OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [ppc-sysv-tdep.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Target-dependent code for PowerPC systems using the SVR4 ABI
/* Target-dependent code for PowerPC systems using the SVR4 ABI
   for GDB, the GNU debugger.
   for GDB, the GNU debugger.
 
 
   Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010
   Copyright (C) 2000, 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "inferior.h"
#include "inferior.h"
#include "regcache.h"
#include "regcache.h"
#include "value.h"
#include "value.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "ppc-tdep.h"
#include "ppc-tdep.h"
#include "target.h"
#include "target.h"
#include "objfiles.h"
#include "objfiles.h"
#include "infcall.h"
#include "infcall.h"
 
 
/* Pass the arguments in either registers, or in the stack. Using the
/* Pass the arguments in either registers, or in the stack. Using the
   ppc sysv ABI, the first eight words of the argument list (that might
   ppc sysv ABI, the first eight words of the argument list (that might
   be less than eight parameters if some parameters occupy more than one
   be less than eight parameters if some parameters occupy more than one
   word) are passed in r3..r10 registers.  float and double parameters are
   word) are passed in r3..r10 registers.  float and double parameters are
   passed in fpr's, in addition to that. Rest of the parameters if any
   passed in fpr's, in addition to that. Rest of the parameters if any
   are passed in user stack.
   are passed in user stack.
 
 
   If the function is returning a structure, then the return address is passed
   If the function is returning a structure, then the return address is passed
   in r3, then the first 7 words of the parametes can be passed in registers,
   in r3, then the first 7 words of the parametes can be passed in registers,
   starting from r4. */
   starting from r4. */
 
 
CORE_ADDR
CORE_ADDR
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                              struct regcache *regcache, CORE_ADDR bp_addr,
                              struct regcache *regcache, CORE_ADDR bp_addr,
                              int nargs, struct value **args, CORE_ADDR sp,
                              int nargs, struct value **args, CORE_ADDR sp,
                              int struct_return, CORE_ADDR struct_addr)
                              int struct_return, CORE_ADDR struct_addr)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST saved_sp;
  ULONGEST saved_sp;
  int argspace = 0;              /* 0 is an initial wrong guess.  */
  int argspace = 0;              /* 0 is an initial wrong guess.  */
  int write_pass;
  int write_pass;
 
 
  gdb_assert (tdep->wordsize == 4);
  gdb_assert (tdep->wordsize == 4);
 
 
  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
                                 &saved_sp);
                                 &saved_sp);
 
 
  /* Go through the argument list twice.
  /* Go through the argument list twice.
 
 
     Pass 1: Figure out how much new stack space is required for
     Pass 1: Figure out how much new stack space is required for
     arguments and pushed values.  Unlike the PowerOpen ABI, the SysV
     arguments and pushed values.  Unlike the PowerOpen ABI, the SysV
     ABI doesn't reserve any extra space for parameters which are put
     ABI doesn't reserve any extra space for parameters which are put
     in registers, but does always push structures and then pass their
     in registers, but does always push structures and then pass their
     address.
     address.
 
 
     Pass 2: Replay the same computation but this time also write the
     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */
     values out to the target.  */
 
 
  for (write_pass = 0; write_pass < 2; write_pass++)
  for (write_pass = 0; write_pass < 2; write_pass++)
    {
    {
      int argno;
      int argno;
      /* Next available floating point register for float and double
      /* Next available floating point register for float and double
         arguments.  */
         arguments.  */
      int freg = 1;
      int freg = 1;
      /* Next available general register for non-float, non-vector
      /* Next available general register for non-float, non-vector
         arguments.  */
         arguments.  */
      int greg = 3;
      int greg = 3;
      /* Next available vector register for vector arguments.  */
      /* Next available vector register for vector arguments.  */
      int vreg = 2;
      int vreg = 2;
      /* Arguments start above the "LR save word" and "Back chain".  */
      /* Arguments start above the "LR save word" and "Back chain".  */
      int argoffset = 2 * tdep->wordsize;
      int argoffset = 2 * tdep->wordsize;
      /* Structures start after the arguments.  */
      /* Structures start after the arguments.  */
      int structoffset = argoffset + argspace;
      int structoffset = argoffset + argspace;
 
 
      /* If the function is returning a `struct', then the first word
      /* If the function is returning a `struct', then the first word
         (which will be passed in r3) is used for struct return
         (which will be passed in r3) is used for struct return
         address.  In that case we should advance one word and start
         address.  In that case we should advance one word and start
         from r4 register to copy parameters.  */
         from r4 register to copy parameters.  */
      if (struct_return)
      if (struct_return)
        {
        {
          if (write_pass)
          if (write_pass)
            regcache_cooked_write_signed (regcache,
            regcache_cooked_write_signed (regcache,
                                          tdep->ppc_gp0_regnum + greg,
                                          tdep->ppc_gp0_regnum + greg,
                                          struct_addr);
                                          struct_addr);
          greg++;
          greg++;
        }
        }
 
 
      for (argno = 0; argno < nargs; argno++)
      for (argno = 0; argno < nargs; argno++)
        {
        {
          struct value *arg = args[argno];
          struct value *arg = args[argno];
          struct type *type = check_typedef (value_type (arg));
          struct type *type = check_typedef (value_type (arg));
          int len = TYPE_LENGTH (type);
          int len = TYPE_LENGTH (type);
          const bfd_byte *val = value_contents (arg);
          const bfd_byte *val = value_contents (arg);
 
 
          if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
          if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
              && !tdep->soft_float)
              && !tdep->soft_float)
            {
            {
              /* Floating point value converted to "double" then
              /* Floating point value converted to "double" then
                 passed in an FP register, when the registers run out,
                 passed in an FP register, when the registers run out,
                 8 byte aligned stack is used.  */
                 8 byte aligned stack is used.  */
              if (freg <= 8)
              if (freg <= 8)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    {
                    {
                      /* Always store the floating point value using
                      /* Always store the floating point value using
                         the register's floating-point format.  */
                         the register's floating-point format.  */
                      gdb_byte regval[MAX_REGISTER_SIZE];
                      gdb_byte regval[MAX_REGISTER_SIZE];
                      struct type *regtype
                      struct type *regtype
                        = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
                        = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
                      convert_typed_floating (val, type, regval, regtype);
                      convert_typed_floating (val, type, regval, regtype);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
                                             tdep->ppc_fp0_regnum + freg,
                                             regval);
                                             regval);
                    }
                    }
                  freg++;
                  freg++;
                }
                }
              else
              else
                {
                {
                  /* The SysV ABI tells us to convert floats to
                  /* The SysV ABI tells us to convert floats to
                     doubles before writing them to an 8 byte aligned
                     doubles before writing them to an 8 byte aligned
                     stack location.  Unfortunately GCC does not do
                     stack location.  Unfortunately GCC does not do
                     that, and stores floats into 4 byte aligned
                     that, and stores floats into 4 byte aligned
                     locations without converting them to doubles.
                     locations without converting them to doubles.
                     Since there is no know compiler that actually
                     Since there is no know compiler that actually
                     follows the ABI here, we implement the GCC
                     follows the ABI here, we implement the GCC
                     convention.  */
                     convention.  */
 
 
                  /* Align to 4 bytes or 8 bytes depending on the type of
                  /* Align to 4 bytes or 8 bytes depending on the type of
                     the argument (float or double).  */
                     the argument (float or double).  */
                  argoffset = align_up (argoffset, len);
                  argoffset = align_up (argoffset, len);
                  if (write_pass)
                  if (write_pass)
                      write_memory (sp + argoffset, val, len);
                      write_memory (sp + argoffset, val, len);
                  argoffset += len;
                  argoffset += len;
                }
                }
            }
            }
          else if (TYPE_CODE (type) == TYPE_CODE_FLT
          else if (TYPE_CODE (type) == TYPE_CODE_FLT
                   && len == 16
                   && len == 16
                   && !tdep->soft_float
                   && !tdep->soft_float
                   && (gdbarch_long_double_format (gdbarch)
                   && (gdbarch_long_double_format (gdbarch)
                       == floatformats_ibm_long_double))
                       == floatformats_ibm_long_double))
            {
            {
              /* IBM long double passed in two FP registers if
              /* IBM long double passed in two FP registers if
                 available, otherwise 8-byte aligned stack.  */
                 available, otherwise 8-byte aligned stack.  */
              if (freg <= 7)
              if (freg <= 7)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    {
                    {
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
                                             tdep->ppc_fp0_regnum + freg,
                                             val);
                                             val);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg + 1,
                                             tdep->ppc_fp0_regnum + freg + 1,
                                             val + 8);
                                             val + 8);
                    }
                    }
                  freg += 2;
                  freg += 2;
                }
                }
              else
              else
                {
                {
                  argoffset = align_up (argoffset, 8);
                  argoffset = align_up (argoffset, 8);
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, val, len);
                    write_memory (sp + argoffset, val, len);
                  argoffset += 16;
                  argoffset += 16;
                }
                }
            }
            }
          else if (len == 8
          else if (len == 8
                   && (TYPE_CODE (type) == TYPE_CODE_INT        /* long long */
                   && (TYPE_CODE (type) == TYPE_CODE_INT        /* long long */
                       || TYPE_CODE (type) == TYPE_CODE_FLT     /* double */
                       || TYPE_CODE (type) == TYPE_CODE_FLT     /* double */
                       || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
                       || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
                           && tdep->soft_float)))
                           && tdep->soft_float)))
            {
            {
              /* "long long" or soft-float "double" or "_Decimal64"
              /* "long long" or soft-float "double" or "_Decimal64"
                 passed in an odd/even register pair with the low
                 passed in an odd/even register pair with the low
                 addressed word in the odd register and the high
                 addressed word in the odd register and the high
                 addressed word in the even register, or when the
                 addressed word in the even register, or when the
                 registers run out an 8 byte aligned stack
                 registers run out an 8 byte aligned stack
                 location.  */
                 location.  */
              if (greg > 9)
              if (greg > 9)
                {
                {
                  /* Just in case GREG was 10.  */
                  /* Just in case GREG was 10.  */
                  greg = 11;
                  greg = 11;
                  argoffset = align_up (argoffset, 8);
                  argoffset = align_up (argoffset, 8);
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, val, len);
                    write_memory (sp + argoffset, val, len);
                  argoffset += 8;
                  argoffset += 8;
                }
                }
              else
              else
                {
                {
                  /* Must start on an odd register - r3/r4 etc.  */
                  /* Must start on an odd register - r3/r4 etc.  */
                  if ((greg & 1) == 0)
                  if ((greg & 1) == 0)
                    greg++;
                    greg++;
                  if (write_pass)
                  if (write_pass)
                    {
                    {
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg + 0,
                                             tdep->ppc_gp0_regnum + greg + 0,
                                             val + 0);
                                             val + 0);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg + 1,
                                             tdep->ppc_gp0_regnum + greg + 1,
                                             val + 4);
                                             val + 4);
                    }
                    }
                  greg += 2;
                  greg += 2;
                }
                }
            }
            }
          else if (len == 16
          else if (len == 16
                   && ((TYPE_CODE (type) == TYPE_CODE_FLT
                   && ((TYPE_CODE (type) == TYPE_CODE_FLT
                        && (gdbarch_long_double_format (gdbarch)
                        && (gdbarch_long_double_format (gdbarch)
                            == floatformats_ibm_long_double))
                            == floatformats_ibm_long_double))
                       || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
                       || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
                           && tdep->soft_float)))
                           && tdep->soft_float)))
            {
            {
              /* Soft-float IBM long double or _Decimal128 passed in
              /* Soft-float IBM long double or _Decimal128 passed in
                 four consecutive registers, or on the stack.  The
                 four consecutive registers, or on the stack.  The
                 registers are not necessarily odd/even pairs.  */
                 registers are not necessarily odd/even pairs.  */
              if (greg > 7)
              if (greg > 7)
                {
                {
                  greg = 11;
                  greg = 11;
                  argoffset = align_up (argoffset, 8);
                  argoffset = align_up (argoffset, 8);
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, val, len);
                    write_memory (sp + argoffset, val, len);
                  argoffset += 16;
                  argoffset += 16;
                }
                }
              else
              else
                {
                {
                  if (write_pass)
                  if (write_pass)
                    {
                    {
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg + 0,
                                             tdep->ppc_gp0_regnum + greg + 0,
                                             val + 0);
                                             val + 0);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg + 1,
                                             tdep->ppc_gp0_regnum + greg + 1,
                                             val + 4);
                                             val + 4);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg + 2,
                                             tdep->ppc_gp0_regnum + greg + 2,
                                             val + 8);
                                             val + 8);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg + 3,
                                             tdep->ppc_gp0_regnum + greg + 3,
                                             val + 12);
                                             val + 12);
                    }
                    }
                  greg += 4;
                  greg += 4;
                }
                }
            }
            }
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
                   && !tdep->soft_float)
                   && !tdep->soft_float)
            {
            {
              /* 32-bit and 64-bit decimal floats go in f1 .. f8.  They can
              /* 32-bit and 64-bit decimal floats go in f1 .. f8.  They can
                 end up in memory.  */
                 end up in memory.  */
 
 
              if (freg <= 8)
              if (freg <= 8)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    {
                    {
                      gdb_byte regval[MAX_REGISTER_SIZE];
                      gdb_byte regval[MAX_REGISTER_SIZE];
                      const gdb_byte *p;
                      const gdb_byte *p;
 
 
                      /* 32-bit decimal floats are right aligned in the
                      /* 32-bit decimal floats are right aligned in the
                         doubleword.  */
                         doubleword.  */
                      if (TYPE_LENGTH (type) == 4)
                      if (TYPE_LENGTH (type) == 4)
                      {
                      {
                        memcpy (regval + 4, val, 4);
                        memcpy (regval + 4, val, 4);
                        p = regval;
                        p = regval;
                      }
                      }
                      else
                      else
                        p = val;
                        p = val;
 
 
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                          tdep->ppc_fp0_regnum + freg, p);
                          tdep->ppc_fp0_regnum + freg, p);
                    }
                    }
 
 
                  freg++;
                  freg++;
                }
                }
              else
              else
                {
                {
                  argoffset = align_up (argoffset, len);
                  argoffset = align_up (argoffset, len);
 
 
                  if (write_pass)
                  if (write_pass)
                    /* Write value in the stack's parameter save area.  */
                    /* Write value in the stack's parameter save area.  */
                    write_memory (sp + argoffset, val, len);
                    write_memory (sp + argoffset, val, len);
 
 
                  argoffset += len;
                  argoffset += len;
                }
                }
            }
            }
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
                   && !tdep->soft_float)
                   && !tdep->soft_float)
            {
            {
              /* 128-bit decimal floats go in f2 .. f7, always in even/odd
              /* 128-bit decimal floats go in f2 .. f7, always in even/odd
                 pairs.  They can end up in memory, using two doublewords.  */
                 pairs.  They can end up in memory, using two doublewords.  */
 
 
              if (freg <= 6)
              if (freg <= 6)
                {
                {
                  /* Make sure freg is even.  */
                  /* Make sure freg is even.  */
                  freg += freg & 1;
                  freg += freg & 1;
 
 
                  if (write_pass)
                  if (write_pass)
                    {
                    {
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg, val);
                                             tdep->ppc_fp0_regnum + freg, val);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                          tdep->ppc_fp0_regnum + freg + 1, val + 8);
                          tdep->ppc_fp0_regnum + freg + 1, val + 8);
                    }
                    }
                }
                }
              else
              else
                {
                {
                  argoffset = align_up (argoffset, 8);
                  argoffset = align_up (argoffset, 8);
 
 
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, val, 16);
                    write_memory (sp + argoffset, val, 16);
 
 
                  argoffset += 16;
                  argoffset += 16;
                }
                }
 
 
              /* If a 128-bit decimal float goes to the stack because only f7
              /* If a 128-bit decimal float goes to the stack because only f7
                 and f8 are free (thus there's no even/odd register pair
                 and f8 are free (thus there's no even/odd register pair
                 available), these registers should be marked as occupied.
                 available), these registers should be marked as occupied.
                 Hence we increase freg even when writing to memory.  */
                 Hence we increase freg even when writing to memory.  */
              freg += 2;
              freg += 2;
            }
            }
          else if (len == 16
          else if (len == 16
                   && TYPE_CODE (type) == TYPE_CODE_ARRAY
                   && TYPE_CODE (type) == TYPE_CODE_ARRAY
                   && TYPE_VECTOR (type)
                   && TYPE_VECTOR (type)
                   && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
                   && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
            {
            {
              /* Vector parameter passed in an Altivec register, or
              /* Vector parameter passed in an Altivec register, or
                 when that runs out, 16 byte aligned stack location.  */
                 when that runs out, 16 byte aligned stack location.  */
              if (vreg <= 13)
              if (vreg <= 13)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    regcache_cooked_write (regcache,
                    regcache_cooked_write (regcache,
                                           tdep->ppc_vr0_regnum + vreg, val);
                                           tdep->ppc_vr0_regnum + vreg, val);
                  vreg++;
                  vreg++;
                }
                }
              else
              else
                {
                {
                  argoffset = align_up (argoffset, 16);
                  argoffset = align_up (argoffset, 16);
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, val, 16);
                    write_memory (sp + argoffset, val, 16);
                  argoffset += 16;
                  argoffset += 16;
                }
                }
            }
            }
          else if (len == 8
          else if (len == 8
                   && TYPE_CODE (type) == TYPE_CODE_ARRAY
                   && TYPE_CODE (type) == TYPE_CODE_ARRAY
                   && TYPE_VECTOR (type)
                   && TYPE_VECTOR (type)
                   && tdep->vector_abi == POWERPC_VEC_SPE)
                   && tdep->vector_abi == POWERPC_VEC_SPE)
            {
            {
              /* Vector parameter passed in an e500 register, or when
              /* Vector parameter passed in an e500 register, or when
                 that runs out, 8 byte aligned stack location.  Note
                 that runs out, 8 byte aligned stack location.  Note
                 that since e500 vector and general purpose registers
                 that since e500 vector and general purpose registers
                 both map onto the same underlying register set, a
                 both map onto the same underlying register set, a
                 "greg" and not a "vreg" is consumed here.  A cooked
                 "greg" and not a "vreg" is consumed here.  A cooked
                 write stores the value in the correct locations
                 write stores the value in the correct locations
                 within the raw register cache.  */
                 within the raw register cache.  */
              if (greg <= 10)
              if (greg <= 10)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    regcache_cooked_write (regcache,
                    regcache_cooked_write (regcache,
                                           tdep->ppc_ev0_regnum + greg, val);
                                           tdep->ppc_ev0_regnum + greg, val);
                  greg++;
                  greg++;
                }
                }
              else
              else
                {
                {
                  argoffset = align_up (argoffset, 8);
                  argoffset = align_up (argoffset, 8);
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, val, 8);
                    write_memory (sp + argoffset, val, 8);
                  argoffset += 8;
                  argoffset += 8;
                }
                }
            }
            }
          else
          else
            {
            {
              /* Reduce the parameter down to something that fits in a
              /* Reduce the parameter down to something that fits in a
                 "word".  */
                 "word".  */
              gdb_byte word[MAX_REGISTER_SIZE];
              gdb_byte word[MAX_REGISTER_SIZE];
              memset (word, 0, MAX_REGISTER_SIZE);
              memset (word, 0, MAX_REGISTER_SIZE);
              if (len > tdep->wordsize
              if (len > tdep->wordsize
                  || TYPE_CODE (type) == TYPE_CODE_STRUCT
                  || TYPE_CODE (type) == TYPE_CODE_STRUCT
                  || TYPE_CODE (type) == TYPE_CODE_UNION)
                  || TYPE_CODE (type) == TYPE_CODE_UNION)
                {
                {
                  /* Structs and large values are put in an
                  /* Structs and large values are put in an
                     aligned stack slot ... */
                     aligned stack slot ... */
                  if (TYPE_CODE (type) == TYPE_CODE_ARRAY
                  if (TYPE_CODE (type) == TYPE_CODE_ARRAY
                      && TYPE_VECTOR (type)
                      && TYPE_VECTOR (type)
                      && len >= 16)
                      && len >= 16)
                    structoffset = align_up (structoffset, 16);
                    structoffset = align_up (structoffset, 16);
                  else
                  else
                    structoffset = align_up (structoffset, 8);
                    structoffset = align_up (structoffset, 8);
 
 
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + structoffset, val, len);
                    write_memory (sp + structoffset, val, len);
                  /* ... and then a "word" pointing to that address is
                  /* ... and then a "word" pointing to that address is
                     passed as the parameter.  */
                     passed as the parameter.  */
                  store_unsigned_integer (word, tdep->wordsize, byte_order,
                  store_unsigned_integer (word, tdep->wordsize, byte_order,
                                          sp + structoffset);
                                          sp + structoffset);
                  structoffset += len;
                  structoffset += len;
                }
                }
              else if (TYPE_CODE (type) == TYPE_CODE_INT)
              else if (TYPE_CODE (type) == TYPE_CODE_INT)
                /* Sign or zero extend the "int" into a "word".  */
                /* Sign or zero extend the "int" into a "word".  */
                store_unsigned_integer (word, tdep->wordsize, byte_order,
                store_unsigned_integer (word, tdep->wordsize, byte_order,
                                        unpack_long (type, val));
                                        unpack_long (type, val));
              else
              else
                /* Always goes in the low address.  */
                /* Always goes in the low address.  */
                memcpy (word, val, len);
                memcpy (word, val, len);
              /* Store that "word" in a register, or on the stack.
              /* Store that "word" in a register, or on the stack.
                 The words have "4" byte alignment.  */
                 The words have "4" byte alignment.  */
              if (greg <= 10)
              if (greg <= 10)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    regcache_cooked_write (regcache,
                    regcache_cooked_write (regcache,
                                           tdep->ppc_gp0_regnum + greg, word);
                                           tdep->ppc_gp0_regnum + greg, word);
                  greg++;
                  greg++;
                }
                }
              else
              else
                {
                {
                  argoffset = align_up (argoffset, tdep->wordsize);
                  argoffset = align_up (argoffset, tdep->wordsize);
                  if (write_pass)
                  if (write_pass)
                    write_memory (sp + argoffset, word, tdep->wordsize);
                    write_memory (sp + argoffset, word, tdep->wordsize);
                  argoffset += tdep->wordsize;
                  argoffset += tdep->wordsize;
                }
                }
            }
            }
        }
        }
 
 
      /* Compute the actual stack space requirements.  */
      /* Compute the actual stack space requirements.  */
      if (!write_pass)
      if (!write_pass)
        {
        {
          /* Remember the amount of space needed by the arguments.  */
          /* Remember the amount of space needed by the arguments.  */
          argspace = argoffset;
          argspace = argoffset;
          /* Allocate space for both the arguments and the structures.  */
          /* Allocate space for both the arguments and the structures.  */
          sp -= (argoffset + structoffset);
          sp -= (argoffset + structoffset);
          /* Ensure that the stack is still 16 byte aligned.  */
          /* Ensure that the stack is still 16 byte aligned.  */
          sp = align_down (sp, 16);
          sp = align_down (sp, 16);
        }
        }
 
 
      /* The psABI says that "A caller of a function that takes a
      /* The psABI says that "A caller of a function that takes a
         variable argument list shall set condition register bit 6 to
         variable argument list shall set condition register bit 6 to
         1 if it passes one or more arguments in the floating-point
         1 if it passes one or more arguments in the floating-point
         registers. It is strongly recommended that the caller set the
         registers. It is strongly recommended that the caller set the
         bit to 0 otherwise..."  Doing this for normal functions too
         bit to 0 otherwise..."  Doing this for normal functions too
         shouldn't hurt.  */
         shouldn't hurt.  */
      if (write_pass)
      if (write_pass)
        {
        {
          ULONGEST cr;
          ULONGEST cr;
 
 
          regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
          regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
          if (freg > 1)
          if (freg > 1)
            cr |= 0x02000000;
            cr |= 0x02000000;
          else
          else
            cr &= ~0x02000000;
            cr &= ~0x02000000;
          regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
          regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
        }
        }
    }
    }
 
 
  /* Update %sp.   */
  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
 
 
  /* Write the backchain (it occupies WORDSIZED bytes).  */
  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
 
 
  /* Point the inferior function call's return address at the dummy's
  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
 
 
  return sp;
  return sp;
}
}
 
 
/* Handle the return-value conventions for Decimal Floating Point values
/* Handle the return-value conventions for Decimal Floating Point values
   in both ppc32 and ppc64, which are the same.  */
   in both ppc32 and ppc64, which are the same.  */
static int
static int
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
                                struct regcache *regcache, gdb_byte *readbuf,
                                struct regcache *regcache, gdb_byte *readbuf,
                                const gdb_byte *writebuf)
                                const gdb_byte *writebuf)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
  gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
 
 
  /* 32-bit and 64-bit decimal floats in f1.  */
  /* 32-bit and 64-bit decimal floats in f1.  */
  if (TYPE_LENGTH (valtype) <= 8)
  if (TYPE_LENGTH (valtype) <= 8)
    {
    {
      if (writebuf != NULL)
      if (writebuf != NULL)
        {
        {
          gdb_byte regval[MAX_REGISTER_SIZE];
          gdb_byte regval[MAX_REGISTER_SIZE];
          const gdb_byte *p;
          const gdb_byte *p;
 
 
          /* 32-bit decimal float is right aligned in the doubleword.  */
          /* 32-bit decimal float is right aligned in the doubleword.  */
          if (TYPE_LENGTH (valtype) == 4)
          if (TYPE_LENGTH (valtype) == 4)
            {
            {
              memcpy (regval + 4, writebuf, 4);
              memcpy (regval + 4, writebuf, 4);
              p = regval;
              p = regval;
            }
            }
          else
          else
            p = writebuf;
            p = writebuf;
 
 
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
        }
        }
      if (readbuf != NULL)
      if (readbuf != NULL)
        {
        {
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
 
 
          /* Left align 32-bit decimal float.  */
          /* Left align 32-bit decimal float.  */
          if (TYPE_LENGTH (valtype) == 4)
          if (TYPE_LENGTH (valtype) == 4)
            memcpy (readbuf, readbuf + 4, 4);
            memcpy (readbuf, readbuf + 4, 4);
        }
        }
    }
    }
  /* 128-bit decimal floats in f2,f3.  */
  /* 128-bit decimal floats in f2,f3.  */
  else if (TYPE_LENGTH (valtype) == 16)
  else if (TYPE_LENGTH (valtype) == 16)
    {
    {
      if (writebuf != NULL || readbuf != NULL)
      if (writebuf != NULL || readbuf != NULL)
        {
        {
          int i;
          int i;
 
 
          for (i = 0; i < 2; i++)
          for (i = 0; i < 2; i++)
            {
            {
              if (writebuf != NULL)
              if (writebuf != NULL)
                regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
                regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
                                       writebuf + i * 8);
                                       writebuf + i * 8);
              if (readbuf != NULL)
              if (readbuf != NULL)
                regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
                regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
                                      readbuf + i * 8);
                                      readbuf + i * 8);
            }
            }
        }
        }
    }
    }
  else
  else
    /* Can't happen.  */
    /* Can't happen.  */
    internal_error (__FILE__, __LINE__, "Unknown decimal float size.");
    internal_error (__FILE__, __LINE__, "Unknown decimal float size.");
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
/* Handle the return-value conventions specified by the SysV 32-bit
/* Handle the return-value conventions specified by the SysV 32-bit
   PowerPC ABI (including all the supplements):
   PowerPC ABI (including all the supplements):
 
 
   no floating-point: floating-point values returned using 32-bit
   no floating-point: floating-point values returned using 32-bit
   general-purpose registers.
   general-purpose registers.
 
 
   Altivec: 128-bit vectors returned using vector registers.
   Altivec: 128-bit vectors returned using vector registers.
 
 
   e500: 64-bit vectors returned using the full full 64 bit EV
   e500: 64-bit vectors returned using the full full 64 bit EV
   register, floating-point values returned using 32-bit
   register, floating-point values returned using 32-bit
   general-purpose registers.
   general-purpose registers.
 
 
   GCC (broken): Small struct values right (instead of left) aligned
   GCC (broken): Small struct values right (instead of left) aligned
   when returned in general-purpose registers.  */
   when returned in general-purpose registers.  */
 
 
static enum return_value_convention
static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
                          struct regcache *regcache, gdb_byte *readbuf,
                          struct regcache *regcache, gdb_byte *readbuf,
                          const gdb_byte *writebuf, int broken_gcc)
                          const gdb_byte *writebuf, int broken_gcc)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_assert (tdep->wordsize == 4);
  gdb_assert (tdep->wordsize == 4);
  if (TYPE_CODE (type) == TYPE_CODE_FLT
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) <= 8
      && TYPE_LENGTH (type) <= 8
      && !tdep->soft_float)
      && !tdep->soft_float)
    {
    {
      if (readbuf)
      if (readbuf)
        {
        {
          /* Floats and doubles stored in "f1".  Convert the value to
          /* Floats and doubles stored in "f1".  Convert the value to
             the required type.  */
             the required type.  */
          gdb_byte regval[MAX_REGISTER_SIZE];
          gdb_byte regval[MAX_REGISTER_SIZE];
          struct type *regtype = register_type (gdbarch,
          struct type *regtype = register_type (gdbarch,
                                                tdep->ppc_fp0_regnum + 1);
                                                tdep->ppc_fp0_regnum + 1);
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
          convert_typed_floating (regval, regtype, readbuf, type);
          convert_typed_floating (regval, regtype, readbuf, type);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          /* Floats and doubles stored in "f1".  Convert the value to
          /* Floats and doubles stored in "f1".  Convert the value to
             the register's "double" type.  */
             the register's "double" type.  */
          gdb_byte regval[MAX_REGISTER_SIZE];
          gdb_byte regval[MAX_REGISTER_SIZE];
          struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
          struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
          convert_typed_floating (writebuf, type, regval, regtype);
          convert_typed_floating (writebuf, type, regval, regtype);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_CODE (type) == TYPE_CODE_FLT
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) == 16
      && TYPE_LENGTH (type) == 16
      && !tdep->soft_float
      && !tdep->soft_float
      && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
      && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
    {
    {
      /* IBM long double stored in f1 and f2.  */
      /* IBM long double stored in f1 and f2.  */
      if (readbuf)
      if (readbuf)
        {
        {
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
                                readbuf + 8);
                                readbuf + 8);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
                                 writebuf + 8);
                                 writebuf + 8);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_LENGTH (type) == 16
  if (TYPE_LENGTH (type) == 16
      && ((TYPE_CODE (type) == TYPE_CODE_FLT
      && ((TYPE_CODE (type) == TYPE_CODE_FLT
           && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
           && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
          || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
          || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
    {
    {
      /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
      /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
         r5, r6.  */
         r5, r6.  */
      if (readbuf)
      if (readbuf)
        {
        {
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
                                readbuf + 4);
                                readbuf + 4);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
                                readbuf + 8);
                                readbuf + 8);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
                                readbuf + 12);
                                readbuf + 12);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
                                 writebuf + 4);
                                 writebuf + 4);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
                                 writebuf + 8);
                                 writebuf + 8);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
                                 writebuf + 12);
                                 writebuf + 12);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
      || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
          && tdep->soft_float))
          && tdep->soft_float))
    {
    {
      if (readbuf)
      if (readbuf)
        {
        {
          /* A long long, double or _Decimal64 stored in the 32 bit
          /* A long long, double or _Decimal64 stored in the 32 bit
             r3/r4.  */
             r3/r4.  */
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
                                readbuf + 0);
                                readbuf + 0);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
                                readbuf + 4);
                                readbuf + 4);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          /* A long long, double or _Decimal64 stored in the 32 bit
          /* A long long, double or _Decimal64 stored in the 32 bit
             r3/r4.  */
             r3/r4.  */
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
                                 writebuf + 0);
                                 writebuf + 0);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
                                 writebuf + 4);
                                 writebuf + 4);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
  if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
    return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
    return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
                                           writebuf);
                                           writebuf);
  else if ((TYPE_CODE (type) == TYPE_CODE_INT
  else if ((TYPE_CODE (type) == TYPE_CODE_INT
            || TYPE_CODE (type) == TYPE_CODE_CHAR
            || TYPE_CODE (type) == TYPE_CODE_CHAR
            || TYPE_CODE (type) == TYPE_CODE_BOOL
            || TYPE_CODE (type) == TYPE_CODE_BOOL
            || TYPE_CODE (type) == TYPE_CODE_PTR
            || TYPE_CODE (type) == TYPE_CODE_PTR
            || TYPE_CODE (type) == TYPE_CODE_REF
            || TYPE_CODE (type) == TYPE_CODE_REF
            || TYPE_CODE (type) == TYPE_CODE_ENUM)
            || TYPE_CODE (type) == TYPE_CODE_ENUM)
           && TYPE_LENGTH (type) <= tdep->wordsize)
           && TYPE_LENGTH (type) <= tdep->wordsize)
    {
    {
      if (readbuf)
      if (readbuf)
        {
        {
          /* Some sort of integer stored in r3.  Since TYPE isn't
          /* Some sort of integer stored in r3.  Since TYPE isn't
             bigger than the register, sign extension isn't a problem
             bigger than the register, sign extension isn't a problem
             - just do everything unsigned.  */
             - just do everything unsigned.  */
          ULONGEST regval;
          ULONGEST regval;
          regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
                                         &regval);
                                         &regval);
          store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
          store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
                                  regval);
                                  regval);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          /* Some sort of integer stored in r3.  Use unpack_long since
          /* Some sort of integer stored in r3.  Use unpack_long since
             that should handle any required sign extension.  */
             that should handle any required sign extension.  */
          regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
                                          unpack_long (type, writebuf));
                                          unpack_long (type, writebuf));
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_LENGTH (type) == 16
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
      && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
    {
    {
      if (readbuf)
      if (readbuf)
        {
        {
          /* Altivec places the return value in "v2".  */
          /* Altivec places the return value in "v2".  */
          regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
          regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          /* Altivec places the return value in "v2".  */
          /* Altivec places the return value in "v2".  */
          regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
          regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_LENGTH (type) == 16
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_GENERIC)
      && tdep->vector_abi == POWERPC_VEC_GENERIC)
    {
    {
      /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
      /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
         GCC without AltiVec returns them in memory, but it warns about
         GCC without AltiVec returns them in memory, but it warns about
         ABI risks in that case; we don't try to support it.  */
         ABI risks in that case; we don't try to support it.  */
      if (readbuf)
      if (readbuf)
        {
        {
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
                                readbuf + 0);
                                readbuf + 0);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
                                readbuf + 4);
                                readbuf + 4);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
                                readbuf + 8);
                                readbuf + 8);
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
                                readbuf + 12);
                                readbuf + 12);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
                                 writebuf + 0);
                                 writebuf + 0);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
                                 writebuf + 4);
                                 writebuf + 4);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
                                 writebuf + 8);
                                 writebuf + 8);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
                                 writebuf + 12);
                                 writebuf + 12);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_LENGTH (type) == 8
  if (TYPE_LENGTH (type) == 8
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_SPE)
      && tdep->vector_abi == POWERPC_VEC_SPE)
    {
    {
      /* The e500 ABI places return values for the 64-bit DSP types
      /* The e500 ABI places return values for the 64-bit DSP types
         (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
         (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
         corresponds to the entire r3 value for e500, whereas GDB's r3
         corresponds to the entire r3 value for e500, whereas GDB's r3
         only corresponds to the least significant 32-bits.  So place
         only corresponds to the least significant 32-bits.  So place
         the 64-bit DSP type's value in ev3.  */
         the 64-bit DSP type's value in ev3.  */
      if (readbuf)
      if (readbuf)
        regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
        regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
      if (writebuf)
      if (writebuf)
        regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
        regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
    {
    {
      /* GCC screwed up for structures or unions whose size is less
      /* GCC screwed up for structures or unions whose size is less
         than or equal to 8 bytes..  Instead of left-aligning, it
         than or equal to 8 bytes..  Instead of left-aligning, it
         right-aligns the data into the buffer formed by r3, r4.  */
         right-aligns the data into the buffer formed by r3, r4.  */
      gdb_byte regvals[MAX_REGISTER_SIZE * 2];
      gdb_byte regvals[MAX_REGISTER_SIZE * 2];
      int len = TYPE_LENGTH (type);
      int len = TYPE_LENGTH (type);
      int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
      int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
 
 
      if (readbuf)
      if (readbuf)
        {
        {
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
                                regvals + 0 * tdep->wordsize);
                                regvals + 0 * tdep->wordsize);
          if (len > tdep->wordsize)
          if (len > tdep->wordsize)
            regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
            regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
                                  regvals + 1 * tdep->wordsize);
                                  regvals + 1 * tdep->wordsize);
          memcpy (readbuf, regvals + offset, len);
          memcpy (readbuf, regvals + offset, len);
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          memset (regvals, 0, sizeof regvals);
          memset (regvals, 0, sizeof regvals);
          memcpy (regvals + offset, writebuf, len);
          memcpy (regvals + offset, writebuf, len);
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
                                 regvals + 0 * tdep->wordsize);
                                 regvals + 0 * tdep->wordsize);
          if (len > tdep->wordsize)
          if (len > tdep->wordsize)
            regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
            regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
                                   regvals + 1 * tdep->wordsize);
                                   regvals + 1 * tdep->wordsize);
        }
        }
 
 
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_LENGTH (type) <= 8)
  if (TYPE_LENGTH (type) <= 8)
    {
    {
      if (readbuf)
      if (readbuf)
        {
        {
          /* This matches SVr4 PPC, it does not match GCC.  */
          /* This matches SVr4 PPC, it does not match GCC.  */
          /* The value is right-padded to 8 bytes and then loaded, as
          /* The value is right-padded to 8 bytes and then loaded, as
             two "words", into r3/r4.  */
             two "words", into r3/r4.  */
          gdb_byte regvals[MAX_REGISTER_SIZE * 2];
          gdb_byte regvals[MAX_REGISTER_SIZE * 2];
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
                                regvals + 0 * tdep->wordsize);
                                regvals + 0 * tdep->wordsize);
          if (TYPE_LENGTH (type) > tdep->wordsize)
          if (TYPE_LENGTH (type) > tdep->wordsize)
            regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
            regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
                                  regvals + 1 * tdep->wordsize);
                                  regvals + 1 * tdep->wordsize);
          memcpy (readbuf, regvals, TYPE_LENGTH (type));
          memcpy (readbuf, regvals, TYPE_LENGTH (type));
        }
        }
      if (writebuf)
      if (writebuf)
        {
        {
          /* This matches SVr4 PPC, it does not match GCC.  */
          /* This matches SVr4 PPC, it does not match GCC.  */
          /* The value is padded out to 8 bytes and then loaded, as
          /* The value is padded out to 8 bytes and then loaded, as
             two "words" into r3/r4.  */
             two "words" into r3/r4.  */
          gdb_byte regvals[MAX_REGISTER_SIZE * 2];
          gdb_byte regvals[MAX_REGISTER_SIZE * 2];
          memset (regvals, 0, sizeof regvals);
          memset (regvals, 0, sizeof regvals);
          memcpy (regvals, writebuf, TYPE_LENGTH (type));
          memcpy (regvals, writebuf, TYPE_LENGTH (type));
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
                                 regvals + 0 * tdep->wordsize);
                                 regvals + 0 * tdep->wordsize);
          if (TYPE_LENGTH (type) > tdep->wordsize)
          if (TYPE_LENGTH (type) > tdep->wordsize)
            regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
            regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
                                   regvals + 1 * tdep->wordsize);
                                   regvals + 1 * tdep->wordsize);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
  return RETURN_VALUE_STRUCT_CONVENTION;
}
}
 
 
enum return_value_convention
enum return_value_convention
ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
                           struct type *valtype, struct regcache *regcache,
                           struct type *valtype, struct regcache *regcache,
                           gdb_byte *readbuf, const gdb_byte *writebuf)
                           gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
  return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
                                   writebuf, 0);
                                   writebuf, 0);
}
}
 
 
enum return_value_convention
enum return_value_convention
ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
                                  struct type *func_type,
                                  struct type *func_type,
                                  struct type *valtype,
                                  struct type *valtype,
                                  struct regcache *regcache,
                                  struct regcache *regcache,
                                  gdb_byte *readbuf, const gdb_byte *writebuf)
                                  gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
  return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
                                   writebuf, 1);
                                   writebuf, 1);
}
}
 
 
/* The helper function for 64-bit SYSV push_dummy_call.  Converts the
/* The helper function for 64-bit SYSV push_dummy_call.  Converts the
   function's code address back into the function's descriptor
   function's code address back into the function's descriptor
   address.
   address.
 
 
   Find a value for the TOC register.  Every symbol should have both
   Find a value for the TOC register.  Every symbol should have both
   ".FN" and "FN" in the minimal symbol table.  "FN" points at the
   ".FN" and "FN" in the minimal symbol table.  "FN" points at the
   FN's descriptor, while ".FN" points at the entry point (which
   FN's descriptor, while ".FN" points at the entry point (which
   matches FUNC_ADDR).  Need to reverse from FUNC_ADDR back to the
   matches FUNC_ADDR).  Need to reverse from FUNC_ADDR back to the
   FN's descriptor address (while at the same time being careful to
   FN's descriptor address (while at the same time being careful to
   find "FN" in the same object file as ".FN").  */
   find "FN" in the same object file as ".FN").  */
 
 
static int
static int
convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
{
{
  struct obj_section *dot_fn_section;
  struct obj_section *dot_fn_section;
  struct minimal_symbol *dot_fn;
  struct minimal_symbol *dot_fn;
  struct minimal_symbol *fn;
  struct minimal_symbol *fn;
  CORE_ADDR toc;
  CORE_ADDR toc;
  /* Find the minimal symbol that corresponds to CODE_ADDR (should
  /* Find the minimal symbol that corresponds to CODE_ADDR (should
     have a name of the form ".FN").  */
     have a name of the form ".FN").  */
  dot_fn = lookup_minimal_symbol_by_pc (code_addr);
  dot_fn = lookup_minimal_symbol_by_pc (code_addr);
  if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
  if (dot_fn == NULL || SYMBOL_LINKAGE_NAME (dot_fn)[0] != '.')
    return 0;
    return 0;
  /* Get the section that contains CODE_ADDR.  Need this for the
  /* Get the section that contains CODE_ADDR.  Need this for the
     "objfile" that it contains.  */
     "objfile" that it contains.  */
  dot_fn_section = find_pc_section (code_addr);
  dot_fn_section = find_pc_section (code_addr);
  if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
  if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
    return 0;
    return 0;
  /* Now find the corresponding "FN" (dropping ".") minimal symbol's
  /* Now find the corresponding "FN" (dropping ".") minimal symbol's
     address.  Only look for the minimal symbol in ".FN"'s object file
     address.  Only look for the minimal symbol in ".FN"'s object file
     - avoids problems when two object files (i.e., shared libraries)
     - avoids problems when two object files (i.e., shared libraries)
     contain a minimal symbol with the same name.  */
     contain a minimal symbol with the same name.  */
  fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
  fn = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
                              dot_fn_section->objfile);
                              dot_fn_section->objfile);
  if (fn == NULL)
  if (fn == NULL)
    return 0;
    return 0;
  /* Found a descriptor.  */
  /* Found a descriptor.  */
  (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
  (*desc_addr) = SYMBOL_VALUE_ADDRESS (fn);
  return 1;
  return 1;
}
}
 
 
/* Pass the arguments in either registers, or in the stack. Using the
/* Pass the arguments in either registers, or in the stack. Using the
   ppc 64 bit SysV ABI.
   ppc 64 bit SysV ABI.
 
 
   This implements a dumbed down version of the ABI.  It always writes
   This implements a dumbed down version of the ABI.  It always writes
   values to memory, GPR and FPR, even when not necessary.  Doing this
   values to memory, GPR and FPR, even when not necessary.  Doing this
   greatly simplifies the logic. */
   greatly simplifies the logic. */
 
 
CORE_ADDR
CORE_ADDR
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                                struct regcache *regcache, CORE_ADDR bp_addr,
                                struct regcache *regcache, CORE_ADDR bp_addr,
                                int nargs, struct value **args, CORE_ADDR sp,
                                int nargs, struct value **args, CORE_ADDR sp,
                                int struct_return, CORE_ADDR struct_addr)
                                int struct_return, CORE_ADDR struct_addr)
{
{
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST back_chain;
  ULONGEST back_chain;
  /* See for-loop comment below.  */
  /* See for-loop comment below.  */
  int write_pass;
  int write_pass;
  /* Size of the Altivec's vector parameter region, the final value is
  /* Size of the Altivec's vector parameter region, the final value is
     computed in the for-loop below.  */
     computed in the for-loop below.  */
  LONGEST vparam_size = 0;
  LONGEST vparam_size = 0;
  /* Size of the general parameter region, the final value is computed
  /* Size of the general parameter region, the final value is computed
     in the for-loop below.  */
     in the for-loop below.  */
  LONGEST gparam_size = 0;
  LONGEST gparam_size = 0;
  /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
  /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
     calls to align_up(), align_down(), etc.  because this makes it
     calls to align_up(), align_down(), etc.  because this makes it
     easier to reuse this code (in a copy/paste sense) in the future,
     easier to reuse this code (in a copy/paste sense) in the future,
     but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
     but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
     at some point makes it easier to verify that this function is
     at some point makes it easier to verify that this function is
     correct without having to do a non-local analysis to figure out
     correct without having to do a non-local analysis to figure out
     the possible values of tdep->wordsize.  */
     the possible values of tdep->wordsize.  */
  gdb_assert (tdep->wordsize == 8);
  gdb_assert (tdep->wordsize == 8);
 
 
  /* This function exists to support a calling convention that
  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));
  gdb_assert (ppc_floating_point_unit_p (gdbarch));
 
 
  /* By this stage in the proceedings, SP has been decremented by "red
  /* By this stage in the proceedings, SP has been decremented by "red
     zone size" + "struct return size".  Fetch the stack-pointer from
     zone size" + "struct return size".  Fetch the stack-pointer from
     before this and use that as the BACK_CHAIN.  */
     before this and use that as the BACK_CHAIN.  */
  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
                                 &back_chain);
                                 &back_chain);
 
 
  /* Go through the argument list twice.
  /* Go through the argument list twice.
 
 
     Pass 1: Compute the function call's stack space and register
     Pass 1: Compute the function call's stack space and register
     requirements.
     requirements.
 
 
     Pass 2: Replay the same computation but this time also write the
     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */
     values out to the target.  */
 
 
  for (write_pass = 0; write_pass < 2; write_pass++)
  for (write_pass = 0; write_pass < 2; write_pass++)
    {
    {
      int argno;
      int argno;
      /* Next available floating point register for float and double
      /* Next available floating point register for float and double
         arguments.  */
         arguments.  */
      int freg = 1;
      int freg = 1;
      /* Next available general register for non-vector (but possibly
      /* Next available general register for non-vector (but possibly
         float) arguments.  */
         float) arguments.  */
      int greg = 3;
      int greg = 3;
      /* Next available vector register for vector arguments.  */
      /* Next available vector register for vector arguments.  */
      int vreg = 2;
      int vreg = 2;
      /* The address, at which the next general purpose parameter
      /* The address, at which the next general purpose parameter
         (integer, struct, float, ...) should be saved.  */
         (integer, struct, float, ...) should be saved.  */
      CORE_ADDR gparam;
      CORE_ADDR gparam;
      /* Address, at which the next Altivec vector parameter should be
      /* Address, at which the next Altivec vector parameter should be
         saved.  */
         saved.  */
      CORE_ADDR vparam;
      CORE_ADDR vparam;
 
 
      if (!write_pass)
      if (!write_pass)
        {
        {
          /* During the first pass, GPARAM and VPARAM are more like
          /* During the first pass, GPARAM and VPARAM are more like
             offsets (start address zero) than addresses.  That way
             offsets (start address zero) than addresses.  That way
             they accumulate the total stack space each region
             they accumulate the total stack space each region
             requires.  */
             requires.  */
          gparam = 0;
          gparam = 0;
          vparam = 0;
          vparam = 0;
        }
        }
      else
      else
        {
        {
          /* Decrement the stack pointer making space for the Altivec
          /* Decrement the stack pointer making space for the Altivec
             and general on-stack parameters.  Set vparam and gparam
             and general on-stack parameters.  Set vparam and gparam
             to their corresponding regions.  */
             to their corresponding regions.  */
          vparam = align_down (sp - vparam_size, 16);
          vparam = align_down (sp - vparam_size, 16);
          gparam = align_down (vparam - gparam_size, 16);
          gparam = align_down (vparam - gparam_size, 16);
          /* Add in space for the TOC, link editor double word,
          /* Add in space for the TOC, link editor double word,
             compiler double word, LR save area, CR save area.  */
             compiler double word, LR save area, CR save area.  */
          sp = align_down (gparam - 48, 16);
          sp = align_down (gparam - 48, 16);
        }
        }
 
 
      /* If the function is returning a `struct', then there is an
      /* If the function is returning a `struct', then there is an
         extra hidden parameter (which will be passed in r3)
         extra hidden parameter (which will be passed in r3)
         containing the address of that struct..  In that case we
         containing the address of that struct..  In that case we
         should advance one word and start from r4 register to copy
         should advance one word and start from r4 register to copy
         parameters.  This also consumes one on-stack parameter slot.  */
         parameters.  This also consumes one on-stack parameter slot.  */
      if (struct_return)
      if (struct_return)
        {
        {
          if (write_pass)
          if (write_pass)
            regcache_cooked_write_signed (regcache,
            regcache_cooked_write_signed (regcache,
                                          tdep->ppc_gp0_regnum + greg,
                                          tdep->ppc_gp0_regnum + greg,
                                          struct_addr);
                                          struct_addr);
          greg++;
          greg++;
          gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
          gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
        }
        }
 
 
      for (argno = 0; argno < nargs; argno++)
      for (argno = 0; argno < nargs; argno++)
        {
        {
          struct value *arg = args[argno];
          struct value *arg = args[argno];
          struct type *type = check_typedef (value_type (arg));
          struct type *type = check_typedef (value_type (arg));
          const bfd_byte *val = value_contents (arg);
          const bfd_byte *val = value_contents (arg);
 
 
          if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
          if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
            {
            {
              /* Floats and Doubles go in f1 .. f13.  They also
              /* Floats and Doubles go in f1 .. f13.  They also
                 consume a left aligned GREG,, and can end up in
                 consume a left aligned GREG,, and can end up in
                 memory.  */
                 memory.  */
              if (write_pass)
              if (write_pass)
                {
                {
                  gdb_byte regval[MAX_REGISTER_SIZE];
                  gdb_byte regval[MAX_REGISTER_SIZE];
                  const gdb_byte *p;
                  const gdb_byte *p;
 
 
                  /* Version 1.7 of the 64-bit PowerPC ELF ABI says:
                  /* Version 1.7 of the 64-bit PowerPC ELF ABI says:
 
 
                     "Single precision floating point values are mapped to
                     "Single precision floating point values are mapped to
                     the first word in a single doubleword."
                     the first word in a single doubleword."
 
 
                     And version 1.9 says:
                     And version 1.9 says:
 
 
                     "Single precision floating point values are mapped to
                     "Single precision floating point values are mapped to
                     the second word in a single doubleword."
                     the second word in a single doubleword."
 
 
                     GDB then writes single precision floating point values
                     GDB then writes single precision floating point values
                     at both words in a doubleword, to support both ABIs.  */
                     at both words in a doubleword, to support both ABIs.  */
                  if (TYPE_LENGTH (type) == 4)
                  if (TYPE_LENGTH (type) == 4)
                    {
                    {
                      memcpy (regval, val, 4);
                      memcpy (regval, val, 4);
                      memcpy (regval + 4, val, 4);
                      memcpy (regval + 4, val, 4);
                      p = regval;
                      p = regval;
                    }
                    }
                  else
                  else
                    p = val;
                    p = val;
 
 
                  /* Write value in the stack's parameter save area.  */
                  /* Write value in the stack's parameter save area.  */
                  write_memory (gparam, p, 8);
                  write_memory (gparam, p, 8);
 
 
                  if (freg <= 13)
                  if (freg <= 13)
                    {
                    {
                      struct type *regtype
                      struct type *regtype
                        = register_type (gdbarch, tdep->ppc_fp0_regnum);
                        = register_type (gdbarch, tdep->ppc_fp0_regnum);
 
 
                      convert_typed_floating (val, type, regval, regtype);
                      convert_typed_floating (val, type, regval, regtype);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
                                             tdep->ppc_fp0_regnum + freg,
                                             regval);
                                             regval);
                    }
                    }
                  if (greg <= 10)
                  if (greg <= 10)
                    regcache_cooked_write (regcache,
                    regcache_cooked_write (regcache,
                                           tdep->ppc_gp0_regnum + greg,
                                           tdep->ppc_gp0_regnum + greg,
                                           regval);
                                           regval);
                }
                }
 
 
              freg++;
              freg++;
              greg++;
              greg++;
              /* Always consume parameter stack space.  */
              /* Always consume parameter stack space.  */
              gparam = align_up (gparam + 8, tdep->wordsize);
              gparam = align_up (gparam + 8, tdep->wordsize);
            }
            }
          else if (TYPE_CODE (type) == TYPE_CODE_FLT
          else if (TYPE_CODE (type) == TYPE_CODE_FLT
                   && TYPE_LENGTH (type) == 16
                   && TYPE_LENGTH (type) == 16
                   && (gdbarch_long_double_format (gdbarch)
                   && (gdbarch_long_double_format (gdbarch)
                       == floatformats_ibm_long_double))
                       == floatformats_ibm_long_double))
            {
            {
              /* IBM long double stored in two doublewords of the
              /* IBM long double stored in two doublewords of the
                 parameter save area and corresponding registers.  */
                 parameter save area and corresponding registers.  */
              if (write_pass)
              if (write_pass)
                {
                {
                  if (!tdep->soft_float && freg <= 13)
                  if (!tdep->soft_float && freg <= 13)
                    {
                    {
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
                                             tdep->ppc_fp0_regnum + freg,
                                             val);
                                             val);
                      if (freg <= 12)
                      if (freg <= 12)
                        regcache_cooked_write (regcache,
                        regcache_cooked_write (regcache,
                                               tdep->ppc_fp0_regnum + freg + 1,
                                               tdep->ppc_fp0_regnum + freg + 1,
                                               val + 8);
                                               val + 8);
                    }
                    }
                  if (greg <= 10)
                  if (greg <= 10)
                    {
                    {
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_gp0_regnum + greg,
                                             tdep->ppc_gp0_regnum + greg,
                                             val);
                                             val);
                      if (greg <= 9)
                      if (greg <= 9)
                        regcache_cooked_write (regcache,
                        regcache_cooked_write (regcache,
                                               tdep->ppc_gp0_regnum + greg + 1,
                                               tdep->ppc_gp0_regnum + greg + 1,
                                               val + 8);
                                               val + 8);
                    }
                    }
                  write_memory (gparam, val, TYPE_LENGTH (type));
                  write_memory (gparam, val, TYPE_LENGTH (type));
                }
                }
              freg += 2;
              freg += 2;
              greg += 2;
              greg += 2;
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
            }
            }
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
                   && TYPE_LENGTH (type) <= 8)
                   && TYPE_LENGTH (type) <= 8)
            {
            {
              /* 32-bit and 64-bit decimal floats go in f1 .. f13.  They can
              /* 32-bit and 64-bit decimal floats go in f1 .. f13.  They can
                 end up in memory.  */
                 end up in memory.  */
              if (write_pass)
              if (write_pass)
                {
                {
                  gdb_byte regval[MAX_REGISTER_SIZE];
                  gdb_byte regval[MAX_REGISTER_SIZE];
                  const gdb_byte *p;
                  const gdb_byte *p;
 
 
                  /* 32-bit decimal floats are right aligned in the
                  /* 32-bit decimal floats are right aligned in the
                     doubleword.  */
                     doubleword.  */
                  if (TYPE_LENGTH (type) == 4)
                  if (TYPE_LENGTH (type) == 4)
                    {
                    {
                      memcpy (regval + 4, val, 4);
                      memcpy (regval + 4, val, 4);
                      p = regval;
                      p = regval;
                    }
                    }
                  else
                  else
                    p = val;
                    p = val;
 
 
                  /* Write value in the stack's parameter save area.  */
                  /* Write value in the stack's parameter save area.  */
                  write_memory (gparam, p, 8);
                  write_memory (gparam, p, 8);
 
 
                  if (freg <= 13)
                  if (freg <= 13)
                    regcache_cooked_write (regcache,
                    regcache_cooked_write (regcache,
                                           tdep->ppc_fp0_regnum + freg, p);
                                           tdep->ppc_fp0_regnum + freg, p);
                }
                }
 
 
              freg++;
              freg++;
              greg++;
              greg++;
              /* Always consume parameter stack space.  */
              /* Always consume parameter stack space.  */
              gparam = align_up (gparam + 8, tdep->wordsize);
              gparam = align_up (gparam + 8, tdep->wordsize);
            }
            }
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
          else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
                   TYPE_LENGTH (type) == 16)
                   TYPE_LENGTH (type) == 16)
            {
            {
              /* 128-bit decimal floats go in f2 .. f12, always in even/odd
              /* 128-bit decimal floats go in f2 .. f12, always in even/odd
                 pairs.  They can end up in memory, using two doublewords.  */
                 pairs.  They can end up in memory, using two doublewords.  */
              if (write_pass)
              if (write_pass)
                {
                {
                  if (freg <= 12)
                  if (freg <= 12)
                    {
                    {
                      /* Make sure freg is even.  */
                      /* Make sure freg is even.  */
                      freg += freg & 1;
                      freg += freg & 1;
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg, val);
                                             tdep->ppc_fp0_regnum + freg, val);
                      regcache_cooked_write (regcache,
                      regcache_cooked_write (regcache,
                          tdep->ppc_fp0_regnum + freg + 1, val + 8);
                          tdep->ppc_fp0_regnum + freg + 1, val + 8);
                    }
                    }
 
 
                  write_memory (gparam, val, TYPE_LENGTH (type));
                  write_memory (gparam, val, TYPE_LENGTH (type));
                }
                }
 
 
              freg += 2;
              freg += 2;
              greg += 2;
              greg += 2;
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
            }
            }
          else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
          else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
                   && TYPE_CODE (type) == TYPE_CODE_ARRAY
                   && TYPE_CODE (type) == TYPE_CODE_ARRAY
                   && tdep->ppc_vr0_regnum >= 0)
                   && tdep->ppc_vr0_regnum >= 0)
            {
            {
              /* In the Altivec ABI, vectors go in the vector
              /* In the Altivec ABI, vectors go in the vector
                 registers v2 .. v13, or when that runs out, a vector
                 registers v2 .. v13, or when that runs out, a vector
                 annex which goes above all the normal parameters.
                 annex which goes above all the normal parameters.
                 NOTE: cagney/2003-09-21: This is a guess based on the
                 NOTE: cagney/2003-09-21: This is a guess based on the
                 PowerOpen Altivec ABI.  */
                 PowerOpen Altivec ABI.  */
              if (vreg <= 13)
              if (vreg <= 13)
                {
                {
                  if (write_pass)
                  if (write_pass)
                    regcache_cooked_write (regcache,
                    regcache_cooked_write (regcache,
                                           tdep->ppc_vr0_regnum + vreg, val);
                                           tdep->ppc_vr0_regnum + vreg, val);
                  vreg++;
                  vreg++;
                }
                }
              else
              else
                {
                {
                  if (write_pass)
                  if (write_pass)
                    write_memory (vparam, val, TYPE_LENGTH (type));
                    write_memory (vparam, val, TYPE_LENGTH (type));
                  vparam = align_up (vparam + TYPE_LENGTH (type), 16);
                  vparam = align_up (vparam + TYPE_LENGTH (type), 16);
                }
                }
            }
            }
          else if ((TYPE_CODE (type) == TYPE_CODE_INT
          else if ((TYPE_CODE (type) == TYPE_CODE_INT
                    || TYPE_CODE (type) == TYPE_CODE_ENUM
                    || TYPE_CODE (type) == TYPE_CODE_ENUM
                    || TYPE_CODE (type) == TYPE_CODE_BOOL
                    || TYPE_CODE (type) == TYPE_CODE_BOOL
                    || TYPE_CODE (type) == TYPE_CODE_CHAR
                    || TYPE_CODE (type) == TYPE_CODE_CHAR
                    || TYPE_CODE (type) == TYPE_CODE_PTR
                    || TYPE_CODE (type) == TYPE_CODE_PTR
                    || TYPE_CODE (type) == TYPE_CODE_REF)
                    || TYPE_CODE (type) == TYPE_CODE_REF)
                   && TYPE_LENGTH (type) <= 8)
                   && TYPE_LENGTH (type) <= 8)
            {
            {
              /* Scalars and Pointers get sign[un]extended and go in
              /* Scalars and Pointers get sign[un]extended and go in
                 gpr3 .. gpr10.  They can also end up in memory.  */
                 gpr3 .. gpr10.  They can also end up in memory.  */
              if (write_pass)
              if (write_pass)
                {
                {
                  /* Sign extend the value, then store it unsigned.  */
                  /* Sign extend the value, then store it unsigned.  */
                  ULONGEST word = unpack_long (type, val);
                  ULONGEST word = unpack_long (type, val);
                  /* Convert any function code addresses into
                  /* Convert any function code addresses into
                     descriptors.  */
                     descriptors.  */
                  if (TYPE_CODE (type) == TYPE_CODE_PTR
                  if (TYPE_CODE (type) == TYPE_CODE_PTR
                      || TYPE_CODE (type) == TYPE_CODE_REF)
                      || TYPE_CODE (type) == TYPE_CODE_REF)
                    {
                    {
                      struct type *target_type;
                      struct type *target_type;
                      target_type = check_typedef (TYPE_TARGET_TYPE (type));
                      target_type = check_typedef (TYPE_TARGET_TYPE (type));
 
 
                      if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
                      if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
                          || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
                          || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
                        {
                        {
                          CORE_ADDR desc = word;
                          CORE_ADDR desc = word;
                          convert_code_addr_to_desc_addr (word, &desc);
                          convert_code_addr_to_desc_addr (word, &desc);
                          word = desc;
                          word = desc;
                        }
                        }
                    }
                    }
                  if (greg <= 10)
                  if (greg <= 10)
                    regcache_cooked_write_unsigned (regcache,
                    regcache_cooked_write_unsigned (regcache,
                                                    tdep->ppc_gp0_regnum +
                                                    tdep->ppc_gp0_regnum +
                                                    greg, word);
                                                    greg, word);
                  write_memory_unsigned_integer (gparam, tdep->wordsize,
                  write_memory_unsigned_integer (gparam, tdep->wordsize,
                                                 byte_order, word);
                                                 byte_order, word);
                }
                }
              greg++;
              greg++;
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
            }
            }
          else
          else
            {
            {
              int byte;
              int byte;
              for (byte = 0; byte < TYPE_LENGTH (type);
              for (byte = 0; byte < TYPE_LENGTH (type);
                   byte += tdep->wordsize)
                   byte += tdep->wordsize)
                {
                {
                  if (write_pass && greg <= 10)
                  if (write_pass && greg <= 10)
                    {
                    {
                      gdb_byte regval[MAX_REGISTER_SIZE];
                      gdb_byte regval[MAX_REGISTER_SIZE];
                      int len = TYPE_LENGTH (type) - byte;
                      int len = TYPE_LENGTH (type) - byte;
                      if (len > tdep->wordsize)
                      if (len > tdep->wordsize)
                        len = tdep->wordsize;
                        len = tdep->wordsize;
                      memset (regval, 0, sizeof regval);
                      memset (regval, 0, sizeof regval);
                      /* The ABI (version 1.9) specifies that values
                      /* The ABI (version 1.9) specifies that values
                         smaller than one doubleword are right-aligned
                         smaller than one doubleword are right-aligned
                         and those larger are left-aligned.  GCC
                         and those larger are left-aligned.  GCC
                         versions before 3.4 implemented this
                         versions before 3.4 implemented this
                         incorrectly; see
                         incorrectly; see
                         <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>.  */
                         <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>.  */
                      if (byte == 0)
                      if (byte == 0)
                        memcpy (regval + tdep->wordsize - len,
                        memcpy (regval + tdep->wordsize - len,
                                val + byte, len);
                                val + byte, len);
                      else
                      else
                        memcpy (regval, val + byte, len);
                        memcpy (regval, val + byte, len);
                      regcache_cooked_write (regcache, greg, regval);
                      regcache_cooked_write (regcache, greg, regval);
                    }
                    }
                  greg++;
                  greg++;
                }
                }
              if (write_pass)
              if (write_pass)
                {
                {
                  /* WARNING: cagney/2003-09-21: Strictly speaking, this
                  /* WARNING: cagney/2003-09-21: Strictly speaking, this
                     isn't necessary, unfortunately, GCC appears to get
                     isn't necessary, unfortunately, GCC appears to get
                     "struct convention" parameter passing wrong putting
                     "struct convention" parameter passing wrong putting
                     odd sized structures in memory instead of in a
                     odd sized structures in memory instead of in a
                     register.  Work around this by always writing the
                     register.  Work around this by always writing the
                     value to memory.  Fortunately, doing this
                     value to memory.  Fortunately, doing this
                     simplifies the code.  */
                     simplifies the code.  */
                  int len = TYPE_LENGTH (type);
                  int len = TYPE_LENGTH (type);
                  if (len < tdep->wordsize)
                  if (len < tdep->wordsize)
                    write_memory (gparam + tdep->wordsize - len, val, len);
                    write_memory (gparam + tdep->wordsize - len, val, len);
                  else
                  else
                    write_memory (gparam, val, len);
                    write_memory (gparam, val, len);
                }
                }
              if (freg <= 13
              if (freg <= 13
                  && TYPE_CODE (type) == TYPE_CODE_STRUCT
                  && TYPE_CODE (type) == TYPE_CODE_STRUCT
                  && TYPE_NFIELDS (type) == 1
                  && TYPE_NFIELDS (type) == 1
                  && TYPE_LENGTH (type) <= 16)
                  && TYPE_LENGTH (type) <= 16)
                {
                {
                  /* The ABI (version 1.9) specifies that structs
                  /* The ABI (version 1.9) specifies that structs
                     containing a single floating-point value, at any
                     containing a single floating-point value, at any
                     level of nesting of single-member structs, are
                     level of nesting of single-member structs, are
                     passed in floating-point registers.  */
                     passed in floating-point registers.  */
                  while (TYPE_CODE (type) == TYPE_CODE_STRUCT
                  while (TYPE_CODE (type) == TYPE_CODE_STRUCT
                         && TYPE_NFIELDS (type) == 1)
                         && TYPE_NFIELDS (type) == 1)
                    type = check_typedef (TYPE_FIELD_TYPE (type, 0));
                    type = check_typedef (TYPE_FIELD_TYPE (type, 0));
                  if (TYPE_CODE (type) == TYPE_CODE_FLT)
                  if (TYPE_CODE (type) == TYPE_CODE_FLT)
                    {
                    {
                      if (TYPE_LENGTH (type) <= 8)
                      if (TYPE_LENGTH (type) <= 8)
                        {
                        {
                          if (write_pass)
                          if (write_pass)
                            {
                            {
                              gdb_byte regval[MAX_REGISTER_SIZE];
                              gdb_byte regval[MAX_REGISTER_SIZE];
                              struct type *regtype
                              struct type *regtype
                                = register_type (gdbarch,
                                = register_type (gdbarch,
                                                 tdep->ppc_fp0_regnum);
                                                 tdep->ppc_fp0_regnum);
                              convert_typed_floating (val, type, regval,
                              convert_typed_floating (val, type, regval,
                                                      regtype);
                                                      regtype);
                              regcache_cooked_write (regcache,
                              regcache_cooked_write (regcache,
                                                     (tdep->ppc_fp0_regnum
                                                     (tdep->ppc_fp0_regnum
                                                      + freg),
                                                      + freg),
                                                     regval);
                                                     regval);
                            }
                            }
                          freg++;
                          freg++;
                        }
                        }
                      else if (TYPE_LENGTH (type) == 16
                      else if (TYPE_LENGTH (type) == 16
                               && (gdbarch_long_double_format (gdbarch)
                               && (gdbarch_long_double_format (gdbarch)
                                   == floatformats_ibm_long_double))
                                   == floatformats_ibm_long_double))
                        {
                        {
                          if (write_pass)
                          if (write_pass)
                            {
                            {
                              regcache_cooked_write (regcache,
                              regcache_cooked_write (regcache,
                                                     (tdep->ppc_fp0_regnum
                                                     (tdep->ppc_fp0_regnum
                                                      + freg),
                                                      + freg),
                                                     val);
                                                     val);
                              if (freg <= 12)
                              if (freg <= 12)
                                regcache_cooked_write (regcache,
                                regcache_cooked_write (regcache,
                                                       (tdep->ppc_fp0_regnum
                                                       (tdep->ppc_fp0_regnum
                                                        + freg + 1),
                                                        + freg + 1),
                                                       val + 8);
                                                       val + 8);
                            }
                            }
                          freg += 2;
                          freg += 2;
                        }
                        }
                    }
                    }
                }
                }
              /* Always consume parameter stack space.  */
              /* Always consume parameter stack space.  */
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
              gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
            }
            }
        }
        }
 
 
      if (!write_pass)
      if (!write_pass)
        {
        {
          /* Save the true region sizes ready for the second pass.  */
          /* Save the true region sizes ready for the second pass.  */
          vparam_size = vparam;
          vparam_size = vparam;
          /* Make certain that the general parameter save area is at
          /* Make certain that the general parameter save area is at
             least the minimum 8 registers (or doublewords) in size.  */
             least the minimum 8 registers (or doublewords) in size.  */
          if (greg < 8)
          if (greg < 8)
            gparam_size = 8 * tdep->wordsize;
            gparam_size = 8 * tdep->wordsize;
          else
          else
            gparam_size = gparam;
            gparam_size = gparam;
        }
        }
    }
    }
 
 
  /* Update %sp.   */
  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
 
 
  /* Write the backchain (it occupies WORDSIZED bytes).  */
  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
 
 
  /* Point the inferior function call's return address at the dummy's
  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
 
 
  /* Use the func_addr to find the descriptor, and use that to find
  /* Use the func_addr to find the descriptor, and use that to find
     the TOC.  If we're calling via a function pointer, the pointer
     the TOC.  If we're calling via a function pointer, the pointer
     itself identifies the descriptor.  */
     itself identifies the descriptor.  */
  {
  {
    struct type *ftype = check_typedef (value_type (function));
    struct type *ftype = check_typedef (value_type (function));
    CORE_ADDR desc_addr = value_as_address (function);
    CORE_ADDR desc_addr = value_as_address (function);
 
 
    if (TYPE_CODE (ftype) == TYPE_CODE_PTR
    if (TYPE_CODE (ftype) == TYPE_CODE_PTR
        || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
        || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
      {
      {
        /* The TOC is the second double word in the descriptor.  */
        /* The TOC is the second double word in the descriptor.  */
        CORE_ADDR toc =
        CORE_ADDR toc =
          read_memory_unsigned_integer (desc_addr + tdep->wordsize,
          read_memory_unsigned_integer (desc_addr + tdep->wordsize,
                                        tdep->wordsize, byte_order);
                                        tdep->wordsize, byte_order);
        regcache_cooked_write_unsigned (regcache,
        regcache_cooked_write_unsigned (regcache,
                                        tdep->ppc_gp0_regnum + 2, toc);
                                        tdep->ppc_gp0_regnum + 2, toc);
      }
      }
  }
  }
 
 
  return sp;
  return sp;
}
}
 
 
 
 
/* The 64 bit ABI return value convention.
/* The 64 bit ABI return value convention.
 
 
   Return non-zero if the return-value is stored in a register, return
   Return non-zero if the return-value is stored in a register, return
   0 if the return-value is instead stored on the stack (a.k.a.,
   0 if the return-value is instead stored on the stack (a.k.a.,
   struct return convention).
   struct return convention).
 
 
   For a return-value stored in a register: when WRITEBUF is non-NULL,
   For a return-value stored in a register: when WRITEBUF is non-NULL,
   copy the buffer to the corresponding register return-value location
   copy the buffer to the corresponding register return-value location
   location; when READBUF is non-NULL, fill the buffer from the
   location; when READBUF is non-NULL, fill the buffer from the
   corresponding register return-value location.  */
   corresponding register return-value location.  */
enum return_value_convention
enum return_value_convention
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *func_type,
                             struct type *valtype, struct regcache *regcache,
                             struct type *valtype, struct regcache *regcache,
                             gdb_byte *readbuf, const gdb_byte *writebuf)
                             gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
  /* This function exists to support a calling convention that
  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));
  gdb_assert (ppc_floating_point_unit_p (gdbarch));
 
 
  /* Floats and doubles in F1.  */
  /* Floats and doubles in F1.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
    {
    {
      gdb_byte regval[MAX_REGISTER_SIZE];
      gdb_byte regval[MAX_REGISTER_SIZE];
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
      if (writebuf != NULL)
      if (writebuf != NULL)
        {
        {
          convert_typed_floating (writebuf, valtype, regval, regtype);
          convert_typed_floating (writebuf, valtype, regval, regtype);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
          regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
        }
        }
      if (readbuf != NULL)
      if (readbuf != NULL)
        {
        {
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
          regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
          convert_typed_floating (regval, regtype, readbuf, valtype);
          convert_typed_floating (regval, regtype, readbuf, valtype);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  if (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
  if (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
    return get_decimal_float_return_value (gdbarch, valtype, regcache, readbuf,
    return get_decimal_float_return_value (gdbarch, valtype, regcache, readbuf,
                                           writebuf);
                                           writebuf);
  /* Integers in r3.  */
  /* Integers in r3.  */
  if ((TYPE_CODE (valtype) == TYPE_CODE_INT
  if ((TYPE_CODE (valtype) == TYPE_CODE_INT
       || TYPE_CODE (valtype) == TYPE_CODE_ENUM
       || TYPE_CODE (valtype) == TYPE_CODE_ENUM
       || TYPE_CODE (valtype) == TYPE_CODE_CHAR
       || TYPE_CODE (valtype) == TYPE_CODE_CHAR
       || TYPE_CODE (valtype) == TYPE_CODE_BOOL)
       || TYPE_CODE (valtype) == TYPE_CODE_BOOL)
      && TYPE_LENGTH (valtype) <= 8)
      && TYPE_LENGTH (valtype) <= 8)
    {
    {
      if (writebuf != NULL)
      if (writebuf != NULL)
        {
        {
          /* Be careful to sign extend the value.  */
          /* Be careful to sign extend the value.  */
          regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
                                          unpack_long (valtype, writebuf));
                                          unpack_long (valtype, writebuf));
        }
        }
      if (readbuf != NULL)
      if (readbuf != NULL)
        {
        {
          /* Extract the integer from r3.  Since this is truncating the
          /* Extract the integer from r3.  Since this is truncating the
             value, there isn't a sign extension problem.  */
             value, there isn't a sign extension problem.  */
          ULONGEST regval;
          ULONGEST regval;
          regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
          regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
                                         &regval);
                                         &regval);
          store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
          store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
                                  regval);
                                  regval);
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  /* All pointers live in r3.  */
  /* All pointers live in r3.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_PTR
  if (TYPE_CODE (valtype) == TYPE_CODE_PTR
      || TYPE_CODE (valtype) == TYPE_CODE_REF)
      || TYPE_CODE (valtype) == TYPE_CODE_REF)
    {
    {
      /* All pointers live in r3.  */
      /* All pointers live in r3.  */
      if (writebuf != NULL)
      if (writebuf != NULL)
        regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
        regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
      if (readbuf != NULL)
      if (readbuf != NULL)
        regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
        regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  /* Array type has more than one use.  */
  /* Array type has more than one use.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
    {
    {
      /* Small character arrays are returned, right justified, in r3.  */
      /* Small character arrays are returned, right justified, in r3.  */
      if (TYPE_LENGTH (valtype) <= 8
      if (TYPE_LENGTH (valtype) <= 8
        && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
        && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
        && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
        && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
        {
        {
          int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
          int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
                       - TYPE_LENGTH (valtype));
                       - TYPE_LENGTH (valtype));
          if (writebuf != NULL)
          if (writebuf != NULL)
           regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
           regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
                                      offset, TYPE_LENGTH (valtype), writebuf);
                                      offset, TYPE_LENGTH (valtype), writebuf);
          if (readbuf != NULL)
          if (readbuf != NULL)
           regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
           regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
                                      offset, TYPE_LENGTH (valtype), readbuf);
                                      offset, TYPE_LENGTH (valtype), readbuf);
          return RETURN_VALUE_REGISTER_CONVENTION;
          return RETURN_VALUE_REGISTER_CONVENTION;
        }
        }
      /* A VMX vector is returned in v2.  */
      /* A VMX vector is returned in v2.  */
      if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
      if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
        && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
        && TYPE_VECTOR (valtype) && tdep->ppc_vr0_regnum >= 0)
        {
        {
          if (readbuf)
          if (readbuf)
            regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
            regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
          if (writebuf)
          if (writebuf)
            regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
            regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
          return RETURN_VALUE_REGISTER_CONVENTION;
          return RETURN_VALUE_REGISTER_CONVENTION;
        }
        }
    }
    }
  /* Big floating point values get stored in adjacent floating
  /* Big floating point values get stored in adjacent floating
     point registers, starting with F1.  */
     point registers, starting with F1.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
      && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
      && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
    {
    {
      if (writebuf || readbuf != NULL)
      if (writebuf || readbuf != NULL)
        {
        {
          int i;
          int i;
          for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
          for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
            {
            {
              if (writebuf != NULL)
              if (writebuf != NULL)
                regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
                regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
                                       (const bfd_byte *) writebuf + i * 8);
                                       (const bfd_byte *) writebuf + i * 8);
              if (readbuf != NULL)
              if (readbuf != NULL)
                regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
                regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
                                      (bfd_byte *) readbuf + i * 8);
                                      (bfd_byte *) readbuf + i * 8);
            }
            }
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  /* Complex values get returned in f1:f2, need to convert.  */
  /* Complex values get returned in f1:f2, need to convert.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
      && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
      && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
    {
    {
      if (regcache != NULL)
      if (regcache != NULL)
        {
        {
          int i;
          int i;
          for (i = 0; i < 2; i++)
          for (i = 0; i < 2; i++)
            {
            {
              gdb_byte regval[MAX_REGISTER_SIZE];
              gdb_byte regval[MAX_REGISTER_SIZE];
              struct type *regtype =
              struct type *regtype =
                register_type (gdbarch, tdep->ppc_fp0_regnum);
                register_type (gdbarch, tdep->ppc_fp0_regnum);
              if (writebuf != NULL)
              if (writebuf != NULL)
                {
                {
                  convert_typed_floating ((const bfd_byte *) writebuf +
                  convert_typed_floating ((const bfd_byte *) writebuf +
                                          i * (TYPE_LENGTH (valtype) / 2),
                                          i * (TYPE_LENGTH (valtype) / 2),
                                          valtype, regval, regtype);
                                          valtype, regval, regtype);
                  regcache_cooked_write (regcache,
                  regcache_cooked_write (regcache,
                                         tdep->ppc_fp0_regnum + 1 + i,
                                         tdep->ppc_fp0_regnum + 1 + i,
                                         regval);
                                         regval);
                }
                }
              if (readbuf != NULL)
              if (readbuf != NULL)
                {
                {
                  regcache_cooked_read (regcache,
                  regcache_cooked_read (regcache,
                                        tdep->ppc_fp0_regnum + 1 + i,
                                        tdep->ppc_fp0_regnum + 1 + i,
                                        regval);
                                        regval);
                  convert_typed_floating (regval, regtype,
                  convert_typed_floating (regval, regtype,
                                          (bfd_byte *) readbuf +
                                          (bfd_byte *) readbuf +
                                          i * (TYPE_LENGTH (valtype) / 2),
                                          i * (TYPE_LENGTH (valtype) / 2),
                                          valtype);
                                          valtype);
                }
                }
            }
            }
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  /* Big complex values get stored in f1:f4.  */
  /* Big complex values get stored in f1:f4.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
    {
    {
      if (regcache != NULL)
      if (regcache != NULL)
        {
        {
          int i;
          int i;
          for (i = 0; i < 4; i++)
          for (i = 0; i < 4; i++)
            {
            {
              if (writebuf != NULL)
              if (writebuf != NULL)
                regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
                regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
                                       (const bfd_byte *) writebuf + i * 8);
                                       (const bfd_byte *) writebuf + i * 8);
              if (readbuf != NULL)
              if (readbuf != NULL)
                regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
                regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
                                      (bfd_byte *) readbuf + i * 8);
                                      (bfd_byte *) readbuf + i * 8);
            }
            }
        }
        }
      return RETURN_VALUE_REGISTER_CONVENTION;
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
  return RETURN_VALUE_STRUCT_CONVENTION;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.