are using.  We just need to read the
     architecture we are using.  We just need to read the
     registers in the "old-fashioned way".  */
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_fprs; i++)
  for (i = 0; i < ppc_num_fprs; i++)
    fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
    fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
}
}
 
 
static void
static void
fetch_ppc_registers (struct regcache *regcache, int tid)
fetch_ppc_registers (struct regcache *regcache, int tid)
{
{
  int i;
  int i;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  fetch_gp_regs (regcache, tid);
  fetch_gp_regs (regcache, tid);
  if (tdep->ppc_fp0_regnum >= 0)
  if (tdep->ppc_fp0_regnum >= 0)
    fetch_fp_regs (regcache, tid);
    fetch_fp_regs (regcache, tid);
  fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
  fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
  if (tdep->ppc_ps_regnum != -1)
  if (tdep->ppc_ps_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_ps_regnum);
    fetch_register (regcache, tid, tdep->ppc_ps_regnum);
  if (tdep->ppc_cr_regnum != -1)
  if (tdep->ppc_cr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_cr_regnum);
    fetch_register (regcache, tid, tdep->ppc_cr_regnum);
  if (tdep->ppc_lr_regnum != -1)
  if (tdep->ppc_lr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_lr_regnum);
    fetch_register (regcache, tid, tdep->ppc_lr_regnum);
  if (tdep->ppc_ctr_regnum != -1)
  if (tdep->ppc_ctr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
    fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
  if (tdep->ppc_xer_regnum != -1)
  if (tdep->ppc_xer_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_xer_regnum);
    fetch_register (regcache, tid, tdep->ppc_xer_regnum);
  if (tdep->ppc_mq_regnum != -1)
  if (tdep->ppc_mq_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_mq_regnum);
    fetch_register (regcache, tid, tdep->ppc_mq_regnum);
  if (ppc_linux_trap_reg_p (gdbarch))
  if (ppc_linux_trap_reg_p (gdbarch))
    {
    {
      fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
      fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
      fetch_register (regcache, tid, PPC_TRAP_REGNUM);
      fetch_register (regcache, tid, PPC_TRAP_REGNUM);
    }
    }
  if (tdep->ppc_fpscr_regnum != -1)
  if (tdep->ppc_fpscr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
    fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
  if (have_ptrace_getvrregs)
  if (have_ptrace_getvrregs)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
      fetch_altivec_registers (regcache, tid);
      fetch_altivec_registers (regcache, tid);
  if (have_ptrace_getsetvsxregs)
  if (have_ptrace_getsetvsxregs)
    if (tdep->ppc_vsr0_upper_regnum != -1)
    if (tdep->ppc_vsr0_upper_regnum != -1)
      fetch_vsx_registers (regcache, tid);
      fetch_vsx_registers (regcache, tid);
  if (tdep->ppc_ev0_upper_regnum >= 0)
  if (tdep->ppc_ev0_upper_regnum >= 0)
    fetch_spe_register (regcache, tid, -1);
    fetch_spe_register (regcache, tid, -1);
}
}
 
 
/* Fetch registers from the child process.  Fetch all registers if
/* Fetch registers from the child process.  Fetch all registers if
   regno == -1, otherwise fetch all general registers or all floating
   regno == -1, otherwise fetch all general registers or all floating
   point registers depending upon the value of regno.  */
   point registers depending upon the value of regno.  */
static void
static void
ppc_linux_fetch_inferior_registers (struct target_ops *ops,
ppc_linux_fetch_inferior_registers (struct target_ops *ops,
                                    struct regcache *regcache, int regno)
                                    struct regcache *regcache, int regno)
{
{
  /* Overload thread id onto process id */
  /* Overload thread id onto process id */
  int tid = TIDGET (inferior_ptid);
  int tid = TIDGET (inferior_ptid);
 
 
  /* No thread id, just use process id */
  /* No thread id, just use process id */
  if (tid == 0)
  if (tid == 0)
    tid = PIDGET (inferior_ptid);
    tid = PIDGET (inferior_ptid);
 
 
  if (regno == -1)
  if (regno == -1)
    fetch_ppc_registers (regcache, tid);
    fetch_ppc_registers (regcache, tid);
  else
  else
    fetch_register (regcache, tid, regno);
    fetch_register (regcache, tid, regno);
}
}
 
 
/* Store one VSX register. */
/* Store one VSX register. */
static void
static void
store_vsx_register (const struct regcache *regcache, int tid, int regno)
store_vsx_register (const struct regcache *regcache, int tid, int regno)
{
{
  int ret;
  int ret;
  gdb_vsxregset_t regs;
  gdb_vsxregset_t regs;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
 
 
  ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetvsxregs = 0;
          have_ptrace_getsetvsxregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Unable to fetch VSX register"));
      perror_with_name (_("Unable to fetch VSX register"));
    }
    }
 
 
  regcache_raw_collect (regcache, regno, regs +
  regcache_raw_collect (regcache, regno, regs +
                        (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
                        (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
 
 
  ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    perror_with_name (_("Unable to store VSX register"));
    perror_with_name (_("Unable to store VSX register"));
}
}
 
 
/* Store one register. */
/* Store one register. */
static void
static void
store_altivec_register (const struct regcache *regcache, int tid, int regno)
store_altivec_register (const struct regcache *regcache, int tid, int regno)
{
{
  int ret;
  int ret;
  int offset = 0;
  int offset = 0;
  gdb_vrregset_t regs;
  gdb_vrregset_t regs;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
 
 
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getvrregs = 0;
          have_ptrace_getvrregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Unable to fetch AltiVec register"));
      perror_with_name (_("Unable to fetch AltiVec register"));
    }
    }
 
 
  /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
  /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
     long on the hardware.  */
     long on the hardware.  */
  if (regno == (tdep->ppc_vrsave_regnum - 1))
  if (regno == (tdep->ppc_vrsave_regnum - 1))
    offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
    offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
 
 
  regcache_raw_collect (regcache, regno,
  regcache_raw_collect (regcache, regno,
                        regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
                        regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
 
 
  ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    perror_with_name (_("Unable to store AltiVec register"));
    perror_with_name (_("Unable to store AltiVec register"));
}
}
 
 
/* Assuming TID referrs to an SPE process, set the top halves of TID's
/* Assuming TID referrs to an SPE process, set the top halves of TID's
   general-purpose registers and its SPE-specific registers to the
   general-purpose registers and its SPE-specific registers to the
   values in EVRREGSET.  If we don't support PTRACE_SETEVRREGS, do
   values in EVRREGSET.  If we don't support PTRACE_SETEVRREGS, do
   nothing.
   nothing.
 
 
   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   get_spe_registers.  */
   get_spe_registers.  */
static void
static void
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
{
  if (have_ptrace_getsetevrregs)
  if (have_ptrace_getsetevrregs)
    {
    {
      if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
      if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
        return;
        return;
      else
      else
        {
        {
          /* EIO means that the PTRACE_SETEVRREGS request isn't
          /* EIO means that the PTRACE_SETEVRREGS request isn't
             supported; we fail silently, and don't try the call
             supported; we fail silently, and don't try the call
             again.  */
             again.  */
          if (errno == EIO)
          if (errno == EIO)
            have_ptrace_getsetevrregs = 0;
            have_ptrace_getsetevrregs = 0;
          else
          else
            /* Anything else needs to be reported.  */
            /* Anything else needs to be reported.  */
            perror_with_name (_("Unable to set SPE registers"));
            perror_with_name (_("Unable to set SPE registers"));
        }
        }
    }
    }
}
}
 
 
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
   If REGNO is -1, write the values of all the SPE-specific
   If REGNO is -1, write the values of all the SPE-specific
   registers.  */
   registers.  */
static void
static void
store_spe_register (const struct regcache *regcache, int tid, int regno)
store_spe_register (const struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdb_evrregset_t evrregs;
  struct gdb_evrregset_t evrregs;
 
 
  gdb_assert (sizeof (evrregs.evr[0])
  gdb_assert (sizeof (evrregs.evr[0])
              == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
              == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
  gdb_assert (sizeof (evrregs.acc)
  gdb_assert (sizeof (evrregs.acc)
              == register_size (gdbarch, tdep->ppc_acc_regnum));
              == register_size (gdbarch, tdep->ppc_acc_regnum));
  gdb_assert (sizeof (evrregs.spefscr)
  gdb_assert (sizeof (evrregs.spefscr)
              == register_size (gdbarch, tdep->ppc_spefscr_regnum));
              == register_size (gdbarch, tdep->ppc_spefscr_regnum));
 
 
  if (regno == -1)
  if (regno == -1)
    /* Since we're going to write out every register, the code below
    /* Since we're going to write out every register, the code below
       should store to every field of evrregs; if that doesn't happen,
       should store to every field of evrregs; if that doesn't happen,
       make it obvious by initializing it with suspicious values.  */
       make it obvious by initializing it with suspicious values.  */
    memset (&evrregs, 42, sizeof (evrregs));
    memset (&evrregs, 42, sizeof (evrregs));
  else
  else
    /* We can only read and write the entire EVR register set at a
    /* We can only read and write the entire EVR register set at a
       time, so to write just a single register, we do a
       time, so to write just a single register, we do a
       read-modify-write maneuver.  */
       read-modify-write maneuver.  */
    get_spe_registers (tid, &evrregs);
    get_spe_registers (tid, &evrregs);
 
 
  if (regno == -1)
  if (regno == -1)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < ppc_num_gprs; i++)
      for (i = 0; i < ppc_num_gprs; i++)
        regcache_raw_collect (regcache,
        regcache_raw_collect (regcache,
                              tdep->ppc_ev0_upper_regnum + i,
                              tdep->ppc_ev0_upper_regnum + i,
                              &evrregs.evr[i]);
                              &evrregs.evr[i]);
    }
    }
  else if (tdep->ppc_ev0_upper_regnum <= regno
  else if (tdep->ppc_ev0_upper_regnum <= regno
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    regcache_raw_collect (regcache, regno,
    regcache_raw_collect (regcache, regno,
                          &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
                          &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
 
 
  if (regno == -1
  if (regno == -1
      || regno == tdep->ppc_acc_regnum)
      || regno == tdep->ppc_acc_regnum)
    regcache_raw_collect (regcache,
    regcache_raw_collect (regcache,
                          tdep->ppc_acc_regnum,
                          tdep->ppc_acc_regnum,
                          &evrregs.acc);
                          &evrregs.acc);
 
 
  if (regno == -1
  if (regno == -1
      || regno == tdep->ppc_spefscr_regnum)
      || regno == tdep->ppc_spefscr_regnum)
    regcache_raw_collect (regcache,
    regcache_raw_collect (regcache,
                          tdep->ppc_spefscr_regnum,
                          tdep->ppc_spefscr_regnum,
                          &evrregs.spefscr);
                          &evrregs.spefscr);
 
 
  /* Write back the modified register set.  */
  /* Write back the modified register set.  */
  set_spe_registers (tid, &evrregs);
  set_spe_registers (tid, &evrregs);
}
}
 
 
static void
static void
store_register (const struct regcache *regcache, int tid, int regno)
store_register (const struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
  CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
  int i;
  int i;
  size_t bytes_to_transfer;
  size_t bytes_to_transfer;
  char buf[MAX_REGISTER_SIZE];
  char buf[MAX_REGISTER_SIZE];
 
 
  if (altivec_register_p (gdbarch, regno))
  if (altivec_register_p (gdbarch, regno))
    {
    {
      store_altivec_register (regcache, tid, regno);
      store_altivec_register (regcache, tid, regno);
      return;
      return;
    }
    }
  if (vsx_register_p (gdbarch, regno))
  if (vsx_register_p (gdbarch, regno))
    {
    {
      store_vsx_register (regcache, tid, regno);
      store_vsx_register (regcache, tid, regno);
      return;
      return;
    }
    }
  else if (spe_register_p (gdbarch, regno))
  else if (spe_register_p (gdbarch, regno))
    {
    {
      store_spe_register (regcache, tid, regno);
      store_spe_register (regcache, tid, regno);
      return;
      return;
    }
    }
 
 
  if (regaddr == -1)
  if (regaddr == -1)
    return;
    return;
 
 
  /* First collect the register.  Keep in mind that the regcache's
  /* First collect the register.  Keep in mind that the regcache's
     idea of the register's size may not be a multiple of sizeof
     idea of the register's size may not be a multiple of sizeof
     (long).  */
     (long).  */
  memset (buf, 0, sizeof buf);
  memset (buf, 0, sizeof buf);
  bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
  bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
    {
    {
      /* Little-endian values always sit at the left end of the buffer.  */
      /* Little-endian values always sit at the left end of the buffer.  */
      regcache_raw_collect (regcache, regno, buf);
      regcache_raw_collect (regcache, regno, buf);
    }
    }
  else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
  else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
    {
      /* Big-endian values sit at the right end of the buffer.  */
      /* Big-endian values sit at the right end of the buffer.  */
      size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
      size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
      regcache_raw_collect (regcache, regno, buf + padding);
      regcache_raw_collect (regcache, regno, buf + padding);
    }
    }
 
 
  for (i = 0; i < bytes_to_transfer; i += sizeof (long))
  for (i = 0; i < bytes_to_transfer; i += sizeof (long))
    {
    {
      errno = 0;
      errno = 0;
      ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
      ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
              *(long *) &buf[i]);
              *(long *) &buf[i]);
      regaddr += sizeof (long);
      regaddr += sizeof (long);
 
 
      if (errno == EIO
      if (errno == EIO
          && (regno == tdep->ppc_fpscr_regnum
          && (regno == tdep->ppc_fpscr_regnum
              || regno == PPC_ORIG_R3_REGNUM
              || regno == PPC_ORIG_R3_REGNUM
              || regno == PPC_TRAP_REGNUM))
              || regno == PPC_TRAP_REGNUM))
        {
        {
          /* Some older kernel versions don't allow fpscr, orig_r3
          /* Some older kernel versions don't allow fpscr, orig_r3
             or trap to be written.  */
             or trap to be written.  */
          continue;
          continue;
        }
        }
 
 
      if (errno != 0)
      if (errno != 0)
        {
        {
          char message[128];
          char message[128];
          sprintf (message, "writing register %s (#%d)",
          sprintf (message, "writing register %s (#%d)",
                   gdbarch_register_name (gdbarch, regno), regno);
                   gdbarch_register_name (gdbarch, regno), regno);
          perror_with_name (message);
          perror_with_name (message);
        }
        }
    }
    }
}
}
 
 
static void
static void
fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
{
{
  int i;
  int i;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
  int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
 
 
  for (i = 0; i < ppc_num_vshrs; i++)
  for (i = 0; i < ppc_num_vshrs; i++)
    regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
    regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
                          *vsxregsetp + i * vsxregsize);
                          *vsxregsetp + i * vsxregsize);
}
}
 
 
static void
static void
fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
{
{
  int i;
  int i;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
  int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
  int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
  int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
 
 
  for (i = 0; i < num_of_vrregs; i++)
  for (i = 0; i < num_of_vrregs; i++)
    {
    {
      /* The last 2 registers of this set are only 32 bit long, not
      /* The last 2 registers of this set are only 32 bit long, not
         128, but only VSCR is fetched as a 16 bytes quantity.  */
         128, but only VSCR is fetched as a 16 bytes quantity.  */
      if (i == (num_of_vrregs - 2))
      if (i == (num_of_vrregs - 2))
        regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
        regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
                              *vrregsetp + i * vrregsize + offset);
                              *vrregsetp + i * vrregsize + offset);
      else
      else
        regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
        regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
                              *vrregsetp + i * vrregsize);
                              *vrregsetp + i * vrregsize);
    }
    }
}
}
 
 
static void
static void
store_vsx_registers (const struct regcache *regcache, int tid)
store_vsx_registers (const struct regcache *regcache, int tid)
{
{
  int ret;
  int ret;
  gdb_vsxregset_t regs;
  gdb_vsxregset_t regs;
 
 
  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetvsxregs = 0;
          have_ptrace_getsetvsxregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Couldn't get VSX registers"));
      perror_with_name (_("Couldn't get VSX registers"));
    }
    }
 
 
  fill_vsxregset (regcache, &regs);
  fill_vsxregset (regcache, &regs);
 
 
  if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
  if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
    perror_with_name (_("Couldn't write VSX registers"));
    perror_with_name (_("Couldn't write VSX registers"));
}
}
 
 
static void
static void
store_altivec_registers (const struct regcache *regcache, int tid)
store_altivec_registers (const struct regcache *regcache, int tid)
{
{
  int ret;
  int ret;
  gdb_vrregset_t regs;
  gdb_vrregset_t regs;
 
 
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getvrregs = 0;
          have_ptrace_getvrregs = 0;
          return;
          return;
        }
        }
      perror_with_name (_("Couldn't get AltiVec registers"));
      perror_with_name (_("Couldn't get AltiVec registers"));
    }
    }
 
 
  fill_vrregset (regcache, &regs);
  fill_vrregset (regcache, &regs);
 
 
  if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
  if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
    perror_with_name (_("Couldn't write AltiVec registers"));
    perror_with_name (_("Couldn't write AltiVec registers"));
}
}
 
 
/* This function actually issues the request to ptrace, telling
/* This function actually issues the request to ptrace, telling
   it to store all general-purpose registers present in the specified
   it to store all general-purpose registers present in the specified
   regset.
   regset.
 
 
   If the ptrace request does not exist, this function returns 0
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache is stored and 1 is returned.  */
   succeeds, then the regcache is stored and 1 is returned.  */
static int
static int
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_gregset_t gregset;
  gdb_gregset_t gregset;
 
 
  if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
  if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetregs = 0;
          have_ptrace_getsetregs = 0;
          return 0;
          return 0;
        }
        }
      perror_with_name (_("Couldn't get general-purpose registers."));
      perror_with_name (_("Couldn't get general-purpose registers."));
    }
    }
 
 
  fill_gregset (regcache, &gregset, regno);
  fill_gregset (regcache, &gregset, regno);
 
 
  if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
  if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetregs = 0;
          have_ptrace_getsetregs = 0;
          return 0;
          return 0;
        }
        }
      perror_with_name (_("Couldn't set general-purpose registers."));
      perror_with_name (_("Couldn't set general-purpose registers."));
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* This is a wrapper for the store_all_gp_regs function.  It is
/* This is a wrapper for the store_all_gp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   responsible for verifying if this target has the ptrace request
   that can be used to store all general-purpose registers at one
   that can be used to store all general-purpose registers at one
   shot.  If it doesn't, then we should store them using the
   shot.  If it doesn't, then we should store them using the
   old-fashioned way, which is to iterate over the registers and
   old-fashioned way, which is to iterate over the registers and
   store them one by one.  */
   store them one by one.  */
static void
static void
store_gp_regs (const struct regcache *regcache, int tid, int regno)
store_gp_regs (const struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;
  int i;
 
 
  if (have_ptrace_getsetregs)
  if (have_ptrace_getsetregs)
    if (store_all_gp_regs (regcache, tid, regno))
    if (store_all_gp_regs (regcache, tid, regno))
      return;
      return;
 
 
  /* If we hit this point, it doesn't really matter which
  /* If we hit this point, it doesn't really matter which
     architecture we are using.  We just need to store the
     architecture we are using.  We just need to store the
     registers in the "old-fashioned way".  */
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_gprs; i++)
  for (i = 0; i < ppc_num_gprs; i++)
    store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
    store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
}
}
 
 
/* This function actually issues the request to ptrace, telling
/* This function actually issues the request to ptrace, telling
   it to store all floating-point registers present in the specified
   it to store all floating-point registers present in the specified
   regset.
   regset.
 
 
   If the ptrace request does not exist, this function returns 0
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache is stored and 1 is returned.  */
   succeeds, then the regcache is stored and 1 is returned.  */
static int
static int
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
{
{
  gdb_fpregset_t fpregs;
  gdb_fpregset_t fpregs;
 
 
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetfpregs = 0;
          have_ptrace_getsetfpregs = 0;
          return 0;
          return 0;
        }
        }
      perror_with_name (_("Couldn't get floating-point registers."));
      perror_with_name (_("Couldn't get floating-point registers."));
    }
    }
 
 
  fill_fpregset (regcache, &fpregs, regno);
  fill_fpregset (regcache, &fpregs, regno);
 
 
  if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
  if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getsetfpregs = 0;
          have_ptrace_getsetfpregs = 0;
          return 0;
          return 0;
        }
        }
      perror_with_name (_("Couldn't set floating-point registers."));
      perror_with_name (_("Couldn't set floating-point registers."));
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* This is a wrapper for the store_all_fp_regs function.  It is
/* This is a wrapper for the store_all_fp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   responsible for verifying if this target has the ptrace request
   that can be used to store all floating-point registers at one
   that can be used to store all floating-point registers at one
   shot.  If it doesn't, then we should store them using the
   shot.  If it doesn't, then we should store them using the
   old-fashioned way, which is to iterate over the registers and
   old-fashioned way, which is to iterate over the registers and
   store them one by one.  */
   store them one by one.  */
static void
static void
store_fp_regs (const struct regcache *regcache, int tid, int regno)
store_fp_regs (const struct regcache *regcache, int tid, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;
  int i;
 
 
  if (have_ptrace_getsetfpregs)
  if (have_ptrace_getsetfpregs)
    if (store_all_fp_regs (regcache, tid, regno))
    if (store_all_fp_regs (regcache, tid, regno))
      return;
      return;
 
 
  /* If we hit this point, it doesn't really matter which
  /* If we hit this point, it doesn't really matter which
     architecture we are using.  We just need to store the
     architecture we are using.  We just need to store the
     registers in the "old-fashioned way".  */
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_fprs; i++)
  for (i = 0; i < ppc_num_fprs; i++)
    store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
    store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
}
}
 
 
static void
static void
store_ppc_registers (const struct regcache *regcache, int tid)
store_ppc_registers (const struct regcache *regcache, int tid)
{
{
  int i;
  int i;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  store_gp_regs (regcache, tid, -1);
  store_gp_regs (regcache, tid, -1);
  if (tdep->ppc_fp0_regnum >= 0)
  if (tdep->ppc_fp0_regnum >= 0)
    store_fp_regs (regcache, tid, -1);
    store_fp_regs (regcache, tid, -1);
  store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
  store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
  if (tdep->ppc_ps_regnum != -1)
  if (tdep->ppc_ps_regnum != -1)
    store_register (regcache, tid, tdep->ppc_ps_regnum);
    store_register (regcache, tid, tdep->ppc_ps_regnum);
  if (tdep->ppc_cr_regnum != -1)
  if (tdep->ppc_cr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_cr_regnum);
    store_register (regcache, tid, tdep->ppc_cr_regnum);
  if (tdep->ppc_lr_regnum != -1)
  if (tdep->ppc_lr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_lr_regnum);
    store_register (regcache, tid, tdep->ppc_lr_regnum);
  if (tdep->ppc_ctr_regnum != -1)
  if (tdep->ppc_ctr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_ctr_regnum);
    store_register (regcache, tid, tdep->ppc_ctr_regnum);
  if (tdep->ppc_xer_regnum != -1)
  if (tdep->ppc_xer_regnum != -1)
    store_register (regcache, tid, tdep->ppc_xer_regnum);
    store_register (regcache, tid, tdep->ppc_xer_regnum);
  if (tdep->ppc_mq_regnum != -1)
  if (tdep->ppc_mq_regnum != -1)
    store_register (regcache, tid, tdep->ppc_mq_regnum);
    store_register (regcache, tid, tdep->ppc_mq_regnum);
  if (tdep->ppc_fpscr_regnum != -1)
  if (tdep->ppc_fpscr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_fpscr_regnum);
    store_register (regcache, tid, tdep->ppc_fpscr_regnum);
  if (ppc_linux_trap_reg_p (gdbarch))
  if (ppc_linux_trap_reg_p (gdbarch))
    {
    {
      store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
      store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
      store_register (regcache, tid, PPC_TRAP_REGNUM);
      store_register (regcache, tid, PPC_TRAP_REGNUM);
    }
    }
  if (have_ptrace_getvrregs)
  if (have_ptrace_getvrregs)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
      store_altivec_registers (regcache, tid);
      store_altivec_registers (regcache, tid);
  if (have_ptrace_getsetvsxregs)
  if (have_ptrace_getsetvsxregs)
    if (tdep->ppc_vsr0_upper_regnum != -1)
    if (tdep->ppc_vsr0_upper_regnum != -1)
      store_vsx_registers (regcache, tid);
      store_vsx_registers (regcache, tid);
  if (tdep->ppc_ev0_upper_regnum >= 0)
  if (tdep->ppc_ev0_upper_regnum >= 0)
    store_spe_register (regcache, tid, -1);
    store_spe_register (regcache, tid, -1);
}
}
 
 
static int
static int
ppc_linux_check_watch_resources (int type, int cnt, int ot)
ppc_linux_check_watch_resources (int type, int cnt, int ot)
{
{
  int tid;
  int tid;
  ptid_t ptid = inferior_ptid;
  ptid_t ptid = inferior_ptid;
 
 
  /* DABR (data address breakpoint register) is optional for PPC variants.
  /* DABR (data address breakpoint register) is optional for PPC variants.
     Some variants have one DABR, others have none.  So CNT can't be larger
     Some variants have one DABR, others have none.  So CNT can't be larger
     than 1.  */
     than 1.  */
  if (cnt > 1)
  if (cnt > 1)
    return 0;
    return 0;
 
 
  /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
  /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
     the target has DABR.  If either answer is no, the ptrace call will
     the target has DABR.  If either answer is no, the ptrace call will
     return -1.  Fail in that case.  */
     return -1.  Fail in that case.  */
  tid = TIDGET (ptid);
  tid = TIDGET (ptid);
  if (tid == 0)
  if (tid == 0)
    tid = PIDGET (ptid);
    tid = PIDGET (ptid);
 
 
  if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
  if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
    return 0;
    return 0;
  return 1;
  return 1;
}
}
 
 
/* Fetch the AT_HWCAP entry from the aux vector.  */
/* Fetch the AT_HWCAP entry from the aux vector.  */
unsigned long ppc_linux_get_hwcap (void)
unsigned long ppc_linux_get_hwcap (void)
{
{
  CORE_ADDR field;
  CORE_ADDR field;
 
 
  if (target_auxv_search (&current_target, AT_HWCAP, &field))
  if (target_auxv_search (&current_target, AT_HWCAP, &field))
    return (unsigned long) field;
    return (unsigned long) field;
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
{
  /* Handle sub-8-byte quantities.  */
  /* Handle sub-8-byte quantities.  */
  if (len <= 0)
  if (len <= 0)
    return 0;
    return 0;
 
 
  /* addr+len must fall in the 8 byte watchable region for DABR-based
  /* addr+len must fall in the 8 byte watchable region for DABR-based
     processors.  DAC-based processors, like the PowerPC 440, will use
     processors.  DAC-based processors, like the PowerPC 440, will use
     addresses aligned to 4-bytes due to the way the read/write flags are
     addresses aligned to 4-bytes due to the way the read/write flags are
     passed at the moment.  */
     passed at the moment.  */
  if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
  if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
      && (addr + len) > (addr & ~3) + 4)
      && (addr + len) > (addr & ~3) + 4)
      || (addr + len) > (addr & ~7) + 8)
      || (addr + len) > (addr & ~7) + 8)
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* The cached DABR value, to install in new threads.  */
/* The cached DABR value, to install in new threads.  */
static long saved_dabr_value;
static long saved_dabr_value;
 
 
/* Set a watchpoint of type TYPE at address ADDR.  */
/* Set a watchpoint of type TYPE at address ADDR.  */
static int
static int
ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  ptid_t ptid;
  ptid_t ptid;
  long dabr_value;
  long dabr_value;
  long read_mode, write_mode;
  long read_mode, write_mode;
 
 
  if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
  if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
  {
  {
  /* PowerPC 440 requires only the read/write flags to be passed
  /* PowerPC 440 requires only the read/write flags to be passed
     to the kernel.  */
     to the kernel.  */
    read_mode  = 1;
    read_mode  = 1;
    write_mode = 2;
    write_mode = 2;
  }
  }
  else
  else
  {
  {
  /* PowerPC 970 and other DABR-based processors are required to pass
  /* PowerPC 970 and other DABR-based processors are required to pass
     the Breakpoint Translation bit together with the flags.  */
     the Breakpoint Translation bit together with the flags.  */
    read_mode  = 5;
    read_mode  = 5;
    write_mode = 6;
    write_mode = 6;
  }
  }
 
 
  dabr_value = addr & ~(read_mode | write_mode);
  dabr_value = addr & ~(read_mode | write_mode);
  switch (rw)
  switch (rw)
    {
    {
    case hw_read:
    case hw_read:
      /* Set read and translate bits.  */
      /* Set read and translate bits.  */
      dabr_value |= read_mode;
      dabr_value |= read_mode;
      break;
      break;
    case hw_write:
    case hw_write:
      /* Set write and translate bits.  */
      /* Set write and translate bits.  */
      dabr_value |= write_mode;
      dabr_value |= write_mode;
      break;
      break;
    case hw_access:
    case hw_access:
      /* Set read, write and translate bits.  */
      /* Set read, write and translate bits.  */
      dabr_value |= read_mode | write_mode;
      dabr_value |= read_mode | write_mode;
      break;
      break;
    }
    }
 
 
  saved_dabr_value = dabr_value;
  saved_dabr_value = dabr_value;
 
 
  ALL_LWPS (lp, ptid)
  ALL_LWPS (lp, ptid)
    if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
    if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
      return -1;
      return -1;
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
{
{
  struct lwp_info *lp;
  struct lwp_info *lp;
  ptid_t ptid;
  ptid_t ptid;
  long dabr_value = 0;
  long dabr_value = 0;
 
 
  saved_dabr_value = 0;
  saved_dabr_value = 0;
  ALL_LWPS (lp, ptid)
  ALL_LWPS (lp, ptid)
    if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
    if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
      return -1;
      return -1;
  return 0;
  return 0;
}
}
 
 
static void
static void
ppc_linux_new_thread (ptid_t ptid)
ppc_linux_new_thread (ptid_t ptid)
{
{
  ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value);
  ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value);
}
}
 
 
static int
static int
ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
{
{
  struct siginfo *siginfo_p;
  struct siginfo *siginfo_p;
 
 
  siginfo_p = linux_nat_get_siginfo (inferior_ptid);
  siginfo_p = linux_nat_get_siginfo (inferior_ptid);
 
 
  if (siginfo_p->si_signo != SIGTRAP
  if (siginfo_p->si_signo != SIGTRAP
      || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
      || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
    return 0;
    return 0;
 
 
  *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
  *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
  return 1;
  return 1;
}
}
 
 
static int
static int
ppc_linux_stopped_by_watchpoint (void)
ppc_linux_stopped_by_watchpoint (void)
{
{
  CORE_ADDR addr;
  CORE_ADDR addr;
  return ppc_linux_stopped_data_address (&current_target, &addr);
  return ppc_linux_stopped_data_address (&current_target, &addr);
}
}
 
 
static int
static int
ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
                                        CORE_ADDR addr,
                                        CORE_ADDR addr,
                                        CORE_ADDR start, int length)
                                        CORE_ADDR start, int length)
{
{
  int mask;
  int mask;
 
 
  if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
  if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
    mask = 3;
    mask = 3;
  else
  else
    mask = 7;
    mask = 7;
 
 
  addr &= ~mask;
  addr &= ~mask;
 
 
  /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
  /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
  return start <= addr + mask && start + length - 1 >= addr;
  return start <= addr + mask && start + length - 1 >= addr;
}
}
 
 
static void
static void
ppc_linux_store_inferior_registers (struct target_ops *ops,
ppc_linux_store_inferior_registers (struct target_ops *ops,
                                    struct regcache *regcache, int regno)
                                    struct regcache *regcache, int regno)
{
{
  /* Overload thread id onto process id */
  /* Overload thread id onto process id */
  int tid = TIDGET (inferior_ptid);
  int tid = TIDGET (inferior_ptid);
 
 
  /* No thread id, just use process id */
  /* No thread id, just use process id */
  if (tid == 0)
  if (tid == 0)
    tid = PIDGET (inferior_ptid);
    tid = PIDGET (inferior_ptid);
 
 
  if (regno >= 0)
  if (regno >= 0)
    store_register (regcache, tid, regno);
    store_register (regcache, tid, regno);
  else
  else
    store_ppc_registers (regcache, tid);
    store_ppc_registers (regcache, tid);
}
}
 
 
/* Functions for transferring registers between a gregset_t or fpregset_t
/* Functions for transferring registers between a gregset_t or fpregset_t
   (see sys/ucontext.h) and gdb's regcache.  The word size is that used
   (see sys/ucontext.h) and gdb's regcache.  The word size is that used
   by the ptrace interface, not the current program's ABI.  eg. If a
   by the ptrace interface, not the current program's ABI.  eg. If a
   powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
   powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
   read or write 64-bit gregsets.  This is to suit the host libthread_db.  */
   read or write 64-bit gregsets.  This is to suit the host libthread_db.  */
 
 
void
void
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
{
{
  const struct regset *regset = ppc_linux_gregset (sizeof (long));
  const struct regset *regset = ppc_linux_gregset (sizeof (long));
 
 
  ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
  ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
}
}
 
 
void
void
fill_gregset (const struct regcache *regcache,
fill_gregset (const struct regcache *regcache,
              gdb_gregset_t *gregsetp, int regno)
              gdb_gregset_t *gregsetp, int regno)
{
{
  const struct regset *regset = ppc_linux_gregset (sizeof (long));
  const struct regset *regset = ppc_linux_gregset (sizeof (long));
 
 
  if (regno == -1)
  if (regno == -1)
    memset (gregsetp, 0, sizeof (*gregsetp));
    memset (gregsetp, 0, sizeof (*gregsetp));
  ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
  ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
}
}
 
 
void
void
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
{
{
  const struct regset *regset = ppc_linux_fpregset ();
  const struct regset *regset = ppc_linux_fpregset ();
 
 
  ppc_supply_fpregset (regset, regcache, -1,
  ppc_supply_fpregset (regset, regcache, -1,
                       fpregsetp, sizeof (*fpregsetp));
                       fpregsetp, sizeof (*fpregsetp));
}
}
 
 
void
void
fill_fpregset (const struct regcache *regcache,
fill_fpregset (const struct regcache *regcache,
               gdb_fpregset_t *fpregsetp, int regno)
               gdb_fpregset_t *fpregsetp, int regno)
{
{
  const struct regset *regset = ppc_linux_fpregset ();
  const struct regset *regset = ppc_linux_fpregset ();
 
 
  ppc_collect_fpregset (regset, regcache, regno,
  ppc_collect_fpregset (regset, regcache, regno,
                        fpregsetp, sizeof (*fpregsetp));
                        fpregsetp, sizeof (*fpregsetp));
}
}
 
 
static int
static int
ppc_linux_target_wordsize (void)
ppc_linux_target_wordsize (void)
{
{
  int wordsize = 4;
  int wordsize = 4;
 
 
  /* Check for 64-bit inferior process.  This is the case when the host is
  /* Check for 64-bit inferior process.  This is the case when the host is
     64-bit, and in addition the top bit of the MSR register is set.  */
     64-bit, and in addition the top bit of the MSR register is set.  */
#ifdef __powerpc64__
#ifdef __powerpc64__
  long msr;
  long msr;
 
 
  int tid = TIDGET (inferior_ptid);
  int tid = TIDGET (inferior_ptid);
  if (tid == 0)
  if (tid == 0)
    tid = PIDGET (inferior_ptid);
    tid = PIDGET (inferior_ptid);
 
 
  errno = 0;
  errno = 0;
  msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
  msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
  if (errno == 0 && msr < 0)
  if (errno == 0 && msr < 0)
    wordsize = 8;
    wordsize = 8;
#endif
#endif
 
 
  return wordsize;
  return wordsize;
}
}
 
 
static int
static int
ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
                      gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
                      gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
{
{
  int sizeof_auxv_field = ppc_linux_target_wordsize ();
  int sizeof_auxv_field = ppc_linux_target_wordsize ();
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  gdb_byte *ptr = *readptr;
  gdb_byte *ptr = *readptr;
 
 
  if (endptr == ptr)
  if (endptr == ptr)
    return 0;
    return 0;
 
 
  if (endptr - ptr < sizeof_auxv_field * 2)
  if (endptr - ptr < sizeof_auxv_field * 2)
    return -1;
    return -1;
 
 
  *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
  *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
  ptr += sizeof_auxv_field;
  ptr += sizeof_auxv_field;
  *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
  *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
  ptr += sizeof_auxv_field;
  ptr += sizeof_auxv_field;
 
 
  *readptr = ptr;
  *readptr = ptr;
  return 1;
  return 1;
}
}
 
 
static const struct target_desc *
static const struct target_desc *
ppc_linux_read_description (struct target_ops *ops)
ppc_linux_read_description (struct target_ops *ops)
{
{
  int altivec = 0;
  int altivec = 0;
  int vsx = 0;
  int vsx = 0;
  int isa205 = 0;
  int isa205 = 0;
  int cell = 0;
  int cell = 0;
 
 
  int tid = TIDGET (inferior_ptid);
  int tid = TIDGET (inferior_ptid);
  if (tid == 0)
  if (tid == 0)
    tid = PIDGET (inferior_ptid);
    tid = PIDGET (inferior_ptid);
 
 
  if (have_ptrace_getsetevrregs)
  if (have_ptrace_getsetevrregs)
    {
    {
      struct gdb_evrregset_t evrregset;
      struct gdb_evrregset_t evrregset;
 
 
      if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
      if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
        return tdesc_powerpc_e500l;
        return tdesc_powerpc_e500l;
 
 
      /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
      /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
         Anything else needs to be reported.  */
         Anything else needs to be reported.  */
      else if (errno != EIO)
      else if (errno != EIO)
        perror_with_name (_("Unable to fetch SPE registers"));
        perror_with_name (_("Unable to fetch SPE registers"));
    }
    }
 
 
  if (have_ptrace_getsetvsxregs)
  if (have_ptrace_getsetvsxregs)
    {
    {
      gdb_vsxregset_t vsxregset;
      gdb_vsxregset_t vsxregset;
 
 
      if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
      if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
        vsx = 1;
        vsx = 1;
 
 
      /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
      /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
         Anything else needs to be reported.  */
         Anything else needs to be reported.  */
      else if (errno != EIO)
      else if (errno != EIO)
        perror_with_name (_("Unable to fetch VSX registers"));
        perror_with_name (_("Unable to fetch VSX registers"));
    }
    }
 
 
  if (have_ptrace_getvrregs)
  if (have_ptrace_getvrregs)
    {
    {
      gdb_vrregset_t vrregset;
      gdb_vrregset_t vrregset;
 
 
      if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
      if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
        altivec = 1;
        altivec = 1;
 
 
      /* EIO means that the PTRACE_GETVRREGS request isn't supported.
      /* EIO means that the PTRACE_GETVRREGS request isn't supported.
         Anything else needs to be reported.  */
         Anything else needs to be reported.  */
      else if (errno != EIO)
      else if (errno != EIO)
        perror_with_name (_("Unable to fetch AltiVec registers"));
        perror_with_name (_("Unable to fetch AltiVec registers"));
    }
    }
 
 
  /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
  /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
     the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
     the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
     ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
     ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
     PPC_FEATURE_ARCH_2_06.  Since for now the only bits used in the higher
     PPC_FEATURE_ARCH_2_06.  Since for now the only bits used in the higher
     half of the register are for Decimal Floating Point, we check if that
     half of the register are for Decimal Floating Point, we check if that
     feature is available to decide the size of the FPSCR.  */
     feature is available to decide the size of the FPSCR.  */
  if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
  if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
    isa205 = 1;
    isa205 = 1;
 
 
  if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
  if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
    cell = 1;
    cell = 1;
 
 
  if (ppc_linux_target_wordsize () == 8)
  if (ppc_linux_target_wordsize () == 8)
    {
    {
      if (cell)
      if (cell)
        return tdesc_powerpc_cell64l;
        return tdesc_powerpc_cell64l;
      else if (vsx)
      else if (vsx)
        return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
        return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
      else if (altivec)
      else if (altivec)
        return isa205? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
        return isa205? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
 
 
      return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
      return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
    }
    }
 
 
  if (cell)
  if (cell)
    return tdesc_powerpc_cell32l;
    return tdesc_powerpc_cell32l;
  else if (vsx)
  else if (vsx)
    return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
    return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
  else if (altivec)
  else if (altivec)
    return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
    return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
 
 
  return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
  return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
}
}
 
 
void _initialize_ppc_linux_nat (void);
void _initialize_ppc_linux_nat (void);
 
 
void
void
_initialize_ppc_linux_nat (void)
_initialize_ppc_linux_nat (void)
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  /* Fill in the generic GNU/Linux methods.  */
  /* Fill in the generic GNU/Linux methods.  */
  t = linux_target ();
  t = linux_target ();
 
 
  /* Add our register access methods.  */
  /* Add our register access methods.  */
  t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
  t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
  t->to_store_registers = ppc_linux_store_inferior_registers;
  t->to_store_registers = ppc_linux_store_inferior_registers;
 
 
  /* Add our watchpoint methods.  */
  /* Add our watchpoint methods.  */
  t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
  t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
  t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
  t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
  t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
  t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
  t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
  t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
  t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
  t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
  t->to_stopped_data_address = ppc_linux_stopped_data_address;
  t->to_stopped_data_address = ppc_linux_stopped_data_address;
  t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
  t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
 
 
  t->to_read_description = ppc_linux_read_description;
  t->to_read_description = ppc_linux_read_description;
  t->to_auxv_parse = ppc_linux_auxv_parse;
  t->to_auxv_parse = ppc_linux_auxv_parse;
 
 
  /* Register the target.  */
  /* Register the target.  */
  linux_nat_add_target (t);
  linux_nat_add_target (t);
  linux_nat_set_new_thread (t, ppc_linux_new_thread);
  linux_nat_set_new_thread (t, ppc_linux_new_thread);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.