OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [stabsread.c] - Diff between revs 227 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 227 Rev 816
/* Support routines for decoding "stabs" debugging information format.
/* Support routines for decoding "stabs" debugging information format.
 
 
   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
   2008, 2009, 2010 Free Software Foundation, Inc.
   2008, 2009, 2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
/* Support routines for reading and decoding debugging information in
/* Support routines for reading and decoding debugging information in
   the "stabs" format.  This format is used with many systems that use
   the "stabs" format.  This format is used with many systems that use
   the a.out object file format, as well as some systems that use
   the a.out object file format, as well as some systems that use
   COFF or ELF where the stabs data is placed in a special section.
   COFF or ELF where the stabs data is placed in a special section.
   Avoid placing any object file format specific code in this file. */
   Avoid placing any object file format specific code in this file. */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "bfd.h"
#include "bfd.h"
#include "gdb_obstack.h"
#include "gdb_obstack.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "expression.h"
#include "expression.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "aout/stab_gnu.h"      /* We always use GNU stabs, not native */
#include "aout/stab_gnu.h"      /* We always use GNU stabs, not native */
#include "libaout.h"
#include "libaout.h"
#include "aout/aout64.h"
#include "aout/aout64.h"
#include "gdb-stabs.h"
#include "gdb-stabs.h"
#include "buildsym.h"
#include "buildsym.h"
#include "complaints.h"
#include "complaints.h"
#include "demangle.h"
#include "demangle.h"
#include "language.h"
#include "language.h"
#include "doublest.h"
#include "doublest.h"
#include "cp-abi.h"
#include "cp-abi.h"
#include "cp-support.h"
#include "cp-support.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
 
 
#include <ctype.h>
#include <ctype.h>
 
 
/* Ask stabsread.h to define the vars it normally declares `extern'.  */
/* Ask stabsread.h to define the vars it normally declares `extern'.  */
#define EXTERN
#define EXTERN
/**/
/**/
#include "stabsread.h"          /* Our own declarations */
#include "stabsread.h"          /* Our own declarations */
#undef  EXTERN
#undef  EXTERN
 
 
extern void _initialize_stabsread (void);
extern void _initialize_stabsread (void);
 
 
/* The routines that read and process a complete stabs for a C struct or
/* The routines that read and process a complete stabs for a C struct or
   C++ class pass lists of data member fields and lists of member function
   C++ class pass lists of data member fields and lists of member function
   fields in an instance of a field_info structure, as defined below.
   fields in an instance of a field_info structure, as defined below.
   This is part of some reorganization of low level C++ support and is
   This is part of some reorganization of low level C++ support and is
   expected to eventually go away... (FIXME) */
   expected to eventually go away... (FIXME) */
 
 
struct field_info
struct field_info
  {
  {
    struct nextfield
    struct nextfield
      {
      {
        struct nextfield *next;
        struct nextfield *next;
 
 
        /* This is the raw visibility from the stab.  It is not checked
        /* This is the raw visibility from the stab.  It is not checked
           for being one of the visibilities we recognize, so code which
           for being one of the visibilities we recognize, so code which
           examines this field better be able to deal.  */
           examines this field better be able to deal.  */
        int visibility;
        int visibility;
 
 
        struct field field;
        struct field field;
      }
      }
     *list;
     *list;
    struct next_fnfieldlist
    struct next_fnfieldlist
      {
      {
        struct next_fnfieldlist *next;
        struct next_fnfieldlist *next;
        struct fn_fieldlist fn_fieldlist;
        struct fn_fieldlist fn_fieldlist;
      }
      }
     *fnlist;
     *fnlist;
  };
  };
 
 
static void
static void
read_one_struct_field (struct field_info *, char **, char *,
read_one_struct_field (struct field_info *, char **, char *,
                       struct type *, struct objfile *);
                       struct type *, struct objfile *);
 
 
static struct type *dbx_alloc_type (int[2], struct objfile *);
static struct type *dbx_alloc_type (int[2], struct objfile *);
 
 
static long read_huge_number (char **, int, int *, int);
static long read_huge_number (char **, int, int *, int);
 
 
static struct type *error_type (char **, struct objfile *);
static struct type *error_type (char **, struct objfile *);
 
 
static void
static void
patch_block_stabs (struct pending *, struct pending_stabs *,
patch_block_stabs (struct pending *, struct pending_stabs *,
                   struct objfile *);
                   struct objfile *);
 
 
static void fix_common_block (struct symbol *, int);
static void fix_common_block (struct symbol *, int);
 
 
static int read_type_number (char **, int *);
static int read_type_number (char **, int *);
 
 
static struct type *read_type (char **, struct objfile *);
static struct type *read_type (char **, struct objfile *);
 
 
static struct type *read_range_type (char **, int[2], int, struct objfile *);
static struct type *read_range_type (char **, int[2], int, struct objfile *);
 
 
static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
 
 
static struct type *read_sun_floating_type (char **, int[2],
static struct type *read_sun_floating_type (char **, int[2],
                                            struct objfile *);
                                            struct objfile *);
 
 
static struct type *read_enum_type (char **, struct type *, struct objfile *);
static struct type *read_enum_type (char **, struct type *, struct objfile *);
 
 
static struct type *rs6000_builtin_type (int, struct objfile *);
static struct type *rs6000_builtin_type (int, struct objfile *);
 
 
static int
static int
read_member_functions (struct field_info *, char **, struct type *,
read_member_functions (struct field_info *, char **, struct type *,
                       struct objfile *);
                       struct objfile *);
 
 
static int
static int
read_struct_fields (struct field_info *, char **, struct type *,
read_struct_fields (struct field_info *, char **, struct type *,
                    struct objfile *);
                    struct objfile *);
 
 
static int
static int
read_baseclasses (struct field_info *, char **, struct type *,
read_baseclasses (struct field_info *, char **, struct type *,
                  struct objfile *);
                  struct objfile *);
 
 
static int
static int
read_tilde_fields (struct field_info *, char **, struct type *,
read_tilde_fields (struct field_info *, char **, struct type *,
                   struct objfile *);
                   struct objfile *);
 
 
static int attach_fn_fields_to_type (struct field_info *, struct type *);
static int attach_fn_fields_to_type (struct field_info *, struct type *);
 
 
static int attach_fields_to_type (struct field_info *, struct type *,
static int attach_fields_to_type (struct field_info *, struct type *,
                                  struct objfile *);
                                  struct objfile *);
 
 
static struct type *read_struct_type (char **, struct type *,
static struct type *read_struct_type (char **, struct type *,
                                      enum type_code,
                                      enum type_code,
                                      struct objfile *);
                                      struct objfile *);
 
 
static struct type *read_array_type (char **, struct type *,
static struct type *read_array_type (char **, struct type *,
                                     struct objfile *);
                                     struct objfile *);
 
 
static struct field *read_args (char **, int, struct objfile *, int *, int *);
static struct field *read_args (char **, int, struct objfile *, int *, int *);
 
 
static void add_undefined_type (struct type *, int[2]);
static void add_undefined_type (struct type *, int[2]);
 
 
static int
static int
read_cpp_abbrev (struct field_info *, char **, struct type *,
read_cpp_abbrev (struct field_info *, char **, struct type *,
                 struct objfile *);
                 struct objfile *);
 
 
static char *find_name_end (char *name);
static char *find_name_end (char *name);
 
 
static int process_reference (char **string);
static int process_reference (char **string);
 
 
void stabsread_clear_cache (void);
void stabsread_clear_cache (void);
 
 
static const char vptr_name[] = "_vptr$";
static const char vptr_name[] = "_vptr$";
static const char vb_name[] = "_vb$";
static const char vb_name[] = "_vb$";
 
 
static void
static void
invalid_cpp_abbrev_complaint (const char *arg1)
invalid_cpp_abbrev_complaint (const char *arg1)
{
{
  complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
  complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
}
}
 
 
static void
static void
reg_value_complaint (int regnum, int num_regs, const char *sym)
reg_value_complaint (int regnum, int num_regs, const char *sym)
{
{
  complaint (&symfile_complaints,
  complaint (&symfile_complaints,
             _("register number %d too large (max %d) in symbol %s"),
             _("register number %d too large (max %d) in symbol %s"),
             regnum, num_regs - 1, sym);
             regnum, num_regs - 1, sym);
}
}
 
 
static void
static void
stabs_general_complaint (const char *arg1)
stabs_general_complaint (const char *arg1)
{
{
  complaint (&symfile_complaints, "%s", arg1);
  complaint (&symfile_complaints, "%s", arg1);
}
}
 
 
/* Make a list of forward references which haven't been defined.  */
/* Make a list of forward references which haven't been defined.  */
 
 
static struct type **undef_types;
static struct type **undef_types;
static int undef_types_allocated;
static int undef_types_allocated;
static int undef_types_length;
static int undef_types_length;
static struct symbol *current_symbol = NULL;
static struct symbol *current_symbol = NULL;
 
 
/* Make a list of nameless types that are undefined.
/* Make a list of nameless types that are undefined.
   This happens when another type is referenced by its number
   This happens when another type is referenced by its number
   before this type is actually defined. For instance "t(0,1)=k(0,2)"
   before this type is actually defined. For instance "t(0,1)=k(0,2)"
   and type (0,2) is defined only later.  */
   and type (0,2) is defined only later.  */
 
 
struct nat
struct nat
{
{
  int typenums[2];
  int typenums[2];
  struct type *type;
  struct type *type;
};
};
static struct nat *noname_undefs;
static struct nat *noname_undefs;
static int noname_undefs_allocated;
static int noname_undefs_allocated;
static int noname_undefs_length;
static int noname_undefs_length;
 
 
/* Check for and handle cretinous stabs symbol name continuation!  */
/* Check for and handle cretinous stabs symbol name continuation!  */
#define STABS_CONTINUE(pp,objfile)                              \
#define STABS_CONTINUE(pp,objfile)                              \
  do {                                                  \
  do {                                                  \
    if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
    if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
      *(pp) = next_symbol_text (objfile);       \
      *(pp) = next_symbol_text (objfile);       \
  } while (0)
  } while (0)


 
 
/* Look up a dbx type-number pair.  Return the address of the slot
/* Look up a dbx type-number pair.  Return the address of the slot
   where the type for that number-pair is stored.
   where the type for that number-pair is stored.
   The number-pair is in TYPENUMS.
   The number-pair is in TYPENUMS.
 
 
   This can be used for finding the type associated with that pair
   This can be used for finding the type associated with that pair
   or for associating a new type with the pair.  */
   or for associating a new type with the pair.  */
 
 
static struct type **
static struct type **
dbx_lookup_type (int typenums[2], struct objfile *objfile)
dbx_lookup_type (int typenums[2], struct objfile *objfile)
{
{
  int filenum = typenums[0];
  int filenum = typenums[0];
  int index = typenums[1];
  int index = typenums[1];
  unsigned old_len;
  unsigned old_len;
  int real_filenum;
  int real_filenum;
  struct header_file *f;
  struct header_file *f;
  int f_orig_length;
  int f_orig_length;
 
 
  if (filenum == -1)            /* -1,-1 is for temporary types.  */
  if (filenum == -1)            /* -1,-1 is for temporary types.  */
    return 0;
    return 0;
 
 
  if (filenum < 0 || filenum >= n_this_object_header_files)
  if (filenum < 0 || filenum >= n_this_object_header_files)
    {
    {
      complaint (&symfile_complaints,
      complaint (&symfile_complaints,
                 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
                 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
                 filenum, index, symnum);
                 filenum, index, symnum);
      goto error_return;
      goto error_return;
    }
    }
 
 
  if (filenum == 0)
  if (filenum == 0)
    {
    {
      if (index < 0)
      if (index < 0)
        {
        {
          /* Caller wants address of address of type.  We think
          /* Caller wants address of address of type.  We think
             that negative (rs6k builtin) types will never appear as
             that negative (rs6k builtin) types will never appear as
             "lvalues", (nor should they), so we stuff the real type
             "lvalues", (nor should they), so we stuff the real type
             pointer into a temp, and return its address.  If referenced,
             pointer into a temp, and return its address.  If referenced,
             this will do the right thing.  */
             this will do the right thing.  */
          static struct type *temp_type;
          static struct type *temp_type;
 
 
          temp_type = rs6000_builtin_type (index, objfile);
          temp_type = rs6000_builtin_type (index, objfile);
          return &temp_type;
          return &temp_type;
        }
        }
 
 
      /* Type is defined outside of header files.
      /* Type is defined outside of header files.
         Find it in this object file's type vector.  */
         Find it in this object file's type vector.  */
      if (index >= type_vector_length)
      if (index >= type_vector_length)
        {
        {
          old_len = type_vector_length;
          old_len = type_vector_length;
          if (old_len == 0)
          if (old_len == 0)
            {
            {
              type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
              type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
              type_vector = (struct type **)
              type_vector = (struct type **)
                xmalloc (type_vector_length * sizeof (struct type *));
                xmalloc (type_vector_length * sizeof (struct type *));
            }
            }
          while (index >= type_vector_length)
          while (index >= type_vector_length)
            {
            {
              type_vector_length *= 2;
              type_vector_length *= 2;
            }
            }
          type_vector = (struct type **)
          type_vector = (struct type **)
            xrealloc ((char *) type_vector,
            xrealloc ((char *) type_vector,
                      (type_vector_length * sizeof (struct type *)));
                      (type_vector_length * sizeof (struct type *)));
          memset (&type_vector[old_len], 0,
          memset (&type_vector[old_len], 0,
                  (type_vector_length - old_len) * sizeof (struct type *));
                  (type_vector_length - old_len) * sizeof (struct type *));
        }
        }
      return (&type_vector[index]);
      return (&type_vector[index]);
    }
    }
  else
  else
    {
    {
      real_filenum = this_object_header_files[filenum];
      real_filenum = this_object_header_files[filenum];
 
 
      if (real_filenum >= N_HEADER_FILES (objfile))
      if (real_filenum >= N_HEADER_FILES (objfile))
        {
        {
          static struct type *temp_type;
          static struct type *temp_type;
 
 
          warning (_("GDB internal error: bad real_filenum"));
          warning (_("GDB internal error: bad real_filenum"));
 
 
        error_return:
        error_return:
          temp_type = objfile_type (objfile)->builtin_error;
          temp_type = objfile_type (objfile)->builtin_error;
          return &temp_type;
          return &temp_type;
        }
        }
 
 
      f = HEADER_FILES (objfile) + real_filenum;
      f = HEADER_FILES (objfile) + real_filenum;
 
 
      f_orig_length = f->length;
      f_orig_length = f->length;
      if (index >= f_orig_length)
      if (index >= f_orig_length)
        {
        {
          while (index >= f->length)
          while (index >= f->length)
            {
            {
              f->length *= 2;
              f->length *= 2;
            }
            }
          f->vector = (struct type **)
          f->vector = (struct type **)
            xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
            xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
          memset (&f->vector[f_orig_length], 0,
          memset (&f->vector[f_orig_length], 0,
                  (f->length - f_orig_length) * sizeof (struct type *));
                  (f->length - f_orig_length) * sizeof (struct type *));
        }
        }
      return (&f->vector[index]);
      return (&f->vector[index]);
    }
    }
}
}
 
 
/* Make sure there is a type allocated for type numbers TYPENUMS
/* Make sure there is a type allocated for type numbers TYPENUMS
   and return the type object.
   and return the type object.
   This can create an empty (zeroed) type object.
   This can create an empty (zeroed) type object.
   TYPENUMS may be (-1, -1) to return a new type object that is not
   TYPENUMS may be (-1, -1) to return a new type object that is not
   put into the type vector, and so may not be referred to by number. */
   put into the type vector, and so may not be referred to by number. */
 
 
static struct type *
static struct type *
dbx_alloc_type (int typenums[2], struct objfile *objfile)
dbx_alloc_type (int typenums[2], struct objfile *objfile)
{
{
  struct type **type_addr;
  struct type **type_addr;
 
 
  if (typenums[0] == -1)
  if (typenums[0] == -1)
    {
    {
      return (alloc_type (objfile));
      return (alloc_type (objfile));
    }
    }
 
 
  type_addr = dbx_lookup_type (typenums, objfile);
  type_addr = dbx_lookup_type (typenums, objfile);
 
 
  /* If we are referring to a type not known at all yet,
  /* If we are referring to a type not known at all yet,
     allocate an empty type for it.
     allocate an empty type for it.
     We will fill it in later if we find out how.  */
     We will fill it in later if we find out how.  */
  if (*type_addr == 0)
  if (*type_addr == 0)
    {
    {
      *type_addr = alloc_type (objfile);
      *type_addr = alloc_type (objfile);
    }
    }
 
 
  return (*type_addr);
  return (*type_addr);
}
}
 
 
/* for all the stabs in a given stab vector, build appropriate types
/* for all the stabs in a given stab vector, build appropriate types
   and fix their symbols in given symbol vector. */
   and fix their symbols in given symbol vector. */
 
 
static void
static void
patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
                   struct objfile *objfile)
                   struct objfile *objfile)
{
{
  int ii;
  int ii;
  char *name;
  char *name;
  char *pp;
  char *pp;
  struct symbol *sym;
  struct symbol *sym;
 
 
  if (stabs)
  if (stabs)
    {
    {
 
 
      /* for all the stab entries, find their corresponding symbols and
      /* for all the stab entries, find their corresponding symbols and
         patch their types! */
         patch their types! */
 
 
      for (ii = 0; ii < stabs->count; ++ii)
      for (ii = 0; ii < stabs->count; ++ii)
        {
        {
          name = stabs->stab[ii];
          name = stabs->stab[ii];
          pp = (char *) strchr (name, ':');
          pp = (char *) strchr (name, ':');
          gdb_assert (pp);      /* Must find a ':' or game's over.  */
          gdb_assert (pp);      /* Must find a ':' or game's over.  */
          while (pp[1] == ':')
          while (pp[1] == ':')
            {
            {
              pp += 2;
              pp += 2;
              pp = (char *) strchr (pp, ':');
              pp = (char *) strchr (pp, ':');
            }
            }
          sym = find_symbol_in_list (symbols, name, pp - name);
          sym = find_symbol_in_list (symbols, name, pp - name);
          if (!sym)
          if (!sym)
            {
            {
              /* FIXME-maybe: it would be nice if we noticed whether
              /* FIXME-maybe: it would be nice if we noticed whether
                 the variable was defined *anywhere*, not just whether
                 the variable was defined *anywhere*, not just whether
                 it is defined in this compilation unit.  But neither
                 it is defined in this compilation unit.  But neither
                 xlc or GCC seem to need such a definition, and until
                 xlc or GCC seem to need such a definition, and until
                 we do psymtabs (so that the minimal symbols from all
                 we do psymtabs (so that the minimal symbols from all
                 compilation units are available now), I'm not sure
                 compilation units are available now), I'm not sure
                 how to get the information.  */
                 how to get the information.  */
 
 
              /* On xcoff, if a global is defined and never referenced,
              /* On xcoff, if a global is defined and never referenced,
                 ld will remove it from the executable.  There is then
                 ld will remove it from the executable.  There is then
                 a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
                 a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
              sym = (struct symbol *)
              sym = (struct symbol *)
                obstack_alloc (&objfile->objfile_obstack,
                obstack_alloc (&objfile->objfile_obstack,
                               sizeof (struct symbol));
                               sizeof (struct symbol));
 
 
              memset (sym, 0, sizeof (struct symbol));
              memset (sym, 0, sizeof (struct symbol));
              SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
              SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
              SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
              SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
              SYMBOL_SET_LINKAGE_NAME
              SYMBOL_SET_LINKAGE_NAME
                (sym, obsavestring (name, pp - name,
                (sym, obsavestring (name, pp - name,
                                    &objfile->objfile_obstack));
                                    &objfile->objfile_obstack));
              pp += 2;
              pp += 2;
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
                {
                {
                  /* I don't think the linker does this with functions,
                  /* I don't think the linker does this with functions,
                     so as far as I know this is never executed.
                     so as far as I know this is never executed.
                     But it doesn't hurt to check.  */
                     But it doesn't hurt to check.  */
                  SYMBOL_TYPE (sym) =
                  SYMBOL_TYPE (sym) =
                    lookup_function_type (read_type (&pp, objfile));
                    lookup_function_type (read_type (&pp, objfile));
                }
                }
              else
              else
                {
                {
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                }
                }
              add_symbol_to_list (sym, &global_symbols);
              add_symbol_to_list (sym, &global_symbols);
            }
            }
          else
          else
            {
            {
              pp += 2;
              pp += 2;
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
                {
                {
                  SYMBOL_TYPE (sym) =
                  SYMBOL_TYPE (sym) =
                    lookup_function_type (read_type (&pp, objfile));
                    lookup_function_type (read_type (&pp, objfile));
                }
                }
              else
              else
                {
                {
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                }
                }
            }
            }
        }
        }
    }
    }
}
}


 
 
/* Read a number by which a type is referred to in dbx data,
/* Read a number by which a type is referred to in dbx data,
   or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
   or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
   Just a single number N is equivalent to (0,N).
   Just a single number N is equivalent to (0,N).
   Return the two numbers by storing them in the vector TYPENUMS.
   Return the two numbers by storing them in the vector TYPENUMS.
   TYPENUMS will then be used as an argument to dbx_lookup_type.
   TYPENUMS will then be used as an argument to dbx_lookup_type.
 
 
   Returns 0 for success, -1 for error.  */
   Returns 0 for success, -1 for error.  */
 
 
static int
static int
read_type_number (char **pp, int *typenums)
read_type_number (char **pp, int *typenums)
{
{
  int nbits;
  int nbits;
  if (**pp == '(')
  if (**pp == '(')
    {
    {
      (*pp)++;
      (*pp)++;
      typenums[0] = read_huge_number (pp, ',', &nbits, 0);
      typenums[0] = read_huge_number (pp, ',', &nbits, 0);
      if (nbits != 0)
      if (nbits != 0)
        return -1;
        return -1;
      typenums[1] = read_huge_number (pp, ')', &nbits, 0);
      typenums[1] = read_huge_number (pp, ')', &nbits, 0);
      if (nbits != 0)
      if (nbits != 0)
        return -1;
        return -1;
    }
    }
  else
  else
    {
    {
      typenums[0] = 0;
      typenums[0] = 0;
      typenums[1] = read_huge_number (pp, 0, &nbits, 0);
      typenums[1] = read_huge_number (pp, 0, &nbits, 0);
      if (nbits != 0)
      if (nbits != 0)
        return -1;
        return -1;
    }
    }
  return 0;
  return 0;
}
}


 
 
#define VISIBILITY_PRIVATE      '0'     /* Stabs character for private field */
#define VISIBILITY_PRIVATE      '0'     /* Stabs character for private field */
#define VISIBILITY_PROTECTED    '1'     /* Stabs character for protected fld */
#define VISIBILITY_PROTECTED    '1'     /* Stabs character for protected fld */
#define VISIBILITY_PUBLIC       '2'     /* Stabs character for public field */
#define VISIBILITY_PUBLIC       '2'     /* Stabs character for public field */
#define VISIBILITY_IGNORE       '9'     /* Optimized out or zero length */
#define VISIBILITY_IGNORE       '9'     /* Optimized out or zero length */
 
 
/* Structure for storing pointers to reference definitions for fast lookup
/* Structure for storing pointers to reference definitions for fast lookup
   during "process_later". */
   during "process_later". */
 
 
struct ref_map
struct ref_map
{
{
  char *stabs;
  char *stabs;
  CORE_ADDR value;
  CORE_ADDR value;
  struct symbol *sym;
  struct symbol *sym;
};
};
 
 
#define MAX_CHUNK_REFS 100
#define MAX_CHUNK_REFS 100
#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
 
 
static struct ref_map *ref_map;
static struct ref_map *ref_map;
 
 
/* Ptr to free cell in chunk's linked list. */
/* Ptr to free cell in chunk's linked list. */
static int ref_count = 0;
static int ref_count = 0;
 
 
/* Number of chunks malloced. */
/* Number of chunks malloced. */
static int ref_chunk = 0;
static int ref_chunk = 0;
 
 
/* This file maintains a cache of stabs aliases found in the symbol
/* This file maintains a cache of stabs aliases found in the symbol
   table. If the symbol table changes, this cache must be cleared
   table. If the symbol table changes, this cache must be cleared
   or we are left holding onto data in invalid obstacks. */
   or we are left holding onto data in invalid obstacks. */
void
void
stabsread_clear_cache (void)
stabsread_clear_cache (void)
{
{
  ref_count = 0;
  ref_count = 0;
  ref_chunk = 0;
  ref_chunk = 0;
}
}
 
 
/* Create array of pointers mapping refids to symbols and stab strings.
/* Create array of pointers mapping refids to symbols and stab strings.
   Add pointers to reference definition symbols and/or their values as we
   Add pointers to reference definition symbols and/or their values as we
   find them, using their reference numbers as our index.
   find them, using their reference numbers as our index.
   These will be used later when we resolve references. */
   These will be used later when we resolve references. */
void
void
ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
{
{
  if (ref_count == 0)
  if (ref_count == 0)
    ref_chunk = 0;
    ref_chunk = 0;
  if (refnum >= ref_count)
  if (refnum >= ref_count)
    ref_count = refnum + 1;
    ref_count = refnum + 1;
  if (ref_count > ref_chunk * MAX_CHUNK_REFS)
  if (ref_count > ref_chunk * MAX_CHUNK_REFS)
    {
    {
      int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
      int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
      int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
      int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
      ref_map = (struct ref_map *)
      ref_map = (struct ref_map *)
        xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
        xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
      memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
      memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
      ref_chunk += new_chunks;
      ref_chunk += new_chunks;
    }
    }
  ref_map[refnum].stabs = stabs;
  ref_map[refnum].stabs = stabs;
  ref_map[refnum].sym = sym;
  ref_map[refnum].sym = sym;
  ref_map[refnum].value = value;
  ref_map[refnum].value = value;
}
}
 
 
/* Return defined sym for the reference REFNUM.  */
/* Return defined sym for the reference REFNUM.  */
struct symbol *
struct symbol *
ref_search (int refnum)
ref_search (int refnum)
{
{
  if (refnum < 0 || refnum > ref_count)
  if (refnum < 0 || refnum > ref_count)
    return 0;
    return 0;
  return ref_map[refnum].sym;
  return ref_map[refnum].sym;
}
}
 
 
/* Parse a reference id in STRING and return the resulting
/* Parse a reference id in STRING and return the resulting
   reference number.  Move STRING beyond the reference id.  */
   reference number.  Move STRING beyond the reference id.  */
 
 
static int
static int
process_reference (char **string)
process_reference (char **string)
{
{
  char *p;
  char *p;
  int refnum = 0;
  int refnum = 0;
 
 
  if (**string != '#')
  if (**string != '#')
    return 0;
    return 0;
 
 
  /* Advance beyond the initial '#'.  */
  /* Advance beyond the initial '#'.  */
  p = *string + 1;
  p = *string + 1;
 
 
  /* Read number as reference id. */
  /* Read number as reference id. */
  while (*p && isdigit (*p))
  while (*p && isdigit (*p))
    {
    {
      refnum = refnum * 10 + *p - '0';
      refnum = refnum * 10 + *p - '0';
      p++;
      p++;
    }
    }
  *string = p;
  *string = p;
  return refnum;
  return refnum;
}
}
 
 
/* If STRING defines a reference, store away a pointer to the reference
/* If STRING defines a reference, store away a pointer to the reference
   definition for later use.  Return the reference number.  */
   definition for later use.  Return the reference number.  */
 
 
int
int
symbol_reference_defined (char **string)
symbol_reference_defined (char **string)
{
{
  char *p = *string;
  char *p = *string;
  int refnum = 0;
  int refnum = 0;
 
 
  refnum = process_reference (&p);
  refnum = process_reference (&p);
 
 
  /* Defining symbols end in '=' */
  /* Defining symbols end in '=' */
  if (*p == '=')
  if (*p == '=')
    {
    {
      /* Symbol is being defined here. */
      /* Symbol is being defined here. */
      *string = p + 1;
      *string = p + 1;
      return refnum;
      return refnum;
    }
    }
  else
  else
    {
    {
      /* Must be a reference.   Either the symbol has already been defined,
      /* Must be a reference.   Either the symbol has already been defined,
         or this is a forward reference to it.  */
         or this is a forward reference to it.  */
      *string = p;
      *string = p;
      return -1;
      return -1;
    }
    }
}
}
 
 
static int
static int
stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
{
{
  int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
  int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
 
 
  if (regno >= gdbarch_num_regs (gdbarch)
  if (regno >= gdbarch_num_regs (gdbarch)
                + gdbarch_num_pseudo_regs (gdbarch))
                + gdbarch_num_pseudo_regs (gdbarch))
    {
    {
      reg_value_complaint (regno,
      reg_value_complaint (regno,
                           gdbarch_num_regs (gdbarch)
                           gdbarch_num_regs (gdbarch)
                             + gdbarch_num_pseudo_regs (gdbarch),
                             + gdbarch_num_pseudo_regs (gdbarch),
                           SYMBOL_PRINT_NAME (sym));
                           SYMBOL_PRINT_NAME (sym));
 
 
      regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
      regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
    }
    }
 
 
  return regno;
  return regno;
}
}
 
 
static const struct symbol_register_ops stab_register_funcs = {
static const struct symbol_register_ops stab_register_funcs = {
  stab_reg_to_regnum
  stab_reg_to_regnum
};
};
 
 
struct symbol *
struct symbol *
define_symbol (CORE_ADDR valu, char *string, int desc, int type,
define_symbol (CORE_ADDR valu, char *string, int desc, int type,
               struct objfile *objfile)
               struct objfile *objfile)
{
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  struct symbol *sym;
  struct symbol *sym;
  char *p = (char *) find_name_end (string);
  char *p = (char *) find_name_end (string);
  int deftype;
  int deftype;
  int synonym = 0;
  int synonym = 0;
  int i;
  int i;
  char *new_name = NULL;
  char *new_name = NULL;
 
 
  /* We would like to eliminate nameless symbols, but keep their types.
  /* We would like to eliminate nameless symbols, but keep their types.
     E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
     E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
     to type 2, but, should not create a symbol to address that type. Since
     to type 2, but, should not create a symbol to address that type. Since
     the symbol will be nameless, there is no way any user can refer to it. */
     the symbol will be nameless, there is no way any user can refer to it. */
 
 
  int nameless;
  int nameless;
 
 
  /* Ignore syms with empty names.  */
  /* Ignore syms with empty names.  */
  if (string[0] == 0)
  if (string[0] == 0)
    return 0;
    return 0;
 
 
  /* Ignore old-style symbols from cc -go  */
  /* Ignore old-style symbols from cc -go  */
  if (p == 0)
  if (p == 0)
    return 0;
    return 0;
 
 
  while (p[1] == ':')
  while (p[1] == ':')
    {
    {
      p += 2;
      p += 2;
      p = strchr (p, ':');
      p = strchr (p, ':');
    }
    }
 
 
  /* If a nameless stab entry, all we need is the type, not the symbol.
  /* If a nameless stab entry, all we need is the type, not the symbol.
     e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
     e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
  nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
  nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
 
 
  current_symbol = sym = (struct symbol *)
  current_symbol = sym = (struct symbol *)
    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
 
 
  switch (type & N_TYPE)
  switch (type & N_TYPE)
    {
    {
    case N_TEXT:
    case N_TEXT:
      SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
      SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
      break;
      break;
    case N_DATA:
    case N_DATA:
      SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
      SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
      break;
      break;
    case N_BSS:
    case N_BSS:
      SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
      SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
      break;
      break;
    }
    }
 
 
  if (processing_gcc_compilation)
  if (processing_gcc_compilation)
    {
    {
      /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
      /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
         number of bytes occupied by a type or object, which we ignore.  */
         number of bytes occupied by a type or object, which we ignore.  */
      SYMBOL_LINE (sym) = desc;
      SYMBOL_LINE (sym) = desc;
    }
    }
  else
  else
    {
    {
      SYMBOL_LINE (sym) = 0;     /* unknown */
      SYMBOL_LINE (sym) = 0;     /* unknown */
    }
    }
 
 
  if (is_cplus_marker (string[0]))
  if (is_cplus_marker (string[0]))
    {
    {
      /* Special GNU C++ names.  */
      /* Special GNU C++ names.  */
      switch (string[1])
      switch (string[1])
        {
        {
        case 't':
        case 't':
          SYMBOL_SET_LINKAGE_NAME (sym, "this");
          SYMBOL_SET_LINKAGE_NAME (sym, "this");
          break;
          break;
 
 
        case 'v':               /* $vtbl_ptr_type */
        case 'v':               /* $vtbl_ptr_type */
          goto normal;
          goto normal;
 
 
        case 'e':
        case 'e':
          SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
          SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
          break;
          break;
 
 
        case '_':
        case '_':
          /* This was an anonymous type that was never fixed up.  */
          /* This was an anonymous type that was never fixed up.  */
          goto normal;
          goto normal;
 
 
        case 'X':
        case 'X':
          /* SunPRO (3.0 at least) static variable encoding.  */
          /* SunPRO (3.0 at least) static variable encoding.  */
          if (gdbarch_static_transform_name_p (gdbarch))
          if (gdbarch_static_transform_name_p (gdbarch))
            goto normal;
            goto normal;
          /* ... fall through ... */
          /* ... fall through ... */
 
 
        default:
        default:
          complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
          complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
                     string);
                     string);
          goto normal;          /* Do *something* with it */
          goto normal;          /* Do *something* with it */
        }
        }
    }
    }
  else
  else
    {
    {
    normal:
    normal:
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      if (SYMBOL_LANGUAGE (sym) == language_cplus)
      if (SYMBOL_LANGUAGE (sym) == language_cplus)
        {
        {
          char *name = alloca (p - string + 1);
          char *name = alloca (p - string + 1);
          memcpy (name, string, p - string);
          memcpy (name, string, p - string);
          name[p - string] = '\0';
          name[p - string] = '\0';
          new_name = cp_canonicalize_string (name);
          new_name = cp_canonicalize_string (name);
          cp_scan_for_anonymous_namespaces (sym);
          cp_scan_for_anonymous_namespaces (sym);
        }
        }
      if (new_name != NULL)
      if (new_name != NULL)
        {
        {
          SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
          SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
          xfree (new_name);
          xfree (new_name);
        }
        }
      else
      else
        SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
        SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
    }
    }
  p++;
  p++;
 
 
  /* Determine the type of name being defined.  */
  /* Determine the type of name being defined.  */
#if 0
#if 0
  /* Getting GDB to correctly skip the symbol on an undefined symbol
  /* Getting GDB to correctly skip the symbol on an undefined symbol
     descriptor and not ever dump core is a very dodgy proposition if
     descriptor and not ever dump core is a very dodgy proposition if
     we do things this way.  I say the acorn RISC machine can just
     we do things this way.  I say the acorn RISC machine can just
     fix their compiler.  */
     fix their compiler.  */
  /* The Acorn RISC machine's compiler can put out locals that don't
  /* The Acorn RISC machine's compiler can put out locals that don't
     start with "234=" or "(3,4)=", so assume anything other than the
     start with "234=" or "(3,4)=", so assume anything other than the
     deftypes we know how to handle is a local.  */
     deftypes we know how to handle is a local.  */
  if (!strchr ("cfFGpPrStTvVXCR", *p))
  if (!strchr ("cfFGpPrStTvVXCR", *p))
#else
#else
  if (isdigit (*p) || *p == '(' || *p == '-')
  if (isdigit (*p) || *p == '(' || *p == '-')
#endif
#endif
    deftype = 'l';
    deftype = 'l';
  else
  else
    deftype = *p++;
    deftype = *p++;
 
 
  switch (deftype)
  switch (deftype)
    {
    {
    case 'c':
    case 'c':
      /* c is a special case, not followed by a type-number.
      /* c is a special case, not followed by a type-number.
         SYMBOL:c=iVALUE for an integer constant symbol.
         SYMBOL:c=iVALUE for an integer constant symbol.
         SYMBOL:c=rVALUE for a floating constant symbol.
         SYMBOL:c=rVALUE for a floating constant symbol.
         SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
         SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
         e.g. "b:c=e6,0" for "const b = blob1"
         e.g. "b:c=e6,0" for "const b = blob1"
         (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
         (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
      if (*p != '=')
      if (*p != '=')
        {
        {
          SYMBOL_CLASS (sym) = LOC_CONST;
          SYMBOL_CLASS (sym) = LOC_CONST;
          SYMBOL_TYPE (sym) = error_type (&p, objfile);
          SYMBOL_TYPE (sym) = error_type (&p, objfile);
          SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
          SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
          add_symbol_to_list (sym, &file_symbols);
          add_symbol_to_list (sym, &file_symbols);
          return sym;
          return sym;
        }
        }
      ++p;
      ++p;
      switch (*p++)
      switch (*p++)
        {
        {
        case 'r':
        case 'r':
          {
          {
            double d = atof (p);
            double d = atof (p);
            gdb_byte *dbl_valu;
            gdb_byte *dbl_valu;
            struct type *dbl_type;
            struct type *dbl_type;
 
 
            /* FIXME-if-picky-about-floating-accuracy: Should be using
            /* FIXME-if-picky-about-floating-accuracy: Should be using
               target arithmetic to get the value.  real.c in GCC
               target arithmetic to get the value.  real.c in GCC
               probably has the necessary code.  */
               probably has the necessary code.  */
 
 
            dbl_type = objfile_type (objfile)->builtin_double;
            dbl_type = objfile_type (objfile)->builtin_double;
            dbl_valu =
            dbl_valu =
              obstack_alloc (&objfile->objfile_obstack,
              obstack_alloc (&objfile->objfile_obstack,
                             TYPE_LENGTH (dbl_type));
                             TYPE_LENGTH (dbl_type));
            store_typed_floating (dbl_valu, dbl_type, d);
            store_typed_floating (dbl_valu, dbl_type, d);
 
 
            SYMBOL_TYPE (sym) = dbl_type;
            SYMBOL_TYPE (sym) = dbl_type;
            SYMBOL_VALUE_BYTES (sym) = dbl_valu;
            SYMBOL_VALUE_BYTES (sym) = dbl_valu;
            SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
            SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
          }
          }
          break;
          break;
        case 'i':
        case 'i':
          {
          {
            /* Defining integer constants this way is kind of silly,
            /* Defining integer constants this way is kind of silly,
               since 'e' constants allows the compiler to give not
               since 'e' constants allows the compiler to give not
               only the value, but the type as well.  C has at least
               only the value, but the type as well.  C has at least
               int, long, unsigned int, and long long as constant
               int, long, unsigned int, and long long as constant
               types; other languages probably should have at least
               types; other languages probably should have at least
               unsigned as well as signed constants.  */
               unsigned as well as signed constants.  */
 
 
            SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
            SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
            SYMBOL_VALUE (sym) = atoi (p);
            SYMBOL_VALUE (sym) = atoi (p);
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_CLASS (sym) = LOC_CONST;
          }
          }
          break;
          break;
        case 'e':
        case 'e':
          /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
          /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
             can be represented as integral.
             can be represented as integral.
             e.g. "b:c=e6,0" for "const b = blob1"
             e.g. "b:c=e6,0" for "const b = blob1"
             (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
             (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
          {
          {
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_TYPE (sym) = read_type (&p, objfile);
            SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
            if (*p != ',')
            if (*p != ',')
              {
              {
                SYMBOL_TYPE (sym) = error_type (&p, objfile);
                SYMBOL_TYPE (sym) = error_type (&p, objfile);
                break;
                break;
              }
              }
            ++p;
            ++p;
 
 
            /* If the value is too big to fit in an int (perhaps because
            /* If the value is too big to fit in an int (perhaps because
               it is unsigned), or something like that, we silently get
               it is unsigned), or something like that, we silently get
               a bogus value.  The type and everything else about it is
               a bogus value.  The type and everything else about it is
               correct.  Ideally, we should be using whatever we have
               correct.  Ideally, we should be using whatever we have
               available for parsing unsigned and long long values,
               available for parsing unsigned and long long values,
               however.  */
               however.  */
            SYMBOL_VALUE (sym) = atoi (p);
            SYMBOL_VALUE (sym) = atoi (p);
          }
          }
          break;
          break;
        default:
        default:
          {
          {
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_TYPE (sym) = error_type (&p, objfile);
            SYMBOL_TYPE (sym) = error_type (&p, objfile);
          }
          }
        }
        }
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      return sym;
      return sym;
 
 
    case 'C':
    case 'C':
      /* The name of a caught exception.  */
      /* The name of a caught exception.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_LABEL;
      SYMBOL_CLASS (sym) = LOC_LABEL;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'f':
    case 'f':
      /* A static function definition.  */
      /* A static function definition.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      /* fall into process_function_types.  */
      /* fall into process_function_types.  */
 
 
    process_function_types:
    process_function_types:
      /* Function result types are described as the result type in stabs.
      /* Function result types are described as the result type in stabs.
         We need to convert this to the function-returning-type-X type
         We need to convert this to the function-returning-type-X type
         in GDB.  E.g. "int" is converted to "function returning int".  */
         in GDB.  E.g. "int" is converted to "function returning int".  */
      if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
      if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
        SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
        SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
 
 
      /* All functions in C++ have prototypes.  Stabs does not offer an
      /* All functions in C++ have prototypes.  Stabs does not offer an
         explicit way to identify prototyped or unprototyped functions,
         explicit way to identify prototyped or unprototyped functions,
         but both GCC and Sun CC emit stabs for the "call-as" type rather
         but both GCC and Sun CC emit stabs for the "call-as" type rather
         than the "declared-as" type for unprototyped functions, so
         than the "declared-as" type for unprototyped functions, so
         we treat all functions as if they were prototyped.  This is used
         we treat all functions as if they were prototyped.  This is used
         primarily for promotion when calling the function from GDB.  */
         primarily for promotion when calling the function from GDB.  */
      TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
      TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
 
 
      /* fall into process_prototype_types */
      /* fall into process_prototype_types */
 
 
    process_prototype_types:
    process_prototype_types:
      /* Sun acc puts declared types of arguments here.  */
      /* Sun acc puts declared types of arguments here.  */
      if (*p == ';')
      if (*p == ';')
        {
        {
          struct type *ftype = SYMBOL_TYPE (sym);
          struct type *ftype = SYMBOL_TYPE (sym);
          int nsemi = 0;
          int nsemi = 0;
          int nparams = 0;
          int nparams = 0;
          char *p1 = p;
          char *p1 = p;
 
 
          /* Obtain a worst case guess for the number of arguments
          /* Obtain a worst case guess for the number of arguments
             by counting the semicolons.  */
             by counting the semicolons.  */
          while (*p1)
          while (*p1)
            {
            {
              if (*p1++ == ';')
              if (*p1++ == ';')
                nsemi++;
                nsemi++;
            }
            }
 
 
          /* Allocate parameter information fields and fill them in. */
          /* Allocate parameter information fields and fill them in. */
          TYPE_FIELDS (ftype) = (struct field *)
          TYPE_FIELDS (ftype) = (struct field *)
            TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
            TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
          while (*p++ == ';')
          while (*p++ == ';')
            {
            {
              struct type *ptype;
              struct type *ptype;
 
 
              /* A type number of zero indicates the start of varargs.
              /* A type number of zero indicates the start of varargs.
                 FIXME: GDB currently ignores vararg functions.  */
                 FIXME: GDB currently ignores vararg functions.  */
              if (p[0] == '0' && p[1] == '\0')
              if (p[0] == '0' && p[1] == '\0')
                break;
                break;
              ptype = read_type (&p, objfile);
              ptype = read_type (&p, objfile);
 
 
              /* The Sun compilers mark integer arguments, which should
              /* The Sun compilers mark integer arguments, which should
                 be promoted to the width of the calling conventions, with
                 be promoted to the width of the calling conventions, with
                 a type which references itself. This type is turned into
                 a type which references itself. This type is turned into
                 a TYPE_CODE_VOID type by read_type, and we have to turn
                 a TYPE_CODE_VOID type by read_type, and we have to turn
                 it back into builtin_int here.
                 it back into builtin_int here.
                 FIXME: Do we need a new builtin_promoted_int_arg ?  */
                 FIXME: Do we need a new builtin_promoted_int_arg ?  */
              if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
              if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
                ptype = objfile_type (objfile)->builtin_int;
                ptype = objfile_type (objfile)->builtin_int;
              TYPE_FIELD_TYPE (ftype, nparams) = ptype;
              TYPE_FIELD_TYPE (ftype, nparams) = ptype;
              TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
              TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
            }
            }
          TYPE_NFIELDS (ftype) = nparams;
          TYPE_NFIELDS (ftype) = nparams;
          TYPE_PROTOTYPED (ftype) = 1;
          TYPE_PROTOTYPED (ftype) = 1;
        }
        }
      break;
      break;
 
 
    case 'F':
    case 'F':
      /* A global function definition.  */
      /* A global function definition.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &global_symbols);
      add_symbol_to_list (sym, &global_symbols);
      goto process_function_types;
      goto process_function_types;
 
 
    case 'G':
    case 'G':
      /* For a class G (global) symbol, it appears that the
      /* For a class G (global) symbol, it appears that the
         value is not correct.  It is necessary to search for the
         value is not correct.  It is necessary to search for the
         corresponding linker definition to find the value.
         corresponding linker definition to find the value.
         These definitions appear at the end of the namelist.  */
         These definitions appear at the end of the namelist.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      /* Don't add symbol references to global_sym_chain.
      /* Don't add symbol references to global_sym_chain.
         Symbol references don't have valid names and wont't match up with
         Symbol references don't have valid names and wont't match up with
         minimal symbols when the global_sym_chain is relocated.
         minimal symbols when the global_sym_chain is relocated.
         We'll fixup symbol references when we fixup the defining symbol.  */
         We'll fixup symbol references when we fixup the defining symbol.  */
      if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
      if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
        {
        {
          i = hashname (SYMBOL_LINKAGE_NAME (sym));
          i = hashname (SYMBOL_LINKAGE_NAME (sym));
          SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
          SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
          global_sym_chain[i] = sym;
          global_sym_chain[i] = sym;
        }
        }
      add_symbol_to_list (sym, &global_symbols);
      add_symbol_to_list (sym, &global_symbols);
      break;
      break;
 
 
      /* This case is faked by a conditional above,
      /* This case is faked by a conditional above,
         when there is no code letter in the dbx data.
         when there is no code letter in the dbx data.
         Dbx data never actually contains 'l'.  */
         Dbx data never actually contains 'l'.  */
    case 's':
    case 's':
    case 'l':
    case 'l':
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'p':
    case 'p':
      if (*p == 'F')
      if (*p == 'F')
        /* pF is a two-letter code that means a function parameter in Fortran.
        /* pF is a two-letter code that means a function parameter in Fortran.
           The type-number specifies the type of the return value.
           The type-number specifies the type of the return value.
           Translate it into a pointer-to-function type.  */
           Translate it into a pointer-to-function type.  */
        {
        {
          p++;
          p++;
          SYMBOL_TYPE (sym)
          SYMBOL_TYPE (sym)
            = lookup_pointer_type
            = lookup_pointer_type
            (lookup_function_type (read_type (&p, objfile)));
            (lookup_function_type (read_type (&p, objfile)));
        }
        }
      else
      else
        SYMBOL_TYPE (sym) = read_type (&p, objfile);
        SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
      SYMBOL_CLASS (sym) = LOC_ARG;
      SYMBOL_CLASS (sym) = LOC_ARG;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
 
 
      if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
      if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
        {
        {
          /* On little-endian machines, this crud is never necessary,
          /* On little-endian machines, this crud is never necessary,
             and, if the extra bytes contain garbage, is harmful.  */
             and, if the extra bytes contain garbage, is harmful.  */
          break;
          break;
        }
        }
 
 
      /* If it's gcc-compiled, if it says `short', believe it.  */
      /* If it's gcc-compiled, if it says `short', believe it.  */
      if (processing_gcc_compilation
      if (processing_gcc_compilation
          || gdbarch_believe_pcc_promotion (gdbarch))
          || gdbarch_believe_pcc_promotion (gdbarch))
        break;
        break;
 
 
      if (!gdbarch_believe_pcc_promotion (gdbarch))
      if (!gdbarch_believe_pcc_promotion (gdbarch))
        {
        {
          /* If PCC says a parameter is a short or a char, it is
          /* If PCC says a parameter is a short or a char, it is
             really an int.  */
             really an int.  */
          if (TYPE_LENGTH (SYMBOL_TYPE (sym))
          if (TYPE_LENGTH (SYMBOL_TYPE (sym))
              < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
              < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
              && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
              && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
            {
            {
              SYMBOL_TYPE (sym) =
              SYMBOL_TYPE (sym) =
                TYPE_UNSIGNED (SYMBOL_TYPE (sym))
                TYPE_UNSIGNED (SYMBOL_TYPE (sym))
                ? objfile_type (objfile)->builtin_unsigned_int
                ? objfile_type (objfile)->builtin_unsigned_int
                : objfile_type (objfile)->builtin_int;
                : objfile_type (objfile)->builtin_int;
            }
            }
          break;
          break;
        }
        }
 
 
    case 'P':
    case 'P':
      /* acc seems to use P to declare the prototypes of functions that
      /* acc seems to use P to declare the prototypes of functions that
         are referenced by this file.  gdb is not prepared to deal
         are referenced by this file.  gdb is not prepared to deal
         with this extra information.  FIXME, it ought to.  */
         with this extra information.  FIXME, it ought to.  */
      if (type == N_FUN)
      if (type == N_FUN)
        {
        {
          SYMBOL_TYPE (sym) = read_type (&p, objfile);
          SYMBOL_TYPE (sym) = read_type (&p, objfile);
          goto process_prototype_types;
          goto process_prototype_types;
        }
        }
      /*FALLTHROUGH */
      /*FALLTHROUGH */
 
 
    case 'R':
    case 'R':
      /* Parameter which is in a register.  */
      /* Parameter which is in a register.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
      SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'r':
    case 'r':
      /* Register variable (either global or local).  */
      /* Register variable (either global or local).  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
      SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      if (within_function)
      if (within_function)
        {
        {
          /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
          /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
             the same name to represent an argument passed in a
             the same name to represent an argument passed in a
             register.  GCC uses 'P' for the same case.  So if we find
             register.  GCC uses 'P' for the same case.  So if we find
             such a symbol pair we combine it into one 'P' symbol.
             such a symbol pair we combine it into one 'P' symbol.
             For Sun cc we need to do this regardless of
             For Sun cc we need to do this regardless of
             stabs_argument_has_addr, because the compiler puts out
             stabs_argument_has_addr, because the compiler puts out
             the 'p' symbol even if it never saves the argument onto
             the 'p' symbol even if it never saves the argument onto
             the stack.
             the stack.
 
 
             On most machines, we want to preserve both symbols, so
             On most machines, we want to preserve both symbols, so
             that we can still get information about what is going on
             that we can still get information about what is going on
             with the stack (VAX for computing args_printed, using
             with the stack (VAX for computing args_printed, using
             stack slots instead of saved registers in backtraces,
             stack slots instead of saved registers in backtraces,
             etc.).
             etc.).
 
 
             Note that this code illegally combines
             Note that this code illegally combines
             main(argc) struct foo argc; { register struct foo argc; }
             main(argc) struct foo argc; { register struct foo argc; }
             but this case is considered pathological and causes a warning
             but this case is considered pathological and causes a warning
             from a decent compiler.  */
             from a decent compiler.  */
 
 
          if (local_symbols
          if (local_symbols
              && local_symbols->nsyms > 0
              && local_symbols->nsyms > 0
              && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
              && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
            {
            {
              struct symbol *prev_sym;
              struct symbol *prev_sym;
              prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
              prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
              if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
              if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
                   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
                   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
                  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
                  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
                             SYMBOL_LINKAGE_NAME (sym)) == 0)
                             SYMBOL_LINKAGE_NAME (sym)) == 0)
                {
                {
                  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
                  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
                  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
                  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
                  /* Use the type from the LOC_REGISTER; that is the type
                  /* Use the type from the LOC_REGISTER; that is the type
                     that is actually in that register.  */
                     that is actually in that register.  */
                  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
                  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
                  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
                  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
                  sym = prev_sym;
                  sym = prev_sym;
                  break;
                  break;
                }
                }
            }
            }
          add_symbol_to_list (sym, &local_symbols);
          add_symbol_to_list (sym, &local_symbols);
        }
        }
      else
      else
        add_symbol_to_list (sym, &file_symbols);
        add_symbol_to_list (sym, &file_symbols);
      break;
      break;
 
 
    case 'S':
    case 'S':
      /* Static symbol at top level of file */
      /* Static symbol at top level of file */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      if (gdbarch_static_transform_name_p (gdbarch)
      if (gdbarch_static_transform_name_p (gdbarch)
          && gdbarch_static_transform_name (gdbarch,
          && gdbarch_static_transform_name (gdbarch,
                                            SYMBOL_LINKAGE_NAME (sym))
                                            SYMBOL_LINKAGE_NAME (sym))
             != SYMBOL_LINKAGE_NAME (sym))
             != SYMBOL_LINKAGE_NAME (sym))
        {
        {
          struct minimal_symbol *msym;
          struct minimal_symbol *msym;
          msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
          msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
          if (msym != NULL)
          if (msym != NULL)
            {
            {
              char *new_name = gdbarch_static_transform_name
              char *new_name = gdbarch_static_transform_name
                (gdbarch, SYMBOL_LINKAGE_NAME (sym));
                (gdbarch, SYMBOL_LINKAGE_NAME (sym));
              SYMBOL_SET_LINKAGE_NAME (sym, new_name);
              SYMBOL_SET_LINKAGE_NAME (sym, new_name);
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
            }
            }
        }
        }
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      break;
      break;
 
 
    case 't':
    case 't':
      /* In Ada, there is no distinction between typedef and non-typedef;
      /* In Ada, there is no distinction between typedef and non-typedef;
         any type declaration implicitly has the equivalent of a typedef,
         any type declaration implicitly has the equivalent of a typedef,
         and thus 't' is in fact equivalent to 'Tt'.
         and thus 't' is in fact equivalent to 'Tt'.
 
 
         Therefore, for Ada units, we check the character immediately
         Therefore, for Ada units, we check the character immediately
         before the 't', and if we do not find a 'T', then make sure to
         before the 't', and if we do not find a 'T', then make sure to
         create the associated symbol in the STRUCT_DOMAIN ('t' definitions
         create the associated symbol in the STRUCT_DOMAIN ('t' definitions
         will be stored in the VAR_DOMAIN).  If the symbol was indeed
         will be stored in the VAR_DOMAIN).  If the symbol was indeed
         defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
         defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
         elsewhere, so we don't need to take care of that.
         elsewhere, so we don't need to take care of that.
 
 
         This is important to do, because of forward references:
         This is important to do, because of forward references:
         The cleanup of undefined types stored in undef_types only uses
         The cleanup of undefined types stored in undef_types only uses
         STRUCT_DOMAIN symbols to perform the replacement.  */
         STRUCT_DOMAIN symbols to perform the replacement.  */
      synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
      synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
 
 
      /* Typedef */
      /* Typedef */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
      /* For a nameless type, we don't want a create a symbol, thus we
      /* For a nameless type, we don't want a create a symbol, thus we
         did not use `sym'. Return without further processing. */
         did not use `sym'. Return without further processing. */
      if (nameless)
      if (nameless)
        return NULL;
        return NULL;
 
 
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      /* C++ vagaries: we may have a type which is derived from
      /* C++ vagaries: we may have a type which is derived from
         a base type which did not have its name defined when the
         a base type which did not have its name defined when the
         derived class was output.  We fill in the derived class's
         derived class was output.  We fill in the derived class's
         base part member's name here in that case.  */
         base part member's name here in that case.  */
      if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
      if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
        if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
        if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
             || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
             || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
            && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
            && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
          {
          {
            int j;
            int j;
            for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
            for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
              if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
              if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
                TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
                TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
                  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
                  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
          }
          }
 
 
      if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
      if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
        {
        {
          /* gcc-2.6 or later (when using -fvtable-thunks)
          /* gcc-2.6 or later (when using -fvtable-thunks)
             emits a unique named type for a vtable entry.
             emits a unique named type for a vtable entry.
             Some gdb code depends on that specific name. */
             Some gdb code depends on that specific name. */
          extern const char vtbl_ptr_name[];
          extern const char vtbl_ptr_name[];
 
 
          if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
          if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
               && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
               && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
              || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
              || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
            {
            {
              /* If we are giving a name to a type such as "pointer to
              /* If we are giving a name to a type such as "pointer to
                 foo" or "function returning foo", we better not set
                 foo" or "function returning foo", we better not set
                 the TYPE_NAME.  If the program contains "typedef char
                 the TYPE_NAME.  If the program contains "typedef char
                 *caddr_t;", we don't want all variables of type char
                 *caddr_t;", we don't want all variables of type char
                 * to print as caddr_t.  This is not just a
                 * to print as caddr_t.  This is not just a
                 consequence of GDB's type management; PCC and GCC (at
                 consequence of GDB's type management; PCC and GCC (at
                 least through version 2.4) both output variables of
                 least through version 2.4) both output variables of
                 either type char * or caddr_t with the type number
                 either type char * or caddr_t with the type number
                 defined in the 't' symbol for caddr_t.  If a future
                 defined in the 't' symbol for caddr_t.  If a future
                 compiler cleans this up it GDB is not ready for it
                 compiler cleans this up it GDB is not ready for it
                 yet, but if it becomes ready we somehow need to
                 yet, but if it becomes ready we somehow need to
                 disable this check (without breaking the PCC/GCC2.4
                 disable this check (without breaking the PCC/GCC2.4
                 case).
                 case).
 
 
                 Sigh.
                 Sigh.
 
 
                 Fortunately, this check seems not to be necessary
                 Fortunately, this check seems not to be necessary
                 for anything except pointers or functions.  */
                 for anything except pointers or functions.  */
              /* ezannoni: 2000-10-26. This seems to apply for
              /* ezannoni: 2000-10-26. This seems to apply for
                 versions of gcc older than 2.8. This was the original
                 versions of gcc older than 2.8. This was the original
                 problem: with the following code gdb would tell that
                 problem: with the following code gdb would tell that
                 the type for name1 is caddr_t, and func is char()
                 the type for name1 is caddr_t, and func is char()
                 typedef char *caddr_t;
                 typedef char *caddr_t;
                 char *name2;
                 char *name2;
                 struct x
                 struct x
                 {
                 {
                 char *name1;
                 char *name1;
                 } xx;
                 } xx;
                 char *func()
                 char *func()
                 {
                 {
                 }
                 }
                 main () {}
                 main () {}
                 */
                 */
 
 
              /* Pascal accepts names for pointer types. */
              /* Pascal accepts names for pointer types. */
              if (current_subfile->language == language_pascal)
              if (current_subfile->language == language_pascal)
                {
                {
                  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
                  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
                }
                }
            }
            }
          else
          else
            TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
            TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
        }
        }
 
 
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
 
 
      if (synonym)
      if (synonym)
        {
        {
          /* Create the STRUCT_DOMAIN clone.  */
          /* Create the STRUCT_DOMAIN clone.  */
          struct symbol *struct_sym = (struct symbol *)
          struct symbol *struct_sym = (struct symbol *)
            obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
            obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
 
 
          *struct_sym = *sym;
          *struct_sym = *sym;
          SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
          SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
          SYMBOL_VALUE (struct_sym) = valu;
          SYMBOL_VALUE (struct_sym) = valu;
          SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
          SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
          if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
          if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
            TYPE_NAME (SYMBOL_TYPE (sym))
            TYPE_NAME (SYMBOL_TYPE (sym))
              = obconcat (&objfile->objfile_obstack, "", "",
              = obconcat (&objfile->objfile_obstack, "", "",
                          SYMBOL_LINKAGE_NAME (sym));
                          SYMBOL_LINKAGE_NAME (sym));
          add_symbol_to_list (struct_sym, &file_symbols);
          add_symbol_to_list (struct_sym, &file_symbols);
        }
        }
 
 
      break;
      break;
 
 
    case 'T':
    case 'T':
      /* Struct, union, or enum tag.  For GNU C++, this can be be followed
      /* Struct, union, or enum tag.  For GNU C++, this can be be followed
         by 't' which means we are typedef'ing it as well.  */
         by 't' which means we are typedef'ing it as well.  */
      synonym = *p == 't';
      synonym = *p == 't';
 
 
      if (synonym)
      if (synonym)
        p++;
        p++;
 
 
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
      /* For a nameless type, we don't want a create a symbol, thus we
      /* For a nameless type, we don't want a create a symbol, thus we
         did not use `sym'. Return without further processing. */
         did not use `sym'. Return without further processing. */
      if (nameless)
      if (nameless)
        return NULL;
        return NULL;
 
 
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
      SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
      if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
      if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
        TYPE_TAG_NAME (SYMBOL_TYPE (sym))
        TYPE_TAG_NAME (SYMBOL_TYPE (sym))
          = obconcat (&objfile->objfile_obstack, "", "",
          = obconcat (&objfile->objfile_obstack, "", "",
                      SYMBOL_LINKAGE_NAME (sym));
                      SYMBOL_LINKAGE_NAME (sym));
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
 
 
      if (synonym)
      if (synonym)
        {
        {
          /* Clone the sym and then modify it. */
          /* Clone the sym and then modify it. */
          struct symbol *typedef_sym = (struct symbol *)
          struct symbol *typedef_sym = (struct symbol *)
          obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
          obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
          *typedef_sym = *sym;
          *typedef_sym = *sym;
          SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
          SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
          SYMBOL_VALUE (typedef_sym) = valu;
          SYMBOL_VALUE (typedef_sym) = valu;
          SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
          SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
          if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
          if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
            TYPE_NAME (SYMBOL_TYPE (sym))
            TYPE_NAME (SYMBOL_TYPE (sym))
              = obconcat (&objfile->objfile_obstack, "", "",
              = obconcat (&objfile->objfile_obstack, "", "",
                          SYMBOL_LINKAGE_NAME (sym));
                          SYMBOL_LINKAGE_NAME (sym));
          add_symbol_to_list (typedef_sym, &file_symbols);
          add_symbol_to_list (typedef_sym, &file_symbols);
        }
        }
      break;
      break;
 
 
    case 'V':
    case 'V':
      /* Static symbol of local scope */
      /* Static symbol of local scope */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      if (gdbarch_static_transform_name_p (gdbarch)
      if (gdbarch_static_transform_name_p (gdbarch)
          && gdbarch_static_transform_name (gdbarch,
          && gdbarch_static_transform_name (gdbarch,
                                            SYMBOL_LINKAGE_NAME (sym))
                                            SYMBOL_LINKAGE_NAME (sym))
             != SYMBOL_LINKAGE_NAME (sym))
             != SYMBOL_LINKAGE_NAME (sym))
        {
        {
          struct minimal_symbol *msym;
          struct minimal_symbol *msym;
          msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
          msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
          if (msym != NULL)
          if (msym != NULL)
            {
            {
              char *new_name = gdbarch_static_transform_name
              char *new_name = gdbarch_static_transform_name
                (gdbarch, SYMBOL_LINKAGE_NAME (sym));
                (gdbarch, SYMBOL_LINKAGE_NAME (sym));
              SYMBOL_SET_LINKAGE_NAME (sym, new_name);
              SYMBOL_SET_LINKAGE_NAME (sym, new_name);
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
            }
            }
        }
        }
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
        add_symbol_to_list (sym, &local_symbols);
        add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'v':
    case 'v':
      /* Reference parameter */
      /* Reference parameter */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REF_ARG;
      SYMBOL_CLASS (sym) = LOC_REF_ARG;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'a':
    case 'a':
      /* Reference parameter which is in a register.  */
      /* Reference parameter which is in a register.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
      SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
      SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
      SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_IS_ARGUMENT (sym) = 1;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'X':
    case 'X':
      /* This is used by Sun FORTRAN for "function result value".
      /* This is used by Sun FORTRAN for "function result value".
         Sun claims ("dbx and dbxtool interfaces", 2nd ed)
         Sun claims ("dbx and dbxtool interfaces", 2nd ed)
         that Pascal uses it too, but when I tried it Pascal used
         that Pascal uses it too, but when I tried it Pascal used
         "x:3" (local symbol) instead.  */
         "x:3" (local symbol) instead.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    default:
    default:
      SYMBOL_TYPE (sym) = error_type (&p, objfile);
      SYMBOL_TYPE (sym) = error_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_VALUE (sym) = 0;
      SYMBOL_VALUE (sym) = 0;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      break;
      break;
    }
    }
 
 
  /* Some systems pass variables of certain types by reference instead
  /* Some systems pass variables of certain types by reference instead
     of by value, i.e. they will pass the address of a structure (in a
     of by value, i.e. they will pass the address of a structure (in a
     register or on the stack) instead of the structure itself.  */
     register or on the stack) instead of the structure itself.  */
 
 
  if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
  if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
      && SYMBOL_IS_ARGUMENT (sym))
      && SYMBOL_IS_ARGUMENT (sym))
    {
    {
      /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
      /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
         variables passed in a register).  */
         variables passed in a register).  */
      if (SYMBOL_CLASS (sym) == LOC_REGISTER)
      if (SYMBOL_CLASS (sym) == LOC_REGISTER)
        SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
        SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
      /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
      /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
         and subsequent arguments on SPARC, for example).  */
         and subsequent arguments on SPARC, for example).  */
      else if (SYMBOL_CLASS (sym) == LOC_ARG)
      else if (SYMBOL_CLASS (sym) == LOC_ARG)
        SYMBOL_CLASS (sym) = LOC_REF_ARG;
        SYMBOL_CLASS (sym) = LOC_REF_ARG;
    }
    }
 
 
  return sym;
  return sym;
}
}
 
 
/* Skip rest of this symbol and return an error type.
/* Skip rest of this symbol and return an error type.
 
 
   General notes on error recovery:  error_type always skips to the
   General notes on error recovery:  error_type always skips to the
   end of the symbol (modulo cretinous dbx symbol name continuation).
   end of the symbol (modulo cretinous dbx symbol name continuation).
   Thus code like this:
   Thus code like this:
 
 
   if (*(*pp)++ != ';')
   if (*(*pp)++ != ';')
   return error_type (pp, objfile);
   return error_type (pp, objfile);
 
 
   is wrong because if *pp starts out pointing at '\0' (typically as the
   is wrong because if *pp starts out pointing at '\0' (typically as the
   result of an earlier error), it will be incremented to point to the
   result of an earlier error), it will be incremented to point to the
   start of the next symbol, which might produce strange results, at least
   start of the next symbol, which might produce strange results, at least
   if you run off the end of the string table.  Instead use
   if you run off the end of the string table.  Instead use
 
 
   if (**pp != ';')
   if (**pp != ';')
   return error_type (pp, objfile);
   return error_type (pp, objfile);
   ++*pp;
   ++*pp;
 
 
   or
   or
 
 
   if (**pp != ';')
   if (**pp != ';')
   foo = error_type (pp, objfile);
   foo = error_type (pp, objfile);
   else
   else
   ++*pp;
   ++*pp;
 
 
   And in case it isn't obvious, the point of all this hair is so the compiler
   And in case it isn't obvious, the point of all this hair is so the compiler
   can define new types and new syntaxes, and old versions of the
   can define new types and new syntaxes, and old versions of the
   debugger will be able to read the new symbol tables.  */
   debugger will be able to read the new symbol tables.  */
 
 
static struct type *
static struct type *
error_type (char **pp, struct objfile *objfile)
error_type (char **pp, struct objfile *objfile)
{
{
  complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
  complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
  while (1)
  while (1)
    {
    {
      /* Skip to end of symbol.  */
      /* Skip to end of symbol.  */
      while (**pp != '\0')
      while (**pp != '\0')
        {
        {
          (*pp)++;
          (*pp)++;
        }
        }
 
 
      /* Check for and handle cretinous dbx symbol name continuation!  */
      /* Check for and handle cretinous dbx symbol name continuation!  */
      if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
      if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
        {
        {
          *pp = next_symbol_text (objfile);
          *pp = next_symbol_text (objfile);
        }
        }
      else
      else
        {
        {
          break;
          break;
        }
        }
    }
    }
  return objfile_type (objfile)->builtin_error;
  return objfile_type (objfile)->builtin_error;
}
}


 
 
/* Read type information or a type definition; return the type.  Even
/* Read type information or a type definition; return the type.  Even
   though this routine accepts either type information or a type
   though this routine accepts either type information or a type
   definition, the distinction is relevant--some parts of stabsread.c
   definition, the distinction is relevant--some parts of stabsread.c
   assume that type information starts with a digit, '-', or '(' in
   assume that type information starts with a digit, '-', or '(' in
   deciding whether to call read_type.  */
   deciding whether to call read_type.  */
 
 
static struct type *
static struct type *
read_type (char **pp, struct objfile *objfile)
read_type (char **pp, struct objfile *objfile)
{
{
  struct type *type = 0;
  struct type *type = 0;
  struct type *type1;
  struct type *type1;
  int typenums[2];
  int typenums[2];
  char type_descriptor;
  char type_descriptor;
 
 
  /* Size in bits of type if specified by a type attribute, or -1 if
  /* Size in bits of type if specified by a type attribute, or -1 if
     there is no size attribute.  */
     there is no size attribute.  */
  int type_size = -1;
  int type_size = -1;
 
 
  /* Used to distinguish string and bitstring from char-array and set. */
  /* Used to distinguish string and bitstring from char-array and set. */
  int is_string = 0;
  int is_string = 0;
 
 
  /* Used to distinguish vector from array. */
  /* Used to distinguish vector from array. */
  int is_vector = 0;
  int is_vector = 0;
 
 
  /* Read type number if present.  The type number may be omitted.
  /* Read type number if present.  The type number may be omitted.
     for instance in a two-dimensional array declared with type
     for instance in a two-dimensional array declared with type
     "ar1;1;10;ar1;1;10;4".  */
     "ar1;1;10;ar1;1;10;4".  */
  if ((**pp >= '0' && **pp <= '9')
  if ((**pp >= '0' && **pp <= '9')
      || **pp == '('
      || **pp == '('
      || **pp == '-')
      || **pp == '-')
    {
    {
      if (read_type_number (pp, typenums) != 0)
      if (read_type_number (pp, typenums) != 0)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
 
 
      if (**pp != '=')
      if (**pp != '=')
        {
        {
          /* Type is not being defined here.  Either it already
          /* Type is not being defined here.  Either it already
             exists, or this is a forward reference to it.
             exists, or this is a forward reference to it.
             dbx_alloc_type handles both cases.  */
             dbx_alloc_type handles both cases.  */
          type = dbx_alloc_type (typenums, objfile);
          type = dbx_alloc_type (typenums, objfile);
 
 
          /* If this is a forward reference, arrange to complain if it
          /* If this is a forward reference, arrange to complain if it
             doesn't get patched up by the time we're done
             doesn't get patched up by the time we're done
             reading.  */
             reading.  */
          if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
          if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
            add_undefined_type (type, typenums);
            add_undefined_type (type, typenums);
 
 
          return type;
          return type;
        }
        }
 
 
      /* Type is being defined here.  */
      /* Type is being defined here.  */
      /* Skip the '='.
      /* Skip the '='.
         Also skip the type descriptor - we get it below with (*pp)[-1].  */
         Also skip the type descriptor - we get it below with (*pp)[-1].  */
      (*pp) += 2;
      (*pp) += 2;
    }
    }
  else
  else
    {
    {
      /* 'typenums=' not present, type is anonymous.  Read and return
      /* 'typenums=' not present, type is anonymous.  Read and return
         the definition, but don't put it in the type vector.  */
         the definition, but don't put it in the type vector.  */
      typenums[0] = typenums[1] = -1;
      typenums[0] = typenums[1] = -1;
      (*pp)++;
      (*pp)++;
    }
    }
 
 
again:
again:
  type_descriptor = (*pp)[-1];
  type_descriptor = (*pp)[-1];
  switch (type_descriptor)
  switch (type_descriptor)
    {
    {
    case 'x':
    case 'x':
      {
      {
        enum type_code code;
        enum type_code code;
 
 
        /* Used to index through file_symbols.  */
        /* Used to index through file_symbols.  */
        struct pending *ppt;
        struct pending *ppt;
        int i;
        int i;
 
 
        /* Name including "struct", etc.  */
        /* Name including "struct", etc.  */
        char *type_name;
        char *type_name;
 
 
        {
        {
          char *from, *to, *p, *q1, *q2;
          char *from, *to, *p, *q1, *q2;
 
 
          /* Set the type code according to the following letter.  */
          /* Set the type code according to the following letter.  */
          switch ((*pp)[0])
          switch ((*pp)[0])
            {
            {
            case 's':
            case 's':
              code = TYPE_CODE_STRUCT;
              code = TYPE_CODE_STRUCT;
              break;
              break;
            case 'u':
            case 'u':
              code = TYPE_CODE_UNION;
              code = TYPE_CODE_UNION;
              break;
              break;
            case 'e':
            case 'e':
              code = TYPE_CODE_ENUM;
              code = TYPE_CODE_ENUM;
              break;
              break;
            default:
            default:
              {
              {
                /* Complain and keep going, so compilers can invent new
                /* Complain and keep going, so compilers can invent new
                   cross-reference types.  */
                   cross-reference types.  */
                complaint (&symfile_complaints,
                complaint (&symfile_complaints,
                           _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
                           _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
                code = TYPE_CODE_STRUCT;
                code = TYPE_CODE_STRUCT;
                break;
                break;
              }
              }
            }
            }
 
 
          q1 = strchr (*pp, '<');
          q1 = strchr (*pp, '<');
          p = strchr (*pp, ':');
          p = strchr (*pp, ':');
          if (p == NULL)
          if (p == NULL)
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          if (q1 && p > q1 && p[1] == ':')
          if (q1 && p > q1 && p[1] == ':')
            {
            {
              int nesting_level = 0;
              int nesting_level = 0;
              for (q2 = q1; *q2; q2++)
              for (q2 = q1; *q2; q2++)
                {
                {
                  if (*q2 == '<')
                  if (*q2 == '<')
                    nesting_level++;
                    nesting_level++;
                  else if (*q2 == '>')
                  else if (*q2 == '>')
                    nesting_level--;
                    nesting_level--;
                  else if (*q2 == ':' && nesting_level == 0)
                  else if (*q2 == ':' && nesting_level == 0)
                    break;
                    break;
                }
                }
              p = q2;
              p = q2;
              if (*p != ':')
              if (*p != ':')
                return error_type (pp, objfile);
                return error_type (pp, objfile);
            }
            }
          type_name = NULL;
          type_name = NULL;
          if (current_subfile->language == language_cplus)
          if (current_subfile->language == language_cplus)
            {
            {
              char *new_name, *name = alloca (p - *pp + 1);
              char *new_name, *name = alloca (p - *pp + 1);
              memcpy (name, *pp, p - *pp);
              memcpy (name, *pp, p - *pp);
              name[p - *pp] = '\0';
              name[p - *pp] = '\0';
              new_name = cp_canonicalize_string (name);
              new_name = cp_canonicalize_string (name);
              if (new_name != NULL)
              if (new_name != NULL)
                {
                {
                  type_name = obsavestring (new_name, strlen (new_name),
                  type_name = obsavestring (new_name, strlen (new_name),
                                            &objfile->objfile_obstack);
                                            &objfile->objfile_obstack);
                  xfree (new_name);
                  xfree (new_name);
                }
                }
            }
            }
          if (type_name == NULL)
          if (type_name == NULL)
            {
            {
              to = type_name =
              to = type_name =
                (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
                (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
 
 
              /* Copy the name.  */
              /* Copy the name.  */
              from = *pp + 1;
              from = *pp + 1;
              while (from < p)
              while (from < p)
                *to++ = *from++;
                *to++ = *from++;
              *to = '\0';
              *to = '\0';
            }
            }
 
 
          /* Set the pointer ahead of the name which we just read, and
          /* Set the pointer ahead of the name which we just read, and
             the colon.  */
             the colon.  */
          *pp = p + 1;
          *pp = p + 1;
        }
        }
 
 
        /* If this type has already been declared, then reuse the same
        /* If this type has already been declared, then reuse the same
           type, rather than allocating a new one.  This saves some
           type, rather than allocating a new one.  This saves some
           memory.  */
           memory.  */
 
 
        for (ppt = file_symbols; ppt; ppt = ppt->next)
        for (ppt = file_symbols; ppt; ppt = ppt->next)
          for (i = 0; i < ppt->nsyms; i++)
          for (i = 0; i < ppt->nsyms; i++)
            {
            {
              struct symbol *sym = ppt->symbol[i];
              struct symbol *sym = ppt->symbol[i];
 
 
              if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
              if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
                  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
                  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
                  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
                  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
                  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
                  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
                {
                {
                  obstack_free (&objfile->objfile_obstack, type_name);
                  obstack_free (&objfile->objfile_obstack, type_name);
                  type = SYMBOL_TYPE (sym);
                  type = SYMBOL_TYPE (sym);
                  if (typenums[0] != -1)
                  if (typenums[0] != -1)
                    *dbx_lookup_type (typenums, objfile) = type;
                    *dbx_lookup_type (typenums, objfile) = type;
                  return type;
                  return type;
                }
                }
            }
            }
 
 
        /* Didn't find the type to which this refers, so we must
        /* Didn't find the type to which this refers, so we must
           be dealing with a forward reference.  Allocate a type
           be dealing with a forward reference.  Allocate a type
           structure for it, and keep track of it so we can
           structure for it, and keep track of it so we can
           fill in the rest of the fields when we get the full
           fill in the rest of the fields when we get the full
           type.  */
           type.  */
        type = dbx_alloc_type (typenums, objfile);
        type = dbx_alloc_type (typenums, objfile);
        TYPE_CODE (type) = code;
        TYPE_CODE (type) = code;
        TYPE_TAG_NAME (type) = type_name;
        TYPE_TAG_NAME (type) = type_name;
        INIT_CPLUS_SPECIFIC (type);
        INIT_CPLUS_SPECIFIC (type);
        TYPE_STUB (type) = 1;
        TYPE_STUB (type) = 1;
 
 
        add_undefined_type (type, typenums);
        add_undefined_type (type, typenums);
        return type;
        return type;
      }
      }
 
 
    case '-':                   /* RS/6000 built-in type */
    case '-':                   /* RS/6000 built-in type */
    case '0':
    case '0':
    case '1':
    case '1':
    case '2':
    case '2':
    case '3':
    case '3':
    case '4':
    case '4':
    case '5':
    case '5':
    case '6':
    case '6':
    case '7':
    case '7':
    case '8':
    case '8':
    case '9':
    case '9':
    case '(':
    case '(':
      (*pp)--;
      (*pp)--;
 
 
      /* We deal with something like t(1,2)=(3,4)=... which
      /* We deal with something like t(1,2)=(3,4)=... which
         the Lucid compiler and recent gcc versions (post 2.7.3) use. */
         the Lucid compiler and recent gcc versions (post 2.7.3) use. */
 
 
      /* Allocate and enter the typedef type first.
      /* Allocate and enter the typedef type first.
         This handles recursive types. */
         This handles recursive types. */
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
      TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
      {
      {
        struct type *xtype = read_type (pp, objfile);
        struct type *xtype = read_type (pp, objfile);
        if (type == xtype)
        if (type == xtype)
          {
          {
            /* It's being defined as itself.  That means it is "void".  */
            /* It's being defined as itself.  That means it is "void".  */
            TYPE_CODE (type) = TYPE_CODE_VOID;
            TYPE_CODE (type) = TYPE_CODE_VOID;
            TYPE_LENGTH (type) = 1;
            TYPE_LENGTH (type) = 1;
          }
          }
        else if (type_size >= 0 || is_string)
        else if (type_size >= 0 || is_string)
          {
          {
            /* This is the absolute wrong way to construct types.  Every
            /* This is the absolute wrong way to construct types.  Every
               other debug format has found a way around this problem and
               other debug format has found a way around this problem and
               the related problems with unnecessarily stubbed types;
               the related problems with unnecessarily stubbed types;
               someone motivated should attempt to clean up the issue
               someone motivated should attempt to clean up the issue
               here as well.  Once a type pointed to has been created it
               here as well.  Once a type pointed to has been created it
               should not be modified.
               should not be modified.
 
 
               Well, it's not *absolutely* wrong.  Constructing recursive
               Well, it's not *absolutely* wrong.  Constructing recursive
               types (trees, linked lists) necessarily entails modifying
               types (trees, linked lists) necessarily entails modifying
               types after creating them.  Constructing any loop structure
               types after creating them.  Constructing any loop structure
               entails side effects.  The Dwarf 2 reader does handle this
               entails side effects.  The Dwarf 2 reader does handle this
               more gracefully (it never constructs more than once
               more gracefully (it never constructs more than once
               instance of a type object, so it doesn't have to copy type
               instance of a type object, so it doesn't have to copy type
               objects wholesale), but it still mutates type objects after
               objects wholesale), but it still mutates type objects after
               other folks have references to them.
               other folks have references to them.
 
 
               Keep in mind that this circularity/mutation issue shows up
               Keep in mind that this circularity/mutation issue shows up
               at the source language level, too: C's "incomplete types",
               at the source language level, too: C's "incomplete types",
               for example.  So the proper cleanup, I think, would be to
               for example.  So the proper cleanup, I think, would be to
               limit GDB's type smashing to match exactly those required
               limit GDB's type smashing to match exactly those required
               by the source language.  So GDB could have a
               by the source language.  So GDB could have a
               "complete_this_type" function, but never create unnecessary
               "complete_this_type" function, but never create unnecessary
               copies of a type otherwise.  */
               copies of a type otherwise.  */
            replace_type (type, xtype);
            replace_type (type, xtype);
            TYPE_NAME (type) = NULL;
            TYPE_NAME (type) = NULL;
            TYPE_TAG_NAME (type) = NULL;
            TYPE_TAG_NAME (type) = NULL;
          }
          }
        else
        else
          {
          {
            TYPE_TARGET_STUB (type) = 1;
            TYPE_TARGET_STUB (type) = 1;
            TYPE_TARGET_TYPE (type) = xtype;
            TYPE_TARGET_TYPE (type) = xtype;
          }
          }
      }
      }
      break;
      break;
 
 
      /* In the following types, we must be sure to overwrite any existing
      /* In the following types, we must be sure to overwrite any existing
         type that the typenums refer to, rather than allocating a new one
         type that the typenums refer to, rather than allocating a new one
         and making the typenums point to the new one.  This is because there
         and making the typenums point to the new one.  This is because there
         may already be pointers to the existing type (if it had been
         may already be pointers to the existing type (if it had been
         forward-referenced), and we must change it to a pointer, function,
         forward-referenced), and we must change it to a pointer, function,
         reference, or whatever, *in-place*.  */
         reference, or whatever, *in-place*.  */
 
 
    case '*':                   /* Pointer to another type */
    case '*':                   /* Pointer to another type */
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
      type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
      break;
      break;
 
 
    case '&':                   /* Reference to another type */
    case '&':                   /* Reference to another type */
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
      type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
      break;
      break;
 
 
    case 'f':                   /* Function returning another type */
    case 'f':                   /* Function returning another type */
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
      type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
      break;
      break;
 
 
    case 'g':                   /* Prototyped function.  (Sun)  */
    case 'g':                   /* Prototyped function.  (Sun)  */
      {
      {
        /* Unresolved questions:
        /* Unresolved questions:
 
 
           - According to Sun's ``STABS Interface Manual'', for 'f'
           - According to Sun's ``STABS Interface Manual'', for 'f'
           and 'F' symbol descriptors, a `0' in the argument type list
           and 'F' symbol descriptors, a `0' in the argument type list
           indicates a varargs function.  But it doesn't say how 'g'
           indicates a varargs function.  But it doesn't say how 'g'
           type descriptors represent that info.  Someone with access
           type descriptors represent that info.  Someone with access
           to Sun's toolchain should try it out.
           to Sun's toolchain should try it out.
 
 
           - According to the comment in define_symbol (search for
           - According to the comment in define_symbol (search for
           `process_prototype_types:'), Sun emits integer arguments as
           `process_prototype_types:'), Sun emits integer arguments as
           types which ref themselves --- like `void' types.  Do we
           types which ref themselves --- like `void' types.  Do we
           have to deal with that here, too?  Again, someone with
           have to deal with that here, too?  Again, someone with
           access to Sun's toolchain should try it out and let us
           access to Sun's toolchain should try it out and let us
           know.  */
           know.  */
 
 
        const char *type_start = (*pp) - 1;
        const char *type_start = (*pp) - 1;
        struct type *return_type = read_type (pp, objfile);
        struct type *return_type = read_type (pp, objfile);
        struct type *func_type
        struct type *func_type
          = make_function_type (return_type,
          = make_function_type (return_type,
                                dbx_lookup_type (typenums, objfile));
                                dbx_lookup_type (typenums, objfile));
        struct type_list {
        struct type_list {
          struct type *type;
          struct type *type;
          struct type_list *next;
          struct type_list *next;
        } *arg_types = 0;
        } *arg_types = 0;
        int num_args = 0;
        int num_args = 0;
 
 
        while (**pp && **pp != '#')
        while (**pp && **pp != '#')
          {
          {
            struct type *arg_type = read_type (pp, objfile);
            struct type *arg_type = read_type (pp, objfile);
            struct type_list *new = alloca (sizeof (*new));
            struct type_list *new = alloca (sizeof (*new));
            new->type = arg_type;
            new->type = arg_type;
            new->next = arg_types;
            new->next = arg_types;
            arg_types = new;
            arg_types = new;
            num_args++;
            num_args++;
          }
          }
        if (**pp == '#')
        if (**pp == '#')
          ++*pp;
          ++*pp;
        else
        else
          {
          {
            complaint (&symfile_complaints,
            complaint (&symfile_complaints,
                       _("Prototyped function type didn't end arguments with `#':\n%s"),
                       _("Prototyped function type didn't end arguments with `#':\n%s"),
                       type_start);
                       type_start);
          }
          }
 
 
        /* If there is just one argument whose type is `void', then
        /* If there is just one argument whose type is `void', then
           that's just an empty argument list.  */
           that's just an empty argument list.  */
        if (arg_types
        if (arg_types
            && ! arg_types->next
            && ! arg_types->next
            && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
            && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
          num_args = 0;
          num_args = 0;
 
 
        TYPE_FIELDS (func_type)
        TYPE_FIELDS (func_type)
          = (struct field *) TYPE_ALLOC (func_type,
          = (struct field *) TYPE_ALLOC (func_type,
                                         num_args * sizeof (struct field));
                                         num_args * sizeof (struct field));
        memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
        memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
        {
        {
          int i;
          int i;
          struct type_list *t;
          struct type_list *t;
 
 
          /* We stuck each argument type onto the front of the list
          /* We stuck each argument type onto the front of the list
             when we read it, so the list is reversed.  Build the
             when we read it, so the list is reversed.  Build the
             fields array right-to-left.  */
             fields array right-to-left.  */
          for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
          for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
            TYPE_FIELD_TYPE (func_type, i) = t->type;
            TYPE_FIELD_TYPE (func_type, i) = t->type;
        }
        }
        TYPE_NFIELDS (func_type) = num_args;
        TYPE_NFIELDS (func_type) = num_args;
        TYPE_PROTOTYPED (func_type) = 1;
        TYPE_PROTOTYPED (func_type) = 1;
 
 
        type = func_type;
        type = func_type;
        break;
        break;
      }
      }
 
 
    case 'k':                   /* Const qualifier on some type (Sun) */
    case 'k':                   /* Const qualifier on some type (Sun) */
      type = read_type (pp, objfile);
      type = read_type (pp, objfile);
      type = make_cv_type (1, TYPE_VOLATILE (type), type,
      type = make_cv_type (1, TYPE_VOLATILE (type), type,
                           dbx_lookup_type (typenums, objfile));
                           dbx_lookup_type (typenums, objfile));
      break;
      break;
 
 
    case 'B':                   /* Volatile qual on some type (Sun) */
    case 'B':                   /* Volatile qual on some type (Sun) */
      type = read_type (pp, objfile);
      type = read_type (pp, objfile);
      type = make_cv_type (TYPE_CONST (type), 1, type,
      type = make_cv_type (TYPE_CONST (type), 1, type,
                           dbx_lookup_type (typenums, objfile));
                           dbx_lookup_type (typenums, objfile));
      break;
      break;
 
 
    case '@':
    case '@':
      if (isdigit (**pp) || **pp == '(' || **pp == '-')
      if (isdigit (**pp) || **pp == '(' || **pp == '-')
        {                       /* Member (class & variable) type */
        {                       /* Member (class & variable) type */
          /* FIXME -- we should be doing smash_to_XXX types here.  */
          /* FIXME -- we should be doing smash_to_XXX types here.  */
 
 
          struct type *domain = read_type (pp, objfile);
          struct type *domain = read_type (pp, objfile);
          struct type *memtype;
          struct type *memtype;
 
 
          if (**pp != ',')
          if (**pp != ',')
            /* Invalid member type data format.  */
            /* Invalid member type data format.  */
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          ++*pp;
          ++*pp;
 
 
          memtype = read_type (pp, objfile);
          memtype = read_type (pp, objfile);
          type = dbx_alloc_type (typenums, objfile);
          type = dbx_alloc_type (typenums, objfile);
          smash_to_memberptr_type (type, domain, memtype);
          smash_to_memberptr_type (type, domain, memtype);
        }
        }
      else
      else
        /* type attribute */
        /* type attribute */
        {
        {
          char *attr = *pp;
          char *attr = *pp;
          /* Skip to the semicolon.  */
          /* Skip to the semicolon.  */
          while (**pp != ';' && **pp != '\0')
          while (**pp != ';' && **pp != '\0')
            ++(*pp);
            ++(*pp);
          if (**pp == '\0')
          if (**pp == '\0')
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          else
          else
            ++ * pp;            /* Skip the semicolon.  */
            ++ * pp;            /* Skip the semicolon.  */
 
 
          switch (*attr)
          switch (*attr)
            {
            {
            case 's':           /* Size attribute */
            case 's':           /* Size attribute */
              type_size = atoi (attr + 1);
              type_size = atoi (attr + 1);
              if (type_size <= 0)
              if (type_size <= 0)
                type_size = -1;
                type_size = -1;
              break;
              break;
 
 
            case 'S':           /* String attribute */
            case 'S':           /* String attribute */
              /* FIXME: check to see if following type is array? */
              /* FIXME: check to see if following type is array? */
              is_string = 1;
              is_string = 1;
              break;
              break;
 
 
            case 'V':           /* Vector attribute */
            case 'V':           /* Vector attribute */
              /* FIXME: check to see if following type is array? */
              /* FIXME: check to see if following type is array? */
              is_vector = 1;
              is_vector = 1;
              break;
              break;
 
 
            default:
            default:
              /* Ignore unrecognized type attributes, so future compilers
              /* Ignore unrecognized type attributes, so future compilers
                 can invent new ones.  */
                 can invent new ones.  */
              break;
              break;
            }
            }
          ++*pp;
          ++*pp;
          goto again;
          goto again;
        }
        }
      break;
      break;
 
 
    case '#':                   /* Method (class & fn) type */
    case '#':                   /* Method (class & fn) type */
      if ((*pp)[0] == '#')
      if ((*pp)[0] == '#')
        {
        {
          /* We'll get the parameter types from the name.  */
          /* We'll get the parameter types from the name.  */
          struct type *return_type;
          struct type *return_type;
 
 
          (*pp)++;
          (*pp)++;
          return_type = read_type (pp, objfile);
          return_type = read_type (pp, objfile);
          if (*(*pp)++ != ';')
          if (*(*pp)++ != ';')
            complaint (&symfile_complaints,
            complaint (&symfile_complaints,
                       _("invalid (minimal) member type data format at symtab pos %d."),
                       _("invalid (minimal) member type data format at symtab pos %d."),
                       symnum);
                       symnum);
          type = allocate_stub_method (return_type);
          type = allocate_stub_method (return_type);
          if (typenums[0] != -1)
          if (typenums[0] != -1)
            *dbx_lookup_type (typenums, objfile) = type;
            *dbx_lookup_type (typenums, objfile) = type;
        }
        }
      else
      else
        {
        {
          struct type *domain = read_type (pp, objfile);
          struct type *domain = read_type (pp, objfile);
          struct type *return_type;
          struct type *return_type;
          struct field *args;
          struct field *args;
          int nargs, varargs;
          int nargs, varargs;
 
 
          if (**pp != ',')
          if (**pp != ',')
            /* Invalid member type data format.  */
            /* Invalid member type data format.  */
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          else
          else
            ++(*pp);
            ++(*pp);
 
 
          return_type = read_type (pp, objfile);
          return_type = read_type (pp, objfile);
          args = read_args (pp, ';', objfile, &nargs, &varargs);
          args = read_args (pp, ';', objfile, &nargs, &varargs);
          if (args == NULL)
          if (args == NULL)
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          type = dbx_alloc_type (typenums, objfile);
          type = dbx_alloc_type (typenums, objfile);
          smash_to_method_type (type, domain, return_type, args,
          smash_to_method_type (type, domain, return_type, args,
                                nargs, varargs);
                                nargs, varargs);
        }
        }
      break;
      break;
 
 
    case 'r':                   /* Range type */
    case 'r':                   /* Range type */
      type = read_range_type (pp, typenums, type_size, objfile);
      type = read_range_type (pp, typenums, type_size, objfile);
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums, objfile) = type;
        *dbx_lookup_type (typenums, objfile) = type;
      break;
      break;
 
 
    case 'b':
    case 'b':
        {
        {
          /* Sun ACC builtin int type */
          /* Sun ACC builtin int type */
          type = read_sun_builtin_type (pp, typenums, objfile);
          type = read_sun_builtin_type (pp, typenums, objfile);
          if (typenums[0] != -1)
          if (typenums[0] != -1)
            *dbx_lookup_type (typenums, objfile) = type;
            *dbx_lookup_type (typenums, objfile) = type;
        }
        }
      break;
      break;
 
 
    case 'R':                   /* Sun ACC builtin float type */
    case 'R':                   /* Sun ACC builtin float type */
      type = read_sun_floating_type (pp, typenums, objfile);
      type = read_sun_floating_type (pp, typenums, objfile);
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums, objfile) = type;
        *dbx_lookup_type (typenums, objfile) = type;
      break;
      break;
 
 
    case 'e':                   /* Enumeration type */
    case 'e':                   /* Enumeration type */
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      type = read_enum_type (pp, type, objfile);
      type = read_enum_type (pp, type, objfile);
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums, objfile) = type;
        *dbx_lookup_type (typenums, objfile) = type;
      break;
      break;
 
 
    case 's':                   /* Struct type */
    case 's':                   /* Struct type */
    case 'u':                   /* Union type */
    case 'u':                   /* Union type */
      {
      {
        enum type_code type_code = TYPE_CODE_UNDEF;
        enum type_code type_code = TYPE_CODE_UNDEF;
        type = dbx_alloc_type (typenums, objfile);
        type = dbx_alloc_type (typenums, objfile);
        switch (type_descriptor)
        switch (type_descriptor)
          {
          {
          case 's':
          case 's':
            type_code = TYPE_CODE_STRUCT;
            type_code = TYPE_CODE_STRUCT;
            break;
            break;
          case 'u':
          case 'u':
            type_code = TYPE_CODE_UNION;
            type_code = TYPE_CODE_UNION;
            break;
            break;
          }
          }
        type = read_struct_type (pp, type, type_code, objfile);
        type = read_struct_type (pp, type, type_code, objfile);
        break;
        break;
      }
      }
 
 
    case 'a':                   /* Array type */
    case 'a':                   /* Array type */
      if (**pp != 'r')
      if (**pp != 'r')
        return error_type (pp, objfile);
        return error_type (pp, objfile);
      ++*pp;
      ++*pp;
 
 
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      type = read_array_type (pp, type, objfile);
      type = read_array_type (pp, type, objfile);
      if (is_string)
      if (is_string)
        TYPE_CODE (type) = TYPE_CODE_STRING;
        TYPE_CODE (type) = TYPE_CODE_STRING;
      if (is_vector)
      if (is_vector)
        make_vector_type (type);
        make_vector_type (type);
      break;
      break;
 
 
    case 'S':                   /* Set or bitstring  type */
    case 'S':                   /* Set or bitstring  type */
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = create_set_type ((struct type *) NULL, type1);
      type = create_set_type ((struct type *) NULL, type1);
      if (is_string)
      if (is_string)
        TYPE_CODE (type) = TYPE_CODE_BITSTRING;
        TYPE_CODE (type) = TYPE_CODE_BITSTRING;
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums, objfile) = type;
        *dbx_lookup_type (typenums, objfile) = type;
      break;
      break;
 
 
    default:
    default:
      --*pp;                    /* Go back to the symbol in error */
      --*pp;                    /* Go back to the symbol in error */
      /* Particularly important if it was \0! */
      /* Particularly important if it was \0! */
      return error_type (pp, objfile);
      return error_type (pp, objfile);
    }
    }
 
 
  if (type == 0)
  if (type == 0)
    {
    {
      warning (_("GDB internal error, type is NULL in stabsread.c."));
      warning (_("GDB internal error, type is NULL in stabsread.c."));
      return error_type (pp, objfile);
      return error_type (pp, objfile);
    }
    }
 
 
  /* Size specified in a type attribute overrides any other size.  */
  /* Size specified in a type attribute overrides any other size.  */
  if (type_size != -1)
  if (type_size != -1)
    TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
    TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
 
 
  return type;
  return type;
}
}


/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
   Return the proper type node for a given builtin type number. */
   Return the proper type node for a given builtin type number. */
 
 
static const struct objfile_data *rs6000_builtin_type_data;
static const struct objfile_data *rs6000_builtin_type_data;
 
 
static struct type *
static struct type *
rs6000_builtin_type (int typenum, struct objfile *objfile)
rs6000_builtin_type (int typenum, struct objfile *objfile)
{
{
  struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
  struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
 
 
  /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
  /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
#define NUMBER_RECOGNIZED 34
#define NUMBER_RECOGNIZED 34
  struct type *rettype = NULL;
  struct type *rettype = NULL;
 
 
  if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
  if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
    {
    {
      complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
      complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
      return objfile_type (objfile)->builtin_error;
      return objfile_type (objfile)->builtin_error;
    }
    }
 
 
  if (!negative_types)
  if (!negative_types)
    {
    {
      /* This includes an empty slot for type number -0.  */
      /* This includes an empty slot for type number -0.  */
      negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
      negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
                                       NUMBER_RECOGNIZED + 1, struct type *);
                                       NUMBER_RECOGNIZED + 1, struct type *);
      set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
      set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
    }
    }
 
 
  if (negative_types[-typenum] != NULL)
  if (negative_types[-typenum] != NULL)
    return negative_types[-typenum];
    return negative_types[-typenum];
 
 
#if TARGET_CHAR_BIT != 8
#if TARGET_CHAR_BIT != 8
#error This code wrong for TARGET_CHAR_BIT not 8
#error This code wrong for TARGET_CHAR_BIT not 8
  /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
  /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
     that if that ever becomes not true, the correct fix will be to
     that if that ever becomes not true, the correct fix will be to
     make the size in the struct type to be in bits, not in units of
     make the size in the struct type to be in bits, not in units of
     TARGET_CHAR_BIT.  */
     TARGET_CHAR_BIT.  */
#endif
#endif
 
 
  switch (-typenum)
  switch (-typenum)
    {
    {
    case 1:
    case 1:
      /* The size of this and all the other types are fixed, defined
      /* The size of this and all the other types are fixed, defined
         by the debugging format.  If there is a type called "int" which
         by the debugging format.  If there is a type called "int" which
         is other than 32 bits, then it should use a new negative type
         is other than 32 bits, then it should use a new negative type
         number (or avoid negative type numbers for that case).
         number (or avoid negative type numbers for that case).
         See stabs.texinfo.  */
         See stabs.texinfo.  */
      rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
      break;
      break;
    case 2:
    case 2:
      rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
      rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
      break;
      break;
    case 3:
    case 3:
      rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
      rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
      break;
      break;
    case 4:
    case 4:
      rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
      break;
      break;
    case 5:
    case 5:
      rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
                           "unsigned char", objfile);
                           "unsigned char", objfile);
      break;
      break;
    case 6:
    case 6:
      rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
      rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
      break;
      break;
    case 7:
    case 7:
      rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
                           "unsigned short", objfile);
                           "unsigned short", objfile);
      break;
      break;
    case 8:
    case 8:
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
                           "unsigned int", objfile);
                           "unsigned int", objfile);
      break;
      break;
    case 9:
    case 9:
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
                           "unsigned", objfile);
                           "unsigned", objfile);
    case 10:
    case 10:
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
                           "unsigned long", objfile);
                           "unsigned long", objfile);
      break;
      break;
    case 11:
    case 11:
      rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
      rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
      break;
      break;
    case 12:
    case 12:
      /* IEEE single precision (32 bit).  */
      /* IEEE single precision (32 bit).  */
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
      break;
      break;
    case 13:
    case 13:
      /* IEEE double precision (64 bit).  */
      /* IEEE double precision (64 bit).  */
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
      break;
      break;
    case 14:
    case 14:
      /* This is an IEEE double on the RS/6000, and different machines with
      /* This is an IEEE double on the RS/6000, and different machines with
         different sizes for "long double" should use different negative
         different sizes for "long double" should use different negative
         type numbers.  See stabs.texinfo.  */
         type numbers.  See stabs.texinfo.  */
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
      break;
      break;
    case 15:
    case 15:
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
      break;
      break;
    case 16:
    case 16:
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
                           "boolean", objfile);
                           "boolean", objfile);
      break;
      break;
    case 17:
    case 17:
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
      break;
      break;
    case 18:
    case 18:
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
      break;
      break;
    case 19:
    case 19:
      rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
      rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
      break;
      break;
    case 20:
    case 20:
      rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
                           "character", objfile);
                           "character", objfile);
      break;
      break;
    case 21:
    case 21:
      rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
                           "logical*1", objfile);
                           "logical*1", objfile);
      break;
      break;
    case 22:
    case 22:
      rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
                           "logical*2", objfile);
                           "logical*2", objfile);
      break;
      break;
    case 23:
    case 23:
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
                           "logical*4", objfile);
                           "logical*4", objfile);
      break;
      break;
    case 24:
    case 24:
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
                           "logical", objfile);
                           "logical", objfile);
      break;
      break;
    case 25:
    case 25:
      /* Complex type consisting of two IEEE single precision values.  */
      /* Complex type consisting of two IEEE single precision values.  */
      rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
      rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
      TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
      TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
                                              objfile);
                                              objfile);
      break;
      break;
    case 26:
    case 26:
      /* Complex type consisting of two IEEE double precision values.  */
      /* Complex type consisting of two IEEE double precision values.  */
      rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
      rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
      TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
      TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
                                              objfile);
                                              objfile);
      break;
      break;
    case 27:
    case 27:
      rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
      rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
      break;
      break;
    case 28:
    case 28:
      rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
      rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
      break;
      break;
    case 29:
    case 29:
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
      break;
      break;
    case 30:
    case 30:
      rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
      rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
      break;
      break;
    case 31:
    case 31:
      rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
      rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
      break;
      break;
    case 32:
    case 32:
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
                           "unsigned long long", objfile);
                           "unsigned long long", objfile);
      break;
      break;
    case 33:
    case 33:
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
                           "logical*8", objfile);
                           "logical*8", objfile);
      break;
      break;
    case 34:
    case 34:
      rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
      rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
      break;
      break;
    }
    }
  negative_types[-typenum] = rettype;
  negative_types[-typenum] = rettype;
  return rettype;
  return rettype;
}
}


/* This page contains subroutines of read_type.  */
/* This page contains subroutines of read_type.  */
 
 
/* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
/* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
 
 
static void
static void
update_method_name_from_physname (char **old_name, char *physname)
update_method_name_from_physname (char **old_name, char *physname)
{
{
  char *method_name;
  char *method_name;
 
 
  method_name = method_name_from_physname (physname);
  method_name = method_name_from_physname (physname);
 
 
  if (method_name == NULL)
  if (method_name == NULL)
    {
    {
      complaint (&symfile_complaints,
      complaint (&symfile_complaints,
                 _("Method has bad physname %s\n"), physname);
                 _("Method has bad physname %s\n"), physname);
      return;
      return;
    }
    }
 
 
  if (strcmp (*old_name, method_name) != 0)
  if (strcmp (*old_name, method_name) != 0)
    {
    {
      xfree (*old_name);
      xfree (*old_name);
      *old_name = method_name;
      *old_name = method_name;
    }
    }
  else
  else
    xfree (method_name);
    xfree (method_name);
}
}
 
 
/* Read member function stabs info for C++ classes.  The form of each member
/* Read member function stabs info for C++ classes.  The form of each member
   function data is:
   function data is:
 
 
   NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
   NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
 
 
   An example with two member functions is:
   An example with two member functions is:
 
 
   afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
   afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
 
 
   For the case of overloaded operators, the format is op$::*.funcs, where
   For the case of overloaded operators, the format is op$::*.funcs, where
   $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
   $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
   name (such as `+=') and `.' marks the end of the operator name.
   name (such as `+=') and `.' marks the end of the operator name.
 
 
   Returns 1 for success, 0 for failure.  */
   Returns 1 for success, 0 for failure.  */
 
 
static int
static int
read_member_functions (struct field_info *fip, char **pp, struct type *type,
read_member_functions (struct field_info *fip, char **pp, struct type *type,
                       struct objfile *objfile)
                       struct objfile *objfile)
{
{
  int nfn_fields = 0;
  int nfn_fields = 0;
  int length = 0;
  int length = 0;
  /* Total number of member functions defined in this class.  If the class
  /* Total number of member functions defined in this class.  If the class
     defines two `f' functions, and one `g' function, then this will have
     defines two `f' functions, and one `g' function, then this will have
     the value 3.  */
     the value 3.  */
  int total_length = 0;
  int total_length = 0;
  int i;
  int i;
  struct next_fnfield
  struct next_fnfield
    {
    {
      struct next_fnfield *next;
      struct next_fnfield *next;
      struct fn_field fn_field;
      struct fn_field fn_field;
    }
    }
   *sublist;
   *sublist;
  struct type *look_ahead_type;
  struct type *look_ahead_type;
  struct next_fnfieldlist *new_fnlist;
  struct next_fnfieldlist *new_fnlist;
  struct next_fnfield *new_sublist;
  struct next_fnfield *new_sublist;
  char *main_fn_name;
  char *main_fn_name;
  char *p;
  char *p;
 
 
  /* Process each list until we find something that is not a member function
  /* Process each list until we find something that is not a member function
     or find the end of the functions. */
     or find the end of the functions. */
 
 
  while (**pp != ';')
  while (**pp != ';')
    {
    {
      /* We should be positioned at the start of the function name.
      /* We should be positioned at the start of the function name.
         Scan forward to find the first ':' and if it is not the
         Scan forward to find the first ':' and if it is not the
         first of a "::" delimiter, then this is not a member function. */
         first of a "::" delimiter, then this is not a member function. */
      p = *pp;
      p = *pp;
      while (*p != ':')
      while (*p != ':')
        {
        {
          p++;
          p++;
        }
        }
      if (p[1] != ':')
      if (p[1] != ':')
        {
        {
          break;
          break;
        }
        }
 
 
      sublist = NULL;
      sublist = NULL;
      look_ahead_type = NULL;
      look_ahead_type = NULL;
      length = 0;
      length = 0;
 
 
      new_fnlist = (struct next_fnfieldlist *)
      new_fnlist = (struct next_fnfieldlist *)
        xmalloc (sizeof (struct next_fnfieldlist));
        xmalloc (sizeof (struct next_fnfieldlist));
      make_cleanup (xfree, new_fnlist);
      make_cleanup (xfree, new_fnlist);
      memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
      memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
 
 
      if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
      if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
        {
        {
          /* This is a completely wierd case.  In order to stuff in the
          /* This is a completely wierd case.  In order to stuff in the
             names that might contain colons (the usual name delimiter),
             names that might contain colons (the usual name delimiter),
             Mike Tiemann defined a different name format which is
             Mike Tiemann defined a different name format which is
             signalled if the identifier is "op$".  In that case, the
             signalled if the identifier is "op$".  In that case, the
             format is "op$::XXXX." where XXXX is the name.  This is
             format is "op$::XXXX." where XXXX is the name.  This is
             used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
             used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
          /* This lets the user type "break operator+".
          /* This lets the user type "break operator+".
             We could just put in "+" as the name, but that wouldn't
             We could just put in "+" as the name, but that wouldn't
             work for "*".  */
             work for "*".  */
          static char opname[32] = "op$";
          static char opname[32] = "op$";
          char *o = opname + 3;
          char *o = opname + 3;
 
 
          /* Skip past '::'.  */
          /* Skip past '::'.  */
          *pp = p + 2;
          *pp = p + 2;
 
 
          STABS_CONTINUE (pp, objfile);
          STABS_CONTINUE (pp, objfile);
          p = *pp;
          p = *pp;
          while (*p != '.')
          while (*p != '.')
            {
            {
              *o++ = *p++;
              *o++ = *p++;
            }
            }
          main_fn_name = savestring (opname, o - opname);
          main_fn_name = savestring (opname, o - opname);
          /* Skip past '.'  */
          /* Skip past '.'  */
          *pp = p + 1;
          *pp = p + 1;
        }
        }
      else
      else
        {
        {
          main_fn_name = savestring (*pp, p - *pp);
          main_fn_name = savestring (*pp, p - *pp);
          /* Skip past '::'.  */
          /* Skip past '::'.  */
          *pp = p + 2;
          *pp = p + 2;
        }
        }
      new_fnlist->fn_fieldlist.name = main_fn_name;
      new_fnlist->fn_fieldlist.name = main_fn_name;
 
 
      do
      do
        {
        {
          new_sublist =
          new_sublist =
            (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
            (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
          make_cleanup (xfree, new_sublist);
          make_cleanup (xfree, new_sublist);
          memset (new_sublist, 0, sizeof (struct next_fnfield));
          memset (new_sublist, 0, sizeof (struct next_fnfield));
 
 
          /* Check for and handle cretinous dbx symbol name continuation!  */
          /* Check for and handle cretinous dbx symbol name continuation!  */
          if (look_ahead_type == NULL)
          if (look_ahead_type == NULL)
            {
            {
              /* Normal case. */
              /* Normal case. */
              STABS_CONTINUE (pp, objfile);
              STABS_CONTINUE (pp, objfile);
 
 
              new_sublist->fn_field.type = read_type (pp, objfile);
              new_sublist->fn_field.type = read_type (pp, objfile);
              if (**pp != ':')
              if (**pp != ':')
                {
                {
                  /* Invalid symtab info for member function.  */
                  /* Invalid symtab info for member function.  */
                  return 0;
                  return 0;
                }
                }
            }
            }
          else
          else
            {
            {
              /* g++ version 1 kludge */
              /* g++ version 1 kludge */
              new_sublist->fn_field.type = look_ahead_type;
              new_sublist->fn_field.type = look_ahead_type;
              look_ahead_type = NULL;
              look_ahead_type = NULL;
            }
            }
 
 
          (*pp)++;
          (*pp)++;
          p = *pp;
          p = *pp;
          while (*p != ';')
          while (*p != ';')
            {
            {
              p++;
              p++;
            }
            }
 
 
          /* If this is just a stub, then we don't have the real name here. */
          /* If this is just a stub, then we don't have the real name here. */
 
 
          if (TYPE_STUB (new_sublist->fn_field.type))
          if (TYPE_STUB (new_sublist->fn_field.type))
            {
            {
              if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
              if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
                TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
                TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
              new_sublist->fn_field.is_stub = 1;
              new_sublist->fn_field.is_stub = 1;
            }
            }
          new_sublist->fn_field.physname = savestring (*pp, p - *pp);
          new_sublist->fn_field.physname = savestring (*pp, p - *pp);
          *pp = p + 1;
          *pp = p + 1;
 
 
          /* Set this member function's visibility fields.  */
          /* Set this member function's visibility fields.  */
          switch (*(*pp)++)
          switch (*(*pp)++)
            {
            {
            case VISIBILITY_PRIVATE:
            case VISIBILITY_PRIVATE:
              new_sublist->fn_field.is_private = 1;
              new_sublist->fn_field.is_private = 1;
              break;
              break;
            case VISIBILITY_PROTECTED:
            case VISIBILITY_PROTECTED:
              new_sublist->fn_field.is_protected = 1;
              new_sublist->fn_field.is_protected = 1;
              break;
              break;
            }
            }
 
 
          STABS_CONTINUE (pp, objfile);
          STABS_CONTINUE (pp, objfile);
          switch (**pp)
          switch (**pp)
            {
            {
            case 'A':           /* Normal functions. */
            case 'A':           /* Normal functions. */
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_volatile = 0;
              new_sublist->fn_field.is_volatile = 0;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case 'B':           /* `const' member functions. */
            case 'B':           /* `const' member functions. */
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_volatile = 0;
              new_sublist->fn_field.is_volatile = 0;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case 'C':           /* `volatile' member function. */
            case 'C':           /* `volatile' member function. */
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_volatile = 1;
              new_sublist->fn_field.is_volatile = 1;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case 'D':           /* `const volatile' member function. */
            case 'D':           /* `const volatile' member function. */
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_volatile = 1;
              new_sublist->fn_field.is_volatile = 1;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case '*':           /* File compiled with g++ version 1 -- no info */
            case '*':           /* File compiled with g++ version 1 -- no info */
            case '?':
            case '?':
            case '.':
            case '.':
              break;
              break;
            default:
            default:
              complaint (&symfile_complaints,
              complaint (&symfile_complaints,
                         _("const/volatile indicator missing, got '%c'"), **pp);
                         _("const/volatile indicator missing, got '%c'"), **pp);
              break;
              break;
            }
            }
 
 
          switch (*(*pp)++)
          switch (*(*pp)++)
            {
            {
            case '*':
            case '*':
              {
              {
                int nbits;
                int nbits;
                /* virtual member function, followed by index.
                /* virtual member function, followed by index.
                   The sign bit is set to distinguish pointers-to-methods
                   The sign bit is set to distinguish pointers-to-methods
                   from virtual function indicies.  Since the array is
                   from virtual function indicies.  Since the array is
                   in words, the quantity must be shifted left by 1
                   in words, the quantity must be shifted left by 1
                   on 16 bit machine, and by 2 on 32 bit machine, forcing
                   on 16 bit machine, and by 2 on 32 bit machine, forcing
                   the sign bit out, and usable as a valid index into
                   the sign bit out, and usable as a valid index into
                   the array.  Remove the sign bit here.  */
                   the array.  Remove the sign bit here.  */
                new_sublist->fn_field.voffset =
                new_sublist->fn_field.voffset =
                  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
                  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
                if (nbits != 0)
                if (nbits != 0)
                  return 0;
                  return 0;
 
 
                STABS_CONTINUE (pp, objfile);
                STABS_CONTINUE (pp, objfile);
                if (**pp == ';' || **pp == '\0')
                if (**pp == ';' || **pp == '\0')
                  {
                  {
                    /* Must be g++ version 1.  */
                    /* Must be g++ version 1.  */
                    new_sublist->fn_field.fcontext = 0;
                    new_sublist->fn_field.fcontext = 0;
                  }
                  }
                else
                else
                  {
                  {
                    /* Figure out from whence this virtual function came.
                    /* Figure out from whence this virtual function came.
                       It may belong to virtual function table of
                       It may belong to virtual function table of
                       one of its baseclasses.  */
                       one of its baseclasses.  */
                    look_ahead_type = read_type (pp, objfile);
                    look_ahead_type = read_type (pp, objfile);
                    if (**pp == ':')
                    if (**pp == ':')
                      {
                      {
                        /* g++ version 1 overloaded methods. */
                        /* g++ version 1 overloaded methods. */
                      }
                      }
                    else
                    else
                      {
                      {
                        new_sublist->fn_field.fcontext = look_ahead_type;
                        new_sublist->fn_field.fcontext = look_ahead_type;
                        if (**pp != ';')
                        if (**pp != ';')
                          {
                          {
                            return 0;
                            return 0;
                          }
                          }
                        else
                        else
                          {
                          {
                            ++*pp;
                            ++*pp;
                          }
                          }
                        look_ahead_type = NULL;
                        look_ahead_type = NULL;
                      }
                      }
                  }
                  }
                break;
                break;
              }
              }
            case '?':
            case '?':
              /* static member function.  */
              /* static member function.  */
              {
              {
                int slen = strlen (main_fn_name);
                int slen = strlen (main_fn_name);
 
 
                new_sublist->fn_field.voffset = VOFFSET_STATIC;
                new_sublist->fn_field.voffset = VOFFSET_STATIC;
 
 
                /* For static member functions, we can't tell if they
                /* For static member functions, we can't tell if they
                   are stubbed, as they are put out as functions, and not as
                   are stubbed, as they are put out as functions, and not as
                   methods.
                   methods.
                   GCC v2 emits the fully mangled name if
                   GCC v2 emits the fully mangled name if
                   dbxout.c:flag_minimal_debug is not set, so we have to
                   dbxout.c:flag_minimal_debug is not set, so we have to
                   detect a fully mangled physname here and set is_stub
                   detect a fully mangled physname here and set is_stub
                   accordingly.  Fully mangled physnames in v2 start with
                   accordingly.  Fully mangled physnames in v2 start with
                   the member function name, followed by two underscores.
                   the member function name, followed by two underscores.
                   GCC v3 currently always emits stubbed member functions,
                   GCC v3 currently always emits stubbed member functions,
                   but with fully mangled physnames, which start with _Z.  */
                   but with fully mangled physnames, which start with _Z.  */
                if (!(strncmp (new_sublist->fn_field.physname,
                if (!(strncmp (new_sublist->fn_field.physname,
                               main_fn_name, slen) == 0
                               main_fn_name, slen) == 0
                      && new_sublist->fn_field.physname[slen] == '_'
                      && new_sublist->fn_field.physname[slen] == '_'
                      && new_sublist->fn_field.physname[slen + 1] == '_'))
                      && new_sublist->fn_field.physname[slen + 1] == '_'))
                  {
                  {
                    new_sublist->fn_field.is_stub = 1;
                    new_sublist->fn_field.is_stub = 1;
                  }
                  }
                break;
                break;
              }
              }
 
 
            default:
            default:
              /* error */
              /* error */
              complaint (&symfile_complaints,
              complaint (&symfile_complaints,
                         _("member function type missing, got '%c'"), (*pp)[-1]);
                         _("member function type missing, got '%c'"), (*pp)[-1]);
              /* Fall through into normal member function.  */
              /* Fall through into normal member function.  */
 
 
            case '.':
            case '.':
              /* normal member function.  */
              /* normal member function.  */
              new_sublist->fn_field.voffset = 0;
              new_sublist->fn_field.voffset = 0;
              new_sublist->fn_field.fcontext = 0;
              new_sublist->fn_field.fcontext = 0;
              break;
              break;
            }
            }
 
 
          new_sublist->next = sublist;
          new_sublist->next = sublist;
          sublist = new_sublist;
          sublist = new_sublist;
          length++;
          length++;
          STABS_CONTINUE (pp, objfile);
          STABS_CONTINUE (pp, objfile);
        }
        }
      while (**pp != ';' && **pp != '\0');
      while (**pp != ';' && **pp != '\0');
 
 
      (*pp)++;
      (*pp)++;
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
 
 
      /* Skip GCC 3.X member functions which are duplicates of the callable
      /* Skip GCC 3.X member functions which are duplicates of the callable
         constructor/destructor.  */
         constructor/destructor.  */
      if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
      if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
          || strcmp_iw (main_fn_name, "__base_dtor ") == 0
          || strcmp_iw (main_fn_name, "__base_dtor ") == 0
          || strcmp (main_fn_name, "__deleting_dtor") == 0)
          || strcmp (main_fn_name, "__deleting_dtor") == 0)
        {
        {
          xfree (main_fn_name);
          xfree (main_fn_name);
        }
        }
      else
      else
        {
        {
          int has_stub = 0;
          int has_stub = 0;
          int has_destructor = 0, has_other = 0;
          int has_destructor = 0, has_other = 0;
          int is_v3 = 0;
          int is_v3 = 0;
          struct next_fnfield *tmp_sublist;
          struct next_fnfield *tmp_sublist;
 
 
          /* Various versions of GCC emit various mostly-useless
          /* Various versions of GCC emit various mostly-useless
             strings in the name field for special member functions.
             strings in the name field for special member functions.
 
 
             For stub methods, we need to defer correcting the name
             For stub methods, we need to defer correcting the name
             until we are ready to unstub the method, because the current
             until we are ready to unstub the method, because the current
             name string is used by gdb_mangle_name.  The only stub methods
             name string is used by gdb_mangle_name.  The only stub methods
             of concern here are GNU v2 operators; other methods have their
             of concern here are GNU v2 operators; other methods have their
             names correct (see caveat below).
             names correct (see caveat below).
 
 
             For non-stub methods, in GNU v3, we have a complete physname.
             For non-stub methods, in GNU v3, we have a complete physname.
             Therefore we can safely correct the name now.  This primarily
             Therefore we can safely correct the name now.  This primarily
             affects constructors and destructors, whose name will be
             affects constructors and destructors, whose name will be
             __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
             __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
             operators will also have incorrect names; for instance,
             operators will also have incorrect names; for instance,
             "operator int" will be named "operator i" (i.e. the type is
             "operator int" will be named "operator i" (i.e. the type is
             mangled).
             mangled).
 
 
             For non-stub methods in GNU v2, we have no easy way to
             For non-stub methods in GNU v2, we have no easy way to
             know if we have a complete physname or not.  For most
             know if we have a complete physname or not.  For most
             methods the result depends on the platform (if CPLUS_MARKER
             methods the result depends on the platform (if CPLUS_MARKER
             can be `$' or `.', it will use minimal debug information, or
             can be `$' or `.', it will use minimal debug information, or
             otherwise the full physname will be included).
             otherwise the full physname will be included).
 
 
             Rather than dealing with this, we take a different approach.
             Rather than dealing with this, we take a different approach.
             For v3 mangled names, we can use the full physname; for v2,
             For v3 mangled names, we can use the full physname; for v2,
             we use cplus_demangle_opname (which is actually v2 specific),
             we use cplus_demangle_opname (which is actually v2 specific),
             because the only interesting names are all operators - once again
             because the only interesting names are all operators - once again
             barring the caveat below.  Skip this process if any method in the
             barring the caveat below.  Skip this process if any method in the
             group is a stub, to prevent our fouling up the workings of
             group is a stub, to prevent our fouling up the workings of
             gdb_mangle_name.
             gdb_mangle_name.
 
 
             The caveat: GCC 2.95.x (and earlier?) put constructors and
             The caveat: GCC 2.95.x (and earlier?) put constructors and
             destructors in the same method group.  We need to split this
             destructors in the same method group.  We need to split this
             into two groups, because they should have different names.
             into two groups, because they should have different names.
             So for each method group we check whether it contains both
             So for each method group we check whether it contains both
             routines whose physname appears to be a destructor (the physnames
             routines whose physname appears to be a destructor (the physnames
             for and destructors are always provided, due to quirks in v2
             for and destructors are always provided, due to quirks in v2
             mangling) and routines whose physname does not appear to be a
             mangling) and routines whose physname does not appear to be a
             destructor.  If so then we break up the list into two halves.
             destructor.  If so then we break up the list into two halves.
             Even if the constructors and destructors aren't in the same group
             Even if the constructors and destructors aren't in the same group
             the destructor will still lack the leading tilde, so that also
             the destructor will still lack the leading tilde, so that also
             needs to be fixed.
             needs to be fixed.
 
 
             So, to summarize what we expect and handle here:
             So, to summarize what we expect and handle here:
 
 
                Given         Given          Real         Real       Action
                Given         Given          Real         Real       Action
             method name     physname      physname   method name
             method name     physname      physname   method name
 
 
             __opi            [none]     __opi__3Foo  operator int    opname
             __opi            [none]     __opi__3Foo  operator int    opname
                                                                   [now or later]
                                                                   [now or later]
             Foo              _._3Foo       _._3Foo      ~Foo       separate and
             Foo              _._3Foo       _._3Foo      ~Foo       separate and
                                                                       rename
                                                                       rename
             operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
             operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
             __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
             __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
          */
          */
 
 
          tmp_sublist = sublist;
          tmp_sublist = sublist;
          while (tmp_sublist != NULL)
          while (tmp_sublist != NULL)
            {
            {
              if (tmp_sublist->fn_field.is_stub)
              if (tmp_sublist->fn_field.is_stub)
                has_stub = 1;
                has_stub = 1;
              if (tmp_sublist->fn_field.physname[0] == '_'
              if (tmp_sublist->fn_field.physname[0] == '_'
                  && tmp_sublist->fn_field.physname[1] == 'Z')
                  && tmp_sublist->fn_field.physname[1] == 'Z')
                is_v3 = 1;
                is_v3 = 1;
 
 
              if (is_destructor_name (tmp_sublist->fn_field.physname))
              if (is_destructor_name (tmp_sublist->fn_field.physname))
                has_destructor++;
                has_destructor++;
              else
              else
                has_other++;
                has_other++;
 
 
              tmp_sublist = tmp_sublist->next;
              tmp_sublist = tmp_sublist->next;
            }
            }
 
 
          if (has_destructor && has_other)
          if (has_destructor && has_other)
            {
            {
              struct next_fnfieldlist *destr_fnlist;
              struct next_fnfieldlist *destr_fnlist;
              struct next_fnfield *last_sublist;
              struct next_fnfield *last_sublist;
 
 
              /* Create a new fn_fieldlist for the destructors.  */
              /* Create a new fn_fieldlist for the destructors.  */
 
 
              destr_fnlist = (struct next_fnfieldlist *)
              destr_fnlist = (struct next_fnfieldlist *)
                xmalloc (sizeof (struct next_fnfieldlist));
                xmalloc (sizeof (struct next_fnfieldlist));
              make_cleanup (xfree, destr_fnlist);
              make_cleanup (xfree, destr_fnlist);
              memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
              memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
              destr_fnlist->fn_fieldlist.name
              destr_fnlist->fn_fieldlist.name
                = obconcat (&objfile->objfile_obstack, "", "~",
                = obconcat (&objfile->objfile_obstack, "", "~",
                            new_fnlist->fn_fieldlist.name);
                            new_fnlist->fn_fieldlist.name);
 
 
              destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
              destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
                obstack_alloc (&objfile->objfile_obstack,
                obstack_alloc (&objfile->objfile_obstack,
                               sizeof (struct fn_field) * has_destructor);
                               sizeof (struct fn_field) * has_destructor);
              memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
              memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
                  sizeof (struct fn_field) * has_destructor);
                  sizeof (struct fn_field) * has_destructor);
              tmp_sublist = sublist;
              tmp_sublist = sublist;
              last_sublist = NULL;
              last_sublist = NULL;
              i = 0;
              i = 0;
              while (tmp_sublist != NULL)
              while (tmp_sublist != NULL)
                {
                {
                  if (!is_destructor_name (tmp_sublist->fn_field.physname))
                  if (!is_destructor_name (tmp_sublist->fn_field.physname))
                    {
                    {
                      tmp_sublist = tmp_sublist->next;
                      tmp_sublist = tmp_sublist->next;
                      continue;
                      continue;
                    }
                    }
 
 
                  destr_fnlist->fn_fieldlist.fn_fields[i++]
                  destr_fnlist->fn_fieldlist.fn_fields[i++]
                    = tmp_sublist->fn_field;
                    = tmp_sublist->fn_field;
                  if (last_sublist)
                  if (last_sublist)
                    last_sublist->next = tmp_sublist->next;
                    last_sublist->next = tmp_sublist->next;
                  else
                  else
                    sublist = tmp_sublist->next;
                    sublist = tmp_sublist->next;
                  last_sublist = tmp_sublist;
                  last_sublist = tmp_sublist;
                  tmp_sublist = tmp_sublist->next;
                  tmp_sublist = tmp_sublist->next;
                }
                }
 
 
              destr_fnlist->fn_fieldlist.length = has_destructor;
              destr_fnlist->fn_fieldlist.length = has_destructor;
              destr_fnlist->next = fip->fnlist;
              destr_fnlist->next = fip->fnlist;
              fip->fnlist = destr_fnlist;
              fip->fnlist = destr_fnlist;
              nfn_fields++;
              nfn_fields++;
              total_length += has_destructor;
              total_length += has_destructor;
              length -= has_destructor;
              length -= has_destructor;
            }
            }
          else if (is_v3)
          else if (is_v3)
            {
            {
              /* v3 mangling prevents the use of abbreviated physnames,
              /* v3 mangling prevents the use of abbreviated physnames,
                 so we can do this here.  There are stubbed methods in v3
                 so we can do this here.  There are stubbed methods in v3
                 only:
                 only:
                 - in -gstabs instead of -gstabs+
                 - in -gstabs instead of -gstabs+
                 - or for static methods, which are output as a function type
                 - or for static methods, which are output as a function type
                   instead of a method type.  */
                   instead of a method type.  */
 
 
              update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
              update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
                                                sublist->fn_field.physname);
                                                sublist->fn_field.physname);
            }
            }
          else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
          else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
            {
            {
              new_fnlist->fn_fieldlist.name =
              new_fnlist->fn_fieldlist.name =
                concat ("~", main_fn_name, (char *)NULL);
                concat ("~", main_fn_name, (char *)NULL);
              xfree (main_fn_name);
              xfree (main_fn_name);
            }
            }
          else if (!has_stub)
          else if (!has_stub)
            {
            {
              char dem_opname[256];
              char dem_opname[256];
              int ret;
              int ret;
              ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
              ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
                                              dem_opname, DMGL_ANSI);
                                              dem_opname, DMGL_ANSI);
              if (!ret)
              if (!ret)
                ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
                ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
                                             dem_opname, 0);
                                             dem_opname, 0);
              if (ret)
              if (ret)
                new_fnlist->fn_fieldlist.name
                new_fnlist->fn_fieldlist.name
                  = obsavestring (dem_opname, strlen (dem_opname),
                  = obsavestring (dem_opname, strlen (dem_opname),
                                  &objfile->objfile_obstack);
                                  &objfile->objfile_obstack);
            }
            }
 
 
          new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
          new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
            obstack_alloc (&objfile->objfile_obstack,
            obstack_alloc (&objfile->objfile_obstack,
                           sizeof (struct fn_field) * length);
                           sizeof (struct fn_field) * length);
          memset (new_fnlist->fn_fieldlist.fn_fields, 0,
          memset (new_fnlist->fn_fieldlist.fn_fields, 0,
                  sizeof (struct fn_field) * length);
                  sizeof (struct fn_field) * length);
          for (i = length; (i--, sublist); sublist = sublist->next)
          for (i = length; (i--, sublist); sublist = sublist->next)
            {
            {
              new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
              new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
            }
            }
 
 
          new_fnlist->fn_fieldlist.length = length;
          new_fnlist->fn_fieldlist.length = length;
          new_fnlist->next = fip->fnlist;
          new_fnlist->next = fip->fnlist;
          fip->fnlist = new_fnlist;
          fip->fnlist = new_fnlist;
          nfn_fields++;
          nfn_fields++;
          total_length += length;
          total_length += length;
        }
        }
    }
    }
 
 
  if (nfn_fields)
  if (nfn_fields)
    {
    {
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
      TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
      TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
        TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
        TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
      memset (TYPE_FN_FIELDLISTS (type), 0,
      memset (TYPE_FN_FIELDLISTS (type), 0,
              sizeof (struct fn_fieldlist) * nfn_fields);
              sizeof (struct fn_fieldlist) * nfn_fields);
      TYPE_NFN_FIELDS (type) = nfn_fields;
      TYPE_NFN_FIELDS (type) = nfn_fields;
      TYPE_NFN_FIELDS_TOTAL (type) = total_length;
      TYPE_NFN_FIELDS_TOTAL (type) = total_length;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Special GNU C++ name.
/* Special GNU C++ name.
 
 
   Returns 1 for success, 0 for failure.  "failure" means that we can't
   Returns 1 for success, 0 for failure.  "failure" means that we can't
   keep parsing and it's time for error_type().  */
   keep parsing and it's time for error_type().  */
 
 
static int
static int
read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
                 struct objfile *objfile)
                 struct objfile *objfile)
{
{
  char *p;
  char *p;
  char *name;
  char *name;
  char cpp_abbrev;
  char cpp_abbrev;
  struct type *context;
  struct type *context;
 
 
  p = *pp;
  p = *pp;
  if (*++p == 'v')
  if (*++p == 'v')
    {
    {
      name = NULL;
      name = NULL;
      cpp_abbrev = *++p;
      cpp_abbrev = *++p;
 
 
      *pp = p + 1;
      *pp = p + 1;
 
 
      /* At this point, *pp points to something like "22:23=*22...",
      /* At this point, *pp points to something like "22:23=*22...",
         where the type number before the ':' is the "context" and
         where the type number before the ':' is the "context" and
         everything after is a regular type definition.  Lookup the
         everything after is a regular type definition.  Lookup the
         type, find it's name, and construct the field name. */
         type, find it's name, and construct the field name. */
 
 
      context = read_type (pp, objfile);
      context = read_type (pp, objfile);
 
 
      switch (cpp_abbrev)
      switch (cpp_abbrev)
        {
        {
        case 'f':               /* $vf -- a virtual function table pointer */
        case 'f':               /* $vf -- a virtual function table pointer */
          name = type_name_no_tag (context);
          name = type_name_no_tag (context);
          if (name == NULL)
          if (name == NULL)
          {
          {
                  name = "";
                  name = "";
          }
          }
          fip->list->field.name =
          fip->list->field.name =
            obconcat (&objfile->objfile_obstack, vptr_name, name, "");
            obconcat (&objfile->objfile_obstack, vptr_name, name, "");
          break;
          break;
 
 
        case 'b':               /* $vb -- a virtual bsomethingorother */
        case 'b':               /* $vb -- a virtual bsomethingorother */
          name = type_name_no_tag (context);
          name = type_name_no_tag (context);
          if (name == NULL)
          if (name == NULL)
            {
            {
              complaint (&symfile_complaints,
              complaint (&symfile_complaints,
                         _("C++ abbreviated type name unknown at symtab pos %d"),
                         _("C++ abbreviated type name unknown at symtab pos %d"),
                         symnum);
                         symnum);
              name = "FOO";
              name = "FOO";
            }
            }
          fip->list->field.name =
          fip->list->field.name =
            obconcat (&objfile->objfile_obstack, vb_name, name, "");
            obconcat (&objfile->objfile_obstack, vb_name, name, "");
          break;
          break;
 
 
        default:
        default:
          invalid_cpp_abbrev_complaint (*pp);
          invalid_cpp_abbrev_complaint (*pp);
          fip->list->field.name =
          fip->list->field.name =
            obconcat (&objfile->objfile_obstack,
            obconcat (&objfile->objfile_obstack,
                      "INVALID_CPLUSPLUS_ABBREV", "", "");
                      "INVALID_CPLUSPLUS_ABBREV", "", "");
          break;
          break;
        }
        }
 
 
      /* At this point, *pp points to the ':'.  Skip it and read the
      /* At this point, *pp points to the ':'.  Skip it and read the
         field type. */
         field type. */
 
 
      p = ++(*pp);
      p = ++(*pp);
      if (p[-1] != ':')
      if (p[-1] != ':')
        {
        {
          invalid_cpp_abbrev_complaint (*pp);
          invalid_cpp_abbrev_complaint (*pp);
          return 0;
          return 0;
        }
        }
      fip->list->field.type = read_type (pp, objfile);
      fip->list->field.type = read_type (pp, objfile);
      if (**pp == ',')
      if (**pp == ',')
        (*pp)++;                /* Skip the comma.  */
        (*pp)++;                /* Skip the comma.  */
      else
      else
        return 0;
        return 0;
 
 
      {
      {
        int nbits;
        int nbits;
        FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
        FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
                                                            0);
                                                            0);
        if (nbits != 0)
        if (nbits != 0)
          return 0;
          return 0;
      }
      }
      /* This field is unpacked.  */
      /* This field is unpacked.  */
      FIELD_BITSIZE (fip->list->field) = 0;
      FIELD_BITSIZE (fip->list->field) = 0;
      fip->list->visibility = VISIBILITY_PRIVATE;
      fip->list->visibility = VISIBILITY_PRIVATE;
    }
    }
  else
  else
    {
    {
      invalid_cpp_abbrev_complaint (*pp);
      invalid_cpp_abbrev_complaint (*pp);
      /* We have no idea what syntax an unrecognized abbrev would have, so
      /* We have no idea what syntax an unrecognized abbrev would have, so
         better return 0.  If we returned 1, we would need to at least advance
         better return 0.  If we returned 1, we would need to at least advance
         *pp to avoid an infinite loop.  */
         *pp to avoid an infinite loop.  */
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
static void
static void
read_one_struct_field (struct field_info *fip, char **pp, char *p,
read_one_struct_field (struct field_info *fip, char **pp, char *p,
                       struct type *type, struct objfile *objfile)
                       struct type *type, struct objfile *objfile)
{
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
 
 
  fip->list->field.name =
  fip->list->field.name =
    obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
    obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
  *pp = p + 1;
  *pp = p + 1;
 
 
  /* This means we have a visibility for a field coming. */
  /* This means we have a visibility for a field coming. */
  if (**pp == '/')
  if (**pp == '/')
    {
    {
      (*pp)++;
      (*pp)++;
      fip->list->visibility = *(*pp)++;
      fip->list->visibility = *(*pp)++;
    }
    }
  else
  else
    {
    {
      /* normal dbx-style format, no explicit visibility */
      /* normal dbx-style format, no explicit visibility */
      fip->list->visibility = VISIBILITY_PUBLIC;
      fip->list->visibility = VISIBILITY_PUBLIC;
    }
    }
 
 
  fip->list->field.type = read_type (pp, objfile);
  fip->list->field.type = read_type (pp, objfile);
  if (**pp == ':')
  if (**pp == ':')
    {
    {
      p = ++(*pp);
      p = ++(*pp);
#if 0
#if 0
      /* Possible future hook for nested types. */
      /* Possible future hook for nested types. */
      if (**pp == '!')
      if (**pp == '!')
        {
        {
          fip->list->field.bitpos = (long) -2;  /* nested type */
          fip->list->field.bitpos = (long) -2;  /* nested type */
          p = ++(*pp);
          p = ++(*pp);
        }
        }
      else
      else
        ...;
        ...;
#endif
#endif
      while (*p != ';')
      while (*p != ';')
        {
        {
          p++;
          p++;
        }
        }
      /* Static class member.  */
      /* Static class member.  */
      SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
      SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
      *pp = p + 1;
      *pp = p + 1;
      return;
      return;
    }
    }
  else if (**pp != ',')
  else if (**pp != ',')
    {
    {
      /* Bad structure-type format.  */
      /* Bad structure-type format.  */
      stabs_general_complaint ("bad structure-type format");
      stabs_general_complaint ("bad structure-type format");
      return;
      return;
    }
    }
 
 
  (*pp)++;                      /* Skip the comma.  */
  (*pp)++;                      /* Skip the comma.  */
 
 
  {
  {
    int nbits;
    int nbits;
    FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
    FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
    if (nbits != 0)
    if (nbits != 0)
      {
      {
        stabs_general_complaint ("bad structure-type format");
        stabs_general_complaint ("bad structure-type format");
        return;
        return;
      }
      }
    FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
    FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
    if (nbits != 0)
    if (nbits != 0)
      {
      {
        stabs_general_complaint ("bad structure-type format");
        stabs_general_complaint ("bad structure-type format");
        return;
        return;
      }
      }
  }
  }
 
 
  if (FIELD_BITPOS (fip->list->field) == 0
  if (FIELD_BITPOS (fip->list->field) == 0
      && FIELD_BITSIZE (fip->list->field) == 0)
      && FIELD_BITSIZE (fip->list->field) == 0)
    {
    {
      /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
      /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
         it is a field which has been optimized out.  The correct stab for
         it is a field which has been optimized out.  The correct stab for
         this case is to use VISIBILITY_IGNORE, but that is a recent
         this case is to use VISIBILITY_IGNORE, but that is a recent
         invention.  (2) It is a 0-size array.  For example
         invention.  (2) It is a 0-size array.  For example
         union { int num; char str[0]; } foo.  Printing _("<no value>" for
         union { int num; char str[0]; } foo.  Printing _("<no value>" for
         str in "p foo" is OK, since foo.str (and thus foo.str[3])
         str in "p foo" is OK, since foo.str (and thus foo.str[3])
         will continue to work, and a 0-size array as a whole doesn't
         will continue to work, and a 0-size array as a whole doesn't
         have any contents to print.
         have any contents to print.
 
 
         I suspect this probably could also happen with gcc -gstabs (not
         I suspect this probably could also happen with gcc -gstabs (not
         -gstabs+) for static fields, and perhaps other C++ extensions.
         -gstabs+) for static fields, and perhaps other C++ extensions.
         Hopefully few people use -gstabs with gdb, since it is intended
         Hopefully few people use -gstabs with gdb, since it is intended
         for dbx compatibility.  */
         for dbx compatibility.  */
 
 
      /* Ignore this field.  */
      /* Ignore this field.  */
      fip->list->visibility = VISIBILITY_IGNORE;
      fip->list->visibility = VISIBILITY_IGNORE;
    }
    }
  else
  else
    {
    {
      /* Detect an unpacked field and mark it as such.
      /* Detect an unpacked field and mark it as such.
         dbx gives a bit size for all fields.
         dbx gives a bit size for all fields.
         Note that forward refs cannot be packed,
         Note that forward refs cannot be packed,
         and treat enums as if they had the width of ints.  */
         and treat enums as if they had the width of ints.  */
 
 
      struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
      struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
 
 
      if (TYPE_CODE (field_type) != TYPE_CODE_INT
      if (TYPE_CODE (field_type) != TYPE_CODE_INT
          && TYPE_CODE (field_type) != TYPE_CODE_RANGE
          && TYPE_CODE (field_type) != TYPE_CODE_RANGE
          && TYPE_CODE (field_type) != TYPE_CODE_BOOL
          && TYPE_CODE (field_type) != TYPE_CODE_BOOL
          && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
          && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
        {
        {
          FIELD_BITSIZE (fip->list->field) = 0;
          FIELD_BITSIZE (fip->list->field) = 0;
        }
        }
      if ((FIELD_BITSIZE (fip->list->field)
      if ((FIELD_BITSIZE (fip->list->field)
           == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
           == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
           || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
           || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
               && FIELD_BITSIZE (fip->list->field)
               && FIELD_BITSIZE (fip->list->field)
                  == gdbarch_int_bit (gdbarch))
                  == gdbarch_int_bit (gdbarch))
          )
          )
          &&
          &&
          FIELD_BITPOS (fip->list->field) % 8 == 0)
          FIELD_BITPOS (fip->list->field) % 8 == 0)
        {
        {
          FIELD_BITSIZE (fip->list->field) = 0;
          FIELD_BITSIZE (fip->list->field) = 0;
        }
        }
    }
    }
}
}
 
 
 
 
/* Read struct or class data fields.  They have the form:
/* Read struct or class data fields.  They have the form:
 
 
   NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
   NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
 
 
   At the end, we see a semicolon instead of a field.
   At the end, we see a semicolon instead of a field.
 
 
   In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
   In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
   a static field.
   a static field.
 
 
   The optional VISIBILITY is one of:
   The optional VISIBILITY is one of:
 
 
   '/0' (VISIBILITY_PRIVATE)
   '/0' (VISIBILITY_PRIVATE)
   '/1' (VISIBILITY_PROTECTED)
   '/1' (VISIBILITY_PROTECTED)
   '/2' (VISIBILITY_PUBLIC)
   '/2' (VISIBILITY_PUBLIC)
   '/9' (VISIBILITY_IGNORE)
   '/9' (VISIBILITY_IGNORE)
 
 
   or nothing, for C style fields with public visibility.
   or nothing, for C style fields with public visibility.
 
 
   Returns 1 for success, 0 for failure.  */
   Returns 1 for success, 0 for failure.  */
 
 
static int
static int
read_struct_fields (struct field_info *fip, char **pp, struct type *type,
read_struct_fields (struct field_info *fip, char **pp, struct type *type,
                    struct objfile *objfile)
                    struct objfile *objfile)
{
{
  char *p;
  char *p;
  struct nextfield *new;
  struct nextfield *new;
 
 
  /* We better set p right now, in case there are no fields at all...    */
  /* We better set p right now, in case there are no fields at all...    */
 
 
  p = *pp;
  p = *pp;
 
 
  /* Read each data member type until we find the terminating ';' at the end of
  /* Read each data member type until we find the terminating ';' at the end of
     the data member list, or break for some other reason such as finding the
     the data member list, or break for some other reason such as finding the
     start of the member function list. */
     start of the member function list. */
  /* Stab string for structure/union does not end with two ';' in
  /* Stab string for structure/union does not end with two ';' in
     SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
     SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
 
 
  while (**pp != ';' && **pp != '\0')
  while (**pp != ';' && **pp != '\0')
    {
    {
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      /* Get space to record the next field's data.  */
      /* Get space to record the next field's data.  */
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (xfree, new);
      make_cleanup (xfree, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
 
 
      /* Get the field name.  */
      /* Get the field name.  */
      p = *pp;
      p = *pp;
 
 
      /* If is starts with CPLUS_MARKER it is a special abbreviation,
      /* If is starts with CPLUS_MARKER it is a special abbreviation,
         unless the CPLUS_MARKER is followed by an underscore, in
         unless the CPLUS_MARKER is followed by an underscore, in
         which case it is just the name of an anonymous type, which we
         which case it is just the name of an anonymous type, which we
         should handle like any other type name.  */
         should handle like any other type name.  */
 
 
      if (is_cplus_marker (p[0]) && p[1] != '_')
      if (is_cplus_marker (p[0]) && p[1] != '_')
        {
        {
          if (!read_cpp_abbrev (fip, pp, type, objfile))
          if (!read_cpp_abbrev (fip, pp, type, objfile))
            return 0;
            return 0;
          continue;
          continue;
        }
        }
 
 
      /* Look for the ':' that separates the field name from the field
      /* Look for the ':' that separates the field name from the field
         values.  Data members are delimited by a single ':', while member
         values.  Data members are delimited by a single ':', while member
         functions are delimited by a pair of ':'s.  When we hit the member
         functions are delimited by a pair of ':'s.  When we hit the member
         functions (if any), terminate scan loop and return. */
         functions (if any), terminate scan loop and return. */
 
 
      while (*p != ':' && *p != '\0')
      while (*p != ':' && *p != '\0')
        {
        {
          p++;
          p++;
        }
        }
      if (*p == '\0')
      if (*p == '\0')
        return 0;
        return 0;
 
 
      /* Check to see if we have hit the member functions yet.  */
      /* Check to see if we have hit the member functions yet.  */
      if (p[1] == ':')
      if (p[1] == ':')
        {
        {
          break;
          break;
        }
        }
      read_one_struct_field (fip, pp, p, type, objfile);
      read_one_struct_field (fip, pp, p, type, objfile);
    }
    }
  if (p[0] == ':' && p[1] == ':')
  if (p[0] == ':' && p[1] == ':')
    {
    {
      /* (the deleted) chill the list of fields: the last entry (at
      /* (the deleted) chill the list of fields: the last entry (at
         the head) is a partially constructed entry which we now
         the head) is a partially constructed entry which we now
         scrub. */
         scrub. */
      fip->list = fip->list->next;
      fip->list = fip->list->next;
    }
    }
  return 1;
  return 1;
}
}
/* *INDENT-OFF* */
/* *INDENT-OFF* */
/* The stabs for C++ derived classes contain baseclass information which
/* The stabs for C++ derived classes contain baseclass information which
   is marked by a '!' character after the total size.  This function is
   is marked by a '!' character after the total size.  This function is
   called when we encounter the baseclass marker, and slurps up all the
   called when we encounter the baseclass marker, and slurps up all the
   baseclass information.
   baseclass information.
 
 
   Immediately following the '!' marker is the number of base classes that
   Immediately following the '!' marker is the number of base classes that
   the class is derived from, followed by information for each base class.
   the class is derived from, followed by information for each base class.
   For each base class, there are two visibility specifiers, a bit offset
   For each base class, there are two visibility specifiers, a bit offset
   to the base class information within the derived class, a reference to
   to the base class information within the derived class, a reference to
   the type for the base class, and a terminating semicolon.
   the type for the base class, and a terminating semicolon.
 
 
   A typical example, with two base classes, would be "!2,020,19;0264,21;".
   A typical example, with two base classes, would be "!2,020,19;0264,21;".
                                                       ^^ ^ ^ ^  ^ ^  ^
                                                       ^^ ^ ^ ^  ^ ^  ^
        Baseclass information marker __________________|| | | |  | |  |
        Baseclass information marker __________________|| | | |  | |  |
        Number of baseclasses __________________________| | | |  | |  |
        Number of baseclasses __________________________| | | |  | |  |
        Visibility specifiers (2) ________________________| | |  | |  |
        Visibility specifiers (2) ________________________| | |  | |  |
        Offset in bits from start of class _________________| |  | |  |
        Offset in bits from start of class _________________| |  | |  |
        Type number for base class ___________________________|  | |  |
        Type number for base class ___________________________|  | |  |
        Visibility specifiers (2) _______________________________| |  |
        Visibility specifiers (2) _______________________________| |  |
        Offset in bits from start of class ________________________|  |
        Offset in bits from start of class ________________________|  |
        Type number of base class ____________________________________|
        Type number of base class ____________________________________|
 
 
  Return 1 for success, 0 for (error-type-inducing) failure.  */
  Return 1 for success, 0 for (error-type-inducing) failure.  */
/* *INDENT-ON* */
/* *INDENT-ON* */
 
 
 
 
 
 
static int
static int
read_baseclasses (struct field_info *fip, char **pp, struct type *type,
read_baseclasses (struct field_info *fip, char **pp, struct type *type,
                  struct objfile *objfile)
                  struct objfile *objfile)
{
{
  int i;
  int i;
  struct nextfield *new;
  struct nextfield *new;
 
 
  if (**pp != '!')
  if (**pp != '!')
    {
    {
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      /* Skip the '!' baseclass information marker. */
      /* Skip the '!' baseclass information marker. */
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
  {
  {
    int nbits;
    int nbits;
    TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
    TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
    if (nbits != 0)
    if (nbits != 0)
      return 0;
      return 0;
  }
  }
 
 
#if 0
#if 0
  /* Some stupid compilers have trouble with the following, so break
  /* Some stupid compilers have trouble with the following, so break
     it up into simpler expressions.  */
     it up into simpler expressions.  */
  TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
  TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
    TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
    TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
#else
#else
  {
  {
    int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
    int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
    char *pointer;
    char *pointer;
 
 
    pointer = (char *) TYPE_ALLOC (type, num_bytes);
    pointer = (char *) TYPE_ALLOC (type, num_bytes);
    TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
    TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
  }
  }
#endif /* 0 */
#endif /* 0 */
 
 
  B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
  B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
 
 
  for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
  for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
    {
    {
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (xfree, new);
      make_cleanup (xfree, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
      FIELD_BITSIZE (new->field) = 0;    /* this should be an unpacked field! */
      FIELD_BITSIZE (new->field) = 0;    /* this should be an unpacked field! */
 
 
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      switch (**pp)
      switch (**pp)
        {
        {
        case '0':
        case '0':
          /* Nothing to do. */
          /* Nothing to do. */
          break;
          break;
        case '1':
        case '1':
          SET_TYPE_FIELD_VIRTUAL (type, i);
          SET_TYPE_FIELD_VIRTUAL (type, i);
          break;
          break;
        default:
        default:
          /* Unknown character.  Complain and treat it as non-virtual.  */
          /* Unknown character.  Complain and treat it as non-virtual.  */
          {
          {
            complaint (&symfile_complaints,
            complaint (&symfile_complaints,
                       _("Unknown virtual character `%c' for baseclass"), **pp);
                       _("Unknown virtual character `%c' for baseclass"), **pp);
          }
          }
        }
        }
      ++(*pp);
      ++(*pp);
 
 
      new->visibility = *(*pp)++;
      new->visibility = *(*pp)++;
      switch (new->visibility)
      switch (new->visibility)
        {
        {
        case VISIBILITY_PRIVATE:
        case VISIBILITY_PRIVATE:
        case VISIBILITY_PROTECTED:
        case VISIBILITY_PROTECTED:
        case VISIBILITY_PUBLIC:
        case VISIBILITY_PUBLIC:
          break;
          break;
        default:
        default:
          /* Bad visibility format.  Complain and treat it as
          /* Bad visibility format.  Complain and treat it as
             public.  */
             public.  */
          {
          {
            complaint (&symfile_complaints,
            complaint (&symfile_complaints,
                       _("Unknown visibility `%c' for baseclass"),
                       _("Unknown visibility `%c' for baseclass"),
                       new->visibility);
                       new->visibility);
            new->visibility = VISIBILITY_PUBLIC;
            new->visibility = VISIBILITY_PUBLIC;
          }
          }
        }
        }
 
 
      {
      {
        int nbits;
        int nbits;
 
 
        /* The remaining value is the bit offset of the portion of the object
        /* The remaining value is the bit offset of the portion of the object
           corresponding to this baseclass.  Always zero in the absence of
           corresponding to this baseclass.  Always zero in the absence of
           multiple inheritance.  */
           multiple inheritance.  */
 
 
        FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
        FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
        if (nbits != 0)
        if (nbits != 0)
          return 0;
          return 0;
      }
      }
 
 
      /* The last piece of baseclass information is the type of the
      /* The last piece of baseclass information is the type of the
         base class.  Read it, and remember it's type name as this
         base class.  Read it, and remember it's type name as this
         field's name. */
         field's name. */
 
 
      new->field.type = read_type (pp, objfile);
      new->field.type = read_type (pp, objfile);
      new->field.name = type_name_no_tag (new->field.type);
      new->field.name = type_name_no_tag (new->field.type);
 
 
      /* skip trailing ';' and bump count of number of fields seen */
      /* skip trailing ';' and bump count of number of fields seen */
      if (**pp == ';')
      if (**pp == ';')
        (*pp)++;
        (*pp)++;
      else
      else
        return 0;
        return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* The tail end of stabs for C++ classes that contain a virtual function
/* The tail end of stabs for C++ classes that contain a virtual function
   pointer contains a tilde, a %, and a type number.
   pointer contains a tilde, a %, and a type number.
   The type number refers to the base class (possibly this class itself) which
   The type number refers to the base class (possibly this class itself) which
   contains the vtable pointer for the current class.
   contains the vtable pointer for the current class.
 
 
   This function is called when we have parsed all the method declarations,
   This function is called when we have parsed all the method declarations,
   so we can look for the vptr base class info.  */
   so we can look for the vptr base class info.  */
 
 
static int
static int
read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
                   struct objfile *objfile)
                   struct objfile *objfile)
{
{
  char *p;
  char *p;
 
 
  STABS_CONTINUE (pp, objfile);
  STABS_CONTINUE (pp, objfile);
 
 
  /* If we are positioned at a ';', then skip it. */
  /* If we are positioned at a ';', then skip it. */
  if (**pp == ';')
  if (**pp == ';')
    {
    {
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  if (**pp == '~')
  if (**pp == '~')
    {
    {
      (*pp)++;
      (*pp)++;
 
 
      if (**pp == '=' || **pp == '+' || **pp == '-')
      if (**pp == '=' || **pp == '+' || **pp == '-')
        {
        {
          /* Obsolete flags that used to indicate the presence
          /* Obsolete flags that used to indicate the presence
             of constructors and/or destructors. */
             of constructors and/or destructors. */
          (*pp)++;
          (*pp)++;
        }
        }
 
 
      /* Read either a '%' or the final ';'.  */
      /* Read either a '%' or the final ';'.  */
      if (*(*pp)++ == '%')
      if (*(*pp)++ == '%')
        {
        {
          /* The next number is the type number of the base class
          /* The next number is the type number of the base class
             (possibly our own class) which supplies the vtable for
             (possibly our own class) which supplies the vtable for
             this class.  Parse it out, and search that class to find
             this class.  Parse it out, and search that class to find
             its vtable pointer, and install those into TYPE_VPTR_BASETYPE
             its vtable pointer, and install those into TYPE_VPTR_BASETYPE
             and TYPE_VPTR_FIELDNO.  */
             and TYPE_VPTR_FIELDNO.  */
 
 
          struct type *t;
          struct type *t;
          int i;
          int i;
 
 
          t = read_type (pp, objfile);
          t = read_type (pp, objfile);
          p = (*pp)++;
          p = (*pp)++;
          while (*p != '\0' && *p != ';')
          while (*p != '\0' && *p != ';')
            {
            {
              p++;
              p++;
            }
            }
          if (*p == '\0')
          if (*p == '\0')
            {
            {
              /* Premature end of symbol.  */
              /* Premature end of symbol.  */
              return 0;
              return 0;
            }
            }
 
 
          TYPE_VPTR_BASETYPE (type) = t;
          TYPE_VPTR_BASETYPE (type) = t;
          if (type == t)        /* Our own class provides vtbl ptr */
          if (type == t)        /* Our own class provides vtbl ptr */
            {
            {
              for (i = TYPE_NFIELDS (t) - 1;
              for (i = TYPE_NFIELDS (t) - 1;
                   i >= TYPE_N_BASECLASSES (t);
                   i >= TYPE_N_BASECLASSES (t);
                   --i)
                   --i)
                {
                {
                  char *name = TYPE_FIELD_NAME (t, i);
                  char *name = TYPE_FIELD_NAME (t, i);
                  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
                  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
                      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
                      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
                    {
                    {
                      TYPE_VPTR_FIELDNO (type) = i;
                      TYPE_VPTR_FIELDNO (type) = i;
                      goto gotit;
                      goto gotit;
                    }
                    }
                }
                }
              /* Virtual function table field not found.  */
              /* Virtual function table field not found.  */
              complaint (&symfile_complaints,
              complaint (&symfile_complaints,
                         _("virtual function table pointer not found when defining class `%s'"),
                         _("virtual function table pointer not found when defining class `%s'"),
                         TYPE_NAME (type));
                         TYPE_NAME (type));
              return 0;
              return 0;
            }
            }
          else
          else
            {
            {
              TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
              TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
            }
            }
 
 
        gotit:
        gotit:
          *pp = p + 1;
          *pp = p + 1;
        }
        }
    }
    }
  return 1;
  return 1;
}
}
 
 
static int
static int
attach_fn_fields_to_type (struct field_info *fip, struct type *type)
attach_fn_fields_to_type (struct field_info *fip, struct type *type)
{
{
  int n;
  int n;
 
 
  for (n = TYPE_NFN_FIELDS (type);
  for (n = TYPE_NFN_FIELDS (type);
       fip->fnlist != NULL;
       fip->fnlist != NULL;
       fip->fnlist = fip->fnlist->next)
       fip->fnlist = fip->fnlist->next)
    {
    {
      --n;                      /* Circumvent Sun3 compiler bug */
      --n;                      /* Circumvent Sun3 compiler bug */
      TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
      TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Create the vector of fields, and record how big it is.
/* Create the vector of fields, and record how big it is.
   We need this info to record proper virtual function table information
   We need this info to record proper virtual function table information
   for this class's virtual functions.  */
   for this class's virtual functions.  */
 
 
static int
static int
attach_fields_to_type (struct field_info *fip, struct type *type,
attach_fields_to_type (struct field_info *fip, struct type *type,
                       struct objfile *objfile)
                       struct objfile *objfile)
{
{
  int nfields = 0;
  int nfields = 0;
  int non_public_fields = 0;
  int non_public_fields = 0;
  struct nextfield *scan;
  struct nextfield *scan;
 
 
  /* Count up the number of fields that we have, as well as taking note of
  /* Count up the number of fields that we have, as well as taking note of
     whether or not there are any non-public fields, which requires us to
     whether or not there are any non-public fields, which requires us to
     allocate and build the private_field_bits and protected_field_bits
     allocate and build the private_field_bits and protected_field_bits
     bitfields. */
     bitfields. */
 
 
  for (scan = fip->list; scan != NULL; scan = scan->next)
  for (scan = fip->list; scan != NULL; scan = scan->next)
    {
    {
      nfields++;
      nfields++;
      if (scan->visibility != VISIBILITY_PUBLIC)
      if (scan->visibility != VISIBILITY_PUBLIC)
        {
        {
          non_public_fields++;
          non_public_fields++;
        }
        }
    }
    }
 
 
  /* Now we know how many fields there are, and whether or not there are any
  /* Now we know how many fields there are, and whether or not there are any
     non-public fields.  Record the field count, allocate space for the
     non-public fields.  Record the field count, allocate space for the
     array of fields, and create blank visibility bitfields if necessary. */
     array of fields, and create blank visibility bitfields if necessary. */
 
 
  TYPE_NFIELDS (type) = nfields;
  TYPE_NFIELDS (type) = nfields;
  TYPE_FIELDS (type) = (struct field *)
  TYPE_FIELDS (type) = (struct field *)
    TYPE_ALLOC (type, sizeof (struct field) * nfields);
    TYPE_ALLOC (type, sizeof (struct field) * nfields);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
 
 
  if (non_public_fields)
  if (non_public_fields)
    {
    {
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
 
 
      TYPE_FIELD_PRIVATE_BITS (type) =
      TYPE_FIELD_PRIVATE_BITS (type) =
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
      B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
      B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
 
 
      TYPE_FIELD_PROTECTED_BITS (type) =
      TYPE_FIELD_PROTECTED_BITS (type) =
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
      B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
      B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
 
 
      TYPE_FIELD_IGNORE_BITS (type) =
      TYPE_FIELD_IGNORE_BITS (type) =
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
      B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
      B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
    }
    }
 
 
  /* Copy the saved-up fields into the field vector.  Start from the head
  /* Copy the saved-up fields into the field vector.  Start from the head
     of the list, adding to the tail of the field array, so that they end
     of the list, adding to the tail of the field array, so that they end
     up in the same order in the array in which they were added to the list. */
     up in the same order in the array in which they were added to the list. */
 
 
  while (nfields-- > 0)
  while (nfields-- > 0)
    {
    {
      TYPE_FIELD (type, nfields) = fip->list->field;
      TYPE_FIELD (type, nfields) = fip->list->field;
      switch (fip->list->visibility)
      switch (fip->list->visibility)
        {
        {
        case VISIBILITY_PRIVATE:
        case VISIBILITY_PRIVATE:
          SET_TYPE_FIELD_PRIVATE (type, nfields);
          SET_TYPE_FIELD_PRIVATE (type, nfields);
          break;
          break;
 
 
        case VISIBILITY_PROTECTED:
        case VISIBILITY_PROTECTED:
          SET_TYPE_FIELD_PROTECTED (type, nfields);
          SET_TYPE_FIELD_PROTECTED (type, nfields);
          break;
          break;
 
 
        case VISIBILITY_IGNORE:
        case VISIBILITY_IGNORE:
          SET_TYPE_FIELD_IGNORE (type, nfields);
          SET_TYPE_FIELD_IGNORE (type, nfields);
          break;
          break;
 
 
        case VISIBILITY_PUBLIC:
        case VISIBILITY_PUBLIC:
          break;
          break;
 
 
        default:
        default:
          /* Unknown visibility.  Complain and treat it as public.  */
          /* Unknown visibility.  Complain and treat it as public.  */
          {
          {
            complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
            complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
                       fip->list->visibility);
                       fip->list->visibility);
          }
          }
          break;
          break;
        }
        }
      fip->list = fip->list->next;
      fip->list = fip->list->next;
    }
    }
  return 1;
  return 1;
}
}
 
 
 
 
/* Complain that the compiler has emitted more than one definition for the
/* Complain that the compiler has emitted more than one definition for the
   structure type TYPE.  */
   structure type TYPE.  */
static void
static void
complain_about_struct_wipeout (struct type *type)
complain_about_struct_wipeout (struct type *type)
{
{
  char *name = "";
  char *name = "";
  char *kind = "";
  char *kind = "";
 
 
  if (TYPE_TAG_NAME (type))
  if (TYPE_TAG_NAME (type))
    {
    {
      name = TYPE_TAG_NAME (type);
      name = TYPE_TAG_NAME (type);
      switch (TYPE_CODE (type))
      switch (TYPE_CODE (type))
        {
        {
        case TYPE_CODE_STRUCT: kind = "struct "; break;
        case TYPE_CODE_STRUCT: kind = "struct "; break;
        case TYPE_CODE_UNION:  kind = "union ";  break;
        case TYPE_CODE_UNION:  kind = "union ";  break;
        case TYPE_CODE_ENUM:   kind = "enum ";   break;
        case TYPE_CODE_ENUM:   kind = "enum ";   break;
        default: kind = "";
        default: kind = "";
        }
        }
    }
    }
  else if (TYPE_NAME (type))
  else if (TYPE_NAME (type))
    {
    {
      name = TYPE_NAME (type);
      name = TYPE_NAME (type);
      kind = "";
      kind = "";
    }
    }
  else
  else
    {
    {
      name = "<unknown>";
      name = "<unknown>";
      kind = "";
      kind = "";
    }
    }
 
 
  complaint (&symfile_complaints,
  complaint (&symfile_complaints,
             _("struct/union type gets multiply defined: %s%s"), kind, name);
             _("struct/union type gets multiply defined: %s%s"), kind, name);
}
}
 
 
 
 
/* Read the description of a structure (or union type) and return an object
/* Read the description of a structure (or union type) and return an object
   describing the type.
   describing the type.
 
 
   PP points to a character pointer that points to the next unconsumed token
   PP points to a character pointer that points to the next unconsumed token
   in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
   in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
   *PP will point to "4a:1,0,32;;".
   *PP will point to "4a:1,0,32;;".
 
 
   TYPE points to an incomplete type that needs to be filled in.
   TYPE points to an incomplete type that needs to be filled in.
 
 
   OBJFILE points to the current objfile from which the stabs information is
   OBJFILE points to the current objfile from which the stabs information is
   being read.  (Note that it is redundant in that TYPE also contains a pointer
   being read.  (Note that it is redundant in that TYPE also contains a pointer
   to this same objfile, so it might be a good idea to eliminate it.  FIXME).
   to this same objfile, so it might be a good idea to eliminate it.  FIXME).
 */
 */
 
 
static struct type *
static struct type *
read_struct_type (char **pp, struct type *type, enum type_code type_code,
read_struct_type (char **pp, struct type *type, enum type_code type_code,
                  struct objfile *objfile)
                  struct objfile *objfile)
{
{
  struct cleanup *back_to;
  struct cleanup *back_to;
  struct field_info fi;
  struct field_info fi;
 
 
  fi.list = NULL;
  fi.list = NULL;
  fi.fnlist = NULL;
  fi.fnlist = NULL;
 
 
  /* When describing struct/union/class types in stabs, G++ always drops
  /* When describing struct/union/class types in stabs, G++ always drops
     all qualifications from the name.  So if you've got:
     all qualifications from the name.  So if you've got:
       struct A { ... struct B { ... }; ... };
       struct A { ... struct B { ... }; ... };
     then G++ will emit stabs for `struct A::B' that call it simply
     then G++ will emit stabs for `struct A::B' that call it simply
     `struct B'.  Obviously, if you've got a real top-level definition for
     `struct B'.  Obviously, if you've got a real top-level definition for
     `struct B', or other nested definitions, this is going to cause
     `struct B', or other nested definitions, this is going to cause
     problems.
     problems.
 
 
     Obviously, GDB can't fix this by itself, but it can at least avoid
     Obviously, GDB can't fix this by itself, but it can at least avoid
     scribbling on existing structure type objects when new definitions
     scribbling on existing structure type objects when new definitions
     appear.  */
     appear.  */
  if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
  if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
         || TYPE_STUB (type)))
         || TYPE_STUB (type)))
    {
    {
      complain_about_struct_wipeout (type);
      complain_about_struct_wipeout (type);
 
 
      /* It's probably best to return the type unchanged.  */
      /* It's probably best to return the type unchanged.  */
      return type;
      return type;
    }
    }
 
 
  back_to = make_cleanup (null_cleanup, 0);
  back_to = make_cleanup (null_cleanup, 0);
 
 
  INIT_CPLUS_SPECIFIC (type);
  INIT_CPLUS_SPECIFIC (type);
  TYPE_CODE (type) = type_code;
  TYPE_CODE (type) = type_code;
  TYPE_STUB (type) = 0;
  TYPE_STUB (type) = 0;
 
 
  /* First comes the total size in bytes.  */
  /* First comes the total size in bytes.  */
 
 
  {
  {
    int nbits;
    int nbits;
    TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
    TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
    if (nbits != 0)
    if (nbits != 0)
      return error_type (pp, objfile);
      return error_type (pp, objfile);
  }
  }
 
 
  /* Now read the baseclasses, if any, read the regular C struct or C++
  /* Now read the baseclasses, if any, read the regular C struct or C++
     class member fields, attach the fields to the type, read the C++
     class member fields, attach the fields to the type, read the C++
     member functions, attach them to the type, and then read any tilde
     member functions, attach them to the type, and then read any tilde
     field (baseclass specifier for the class holding the main vtable). */
     field (baseclass specifier for the class holding the main vtable). */
 
 
  if (!read_baseclasses (&fi, pp, type, objfile)
  if (!read_baseclasses (&fi, pp, type, objfile)
      || !read_struct_fields (&fi, pp, type, objfile)
      || !read_struct_fields (&fi, pp, type, objfile)
      || !attach_fields_to_type (&fi, type, objfile)
      || !attach_fields_to_type (&fi, type, objfile)
      || !read_member_functions (&fi, pp, type, objfile)
      || !read_member_functions (&fi, pp, type, objfile)
      || !attach_fn_fields_to_type (&fi, type)
      || !attach_fn_fields_to_type (&fi, type)
      || !read_tilde_fields (&fi, pp, type, objfile))
      || !read_tilde_fields (&fi, pp, type, objfile))
    {
    {
      type = error_type (pp, objfile);
      type = error_type (pp, objfile);
    }
    }
 
 
  do_cleanups (back_to);
  do_cleanups (back_to);
  return (type);
  return (type);
}
}
 
 
/* Read a definition of an array type,
/* Read a definition of an array type,
   and create and return a suitable type object.
   and create and return a suitable type object.
   Also creates a range type which represents the bounds of that
   Also creates a range type which represents the bounds of that
   array.  */
   array.  */
 
 
static struct type *
static struct type *
read_array_type (char **pp, struct type *type,
read_array_type (char **pp, struct type *type,
                 struct objfile *objfile)
                 struct objfile *objfile)
{
{
  struct type *index_type, *element_type, *range_type;
  struct type *index_type, *element_type, *range_type;
  int lower, upper;
  int lower, upper;
  int adjustable = 0;
  int adjustable = 0;
  int nbits;
  int nbits;
 
 
  /* Format of an array type:
  /* Format of an array type:
     "ar<index type>;lower;upper;<array_contents_type>".
     "ar<index type>;lower;upper;<array_contents_type>".
     OS9000: "arlower,upper;<array_contents_type>".
     OS9000: "arlower,upper;<array_contents_type>".
 
 
     Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
     Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
     for these, produce a type like float[][].  */
     for these, produce a type like float[][].  */
 
 
    {
    {
      index_type = read_type (pp, objfile);
      index_type = read_type (pp, objfile);
      if (**pp != ';')
      if (**pp != ';')
        /* Improper format of array type decl.  */
        /* Improper format of array type decl.  */
        return error_type (pp, objfile);
        return error_type (pp, objfile);
      ++*pp;
      ++*pp;
    }
    }
 
 
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
    {
    {
      (*pp)++;
      (*pp)++;
      adjustable = 1;
      adjustable = 1;
    }
    }
  lower = read_huge_number (pp, ';', &nbits, 0);
  lower = read_huge_number (pp, ';', &nbits, 0);
 
 
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
    {
    {
      (*pp)++;
      (*pp)++;
      adjustable = 1;
      adjustable = 1;
    }
    }
  upper = read_huge_number (pp, ';', &nbits, 0);
  upper = read_huge_number (pp, ';', &nbits, 0);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  element_type = read_type (pp, objfile);
  element_type = read_type (pp, objfile);
 
 
  if (adjustable)
  if (adjustable)
    {
    {
      lower = 0;
      lower = 0;
      upper = -1;
      upper = -1;
    }
    }
 
 
  range_type =
  range_type =
    create_range_type ((struct type *) NULL, index_type, lower, upper);
    create_range_type ((struct type *) NULL, index_type, lower, upper);
  type = create_array_type (type, element_type, range_type);
  type = create_array_type (type, element_type, range_type);
 
 
  return type;
  return type;
}
}
 
 
 
 
/* Read a definition of an enumeration type,
/* Read a definition of an enumeration type,
   and create and return a suitable type object.
   and create and return a suitable type object.
   Also defines the symbols that represent the values of the type.  */
   Also defines the symbols that represent the values of the type.  */
 
 
static struct type *
static struct type *
read_enum_type (char **pp, struct type *type,
read_enum_type (char **pp, struct type *type,
                struct objfile *objfile)
                struct objfile *objfile)
{
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  char *p;
  char *p;
  char *name;
  char *name;
  long n;
  long n;
  struct symbol *sym;
  struct symbol *sym;
  int nsyms = 0;
  int nsyms = 0;
  struct pending **symlist;
  struct pending **symlist;
  struct pending *osyms, *syms;
  struct pending *osyms, *syms;
  int o_nsyms;
  int o_nsyms;
  int nbits;
  int nbits;
  int unsigned_enum = 1;
  int unsigned_enum = 1;
 
 
#if 0
#if 0
  /* FIXME!  The stabs produced by Sun CC merrily define things that ought
  /* FIXME!  The stabs produced by Sun CC merrily define things that ought
     to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
     to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
     to do?  For now, force all enum values to file scope.  */
     to do?  For now, force all enum values to file scope.  */
  if (within_function)
  if (within_function)
    symlist = &local_symbols;
    symlist = &local_symbols;
  else
  else
#endif
#endif
    symlist = &file_symbols;
    symlist = &file_symbols;
  osyms = *symlist;
  osyms = *symlist;
  o_nsyms = osyms ? osyms->nsyms : 0;
  o_nsyms = osyms ? osyms->nsyms : 0;
 
 
  /* The aix4 compiler emits an extra field before the enum members;
  /* The aix4 compiler emits an extra field before the enum members;
     my guess is it's a type of some sort.  Just ignore it.  */
     my guess is it's a type of some sort.  Just ignore it.  */
  if (**pp == '-')
  if (**pp == '-')
    {
    {
      /* Skip over the type.  */
      /* Skip over the type.  */
      while (**pp != ':')
      while (**pp != ':')
        (*pp)++;
        (*pp)++;
 
 
      /* Skip over the colon.  */
      /* Skip over the colon.  */
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  /* Read the value-names and their values.
  /* Read the value-names and their values.
     The input syntax is NAME:VALUE,NAME:VALUE, and so on.
     The input syntax is NAME:VALUE,NAME:VALUE, and so on.
     A semicolon or comma instead of a NAME means the end.  */
     A semicolon or comma instead of a NAME means the end.  */
  while (**pp && **pp != ';' && **pp != ',')
  while (**pp && **pp != ';' && **pp != ',')
    {
    {
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      p = *pp;
      p = *pp;
      while (*p != ':')
      while (*p != ':')
        p++;
        p++;
      name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
      name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
      *pp = p + 1;
      *pp = p + 1;
      n = read_huge_number (pp, ',', &nbits, 0);
      n = read_huge_number (pp, ',', &nbits, 0);
      if (nbits != 0)
      if (nbits != 0)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
 
 
      sym = (struct symbol *)
      sym = (struct symbol *)
        obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
        obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
      memset (sym, 0, sizeof (struct symbol));
      memset (sym, 0, sizeof (struct symbol));
      SYMBOL_SET_LINKAGE_NAME (sym, name);
      SYMBOL_SET_LINKAGE_NAME (sym, name);
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
      SYMBOL_VALUE (sym) = n;
      SYMBOL_VALUE (sym) = n;
      if (n < 0)
      if (n < 0)
        unsigned_enum = 0;
        unsigned_enum = 0;
      add_symbol_to_list (sym, symlist);
      add_symbol_to_list (sym, symlist);
      nsyms++;
      nsyms++;
    }
    }
 
 
  if (**pp == ';')
  if (**pp == ';')
    (*pp)++;                    /* Skip the semicolon.  */
    (*pp)++;                    /* Skip the semicolon.  */
 
 
  /* Now fill in the fields of the type-structure.  */
  /* Now fill in the fields of the type-structure.  */
 
 
  TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
  TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
  TYPE_CODE (type) = TYPE_CODE_ENUM;
  TYPE_CODE (type) = TYPE_CODE_ENUM;
  TYPE_STUB (type) = 0;
  TYPE_STUB (type) = 0;
  if (unsigned_enum)
  if (unsigned_enum)
    TYPE_UNSIGNED (type) = 1;
    TYPE_UNSIGNED (type) = 1;
  TYPE_NFIELDS (type) = nsyms;
  TYPE_NFIELDS (type) = nsyms;
  TYPE_FIELDS (type) = (struct field *)
  TYPE_FIELDS (type) = (struct field *)
    TYPE_ALLOC (type, sizeof (struct field) * nsyms);
    TYPE_ALLOC (type, sizeof (struct field) * nsyms);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
 
 
  /* Find the symbols for the values and put them into the type.
  /* Find the symbols for the values and put them into the type.
     The symbols can be found in the symlist that we put them on
     The symbols can be found in the symlist that we put them on
     to cause them to be defined.  osyms contains the old value
     to cause them to be defined.  osyms contains the old value
     of that symlist; everything up to there was defined by us.  */
     of that symlist; everything up to there was defined by us.  */
  /* Note that we preserve the order of the enum constants, so
  /* Note that we preserve the order of the enum constants, so
     that in something like "enum {FOO, LAST_THING=FOO}" we print
     that in something like "enum {FOO, LAST_THING=FOO}" we print
     FOO, not LAST_THING.  */
     FOO, not LAST_THING.  */
 
 
  for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
  for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
    {
    {
      int last = syms == osyms ? o_nsyms : 0;
      int last = syms == osyms ? o_nsyms : 0;
      int j = syms->nsyms;
      int j = syms->nsyms;
      for (; --j >= last; --n)
      for (; --j >= last; --n)
        {
        {
          struct symbol *xsym = syms->symbol[j];
          struct symbol *xsym = syms->symbol[j];
          SYMBOL_TYPE (xsym) = type;
          SYMBOL_TYPE (xsym) = type;
          TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
          TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
          TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
          TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
          TYPE_FIELD_BITSIZE (type, n) = 0;
          TYPE_FIELD_BITSIZE (type, n) = 0;
        }
        }
      if (syms == osyms)
      if (syms == osyms)
        break;
        break;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
/* Sun's ACC uses a somewhat saner method for specifying the builtin
/* Sun's ACC uses a somewhat saner method for specifying the builtin
   typedefs in every file (for int, long, etc):
   typedefs in every file (for int, long, etc):
 
 
   type = b <signed> <width> <format type>; <offset>; <nbits>
   type = b <signed> <width> <format type>; <offset>; <nbits>
   signed = u or s.
   signed = u or s.
   optional format type = c or b for char or boolean.
   optional format type = c or b for char or boolean.
   offset = offset from high order bit to start bit of type.
   offset = offset from high order bit to start bit of type.
   width is # bytes in object of this type, nbits is # bits in type.
   width is # bytes in object of this type, nbits is # bits in type.
 
 
   The width/offset stuff appears to be for small objects stored in
   The width/offset stuff appears to be for small objects stored in
   larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
   larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
   FIXME.  */
   FIXME.  */
 
 
static struct type *
static struct type *
read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
{
{
  int type_bits;
  int type_bits;
  int nbits;
  int nbits;
  int signed_type;
  int signed_type;
  enum type_code code = TYPE_CODE_INT;
  enum type_code code = TYPE_CODE_INT;
 
 
  switch (**pp)
  switch (**pp)
    {
    {
    case 's':
    case 's':
      signed_type = 1;
      signed_type = 1;
      break;
      break;
    case 'u':
    case 'u':
      signed_type = 0;
      signed_type = 0;
      break;
      break;
    default:
    default:
      return error_type (pp, objfile);
      return error_type (pp, objfile);
    }
    }
  (*pp)++;
  (*pp)++;
 
 
  /* For some odd reason, all forms of char put a c here.  This is strange
  /* For some odd reason, all forms of char put a c here.  This is strange
     because no other type has this honor.  We can safely ignore this because
     because no other type has this honor.  We can safely ignore this because
     we actually determine 'char'acterness by the number of bits specified in
     we actually determine 'char'acterness by the number of bits specified in
     the descriptor.
     the descriptor.
     Boolean forms, e.g Fortran logical*X, put a b here.  */
     Boolean forms, e.g Fortran logical*X, put a b here.  */
 
 
  if (**pp == 'c')
  if (**pp == 'c')
    (*pp)++;
    (*pp)++;
  else if (**pp == 'b')
  else if (**pp == 'b')
    {
    {
      code = TYPE_CODE_BOOL;
      code = TYPE_CODE_BOOL;
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  /* The first number appears to be the number of bytes occupied
  /* The first number appears to be the number of bytes occupied
     by this type, except that unsigned short is 4 instead of 2.
     by this type, except that unsigned short is 4 instead of 2.
     Since this information is redundant with the third number,
     Since this information is redundant with the third number,
     we will ignore it.  */
     we will ignore it.  */
  read_huge_number (pp, ';', &nbits, 0);
  read_huge_number (pp, ';', &nbits, 0);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  /* The second number is always 0, so ignore it too. */
  /* The second number is always 0, so ignore it too. */
  read_huge_number (pp, ';', &nbits, 0);
  read_huge_number (pp, ';', &nbits, 0);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  /* The third number is the number of bits for this type. */
  /* The third number is the number of bits for this type. */
  type_bits = read_huge_number (pp, 0, &nbits, 0);
  type_bits = read_huge_number (pp, 0, &nbits, 0);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
  /* The type *should* end with a semicolon.  If it are embedded
  /* The type *should* end with a semicolon.  If it are embedded
     in a larger type the semicolon may be the only way to know where
     in a larger type the semicolon may be the only way to know where
     the type ends.  If this type is at the end of the stabstring we
     the type ends.  If this type is at the end of the stabstring we
     can deal with the omitted semicolon (but we don't have to like
     can deal with the omitted semicolon (but we don't have to like
     it).  Don't bother to complain(), Sun's compiler omits the semicolon
     it).  Don't bother to complain(), Sun's compiler omits the semicolon
     for "void".  */
     for "void".  */
  if (**pp == ';')
  if (**pp == ';')
    ++(*pp);
    ++(*pp);
 
 
  if (type_bits == 0)
  if (type_bits == 0)
    return init_type (TYPE_CODE_VOID, 1,
    return init_type (TYPE_CODE_VOID, 1,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      objfile);
                      objfile);
  else
  else
    return init_type (code,
    return init_type (code,
                      type_bits / TARGET_CHAR_BIT,
                      type_bits / TARGET_CHAR_BIT,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      objfile);
                      objfile);
}
}
 
 
static struct type *
static struct type *
read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
{
{
  int nbits;
  int nbits;
  int details;
  int details;
  int nbytes;
  int nbytes;
  struct type *rettype;
  struct type *rettype;
 
 
  /* The first number has more details about the type, for example
  /* The first number has more details about the type, for example
     FN_COMPLEX.  */
     FN_COMPLEX.  */
  details = read_huge_number (pp, ';', &nbits, 0);
  details = read_huge_number (pp, ';', &nbits, 0);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  /* The second number is the number of bytes occupied by this type */
  /* The second number is the number of bytes occupied by this type */
  nbytes = read_huge_number (pp, ';', &nbits, 0);
  nbytes = read_huge_number (pp, ';', &nbits, 0);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  if (details == NF_COMPLEX || details == NF_COMPLEX16
  if (details == NF_COMPLEX || details == NF_COMPLEX16
      || details == NF_COMPLEX32)
      || details == NF_COMPLEX32)
    {
    {
      rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
      rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
      TYPE_TARGET_TYPE (rettype)
      TYPE_TARGET_TYPE (rettype)
        = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
        = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
      return rettype;
      return rettype;
    }
    }
 
 
  return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
  return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
}
}
 
 
/* Read a number from the string pointed to by *PP.
/* Read a number from the string pointed to by *PP.
   The value of *PP is advanced over the number.
   The value of *PP is advanced over the number.
   If END is nonzero, the character that ends the
   If END is nonzero, the character that ends the
   number must match END, or an error happens;
   number must match END, or an error happens;
   and that character is skipped if it does match.
   and that character is skipped if it does match.
   If END is zero, *PP is left pointing to that character.
   If END is zero, *PP is left pointing to that character.
 
 
   If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
   If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
   the number is represented in an octal representation, assume that
   the number is represented in an octal representation, assume that
   it is represented in a 2's complement representation with a size of
   it is represented in a 2's complement representation with a size of
   TWOS_COMPLEMENT_BITS.
   TWOS_COMPLEMENT_BITS.
 
 
   If the number fits in a long, set *BITS to 0 and return the value.
   If the number fits in a long, set *BITS to 0 and return the value.
   If not, set *BITS to be the number of bits in the number and return 0.
   If not, set *BITS to be the number of bits in the number and return 0.
 
 
   If encounter garbage, set *BITS to -1 and return 0.  */
   If encounter garbage, set *BITS to -1 and return 0.  */
 
 
static long
static long
read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
{
{
  char *p = *pp;
  char *p = *pp;
  int sign = 1;
  int sign = 1;
  int sign_bit = 0;
  int sign_bit = 0;
  long n = 0;
  long n = 0;
  int radix = 10;
  int radix = 10;
  char overflow = 0;
  char overflow = 0;
  int nbits = 0;
  int nbits = 0;
  int c;
  int c;
  long upper_limit;
  long upper_limit;
  int twos_complement_representation = 0;
  int twos_complement_representation = 0;
 
 
  if (*p == '-')
  if (*p == '-')
    {
    {
      sign = -1;
      sign = -1;
      p++;
      p++;
    }
    }
 
 
  /* Leading zero means octal.  GCC uses this to output values larger
  /* Leading zero means octal.  GCC uses this to output values larger
     than an int (because that would be hard in decimal).  */
     than an int (because that would be hard in decimal).  */
  if (*p == '0')
  if (*p == '0')
    {
    {
      radix = 8;
      radix = 8;
      p++;
      p++;
    }
    }
 
 
  /* Skip extra zeros.  */
  /* Skip extra zeros.  */
  while (*p == '0')
  while (*p == '0')
    p++;
    p++;
 
 
  if (sign > 0 && radix == 8 && twos_complement_bits > 0)
  if (sign > 0 && radix == 8 && twos_complement_bits > 0)
    {
    {
      /* Octal, possibly signed.  Check if we have enough chars for a
      /* Octal, possibly signed.  Check if we have enough chars for a
         negative number.  */
         negative number.  */
 
 
      size_t len;
      size_t len;
      char *p1 = p;
      char *p1 = p;
      while ((c = *p1) >= '0' && c < '8')
      while ((c = *p1) >= '0' && c < '8')
        p1++;
        p1++;
 
 
      len = p1 - p;
      len = p1 - p;
      if (len > twos_complement_bits / 3
      if (len > twos_complement_bits / 3
          || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
          || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
        {
        {
          /* Ok, we have enough characters for a signed value, check
          /* Ok, we have enough characters for a signed value, check
             for signness by testing if the sign bit is set.  */
             for signness by testing if the sign bit is set.  */
          sign_bit = (twos_complement_bits % 3 + 2) % 3;
          sign_bit = (twos_complement_bits % 3 + 2) % 3;
          c = *p - '0';
          c = *p - '0';
          if (c & (1 << sign_bit))
          if (c & (1 << sign_bit))
            {
            {
              /* Definitely signed.  */
              /* Definitely signed.  */
              twos_complement_representation = 1;
              twos_complement_representation = 1;
              sign = -1;
              sign = -1;
            }
            }
        }
        }
    }
    }
 
 
  upper_limit = LONG_MAX / radix;
  upper_limit = LONG_MAX / radix;
 
 
  while ((c = *p++) >= '0' && c < ('0' + radix))
  while ((c = *p++) >= '0' && c < ('0' + radix))
    {
    {
      if (n <= upper_limit)
      if (n <= upper_limit)
        {
        {
          if (twos_complement_representation)
          if (twos_complement_representation)
            {
            {
              /* Octal, signed, twos complement representation.  In
              /* Octal, signed, twos complement representation.  In
                 this case, n is the corresponding absolute value.  */
                 this case, n is the corresponding absolute value.  */
              if (n == 0)
              if (n == 0)
                {
                {
                  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
                  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
                  n = -sn;
                  n = -sn;
                }
                }
              else
              else
                {
                {
                  n *= radix;
                  n *= radix;
                  n -= c - '0';
                  n -= c - '0';
                }
                }
            }
            }
          else
          else
            {
            {
              /* unsigned representation */
              /* unsigned representation */
              n *= radix;
              n *= radix;
              n += c - '0';             /* FIXME this overflows anyway */
              n += c - '0';             /* FIXME this overflows anyway */
            }
            }
        }
        }
      else
      else
        overflow = 1;
        overflow = 1;
 
 
      /* This depends on large values being output in octal, which is
      /* This depends on large values being output in octal, which is
         what GCC does. */
         what GCC does. */
      if (radix == 8)
      if (radix == 8)
        {
        {
          if (nbits == 0)
          if (nbits == 0)
            {
            {
              if (c == '0')
              if (c == '0')
                /* Ignore leading zeroes.  */
                /* Ignore leading zeroes.  */
                ;
                ;
              else if (c == '1')
              else if (c == '1')
                nbits = 1;
                nbits = 1;
              else if (c == '2' || c == '3')
              else if (c == '2' || c == '3')
                nbits = 2;
                nbits = 2;
              else
              else
                nbits = 3;
                nbits = 3;
            }
            }
          else
          else
            nbits += 3;
            nbits += 3;
        }
        }
    }
    }
  if (end)
  if (end)
    {
    {
      if (c && c != end)
      if (c && c != end)
        {
        {
          if (bits != NULL)
          if (bits != NULL)
            *bits = -1;
            *bits = -1;
          return 0;
          return 0;
        }
        }
    }
    }
  else
  else
    --p;
    --p;
 
 
  if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
  if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
    {
    {
      /* We were supposed to parse a number with maximum
      /* We were supposed to parse a number with maximum
         TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
         TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
      if (bits != NULL)
      if (bits != NULL)
        *bits = -1;
        *bits = -1;
      return 0;
      return 0;
    }
    }
 
 
  *pp = p;
  *pp = p;
  if (overflow)
  if (overflow)
    {
    {
      if (nbits == 0)
      if (nbits == 0)
        {
        {
          /* Large decimal constants are an error (because it is hard to
          /* Large decimal constants are an error (because it is hard to
             count how many bits are in them).  */
             count how many bits are in them).  */
          if (bits != NULL)
          if (bits != NULL)
            *bits = -1;
            *bits = -1;
          return 0;
          return 0;
        }
        }
 
 
      /* -0x7f is the same as 0x80.  So deal with it by adding one to
      /* -0x7f is the same as 0x80.  So deal with it by adding one to
         the number of bits.  Two's complement represention octals
         the number of bits.  Two's complement represention octals
         can't have a '-' in front.  */
         can't have a '-' in front.  */
      if (sign == -1 && !twos_complement_representation)
      if (sign == -1 && !twos_complement_representation)
        ++nbits;
        ++nbits;
      if (bits)
      if (bits)
        *bits = nbits;
        *bits = nbits;
    }
    }
  else
  else
    {
    {
      if (bits)
      if (bits)
        *bits = 0;
        *bits = 0;
      return n * sign;
      return n * sign;
    }
    }
  /* It's *BITS which has the interesting information.  */
  /* It's *BITS which has the interesting information.  */
  return 0;
  return 0;
}
}
 
 
static struct type *
static struct type *
read_range_type (char **pp, int typenums[2], int type_size,
read_range_type (char **pp, int typenums[2], int type_size,
                 struct objfile *objfile)
                 struct objfile *objfile)
{
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  char *orig_pp = *pp;
  char *orig_pp = *pp;
  int rangenums[2];
  int rangenums[2];
  long n2, n3;
  long n2, n3;
  int n2bits, n3bits;
  int n2bits, n3bits;
  int self_subrange;
  int self_subrange;
  struct type *result_type;
  struct type *result_type;
  struct type *index_type = NULL;
  struct type *index_type = NULL;
 
 
  /* First comes a type we are a subrange of.
  /* First comes a type we are a subrange of.
     In C it is usually 0, 1 or the type being defined.  */
     In C it is usually 0, 1 or the type being defined.  */
  if (read_type_number (pp, rangenums) != 0)
  if (read_type_number (pp, rangenums) != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
  self_subrange = (rangenums[0] == typenums[0] &&
  self_subrange = (rangenums[0] == typenums[0] &&
                   rangenums[1] == typenums[1]);
                   rangenums[1] == typenums[1]);
 
 
  if (**pp == '=')
  if (**pp == '=')
    {
    {
      *pp = orig_pp;
      *pp = orig_pp;
      index_type = read_type (pp, objfile);
      index_type = read_type (pp, objfile);
    }
    }
 
 
  /* A semicolon should now follow; skip it.  */
  /* A semicolon should now follow; skip it.  */
  if (**pp == ';')
  if (**pp == ';')
    (*pp)++;
    (*pp)++;
 
 
  /* The remaining two operands are usually lower and upper bounds
  /* The remaining two operands are usually lower and upper bounds
     of the range.  But in some special cases they mean something else.  */
     of the range.  But in some special cases they mean something else.  */
  n2 = read_huge_number (pp, ';', &n2bits, type_size);
  n2 = read_huge_number (pp, ';', &n2bits, type_size);
  n3 = read_huge_number (pp, ';', &n3bits, type_size);
  n3 = read_huge_number (pp, ';', &n3bits, type_size);
 
 
  if (n2bits == -1 || n3bits == -1)
  if (n2bits == -1 || n3bits == -1)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  if (index_type)
  if (index_type)
    goto handle_true_range;
    goto handle_true_range;
 
 
  /* If limits are huge, must be large integral type.  */
  /* If limits are huge, must be large integral type.  */
  if (n2bits != 0 || n3bits != 0)
  if (n2bits != 0 || n3bits != 0)
    {
    {
      char got_signed = 0;
      char got_signed = 0;
      char got_unsigned = 0;
      char got_unsigned = 0;
      /* Number of bits in the type.  */
      /* Number of bits in the type.  */
      int nbits = 0;
      int nbits = 0;
 
 
      /* If a type size attribute has been specified, the bounds of
      /* If a type size attribute has been specified, the bounds of
         the range should fit in this size. If the lower bounds needs
         the range should fit in this size. If the lower bounds needs
         more bits than the upper bound, then the type is signed.  */
         more bits than the upper bound, then the type is signed.  */
      if (n2bits <= type_size && n3bits <= type_size)
      if (n2bits <= type_size && n3bits <= type_size)
        {
        {
          if (n2bits == type_size && n2bits > n3bits)
          if (n2bits == type_size && n2bits > n3bits)
            got_signed = 1;
            got_signed = 1;
          else
          else
            got_unsigned = 1;
            got_unsigned = 1;
          nbits = type_size;
          nbits = type_size;
        }
        }
      /* Range from 0 to <large number> is an unsigned large integral type.  */
      /* Range from 0 to <large number> is an unsigned large integral type.  */
      else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
      else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
        {
        {
          got_unsigned = 1;
          got_unsigned = 1;
          nbits = n3bits;
          nbits = n3bits;
        }
        }
      /* Range from <large number> to <large number>-1 is a large signed
      /* Range from <large number> to <large number>-1 is a large signed
         integral type.  Take care of the case where <large number> doesn't
         integral type.  Take care of the case where <large number> doesn't
         fit in a long but <large number>-1 does.  */
         fit in a long but <large number>-1 does.  */
      else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
      else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
               || (n2bits != 0 && n3bits == 0
               || (n2bits != 0 && n3bits == 0
                   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
                   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
                   && n3 == LONG_MAX))
                   && n3 == LONG_MAX))
        {
        {
          got_signed = 1;
          got_signed = 1;
          nbits = n2bits;
          nbits = n2bits;
        }
        }
 
 
      if (got_signed || got_unsigned)
      if (got_signed || got_unsigned)
        {
        {
          return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
          return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
                            got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
                            got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
                            objfile);
                            objfile);
        }
        }
      else
      else
        return error_type (pp, objfile);
        return error_type (pp, objfile);
    }
    }
 
 
  /* A type defined as a subrange of itself, with bounds both 0, is void.  */
  /* A type defined as a subrange of itself, with bounds both 0, is void.  */
  if (self_subrange && n2 == 0 && n3 == 0)
  if (self_subrange && n2 == 0 && n3 == 0)
    return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
    return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
 
 
  /* If n3 is zero and n2 is positive, we want a floating type, and n2
  /* If n3 is zero and n2 is positive, we want a floating type, and n2
     is the width in bytes.
     is the width in bytes.
 
 
     Fortran programs appear to use this for complex types also.  To
     Fortran programs appear to use this for complex types also.  To
     distinguish between floats and complex, g77 (and others?)  seem
     distinguish between floats and complex, g77 (and others?)  seem
     to use self-subranges for the complexes, and subranges of int for
     to use self-subranges for the complexes, and subranges of int for
     the floats.
     the floats.
 
 
     Also note that for complexes, g77 sets n2 to the size of one of
     Also note that for complexes, g77 sets n2 to the size of one of
     the member floats, not the whole complex beast.  My guess is that
     the member floats, not the whole complex beast.  My guess is that
     this was to work well with pre-COMPLEX versions of gdb. */
     this was to work well with pre-COMPLEX versions of gdb. */
 
 
  if (n3 == 0 && n2 > 0)
  if (n3 == 0 && n2 > 0)
    {
    {
      struct type *float_type
      struct type *float_type
        = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
        = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
 
 
      if (self_subrange)
      if (self_subrange)
        {
        {
          struct type *complex_type =
          struct type *complex_type =
            init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
            init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
          TYPE_TARGET_TYPE (complex_type) = float_type;
          TYPE_TARGET_TYPE (complex_type) = float_type;
          return complex_type;
          return complex_type;
        }
        }
      else
      else
        return float_type;
        return float_type;
    }
    }
 
 
  /* If the upper bound is -1, it must really be an unsigned integral.  */
  /* If the upper bound is -1, it must really be an unsigned integral.  */
 
 
  else if (n2 == 0 && n3 == -1)
  else if (n2 == 0 && n3 == -1)
    {
    {
      int bits = type_size;
      int bits = type_size;
      if (bits <= 0)
      if (bits <= 0)
        {
        {
          /* We don't know its size.  It is unsigned int or unsigned
          /* We don't know its size.  It is unsigned int or unsigned
             long.  GCC 2.3.3 uses this for long long too, but that is
             long.  GCC 2.3.3 uses this for long long too, but that is
             just a GDB 3.5 compatibility hack.  */
             just a GDB 3.5 compatibility hack.  */
          bits = gdbarch_int_bit (gdbarch);
          bits = gdbarch_int_bit (gdbarch);
        }
        }
 
 
      return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
      return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, NULL, objfile);
                        TYPE_FLAG_UNSIGNED, NULL, objfile);
    }
    }
 
 
  /* Special case: char is defined (Who knows why) as a subrange of
  /* Special case: char is defined (Who knows why) as a subrange of
     itself with range 0-127.  */
     itself with range 0-127.  */
  else if (self_subrange && n2 == 0 && n3 == 127)
  else if (self_subrange && n2 == 0 && n3 == 127)
    return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
    return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
 
 
  /* We used to do this only for subrange of self or subrange of int.  */
  /* We used to do this only for subrange of self or subrange of int.  */
  else if (n2 == 0)
  else if (n2 == 0)
    {
    {
      /* -1 is used for the upper bound of (4 byte) "unsigned int" and
      /* -1 is used for the upper bound of (4 byte) "unsigned int" and
         "unsigned long", and we already checked for that,
         "unsigned long", and we already checked for that,
         so don't need to test for it here.  */
         so don't need to test for it here.  */
 
 
      if (n3 < 0)
      if (n3 < 0)
        /* n3 actually gives the size.  */
        /* n3 actually gives the size.  */
        return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
        return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
                          NULL, objfile);
                          NULL, objfile);
 
 
      /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
      /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
         unsigned n-byte integer.  But do require n to be a power of
         unsigned n-byte integer.  But do require n to be a power of
         two; we don't want 3- and 5-byte integers flying around.  */
         two; we don't want 3- and 5-byte integers flying around.  */
      {
      {
        int bytes;
        int bytes;
        unsigned long bits;
        unsigned long bits;
 
 
        bits = n3;
        bits = n3;
        for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
        for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
          bits >>= 8;
          bits >>= 8;
        if (bits == 0
        if (bits == 0
            && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
            && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
          return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
          return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
                            objfile);
                            objfile);
      }
      }
    }
    }
  /* I think this is for Convex "long long".  Since I don't know whether
  /* I think this is for Convex "long long".  Since I don't know whether
     Convex sets self_subrange, I also accept that particular size regardless
     Convex sets self_subrange, I also accept that particular size regardless
     of self_subrange.  */
     of self_subrange.  */
  else if (n3 == 0 && n2 < 0
  else if (n3 == 0 && n2 < 0
           && (self_subrange
           && (self_subrange
               || n2 == -gdbarch_long_long_bit
               || n2 == -gdbarch_long_long_bit
                          (gdbarch) / TARGET_CHAR_BIT))
                          (gdbarch) / TARGET_CHAR_BIT))
    return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
    return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
  else if (n2 == -n3 - 1)
  else if (n2 == -n3 - 1)
    {
    {
      if (n3 == 0x7f)
      if (n3 == 0x7f)
        return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
        return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
      if (n3 == 0x7fff)
      if (n3 == 0x7fff)
        return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
        return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
      if (n3 == 0x7fffffff)
      if (n3 == 0x7fffffff)
        return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
        return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
    }
    }
 
 
  /* We have a real range type on our hands.  Allocate space and
  /* We have a real range type on our hands.  Allocate space and
     return a real pointer.  */
     return a real pointer.  */
handle_true_range:
handle_true_range:
 
 
  if (self_subrange)
  if (self_subrange)
    index_type = objfile_type (objfile)->builtin_int;
    index_type = objfile_type (objfile)->builtin_int;
  else
  else
    index_type = *dbx_lookup_type (rangenums, objfile);
    index_type = *dbx_lookup_type (rangenums, objfile);
  if (index_type == NULL)
  if (index_type == NULL)
    {
    {
      /* Does this actually ever happen?  Is that why we are worrying
      /* Does this actually ever happen?  Is that why we are worrying
         about dealing with it rather than just calling error_type?  */
         about dealing with it rather than just calling error_type?  */
 
 
      complaint (&symfile_complaints,
      complaint (&symfile_complaints,
                 _("base type %d of range type is not defined"), rangenums[1]);
                 _("base type %d of range type is not defined"), rangenums[1]);
 
 
      index_type = objfile_type (objfile)->builtin_int;
      index_type = objfile_type (objfile)->builtin_int;
    }
    }
 
 
  result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
  result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
  return (result_type);
  return (result_type);
}
}
 
 
/* Read in an argument list.  This is a list of types, separated by commas
/* Read in an argument list.  This is a list of types, separated by commas
   and terminated with END.  Return the list of types read in, or NULL
   and terminated with END.  Return the list of types read in, or NULL
   if there is an error.  */
   if there is an error.  */
 
 
static struct field *
static struct field *
read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
           int *varargsp)
           int *varargsp)
{
{
  /* FIXME!  Remove this arbitrary limit!  */
  /* FIXME!  Remove this arbitrary limit!  */
  struct type *types[1024];     /* allow for fns of 1023 parameters */
  struct type *types[1024];     /* allow for fns of 1023 parameters */
  int n = 0, i;
  int n = 0, i;
  struct field *rval;
  struct field *rval;
 
 
  while (**pp != end)
  while (**pp != end)
    {
    {
      if (**pp != ',')
      if (**pp != ',')
        /* Invalid argument list: no ','.  */
        /* Invalid argument list: no ','.  */
        return NULL;
        return NULL;
      (*pp)++;
      (*pp)++;
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      types[n++] = read_type (pp, objfile);
      types[n++] = read_type (pp, objfile);
    }
    }
  (*pp)++;                      /* get past `end' (the ':' character) */
  (*pp)++;                      /* get past `end' (the ':' character) */
 
 
  if (n == 0)
  if (n == 0)
    {
    {
      /* We should read at least the THIS parameter here.  Some broken stabs
      /* We should read at least the THIS parameter here.  Some broken stabs
         output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
         output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
         have been present ";-16,(0,43)" reference instead.  This way the
         have been present ";-16,(0,43)" reference instead.  This way the
         excessive ";" marker prematurely stops the parameters parsing.  */
         excessive ";" marker prematurely stops the parameters parsing.  */
 
 
      complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
      complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
      *varargsp = 0;
      *varargsp = 0;
    }
    }
  else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
  else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
    *varargsp = 1;
    *varargsp = 1;
  else
  else
    {
    {
      n--;
      n--;
      *varargsp = 0;
      *varargsp = 0;
    }
    }
 
 
  rval = (struct field *) xmalloc (n * sizeof (struct field));
  rval = (struct field *) xmalloc (n * sizeof (struct field));
  memset (rval, 0, n * sizeof (struct field));
  memset (rval, 0, n * sizeof (struct field));
  for (i = 0; i < n; i++)
  for (i = 0; i < n; i++)
    rval[i].type = types[i];
    rval[i].type = types[i];
  *nargsp = n;
  *nargsp = n;
  return rval;
  return rval;
}
}


/* Common block handling.  */
/* Common block handling.  */
 
 
/* List of symbols declared since the last BCOMM.  This list is a tail
/* List of symbols declared since the last BCOMM.  This list is a tail
   of local_symbols.  When ECOMM is seen, the symbols on the list
   of local_symbols.  When ECOMM is seen, the symbols on the list
   are noted so their proper addresses can be filled in later,
   are noted so their proper addresses can be filled in later,
   using the common block base address gotten from the assembler
   using the common block base address gotten from the assembler
   stabs.  */
   stabs.  */
 
 
static struct pending *common_block;
static struct pending *common_block;
static int common_block_i;
static int common_block_i;
 
 
/* Name of the current common block.  We get it from the BCOMM instead of the
/* Name of the current common block.  We get it from the BCOMM instead of the
   ECOMM to match IBM documentation (even though IBM puts the name both places
   ECOMM to match IBM documentation (even though IBM puts the name both places
   like everyone else).  */
   like everyone else).  */
static char *common_block_name;
static char *common_block_name;
 
 
/* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
/* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
   to remain after this function returns.  */
   to remain after this function returns.  */
 
 
void
void
common_block_start (char *name, struct objfile *objfile)
common_block_start (char *name, struct objfile *objfile)
{
{
  if (common_block_name != NULL)
  if (common_block_name != NULL)
    {
    {
      complaint (&symfile_complaints,
      complaint (&symfile_complaints,
                 _("Invalid symbol data: common block within common block"));
                 _("Invalid symbol data: common block within common block"));
    }
    }
  common_block = local_symbols;
  common_block = local_symbols;
  common_block_i = local_symbols ? local_symbols->nsyms : 0;
  common_block_i = local_symbols ? local_symbols->nsyms : 0;
  common_block_name = obsavestring (name, strlen (name),
  common_block_name = obsavestring (name, strlen (name),
                                    &objfile->objfile_obstack);
                                    &objfile->objfile_obstack);
}
}
 
 
/* Process a N_ECOMM symbol.  */
/* Process a N_ECOMM symbol.  */
 
 
void
void
common_block_end (struct objfile *objfile)
common_block_end (struct objfile *objfile)
{
{
  /* Symbols declared since the BCOMM are to have the common block
  /* Symbols declared since the BCOMM are to have the common block
     start address added in when we know it.  common_block and
     start address added in when we know it.  common_block and
     common_block_i point to the first symbol after the BCOMM in
     common_block_i point to the first symbol after the BCOMM in
     the local_symbols list; copy the list and hang it off the
     the local_symbols list; copy the list and hang it off the
     symbol for the common block name for later fixup.  */
     symbol for the common block name for later fixup.  */
  int i;
  int i;
  struct symbol *sym;
  struct symbol *sym;
  struct pending *new = 0;
  struct pending *new = 0;
  struct pending *next;
  struct pending *next;
  int j;
  int j;
 
 
  if (common_block_name == NULL)
  if (common_block_name == NULL)
    {
    {
      complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
      complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
      return;
      return;
    }
    }
 
 
  sym = (struct symbol *)
  sym = (struct symbol *)
    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
  /* Note: common_block_name already saved on objfile_obstack */
  /* Note: common_block_name already saved on objfile_obstack */
  SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
  SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
  SYMBOL_CLASS (sym) = LOC_BLOCK;
  SYMBOL_CLASS (sym) = LOC_BLOCK;
 
 
  /* Now we copy all the symbols which have been defined since the BCOMM.  */
  /* Now we copy all the symbols which have been defined since the BCOMM.  */
 
 
  /* Copy all the struct pendings before common_block.  */
  /* Copy all the struct pendings before common_block.  */
  for (next = local_symbols;
  for (next = local_symbols;
       next != NULL && next != common_block;
       next != NULL && next != common_block;
       next = next->next)
       next = next->next)
    {
    {
      for (j = 0; j < next->nsyms; j++)
      for (j = 0; j < next->nsyms; j++)
        add_symbol_to_list (next->symbol[j], &new);
        add_symbol_to_list (next->symbol[j], &new);
    }
    }
 
 
  /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
  /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
     NULL, it means copy all the local symbols (which we already did
     NULL, it means copy all the local symbols (which we already did
     above).  */
     above).  */
 
 
  if (common_block != NULL)
  if (common_block != NULL)
    for (j = common_block_i; j < common_block->nsyms; j++)
    for (j = common_block_i; j < common_block->nsyms; j++)
      add_symbol_to_list (common_block->symbol[j], &new);
      add_symbol_to_list (common_block->symbol[j], &new);
 
 
  SYMBOL_TYPE (sym) = (struct type *) new;
  SYMBOL_TYPE (sym) = (struct type *) new;
 
 
  /* Should we be putting local_symbols back to what it was?
  /* Should we be putting local_symbols back to what it was?
     Does it matter?  */
     Does it matter?  */
 
 
  i = hashname (SYMBOL_LINKAGE_NAME (sym));
  i = hashname (SYMBOL_LINKAGE_NAME (sym));
  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
  global_sym_chain[i] = sym;
  global_sym_chain[i] = sym;
  common_block_name = NULL;
  common_block_name = NULL;
}
}
 
 
/* Add a common block's start address to the offset of each symbol
/* Add a common block's start address to the offset of each symbol
   declared to be in it (by being between a BCOMM/ECOMM pair that uses
   declared to be in it (by being between a BCOMM/ECOMM pair that uses
   the common block name).  */
   the common block name).  */
 
 
static void
static void
fix_common_block (struct symbol *sym, int valu)
fix_common_block (struct symbol *sym, int valu)
{
{
  struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
  struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
  for (; next; next = next->next)
  for (; next; next = next->next)
    {
    {
      int j;
      int j;
      for (j = next->nsyms - 1; j >= 0; j--)
      for (j = next->nsyms - 1; j >= 0; j--)
        SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
        SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
    }
    }
}
}


 
 
 
 
/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
   See add_undefined_type for more details.  */
   See add_undefined_type for more details.  */
 
 
static void
static void
add_undefined_type_noname (struct type *type, int typenums[2])
add_undefined_type_noname (struct type *type, int typenums[2])
{
{
  struct nat nat;
  struct nat nat;
 
 
  nat.typenums[0] = typenums [0];
  nat.typenums[0] = typenums [0];
  nat.typenums[1] = typenums [1];
  nat.typenums[1] = typenums [1];
  nat.type = type;
  nat.type = type;
 
 
  if (noname_undefs_length == noname_undefs_allocated)
  if (noname_undefs_length == noname_undefs_allocated)
    {
    {
      noname_undefs_allocated *= 2;
      noname_undefs_allocated *= 2;
      noname_undefs = (struct nat *)
      noname_undefs = (struct nat *)
        xrealloc ((char *) noname_undefs,
        xrealloc ((char *) noname_undefs,
                  noname_undefs_allocated * sizeof (struct nat));
                  noname_undefs_allocated * sizeof (struct nat));
    }
    }
  noname_undefs[noname_undefs_length++] = nat;
  noname_undefs[noname_undefs_length++] = nat;
}
}
 
 
/* Add TYPE to the UNDEF_TYPES vector.
/* Add TYPE to the UNDEF_TYPES vector.
   See add_undefined_type for more details.  */
   See add_undefined_type for more details.  */
 
 
static void
static void
add_undefined_type_1 (struct type *type)
add_undefined_type_1 (struct type *type)
{
{
  if (undef_types_length == undef_types_allocated)
  if (undef_types_length == undef_types_allocated)
    {
    {
      undef_types_allocated *= 2;
      undef_types_allocated *= 2;
      undef_types = (struct type **)
      undef_types = (struct type **)
        xrealloc ((char *) undef_types,
        xrealloc ((char *) undef_types,
                  undef_types_allocated * sizeof (struct type *));
                  undef_types_allocated * sizeof (struct type *));
    }
    }
  undef_types[undef_types_length++] = type;
  undef_types[undef_types_length++] = type;
}
}
 
 
/* What about types defined as forward references inside of a small lexical
/* What about types defined as forward references inside of a small lexical
   scope?  */
   scope?  */
/* Add a type to the list of undefined types to be checked through
/* Add a type to the list of undefined types to be checked through
   once this file has been read in.
   once this file has been read in.
 
 
   In practice, we actually maintain two such lists: The first list
   In practice, we actually maintain two such lists: The first list
   (UNDEF_TYPES) is used for types whose name has been provided, and
   (UNDEF_TYPES) is used for types whose name has been provided, and
   concerns forward references (eg 'xs' or 'xu' forward references);
   concerns forward references (eg 'xs' or 'xu' forward references);
   the second list (NONAME_UNDEFS) is used for types whose name is
   the second list (NONAME_UNDEFS) is used for types whose name is
   unknown at creation time, because they were referenced through
   unknown at creation time, because they were referenced through
   their type number before the actual type was declared.
   their type number before the actual type was declared.
   This function actually adds the given type to the proper list.  */
   This function actually adds the given type to the proper list.  */
 
 
static void
static void
add_undefined_type (struct type *type, int typenums[2])
add_undefined_type (struct type *type, int typenums[2])
{
{
  if (TYPE_TAG_NAME (type) == NULL)
  if (TYPE_TAG_NAME (type) == NULL)
    add_undefined_type_noname (type, typenums);
    add_undefined_type_noname (type, typenums);
  else
  else
    add_undefined_type_1 (type);
    add_undefined_type_1 (type);
}
}
 
 
/* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
/* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
 
 
static void
static void
cleanup_undefined_types_noname (struct objfile *objfile)
cleanup_undefined_types_noname (struct objfile *objfile)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < noname_undefs_length; i++)
  for (i = 0; i < noname_undefs_length; i++)
    {
    {
      struct nat nat = noname_undefs[i];
      struct nat nat = noname_undefs[i];
      struct type **type;
      struct type **type;
 
 
      type = dbx_lookup_type (nat.typenums, objfile);
      type = dbx_lookup_type (nat.typenums, objfile);
      if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
      if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
        {
        {
          /* The instance flags of the undefined type are still unset,
          /* The instance flags of the undefined type are still unset,
             and needs to be copied over from the reference type.
             and needs to be copied over from the reference type.
             Since replace_type expects them to be identical, we need
             Since replace_type expects them to be identical, we need
             to set these flags manually before hand.  */
             to set these flags manually before hand.  */
          TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
          TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
          replace_type (nat.type, *type);
          replace_type (nat.type, *type);
        }
        }
    }
    }
 
 
  noname_undefs_length = 0;
  noname_undefs_length = 0;
}
}
 
 
/* Go through each undefined type, see if it's still undefined, and fix it
/* Go through each undefined type, see if it's still undefined, and fix it
   up if possible.  We have two kinds of undefined types:
   up if possible.  We have two kinds of undefined types:
 
 
   TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
   TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
   Fix:  update array length using the element bounds
   Fix:  update array length using the element bounds
   and the target type's length.
   and the target type's length.
   TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
   TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
   yet defined at the time a pointer to it was made.
   yet defined at the time a pointer to it was made.
   Fix:  Do a full lookup on the struct/union tag.  */
   Fix:  Do a full lookup on the struct/union tag.  */
 
 
static void
static void
cleanup_undefined_types_1 (void)
cleanup_undefined_types_1 (void)
{
{
  struct type **type;
  struct type **type;
 
 
  /* Iterate over every undefined type, and look for a symbol whose type
  /* Iterate over every undefined type, and look for a symbol whose type
     matches our undefined type.  The symbol matches if:
     matches our undefined type.  The symbol matches if:
       1. It is a typedef in the STRUCT domain;
       1. It is a typedef in the STRUCT domain;
       2. It has the same name, and same type code;
       2. It has the same name, and same type code;
       3. The instance flags are identical.
       3. The instance flags are identical.
 
 
     It is important to check the instance flags, because we have seen
     It is important to check the instance flags, because we have seen
     examples where the debug info contained definitions such as:
     examples where the debug info contained definitions such as:
 
 
         "foo_t:t30=B31=xefoo_t:"
         "foo_t:t30=B31=xefoo_t:"
 
 
     In this case, we have created an undefined type named "foo_t" whose
     In this case, we have created an undefined type named "foo_t" whose
     instance flags is null (when processing "xefoo_t"), and then created
     instance flags is null (when processing "xefoo_t"), and then created
     another type with the same name, but with different instance flags
     another type with the same name, but with different instance flags
     ('B' means volatile).  I think that the definition above is wrong,
     ('B' means volatile).  I think that the definition above is wrong,
     since the same type cannot be volatile and non-volatile at the same
     since the same type cannot be volatile and non-volatile at the same
     time, but we need to be able to cope with it when it happens.  The
     time, but we need to be able to cope with it when it happens.  The
     approach taken here is to treat these two types as different.  */
     approach taken here is to treat these two types as different.  */
 
 
  for (type = undef_types; type < undef_types + undef_types_length; type++)
  for (type = undef_types; type < undef_types + undef_types_length; type++)
    {
    {
      switch (TYPE_CODE (*type))
      switch (TYPE_CODE (*type))
        {
        {
 
 
        case TYPE_CODE_STRUCT:
        case TYPE_CODE_STRUCT:
        case TYPE_CODE_UNION:
        case TYPE_CODE_UNION:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
          {
          {
            /* Check if it has been defined since.  Need to do this here
            /* Check if it has been defined since.  Need to do this here
               as well as in check_typedef to deal with the (legitimate in
               as well as in check_typedef to deal with the (legitimate in
               C though not C++) case of several types with the same name
               C though not C++) case of several types with the same name
               in different source files.  */
               in different source files.  */
            if (TYPE_STUB (*type))
            if (TYPE_STUB (*type))
              {
              {
                struct pending *ppt;
                struct pending *ppt;
                int i;
                int i;
                /* Name of the type, without "struct" or "union" */
                /* Name of the type, without "struct" or "union" */
                char *typename = TYPE_TAG_NAME (*type);
                char *typename = TYPE_TAG_NAME (*type);
 
 
                if (typename == NULL)
                if (typename == NULL)
                  {
                  {
                    complaint (&symfile_complaints, _("need a type name"));
                    complaint (&symfile_complaints, _("need a type name"));
                    break;
                    break;
                  }
                  }
                for (ppt = file_symbols; ppt; ppt = ppt->next)
                for (ppt = file_symbols; ppt; ppt = ppt->next)
                  {
                  {
                    for (i = 0; i < ppt->nsyms; i++)
                    for (i = 0; i < ppt->nsyms; i++)
                      {
                      {
                        struct symbol *sym = ppt->symbol[i];
                        struct symbol *sym = ppt->symbol[i];
 
 
                        if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
                        if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
                            && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
                            && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
                            && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
                            && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
                                TYPE_CODE (*type))
                                TYPE_CODE (*type))
                            && (TYPE_INSTANCE_FLAGS (*type) ==
                            && (TYPE_INSTANCE_FLAGS (*type) ==
                                TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
                                TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
                            && strcmp (SYMBOL_LINKAGE_NAME (sym),
                            && strcmp (SYMBOL_LINKAGE_NAME (sym),
                                       typename) == 0)
                                       typename) == 0)
                          replace_type (*type, SYMBOL_TYPE (sym));
                          replace_type (*type, SYMBOL_TYPE (sym));
                      }
                      }
                  }
                  }
              }
              }
          }
          }
          break;
          break;
 
 
        default:
        default:
          {
          {
            complaint (&symfile_complaints,
            complaint (&symfile_complaints,
                       _("forward-referenced types left unresolved, "
                       _("forward-referenced types left unresolved, "
                       "type code %d."),
                       "type code %d."),
                       TYPE_CODE (*type));
                       TYPE_CODE (*type));
          }
          }
          break;
          break;
        }
        }
    }
    }
 
 
  undef_types_length = 0;
  undef_types_length = 0;
}
}
 
 
/* Try to fix all the undefined types we ecountered while processing
/* Try to fix all the undefined types we ecountered while processing
   this unit.  */
   this unit.  */
 
 
void
void
cleanup_undefined_types (struct objfile *objfile)
cleanup_undefined_types (struct objfile *objfile)
{
{
  cleanup_undefined_types_1 ();
  cleanup_undefined_types_1 ();
  cleanup_undefined_types_noname (objfile);
  cleanup_undefined_types_noname (objfile);
}
}
 
 
/* Scan through all of the global symbols defined in the object file,
/* Scan through all of the global symbols defined in the object file,
   assigning values to the debugging symbols that need to be assigned
   assigning values to the debugging symbols that need to be assigned
   to.  Get these symbols from the minimal symbol table.  */
   to.  Get these symbols from the minimal symbol table.  */
 
 
void
void
scan_file_globals (struct objfile *objfile)
scan_file_globals (struct objfile *objfile)
{
{
  int hash;
  int hash;
  struct minimal_symbol *msymbol;
  struct minimal_symbol *msymbol;
  struct symbol *sym, *prev;
  struct symbol *sym, *prev;
  struct objfile *resolve_objfile;
  struct objfile *resolve_objfile;
 
 
  /* SVR4 based linkers copy referenced global symbols from shared
  /* SVR4 based linkers copy referenced global symbols from shared
     libraries to the main executable.
     libraries to the main executable.
     If we are scanning the symbols for a shared library, try to resolve
     If we are scanning the symbols for a shared library, try to resolve
     them from the minimal symbols of the main executable first.  */
     them from the minimal symbols of the main executable first.  */
 
 
  if (symfile_objfile && objfile != symfile_objfile)
  if (symfile_objfile && objfile != symfile_objfile)
    resolve_objfile = symfile_objfile;
    resolve_objfile = symfile_objfile;
  else
  else
    resolve_objfile = objfile;
    resolve_objfile = objfile;
 
 
  while (1)
  while (1)
    {
    {
      /* Avoid expensive loop through all minimal symbols if there are
      /* Avoid expensive loop through all minimal symbols if there are
         no unresolved symbols.  */
         no unresolved symbols.  */
      for (hash = 0; hash < HASHSIZE; hash++)
      for (hash = 0; hash < HASHSIZE; hash++)
        {
        {
          if (global_sym_chain[hash])
          if (global_sym_chain[hash])
            break;
            break;
        }
        }
      if (hash >= HASHSIZE)
      if (hash >= HASHSIZE)
        return;
        return;
 
 
      ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
      ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
        {
        {
          QUIT;
          QUIT;
 
 
          /* Skip static symbols.  */
          /* Skip static symbols.  */
          switch (MSYMBOL_TYPE (msymbol))
          switch (MSYMBOL_TYPE (msymbol))
            {
            {
            case mst_file_text:
            case mst_file_text:
            case mst_file_data:
            case mst_file_data:
            case mst_file_bss:
            case mst_file_bss:
              continue;
              continue;
            default:
            default:
              break;
              break;
            }
            }
 
 
          prev = NULL;
          prev = NULL;
 
 
          /* Get the hash index and check all the symbols
          /* Get the hash index and check all the symbols
             under that hash index. */
             under that hash index. */
 
 
          hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
          hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
 
 
          for (sym = global_sym_chain[hash]; sym;)
          for (sym = global_sym_chain[hash]; sym;)
            {
            {
              if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
              if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
                          SYMBOL_LINKAGE_NAME (sym)) == 0)
                          SYMBOL_LINKAGE_NAME (sym)) == 0)
                {
                {
                  /* Splice this symbol out of the hash chain and
                  /* Splice this symbol out of the hash chain and
                     assign the value we have to it. */
                     assign the value we have to it. */
                  if (prev)
                  if (prev)
                    {
                    {
                      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
                      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
                    }
                    }
                  else
                  else
                    {
                    {
                      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
                      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
                    }
                    }
 
 
                  /* Check to see whether we need to fix up a common block.  */
                  /* Check to see whether we need to fix up a common block.  */
                  /* Note: this code might be executed several times for
                  /* Note: this code might be executed several times for
                     the same symbol if there are multiple references.  */
                     the same symbol if there are multiple references.  */
                  if (sym)
                  if (sym)
                    {
                    {
                      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
                      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
                        {
                        {
                          fix_common_block (sym,
                          fix_common_block (sym,
                                            SYMBOL_VALUE_ADDRESS (msymbol));
                                            SYMBOL_VALUE_ADDRESS (msymbol));
                        }
                        }
                      else
                      else
                        {
                        {
                          SYMBOL_VALUE_ADDRESS (sym)
                          SYMBOL_VALUE_ADDRESS (sym)
                            = SYMBOL_VALUE_ADDRESS (msymbol);
                            = SYMBOL_VALUE_ADDRESS (msymbol);
                        }
                        }
                      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
                      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
                    }
                    }
 
 
                  if (prev)
                  if (prev)
                    {
                    {
                      sym = SYMBOL_VALUE_CHAIN (prev);
                      sym = SYMBOL_VALUE_CHAIN (prev);
                    }
                    }
                  else
                  else
                    {
                    {
                      sym = global_sym_chain[hash];
                      sym = global_sym_chain[hash];
                    }
                    }
                }
                }
              else
              else
                {
                {
                  prev = sym;
                  prev = sym;
                  sym = SYMBOL_VALUE_CHAIN (sym);
                  sym = SYMBOL_VALUE_CHAIN (sym);
                }
                }
            }
            }
        }
        }
      if (resolve_objfile == objfile)
      if (resolve_objfile == objfile)
        break;
        break;
      resolve_objfile = objfile;
      resolve_objfile = objfile;
    }
    }
 
 
  /* Change the storage class of any remaining unresolved globals to
  /* Change the storage class of any remaining unresolved globals to
     LOC_UNRESOLVED and remove them from the chain.  */
     LOC_UNRESOLVED and remove them from the chain.  */
  for (hash = 0; hash < HASHSIZE; hash++)
  for (hash = 0; hash < HASHSIZE; hash++)
    {
    {
      sym = global_sym_chain[hash];
      sym = global_sym_chain[hash];
      while (sym)
      while (sym)
        {
        {
          prev = sym;
          prev = sym;
          sym = SYMBOL_VALUE_CHAIN (sym);
          sym = SYMBOL_VALUE_CHAIN (sym);
 
 
          /* Change the symbol address from the misleading chain value
          /* Change the symbol address from the misleading chain value
             to address zero.  */
             to address zero.  */
          SYMBOL_VALUE_ADDRESS (prev) = 0;
          SYMBOL_VALUE_ADDRESS (prev) = 0;
 
 
          /* Complain about unresolved common block symbols.  */
          /* Complain about unresolved common block symbols.  */
          if (SYMBOL_CLASS (prev) == LOC_STATIC)
          if (SYMBOL_CLASS (prev) == LOC_STATIC)
            SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
            SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
          else
          else
            complaint (&symfile_complaints,
            complaint (&symfile_complaints,
                       _("%s: common block `%s' from global_sym_chain unresolved"),
                       _("%s: common block `%s' from global_sym_chain unresolved"),
                       objfile->name, SYMBOL_PRINT_NAME (prev));
                       objfile->name, SYMBOL_PRINT_NAME (prev));
        }
        }
    }
    }
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
}
 
 
/* Initialize anything that needs initializing when starting to read
/* Initialize anything that needs initializing when starting to read
   a fresh piece of a symbol file, e.g. reading in the stuff corresponding
   a fresh piece of a symbol file, e.g. reading in the stuff corresponding
   to a psymtab.  */
   to a psymtab.  */
 
 
void
void
stabsread_init (void)
stabsread_init (void)
{
{
}
}
 
 
/* Initialize anything that needs initializing when a completely new
/* Initialize anything that needs initializing when a completely new
   symbol file is specified (not just adding some symbols from another
   symbol file is specified (not just adding some symbols from another
   file, e.g. a shared library).  */
   file, e.g. a shared library).  */
 
 
void
void
stabsread_new_init (void)
stabsread_new_init (void)
{
{
  /* Empty the hash table of global syms looking for values.  */
  /* Empty the hash table of global syms looking for values.  */
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
}
 
 
/* Initialize anything that needs initializing at the same time as
/* Initialize anything that needs initializing at the same time as
   start_symtab() is called. */
   start_symtab() is called. */
 
 
void
void
start_stabs (void)
start_stabs (void)
{
{
  global_stabs = NULL;          /* AIX COFF */
  global_stabs = NULL;          /* AIX COFF */
  /* Leave FILENUM of 0 free for builtin types and this file's types.  */
  /* Leave FILENUM of 0 free for builtin types and this file's types.  */
  n_this_object_header_files = 1;
  n_this_object_header_files = 1;
  type_vector_length = 0;
  type_vector_length = 0;
  type_vector = (struct type **) 0;
  type_vector = (struct type **) 0;
 
 
  /* FIXME: If common_block_name is not already NULL, we should complain().  */
  /* FIXME: If common_block_name is not already NULL, we should complain().  */
  common_block_name = NULL;
  common_block_name = NULL;
}
}
 
 
/* Call after end_symtab() */
/* Call after end_symtab() */
 
 
void
void
end_stabs (void)
end_stabs (void)
{
{
  if (type_vector)
  if (type_vector)
    {
    {
      xfree (type_vector);
      xfree (type_vector);
    }
    }
  type_vector = 0;
  type_vector = 0;
  type_vector_length = 0;
  type_vector_length = 0;
  previous_stab_code = 0;
  previous_stab_code = 0;
}
}
 
 
void
void
finish_global_stabs (struct objfile *objfile)
finish_global_stabs (struct objfile *objfile)
{
{
  if (global_stabs)
  if (global_stabs)
    {
    {
      patch_block_stabs (global_symbols, global_stabs, objfile);
      patch_block_stabs (global_symbols, global_stabs, objfile);
      xfree (global_stabs);
      xfree (global_stabs);
      global_stabs = NULL;
      global_stabs = NULL;
    }
    }
}
}
 
 
/* Find the end of the name, delimited by a ':', but don't match
/* Find the end of the name, delimited by a ':', but don't match
   ObjC symbols which look like -[Foo bar::]:bla.  */
   ObjC symbols which look like -[Foo bar::]:bla.  */
static char *
static char *
find_name_end (char *name)
find_name_end (char *name)
{
{
  char *s = name;
  char *s = name;
  if (s[0] == '-' || *s == '+')
  if (s[0] == '-' || *s == '+')
    {
    {
      /* Must be an ObjC method symbol.  */
      /* Must be an ObjC method symbol.  */
      if (s[1] != '[')
      if (s[1] != '[')
        {
        {
          error (_("invalid symbol name \"%s\""), name);
          error (_("invalid symbol name \"%s\""), name);
        }
        }
      s = strchr (s, ']');
      s = strchr (s, ']');
      if (s == NULL)
      if (s == NULL)
        {
        {
          error (_("invalid symbol name \"%s\""), name);
          error (_("invalid symbol name \"%s\""), name);
        }
        }
      return strchr (s, ':');
      return strchr (s, ':');
    }
    }
  else
  else
    {
    {
      return strchr (s, ':');
      return strchr (s, ':');
    }
    }
}
}
 
 
/* Initializer for this module */
/* Initializer for this module */
 
 
void
void
_initialize_stabsread (void)
_initialize_stabsread (void)
{
{
  rs6000_builtin_type_data = register_objfile_data ();
  rs6000_builtin_type_data = register_objfile_data ();
 
 
  undef_types_allocated = 20;
  undef_types_allocated = 20;
  undef_types_length = 0;
  undef_types_length = 0;
  undef_types = (struct type **)
  undef_types = (struct type **)
    xmalloc (undef_types_allocated * sizeof (struct type *));
    xmalloc (undef_types_allocated * sizeof (struct type *));
 
 
  noname_undefs_allocated = 20;
  noname_undefs_allocated = 20;
  noname_undefs_length = 0;
  noname_undefs_length = 0;
  noname_undefs = (struct nat *)
  noname_undefs = (struct nat *)
    xmalloc (noname_undefs_allocated * sizeof (struct nat));
    xmalloc (noname_undefs_allocated * sizeof (struct nat));
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.