OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [v850-tdep.c] - Diff between revs 227 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 227 Rev 816
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
 
 
   Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
   Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
   2008, 2009, 2010 Free Software Foundation, Inc.
   2008, 2009, 2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "dwarf2-frame.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "inferior.h"
#include "inferior.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regcache.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "osabi.h"
#include "osabi.h"
 
 
enum
enum
  {
  {
    E_R0_REGNUM,
    E_R0_REGNUM,
    E_R1_REGNUM,
    E_R1_REGNUM,
    E_R2_REGNUM,
    E_R2_REGNUM,
    E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
    E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
    E_R4_REGNUM,
    E_R4_REGNUM,
    E_R5_REGNUM,
    E_R5_REGNUM,
    E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
    E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
    E_R7_REGNUM,
    E_R7_REGNUM,
    E_R8_REGNUM,
    E_R8_REGNUM,
    E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
    E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
    E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
    E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
    E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
    E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
    E_R12_REGNUM,
    E_R12_REGNUM,
    E_R13_REGNUM,
    E_R13_REGNUM,
    E_R14_REGNUM,
    E_R14_REGNUM,
    E_R15_REGNUM,
    E_R15_REGNUM,
    E_R16_REGNUM,
    E_R16_REGNUM,
    E_R17_REGNUM,
    E_R17_REGNUM,
    E_R18_REGNUM,
    E_R18_REGNUM,
    E_R19_REGNUM,
    E_R19_REGNUM,
    E_R20_REGNUM,
    E_R20_REGNUM,
    E_R21_REGNUM,
    E_R21_REGNUM,
    E_R22_REGNUM,
    E_R22_REGNUM,
    E_R23_REGNUM,
    E_R23_REGNUM,
    E_R24_REGNUM,
    E_R24_REGNUM,
    E_R25_REGNUM,
    E_R25_REGNUM,
    E_R26_REGNUM,
    E_R26_REGNUM,
    E_R27_REGNUM,
    E_R27_REGNUM,
    E_R28_REGNUM,
    E_R28_REGNUM,
    E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
    E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
    E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
    E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
    E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
    E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
    E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
    E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
    E_R33_REGNUM,
    E_R33_REGNUM,
    E_R34_REGNUM,
    E_R34_REGNUM,
    E_R35_REGNUM,
    E_R35_REGNUM,
    E_R36_REGNUM,
    E_R36_REGNUM,
    E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
    E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
    E_R38_REGNUM,
    E_R38_REGNUM,
    E_R39_REGNUM,
    E_R39_REGNUM,
    E_R40_REGNUM,
    E_R40_REGNUM,
    E_R41_REGNUM,
    E_R41_REGNUM,
    E_R42_REGNUM,
    E_R42_REGNUM,
    E_R43_REGNUM,
    E_R43_REGNUM,
    E_R44_REGNUM,
    E_R44_REGNUM,
    E_R45_REGNUM,
    E_R45_REGNUM,
    E_R46_REGNUM,
    E_R46_REGNUM,
    E_R47_REGNUM,
    E_R47_REGNUM,
    E_R48_REGNUM,
    E_R48_REGNUM,
    E_R49_REGNUM,
    E_R49_REGNUM,
    E_R50_REGNUM,
    E_R50_REGNUM,
    E_R51_REGNUM,
    E_R51_REGNUM,
    E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
    E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
    E_R53_REGNUM,
    E_R53_REGNUM,
    E_R54_REGNUM,
    E_R54_REGNUM,
    E_R55_REGNUM,
    E_R55_REGNUM,
    E_R56_REGNUM,
    E_R56_REGNUM,
    E_R57_REGNUM,
    E_R57_REGNUM,
    E_R58_REGNUM,
    E_R58_REGNUM,
    E_R59_REGNUM,
    E_R59_REGNUM,
    E_R60_REGNUM,
    E_R60_REGNUM,
    E_R61_REGNUM,
    E_R61_REGNUM,
    E_R62_REGNUM,
    E_R62_REGNUM,
    E_R63_REGNUM,
    E_R63_REGNUM,
    E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
    E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
    E_R65_REGNUM,
    E_R65_REGNUM,
    E_NUM_REGS
    E_NUM_REGS
  };
  };
 
 
enum
enum
{
{
  v850_reg_size = 4
  v850_reg_size = 4
};
};
 
 
/* Size of return datatype which fits into all return registers.  */
/* Size of return datatype which fits into all return registers.  */
enum
enum
{
{
  E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
  E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
};
};
 
 
struct v850_frame_cache
struct v850_frame_cache
{
{
  /* Base address.  */
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR base;
  LONGEST sp_offset;
  LONGEST sp_offset;
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  /* Flag showing that a frame has been created in the prologue code.  */
  /* Flag showing that a frame has been created in the prologue code.  */
  int uses_fp;
  int uses_fp;
 
 
  /* Saved registers.  */
  /* Saved registers.  */
  struct trad_frame_saved_reg *saved_regs;
  struct trad_frame_saved_reg *saved_regs;
};
};
 
 
/* Info gleaned from scanning a function's prologue.  */
/* Info gleaned from scanning a function's prologue.  */
struct pifsr            /* Info about one saved register.  */
struct pifsr            /* Info about one saved register.  */
{
{
  int offset;           /* Offset from sp or fp.  */
  int offset;           /* Offset from sp or fp.  */
  int cur_frameoffset;  /* Current frameoffset.  */
  int cur_frameoffset;  /* Current frameoffset.  */
  int reg;              /* Saved register number.  */
  int reg;              /* Saved register number.  */
};
};
 
 
static const char *
static const char *
v850_register_name (struct gdbarch *gdbarch, int regnum)
v850_register_name (struct gdbarch *gdbarch, int regnum)
{
{
  static const char *v850_reg_names[] =
  static const char *v850_reg_names[] =
  { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
    "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "pc", "fp"
    "pc", "fp"
  };
  };
  if (regnum < 0 || regnum >= E_NUM_REGS)
  if (regnum < 0 || regnum >= E_NUM_REGS)
    return NULL;
    return NULL;
  return v850_reg_names[regnum];
  return v850_reg_names[regnum];
}
}
 
 
static const char *
static const char *
v850e_register_name (struct gdbarch *gdbarch, int regnum)
v850e_register_name (struct gdbarch *gdbarch, int regnum)
{
{
  static const char *v850e_reg_names[] =
  static const char *v850e_reg_names[] =
  {
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "pc", "fp"
    "pc", "fp"
  };
  };
  if (regnum < 0 || regnum >= E_NUM_REGS)
  if (regnum < 0 || regnum >= E_NUM_REGS)
    return NULL;
    return NULL;
  return v850e_reg_names[regnum];
  return v850e_reg_names[regnum];
}
}
 
 
/* Returns the default type for register N.  */
/* Returns the default type for register N.  */
 
 
static struct type *
static struct type *
v850_register_type (struct gdbarch *gdbarch, int regnum)
v850_register_type (struct gdbarch *gdbarch, int regnum)
{
{
  if (regnum == E_PC_REGNUM)
  if (regnum == E_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
    return builtin_type (gdbarch)->builtin_func_ptr;
  return builtin_type (gdbarch)->builtin_int32;
  return builtin_type (gdbarch)->builtin_int32;
}
}
 
 
static int
static int
v850_type_is_scalar (struct type *t)
v850_type_is_scalar (struct type *t)
{
{
  return (TYPE_CODE (t) != TYPE_CODE_STRUCT
  return (TYPE_CODE (t) != TYPE_CODE_STRUCT
          && TYPE_CODE (t) != TYPE_CODE_UNION
          && TYPE_CODE (t) != TYPE_CODE_UNION
          && TYPE_CODE (t) != TYPE_CODE_ARRAY);
          && TYPE_CODE (t) != TYPE_CODE_ARRAY);
}
}
 
 
/* Should call_function allocate stack space for a struct return?  */
/* Should call_function allocate stack space for a struct return?  */
static int
static int
v850_use_struct_convention (struct type *type)
v850_use_struct_convention (struct type *type)
{
{
  int i;
  int i;
  struct type *fld_type, *tgt_type;
  struct type *fld_type, *tgt_type;
 
 
  /* 1. The value is greater than 8 bytes -> returned by copying.  */
  /* 1. The value is greater than 8 bytes -> returned by copying.  */
  if (TYPE_LENGTH (type) > 8)
  if (TYPE_LENGTH (type) > 8)
    return 1;
    return 1;
 
 
  /* 2. The value is a single basic type -> returned in register.  */
  /* 2. The value is a single basic type -> returned in register.  */
  if (v850_type_is_scalar (type))
  if (v850_type_is_scalar (type))
    return 0;
    return 0;
 
 
  /* The value is a structure or union with a single element and that
  /* The value is a structure or union with a single element and that
     element is either a single basic type or an array of a single basic
     element is either a single basic type or an array of a single basic
     type whose size is greater than or equal to 4 -> returned in register.  */
     type whose size is greater than or equal to 4 -> returned in register.  */
  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
       || TYPE_CODE (type) == TYPE_CODE_UNION)
       || TYPE_CODE (type) == TYPE_CODE_UNION)
       && TYPE_NFIELDS (type) == 1)
       && TYPE_NFIELDS (type) == 1)
    {
    {
      fld_type = TYPE_FIELD_TYPE (type, 0);
      fld_type = TYPE_FIELD_TYPE (type, 0);
      if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
      if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
        return 0;
        return 0;
 
 
      if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
      if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
        {
        {
          tgt_type = TYPE_TARGET_TYPE (fld_type);
          tgt_type = TYPE_TARGET_TYPE (fld_type);
          if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
          if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
            return 0;
            return 0;
        }
        }
    }
    }
 
 
  /* The value is a structure whose first element is an integer or a float,
  /* The value is a structure whose first element is an integer or a float,
     and which contains no arrays of more than two elements -> returned in
     and which contains no arrays of more than two elements -> returned in
     register.  */
     register.  */
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
      && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
      && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
      && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
    {
    {
      for (i = 1; i < TYPE_NFIELDS (type); ++i)
      for (i = 1; i < TYPE_NFIELDS (type); ++i)
        {
        {
          fld_type = TYPE_FIELD_TYPE (type, 0);
          fld_type = TYPE_FIELD_TYPE (type, 0);
          if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
          if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
            {
            {
              tgt_type = TYPE_TARGET_TYPE (fld_type);
              tgt_type = TYPE_TARGET_TYPE (fld_type);
              if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
              if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
                  && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
                  && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
                return 1;
                return 1;
            }
            }
        }
        }
      return 0;
      return 0;
    }
    }
 
 
  /* The value is a union which contains at least one field which would be
  /* The value is a union which contains at least one field which would be
     returned in registers according to these rules -> returned in register.  */
     returned in registers according to these rules -> returned in register.  */
  if (TYPE_CODE (type) == TYPE_CODE_UNION)
  if (TYPE_CODE (type) == TYPE_CODE_UNION)
    {
    {
      for (i = 0; i < TYPE_NFIELDS (type); ++i)
      for (i = 0; i < TYPE_NFIELDS (type); ++i)
        {
        {
          fld_type = TYPE_FIELD_TYPE (type, 0);
          fld_type = TYPE_FIELD_TYPE (type, 0);
          if (!v850_use_struct_convention (fld_type))
          if (!v850_use_struct_convention (fld_type))
            return 0;
            return 0;
        }
        }
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Structure for mapping bits in register lists to register numbers.  */
/* Structure for mapping bits in register lists to register numbers.  */
struct reg_list
struct reg_list
{
{
  long mask;
  long mask;
  int regno;
  int regno;
};
};
 
 
/* Helper function for v850_scan_prologue to handle prepare instruction.  */
/* Helper function for v850_scan_prologue to handle prepare instruction.  */
 
 
static void
static void
v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
                     struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
                     struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
{
{
  CORE_ADDR current_pc = *current_pc_ptr;
  CORE_ADDR current_pc = *current_pc_ptr;
  struct pifsr *pifsr = *pifsr_ptr;
  struct pifsr *pifsr = *pifsr_ptr;
  long next = insn2 & 0xffff;
  long next = insn2 & 0xffff;
  long list12 = ((insn & 1) << 16) + (next & 0xffe0);
  long list12 = ((insn & 1) << 16) + (next & 0xffe0);
  long offset = (insn & 0x3e) << 1;
  long offset = (insn & 0x3e) << 1;
  static struct reg_list reg_table[] =
  static struct reg_list reg_table[] =
  {
  {
    {0x00800, 20},              /* r20 */
    {0x00800, 20},              /* r20 */
    {0x00400, 21},              /* r21 */
    {0x00400, 21},              /* r21 */
    {0x00200, 22},              /* r22 */
    {0x00200, 22},              /* r22 */
    {0x00100, 23},              /* r23 */
    {0x00100, 23},              /* r23 */
    {0x08000, 24},              /* r24 */
    {0x08000, 24},              /* r24 */
    {0x04000, 25},              /* r25 */
    {0x04000, 25},              /* r25 */
    {0x02000, 26},              /* r26 */
    {0x02000, 26},              /* r26 */
    {0x01000, 27},              /* r27 */
    {0x01000, 27},              /* r27 */
    {0x00080, 28},              /* r28 */
    {0x00080, 28},              /* r28 */
    {0x00040, 29},              /* r29 */
    {0x00040, 29},              /* r29 */
    {0x10000, 30},              /* ep */
    {0x10000, 30},              /* ep */
    {0x00020, 31},              /* lp */
    {0x00020, 31},              /* lp */
    {0, 0}                        /* end of table */
    {0, 0}                        /* end of table */
  };
  };
  int i;
  int i;
 
 
  if ((next & 0x1f) == 0x0b)            /* skip imm16 argument */
  if ((next & 0x1f) == 0x0b)            /* skip imm16 argument */
    current_pc += 2;
    current_pc += 2;
  else if ((next & 0x1f) == 0x13)       /* skip imm16 argument */
  else if ((next & 0x1f) == 0x13)       /* skip imm16 argument */
    current_pc += 2;
    current_pc += 2;
  else if ((next & 0x1f) == 0x1b)       /* skip imm32 argument */
  else if ((next & 0x1f) == 0x1b)       /* skip imm32 argument */
    current_pc += 4;
    current_pc += 4;
 
 
  /* Calculate the total size of the saved registers, and add it to the
  /* Calculate the total size of the saved registers, and add it to the
     immediate value used to adjust SP.  */
     immediate value used to adjust SP.  */
  for (i = 0; reg_table[i].mask != 0; i++)
  for (i = 0; reg_table[i].mask != 0; i++)
    if (list12 & reg_table[i].mask)
    if (list12 & reg_table[i].mask)
      offset += v850_reg_size;
      offset += v850_reg_size;
  pi->sp_offset -= offset;
  pi->sp_offset -= offset;
 
 
  /* Calculate the offsets of the registers relative to the value the SP
  /* Calculate the offsets of the registers relative to the value the SP
     will have after the registers have been pushed and the imm5 value has
     will have after the registers have been pushed and the imm5 value has
     been subtracted from it.  */
     been subtracted from it.  */
  if (pifsr)
  if (pifsr)
    {
    {
      for (i = 0; reg_table[i].mask != 0; i++)
      for (i = 0; reg_table[i].mask != 0; i++)
        {
        {
          if (list12 & reg_table[i].mask)
          if (list12 & reg_table[i].mask)
            {
            {
              int reg = reg_table[i].regno;
              int reg = reg_table[i].regno;
              offset -= v850_reg_size;
              offset -= v850_reg_size;
              pifsr->reg = reg;
              pifsr->reg = reg;
              pifsr->offset = offset;
              pifsr->offset = offset;
              pifsr->cur_frameoffset = pi->sp_offset;
              pifsr->cur_frameoffset = pi->sp_offset;
              pifsr++;
              pifsr++;
            }
            }
        }
        }
    }
    }
 
 
  /* Set result parameters.  */
  /* Set result parameters.  */
  *current_pc_ptr = current_pc;
  *current_pc_ptr = current_pc;
  *pifsr_ptr = pifsr;
  *pifsr_ptr = pifsr;
}
}
 
 
 
 
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
   The SR bit of the register list is not supported.  gcc does not generate
   The SR bit of the register list is not supported.  gcc does not generate
   this bit.  */
   this bit.  */
 
 
static void
static void
v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
                   struct pifsr **pifsr_ptr)
                   struct pifsr **pifsr_ptr)
{
{
  struct pifsr *pifsr = *pifsr_ptr;
  struct pifsr *pifsr = *pifsr_ptr;
  long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
  long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
  long offset = 0;
  long offset = 0;
  static struct reg_list pushml_reg_table[] =
  static struct reg_list pushml_reg_table[] =
  {
  {
    {0x80000, E_PS_REGNUM},     /* PSW */
    {0x80000, E_PS_REGNUM},     /* PSW */
    {0x40000, 1},               /* r1 */
    {0x40000, 1},               /* r1 */
    {0x20000, 2},               /* r2 */
    {0x20000, 2},               /* r2 */
    {0x10000, 3},               /* r3 */
    {0x10000, 3},               /* r3 */
    {0x00800, 4},               /* r4 */
    {0x00800, 4},               /* r4 */
    {0x00400, 5},               /* r5 */
    {0x00400, 5},               /* r5 */
    {0x00200, 6},               /* r6 */
    {0x00200, 6},               /* r6 */
    {0x00100, 7},               /* r7 */
    {0x00100, 7},               /* r7 */
    {0x08000, 8},               /* r8 */
    {0x08000, 8},               /* r8 */
    {0x04000, 9},               /* r9 */
    {0x04000, 9},               /* r9 */
    {0x02000, 10},              /* r10 */
    {0x02000, 10},              /* r10 */
    {0x01000, 11},              /* r11 */
    {0x01000, 11},              /* r11 */
    {0x00080, 12},              /* r12 */
    {0x00080, 12},              /* r12 */
    {0x00040, 13},              /* r13 */
    {0x00040, 13},              /* r13 */
    {0x00020, 14},              /* r14 */
    {0x00020, 14},              /* r14 */
    {0x00010, 15},              /* r15 */
    {0x00010, 15},              /* r15 */
    {0, 0}                        /* end of table */
    {0, 0}                        /* end of table */
  };
  };
  static struct reg_list pushmh_reg_table[] =
  static struct reg_list pushmh_reg_table[] =
  {
  {
    {0x80000, 16},              /* r16 */
    {0x80000, 16},              /* r16 */
    {0x40000, 17},              /* r17 */
    {0x40000, 17},              /* r17 */
    {0x20000, 18},              /* r18 */
    {0x20000, 18},              /* r18 */
    {0x10000, 19},              /* r19 */
    {0x10000, 19},              /* r19 */
    {0x00800, 20},              /* r20 */
    {0x00800, 20},              /* r20 */
    {0x00400, 21},              /* r21 */
    {0x00400, 21},              /* r21 */
    {0x00200, 22},              /* r22 */
    {0x00200, 22},              /* r22 */
    {0x00100, 23},              /* r23 */
    {0x00100, 23},              /* r23 */
    {0x08000, 24},              /* r24 */
    {0x08000, 24},              /* r24 */
    {0x04000, 25},              /* r25 */
    {0x04000, 25},              /* r25 */
    {0x02000, 26},              /* r26 */
    {0x02000, 26},              /* r26 */
    {0x01000, 27},              /* r27 */
    {0x01000, 27},              /* r27 */
    {0x00080, 28},              /* r28 */
    {0x00080, 28},              /* r28 */
    {0x00040, 29},              /* r29 */
    {0x00040, 29},              /* r29 */
    {0x00010, 30},              /* r30 */
    {0x00010, 30},              /* r30 */
    {0x00020, 31},              /* r31 */
    {0x00020, 31},              /* r31 */
    {0, 0}                        /* end of table */
    {0, 0}                        /* end of table */
  };
  };
  struct reg_list *reg_table;
  struct reg_list *reg_table;
  int i;
  int i;
 
 
  /* Is this a pushml or a pushmh?  */
  /* Is this a pushml or a pushmh?  */
  if ((insn2 & 7) == 1)
  if ((insn2 & 7) == 1)
    reg_table = pushml_reg_table;
    reg_table = pushml_reg_table;
  else
  else
    reg_table = pushmh_reg_table;
    reg_table = pushmh_reg_table;
 
 
  /* Calculate the total size of the saved registers, and add it it to the
  /* Calculate the total size of the saved registers, and add it it to the
     immediate value used to adjust SP.  */
     immediate value used to adjust SP.  */
  for (i = 0; reg_table[i].mask != 0; i++)
  for (i = 0; reg_table[i].mask != 0; i++)
    if (list12 & reg_table[i].mask)
    if (list12 & reg_table[i].mask)
      offset += v850_reg_size;
      offset += v850_reg_size;
  pi->sp_offset -= offset;
  pi->sp_offset -= offset;
 
 
  /* Calculate the offsets of the registers relative to the value the SP
  /* Calculate the offsets of the registers relative to the value the SP
     will have after the registers have been pushed and the imm5 value is
     will have after the registers have been pushed and the imm5 value is
     subtracted from it.  */
     subtracted from it.  */
  if (pifsr)
  if (pifsr)
    {
    {
      for (i = 0; reg_table[i].mask != 0; i++)
      for (i = 0; reg_table[i].mask != 0; i++)
        {
        {
          if (list12 & reg_table[i].mask)
          if (list12 & reg_table[i].mask)
            {
            {
              int reg = reg_table[i].regno;
              int reg = reg_table[i].regno;
              offset -= v850_reg_size;
              offset -= v850_reg_size;
              pifsr->reg = reg;
              pifsr->reg = reg;
              pifsr->offset = offset;
              pifsr->offset = offset;
              pifsr->cur_frameoffset = pi->sp_offset;
              pifsr->cur_frameoffset = pi->sp_offset;
              pifsr++;
              pifsr++;
            }
            }
        }
        }
    }
    }
 
 
  /* Set result parameters.  */
  /* Set result parameters.  */
  *pifsr_ptr = pifsr;
  *pifsr_ptr = pifsr;
}
}
 
 
/* Helper function to evaluate if register is one of the "save" registers.
/* Helper function to evaluate if register is one of the "save" registers.
   This allows to simplify conditionals in v850_analyze_prologue a lot.  */
   This allows to simplify conditionals in v850_analyze_prologue a lot.  */
 
 
static int
static int
v850_is_save_register (int reg)
v850_is_save_register (int reg)
{
{
 /* The caller-save registers are R2, R20 - R29 and R31.  All other
 /* The caller-save registers are R2, R20 - R29 and R31.  All other
    registers are either special purpose (PC, SP), argument registers,
    registers are either special purpose (PC, SP), argument registers,
    or just considered free for use in the caller. */
    or just considered free for use in the caller. */
 return reg == E_R2_REGNUM
 return reg == E_R2_REGNUM
        || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
        || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
        || reg == E_R31_REGNUM;
        || reg == E_R31_REGNUM;
}
}
 
 
/* Scan the prologue of the function that contains PC, and record what
/* Scan the prologue of the function that contains PC, and record what
   we find in PI.  Returns the pc after the prologue.  Note that the
   we find in PI.  Returns the pc after the prologue.  Note that the
   addresses saved in frame->saved_regs are just frame relative (negative
   addresses saved in frame->saved_regs are just frame relative (negative
   offsets from the frame pointer).  This is because we don't know the
   offsets from the frame pointer).  This is because we don't know the
   actual value of the frame pointer yet.  In some circumstances, the
   actual value of the frame pointer yet.  In some circumstances, the
   frame pointer can't be determined till after we have scanned the
   frame pointer can't be determined till after we have scanned the
   prologue.  */
   prologue.  */
 
 
static CORE_ADDR
static CORE_ADDR
v850_analyze_prologue (struct gdbarch *gdbarch,
v850_analyze_prologue (struct gdbarch *gdbarch,
                       CORE_ADDR func_addr, CORE_ADDR pc,
                       CORE_ADDR func_addr, CORE_ADDR pc,
                       struct v850_frame_cache *pi, ULONGEST ctbp)
                       struct v850_frame_cache *pi, ULONGEST ctbp)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR prologue_end, current_pc;
  CORE_ADDR prologue_end, current_pc;
  struct pifsr pifsrs[E_NUM_REGS + 1];
  struct pifsr pifsrs[E_NUM_REGS + 1];
  struct pifsr *pifsr, *pifsr_tmp;
  struct pifsr *pifsr, *pifsr_tmp;
  int fp_used;
  int fp_used;
  int ep_used;
  int ep_used;
  int reg;
  int reg;
  CORE_ADDR save_pc, save_end;
  CORE_ADDR save_pc, save_end;
  int regsave_func_p;
  int regsave_func_p;
  int r12_tmp;
  int r12_tmp;
 
 
  memset (&pifsrs, 0, sizeof pifsrs);
  memset (&pifsrs, 0, sizeof pifsrs);
  pifsr = &pifsrs[0];
  pifsr = &pifsrs[0];
 
 
  prologue_end = pc;
  prologue_end = pc;
 
 
  /* Now, search the prologue looking for instructions that setup fp, save
  /* Now, search the prologue looking for instructions that setup fp, save
     rp, adjust sp and such.  We also record the frame offset of any saved
     rp, adjust sp and such.  We also record the frame offset of any saved
     registers.  */
     registers.  */
 
 
  pi->sp_offset = 0;
  pi->sp_offset = 0;
  pi->uses_fp = 0;
  pi->uses_fp = 0;
  ep_used = 0;
  ep_used = 0;
  regsave_func_p = 0;
  regsave_func_p = 0;
  save_pc = 0;
  save_pc = 0;
  save_end = 0;
  save_end = 0;
  r12_tmp = 0;
  r12_tmp = 0;
 
 
  for (current_pc = func_addr; current_pc < prologue_end;)
  for (current_pc = func_addr; current_pc < prologue_end;)
    {
    {
      int insn;
      int insn;
      int insn2 = -1; /* dummy value */
      int insn2 = -1; /* dummy value */
 
 
      insn = read_memory_integer (current_pc, 2, byte_order);
      insn = read_memory_integer (current_pc, 2, byte_order);
      current_pc += 2;
      current_pc += 2;
      if ((insn & 0x0780) >= 0x0600)    /* Four byte instruction? */
      if ((insn & 0x0780) >= 0x0600)    /* Four byte instruction? */
        {
        {
          insn2 = read_memory_integer (current_pc, 2, byte_order);
          insn2 = read_memory_integer (current_pc, 2, byte_order);
          current_pc += 2;
          current_pc += 2;
        }
        }
 
 
      if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
      if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
        {                       /* jarl <func>,10 */
        {                       /* jarl <func>,10 */
          long low_disp = insn2 & ~(long) 1;
          long low_disp = insn2 & ~(long) 1;
          long disp = (((((insn & 0x3f) << 16) + low_disp)
          long disp = (((((insn & 0x3f) << 16) + low_disp)
                        & ~(long) 1) ^ 0x00200000) - 0x00200000;
                        & ~(long) 1) ^ 0x00200000) - 0x00200000;
 
 
          save_pc = current_pc;
          save_pc = current_pc;
          save_end = prologue_end;
          save_end = prologue_end;
          regsave_func_p = 1;
          regsave_func_p = 1;
          current_pc += disp - 4;
          current_pc += disp - 4;
          prologue_end = (current_pc
          prologue_end = (current_pc
                          + (2 * 3)     /* moves to/from ep */
                          + (2 * 3)     /* moves to/from ep */
                          + 4           /* addi <const>,sp,sp */
                          + 4           /* addi <const>,sp,sp */
                          + 2           /* jmp [r10] */
                          + 2           /* jmp [r10] */
                          + (2 * 12)    /* sst.w to save r2, r20-r29, r31 */
                          + (2 * 12)    /* sst.w to save r2, r20-r29, r31 */
                          + 20);        /* slop area */
                          + 20);        /* slop area */
        }
        }
      else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
      else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
        {                       /* callt <imm6> */
        {                       /* callt <imm6> */
          long adr = ctbp + ((insn & 0x3f) << 1);
          long adr = ctbp + ((insn & 0x3f) << 1);
 
 
          save_pc = current_pc;
          save_pc = current_pc;
          save_end = prologue_end;
          save_end = prologue_end;
          regsave_func_p = 1;
          regsave_func_p = 1;
          current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
          current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
                               & 0xffff);
                               & 0xffff);
          prologue_end = (current_pc
          prologue_end = (current_pc
                          + (2 * 3)     /* prepare list2,imm5,sp/imm */
                          + (2 * 3)     /* prepare list2,imm5,sp/imm */
                          + 4           /* ctret */
                          + 4           /* ctret */
                          + 20);        /* slop area */
                          + 20);        /* slop area */
          continue;
          continue;
        }
        }
      else if ((insn & 0xffc0) == 0x0780)       /* prepare list2,imm5 */
      else if ((insn & 0xffc0) == 0x0780)       /* prepare list2,imm5 */
        {
        {
          v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
          v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
          continue;
          continue;
        }
        }
      else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
      else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
        {                       /* ctret after processing register save.  */
        {                       /* ctret after processing register save.  */
          current_pc = save_pc;
          current_pc = save_pc;
          prologue_end = save_end;
          prologue_end = save_end;
          regsave_func_p = 0;
          regsave_func_p = 0;
          continue;
          continue;
        }
        }
      else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
      else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
        {                       /* pushml, pushmh */
        {                       /* pushml, pushmh */
          v850_handle_pushm (insn, insn2, pi, &pifsr);
          v850_handle_pushm (insn, insn2, pi, &pifsr);
          continue;
          continue;
        }
        }
      else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
      else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
        {                       /* jmp after processing register save.  */
        {                       /* jmp after processing register save.  */
          current_pc = save_pc;
          current_pc = save_pc;
          prologue_end = save_end;
          prologue_end = save_end;
          regsave_func_p = 0;
          regsave_func_p = 0;
          continue;
          continue;
        }
        }
      else if ((insn & 0x07c0) == 0x0780        /* jarl or jr */
      else if ((insn & 0x07c0) == 0x0780        /* jarl or jr */
               || (insn & 0xffe0) == 0x0060     /* jmp */
               || (insn & 0xffe0) == 0x0060     /* jmp */
               || (insn & 0x0780) == 0x0580)    /* branch */
               || (insn & 0x0780) == 0x0580)    /* branch */
        {
        {
          break;                /* Ran into end of prologue */
          break;                /* Ran into end of prologue */
        }
        }
 
 
      else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
      else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
        /* add <imm>,sp */
        /* add <imm>,sp */
        pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
        pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
      else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
      else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
        /* addi <imm>,sp,sp */
        /* addi <imm>,sp,sp */
        pi->sp_offset += insn2;
        pi->sp_offset += insn2;
      else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
      else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
        /* mov sp,fp */
        /* mov sp,fp */
        pi->uses_fp = 1;
        pi->uses_fp = 1;
      else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
      else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
        /* movhi hi(const),r0,r12 */
        /* movhi hi(const),r0,r12 */
        r12_tmp = insn2 << 16;
        r12_tmp = insn2 << 16;
      else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
      else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
        /* movea lo(const),r12,r12 */
        /* movea lo(const),r12,r12 */
        r12_tmp += insn2;
        r12_tmp += insn2;
      else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
      else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
        /* add r12,sp */
        /* add r12,sp */
        pi->sp_offset += r12_tmp;
        pi->sp_offset += r12_tmp;
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
        /* mov sp,ep */
        /* mov sp,ep */
        ep_used = 1;
        ep_used = 1;
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
        /* mov r1,ep */
        /* mov r1,ep */
        ep_used = 0;
        ep_used = 0;
      else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
      else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
                || (pi->uses_fp
                || (pi->uses_fp
                    && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
                    && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
               && pifsr
               && pifsr
               && v850_is_save_register (reg = (insn >> 11) & 0x1f))
               && v850_is_save_register (reg = (insn >> 11) & 0x1f))
        {
        {
          /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
          /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
          pifsr->reg = reg;
          pifsr->reg = reg;
          pifsr->offset = insn2 & ~1;
          pifsr->offset = insn2 & ~1;
          pifsr->cur_frameoffset = pi->sp_offset;
          pifsr->cur_frameoffset = pi->sp_offset;
          pifsr++;
          pifsr++;
        }
        }
      else if (ep_used
      else if (ep_used
               && ((insn & 0x0781) == 0x0501)
               && ((insn & 0x0781) == 0x0501)
               && pifsr
               && pifsr
               && v850_is_save_register (reg = (insn >> 11) & 0x1f))
               && v850_is_save_register (reg = (insn >> 11) & 0x1f))
        {
        {
          /* sst.w <reg>,<offset>[ep] */
          /* sst.w <reg>,<offset>[ep] */
          pifsr->reg = reg;
          pifsr->reg = reg;
          pifsr->offset = (insn & 0x007e) << 1;
          pifsr->offset = (insn & 0x007e) << 1;
          pifsr->cur_frameoffset = pi->sp_offset;
          pifsr->cur_frameoffset = pi->sp_offset;
          pifsr++;
          pifsr++;
        }
        }
    }
    }
 
 
  /* Fix up any offsets to the final offset.  If a frame pointer was created,
  /* Fix up any offsets to the final offset.  If a frame pointer was created,
     use it instead of the stack pointer.  */
     use it instead of the stack pointer.  */
  for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
  for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
    {
    {
      pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
      pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
      pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
      pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
    }
    }
 
 
  return current_pc;
  return current_pc;
}
}
 
 
/* Return the address of the first code past the prologue of the function.  */
/* Return the address of the first code past the prologue of the function.  */
 
 
static CORE_ADDR
static CORE_ADDR
v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
{
  CORE_ADDR func_addr, func_end;
  CORE_ADDR func_addr, func_end;
 
 
  /* See what the symbol table says */
  /* See what the symbol table says */
 
 
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      struct symtab_and_line sal;
      struct symtab_and_line sal;
 
 
      sal = find_pc_line (func_addr, 0);
      sal = find_pc_line (func_addr, 0);
      if (sal.line != 0 && sal.end < func_end)
      if (sal.line != 0 && sal.end < func_end)
        return sal.end;
        return sal.end;
 
 
      /* Either there's no line info, or the line after the prologue is after
      /* Either there's no line info, or the line after the prologue is after
         the end of the function.  In this case, there probably isn't a
         the end of the function.  In this case, there probably isn't a
         prologue.  */
         prologue.  */
      return pc;
      return pc;
    }
    }
 
 
  /* We can't find the start of this function, so there's nothing we can do.  */
  /* We can't find the start of this function, so there's nothing we can do.  */
  return pc;
  return pc;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
{
{
  return sp & ~3;
  return sp & ~3;
}
}
 
 
/* Setup arguments and LP for a call to the target.  First four args
/* Setup arguments and LP for a call to the target.  First four args
   go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs
   go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs
   are passed by reference.  64 bit quantities (doubles and long longs)
   are passed by reference.  64 bit quantities (doubles and long longs)
   may be split between the regs and the stack.  When calling a function
   may be split between the regs and the stack.  When calling a function
   that returns a struct, a pointer to the struct is passed in as a secret
   that returns a struct, a pointer to the struct is passed in as a secret
   first argument (always in R6).
   first argument (always in R6).
 
 
   Stack space for the args has NOT been allocated: that job is up to us.  */
   Stack space for the args has NOT been allocated: that job is up to us.  */
 
 
static CORE_ADDR
static CORE_ADDR
v850_push_dummy_call (struct gdbarch *gdbarch,
v850_push_dummy_call (struct gdbarch *gdbarch,
                      struct value *function,
                      struct value *function,
                      struct regcache *regcache,
                      struct regcache *regcache,
                      CORE_ADDR bp_addr,
                      CORE_ADDR bp_addr,
                      int nargs,
                      int nargs,
                      struct value **args,
                      struct value **args,
                      CORE_ADDR sp,
                      CORE_ADDR sp,
                      int struct_return,
                      int struct_return,
                      CORE_ADDR struct_addr)
                      CORE_ADDR struct_addr)
{
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int argreg;
  int argreg;
  int argnum;
  int argnum;
  int len = 0;
  int len = 0;
  int stack_offset;
  int stack_offset;
 
 
  /* The offset onto the stack at which we will start copying parameters
  /* The offset onto the stack at which we will start copying parameters
     (after the registers are used up) begins at 16 rather than at zero.
     (after the registers are used up) begins at 16 rather than at zero.
     That's how the ABI is defined, though there's no indication that these
     That's how the ABI is defined, though there's no indication that these
     16 bytes are used for anything, not even for saving incoming
     16 bytes are used for anything, not even for saving incoming
     argument registers.  */
     argument registers.  */
  stack_offset = 16;
  stack_offset = 16;
 
 
  /* Now make space on the stack for the args.  */
  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
    len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
  sp -= len + stack_offset;
  sp -= len + stack_offset;
 
 
  argreg = E_ARG0_REGNUM;
  argreg = E_ARG0_REGNUM;
  /* The struct_return pointer occupies the first parameter register.  */
  /* The struct_return pointer occupies the first parameter register.  */
  if (struct_return)
  if (struct_return)
    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */
     in four registers available.  Loop thru args from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      int len;
      int len;
      gdb_byte *val;
      gdb_byte *val;
      gdb_byte valbuf[v850_reg_size];
      gdb_byte valbuf[v850_reg_size];
 
 
      if (!v850_type_is_scalar (value_type (*args))
      if (!v850_type_is_scalar (value_type (*args))
          && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
          && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
        {
        {
          store_unsigned_integer (valbuf, 4, byte_order,
          store_unsigned_integer (valbuf, 4, byte_order,
                                  value_address (*args));
                                  value_address (*args));
          len = 4;
          len = 4;
          val = valbuf;
          val = valbuf;
        }
        }
      else
      else
        {
        {
          len = TYPE_LENGTH (value_type (*args));
          len = TYPE_LENGTH (value_type (*args));
          val = (gdb_byte *) value_contents (*args);
          val = (gdb_byte *) value_contents (*args);
        }
        }
 
 
      while (len > 0)
      while (len > 0)
        if (argreg <= E_ARGLAST_REGNUM)
        if (argreg <= E_ARGLAST_REGNUM)
          {
          {
            CORE_ADDR regval;
            CORE_ADDR regval;
 
 
            regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
            regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
            regcache_cooked_write_unsigned (regcache, argreg, regval);
            regcache_cooked_write_unsigned (regcache, argreg, regval);
 
 
            len -= v850_reg_size;
            len -= v850_reg_size;
            val += v850_reg_size;
            val += v850_reg_size;
            argreg++;
            argreg++;
          }
          }
        else
        else
          {
          {
            write_memory (sp + stack_offset, val, 4);
            write_memory (sp + stack_offset, val, 4);
 
 
            len -= 4;
            len -= 4;
            val += 4;
            val += 4;
            stack_offset += 4;
            stack_offset += 4;
          }
          }
      args++;
      args++;
    }
    }
 
 
  /* Store return address.  */
  /* Store return address.  */
  regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
  regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
 
 
  /* Update stack pointer.  */
  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
 
 
  return sp;
  return sp;
}
}
 
 
static void
static void
v850_extract_return_value (struct type *type, struct regcache *regcache,
v850_extract_return_value (struct type *type, struct regcache *regcache,
                           gdb_byte *valbuf)
                           gdb_byte *valbuf)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  if (len <= v850_reg_size)
  if (len <= v850_reg_size)
    {
    {
      ULONGEST val;
      ULONGEST val;
 
 
      regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
      regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
      store_unsigned_integer (valbuf, len, byte_order, val);
      store_unsigned_integer (valbuf, len, byte_order, val);
    }
    }
  else if (len <= 2 * v850_reg_size)
  else if (len <= 2 * v850_reg_size)
    {
    {
      int i, regnum = E_V0_REGNUM;
      int i, regnum = E_V0_REGNUM;
      gdb_byte buf[v850_reg_size];
      gdb_byte buf[v850_reg_size];
      for (i = 0; len > 0; i += 4, len -= 4)
      for (i = 0; len > 0; i += 4, len -= 4)
        {
        {
          regcache_raw_read (regcache, regnum++, buf);
          regcache_raw_read (regcache, regnum++, buf);
          memcpy (valbuf + i, buf, len > 4 ? 4 : len);
          memcpy (valbuf + i, buf, len > 4 ? 4 : len);
        }
        }
    }
    }
}
}
 
 
static void
static void
v850_store_return_value (struct type *type, struct regcache *regcache,
v850_store_return_value (struct type *type, struct regcache *regcache,
                         const gdb_byte *valbuf)
                         const gdb_byte *valbuf)
{
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  if (len <= v850_reg_size)
  if (len <= v850_reg_size)
      regcache_cooked_write_unsigned
      regcache_cooked_write_unsigned
        (regcache, E_V0_REGNUM,
        (regcache, E_V0_REGNUM,
         extract_unsigned_integer (valbuf, len, byte_order));
         extract_unsigned_integer (valbuf, len, byte_order));
  else if (len <= 2 * v850_reg_size)
  else if (len <= 2 * v850_reg_size)
    {
    {
      int i, regnum = E_V0_REGNUM;
      int i, regnum = E_V0_REGNUM;
      for (i = 0; i < len; i += 4)
      for (i = 0; i < len; i += 4)
        regcache_raw_write (regcache, regnum++, valbuf + i);
        regcache_raw_write (regcache, regnum++, valbuf + i);
    }
    }
}
}
 
 
static enum return_value_convention
static enum return_value_convention
v850_return_value (struct gdbarch *gdbarch, struct type *func_type,
v850_return_value (struct gdbarch *gdbarch, struct type *func_type,
                   struct type *type, struct regcache *regcache,
                   struct type *type, struct regcache *regcache,
                   gdb_byte *readbuf, const gdb_byte *writebuf)
                   gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  if (v850_use_struct_convention (type))
  if (v850_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
  if (writebuf)
    v850_store_return_value (type, regcache, writebuf);
    v850_store_return_value (type, regcache, writebuf);
  else if (readbuf)
  else if (readbuf)
    v850_extract_return_value (type, regcache, readbuf);
    v850_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}
 
 
const static unsigned char *
const static unsigned char *
v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
{
{
  static unsigned char breakpoint[] = { 0x85, 0x05 };
  static unsigned char breakpoint[] = { 0x85, 0x05 };
  *lenptr = sizeof (breakpoint);
  *lenptr = sizeof (breakpoint);
  return breakpoint;
  return breakpoint;
}
}
 
 
static struct v850_frame_cache *
static struct v850_frame_cache *
v850_alloc_frame_cache (struct frame_info *this_frame)
v850_alloc_frame_cache (struct frame_info *this_frame)
{
{
  struct v850_frame_cache *cache;
  struct v850_frame_cache *cache;
  int i;
  int i;
 
 
  cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
 
 
  /* Base address.  */
  /* Base address.  */
  cache->base = 0;
  cache->base = 0;
  cache->sp_offset = 0;
  cache->sp_offset = 0;
  cache->pc = 0;
  cache->pc = 0;
 
 
  /* Frameless until proven otherwise.  */
  /* Frameless until proven otherwise.  */
  cache->uses_fp = 0;
  cache->uses_fp = 0;
 
 
  return cache;
  return cache;
}
}
 
 
static struct v850_frame_cache *
static struct v850_frame_cache *
v850_frame_cache (struct frame_info *this_frame, void **this_cache)
v850_frame_cache (struct frame_info *this_frame, void **this_cache)
{
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct v850_frame_cache *cache;
  struct v850_frame_cache *cache;
  CORE_ADDR current_pc;
  CORE_ADDR current_pc;
  int i;
  int i;
 
 
  if (*this_cache)
  if (*this_cache)
    return *this_cache;
    return *this_cache;
 
 
  cache = v850_alloc_frame_cache (this_frame);
  cache = v850_alloc_frame_cache (this_frame);
  *this_cache = cache;
  *this_cache = cache;
 
 
  /* In principle, for normal frames, fp holds the frame pointer,
  /* In principle, for normal frames, fp holds the frame pointer,
     which holds the base address for the current stack frame.
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  */
     actually the frame pointer of the calling frame.  */
  cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
  cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
  if (cache->base == 0)
  if (cache->base == 0)
    return cache;
    return cache;
 
 
  cache->pc = get_frame_func (this_frame);
  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  current_pc = get_frame_pc (this_frame);
  if (cache->pc != 0)
  if (cache->pc != 0)
    {
    {
      ULONGEST ctbp;
      ULONGEST ctbp;
      ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
      ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
      v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
      v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
    }
    }
 
 
  if (!cache->uses_fp)
  if (!cache->uses_fp)
    {
    {
      /* We didn't find a valid frame, which means that CACHE->base
      /* We didn't find a valid frame, which means that CACHE->base
         currently holds the frame pointer for our calling frame.  If
         currently holds the frame pointer for our calling frame.  If
         we're at the start of a function, or somewhere half-way its
         we're at the start of a function, or somewhere half-way its
         prologue, the function's frame probably hasn't been fully
         prologue, the function's frame probably hasn't been fully
         setup yet.  Try to reconstruct the base address for the stack
         setup yet.  Try to reconstruct the base address for the stack
         frame by looking at the stack pointer.  For truly "frameless"
         frame by looking at the stack pointer.  For truly "frameless"
         functions this might work too.  */
         functions this might work too.  */
      cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
      cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
    }
    }
 
 
  /* Now that we have the base address for the stack frame we can
  /* Now that we have the base address for the stack frame we can
     calculate the value of sp in the calling frame.  */
     calculate the value of sp in the calling frame.  */
  trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
  trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
                        cache->base - cache->sp_offset);
                        cache->base - cache->sp_offset);
 
 
  /* Adjust all the saved registers such that they contain addresses
  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
     instead of offsets.  */
  for (i = 0; i < E_NUM_REGS; i++)
  for (i = 0; i < E_NUM_REGS; i++)
    if (trad_frame_addr_p (cache->saved_regs, i))
    if (trad_frame_addr_p (cache->saved_regs, i))
      cache->saved_regs[i].addr += cache->base;
      cache->saved_regs[i].addr += cache->base;
 
 
  /* The call instruction moves the caller's PC in the callee's LP.
  /* The call instruction moves the caller's PC in the callee's LP.
     Since this is an unwind, do the reverse.  Copy the location of LP
     Since this is an unwind, do the reverse.  Copy the location of LP
     into PC (the address / regnum) so that a request for PC will be
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the LP.  */
     converted into a request for the LP.  */
 
 
  cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
  cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
 
 
  return cache;
  return cache;
}
}
 
 
 
 
static struct value *
static struct value *
v850_frame_prev_register (struct frame_info *this_frame,
v850_frame_prev_register (struct frame_info *this_frame,
                          void **this_cache, int regnum)
                          void **this_cache, int regnum)
{
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
 
 
  gdb_assert (regnum >= 0);
  gdb_assert (regnum >= 0);
 
 
  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
}
 
 
static void
static void
v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
                    struct frame_id *this_id)
                    struct frame_id *this_id)
{
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
 
 
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (cache->base == 0)
  if (cache->base == 0)
    return;
    return;
 
 
  *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
  *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
}
}
 
 
static const struct frame_unwind v850_frame_unwind = {
static const struct frame_unwind v850_frame_unwind = {
  NORMAL_FRAME,
  NORMAL_FRAME,
  v850_frame_this_id,
  v850_frame_this_id,
  v850_frame_prev_register,
  v850_frame_prev_register,
  NULL,
  NULL,
  default_frame_sniffer
  default_frame_sniffer
};
};
 
 
static CORE_ADDR
static CORE_ADDR
v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame,
  return frame_unwind_register_unsigned (next_frame,
                                         gdbarch_sp_regnum (gdbarch));
                                         gdbarch_sp_regnum (gdbarch));
}
}
 
 
static CORE_ADDR
static CORE_ADDR
v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  return frame_unwind_register_unsigned (next_frame,
  return frame_unwind_register_unsigned (next_frame,
                                         gdbarch_pc_regnum (gdbarch));
                                         gdbarch_pc_regnum (gdbarch));
}
}
 
 
static struct frame_id
static struct frame_id
v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame,
  CORE_ADDR sp = get_frame_register_unsigned (this_frame,
                                              gdbarch_sp_regnum (gdbarch));
                                              gdbarch_sp_regnum (gdbarch));
  return frame_id_build (sp, get_frame_pc (this_frame));
  return frame_id_build (sp, get_frame_pc (this_frame));
}
}
 
 
static CORE_ADDR
static CORE_ADDR
v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
 
 
  return cache->base;
  return cache->base;
}
}
 
 
static const struct frame_base v850_frame_base = {
static const struct frame_base v850_frame_base = {
  &v850_frame_unwind,
  &v850_frame_unwind,
  v850_frame_base_address,
  v850_frame_base_address,
  v850_frame_base_address,
  v850_frame_base_address,
  v850_frame_base_address
  v850_frame_base_address
};
};
 
 
static struct gdbarch *
static struct gdbarch *
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
 
 
  /* Change the register names based on the current machine type.  */
  /* Change the register names based on the current machine type.  */
  if (info.bfd_arch_info->arch != bfd_arch_v850)
  if (info.bfd_arch_info->arch != bfd_arch_v850)
    return NULL;
    return NULL;
 
 
  gdbarch = gdbarch_alloc (&info, NULL);
  gdbarch = gdbarch_alloc (&info, NULL);
 
 
  switch (info.bfd_arch_info->mach)
  switch (info.bfd_arch_info->mach)
    {
    {
    case bfd_mach_v850:
    case bfd_mach_v850:
      set_gdbarch_register_name (gdbarch, v850_register_name);
      set_gdbarch_register_name (gdbarch, v850_register_name);
      break;
      break;
    case bfd_mach_v850e:
    case bfd_mach_v850e:
    case bfd_mach_v850e1:
    case bfd_mach_v850e1:
      set_gdbarch_register_name (gdbarch, v850e_register_name);
      set_gdbarch_register_name (gdbarch, v850e_register_name);
      break;
      break;
    }
    }
 
 
  set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
  set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, -1);
  set_gdbarch_fp0_regnum (gdbarch, -1);
 
 
  set_gdbarch_register_type (gdbarch, v850_register_type);
  set_gdbarch_register_type (gdbarch, v850_register_type);
 
 
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
 
 
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
 
 
  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
 
 
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
 
 
  set_gdbarch_return_value (gdbarch, v850_return_value);
  set_gdbarch_return_value (gdbarch, v850_return_value);
  set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
  set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
 
 
  set_gdbarch_print_insn (gdbarch, print_insn_v850);
  set_gdbarch_print_insn (gdbarch, print_insn_v850);
 
 
  set_gdbarch_frame_align (gdbarch, v850_frame_align);
  set_gdbarch_frame_align (gdbarch, v850_frame_align);
  set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
  set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
  set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
  set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
  set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
  set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
  frame_base_set_default (gdbarch, &v850_frame_base);
  frame_base_set_default (gdbarch, &v850_frame_base);
 
 
  /* Hook in ABI-specific overrides, if they have been registered.  */
  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);
  gdbarch_init_osabi (info, gdbarch);
 
 
  dwarf2_append_unwinders (gdbarch);
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
 
 
void
void
_initialize_v850_tdep (void)
_initialize_v850_tdep (void)
{
{
  register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
  register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.