OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [spu-multiarch.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Cell SPU GNU/Linux multi-architecture debugging support.
/* Cell SPU GNU/Linux multi-architecture debugging support.
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
 
 
   Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
   Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "observer.h"
#include "observer.h"
#include "inferior.h"
#include "inferior.h"
#include "regcache.h"
#include "regcache.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "solib.h"
#include "solib.h"
#include "solist.h"
#include "solist.h"
 
 
#include "ppc-tdep.h"
#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"
#include "ppc-linux-tdep.h"
#include "spu-tdep.h"
#include "spu-tdep.h"
 
 
/* This module's target vector.  */
/* This module's target vector.  */
static struct target_ops spu_ops;
static struct target_ops spu_ops;
 
 
/* Number of SPE objects loaded into the current inferior.  */
/* Number of SPE objects loaded into the current inferior.  */
static int spu_nr_solib;
static int spu_nr_solib;
 
 
/* Stand-alone SPE executable?  */
/* Stand-alone SPE executable?  */
#define spu_standalone_p() \
#define spu_standalone_p() \
  (symfile_objfile && symfile_objfile->obfd \
  (symfile_objfile && symfile_objfile->obfd \
   && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
   && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
 
 
/* PPU side system calls.  */
/* PPU side system calls.  */
#define INSTR_SC        0x44000002
#define INSTR_SC        0x44000002
#define NR_spu_run      0x0116
#define NR_spu_run      0x0116
 
 
/* If the PPU thread is currently stopped on a spu_run system call,
/* If the PPU thread is currently stopped on a spu_run system call,
   return to FD and ADDR the file handle and NPC parameter address
   return to FD and ADDR the file handle and NPC parameter address
   used with the system call.  Return non-zero if successful.  */
   used with the system call.  Return non-zero if successful.  */
static int
static int
parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
  struct regcache *regcache;
  struct regcache *regcache;
  char buf[4];
  char buf[4];
  CORE_ADDR pc;
  CORE_ADDR pc;
  ULONGEST regval;
  ULONGEST regval;
 
 
  /* If we're not on PPU, there's nothing to detect.  */
  /* If we're not on PPU, there's nothing to detect.  */
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_powerpc)
  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_powerpc)
    return 0;
    return 0;
 
 
  /* Get PPU-side registers.  */
  /* Get PPU-side registers.  */
  regcache = get_thread_arch_regcache (ptid, target_gdbarch);
  regcache = get_thread_arch_regcache (ptid, target_gdbarch);
  tdep = gdbarch_tdep (target_gdbarch);
  tdep = gdbarch_tdep (target_gdbarch);
 
 
  /* Fetch instruction preceding current NIP.  */
  /* Fetch instruction preceding current NIP.  */
  if (target_read_memory (regcache_read_pc (regcache) - 4, buf, 4) != 0)
  if (target_read_memory (regcache_read_pc (regcache) - 4, buf, 4) != 0)
    return 0;
    return 0;
  /* It should be a "sc" instruction.  */
  /* It should be a "sc" instruction.  */
  if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
  if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
    return 0;
    return 0;
  /* System call number should be NR_spu_run.  */
  /* System call number should be NR_spu_run.  */
  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
  if (regval != NR_spu_run)
  if (regval != NR_spu_run)
    return 0;
    return 0;
 
 
  /* Register 3 contains fd, register 4 the NPC param pointer.  */
  /* Register 3 contains fd, register 4 the NPC param pointer.  */
  regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
  regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
  *fd = (int) regval;
  *fd = (int) regval;
  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
  *addr = (CORE_ADDR) regval;
  *addr = (CORE_ADDR) regval;
  return 1;
  return 1;
}
}
 
 
/* Find gdbarch for SPU context SPUFS_FD.  */
/* Find gdbarch for SPU context SPUFS_FD.  */
static struct gdbarch *
static struct gdbarch *
spu_gdbarch (int spufs_fd)
spu_gdbarch (int spufs_fd)
{
{
  struct gdbarch_info info;
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  gdbarch_info_init (&info);
  info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
  info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
  info.byte_order = BFD_ENDIAN_BIG;
  info.byte_order = BFD_ENDIAN_BIG;
  info.osabi = GDB_OSABI_LINUX;
  info.osabi = GDB_OSABI_LINUX;
  info.tdep_info = (void *) &spufs_fd;
  info.tdep_info = (void *) &spufs_fd;
  return gdbarch_find_by_info (info);
  return gdbarch_find_by_info (info);
}
}
 
 
/* Override the to_thread_architecture routine.  */
/* Override the to_thread_architecture routine.  */
static struct gdbarch *
static struct gdbarch *
spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
{
{
  int spufs_fd;
  int spufs_fd;
  CORE_ADDR spufs_addr;
  CORE_ADDR spufs_addr;
 
 
  if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
  if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
    return spu_gdbarch (spufs_fd);
    return spu_gdbarch (spufs_fd);
 
 
  return target_gdbarch;
  return target_gdbarch;
}
}
 
 
/* Override the to_region_ok_for_hw_watchpoint routine.  */
/* Override the to_region_ok_for_hw_watchpoint routine.  */
static int
static int
spu_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
spu_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
{
  struct target_ops *ops_beneath = find_target_beneath (&spu_ops);
  struct target_ops *ops_beneath = find_target_beneath (&spu_ops);
  while (ops_beneath && !ops_beneath->to_region_ok_for_hw_watchpoint)
  while (ops_beneath && !ops_beneath->to_region_ok_for_hw_watchpoint)
    ops_beneath = find_target_beneath (ops_beneath);
    ops_beneath = find_target_beneath (ops_beneath);
 
 
  /* We cannot watch SPU local store.  */
  /* We cannot watch SPU local store.  */
  if (SPUADDR_SPU (addr) != -1)
  if (SPUADDR_SPU (addr) != -1)
    return 0;
    return 0;
 
 
  if (ops_beneath)
  if (ops_beneath)
    return ops_beneath->to_region_ok_for_hw_watchpoint (addr, len);
    return ops_beneath->to_region_ok_for_hw_watchpoint (addr, len);
 
 
  return 0;
  return 0;
}
}
 
 
/* Override the to_fetch_registers routine.  */
/* Override the to_fetch_registers routine.  */
static void
static void
spu_fetch_registers (struct target_ops *ops,
spu_fetch_registers (struct target_ops *ops,
                     struct regcache *regcache, int regno)
                     struct regcache *regcache, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  int spufs_fd;
  int spufs_fd;
  CORE_ADDR spufs_addr;
  CORE_ADDR spufs_addr;
 
 
  /* This version applies only if we're currently in spu_run.  */
  /* This version applies only if we're currently in spu_run.  */
  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
    {
    {
      while (ops_beneath && !ops_beneath->to_fetch_registers)
      while (ops_beneath && !ops_beneath->to_fetch_registers)
        ops_beneath = find_target_beneath (ops_beneath);
        ops_beneath = find_target_beneath (ops_beneath);
 
 
      gdb_assert (ops_beneath);
      gdb_assert (ops_beneath);
      ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
      ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
      return;
      return;
    }
    }
 
 
  /* We must be stopped on a spu_run system call.  */
  /* We must be stopped on a spu_run system call.  */
  if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
  if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
    return;
    return;
 
 
  /* The ID register holds the spufs file handle.  */
  /* The ID register holds the spufs file handle.  */
  if (regno == -1 || regno == SPU_ID_REGNUM)
  if (regno == -1 || regno == SPU_ID_REGNUM)
    {
    {
      char buf[4];
      char buf[4];
      store_unsigned_integer (buf, 4, byte_order, spufs_fd);
      store_unsigned_integer (buf, 4, byte_order, spufs_fd);
      regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
      regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
    }
    }
 
 
  /* The NPC register is found in PPC memory at SPUFS_ADDR.  */
  /* The NPC register is found in PPC memory at SPUFS_ADDR.  */
  if (regno == -1 || regno == SPU_PC_REGNUM)
  if (regno == -1 || regno == SPU_PC_REGNUM)
    {
    {
      char buf[4];
      char buf[4];
 
 
      if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
      if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
                       buf, spufs_addr, sizeof buf) == sizeof buf)
                       buf, spufs_addr, sizeof buf) == sizeof buf)
        regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
        regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
    }
    }
 
 
  /* The GPRs are found in the "regs" spufs file.  */
  /* The GPRs are found in the "regs" spufs file.  */
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
    {
    {
      char buf[16 * SPU_NUM_GPRS], annex[32];
      char buf[16 * SPU_NUM_GPRS], annex[32];
      int i;
      int i;
 
 
      xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
      xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
      if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
      if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
                       buf, 0, sizeof buf) == sizeof buf)
                       buf, 0, sizeof buf) == sizeof buf)
        for (i = 0; i < SPU_NUM_GPRS; i++)
        for (i = 0; i < SPU_NUM_GPRS; i++)
          regcache_raw_supply (regcache, i, buf + i*16);
          regcache_raw_supply (regcache, i, buf + i*16);
    }
    }
}
}
 
 
/* Override the to_store_registers routine.  */
/* Override the to_store_registers routine.  */
static void
static void
spu_store_registers (struct target_ops *ops,
spu_store_registers (struct target_ops *ops,
                     struct regcache *regcache, int regno)
                     struct regcache *regcache, int regno)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  int spufs_fd;
  int spufs_fd;
  CORE_ADDR spufs_addr;
  CORE_ADDR spufs_addr;
 
 
  /* This version applies only if we're currently in spu_run.  */
  /* This version applies only if we're currently in spu_run.  */
  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
    {
    {
      while (ops_beneath && !ops_beneath->to_fetch_registers)
      while (ops_beneath && !ops_beneath->to_fetch_registers)
        ops_beneath = find_target_beneath (ops_beneath);
        ops_beneath = find_target_beneath (ops_beneath);
 
 
      gdb_assert (ops_beneath);
      gdb_assert (ops_beneath);
      ops_beneath->to_store_registers (ops_beneath, regcache, regno);
      ops_beneath->to_store_registers (ops_beneath, regcache, regno);
      return;
      return;
    }
    }
 
 
  /* We must be stopped on a spu_run system call.  */
  /* We must be stopped on a spu_run system call.  */
  if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
  if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
    return;
    return;
 
 
  /* The NPC register is found in PPC memory at SPUFS_ADDR.  */
  /* The NPC register is found in PPC memory at SPUFS_ADDR.  */
  if (regno == -1 || regno == SPU_PC_REGNUM)
  if (regno == -1 || regno == SPU_PC_REGNUM)
    {
    {
      char buf[4];
      char buf[4];
      regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
      regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
 
 
      target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
      target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
                    buf, spufs_addr, sizeof buf);
                    buf, spufs_addr, sizeof buf);
    }
    }
 
 
  /* The GPRs are found in the "regs" spufs file.  */
  /* The GPRs are found in the "regs" spufs file.  */
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
    {
    {
      char buf[16 * SPU_NUM_GPRS], annex[32];
      char buf[16 * SPU_NUM_GPRS], annex[32];
      int i;
      int i;
 
 
      for (i = 0; i < SPU_NUM_GPRS; i++)
      for (i = 0; i < SPU_NUM_GPRS; i++)
        regcache_raw_collect (regcache, i, buf + i*16);
        regcache_raw_collect (regcache, i, buf + i*16);
 
 
      xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
      xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
      target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
      target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
                    buf, 0, sizeof buf);
                    buf, 0, sizeof buf);
    }
    }
}
}
 
 
/* Override the to_xfer_partial routine.  */
/* Override the to_xfer_partial routine.  */
static LONGEST
static LONGEST
spu_xfer_partial (struct target_ops *ops, enum target_object object,
spu_xfer_partial (struct target_ops *ops, enum target_object object,
                  const char *annex, gdb_byte *readbuf,
                  const char *annex, gdb_byte *readbuf,
                  const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
                  const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
{
  struct target_ops *ops_beneath = find_target_beneath (ops);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  while (ops_beneath && !ops_beneath->to_xfer_partial)
  while (ops_beneath && !ops_beneath->to_xfer_partial)
    ops_beneath = find_target_beneath (ops_beneath);
    ops_beneath = find_target_beneath (ops_beneath);
  gdb_assert (ops_beneath);
  gdb_assert (ops_beneath);
 
 
  /* Use the "mem" spufs file to access SPU local store.  */
  /* Use the "mem" spufs file to access SPU local store.  */
  if (object == TARGET_OBJECT_MEMORY)
  if (object == TARGET_OBJECT_MEMORY)
    {
    {
      int fd = SPUADDR_SPU (offset);
      int fd = SPUADDR_SPU (offset);
      CORE_ADDR addr = SPUADDR_ADDR (offset);
      CORE_ADDR addr = SPUADDR_ADDR (offset);
      char mem_annex[32];
      char mem_annex[32];
 
 
      if (fd >= 0 && addr < SPU_LS_SIZE)
      if (fd >= 0 && addr < SPU_LS_SIZE)
        {
        {
          xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
          xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
          return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
          return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
                                               mem_annex, readbuf, writebuf,
                                               mem_annex, readbuf, writebuf,
                                               addr, len);
                                               addr, len);
        }
        }
    }
    }
 
 
  return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
  return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
                                       readbuf, writebuf, offset, len);
                                       readbuf, writebuf, offset, len);
}
}
 
 
/* Override the to_search_memory routine.  */
/* Override the to_search_memory routine.  */
static int
static int
spu_search_memory (struct target_ops* ops,
spu_search_memory (struct target_ops* ops,
                   CORE_ADDR start_addr, ULONGEST search_space_len,
                   CORE_ADDR start_addr, ULONGEST search_space_len,
                   const gdb_byte *pattern, ULONGEST pattern_len,
                   const gdb_byte *pattern, ULONGEST pattern_len,
                   CORE_ADDR *found_addrp)
                   CORE_ADDR *found_addrp)
{
{
  struct target_ops *ops_beneath = find_target_beneath (ops);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  while (ops_beneath && !ops_beneath->to_search_memory)
  while (ops_beneath && !ops_beneath->to_search_memory)
    ops_beneath = find_target_beneath (ops_beneath);
    ops_beneath = find_target_beneath (ops_beneath);
 
 
  /* For SPU local store, always fall back to the simple method.  Likewise
  /* For SPU local store, always fall back to the simple method.  Likewise
     if we do not have any target-specific special implementation.  */
     if we do not have any target-specific special implementation.  */
  if (!ops_beneath || SPUADDR_SPU (start_addr) >= 0)
  if (!ops_beneath || SPUADDR_SPU (start_addr) >= 0)
    return simple_search_memory (ops,
    return simple_search_memory (ops,
                                 start_addr, search_space_len,
                                 start_addr, search_space_len,
                                 pattern, pattern_len, found_addrp);
                                 pattern, pattern_len, found_addrp);
 
 
  return ops_beneath->to_search_memory (ops_beneath,
  return ops_beneath->to_search_memory (ops_beneath,
                                        start_addr, search_space_len,
                                        start_addr, search_space_len,
                                        pattern, pattern_len, found_addrp);
                                        pattern, pattern_len, found_addrp);
}
}
 
 
 
 
/* Push and pop the SPU multi-architecture support target.  */
/* Push and pop the SPU multi-architecture support target.  */
 
 
static void
static void
spu_multiarch_activate (void)
spu_multiarch_activate (void)
{
{
  /* If GDB was configured without SPU architecture support,
  /* If GDB was configured without SPU architecture support,
     we cannot install SPU multi-architecture support either.  */
     we cannot install SPU multi-architecture support either.  */
  if (spu_gdbarch (-1) == NULL)
  if (spu_gdbarch (-1) == NULL)
    return;
    return;
 
 
  push_target (&spu_ops);
  push_target (&spu_ops);
 
 
  /* Make sure the thread architecture is re-evaluated.  */
  /* Make sure the thread architecture is re-evaluated.  */
  registers_changed ();
  registers_changed ();
}
}
 
 
static void
static void
spu_multiarch_deactivate (void)
spu_multiarch_deactivate (void)
{
{
  unpush_target (&spu_ops);
  unpush_target (&spu_ops);
 
 
  /* Make sure the thread architecture is re-evaluated.  */
  /* Make sure the thread architecture is re-evaluated.  */
  registers_changed ();
  registers_changed ();
}
}
 
 
static void
static void
spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
{
{
  if (spu_standalone_p ())
  if (spu_standalone_p ())
    spu_multiarch_activate ();
    spu_multiarch_activate ();
}
}
 
 
static void
static void
spu_multiarch_solib_loaded (struct so_list *so)
spu_multiarch_solib_loaded (struct so_list *so)
{
{
  if (!spu_standalone_p ())
  if (!spu_standalone_p ())
    if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
    if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
      if (spu_nr_solib++ == 0)
      if (spu_nr_solib++ == 0)
        spu_multiarch_activate ();
        spu_multiarch_activate ();
}
}
 
 
static void
static void
spu_multiarch_solib_unloaded (struct so_list *so)
spu_multiarch_solib_unloaded (struct so_list *so)
{
{
  if (!spu_standalone_p ())
  if (!spu_standalone_p ())
    if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
    if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
      if (--spu_nr_solib == 0)
      if (--spu_nr_solib == 0)
        spu_multiarch_deactivate ();
        spu_multiarch_deactivate ();
}
}
 
 
static void
static void
spu_mourn_inferior (struct target_ops *ops)
spu_mourn_inferior (struct target_ops *ops)
{
{
  struct target_ops *ops_beneath = find_target_beneath (ops);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  while (ops_beneath && !ops_beneath->to_mourn_inferior)
  while (ops_beneath && !ops_beneath->to_mourn_inferior)
    ops_beneath = find_target_beneath (ops_beneath);
    ops_beneath = find_target_beneath (ops_beneath);
 
 
  gdb_assert (ops_beneath);
  gdb_assert (ops_beneath);
  ops_beneath->to_mourn_inferior (ops_beneath);
  ops_beneath->to_mourn_inferior (ops_beneath);
  spu_multiarch_deactivate ();
  spu_multiarch_deactivate ();
}
}
 
 
 
 
/* Initialize the SPU multi-architecture support target.  */
/* Initialize the SPU multi-architecture support target.  */
 
 
static void
static void
init_spu_ops (void)
init_spu_ops (void)
{
{
  spu_ops.to_shortname = "spu";
  spu_ops.to_shortname = "spu";
  spu_ops.to_longname = "SPU multi-architecture support.";
  spu_ops.to_longname = "SPU multi-architecture support.";
  spu_ops.to_doc = "SPU multi-architecture support.";
  spu_ops.to_doc = "SPU multi-architecture support.";
  spu_ops.to_mourn_inferior = spu_mourn_inferior;
  spu_ops.to_mourn_inferior = spu_mourn_inferior;
  spu_ops.to_fetch_registers = spu_fetch_registers;
  spu_ops.to_fetch_registers = spu_fetch_registers;
  spu_ops.to_store_registers = spu_store_registers;
  spu_ops.to_store_registers = spu_store_registers;
  spu_ops.to_xfer_partial = spu_xfer_partial;
  spu_ops.to_xfer_partial = spu_xfer_partial;
  spu_ops.to_search_memory = spu_search_memory;
  spu_ops.to_search_memory = spu_search_memory;
  spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
  spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
  spu_ops.to_thread_architecture = spu_thread_architecture;
  spu_ops.to_thread_architecture = spu_thread_architecture;
  spu_ops.to_stratum = arch_stratum;
  spu_ops.to_stratum = arch_stratum;
  spu_ops.to_magic = OPS_MAGIC;
  spu_ops.to_magic = OPS_MAGIC;
}
}
 
 
void
void
_initialize_spu_multiarch (void)
_initialize_spu_multiarch (void)
{
{
  /* Install ourselves on the target stack.  */
  /* Install ourselves on the target stack.  */
  init_spu_ops ();
  init_spu_ops ();
  add_target (&spu_ops);
  add_target (&spu_ops);
 
 
  /* Install observers to watch for SPU objects.  */
  /* Install observers to watch for SPU objects.  */
  observer_attach_inferior_created (spu_multiarch_inferior_created);
  observer_attach_inferior_created (spu_multiarch_inferior_created);
  observer_attach_solib_loaded (spu_multiarch_solib_loaded);
  observer_attach_solib_loaded (spu_multiarch_solib_loaded);
  observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
  observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.