OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [rx-tdep.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
/* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
 
 
   Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
   Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
 
 
   Contributed by Red Hat, Inc.
   Contributed by Red Hat, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "prologue-value.h"
#include "prologue-value.h"
#include "target.h"
#include "target.h"
#include "regcache.h"
#include "regcache.h"
#include "opcode/rx.h"
#include "opcode/rx.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "frame-base.h"
#include "value.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "dwarf2-frame.h"
#include "dwarf2-frame.h"
 
 
#include "elf/rx.h"
#include "elf/rx.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
 
 
/* Certain important register numbers.  */
/* Certain important register numbers.  */
enum
enum
{
{
  RX_SP_REGNUM = 0,
  RX_SP_REGNUM = 0,
  RX_R1_REGNUM = 1,
  RX_R1_REGNUM = 1,
  RX_R4_REGNUM = 4,
  RX_R4_REGNUM = 4,
  RX_FP_REGNUM = 6,
  RX_FP_REGNUM = 6,
  RX_R15_REGNUM = 15,
  RX_R15_REGNUM = 15,
  RX_PC_REGNUM = 19,
  RX_PC_REGNUM = 19,
  RX_NUM_REGS = 25
  RX_NUM_REGS = 25
};
};
 
 
/* Architecture specific data.  */
/* Architecture specific data.  */
struct gdbarch_tdep
struct gdbarch_tdep
{
{
  /* The ELF header flags specify the multilib used.  */
  /* The ELF header flags specify the multilib used.  */
  int elf_flags;
  int elf_flags;
};
};
 
 
/* This structure holds the results of a prologue analysis.  */
/* This structure holds the results of a prologue analysis.  */
struct rx_prologue
struct rx_prologue
{
{
  /* The offset from the frame base to the stack pointer --- always
  /* The offset from the frame base to the stack pointer --- always
     zero or negative.
     zero or negative.
 
 
     Calling this a "size" is a bit misleading, but given that the
     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     sign for a SUB instruction; and everything takes care of
     itself.  */
     itself.  */
  int frame_size;
  int frame_size;
 
 
  /* Non-zero if this function has initialized the frame pointer from
  /* Non-zero if this function has initialized the frame pointer from
     the stack pointer, zero otherwise.  */
     the stack pointer, zero otherwise.  */
  int has_frame_ptr;
  int has_frame_ptr;
 
 
  /* If has_frame_ptr is non-zero, this is the offset from the frame
  /* If has_frame_ptr is non-zero, this is the offset from the frame
     base to where the frame pointer points.  This is always zero or
     base to where the frame pointer points.  This is always zero or
     negative.  */
     negative.  */
  int frame_ptr_offset;
  int frame_ptr_offset;
 
 
  /* The address of the first instruction at which the frame has been
  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;
  CORE_ADDR prologue_end;
 
 
  /* reg_offset[R] is the offset from the CFA at which register R is
  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
     always zero or negative.)  */
  int reg_offset[RX_NUM_REGS];
  int reg_offset[RX_NUM_REGS];
};
};
 
 
/* Implement the "register_name" gdbarch method.  */
/* Implement the "register_name" gdbarch method.  */
static const char *
static const char *
rx_register_name (struct gdbarch *gdbarch, int regnr)
rx_register_name (struct gdbarch *gdbarch, int regnr)
{
{
  static const char *const reg_names[] = {
  static const char *const reg_names[] = {
    "r0",
    "r0",
    "r1",
    "r1",
    "r2",
    "r2",
    "r3",
    "r3",
    "r4",
    "r4",
    "r5",
    "r5",
    "r6",
    "r6",
    "r7",
    "r7",
    "r8",
    "r8",
    "r9",
    "r9",
    "r10",
    "r10",
    "r11",
    "r11",
    "r12",
    "r12",
    "r13",
    "r13",
    "r14",
    "r14",
    "r15",
    "r15",
    "isp",
    "isp",
    "usp",
    "usp",
    "intb",
    "intb",
    "pc",
    "pc",
    "psw",
    "psw",
    "bpc",
    "bpc",
    "bpsw",
    "bpsw",
    "vct",
    "vct",
    "fpsw"
    "fpsw"
  };
  };
 
 
  return reg_names[regnr];
  return reg_names[regnr];
}
}
 
 
/* Implement the "register_type" gdbarch method.  */
/* Implement the "register_type" gdbarch method.  */
static struct type *
static struct type *
rx_register_type (struct gdbarch *gdbarch, int reg_nr)
rx_register_type (struct gdbarch *gdbarch, int reg_nr)
{
{
  if (reg_nr == RX_PC_REGNUM)
  if (reg_nr == RX_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
    return builtin_type (gdbarch)->builtin_func_ptr;
  else
  else
    return builtin_type (gdbarch)->builtin_unsigned_long;
    return builtin_type (gdbarch)->builtin_unsigned_long;
}
}
 
 
 
 
/* Function for finding saved registers in a 'struct pv_area'; this
/* Function for finding saved registers in a 'struct pv_area'; this
   function is passed to pv_area_scan.
   function is passed to pv_area_scan.
 
 
   If VALUE is a saved register, ADDR says it was saved at a constant
   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset.  */
   register was saved, record its offset.  */
static void
static void
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
{
  struct rx_prologue *result = (struct rx_prologue *) result_untyped;
  struct rx_prologue *result = (struct rx_prologue *) result_untyped;
 
 
  if (value.kind == pvk_register
  if (value.kind == pvk_register
      && value.k == 0
      && value.k == 0
      && pv_is_register (addr, RX_SP_REGNUM)
      && pv_is_register (addr, RX_SP_REGNUM)
      && size == register_size (target_gdbarch, value.reg))
      && size == register_size (target_gdbarch, value.reg))
    result->reg_offset[value.reg] = addr.k;
    result->reg_offset[value.reg] = addr.k;
}
}
 
 
/* Define a "handle" struct for fetching the next opcode.  */
/* Define a "handle" struct for fetching the next opcode.  */
struct rx_get_opcode_byte_handle
struct rx_get_opcode_byte_handle
{
{
  CORE_ADDR pc;
  CORE_ADDR pc;
};
};
 
 
/* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
/* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
   the memory address of the next byte to fetch.  If successful,
   the memory address of the next byte to fetch.  If successful,
   the address in the handle is updated and the byte fetched is
   the address in the handle is updated and the byte fetched is
   returned as the value of the function.  If not successful, -1
   returned as the value of the function.  If not successful, -1
   is returned.  */
   is returned.  */
static int
static int
rx_get_opcode_byte (void *handle)
rx_get_opcode_byte (void *handle)
{
{
  struct rx_get_opcode_byte_handle *opcdata = handle;
  struct rx_get_opcode_byte_handle *opcdata = handle;
  int status;
  int status;
  gdb_byte byte;
  gdb_byte byte;
 
 
  status = target_read_memory (opcdata->pc, &byte, 1);
  status = target_read_memory (opcdata->pc, &byte, 1);
  if (status == 0)
  if (status == 0)
    {
    {
      opcdata->pc += 1;
      opcdata->pc += 1;
      return byte;
      return byte;
    }
    }
  else
  else
    return -1;
    return -1;
}
}
 
 
/* Analyze a prologue starting at START_PC, going no further than
/* Analyze a prologue starting at START_PC, going no further than
   LIMIT_PC.  Fill in RESULT as appropriate.  */
   LIMIT_PC.  Fill in RESULT as appropriate.  */
static void
static void
rx_analyze_prologue (CORE_ADDR start_pc,
rx_analyze_prologue (CORE_ADDR start_pc,
                     CORE_ADDR limit_pc, struct rx_prologue *result)
                     CORE_ADDR limit_pc, struct rx_prologue *result)
{
{
  CORE_ADDR pc, next_pc;
  CORE_ADDR pc, next_pc;
  int rn;
  int rn;
  pv_t reg[RX_NUM_REGS];
  pv_t reg[RX_NUM_REGS];
  struct pv_area *stack;
  struct pv_area *stack;
  struct cleanup *back_to;
  struct cleanup *back_to;
  CORE_ADDR after_last_frame_setup_insn = start_pc;
  CORE_ADDR after_last_frame_setup_insn = start_pc;
 
 
  memset (result, 0, sizeof (*result));
  memset (result, 0, sizeof (*result));
 
 
  for (rn = 0; rn < RX_NUM_REGS; rn++)
  for (rn = 0; rn < RX_NUM_REGS; rn++)
    {
    {
      reg[rn] = pv_register (rn, 0);
      reg[rn] = pv_register (rn, 0);
      result->reg_offset[rn] = 1;
      result->reg_offset[rn] = 1;
    }
    }
 
 
  stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch));
  stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch));
  back_to = make_cleanup_free_pv_area (stack);
  back_to = make_cleanup_free_pv_area (stack);
 
 
  /* The call instruction has saved the return address on the stack.  */
  /* The call instruction has saved the return address on the stack.  */
  reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
  reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
  pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
  pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
 
 
  pc = start_pc;
  pc = start_pc;
  while (pc < limit_pc)
  while (pc < limit_pc)
    {
    {
      int bytes_read;
      int bytes_read;
      struct rx_get_opcode_byte_handle opcode_handle;
      struct rx_get_opcode_byte_handle opcode_handle;
      RX_Opcode_Decoded opc;
      RX_Opcode_Decoded opc;
 
 
      opcode_handle.pc = pc;
      opcode_handle.pc = pc;
      bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
      bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
                                     &opcode_handle);
                                     &opcode_handle);
      next_pc = pc + bytes_read;
      next_pc = pc + bytes_read;
 
 
      if (opc.id == RXO_pushm   /* pushm r1, r2 */
      if (opc.id == RXO_pushm   /* pushm r1, r2 */
          && opc.op[1].type == RX_Operand_Register
          && opc.op[1].type == RX_Operand_Register
          && opc.op[2].type == RX_Operand_Register)
          && opc.op[2].type == RX_Operand_Register)
        {
        {
          int r1, r2;
          int r1, r2;
          int r;
          int r;
 
 
          r1 = opc.op[1].reg;
          r1 = opc.op[1].reg;
          r2 = opc.op[2].reg;
          r2 = opc.op[2].reg;
          for (r = r2; r >= r1; r--)
          for (r = r2; r >= r1; r--)
            {
            {
              reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
              reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
              pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]);
              pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]);
            }
            }
          after_last_frame_setup_insn = next_pc;
          after_last_frame_setup_insn = next_pc;
        }
        }
      else if (opc.id == RXO_mov        /* mov.l rdst, rsrc */
      else if (opc.id == RXO_mov        /* mov.l rdst, rsrc */
               && opc.op[0].type == RX_Operand_Register
               && opc.op[0].type == RX_Operand_Register
               && opc.op[1].type == RX_Operand_Register
               && opc.op[1].type == RX_Operand_Register
               && opc.size == RX_Long)
               && opc.size == RX_Long)
        {
        {
          int rdst, rsrc;
          int rdst, rsrc;
 
 
          rdst = opc.op[0].reg;
          rdst = opc.op[0].reg;
          rsrc = opc.op[1].reg;
          rsrc = opc.op[1].reg;
          reg[rdst] = reg[rsrc];
          reg[rdst] = reg[rsrc];
          if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
          if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
            after_last_frame_setup_insn = next_pc;
            after_last_frame_setup_insn = next_pc;
        }
        }
      else if (opc.id == RXO_mov        /* mov.l rsrc, [-SP] */
      else if (opc.id == RXO_mov        /* mov.l rsrc, [-SP] */
               && opc.op[0].type == RX_Operand_Predec
               && opc.op[0].type == RX_Operand_Predec
               && opc.op[0].reg == RX_SP_REGNUM
               && opc.op[0].reg == RX_SP_REGNUM
               && opc.op[1].type == RX_Operand_Register
               && opc.op[1].type == RX_Operand_Register
               && opc.size == RX_Long)
               && opc.size == RX_Long)
        {
        {
          int rsrc;
          int rsrc;
 
 
          rsrc = opc.op[1].reg;
          rsrc = opc.op[1].reg;
          reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
          reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
          pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]);
          pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]);
          after_last_frame_setup_insn = next_pc;
          after_last_frame_setup_insn = next_pc;
        }
        }
      else if (opc.id == RXO_add        /* add #const, rsrc, rdst */
      else if (opc.id == RXO_add        /* add #const, rsrc, rdst */
               && opc.op[0].type == RX_Operand_Register
               && opc.op[0].type == RX_Operand_Register
               && opc.op[1].type == RX_Operand_Immediate
               && opc.op[1].type == RX_Operand_Immediate
               && opc.op[2].type == RX_Operand_Register)
               && opc.op[2].type == RX_Operand_Register)
        {
        {
          int rdst = opc.op[0].reg;
          int rdst = opc.op[0].reg;
          int addend = opc.op[1].addend;
          int addend = opc.op[1].addend;
          int rsrc = opc.op[2].reg;
          int rsrc = opc.op[2].reg;
          reg[rdst] = pv_add_constant (reg[rsrc], addend);
          reg[rdst] = pv_add_constant (reg[rsrc], addend);
          /* Negative adjustments to the stack pointer or frame pointer
          /* Negative adjustments to the stack pointer or frame pointer
             are (most likely) part of the prologue.  */
             are (most likely) part of the prologue.  */
          if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
          if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
            after_last_frame_setup_insn = next_pc;
            after_last_frame_setup_insn = next_pc;
        }
        }
      else if (opc.id == RXO_mov
      else if (opc.id == RXO_mov
               && opc.op[0].type == RX_Operand_Indirect
               && opc.op[0].type == RX_Operand_Indirect
               && opc.op[1].type == RX_Operand_Register
               && opc.op[1].type == RX_Operand_Register
               && opc.size == RX_Long
               && opc.size == RX_Long
               && (opc.op[0].reg == RX_SP_REGNUM
               && (opc.op[0].reg == RX_SP_REGNUM
                   || opc.op[0].reg == RX_FP_REGNUM)
                   || opc.op[0].reg == RX_FP_REGNUM)
               && (RX_R1_REGNUM <= opc.op[1].reg
               && (RX_R1_REGNUM <= opc.op[1].reg
                   && opc.op[1].reg <= RX_R4_REGNUM))
                   && opc.op[1].reg <= RX_R4_REGNUM))
        {
        {
          /* This moves an argument register to the stack.  Don't
          /* This moves an argument register to the stack.  Don't
             record it, but allow it to be a part of the prologue.  */
             record it, but allow it to be a part of the prologue.  */
        }
        }
      else if (opc.id == RXO_branch
      else if (opc.id == RXO_branch
               && opc.op[0].type == RX_Operand_Immediate
               && opc.op[0].type == RX_Operand_Immediate
               && opc.op[1].type == RX_Operand_Condition
               && opc.op[1].type == RX_Operand_Condition
               && next_pc < opc.op[0].addend)
               && next_pc < opc.op[0].addend)
        {
        {
          /* When a loop appears as the first statement of a function
          /* When a loop appears as the first statement of a function
             body, gcc 4.x will use a BRA instruction to branch to the
             body, gcc 4.x will use a BRA instruction to branch to the
             loop condition checking code.  This BRA instruction is
             loop condition checking code.  This BRA instruction is
             marked as part of the prologue.  We therefore set next_pc
             marked as part of the prologue.  We therefore set next_pc
             to this branch target and also stop the prologue scan.
             to this branch target and also stop the prologue scan.
             The instructions at and beyond the branch target should
             The instructions at and beyond the branch target should
             no longer be associated with the prologue.
             no longer be associated with the prologue.
 
 
             Note that we only consider forward branches here.  We
             Note that we only consider forward branches here.  We
             presume that a forward branch is being used to skip over
             presume that a forward branch is being used to skip over
             a loop body.
             a loop body.
 
 
             A backwards branch is covered by the default case below.
             A backwards branch is covered by the default case below.
             If we were to encounter a backwards branch, that would
             If we were to encounter a backwards branch, that would
             most likely mean that we've scanned through a loop body.
             most likely mean that we've scanned through a loop body.
             We definitely want to stop the prologue scan when this
             We definitely want to stop the prologue scan when this
             happens and that is precisely what is done by the default
             happens and that is precisely what is done by the default
             case below.  */
             case below.  */
 
 
          after_last_frame_setup_insn = opc.op[0].addend;
          after_last_frame_setup_insn = opc.op[0].addend;
          break;                /* Scan no further if we hit this case.  */
          break;                /* Scan no further if we hit this case.  */
        }
        }
      else
      else
        {
        {
          /* Terminate the prologue scan.  */
          /* Terminate the prologue scan.  */
          break;
          break;
        }
        }
 
 
      pc = next_pc;
      pc = next_pc;
    }
    }
 
 
  /* Is the frame size (offset, really) a known constant?  */
  /* Is the frame size (offset, really) a known constant?  */
  if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
  if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
    result->frame_size = reg[RX_SP_REGNUM].k;
    result->frame_size = reg[RX_SP_REGNUM].k;
 
 
  /* Was the frame pointer initialized?  */
  /* Was the frame pointer initialized?  */
  if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
  if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
    {
    {
      result->has_frame_ptr = 1;
      result->has_frame_ptr = 1;
      result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
      result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
    }
    }
 
 
  /* Record where all the registers were saved.  */
  /* Record where all the registers were saved.  */
  pv_area_scan (stack, check_for_saved, (void *) result);
  pv_area_scan (stack, check_for_saved, (void *) result);
 
 
  result->prologue_end = after_last_frame_setup_insn;
  result->prologue_end = after_last_frame_setup_insn;
 
 
  do_cleanups (back_to);
  do_cleanups (back_to);
}
}
 
 
 
 
/* Implement the "skip_prologue" gdbarch method.  */
/* Implement the "skip_prologue" gdbarch method.  */
static CORE_ADDR
static CORE_ADDR
rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  char *name;
  char *name;
  CORE_ADDR func_addr, func_end;
  CORE_ADDR func_addr, func_end;
  struct rx_prologue p;
  struct rx_prologue p;
 
 
  /* Try to find the extent of the function that contains PC.  */
  /* Try to find the extent of the function that contains PC.  */
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
    return pc;
    return pc;
 
 
  rx_analyze_prologue (pc, func_end, &p);
  rx_analyze_prologue (pc, func_end, &p);
  return p.prologue_end;
  return p.prologue_end;
}
}
 
 
/* Given a frame described by THIS_FRAME, decode the prologue of its
/* Given a frame described by THIS_FRAME, decode the prologue of its
   associated function if there is not cache entry as specified by
   associated function if there is not cache entry as specified by
   THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
   THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
   return that struct as the value of this function.  */
   return that struct as the value of this function.  */
static struct rx_prologue *
static struct rx_prologue *
rx_analyze_frame_prologue (struct frame_info *this_frame,
rx_analyze_frame_prologue (struct frame_info *this_frame,
                           void **this_prologue_cache)
                           void **this_prologue_cache)
{
{
  if (!*this_prologue_cache)
  if (!*this_prologue_cache)
    {
    {
      CORE_ADDR func_start, stop_addr;
      CORE_ADDR func_start, stop_addr;
 
 
      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
 
 
      func_start = get_frame_func (this_frame);
      func_start = get_frame_func (this_frame);
      stop_addr = get_frame_pc (this_frame);
      stop_addr = get_frame_pc (this_frame);
 
 
      /* If we couldn't find any function containing the PC, then
      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
         just initialize the prologue cache, but don't do anything.  */
      if (!func_start)
      if (!func_start)
        stop_addr = func_start;
        stop_addr = func_start;
 
 
      rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
      rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
    }
    }
 
 
  return *this_prologue_cache;
  return *this_prologue_cache;
}
}
 
 
/* Given the next frame and a prologue cache, return this frame's
/* Given the next frame and a prologue cache, return this frame's
   base.  */
   base.  */
static CORE_ADDR
static CORE_ADDR
rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
{
{
  struct rx_prologue *p
  struct rx_prologue *p
    = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
    = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
 
 
  /* In functions that use alloca, the distance between the stack
  /* In functions that use alloca, the distance between the stack
     pointer and the frame base varies dynamically, so we can't use
     pointer and the frame base varies dynamically, so we can't use
     the SP plus static information like prologue analysis to find the
     the SP plus static information like prologue analysis to find the
     frame base.  However, such functions must have a frame pointer,
     frame base.  However, such functions must have a frame pointer,
     to be able to restore the SP on exit.  So whenever we do have a
     to be able to restore the SP on exit.  So whenever we do have a
     frame pointer, use that to find the base.  */
     frame pointer, use that to find the base.  */
  if (p->has_frame_ptr)
  if (p->has_frame_ptr)
    {
    {
      CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
      CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
      return fp - p->frame_ptr_offset;
      return fp - p->frame_ptr_offset;
    }
    }
  else
  else
    {
    {
      CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
      CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
      return sp - p->frame_size;
      return sp - p->frame_size;
    }
    }
}
}
 
 
/* Implement the "frame_this_id" method for unwinding frames.  */
/* Implement the "frame_this_id" method for unwinding frames.  */
static void
static void
rx_frame_this_id (struct frame_info *this_frame,
rx_frame_this_id (struct frame_info *this_frame,
                  void **this_prologue_cache, struct frame_id *this_id)
                  void **this_prologue_cache, struct frame_id *this_id)
{
{
  *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache),
  *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache),
                             get_frame_func (this_frame));
                             get_frame_func (this_frame));
}
}
 
 
/* Implement the "frame_prev_register" method for unwinding frames.  */
/* Implement the "frame_prev_register" method for unwinding frames.  */
static struct value *
static struct value *
rx_frame_prev_register (struct frame_info *this_frame,
rx_frame_prev_register (struct frame_info *this_frame,
                        void **this_prologue_cache, int regnum)
                        void **this_prologue_cache, int regnum)
{
{
  struct rx_prologue *p
  struct rx_prologue *p
    = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
    = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache);
  int reg_size = register_size (get_frame_arch (this_frame), regnum);
  int reg_size = register_size (get_frame_arch (this_frame), regnum);
 
 
  if (regnum == RX_SP_REGNUM)
  if (regnum == RX_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, regnum, frame_base);
    return frame_unwind_got_constant (this_frame, regnum, frame_base);
 
 
  /* If prologue analysis says we saved this register somewhere,
  /* If prologue analysis says we saved this register somewhere,
     return a description of the stack slot holding it.  */
     return a description of the stack slot holding it.  */
  else if (p->reg_offset[regnum] != 1)
  else if (p->reg_offset[regnum] != 1)
    return frame_unwind_got_memory (this_frame, regnum,
    return frame_unwind_got_memory (this_frame, regnum,
                                    frame_base + p->reg_offset[regnum]);
                                    frame_base + p->reg_offset[regnum]);
 
 
  /* Otherwise, presume we haven't changed the value of this
  /* Otherwise, presume we haven't changed the value of this
     register, and get it from the next frame.  */
     register, and get it from the next frame.  */
  else
  else
    return frame_unwind_got_register (this_frame, regnum, regnum);
    return frame_unwind_got_register (this_frame, regnum, regnum);
}
}
 
 
static const struct frame_unwind rx_frame_unwind = {
static const struct frame_unwind rx_frame_unwind = {
  NORMAL_FRAME,
  NORMAL_FRAME,
  rx_frame_this_id,
  rx_frame_this_id,
  rx_frame_prev_register,
  rx_frame_prev_register,
  NULL,
  NULL,
  default_frame_sniffer
  default_frame_sniffer
};
};
 
 
/* Implement the "unwind_pc" gdbarch method.  */
/* Implement the "unwind_pc" gdbarch method.  */
static CORE_ADDR
static CORE_ADDR
rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  ULONGEST pc;
  ULONGEST pc;
 
 
  pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
  pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
  return pc;
  return pc;
}
}
 
 
/* Implement the "unwind_sp" gdbarch method.  */
/* Implement the "unwind_sp" gdbarch method.  */
static CORE_ADDR
static CORE_ADDR
rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  ULONGEST sp;
  ULONGEST sp;
 
 
  sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
  sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
  return sp;
  return sp;
}
}
 
 
/* Implement the "dummy_id" gdbarch method.  */
/* Implement the "dummy_id" gdbarch method.  */
static struct frame_id
static struct frame_id
rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  return
  return
    frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
    frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
                    get_frame_pc (this_frame));
                    get_frame_pc (this_frame));
}
}
 
 
/* Implement the "push_dummy_call" gdbarch method.  */
/* Implement the "push_dummy_call" gdbarch method.  */
static CORE_ADDR
static CORE_ADDR
rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                    struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
                    struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
                    struct value **args, CORE_ADDR sp, int struct_return,
                    struct value **args, CORE_ADDR sp, int struct_return,
                    CORE_ADDR struct_addr)
                    CORE_ADDR struct_addr)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int write_pass;
  int write_pass;
  int sp_off = 0;
  int sp_off = 0;
  CORE_ADDR cfa;
  CORE_ADDR cfa;
  int num_register_candidate_args;
  int num_register_candidate_args;
 
 
  struct type *func_type = value_type (function);
  struct type *func_type = value_type (function);
 
 
  /* Dereference function pointer types.  */
  /* Dereference function pointer types.  */
  while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
  while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
    func_type = TYPE_TARGET_TYPE (func_type);
    func_type = TYPE_TARGET_TYPE (func_type);
 
 
  /* The end result had better be a function or a method.  */
  /* The end result had better be a function or a method.  */
  gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
  gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
              || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
              || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
 
 
  /* Functions with a variable number of arguments have all of their
  /* Functions with a variable number of arguments have all of their
     variable arguments and the last non-variable argument passed
     variable arguments and the last non-variable argument passed
     on the stack.
     on the stack.
 
 
     Otherwise, we can pass up to four arguments on the stack.
     Otherwise, we can pass up to four arguments on the stack.
 
 
     Once computed, we leave this value alone.  I.e. we don't update
     Once computed, we leave this value alone.  I.e. we don't update
     it in case of a struct return going in a register or an argument
     it in case of a struct return going in a register or an argument
     requiring multiple registers, etc.  We rely instead on the value
     requiring multiple registers, etc.  We rely instead on the value
     of the ``arg_reg'' variable to get these other details correct.  */
     of the ``arg_reg'' variable to get these other details correct.  */
 
 
  if (TYPE_VARARGS (func_type))
  if (TYPE_VARARGS (func_type))
    num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
    num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
  else
  else
    num_register_candidate_args = 4;
    num_register_candidate_args = 4;
 
 
  /* We make two passes; the first does the stack allocation,
  /* We make two passes; the first does the stack allocation,
     the second actually stores the arguments.  */
     the second actually stores the arguments.  */
  for (write_pass = 0; write_pass <= 1; write_pass++)
  for (write_pass = 0; write_pass <= 1; write_pass++)
    {
    {
      int i;
      int i;
      int arg_reg = RX_R1_REGNUM;
      int arg_reg = RX_R1_REGNUM;
 
 
      if (write_pass)
      if (write_pass)
        sp = align_down (sp - sp_off, 4);
        sp = align_down (sp - sp_off, 4);
      sp_off = 0;
      sp_off = 0;
 
 
      if (struct_return)
      if (struct_return)
        {
        {
          struct type *return_type = TYPE_TARGET_TYPE (func_type);
          struct type *return_type = TYPE_TARGET_TYPE (func_type);
 
 
          gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
          gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
                      || TYPE_CODE (func_type) == TYPE_CODE_UNION);
                      || TYPE_CODE (func_type) == TYPE_CODE_UNION);
 
 
          if (TYPE_LENGTH (return_type) > 16
          if (TYPE_LENGTH (return_type) > 16
              || TYPE_LENGTH (return_type) % 4 != 0)
              || TYPE_LENGTH (return_type) % 4 != 0)
            {
            {
              if (write_pass)
              if (write_pass)
                regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
                regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
                                                struct_addr);
                                                struct_addr);
            }
            }
        }
        }
 
 
      /* Push the arguments.  */
      /* Push the arguments.  */
      for (i = 0; i < nargs; i++)
      for (i = 0; i < nargs; i++)
        {
        {
          struct value *arg = args[i];
          struct value *arg = args[i];
          const gdb_byte *arg_bits = value_contents_all (arg);
          const gdb_byte *arg_bits = value_contents_all (arg);
          struct type *arg_type = check_typedef (value_type (arg));
          struct type *arg_type = check_typedef (value_type (arg));
          ULONGEST arg_size = TYPE_LENGTH (arg_type);
          ULONGEST arg_size = TYPE_LENGTH (arg_type);
 
 
          if (i == 0 && struct_addr != 0 && !struct_return
          if (i == 0 && struct_addr != 0 && !struct_return
              && TYPE_CODE (arg_type) == TYPE_CODE_PTR
              && TYPE_CODE (arg_type) == TYPE_CODE_PTR
              && extract_unsigned_integer (arg_bits, 4,
              && extract_unsigned_integer (arg_bits, 4,
                                           byte_order) == struct_addr)
                                           byte_order) == struct_addr)
            {
            {
              /* This argument represents the address at which C++ (and
              /* This argument represents the address at which C++ (and
                 possibly other languages) store their return value.
                 possibly other languages) store their return value.
                 Put this value in R15.  */
                 Put this value in R15.  */
              if (write_pass)
              if (write_pass)
                regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
                regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
                                                struct_addr);
                                                struct_addr);
            }
            }
          else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
          else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
                   && TYPE_CODE (arg_type) != TYPE_CODE_UNION)
                   && TYPE_CODE (arg_type) != TYPE_CODE_UNION)
            {
            {
              /* Argument is a scalar.  */
              /* Argument is a scalar.  */
              if (arg_size == 8)
              if (arg_size == 8)
                {
                {
                  if (i < num_register_candidate_args
                  if (i < num_register_candidate_args
                      && arg_reg <= RX_R4_REGNUM - 1)
                      && arg_reg <= RX_R4_REGNUM - 1)
                    {
                    {
                      /* If argument registers are going to be used to pass
                      /* If argument registers are going to be used to pass
                         an 8 byte scalar, the ABI specifies that two registers
                         an 8 byte scalar, the ABI specifies that two registers
                         must be available.  */
                         must be available.  */
                      if (write_pass)
                      if (write_pass)
                        {
                        {
                          regcache_cooked_write_unsigned (regcache, arg_reg,
                          regcache_cooked_write_unsigned (regcache, arg_reg,
                                                          extract_unsigned_integer
                                                          extract_unsigned_integer
                                                          (arg_bits, 4,
                                                          (arg_bits, 4,
                                                           byte_order));
                                                           byte_order));
                          regcache_cooked_write_unsigned (regcache,
                          regcache_cooked_write_unsigned (regcache,
                                                          arg_reg + 1,
                                                          arg_reg + 1,
                                                          extract_unsigned_integer
                                                          extract_unsigned_integer
                                                          (arg_bits + 4, 4,
                                                          (arg_bits + 4, 4,
                                                           byte_order));
                                                           byte_order));
                        }
                        }
                      arg_reg += 2;
                      arg_reg += 2;
                    }
                    }
                  else
                  else
                    {
                    {
                      sp_off = align_up (sp_off, 4);
                      sp_off = align_up (sp_off, 4);
                      /* Otherwise, pass the 8 byte scalar on the stack.  */
                      /* Otherwise, pass the 8 byte scalar on the stack.  */
                      if (write_pass)
                      if (write_pass)
                        write_memory (sp + sp_off, arg_bits, 8);
                        write_memory (sp + sp_off, arg_bits, 8);
                      sp_off += 8;
                      sp_off += 8;
                    }
                    }
                }
                }
              else
              else
                {
                {
                  ULONGEST u;
                  ULONGEST u;
 
 
                  gdb_assert (arg_size <= 4);
                  gdb_assert (arg_size <= 4);
 
 
                  u =
                  u =
                    extract_unsigned_integer (arg_bits, arg_size, byte_order);
                    extract_unsigned_integer (arg_bits, arg_size, byte_order);
 
 
                  if (i < num_register_candidate_args
                  if (i < num_register_candidate_args
                      && arg_reg <= RX_R4_REGNUM)
                      && arg_reg <= RX_R4_REGNUM)
                    {
                    {
                      if (write_pass)
                      if (write_pass)
                        regcache_cooked_write_unsigned (regcache, arg_reg, u);
                        regcache_cooked_write_unsigned (regcache, arg_reg, u);
                      arg_reg += 1;
                      arg_reg += 1;
                    }
                    }
                  else
                  else
                    {
                    {
                      int p_arg_size = 4;
                      int p_arg_size = 4;
 
 
                      if (TYPE_PROTOTYPED (func_type)
                      if (TYPE_PROTOTYPED (func_type)
                          && i < TYPE_NFIELDS (func_type))
                          && i < TYPE_NFIELDS (func_type))
                        {
                        {
                          struct type *p_arg_type =
                          struct type *p_arg_type =
                            TYPE_FIELD_TYPE (func_type, i);
                            TYPE_FIELD_TYPE (func_type, i);
                          p_arg_size = TYPE_LENGTH (p_arg_type);
                          p_arg_size = TYPE_LENGTH (p_arg_type);
                        }
                        }
 
 
                      sp_off = align_up (sp_off, p_arg_size);
                      sp_off = align_up (sp_off, p_arg_size);
 
 
                      if (write_pass)
                      if (write_pass)
                        write_memory_unsigned_integer (sp + sp_off,
                        write_memory_unsigned_integer (sp + sp_off,
                                                       p_arg_size, byte_order,
                                                       p_arg_size, byte_order,
                                                       u);
                                                       u);
                      sp_off += p_arg_size;
                      sp_off += p_arg_size;
                    }
                    }
                }
                }
            }
            }
          else
          else
            {
            {
              /* Argument is a struct or union.  Pass as much of the struct
              /* Argument is a struct or union.  Pass as much of the struct
                 in registers, if possible.  Pass the rest on the stack.  */
                 in registers, if possible.  Pass the rest on the stack.  */
              while (arg_size > 0)
              while (arg_size > 0)
                {
                {
                  if (i < num_register_candidate_args
                  if (i < num_register_candidate_args
                      && arg_reg <= RX_R4_REGNUM
                      && arg_reg <= RX_R4_REGNUM
                      && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
                      && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
                      && arg_size % 4 == 0)
                      && arg_size % 4 == 0)
                    {
                    {
                      int len = min (arg_size, 4);
                      int len = min (arg_size, 4);
 
 
                      if (write_pass)
                      if (write_pass)
                        regcache_cooked_write_unsigned (regcache, arg_reg,
                        regcache_cooked_write_unsigned (regcache, arg_reg,
                                                        extract_unsigned_integer
                                                        extract_unsigned_integer
                                                        (arg_bits, len,
                                                        (arg_bits, len,
                                                         byte_order));
                                                         byte_order));
                      arg_bits += len;
                      arg_bits += len;
                      arg_size -= len;
                      arg_size -= len;
                      arg_reg++;
                      arg_reg++;
                    }
                    }
                  else
                  else
                    {
                    {
                      sp_off = align_up (sp_off, 4);
                      sp_off = align_up (sp_off, 4);
                      if (write_pass)
                      if (write_pass)
                        write_memory (sp + sp_off, arg_bits, arg_size);
                        write_memory (sp + sp_off, arg_bits, arg_size);
                      sp_off += align_up (arg_size, 4);
                      sp_off += align_up (arg_size, 4);
                      arg_size = 0;
                      arg_size = 0;
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  /* Keep track of the stack address prior to pushing the return address.
  /* Keep track of the stack address prior to pushing the return address.
     This is the value that we'll return.  */
     This is the value that we'll return.  */
  cfa = sp;
  cfa = sp;
 
 
  /* Push the return address.  */
  /* Push the return address.  */
  sp = sp - 4;
  sp = sp - 4;
  write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
  write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
 
 
  /* Update the stack pointer.  */
  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
  regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
 
 
  return cfa;
  return cfa;
}
}
 
 
/* Implement the "return_value" gdbarch method.  */
/* Implement the "return_value" gdbarch method.  */
static enum return_value_convention
static enum return_value_convention
rx_return_value (struct gdbarch *gdbarch,
rx_return_value (struct gdbarch *gdbarch,
                 struct type *func_type,
                 struct type *func_type,
                 struct type *valtype,
                 struct type *valtype,
                 struct regcache *regcache,
                 struct regcache *regcache,
                 gdb_byte *readbuf, const gdb_byte *writebuf)
                 gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST valtype_len = TYPE_LENGTH (valtype);
  ULONGEST valtype_len = TYPE_LENGTH (valtype);
 
 
  if (TYPE_LENGTH (valtype) > 16
  if (TYPE_LENGTH (valtype) > 16
      || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
      || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
           || TYPE_CODE (valtype) == TYPE_CODE_UNION)
           || TYPE_CODE (valtype) == TYPE_CODE_UNION)
          && TYPE_LENGTH (valtype) % 4 != 0))
          && TYPE_LENGTH (valtype) % 4 != 0))
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
 
 
  if (readbuf)
  if (readbuf)
    {
    {
      ULONGEST u;
      ULONGEST u;
      int argreg = RX_R1_REGNUM;
      int argreg = RX_R1_REGNUM;
      int offset = 0;
      int offset = 0;
 
 
      while (valtype_len > 0)
      while (valtype_len > 0)
        {
        {
          int len = min (valtype_len, 4);
          int len = min (valtype_len, 4);
 
 
          regcache_cooked_read_unsigned (regcache, argreg, &u);
          regcache_cooked_read_unsigned (regcache, argreg, &u);
          store_unsigned_integer (readbuf + offset, len, byte_order, u);
          store_unsigned_integer (readbuf + offset, len, byte_order, u);
          valtype_len -= len;
          valtype_len -= len;
          offset += len;
          offset += len;
          argreg++;
          argreg++;
        }
        }
    }
    }
 
 
  if (writebuf)
  if (writebuf)
    {
    {
      ULONGEST u;
      ULONGEST u;
      int argreg = RX_R1_REGNUM;
      int argreg = RX_R1_REGNUM;
      int offset = 0;
      int offset = 0;
 
 
      while (valtype_len > 0)
      while (valtype_len > 0)
        {
        {
          int len = min (valtype_len, 4);
          int len = min (valtype_len, 4);
 
 
          u = extract_unsigned_integer (writebuf + offset, len, byte_order);
          u = extract_unsigned_integer (writebuf + offset, len, byte_order);
          regcache_cooked_write_unsigned (regcache, argreg, u);
          regcache_cooked_write_unsigned (regcache, argreg, u);
          valtype_len -= len;
          valtype_len -= len;
          offset += len;
          offset += len;
          argreg++;
          argreg++;
        }
        }
    }
    }
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
/* Implement the "breakpoint_from_pc" gdbarch method.  */
/* Implement the "breakpoint_from_pc" gdbarch method.  */
const gdb_byte *
const gdb_byte *
rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
{
{
  static gdb_byte breakpoint[] = { 0x00 };
  static gdb_byte breakpoint[] = { 0x00 };
  *lenptr = sizeof breakpoint;
  *lenptr = sizeof breakpoint;
  return breakpoint;
  return breakpoint;
}
}
 
 
/* Allocate and initialize a gdbarch object.  */
/* Allocate and initialize a gdbarch object.  */
static struct gdbarch *
static struct gdbarch *
rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
  int elf_flags;
  int elf_flags;
 
 
  /* Extract the elf_flags if available.  */
  /* Extract the elf_flags if available.  */
  if (info.abfd != NULL
  if (info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_flags = elf_elfheader (info.abfd)->e_flags;
    elf_flags = elf_elfheader (info.abfd)->e_flags;
  else
  else
    elf_flags = 0;
    elf_flags = 0;
 
 
 
 
  /* Try to find the architecture in the list of already defined
  /* Try to find the architecture in the list of already defined
     architectures.  */
     architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
    {
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
        continue;
        continue;
 
 
      return arches->gdbarch;
      return arches->gdbarch;
    }
    }
 
 
  /* None found, create a new architecture from the information
  /* None found, create a new architecture from the information
     provided.  */
     provided.  */
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;
  tdep->elf_flags = elf_flags;
 
 
  set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
  set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_register_name (gdbarch, rx_register_name);
  set_gdbarch_register_name (gdbarch, rx_register_name);
  set_gdbarch_register_type (gdbarch, rx_register_type);
  set_gdbarch_register_type (gdbarch, rx_register_type);
  set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
 
 
  set_gdbarch_print_insn (gdbarch, print_insn_rx);
  set_gdbarch_print_insn (gdbarch, print_insn_rx);
 
 
  set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
  set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
 
 
  /* Target builtin data types.  */
  /* Target builtin data types.  */
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
  if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
    {
    {
      set_gdbarch_double_bit (gdbarch, 64);
      set_gdbarch_double_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 64);
      set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
      set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
    }
    }
  else
  else
    {
    {
      set_gdbarch_double_bit (gdbarch, 32);
      set_gdbarch_double_bit (gdbarch, 32);
      set_gdbarch_long_double_bit (gdbarch, 32);
      set_gdbarch_long_double_bit (gdbarch, 32);
      set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
      set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
    }
    }
 
 
  /* Frame unwinding.  */
  /* Frame unwinding.  */
#if 0
#if 0
  /* Note: The test results are better with the dwarf2 unwinder disabled,
  /* Note: The test results are better with the dwarf2 unwinder disabled,
     so it's turned off for now.  */
     so it's turned off for now.  */
  dwarf2_append_unwinders (gdbarch);
  dwarf2_append_unwinders (gdbarch);
#endif
#endif
  frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
 
 
  /* Methods for saving / extracting a dummy frame's ID.
  /* Methods for saving / extracting a dummy frame's ID.
     The ID's stack address must match the SP value returned by
     The ID's stack address must match the SP value returned by
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
  set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
  set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
  set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
  set_gdbarch_return_value (gdbarch, rx_return_value);
  set_gdbarch_return_value (gdbarch, rx_return_value);
 
 
  /* Virtual tables.  */
  /* Virtual tables.  */
  set_gdbarch_vbit_in_delta (gdbarch, 1);
  set_gdbarch_vbit_in_delta (gdbarch, 1);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
/* Register the above initialization routine.  */
/* Register the above initialization routine.  */
void
void
_initialize_rx_tdep (void)
_initialize_rx_tdep (void)
{
{
  register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
  register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.