OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [valarith.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Perform arithmetic and other operations on values, for GDB.
/* Perform arithmetic and other operations on values, for GDB.
 
 
   Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
   Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
   2010 Free Software Foundation, Inc.
   2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "value.h"
#include "value.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "expression.h"
#include "expression.h"
#include "target.h"
#include "target.h"
#include "language.h"
#include "language.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "doublest.h"
#include "doublest.h"
#include "dfp.h"
#include "dfp.h"
#include <math.h>
#include <math.h>
#include "infcall.h"
#include "infcall.h"
 
 
/* Define whether or not the C operator '/' truncates towards zero for
/* Define whether or not the C operator '/' truncates towards zero for
   differently signed operands (truncation direction is undefined in C). */
   differently signed operands (truncation direction is undefined in C). */
 
 
#ifndef TRUNCATION_TOWARDS_ZERO
#ifndef TRUNCATION_TOWARDS_ZERO
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif
#endif
 
 
void _initialize_valarith (void);
void _initialize_valarith (void);


 
 
/* Given a pointer, return the size of its target.
/* Given a pointer, return the size of its target.
   If the pointer type is void *, then return 1.
   If the pointer type is void *, then return 1.
   If the target type is incomplete, then error out.
   If the target type is incomplete, then error out.
   This isn't a general purpose function, but just a
   This isn't a general purpose function, but just a
   helper for value_ptradd.
   helper for value_ptradd.
*/
*/
 
 
static LONGEST
static LONGEST
find_size_for_pointer_math (struct type *ptr_type)
find_size_for_pointer_math (struct type *ptr_type)
{
{
  LONGEST sz = -1;
  LONGEST sz = -1;
  struct type *ptr_target;
  struct type *ptr_target;
 
 
  gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
  gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
  ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
  ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
 
 
  sz = TYPE_LENGTH (ptr_target);
  sz = TYPE_LENGTH (ptr_target);
  if (sz == 0)
  if (sz == 0)
    {
    {
      if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
      if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
        sz = 1;
        sz = 1;
      else
      else
        {
        {
          char *name;
          char *name;
 
 
          name = TYPE_NAME (ptr_target);
          name = TYPE_NAME (ptr_target);
          if (name == NULL)
          if (name == NULL)
            name = TYPE_TAG_NAME (ptr_target);
            name = TYPE_TAG_NAME (ptr_target);
          if (name == NULL)
          if (name == NULL)
            error (_("Cannot perform pointer math on incomplete types, "
            error (_("Cannot perform pointer math on incomplete types, "
                   "try casting to a known type, or void *."));
                   "try casting to a known type, or void *."));
          else
          else
            error (_("Cannot perform pointer math on incomplete type \"%s\", "
            error (_("Cannot perform pointer math on incomplete type \"%s\", "
                   "try casting to a known type, or void *."), name);
                   "try casting to a known type, or void *."), name);
        }
        }
    }
    }
  return sz;
  return sz;
}
}
 
 
/* Given a pointer ARG1 and an integral value ARG2, return the
/* Given a pointer ARG1 and an integral value ARG2, return the
   result of C-style pointer arithmetic ARG1 + ARG2.  */
   result of C-style pointer arithmetic ARG1 + ARG2.  */
 
 
struct value *
struct value *
value_ptradd (struct value *arg1, LONGEST arg2)
value_ptradd (struct value *arg1, LONGEST arg2)
{
{
  struct type *valptrtype;
  struct type *valptrtype;
  LONGEST sz;
  LONGEST sz;
 
 
  arg1 = coerce_array (arg1);
  arg1 = coerce_array (arg1);
  valptrtype = check_typedef (value_type (arg1));
  valptrtype = check_typedef (value_type (arg1));
  sz = find_size_for_pointer_math (valptrtype);
  sz = find_size_for_pointer_math (valptrtype);
 
 
  return value_from_pointer (valptrtype,
  return value_from_pointer (valptrtype,
                             value_as_address (arg1) + sz * arg2);
                             value_as_address (arg1) + sz * arg2);
}
}
 
 
/* Given two compatible pointer values ARG1 and ARG2, return the
/* Given two compatible pointer values ARG1 and ARG2, return the
   result of C-style pointer arithmetic ARG1 - ARG2.  */
   result of C-style pointer arithmetic ARG1 - ARG2.  */
 
 
LONGEST
LONGEST
value_ptrdiff (struct value *arg1, struct value *arg2)
value_ptrdiff (struct value *arg1, struct value *arg2)
{
{
  struct type *type1, *type2;
  struct type *type1, *type2;
  LONGEST sz;
  LONGEST sz;
 
 
  arg1 = coerce_array (arg1);
  arg1 = coerce_array (arg1);
  arg2 = coerce_array (arg2);
  arg2 = coerce_array (arg2);
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
 
 
  gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
  gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
  gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
  gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
 
 
  if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
  if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
      != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
      != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
    error (_("\
    error (_("\
First argument of `-' is a pointer and second argument is neither\n\
First argument of `-' is a pointer and second argument is neither\n\
an integer nor a pointer of the same type."));
an integer nor a pointer of the same type."));
 
 
  sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
  sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
  if (sz == 0)
  if (sz == 0)
    {
    {
      warning (_("Type size unknown, assuming 1. "
      warning (_("Type size unknown, assuming 1. "
               "Try casting to a known type, or void *."));
               "Try casting to a known type, or void *."));
      sz = 1;
      sz = 1;
    }
    }
 
 
  return (value_as_long (arg1) - value_as_long (arg2)) / sz;
  return (value_as_long (arg1) - value_as_long (arg2)) / sz;
}
}
 
 
/* Return the value of ARRAY[IDX].
/* Return the value of ARRAY[IDX].
 
 
   ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING.  If the
   ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING.  If the
   current language supports C-style arrays, it may also be TYPE_CODE_PTR.
   current language supports C-style arrays, it may also be TYPE_CODE_PTR.
   To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
   To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
 
 
   See comments in value_coerce_array() for rationale for reason for
   See comments in value_coerce_array() for rationale for reason for
   doing lower bounds adjustment here rather than there.
   doing lower bounds adjustment here rather than there.
   FIXME:  Perhaps we should validate that the index is valid and if
   FIXME:  Perhaps we should validate that the index is valid and if
   verbosity is set, warn about invalid indices (but still use them). */
   verbosity is set, warn about invalid indices (but still use them). */
 
 
struct value *
struct value *
value_subscript (struct value *array, LONGEST index)
value_subscript (struct value *array, LONGEST index)
{
{
  struct value *bound;
  struct value *bound;
  int c_style = current_language->c_style_arrays;
  int c_style = current_language->c_style_arrays;
  struct type *tarray;
  struct type *tarray;
 
 
  array = coerce_ref (array);
  array = coerce_ref (array);
  tarray = check_typedef (value_type (array));
  tarray = check_typedef (value_type (array));
 
 
  if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
  if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
      || TYPE_CODE (tarray) == TYPE_CODE_STRING)
      || TYPE_CODE (tarray) == TYPE_CODE_STRING)
    {
    {
      struct type *range_type = TYPE_INDEX_TYPE (tarray);
      struct type *range_type = TYPE_INDEX_TYPE (tarray);
      LONGEST lowerbound, upperbound;
      LONGEST lowerbound, upperbound;
      get_discrete_bounds (range_type, &lowerbound, &upperbound);
      get_discrete_bounds (range_type, &lowerbound, &upperbound);
 
 
      if (VALUE_LVAL (array) != lval_memory)
      if (VALUE_LVAL (array) != lval_memory)
        return value_subscripted_rvalue (array, index, lowerbound);
        return value_subscripted_rvalue (array, index, lowerbound);
 
 
      if (c_style == 0)
      if (c_style == 0)
        {
        {
          if (index >= lowerbound && index <= upperbound)
          if (index >= lowerbound && index <= upperbound)
            return value_subscripted_rvalue (array, index, lowerbound);
            return value_subscripted_rvalue (array, index, lowerbound);
          /* Emit warning unless we have an array of unknown size.
          /* Emit warning unless we have an array of unknown size.
             An array of unknown size has lowerbound 0 and upperbound -1.  */
             An array of unknown size has lowerbound 0 and upperbound -1.  */
          if (upperbound > -1)
          if (upperbound > -1)
            warning (_("array or string index out of range"));
            warning (_("array or string index out of range"));
          /* fall doing C stuff */
          /* fall doing C stuff */
          c_style = 1;
          c_style = 1;
        }
        }
 
 
      index -= lowerbound;
      index -= lowerbound;
      array = value_coerce_array (array);
      array = value_coerce_array (array);
    }
    }
 
 
  if (c_style)
  if (c_style)
    return value_ind (value_ptradd (array, index));
    return value_ind (value_ptradd (array, index));
  else
  else
    error (_("not an array or string"));
    error (_("not an array or string"));
}
}
 
 
/* Return the value of EXPR[IDX], expr an aggregate rvalue
/* Return the value of EXPR[IDX], expr an aggregate rvalue
   (eg, a vector register).  This routine used to promote floats
   (eg, a vector register).  This routine used to promote floats
   to doubles, but no longer does.  */
   to doubles, but no longer does.  */
 
 
struct value *
struct value *
value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
{
{
  struct type *array_type = check_typedef (value_type (array));
  struct type *array_type = check_typedef (value_type (array));
  struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
  struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
  unsigned int elt_size = TYPE_LENGTH (elt_type);
  unsigned int elt_size = TYPE_LENGTH (elt_type);
  unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
  unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
  struct value *v;
  struct value *v;
 
 
  if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
  if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
    error (_("no such vector element"));
    error (_("no such vector element"));
 
 
  v = allocate_value (elt_type);
  v = allocate_value (elt_type);
  if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
  if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
    set_value_lazy (v, 1);
    set_value_lazy (v, 1);
  else
  else
    memcpy (value_contents_writeable (v),
    memcpy (value_contents_writeable (v),
            value_contents (array) + elt_offs, elt_size);
            value_contents (array) + elt_offs, elt_size);
 
 
  set_value_component_location (v, array);
  set_value_component_location (v, array);
  VALUE_REGNUM (v) = VALUE_REGNUM (array);
  VALUE_REGNUM (v) = VALUE_REGNUM (array);
  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
  set_value_offset (v, value_offset (array) + elt_offs);
  set_value_offset (v, value_offset (array) + elt_offs);
  return v;
  return v;
}
}
 
 
/* Return the value of BITSTRING[IDX] as (boolean) type TYPE.  */
/* Return the value of BITSTRING[IDX] as (boolean) type TYPE.  */
 
 
struct value *
struct value *
value_bitstring_subscript (struct type *type,
value_bitstring_subscript (struct type *type,
                           struct value *bitstring, LONGEST index)
                           struct value *bitstring, LONGEST index)
{
{
 
 
  struct type *bitstring_type, *range_type;
  struct type *bitstring_type, *range_type;
  struct value *v;
  struct value *v;
  int offset, byte, bit_index;
  int offset, byte, bit_index;
  LONGEST lowerbound, upperbound;
  LONGEST lowerbound, upperbound;
 
 
  bitstring_type = check_typedef (value_type (bitstring));
  bitstring_type = check_typedef (value_type (bitstring));
  gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
  gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
 
 
  range_type = TYPE_INDEX_TYPE (bitstring_type);
  range_type = TYPE_INDEX_TYPE (bitstring_type);
  get_discrete_bounds (range_type, &lowerbound, &upperbound);
  get_discrete_bounds (range_type, &lowerbound, &upperbound);
  if (index < lowerbound || index > upperbound)
  if (index < lowerbound || index > upperbound)
    error (_("bitstring index out of range"));
    error (_("bitstring index out of range"));
 
 
  index -= lowerbound;
  index -= lowerbound;
  offset = index / TARGET_CHAR_BIT;
  offset = index / TARGET_CHAR_BIT;
  byte = *((char *) value_contents (bitstring) + offset);
  byte = *((char *) value_contents (bitstring) + offset);
 
 
  bit_index = index % TARGET_CHAR_BIT;
  bit_index = index % TARGET_CHAR_BIT;
  byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
  byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
            TARGET_CHAR_BIT - 1 - bit_index : bit_index);
            TARGET_CHAR_BIT - 1 - bit_index : bit_index);
 
 
  v = value_from_longest (type, byte & 1);
  v = value_from_longest (type, byte & 1);
 
 
  set_value_bitpos (v, bit_index);
  set_value_bitpos (v, bit_index);
  set_value_bitsize (v, 1);
  set_value_bitsize (v, 1);
  set_value_component_location (v, bitstring);
  set_value_component_location (v, bitstring);
  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
 
 
  set_value_offset (v, offset + value_offset (bitstring));
  set_value_offset (v, offset + value_offset (bitstring));
 
 
  return v;
  return v;
}
}
 
 


/* Check to see if either argument is a structure, or a reference to
/* Check to see if either argument is a structure, or a reference to
   one.  This is called so we know whether to go ahead with the normal
   one.  This is called so we know whether to go ahead with the normal
   binop or look for a user defined function instead.
   binop or look for a user defined function instead.
 
 
   For now, we do not overload the `=' operator.  */
   For now, we do not overload the `=' operator.  */
 
 
int
int
binop_types_user_defined_p (enum exp_opcode op,
binop_types_user_defined_p (enum exp_opcode op,
                            struct type *type1, struct type *type2)
                            struct type *type1, struct type *type2)
{
{
  if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
  if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
    return 0;
    return 0;
 
 
  type1 = check_typedef (type1);
  type1 = check_typedef (type1);
  if (TYPE_CODE (type1) == TYPE_CODE_REF)
  if (TYPE_CODE (type1) == TYPE_CODE_REF)
    type1 = check_typedef (TYPE_TARGET_TYPE (type1));
    type1 = check_typedef (TYPE_TARGET_TYPE (type1));
 
 
  type2 = check_typedef (type1);
  type2 = check_typedef (type1);
  if (TYPE_CODE (type2) == TYPE_CODE_REF)
  if (TYPE_CODE (type2) == TYPE_CODE_REF)
    type2 = check_typedef (TYPE_TARGET_TYPE (type2));
    type2 = check_typedef (TYPE_TARGET_TYPE (type2));
 
 
  return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
  return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
          || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
          || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
}
}
 
 
/* Check to see if either argument is a structure, or a reference to
/* Check to see if either argument is a structure, or a reference to
   one.  This is called so we know whether to go ahead with the normal
   one.  This is called so we know whether to go ahead with the normal
   binop or look for a user defined function instead.
   binop or look for a user defined function instead.
 
 
   For now, we do not overload the `=' operator.  */
   For now, we do not overload the `=' operator.  */
 
 
int
int
binop_user_defined_p (enum exp_opcode op,
binop_user_defined_p (enum exp_opcode op,
                      struct value *arg1, struct value *arg2)
                      struct value *arg1, struct value *arg2)
{
{
  return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
  return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
}
}
 
 
/* Check to see if argument is a structure.  This is called so
/* Check to see if argument is a structure.  This is called so
   we know whether to go ahead with the normal unop or look for a
   we know whether to go ahead with the normal unop or look for a
   user defined function instead.
   user defined function instead.
 
 
   For now, we do not overload the `&' operator.  */
   For now, we do not overload the `&' operator.  */
 
 
int
int
unop_user_defined_p (enum exp_opcode op, struct value *arg1)
unop_user_defined_p (enum exp_opcode op, struct value *arg1)
{
{
  struct type *type1;
  struct type *type1;
  if (op == UNOP_ADDR)
  if (op == UNOP_ADDR)
    return 0;
    return 0;
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  for (;;)
  for (;;)
    {
    {
      if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
      if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
        return 1;
        return 1;
      else if (TYPE_CODE (type1) == TYPE_CODE_REF)
      else if (TYPE_CODE (type1) == TYPE_CODE_REF)
        type1 = TYPE_TARGET_TYPE (type1);
        type1 = TYPE_TARGET_TYPE (type1);
      else
      else
        return 0;
        return 0;
    }
    }
}
}
 
 
/* We know either arg1 or arg2 is a structure, so try to find the right
/* We know either arg1 or arg2 is a structure, so try to find the right
   user defined function.  Create an argument vector that calls
   user defined function.  Create an argument vector that calls
   arg1.operator @ (arg1,arg2) and return that value (where '@' is any
   arg1.operator @ (arg1,arg2) and return that value (where '@' is any
   binary operator which is legal for GNU C++).
   binary operator which is legal for GNU C++).
 
 
   OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
   OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
   is the opcode saying how to modify it.  Otherwise, OTHEROP is
   is the opcode saying how to modify it.  Otherwise, OTHEROP is
   unused.  */
   unused.  */
 
 
struct value *
struct value *
value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
               enum exp_opcode otherop, enum noside noside)
               enum exp_opcode otherop, enum noside noside)
{
{
  struct value **argvec;
  struct value **argvec;
  char *ptr;
  char *ptr;
  char tstr[13];
  char tstr[13];
  int static_memfuncp;
  int static_memfuncp;
 
 
  arg1 = coerce_ref (arg1);
  arg1 = coerce_ref (arg1);
  arg2 = coerce_ref (arg2);
  arg2 = coerce_ref (arg2);
 
 
  /* now we know that what we have to do is construct our
  /* now we know that what we have to do is construct our
     arg vector and find the right function to call it with.  */
     arg vector and find the right function to call it with.  */
 
 
  if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
    error (_("Can't do that binary op on that type"));  /* FIXME be explicit */
    error (_("Can't do that binary op on that type"));  /* FIXME be explicit */
 
 
  argvec = (struct value **) alloca (sizeof (struct value *) * 4);
  argvec = (struct value **) alloca (sizeof (struct value *) * 4);
  argvec[1] = value_addr (arg1);
  argvec[1] = value_addr (arg1);
  argvec[2] = arg2;
  argvec[2] = arg2;
  argvec[3] = 0;
  argvec[3] = 0;
 
 
  /* make the right function name up */
  /* make the right function name up */
  strcpy (tstr, "operator__");
  strcpy (tstr, "operator__");
  ptr = tstr + 8;
  ptr = tstr + 8;
  switch (op)
  switch (op)
    {
    {
    case BINOP_ADD:
    case BINOP_ADD:
      strcpy (ptr, "+");
      strcpy (ptr, "+");
      break;
      break;
    case BINOP_SUB:
    case BINOP_SUB:
      strcpy (ptr, "-");
      strcpy (ptr, "-");
      break;
      break;
    case BINOP_MUL:
    case BINOP_MUL:
      strcpy (ptr, "*");
      strcpy (ptr, "*");
      break;
      break;
    case BINOP_DIV:
    case BINOP_DIV:
      strcpy (ptr, "/");
      strcpy (ptr, "/");
      break;
      break;
    case BINOP_REM:
    case BINOP_REM:
      strcpy (ptr, "%");
      strcpy (ptr, "%");
      break;
      break;
    case BINOP_LSH:
    case BINOP_LSH:
      strcpy (ptr, "<<");
      strcpy (ptr, "<<");
      break;
      break;
    case BINOP_RSH:
    case BINOP_RSH:
      strcpy (ptr, ">>");
      strcpy (ptr, ">>");
      break;
      break;
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_AND:
      strcpy (ptr, "&");
      strcpy (ptr, "&");
      break;
      break;
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_IOR:
      strcpy (ptr, "|");
      strcpy (ptr, "|");
      break;
      break;
    case BINOP_BITWISE_XOR:
    case BINOP_BITWISE_XOR:
      strcpy (ptr, "^");
      strcpy (ptr, "^");
      break;
      break;
    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_AND:
      strcpy (ptr, "&&");
      strcpy (ptr, "&&");
      break;
      break;
    case BINOP_LOGICAL_OR:
    case BINOP_LOGICAL_OR:
      strcpy (ptr, "||");
      strcpy (ptr, "||");
      break;
      break;
    case BINOP_MIN:
    case BINOP_MIN:
      strcpy (ptr, "<?");
      strcpy (ptr, "<?");
      break;
      break;
    case BINOP_MAX:
    case BINOP_MAX:
      strcpy (ptr, ">?");
      strcpy (ptr, ">?");
      break;
      break;
    case BINOP_ASSIGN:
    case BINOP_ASSIGN:
      strcpy (ptr, "=");
      strcpy (ptr, "=");
      break;
      break;
    case BINOP_ASSIGN_MODIFY:
    case BINOP_ASSIGN_MODIFY:
      switch (otherop)
      switch (otherop)
        {
        {
        case BINOP_ADD:
        case BINOP_ADD:
          strcpy (ptr, "+=");
          strcpy (ptr, "+=");
          break;
          break;
        case BINOP_SUB:
        case BINOP_SUB:
          strcpy (ptr, "-=");
          strcpy (ptr, "-=");
          break;
          break;
        case BINOP_MUL:
        case BINOP_MUL:
          strcpy (ptr, "*=");
          strcpy (ptr, "*=");
          break;
          break;
        case BINOP_DIV:
        case BINOP_DIV:
          strcpy (ptr, "/=");
          strcpy (ptr, "/=");
          break;
          break;
        case BINOP_REM:
        case BINOP_REM:
          strcpy (ptr, "%=");
          strcpy (ptr, "%=");
          break;
          break;
        case BINOP_BITWISE_AND:
        case BINOP_BITWISE_AND:
          strcpy (ptr, "&=");
          strcpy (ptr, "&=");
          break;
          break;
        case BINOP_BITWISE_IOR:
        case BINOP_BITWISE_IOR:
          strcpy (ptr, "|=");
          strcpy (ptr, "|=");
          break;
          break;
        case BINOP_BITWISE_XOR:
        case BINOP_BITWISE_XOR:
          strcpy (ptr, "^=");
          strcpy (ptr, "^=");
          break;
          break;
        case BINOP_MOD: /* invalid */
        case BINOP_MOD: /* invalid */
        default:
        default:
          error (_("Invalid binary operation specified."));
          error (_("Invalid binary operation specified."));
        }
        }
      break;
      break;
    case BINOP_SUBSCRIPT:
    case BINOP_SUBSCRIPT:
      strcpy (ptr, "[]");
      strcpy (ptr, "[]");
      break;
      break;
    case BINOP_EQUAL:
    case BINOP_EQUAL:
      strcpy (ptr, "==");
      strcpy (ptr, "==");
      break;
      break;
    case BINOP_NOTEQUAL:
    case BINOP_NOTEQUAL:
      strcpy (ptr, "!=");
      strcpy (ptr, "!=");
      break;
      break;
    case BINOP_LESS:
    case BINOP_LESS:
      strcpy (ptr, "<");
      strcpy (ptr, "<");
      break;
      break;
    case BINOP_GTR:
    case BINOP_GTR:
      strcpy (ptr, ">");
      strcpy (ptr, ">");
      break;
      break;
    case BINOP_GEQ:
    case BINOP_GEQ:
      strcpy (ptr, ">=");
      strcpy (ptr, ">=");
      break;
      break;
    case BINOP_LEQ:
    case BINOP_LEQ:
      strcpy (ptr, "<=");
      strcpy (ptr, "<=");
      break;
      break;
    case BINOP_MOD:             /* invalid */
    case BINOP_MOD:             /* invalid */
    default:
    default:
      error (_("Invalid binary operation specified."));
      error (_("Invalid binary operation specified."));
    }
    }
 
 
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
 
 
  if (argvec[0])
  if (argvec[0])
    {
    {
      if (static_memfuncp)
      if (static_memfuncp)
        {
        {
          argvec[1] = argvec[0];
          argvec[1] = argvec[0];
          argvec++;
          argvec++;
        }
        }
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
        {
          struct type *return_type;
          struct type *return_type;
          return_type
          return_type
            = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
            = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
          return value_zero (return_type, VALUE_LVAL (arg1));
          return value_zero (return_type, VALUE_LVAL (arg1));
        }
        }
      return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
      return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
    }
    }
  error (_("member function %s not found"), tstr);
  error (_("member function %s not found"), tstr);
#ifdef lint
#ifdef lint
  return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
  return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
#endif
#endif
}
}
 
 
/* We know that arg1 is a structure, so try to find a unary user
/* We know that arg1 is a structure, so try to find a unary user
   defined operator that matches the operator in question.
   defined operator that matches the operator in question.
   Create an argument vector that calls arg1.operator @ (arg1)
   Create an argument vector that calls arg1.operator @ (arg1)
   and return that value (where '@' is (almost) any unary operator which
   and return that value (where '@' is (almost) any unary operator which
   is legal for GNU C++).  */
   is legal for GNU C++).  */
 
 
struct value *
struct value *
value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
{
{
  struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
  struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
  struct value **argvec;
  struct value **argvec;
  char *ptr, *mangle_ptr;
  char *ptr, *mangle_ptr;
  char tstr[13], mangle_tstr[13];
  char tstr[13], mangle_tstr[13];
  int static_memfuncp, nargs;
  int static_memfuncp, nargs;
 
 
  arg1 = coerce_ref (arg1);
  arg1 = coerce_ref (arg1);
 
 
  /* now we know that what we have to do is construct our
  /* now we know that what we have to do is construct our
     arg vector and find the right function to call it with.  */
     arg vector and find the right function to call it with.  */
 
 
  if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
    error (_("Can't do that unary op on that type"));   /* FIXME be explicit */
    error (_("Can't do that unary op on that type"));   /* FIXME be explicit */
 
 
  argvec = (struct value **) alloca (sizeof (struct value *) * 4);
  argvec = (struct value **) alloca (sizeof (struct value *) * 4);
  argvec[1] = value_addr (arg1);
  argvec[1] = value_addr (arg1);
  argvec[2] = 0;
  argvec[2] = 0;
 
 
  nargs = 1;
  nargs = 1;
 
 
  /* make the right function name up */
  /* make the right function name up */
  strcpy (tstr, "operator__");
  strcpy (tstr, "operator__");
  ptr = tstr + 8;
  ptr = tstr + 8;
  strcpy (mangle_tstr, "__");
  strcpy (mangle_tstr, "__");
  mangle_ptr = mangle_tstr + 2;
  mangle_ptr = mangle_tstr + 2;
  switch (op)
  switch (op)
    {
    {
    case UNOP_PREINCREMENT:
    case UNOP_PREINCREMENT:
      strcpy (ptr, "++");
      strcpy (ptr, "++");
      break;
      break;
    case UNOP_PREDECREMENT:
    case UNOP_PREDECREMENT:
      strcpy (ptr, "--");
      strcpy (ptr, "--");
      break;
      break;
    case UNOP_POSTINCREMENT:
    case UNOP_POSTINCREMENT:
      strcpy (ptr, "++");
      strcpy (ptr, "++");
      argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
      argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
      argvec[3] = 0;
      argvec[3] = 0;
      nargs ++;
      nargs ++;
      break;
      break;
    case UNOP_POSTDECREMENT:
    case UNOP_POSTDECREMENT:
      strcpy (ptr, "--");
      strcpy (ptr, "--");
      argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
      argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
      argvec[3] = 0;
      argvec[3] = 0;
      nargs ++;
      nargs ++;
      break;
      break;
    case UNOP_LOGICAL_NOT:
    case UNOP_LOGICAL_NOT:
      strcpy (ptr, "!");
      strcpy (ptr, "!");
      break;
      break;
    case UNOP_COMPLEMENT:
    case UNOP_COMPLEMENT:
      strcpy (ptr, "~");
      strcpy (ptr, "~");
      break;
      break;
    case UNOP_NEG:
    case UNOP_NEG:
      strcpy (ptr, "-");
      strcpy (ptr, "-");
      break;
      break;
    case UNOP_PLUS:
    case UNOP_PLUS:
      strcpy (ptr, "+");
      strcpy (ptr, "+");
      break;
      break;
    case UNOP_IND:
    case UNOP_IND:
      strcpy (ptr, "*");
      strcpy (ptr, "*");
      break;
      break;
    default:
    default:
      error (_("Invalid unary operation specified."));
      error (_("Invalid unary operation specified."));
    }
    }
 
 
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
 
 
  if (argvec[0])
  if (argvec[0])
    {
    {
      if (static_memfuncp)
      if (static_memfuncp)
        {
        {
          argvec[1] = argvec[0];
          argvec[1] = argvec[0];
          nargs --;
          nargs --;
          argvec++;
          argvec++;
        }
        }
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
        {
          struct type *return_type;
          struct type *return_type;
          return_type
          return_type
            = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
            = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
          return value_zero (return_type, VALUE_LVAL (arg1));
          return value_zero (return_type, VALUE_LVAL (arg1));
        }
        }
      return call_function_by_hand (argvec[0], nargs, argvec + 1);
      return call_function_by_hand (argvec[0], nargs, argvec + 1);
    }
    }
  error (_("member function %s not found"), tstr);
  error (_("member function %s not found"), tstr);
  return 0;                      /* For lint -- never reached */
  return 0;                      /* For lint -- never reached */
}
}


 
 
/* Concatenate two values with the following conditions:
/* Concatenate two values with the following conditions:
 
 
   (1)  Both values must be either bitstring values or character string
   (1)  Both values must be either bitstring values or character string
   values and the resulting value consists of the concatenation of
   values and the resulting value consists of the concatenation of
   ARG1 followed by ARG2.
   ARG1 followed by ARG2.
 
 
   or
   or
 
 
   One value must be an integer value and the other value must be
   One value must be an integer value and the other value must be
   either a bitstring value or character string value, which is
   either a bitstring value or character string value, which is
   to be repeated by the number of times specified by the integer
   to be repeated by the number of times specified by the integer
   value.
   value.
 
 
 
 
   (2)  Boolean values are also allowed and are treated as bit string
   (2)  Boolean values are also allowed and are treated as bit string
   values of length 1.
   values of length 1.
 
 
   (3)  Character values are also allowed and are treated as character
   (3)  Character values are also allowed and are treated as character
   string values of length 1.
   string values of length 1.
 */
 */
 
 
struct value *
struct value *
value_concat (struct value *arg1, struct value *arg2)
value_concat (struct value *arg1, struct value *arg2)
{
{
  struct value *inval1;
  struct value *inval1;
  struct value *inval2;
  struct value *inval2;
  struct value *outval = NULL;
  struct value *outval = NULL;
  int inval1len, inval2len;
  int inval1len, inval2len;
  int count, idx;
  int count, idx;
  char *ptr;
  char *ptr;
  char inchar;
  char inchar;
  struct type *type1 = check_typedef (value_type (arg1));
  struct type *type1 = check_typedef (value_type (arg1));
  struct type *type2 = check_typedef (value_type (arg2));
  struct type *type2 = check_typedef (value_type (arg2));
  struct type *char_type;
  struct type *char_type;
 
 
  /* First figure out if we are dealing with two values to be concatenated
  /* First figure out if we are dealing with two values to be concatenated
     or a repeat count and a value to be repeated.  INVAL1 is set to the
     or a repeat count and a value to be repeated.  INVAL1 is set to the
     first of two concatenated values, or the repeat count.  INVAL2 is set
     first of two concatenated values, or the repeat count.  INVAL2 is set
     to the second of the two concatenated values or the value to be
     to the second of the two concatenated values or the value to be
     repeated. */
     repeated. */
 
 
  if (TYPE_CODE (type2) == TYPE_CODE_INT)
  if (TYPE_CODE (type2) == TYPE_CODE_INT)
    {
    {
      struct type *tmp = type1;
      struct type *tmp = type1;
      type1 = tmp;
      type1 = tmp;
      tmp = type2;
      tmp = type2;
      inval1 = arg2;
      inval1 = arg2;
      inval2 = arg1;
      inval2 = arg1;
    }
    }
  else
  else
    {
    {
      inval1 = arg1;
      inval1 = arg1;
      inval2 = arg2;
      inval2 = arg2;
    }
    }
 
 
  /* Now process the input values. */
  /* Now process the input values. */
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_INT)
  if (TYPE_CODE (type1) == TYPE_CODE_INT)
    {
    {
      /* We have a repeat count.  Validate the second value and then
      /* We have a repeat count.  Validate the second value and then
         construct a value repeated that many times. */
         construct a value repeated that many times. */
      if (TYPE_CODE (type2) == TYPE_CODE_STRING
      if (TYPE_CODE (type2) == TYPE_CODE_STRING
          || TYPE_CODE (type2) == TYPE_CODE_CHAR)
          || TYPE_CODE (type2) == TYPE_CODE_CHAR)
        {
        {
          count = longest_to_int (value_as_long (inval1));
          count = longest_to_int (value_as_long (inval1));
          inval2len = TYPE_LENGTH (type2);
          inval2len = TYPE_LENGTH (type2);
          ptr = (char *) alloca (count * inval2len);
          ptr = (char *) alloca (count * inval2len);
          if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
          if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
            {
            {
              char_type = type2;
              char_type = type2;
              inchar = (char) unpack_long (type2,
              inchar = (char) unpack_long (type2,
                                           value_contents (inval2));
                                           value_contents (inval2));
              for (idx = 0; idx < count; idx++)
              for (idx = 0; idx < count; idx++)
                {
                {
                  *(ptr + idx) = inchar;
                  *(ptr + idx) = inchar;
                }
                }
            }
            }
          else
          else
            {
            {
              char_type = TYPE_TARGET_TYPE (type2);
              char_type = TYPE_TARGET_TYPE (type2);
              for (idx = 0; idx < count; idx++)
              for (idx = 0; idx < count; idx++)
                {
                {
                  memcpy (ptr + (idx * inval2len), value_contents (inval2),
                  memcpy (ptr + (idx * inval2len), value_contents (inval2),
                          inval2len);
                          inval2len);
                }
                }
            }
            }
          outval = value_string (ptr, count * inval2len, char_type);
          outval = value_string (ptr, count * inval2len, char_type);
        }
        }
      else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
      else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
               || TYPE_CODE (type2) == TYPE_CODE_BOOL)
               || TYPE_CODE (type2) == TYPE_CODE_BOOL)
        {
        {
          error (_("unimplemented support for bitstring/boolean repeats"));
          error (_("unimplemented support for bitstring/boolean repeats"));
        }
        }
      else
      else
        {
        {
          error (_("can't repeat values of that type"));
          error (_("can't repeat values of that type"));
        }
        }
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_STRING
  else if (TYPE_CODE (type1) == TYPE_CODE_STRING
           || TYPE_CODE (type1) == TYPE_CODE_CHAR)
           || TYPE_CODE (type1) == TYPE_CODE_CHAR)
    {
    {
      /* We have two character strings to concatenate. */
      /* We have two character strings to concatenate. */
      if (TYPE_CODE (type2) != TYPE_CODE_STRING
      if (TYPE_CODE (type2) != TYPE_CODE_STRING
          && TYPE_CODE (type2) != TYPE_CODE_CHAR)
          && TYPE_CODE (type2) != TYPE_CODE_CHAR)
        {
        {
          error (_("Strings can only be concatenated with other strings."));
          error (_("Strings can only be concatenated with other strings."));
        }
        }
      inval1len = TYPE_LENGTH (type1);
      inval1len = TYPE_LENGTH (type1);
      inval2len = TYPE_LENGTH (type2);
      inval2len = TYPE_LENGTH (type2);
      ptr = (char *) alloca (inval1len + inval2len);
      ptr = (char *) alloca (inval1len + inval2len);
      if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
      if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
        {
        {
          char_type = type1;
          char_type = type1;
          *ptr = (char) unpack_long (type1, value_contents (inval1));
          *ptr = (char) unpack_long (type1, value_contents (inval1));
        }
        }
      else
      else
        {
        {
          char_type = TYPE_TARGET_TYPE (type1);
          char_type = TYPE_TARGET_TYPE (type1);
          memcpy (ptr, value_contents (inval1), inval1len);
          memcpy (ptr, value_contents (inval1), inval1len);
        }
        }
      if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
      if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
        {
        {
          *(ptr + inval1len) =
          *(ptr + inval1len) =
            (char) unpack_long (type2, value_contents (inval2));
            (char) unpack_long (type2, value_contents (inval2));
        }
        }
      else
      else
        {
        {
          memcpy (ptr + inval1len, value_contents (inval2), inval2len);
          memcpy (ptr + inval1len, value_contents (inval2), inval2len);
        }
        }
      outval = value_string (ptr, inval1len + inval2len, char_type);
      outval = value_string (ptr, inval1len + inval2len, char_type);
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
  else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
           || TYPE_CODE (type1) == TYPE_CODE_BOOL)
           || TYPE_CODE (type1) == TYPE_CODE_BOOL)
    {
    {
      /* We have two bitstrings to concatenate. */
      /* We have two bitstrings to concatenate. */
      if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
      if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
          && TYPE_CODE (type2) != TYPE_CODE_BOOL)
          && TYPE_CODE (type2) != TYPE_CODE_BOOL)
        {
        {
          error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
          error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
        }
        }
      error (_("unimplemented support for bitstring/boolean concatenation."));
      error (_("unimplemented support for bitstring/boolean concatenation."));
    }
    }
  else
  else
    {
    {
      /* We don't know how to concatenate these operands. */
      /* We don't know how to concatenate these operands. */
      error (_("illegal operands for concatenation."));
      error (_("illegal operands for concatenation."));
    }
    }
  return (outval);
  return (outval);
}
}


/* Integer exponentiation: V1**V2, where both arguments are
/* Integer exponentiation: V1**V2, where both arguments are
   integers.  Requires V1 != 0 if V2 < 0.  Returns 1 for 0 ** 0.  */
   integers.  Requires V1 != 0 if V2 < 0.  Returns 1 for 0 ** 0.  */
static LONGEST
static LONGEST
integer_pow (LONGEST v1, LONGEST v2)
integer_pow (LONGEST v1, LONGEST v2)
{
{
  if (v2 < 0)
  if (v2 < 0)
    {
    {
      if (v1 == 0)
      if (v1 == 0)
        error (_("Attempt to raise 0 to negative power."));
        error (_("Attempt to raise 0 to negative power."));
      else
      else
        return 0;
        return 0;
    }
    }
  else
  else
    {
    {
      /* The Russian Peasant's Algorithm */
      /* The Russian Peasant's Algorithm */
      LONGEST v;
      LONGEST v;
 
 
      v = 1;
      v = 1;
      for (;;)
      for (;;)
        {
        {
          if (v2 & 1L)
          if (v2 & 1L)
            v *= v1;
            v *= v1;
          v2 >>= 1;
          v2 >>= 1;
          if (v2 == 0)
          if (v2 == 0)
            return v;
            return v;
          v1 *= v1;
          v1 *= v1;
        }
        }
    }
    }
}
}
 
 
/* Integer exponentiation: V1**V2, where both arguments are
/* Integer exponentiation: V1**V2, where both arguments are
   integers.  Requires V1 != 0 if V2 < 0.  Returns 1 for 0 ** 0.  */
   integers.  Requires V1 != 0 if V2 < 0.  Returns 1 for 0 ** 0.  */
static ULONGEST
static ULONGEST
uinteger_pow (ULONGEST v1, LONGEST v2)
uinteger_pow (ULONGEST v1, LONGEST v2)
{
{
  if (v2 < 0)
  if (v2 < 0)
    {
    {
      if (v1 == 0)
      if (v1 == 0)
        error (_("Attempt to raise 0 to negative power."));
        error (_("Attempt to raise 0 to negative power."));
      else
      else
        return 0;
        return 0;
    }
    }
  else
  else
    {
    {
      /* The Russian Peasant's Algorithm */
      /* The Russian Peasant's Algorithm */
      ULONGEST v;
      ULONGEST v;
 
 
      v = 1;
      v = 1;
      for (;;)
      for (;;)
        {
        {
          if (v2 & 1L)
          if (v2 & 1L)
            v *= v1;
            v *= v1;
          v2 >>= 1;
          v2 >>= 1;
          if (v2 == 0)
          if (v2 == 0)
            return v;
            return v;
          v1 *= v1;
          v1 *= v1;
        }
        }
    }
    }
}
}
 
 
/* Obtain decimal value of arguments for binary operation, converting from
/* Obtain decimal value of arguments for binary operation, converting from
   other types if one of them is not decimal floating point.  */
   other types if one of them is not decimal floating point.  */
static void
static void
value_args_as_decimal (struct value *arg1, struct value *arg2,
value_args_as_decimal (struct value *arg1, struct value *arg2,
                       gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
                       gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
                       gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
                       gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
{
{
  struct type *type1, *type2;
  struct type *type1, *type2;
 
 
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
 
 
  /* At least one of the arguments must be of decimal float type.  */
  /* At least one of the arguments must be of decimal float type.  */
  gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
  gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
              || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
              || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_FLT
  if (TYPE_CODE (type1) == TYPE_CODE_FLT
      || TYPE_CODE (type2) == TYPE_CODE_FLT)
      || TYPE_CODE (type2) == TYPE_CODE_FLT)
    /* The DFP extension to the C language does not allow mixing of
    /* The DFP extension to the C language does not allow mixing of
     * decimal float types with other float types in expressions
     * decimal float types with other float types in expressions
     * (see WDTR 24732, page 12).  */
     * (see WDTR 24732, page 12).  */
    error (_("Mixing decimal floating types with other floating types is not allowed."));
    error (_("Mixing decimal floating types with other floating types is not allowed."));
 
 
  /* Obtain decimal value of arg1, converting from other types
  /* Obtain decimal value of arg1, converting from other types
     if necessary.  */
     if necessary.  */
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
  if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
    {
    {
      *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
      *byte_order_x = gdbarch_byte_order (get_type_arch (type1));
      *len_x = TYPE_LENGTH (type1);
      *len_x = TYPE_LENGTH (type1);
      memcpy (x, value_contents (arg1), *len_x);
      memcpy (x, value_contents (arg1), *len_x);
    }
    }
  else if (is_integral_type (type1))
  else if (is_integral_type (type1))
    {
    {
      *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
      *byte_order_x = gdbarch_byte_order (get_type_arch (type2));
      *len_x = TYPE_LENGTH (type2);
      *len_x = TYPE_LENGTH (type2);
      decimal_from_integral (arg1, x, *len_x, *byte_order_x);
      decimal_from_integral (arg1, x, *len_x, *byte_order_x);
    }
    }
  else
  else
    error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
    error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
             TYPE_NAME (type2));
             TYPE_NAME (type2));
 
 
  /* Obtain decimal value of arg2, converting from other types
  /* Obtain decimal value of arg2, converting from other types
     if necessary.  */
     if necessary.  */
 
 
  if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
  if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
    {
    {
      *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
      *byte_order_y = gdbarch_byte_order (get_type_arch (type2));
      *len_y = TYPE_LENGTH (type2);
      *len_y = TYPE_LENGTH (type2);
      memcpy (y, value_contents (arg2), *len_y);
      memcpy (y, value_contents (arg2), *len_y);
    }
    }
  else if (is_integral_type (type2))
  else if (is_integral_type (type2))
    {
    {
      *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
      *byte_order_y = gdbarch_byte_order (get_type_arch (type1));
      *len_y = TYPE_LENGTH (type1);
      *len_y = TYPE_LENGTH (type1);
      decimal_from_integral (arg2, y, *len_y, *byte_order_y);
      decimal_from_integral (arg2, y, *len_y, *byte_order_y);
    }
    }
  else
  else
    error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
    error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
             TYPE_NAME (type2));
             TYPE_NAME (type2));
}
}
 
 
/* Perform a binary operation on two operands which have reasonable
/* Perform a binary operation on two operands which have reasonable
   representations as integers or floats.  This includes booleans,
   representations as integers or floats.  This includes booleans,
   characters, integers, or floats.
   characters, integers, or floats.
   Does not support addition and subtraction on pointers;
   Does not support addition and subtraction on pointers;
   use value_ptradd, value_ptrsub or value_ptrdiff for those operations.  */
   use value_ptradd, value_ptrsub or value_ptrdiff for those operations.  */
 
 
struct value *
struct value *
value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
{
  struct value *val;
  struct value *val;
  struct type *type1, *type2, *result_type;
  struct type *type1, *type2, *result_type;
 
 
  arg1 = coerce_ref (arg1);
  arg1 = coerce_ref (arg1);
  arg2 = coerce_ref (arg2);
  arg2 = coerce_ref (arg2);
 
 
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
 
 
  if ((TYPE_CODE (type1) != TYPE_CODE_FLT
  if ((TYPE_CODE (type1) != TYPE_CODE_FLT
       && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
       && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
       && !is_integral_type (type1))
       && !is_integral_type (type1))
      || (TYPE_CODE (type2) != TYPE_CODE_FLT
      || (TYPE_CODE (type2) != TYPE_CODE_FLT
          && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
          && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
          && !is_integral_type (type2)))
          && !is_integral_type (type2)))
    error (_("Argument to arithmetic operation not a number or boolean."));
    error (_("Argument to arithmetic operation not a number or boolean."));
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
  if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
      || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
      || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
    {
    {
      struct type *v_type;
      struct type *v_type;
      int len_v1, len_v2, len_v;
      int len_v1, len_v2, len_v;
      enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
      enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
      gdb_byte v1[16], v2[16];
      gdb_byte v1[16], v2[16];
      gdb_byte v[16];
      gdb_byte v[16];
 
 
      /* If only one type is decimal float, use its type.
      /* If only one type is decimal float, use its type.
         Otherwise use the bigger type.  */
         Otherwise use the bigger type.  */
      if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
      if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
        result_type = type2;
        result_type = type2;
      else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
      else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
        result_type = type1;
        result_type = type1;
      else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
      else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
        result_type = type2;
        result_type = type2;
      else
      else
        result_type = type1;
        result_type = type1;
 
 
      len_v = TYPE_LENGTH (result_type);
      len_v = TYPE_LENGTH (result_type);
      byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
      byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
 
 
      value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
      value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
                                         v2, &len_v2, &byte_order_v2);
                                         v2, &len_v2, &byte_order_v2);
 
 
      switch (op)
      switch (op)
        {
        {
        case BINOP_ADD:
        case BINOP_ADD:
        case BINOP_SUB:
        case BINOP_SUB:
        case BINOP_MUL:
        case BINOP_MUL:
        case BINOP_DIV:
        case BINOP_DIV:
        case BINOP_EXP:
        case BINOP_EXP:
          decimal_binop (op, v1, len_v1, byte_order_v1,
          decimal_binop (op, v1, len_v1, byte_order_v1,
                             v2, len_v2, byte_order_v2,
                             v2, len_v2, byte_order_v2,
                             v, len_v, byte_order_v);
                             v, len_v, byte_order_v);
          break;
          break;
 
 
        default:
        default:
          error (_("Operation not valid for decimal floating point number."));
          error (_("Operation not valid for decimal floating point number."));
        }
        }
 
 
      val = value_from_decfloat (result_type, v);
      val = value_from_decfloat (result_type, v);
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_FLT
  else if (TYPE_CODE (type1) == TYPE_CODE_FLT
           || TYPE_CODE (type2) == TYPE_CODE_FLT)
           || TYPE_CODE (type2) == TYPE_CODE_FLT)
    {
    {
      /* FIXME-if-picky-about-floating-accuracy: Should be doing this
      /* FIXME-if-picky-about-floating-accuracy: Should be doing this
         in target format.  real.c in GCC probably has the necessary
         in target format.  real.c in GCC probably has the necessary
         code.  */
         code.  */
      DOUBLEST v1, v2, v = 0;
      DOUBLEST v1, v2, v = 0;
      v1 = value_as_double (arg1);
      v1 = value_as_double (arg1);
      v2 = value_as_double (arg2);
      v2 = value_as_double (arg2);
 
 
      switch (op)
      switch (op)
        {
        {
        case BINOP_ADD:
        case BINOP_ADD:
          v = v1 + v2;
          v = v1 + v2;
          break;
          break;
 
 
        case BINOP_SUB:
        case BINOP_SUB:
          v = v1 - v2;
          v = v1 - v2;
          break;
          break;
 
 
        case BINOP_MUL:
        case BINOP_MUL:
          v = v1 * v2;
          v = v1 * v2;
          break;
          break;
 
 
        case BINOP_DIV:
        case BINOP_DIV:
          v = v1 / v2;
          v = v1 / v2;
          break;
          break;
 
 
        case BINOP_EXP:
        case BINOP_EXP:
          errno = 0;
          errno = 0;
          v = pow (v1, v2);
          v = pow (v1, v2);
          if (errno)
          if (errno)
            error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
            error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
          break;
          break;
 
 
        case BINOP_MIN:
        case BINOP_MIN:
          v = v1 < v2 ? v1 : v2;
          v = v1 < v2 ? v1 : v2;
          break;
          break;
 
 
        case BINOP_MAX:
        case BINOP_MAX:
          v = v1 > v2 ? v1 : v2;
          v = v1 > v2 ? v1 : v2;
          break;
          break;
 
 
        default:
        default:
          error (_("Integer-only operation on floating point number."));
          error (_("Integer-only operation on floating point number."));
        }
        }
 
 
      /* If only one type is float, use its type.
      /* If only one type is float, use its type.
         Otherwise use the bigger type.  */
         Otherwise use the bigger type.  */
      if (TYPE_CODE (type1) != TYPE_CODE_FLT)
      if (TYPE_CODE (type1) != TYPE_CODE_FLT)
        result_type = type2;
        result_type = type2;
      else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
      else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
        result_type = type1;
        result_type = type1;
      else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
      else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
        result_type = type2;
        result_type = type2;
      else
      else
        result_type = type1;
        result_type = type1;
 
 
      val = allocate_value (result_type);
      val = allocate_value (result_type);
      store_typed_floating (value_contents_raw (val), value_type (val), v);
      store_typed_floating (value_contents_raw (val), value_type (val), v);
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
  else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
           || TYPE_CODE (type2) == TYPE_CODE_BOOL)
           || TYPE_CODE (type2) == TYPE_CODE_BOOL)
    {
    {
      LONGEST v1, v2, v = 0;
      LONGEST v1, v2, v = 0;
      v1 = value_as_long (arg1);
      v1 = value_as_long (arg1);
      v2 = value_as_long (arg2);
      v2 = value_as_long (arg2);
 
 
      switch (op)
      switch (op)
        {
        {
        case BINOP_BITWISE_AND:
        case BINOP_BITWISE_AND:
          v = v1 & v2;
          v = v1 & v2;
          break;
          break;
 
 
        case BINOP_BITWISE_IOR:
        case BINOP_BITWISE_IOR:
          v = v1 | v2;
          v = v1 | v2;
          break;
          break;
 
 
        case BINOP_BITWISE_XOR:
        case BINOP_BITWISE_XOR:
          v = v1 ^ v2;
          v = v1 ^ v2;
          break;
          break;
 
 
        case BINOP_EQUAL:
        case BINOP_EQUAL:
          v = v1 == v2;
          v = v1 == v2;
          break;
          break;
 
 
        case BINOP_NOTEQUAL:
        case BINOP_NOTEQUAL:
          v = v1 != v2;
          v = v1 != v2;
          break;
          break;
 
 
        default:
        default:
          error (_("Invalid operation on booleans."));
          error (_("Invalid operation on booleans."));
        }
        }
 
 
      result_type = type1;
      result_type = type1;
 
 
      val = allocate_value (result_type);
      val = allocate_value (result_type);
      store_signed_integer (value_contents_raw (val),
      store_signed_integer (value_contents_raw (val),
                            TYPE_LENGTH (result_type),
                            TYPE_LENGTH (result_type),
                            gdbarch_byte_order (get_type_arch (result_type)),
                            gdbarch_byte_order (get_type_arch (result_type)),
                            v);
                            v);
    }
    }
  else
  else
    /* Integral operations here.  */
    /* Integral operations here.  */
    {
    {
      /* Determine type length of the result, and if the operation should
      /* Determine type length of the result, and if the operation should
         be done unsigned.  For exponentiation and shift operators,
         be done unsigned.  For exponentiation and shift operators,
         use the length and type of the left operand.  Otherwise,
         use the length and type of the left operand.  Otherwise,
         use the signedness of the operand with the greater length.
         use the signedness of the operand with the greater length.
         If both operands are of equal length, use unsigned operation
         If both operands are of equal length, use unsigned operation
         if one of the operands is unsigned.  */
         if one of the operands is unsigned.  */
      if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
      if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
        result_type = type1;
        result_type = type1;
      else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
      else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
        result_type = type1;
        result_type = type1;
      else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
      else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
        result_type = type2;
        result_type = type2;
      else if (TYPE_UNSIGNED (type1))
      else if (TYPE_UNSIGNED (type1))
        result_type = type1;
        result_type = type1;
      else if (TYPE_UNSIGNED (type2))
      else if (TYPE_UNSIGNED (type2))
        result_type = type2;
        result_type = type2;
      else
      else
        result_type = type1;
        result_type = type1;
 
 
      if (TYPE_UNSIGNED (result_type))
      if (TYPE_UNSIGNED (result_type))
        {
        {
          LONGEST v2_signed = value_as_long (arg2);
          LONGEST v2_signed = value_as_long (arg2);
          ULONGEST v1, v2, v = 0;
          ULONGEST v1, v2, v = 0;
          v1 = (ULONGEST) value_as_long (arg1);
          v1 = (ULONGEST) value_as_long (arg1);
          v2 = (ULONGEST) v2_signed;
          v2 = (ULONGEST) v2_signed;
 
 
          switch (op)
          switch (op)
            {
            {
            case BINOP_ADD:
            case BINOP_ADD:
              v = v1 + v2;
              v = v1 + v2;
              break;
              break;
 
 
            case BINOP_SUB:
            case BINOP_SUB:
              v = v1 - v2;
              v = v1 - v2;
              break;
              break;
 
 
            case BINOP_MUL:
            case BINOP_MUL:
              v = v1 * v2;
              v = v1 * v2;
              break;
              break;
 
 
            case BINOP_DIV:
            case BINOP_DIV:
            case BINOP_INTDIV:
            case BINOP_INTDIV:
              if (v2 != 0)
              if (v2 != 0)
                v = v1 / v2;
                v = v1 / v2;
              else
              else
                error (_("Division by zero"));
                error (_("Division by zero"));
              break;
              break;
 
 
            case BINOP_EXP:
            case BINOP_EXP:
              v = uinteger_pow (v1, v2_signed);
              v = uinteger_pow (v1, v2_signed);
              break;
              break;
 
 
            case BINOP_REM:
            case BINOP_REM:
              if (v2 != 0)
              if (v2 != 0)
                v = v1 % v2;
                v = v1 % v2;
              else
              else
                error (_("Division by zero"));
                error (_("Division by zero"));
              break;
              break;
 
 
            case BINOP_MOD:
            case BINOP_MOD:
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
                 v1 mod 0 has a defined value, v1. */
                 v1 mod 0 has a defined value, v1. */
              if (v2 == 0)
              if (v2 == 0)
                {
                {
                  v = v1;
                  v = v1;
                }
                }
              else
              else
                {
                {
                  v = v1 / v2;
                  v = v1 / v2;
                  /* Note floor(v1/v2) == v1/v2 for unsigned. */
                  /* Note floor(v1/v2) == v1/v2 for unsigned. */
                  v = v1 - (v2 * v);
                  v = v1 - (v2 * v);
                }
                }
              break;
              break;
 
 
            case BINOP_LSH:
            case BINOP_LSH:
              v = v1 << v2;
              v = v1 << v2;
              break;
              break;
 
 
            case BINOP_RSH:
            case BINOP_RSH:
              v = v1 >> v2;
              v = v1 >> v2;
              break;
              break;
 
 
            case BINOP_BITWISE_AND:
            case BINOP_BITWISE_AND:
              v = v1 & v2;
              v = v1 & v2;
              break;
              break;
 
 
            case BINOP_BITWISE_IOR:
            case BINOP_BITWISE_IOR:
              v = v1 | v2;
              v = v1 | v2;
              break;
              break;
 
 
            case BINOP_BITWISE_XOR:
            case BINOP_BITWISE_XOR:
              v = v1 ^ v2;
              v = v1 ^ v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_AND:
            case BINOP_LOGICAL_AND:
              v = v1 && v2;
              v = v1 && v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_OR:
            case BINOP_LOGICAL_OR:
              v = v1 || v2;
              v = v1 || v2;
              break;
              break;
 
 
            case BINOP_MIN:
            case BINOP_MIN:
              v = v1 < v2 ? v1 : v2;
              v = v1 < v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_MAX:
            case BINOP_MAX:
              v = v1 > v2 ? v1 : v2;
              v = v1 > v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_EQUAL:
            case BINOP_EQUAL:
              v = v1 == v2;
              v = v1 == v2;
              break;
              break;
 
 
            case BINOP_NOTEQUAL:
            case BINOP_NOTEQUAL:
              v = v1 != v2;
              v = v1 != v2;
              break;
              break;
 
 
            case BINOP_LESS:
            case BINOP_LESS:
              v = v1 < v2;
              v = v1 < v2;
              break;
              break;
 
 
            case BINOP_GTR:
            case BINOP_GTR:
              v = v1 > v2;
              v = v1 > v2;
              break;
              break;
 
 
            case BINOP_LEQ:
            case BINOP_LEQ:
              v = v1 <= v2;
              v = v1 <= v2;
              break;
              break;
 
 
            case BINOP_GEQ:
            case BINOP_GEQ:
              v = v1 >= v2;
              v = v1 >= v2;
              break;
              break;
 
 
            default:
            default:
              error (_("Invalid binary operation on numbers."));
              error (_("Invalid binary operation on numbers."));
            }
            }
 
 
          val = allocate_value (result_type);
          val = allocate_value (result_type);
          store_unsigned_integer (value_contents_raw (val),
          store_unsigned_integer (value_contents_raw (val),
                                  TYPE_LENGTH (value_type (val)),
                                  TYPE_LENGTH (value_type (val)),
                                  gdbarch_byte_order
                                  gdbarch_byte_order
                                    (get_type_arch (result_type)),
                                    (get_type_arch (result_type)),
                                  v);
                                  v);
        }
        }
      else
      else
        {
        {
          LONGEST v1, v2, v = 0;
          LONGEST v1, v2, v = 0;
          v1 = value_as_long (arg1);
          v1 = value_as_long (arg1);
          v2 = value_as_long (arg2);
          v2 = value_as_long (arg2);
 
 
          switch (op)
          switch (op)
            {
            {
            case BINOP_ADD:
            case BINOP_ADD:
              v = v1 + v2;
              v = v1 + v2;
              break;
              break;
 
 
            case BINOP_SUB:
            case BINOP_SUB:
              v = v1 - v2;
              v = v1 - v2;
              break;
              break;
 
 
            case BINOP_MUL:
            case BINOP_MUL:
              v = v1 * v2;
              v = v1 * v2;
              break;
              break;
 
 
            case BINOP_DIV:
            case BINOP_DIV:
            case BINOP_INTDIV:
            case BINOP_INTDIV:
              if (v2 != 0)
              if (v2 != 0)
                v = v1 / v2;
                v = v1 / v2;
              else
              else
                error (_("Division by zero"));
                error (_("Division by zero"));
              break;
              break;
 
 
            case BINOP_EXP:
            case BINOP_EXP:
              v = integer_pow (v1, v2);
              v = integer_pow (v1, v2);
              break;
              break;
 
 
            case BINOP_REM:
            case BINOP_REM:
              if (v2 != 0)
              if (v2 != 0)
                v = v1 % v2;
                v = v1 % v2;
              else
              else
                error (_("Division by zero"));
                error (_("Division by zero"));
              break;
              break;
 
 
            case BINOP_MOD:
            case BINOP_MOD:
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
                 X mod 0 has a defined value, X. */
                 X mod 0 has a defined value, X. */
              if (v2 == 0)
              if (v2 == 0)
                {
                {
                  v = v1;
                  v = v1;
                }
                }
              else
              else
                {
                {
                  v = v1 / v2;
                  v = v1 / v2;
                  /* Compute floor. */
                  /* Compute floor. */
                  if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
                  if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
                    {
                    {
                      v--;
                      v--;
                    }
                    }
                  v = v1 - (v2 * v);
                  v = v1 - (v2 * v);
                }
                }
              break;
              break;
 
 
            case BINOP_LSH:
            case BINOP_LSH:
              v = v1 << v2;
              v = v1 << v2;
              break;
              break;
 
 
            case BINOP_RSH:
            case BINOP_RSH:
              v = v1 >> v2;
              v = v1 >> v2;
              break;
              break;
 
 
            case BINOP_BITWISE_AND:
            case BINOP_BITWISE_AND:
              v = v1 & v2;
              v = v1 & v2;
              break;
              break;
 
 
            case BINOP_BITWISE_IOR:
            case BINOP_BITWISE_IOR:
              v = v1 | v2;
              v = v1 | v2;
              break;
              break;
 
 
            case BINOP_BITWISE_XOR:
            case BINOP_BITWISE_XOR:
              v = v1 ^ v2;
              v = v1 ^ v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_AND:
            case BINOP_LOGICAL_AND:
              v = v1 && v2;
              v = v1 && v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_OR:
            case BINOP_LOGICAL_OR:
              v = v1 || v2;
              v = v1 || v2;
              break;
              break;
 
 
            case BINOP_MIN:
            case BINOP_MIN:
              v = v1 < v2 ? v1 : v2;
              v = v1 < v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_MAX:
            case BINOP_MAX:
              v = v1 > v2 ? v1 : v2;
              v = v1 > v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_EQUAL:
            case BINOP_EQUAL:
              v = v1 == v2;
              v = v1 == v2;
              break;
              break;
 
 
            case BINOP_NOTEQUAL:
            case BINOP_NOTEQUAL:
              v = v1 != v2;
              v = v1 != v2;
              break;
              break;
 
 
            case BINOP_LESS:
            case BINOP_LESS:
              v = v1 < v2;
              v = v1 < v2;
              break;
              break;
 
 
            case BINOP_GTR:
            case BINOP_GTR:
              v = v1 > v2;
              v = v1 > v2;
              break;
              break;
 
 
            case BINOP_LEQ:
            case BINOP_LEQ:
              v = v1 <= v2;
              v = v1 <= v2;
              break;
              break;
 
 
            case BINOP_GEQ:
            case BINOP_GEQ:
              v = v1 >= v2;
              v = v1 >= v2;
              break;
              break;
 
 
            default:
            default:
              error (_("Invalid binary operation on numbers."));
              error (_("Invalid binary operation on numbers."));
            }
            }
 
 
          val = allocate_value (result_type);
          val = allocate_value (result_type);
          store_signed_integer (value_contents_raw (val),
          store_signed_integer (value_contents_raw (val),
                                TYPE_LENGTH (value_type (val)),
                                TYPE_LENGTH (value_type (val)),
                                gdbarch_byte_order
                                gdbarch_byte_order
                                  (get_type_arch (result_type)),
                                  (get_type_arch (result_type)),
                                v);
                                v);
        }
        }
    }
    }
 
 
  return val;
  return val;
}
}


/* Simulate the C operator ! -- return 1 if ARG1 contains zero.  */
/* Simulate the C operator ! -- return 1 if ARG1 contains zero.  */
 
 
int
int
value_logical_not (struct value *arg1)
value_logical_not (struct value *arg1)
{
{
  int len;
  int len;
  const gdb_byte *p;
  const gdb_byte *p;
  struct type *type1;
  struct type *type1;
 
 
  arg1 = coerce_array (arg1);
  arg1 = coerce_array (arg1);
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_FLT)
  if (TYPE_CODE (type1) == TYPE_CODE_FLT)
    return 0 == value_as_double (arg1);
    return 0 == value_as_double (arg1);
  else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
  else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
    return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
    return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
                            gdbarch_byte_order (get_type_arch (type1)));
                            gdbarch_byte_order (get_type_arch (type1)));
 
 
  len = TYPE_LENGTH (type1);
  len = TYPE_LENGTH (type1);
  p = value_contents (arg1);
  p = value_contents (arg1);
 
 
  while (--len >= 0)
  while (--len >= 0)
    {
    {
      if (*p++)
      if (*p++)
        break;
        break;
    }
    }
 
 
  return len < 0;
  return len < 0;
}
}
 
 
/* Perform a comparison on two string values (whose content are not
/* Perform a comparison on two string values (whose content are not
   necessarily null terminated) based on their length */
   necessarily null terminated) based on their length */
 
 
static int
static int
value_strcmp (struct value *arg1, struct value *arg2)
value_strcmp (struct value *arg1, struct value *arg2)
{
{
  int len1 = TYPE_LENGTH (value_type (arg1));
  int len1 = TYPE_LENGTH (value_type (arg1));
  int len2 = TYPE_LENGTH (value_type (arg2));
  int len2 = TYPE_LENGTH (value_type (arg2));
  const gdb_byte *s1 = value_contents (arg1);
  const gdb_byte *s1 = value_contents (arg1);
  const gdb_byte *s2 = value_contents (arg2);
  const gdb_byte *s2 = value_contents (arg2);
  int i, len = len1 < len2 ? len1 : len2;
  int i, len = len1 < len2 ? len1 : len2;
 
 
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      if (s1[i] < s2[i])
      if (s1[i] < s2[i])
        return -1;
        return -1;
      else if (s1[i] > s2[i])
      else if (s1[i] > s2[i])
        return 1;
        return 1;
      else
      else
        continue;
        continue;
    }
    }
 
 
  if (len1 < len2)
  if (len1 < len2)
    return -1;
    return -1;
  else if (len1 > len2)
  else if (len1 > len2)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Simulate the C operator == by returning a 1
/* Simulate the C operator == by returning a 1
   iff ARG1 and ARG2 have equal contents.  */
   iff ARG1 and ARG2 have equal contents.  */
 
 
int
int
value_equal (struct value *arg1, struct value *arg2)
value_equal (struct value *arg1, struct value *arg2)
{
{
  int len;
  int len;
  const gdb_byte *p1;
  const gdb_byte *p1;
  const gdb_byte *p2;
  const gdb_byte *p2;
  struct type *type1, *type2;
  struct type *type1, *type2;
  enum type_code code1;
  enum type_code code1;
  enum type_code code2;
  enum type_code code2;
  int is_int1, is_int2;
  int is_int1, is_int2;
 
 
  arg1 = coerce_array (arg1);
  arg1 = coerce_array (arg1);
  arg2 = coerce_array (arg2);
  arg2 = coerce_array (arg2);
 
 
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
  code1 = TYPE_CODE (type1);
  code1 = TYPE_CODE (type1);
  code2 = TYPE_CODE (type2);
  code2 = TYPE_CODE (type2);
  is_int1 = is_integral_type (type1);
  is_int1 = is_integral_type (type1);
  is_int2 = is_integral_type (type2);
  is_int2 = is_integral_type (type2);
 
 
  if (is_int1 && is_int2)
  if (is_int1 && is_int2)
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
                                                       BINOP_EQUAL)));
                                                       BINOP_EQUAL)));
  else if ((code1 == TYPE_CODE_FLT || is_int1)
  else if ((code1 == TYPE_CODE_FLT || is_int1)
           && (code2 == TYPE_CODE_FLT || is_int2))
           && (code2 == TYPE_CODE_FLT || is_int2))
    {
    {
      /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
      /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
         `long double' values are returned in static storage (m68k).  */
         `long double' values are returned in static storage (m68k).  */
      DOUBLEST d = value_as_double (arg1);
      DOUBLEST d = value_as_double (arg1);
      return d == value_as_double (arg2);
      return d == value_as_double (arg2);
    }
    }
  else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
  else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
           && (code2 == TYPE_CODE_DECFLOAT || is_int2))
           && (code2 == TYPE_CODE_DECFLOAT || is_int2))
    {
    {
      gdb_byte v1[16], v2[16];
      gdb_byte v1[16], v2[16];
      int len_v1, len_v2;
      int len_v1, len_v2;
      enum bfd_endian byte_order_v1, byte_order_v2;
      enum bfd_endian byte_order_v1, byte_order_v2;
 
 
      value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
      value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
                                         v2, &len_v2, &byte_order_v2);
                                         v2, &len_v2, &byte_order_v2);
 
 
      return decimal_compare (v1, len_v1, byte_order_v1,
      return decimal_compare (v1, len_v1, byte_order_v1,
                              v2, len_v2, byte_order_v2) == 0;
                              v2, len_v2, byte_order_v2) == 0;
    }
    }
 
 
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
     is bigger.  */
     is bigger.  */
  else if (code1 == TYPE_CODE_PTR && is_int2)
  else if (code1 == TYPE_CODE_PTR && is_int2)
    return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
    return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
  else if (code2 == TYPE_CODE_PTR && is_int1)
  else if (code2 == TYPE_CODE_PTR && is_int1)
    return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
    return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
 
 
  else if (code1 == code2
  else if (code1 == code2
           && ((len = (int) TYPE_LENGTH (type1))
           && ((len = (int) TYPE_LENGTH (type1))
               == (int) TYPE_LENGTH (type2)))
               == (int) TYPE_LENGTH (type2)))
    {
    {
      p1 = value_contents (arg1);
      p1 = value_contents (arg1);
      p2 = value_contents (arg2);
      p2 = value_contents (arg2);
      while (--len >= 0)
      while (--len >= 0)
        {
        {
          if (*p1++ != *p2++)
          if (*p1++ != *p2++)
            break;
            break;
        }
        }
      return len < 0;
      return len < 0;
    }
    }
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
    {
    {
      return value_strcmp (arg1, arg2) == 0;
      return value_strcmp (arg1, arg2) == 0;
    }
    }
  else
  else
    {
    {
      error (_("Invalid type combination in equality test."));
      error (_("Invalid type combination in equality test."));
      return 0;                  /* For lint -- never reached */
      return 0;                  /* For lint -- never reached */
    }
    }
}
}
 
 
/* Compare values based on their raw contents.  Useful for arrays since
/* Compare values based on their raw contents.  Useful for arrays since
   value_equal coerces them to pointers, thus comparing just the address
   value_equal coerces them to pointers, thus comparing just the address
   of the array instead of its contents.  */
   of the array instead of its contents.  */
 
 
int
int
value_equal_contents (struct value *arg1, struct value *arg2)
value_equal_contents (struct value *arg1, struct value *arg2)
{
{
  struct type *type1, *type2;
  struct type *type1, *type2;
 
 
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
 
 
  return (TYPE_CODE (type1) == TYPE_CODE (type2)
  return (TYPE_CODE (type1) == TYPE_CODE (type2)
          && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
          && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
          && memcmp (value_contents (arg1), value_contents (arg2),
          && memcmp (value_contents (arg1), value_contents (arg2),
                     TYPE_LENGTH (type1)) == 0);
                     TYPE_LENGTH (type1)) == 0);
}
}
 
 
/* Simulate the C operator < by returning 1
/* Simulate the C operator < by returning 1
   iff ARG1's contents are less than ARG2's.  */
   iff ARG1's contents are less than ARG2's.  */
 
 
int
int
value_less (struct value *arg1, struct value *arg2)
value_less (struct value *arg1, struct value *arg2)
{
{
  enum type_code code1;
  enum type_code code1;
  enum type_code code2;
  enum type_code code2;
  struct type *type1, *type2;
  struct type *type1, *type2;
  int is_int1, is_int2;
  int is_int1, is_int2;
 
 
  arg1 = coerce_array (arg1);
  arg1 = coerce_array (arg1);
  arg2 = coerce_array (arg2);
  arg2 = coerce_array (arg2);
 
 
  type1 = check_typedef (value_type (arg1));
  type1 = check_typedef (value_type (arg1));
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
  code1 = TYPE_CODE (type1);
  code1 = TYPE_CODE (type1);
  code2 = TYPE_CODE (type2);
  code2 = TYPE_CODE (type2);
  is_int1 = is_integral_type (type1);
  is_int1 = is_integral_type (type1);
  is_int2 = is_integral_type (type2);
  is_int2 = is_integral_type (type2);
 
 
  if (is_int1 && is_int2)
  if (is_int1 && is_int2)
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
                                                       BINOP_LESS)));
                                                       BINOP_LESS)));
  else if ((code1 == TYPE_CODE_FLT || is_int1)
  else if ((code1 == TYPE_CODE_FLT || is_int1)
           && (code2 == TYPE_CODE_FLT || is_int2))
           && (code2 == TYPE_CODE_FLT || is_int2))
    {
    {
      /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
      /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
         `long double' values are returned in static storage (m68k).  */
         `long double' values are returned in static storage (m68k).  */
      DOUBLEST d = value_as_double (arg1);
      DOUBLEST d = value_as_double (arg1);
      return d < value_as_double (arg2);
      return d < value_as_double (arg2);
    }
    }
  else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
  else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
           && (code2 == TYPE_CODE_DECFLOAT || is_int2))
           && (code2 == TYPE_CODE_DECFLOAT || is_int2))
    {
    {
      gdb_byte v1[16], v2[16];
      gdb_byte v1[16], v2[16];
      int len_v1, len_v2;
      int len_v1, len_v2;
      enum bfd_endian byte_order_v1, byte_order_v2;
      enum bfd_endian byte_order_v1, byte_order_v2;
 
 
      value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
      value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
                                         v2, &len_v2, &byte_order_v2);
                                         v2, &len_v2, &byte_order_v2);
 
 
      return decimal_compare (v1, len_v1, byte_order_v1,
      return decimal_compare (v1, len_v1, byte_order_v1,
                              v2, len_v2, byte_order_v2) == -1;
                              v2, len_v2, byte_order_v2) == -1;
    }
    }
  else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
  else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
    return value_as_address (arg1) < value_as_address (arg2);
    return value_as_address (arg1) < value_as_address (arg2);
 
 
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
     is bigger.  */
     is bigger.  */
  else if (code1 == TYPE_CODE_PTR && is_int2)
  else if (code1 == TYPE_CODE_PTR && is_int2)
    return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
    return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
  else if (code2 == TYPE_CODE_PTR && is_int1)
  else if (code2 == TYPE_CODE_PTR && is_int1)
    return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
    return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
    return value_strcmp (arg1, arg2) < 0;
    return value_strcmp (arg1, arg2) < 0;
  else
  else
    {
    {
      error (_("Invalid type combination in ordering comparison."));
      error (_("Invalid type combination in ordering comparison."));
      return 0;
      return 0;
    }
    }
}
}


/* The unary operators +, - and ~.  They free the argument ARG1.  */
/* The unary operators +, - and ~.  They free the argument ARG1.  */
 
 
struct value *
struct value *
value_pos (struct value *arg1)
value_pos (struct value *arg1)
{
{
  struct type *type;
  struct type *type;
 
 
  arg1 = coerce_ref (arg1);
  arg1 = coerce_ref (arg1);
  type = check_typedef (value_type (arg1));
  type = check_typedef (value_type (arg1));
 
 
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    return value_from_double (type, value_as_double (arg1));
    return value_from_double (type, value_as_double (arg1));
  else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
  else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
    return value_from_decfloat (type, value_contents (arg1));
    return value_from_decfloat (type, value_contents (arg1));
  else if (is_integral_type (type))
  else if (is_integral_type (type))
    {
    {
      return value_from_longest (type, value_as_long (arg1));
      return value_from_longest (type, value_as_long (arg1));
    }
    }
  else
  else
    {
    {
      error ("Argument to positive operation not a number.");
      error ("Argument to positive operation not a number.");
      return 0;                  /* For lint -- never reached */
      return 0;                  /* For lint -- never reached */
    }
    }
}
}
 
 
struct value *
struct value *
value_neg (struct value *arg1)
value_neg (struct value *arg1)
{
{
  struct type *type;
  struct type *type;
 
 
  arg1 = coerce_ref (arg1);
  arg1 = coerce_ref (arg1);
  type = check_typedef (value_type (arg1));
  type = check_typedef (value_type (arg1));
 
 
  if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
  if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
    {
    {
      struct value *val = allocate_value (type);
      struct value *val = allocate_value (type);
      int len = TYPE_LENGTH (type);
      int len = TYPE_LENGTH (type);
      gdb_byte decbytes[16];  /* a decfloat is at most 128 bits long */
      gdb_byte decbytes[16];  /* a decfloat is at most 128 bits long */
 
 
      memcpy (decbytes, value_contents (arg1), len);
      memcpy (decbytes, value_contents (arg1), len);
 
 
      if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
      if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
        decbytes[len-1] = decbytes[len - 1] | 0x80;
        decbytes[len-1] = decbytes[len - 1] | 0x80;
      else
      else
        decbytes[0] = decbytes[0] | 0x80;
        decbytes[0] = decbytes[0] | 0x80;
 
 
      memcpy (value_contents_raw (val), decbytes, len);
      memcpy (value_contents_raw (val), decbytes, len);
      return val;
      return val;
    }
    }
  else if (TYPE_CODE (type) == TYPE_CODE_FLT)
  else if (TYPE_CODE (type) == TYPE_CODE_FLT)
    return value_from_double (type, -value_as_double (arg1));
    return value_from_double (type, -value_as_double (arg1));
  else if (is_integral_type (type))
  else if (is_integral_type (type))
    {
    {
      return value_from_longest (type, -value_as_long (arg1));
      return value_from_longest (type, -value_as_long (arg1));
    }
    }
  else
  else
    {
    {
      error (_("Argument to negate operation not a number."));
      error (_("Argument to negate operation not a number."));
      return 0;                  /* For lint -- never reached */
      return 0;                  /* For lint -- never reached */
    }
    }
}
}
 
 
struct value *
struct value *
value_complement (struct value *arg1)
value_complement (struct value *arg1)
{
{
  struct type *type;
  struct type *type;
 
 
  arg1 = coerce_ref (arg1);
  arg1 = coerce_ref (arg1);
  type = check_typedef (value_type (arg1));
  type = check_typedef (value_type (arg1));
 
 
  if (!is_integral_type (type))
  if (!is_integral_type (type))
    error (_("Argument to complement operation not an integer or boolean."));
    error (_("Argument to complement operation not an integer or boolean."));
 
 
  return value_from_longest (type, ~value_as_long (arg1));
  return value_from_longest (type, ~value_as_long (arg1));
}
}


/* The INDEX'th bit of SET value whose value_type is TYPE,
/* The INDEX'th bit of SET value whose value_type is TYPE,
   and whose value_contents is valaddr.
   and whose value_contents is valaddr.
   Return -1 if out of range, -2 other error. */
   Return -1 if out of range, -2 other error. */
 
 
int
int
value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
{
{
  struct gdbarch *gdbarch = get_type_arch (type);
  struct gdbarch *gdbarch = get_type_arch (type);
  LONGEST low_bound, high_bound;
  LONGEST low_bound, high_bound;
  LONGEST word;
  LONGEST word;
  unsigned rel_index;
  unsigned rel_index;
  struct type *range = TYPE_INDEX_TYPE (type);
  struct type *range = TYPE_INDEX_TYPE (type);
  if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
  if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
    return -2;
    return -2;
  if (index < low_bound || index > high_bound)
  if (index < low_bound || index > high_bound)
    return -1;
    return -1;
  rel_index = index - low_bound;
  rel_index = index - low_bound;
  word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
  word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
                                   gdbarch_byte_order (gdbarch));
                                   gdbarch_byte_order (gdbarch));
  rel_index %= TARGET_CHAR_BIT;
  rel_index %= TARGET_CHAR_BIT;
  if (gdbarch_bits_big_endian (gdbarch))
  if (gdbarch_bits_big_endian (gdbarch))
    rel_index = TARGET_CHAR_BIT - 1 - rel_index;
    rel_index = TARGET_CHAR_BIT - 1 - rel_index;
  return (word >> rel_index) & 1;
  return (word >> rel_index) & 1;
}
}
 
 
int
int
value_in (struct value *element, struct value *set)
value_in (struct value *element, struct value *set)
{
{
  int member;
  int member;
  struct type *settype = check_typedef (value_type (set));
  struct type *settype = check_typedef (value_type (set));
  struct type *eltype = check_typedef (value_type (element));
  struct type *eltype = check_typedef (value_type (element));
  if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
  if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
    eltype = TYPE_TARGET_TYPE (eltype);
    eltype = TYPE_TARGET_TYPE (eltype);
  if (TYPE_CODE (settype) != TYPE_CODE_SET)
  if (TYPE_CODE (settype) != TYPE_CODE_SET)
    error (_("Second argument of 'IN' has wrong type"));
    error (_("Second argument of 'IN' has wrong type"));
  if (TYPE_CODE (eltype) != TYPE_CODE_INT
  if (TYPE_CODE (eltype) != TYPE_CODE_INT
      && TYPE_CODE (eltype) != TYPE_CODE_CHAR
      && TYPE_CODE (eltype) != TYPE_CODE_CHAR
      && TYPE_CODE (eltype) != TYPE_CODE_ENUM
      && TYPE_CODE (eltype) != TYPE_CODE_ENUM
      && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
      && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
    error (_("First argument of 'IN' has wrong type"));
    error (_("First argument of 'IN' has wrong type"));
  member = value_bit_index (settype, value_contents (set),
  member = value_bit_index (settype, value_contents (set),
                            value_as_long (element));
                            value_as_long (element));
  if (member < 0)
  if (member < 0)
    error (_("First argument of 'IN' not in range"));
    error (_("First argument of 'IN' not in range"));
  return member;
  return member;
}
}
 
 
void
void
_initialize_valarith (void)
_initialize_valarith (void)
{
{
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.