OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [gdb/] [valops.c] - Diff between revs 834 and 842

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 834 Rev 842
/* Perform non-arithmetic operations on values, for GDB.
/* Perform non-arithmetic operations on values, for GDB.
 
 
   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
   2008, 2009, 2010 Free Software Foundation, Inc.
   2008, 2009, 2010 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "value.h"
#include "value.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "target.h"
#include "target.h"
#include "demangle.h"
#include "demangle.h"
#include "language.h"
#include "language.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "regcache.h"
#include "cp-abi.h"
#include "cp-abi.h"
#include "block.h"
#include "block.h"
#include "infcall.h"
#include "infcall.h"
#include "dictionary.h"
#include "dictionary.h"
#include "cp-support.h"
#include "cp-support.h"
#include "dfp.h"
#include "dfp.h"
#include "user-regs.h"
#include "user-regs.h"
 
 
#include <errno.h>
#include <errno.h>
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdb_assert.h"
#include "cp-support.h"
#include "cp-support.h"
#include "observer.h"
#include "observer.h"
#include "objfiles.h"
#include "objfiles.h"
#include "symtab.h"
#include "symtab.h"
 
 
extern int overload_debug;
extern int overload_debug;
/* Local functions.  */
/* Local functions.  */
 
 
static int typecmp (int staticp, int varargs, int nargs,
static int typecmp (int staticp, int varargs, int nargs,
                    struct field t1[], struct value *t2[]);
                    struct field t1[], struct value *t2[]);
 
 
static struct value *search_struct_field (const char *, struct value *,
static struct value *search_struct_field (const char *, struct value *,
                                          int, struct type *, int);
                                          int, struct type *, int);
 
 
static struct value *search_struct_method (const char *, struct value **,
static struct value *search_struct_method (const char *, struct value **,
                                           struct value **,
                                           struct value **,
                                           int, int *, struct type *);
                                           int, int *, struct type *);
 
 
static int find_oload_champ_namespace (struct type **, int,
static int find_oload_champ_namespace (struct type **, int,
                                       const char *, const char *,
                                       const char *, const char *,
                                       struct symbol ***,
                                       struct symbol ***,
                                       struct badness_vector **);
                                       struct badness_vector **);
 
 
static
static
int find_oload_champ_namespace_loop (struct type **, int,
int find_oload_champ_namespace_loop (struct type **, int,
                                     const char *, const char *,
                                     const char *, const char *,
                                     int, struct symbol ***,
                                     int, struct symbol ***,
                                     struct badness_vector **, int *);
                                     struct badness_vector **, int *);
 
 
static int find_oload_champ (struct type **, int, int, int,
static int find_oload_champ (struct type **, int, int, int,
                             struct fn_field *, struct symbol **,
                             struct fn_field *, struct symbol **,
                             struct badness_vector **);
                             struct badness_vector **);
 
 
static int oload_method_static (int, struct fn_field *, int);
static int oload_method_static (int, struct fn_field *, int);
 
 
enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
 
 
static enum
static enum
oload_classification classify_oload_match (struct badness_vector *,
oload_classification classify_oload_match (struct badness_vector *,
                                           int, int);
                                           int, int);
 
 
static struct value *value_struct_elt_for_reference (struct type *,
static struct value *value_struct_elt_for_reference (struct type *,
                                                     int, struct type *,
                                                     int, struct type *,
                                                     char *,
                                                     char *,
                                                     struct type *,
                                                     struct type *,
                                                     int, enum noside);
                                                     int, enum noside);
 
 
static struct value *value_namespace_elt (const struct type *,
static struct value *value_namespace_elt (const struct type *,
                                          char *, int , enum noside);
                                          char *, int , enum noside);
 
 
static struct value *value_maybe_namespace_elt (const struct type *,
static struct value *value_maybe_namespace_elt (const struct type *,
                                                char *, int,
                                                char *, int,
                                                enum noside);
                                                enum noside);
 
 
static CORE_ADDR allocate_space_in_inferior (int);
static CORE_ADDR allocate_space_in_inferior (int);
 
 
static struct value *cast_into_complex (struct type *, struct value *);
static struct value *cast_into_complex (struct type *, struct value *);
 
 
static struct fn_field *find_method_list (struct value **, const char *,
static struct fn_field *find_method_list (struct value **, const char *,
                                          int, struct type *, int *,
                                          int, struct type *, int *,
                                          struct type **, int *);
                                          struct type **, int *);
 
 
void _initialize_valops (void);
void _initialize_valops (void);
 
 
#if 0
#if 0
/* Flag for whether we want to abandon failed expression evals by
/* Flag for whether we want to abandon failed expression evals by
   default.  */
   default.  */
 
 
static int auto_abandon = 0;
static int auto_abandon = 0;
#endif
#endif
 
 
int overload_resolution = 0;
int overload_resolution = 0;
static void
static void
show_overload_resolution (struct ui_file *file, int from_tty,
show_overload_resolution (struct ui_file *file, int from_tty,
                          struct cmd_list_element *c,
                          struct cmd_list_element *c,
                          const char *value)
                          const char *value)
{
{
  fprintf_filtered (file, _("\
  fprintf_filtered (file, _("\
Overload resolution in evaluating C++ functions is %s.\n"),
Overload resolution in evaluating C++ functions is %s.\n"),
                    value);
                    value);
}
}
 
 
/* Find the address of function name NAME in the inferior.  If OBJF_P
/* Find the address of function name NAME in the inferior.  If OBJF_P
   is non-NULL, *OBJF_P will be set to the OBJFILE where the function
   is non-NULL, *OBJF_P will be set to the OBJFILE where the function
   is defined.  */
   is defined.  */
 
 
struct value *
struct value *
find_function_in_inferior (const char *name, struct objfile **objf_p)
find_function_in_inferior (const char *name, struct objfile **objf_p)
{
{
  struct symbol *sym;
  struct symbol *sym;
  sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
  sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
  if (sym != NULL)
  if (sym != NULL)
    {
    {
      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
        {
        {
          error (_("\"%s\" exists in this program but is not a function."),
          error (_("\"%s\" exists in this program but is not a function."),
                 name);
                 name);
        }
        }
 
 
      if (objf_p)
      if (objf_p)
        *objf_p = SYMBOL_SYMTAB (sym)->objfile;
        *objf_p = SYMBOL_SYMTAB (sym)->objfile;
 
 
      return value_of_variable (sym, NULL);
      return value_of_variable (sym, NULL);
    }
    }
  else
  else
    {
    {
      struct minimal_symbol *msymbol =
      struct minimal_symbol *msymbol =
        lookup_minimal_symbol (name, NULL, NULL);
        lookup_minimal_symbol (name, NULL, NULL);
      if (msymbol != NULL)
      if (msymbol != NULL)
        {
        {
          struct objfile *objfile = msymbol_objfile (msymbol);
          struct objfile *objfile = msymbol_objfile (msymbol);
          struct gdbarch *gdbarch = get_objfile_arch (objfile);
          struct gdbarch *gdbarch = get_objfile_arch (objfile);
 
 
          struct type *type;
          struct type *type;
          CORE_ADDR maddr;
          CORE_ADDR maddr;
          type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
          type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
          type = lookup_function_type (type);
          type = lookup_function_type (type);
          type = lookup_pointer_type (type);
          type = lookup_pointer_type (type);
          maddr = SYMBOL_VALUE_ADDRESS (msymbol);
          maddr = SYMBOL_VALUE_ADDRESS (msymbol);
 
 
          if (objf_p)
          if (objf_p)
            *objf_p = objfile;
            *objf_p = objfile;
 
 
          return value_from_pointer (type, maddr);
          return value_from_pointer (type, maddr);
        }
        }
      else
      else
        {
        {
          if (!target_has_execution)
          if (!target_has_execution)
            error (_("evaluation of this expression requires the target program to be active"));
            error (_("evaluation of this expression requires the target program to be active"));
          else
          else
            error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
            error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
        }
        }
    }
    }
}
}
 
 
/* Allocate NBYTES of space in the inferior using the inferior's
/* Allocate NBYTES of space in the inferior using the inferior's
   malloc and return a value that is a pointer to the allocated
   malloc and return a value that is a pointer to the allocated
   space.  */
   space.  */
 
 
struct value *
struct value *
value_allocate_space_in_inferior (int len)
value_allocate_space_in_inferior (int len)
{
{
  struct objfile *objf;
  struct objfile *objf;
  struct value *val = find_function_in_inferior ("malloc", &objf);
  struct value *val = find_function_in_inferior ("malloc", &objf);
  struct gdbarch *gdbarch = get_objfile_arch (objf);
  struct gdbarch *gdbarch = get_objfile_arch (objf);
  struct value *blocklen;
  struct value *blocklen;
 
 
  blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
  blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
  val = call_function_by_hand (val, 1, &blocklen);
  val = call_function_by_hand (val, 1, &blocklen);
  if (value_logical_not (val))
  if (value_logical_not (val))
    {
    {
      if (!target_has_execution)
      if (!target_has_execution)
        error (_("No memory available to program now: you need to start the target first"));
        error (_("No memory available to program now: you need to start the target first"));
      else
      else
        error (_("No memory available to program: call to malloc failed"));
        error (_("No memory available to program: call to malloc failed"));
    }
    }
  return val;
  return val;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
allocate_space_in_inferior (int len)
allocate_space_in_inferior (int len)
{
{
  return value_as_long (value_allocate_space_in_inferior (len));
  return value_as_long (value_allocate_space_in_inferior (len));
}
}
 
 
/* Cast struct value VAL to type TYPE and return as a value.
/* Cast struct value VAL to type TYPE and return as a value.
   Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
   Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
   for this to work.  Typedef to one of the codes is permitted.
   for this to work.  Typedef to one of the codes is permitted.
   Returns NULL if the cast is neither an upcast nor a downcast.  */
   Returns NULL if the cast is neither an upcast nor a downcast.  */
 
 
static struct value *
static struct value *
value_cast_structs (struct type *type, struct value *v2)
value_cast_structs (struct type *type, struct value *v2)
{
{
  struct type *t1;
  struct type *t1;
  struct type *t2;
  struct type *t2;
  struct value *v;
  struct value *v;
 
 
  gdb_assert (type != NULL && v2 != NULL);
  gdb_assert (type != NULL && v2 != NULL);
 
 
  t1 = check_typedef (type);
  t1 = check_typedef (type);
  t2 = check_typedef (value_type (v2));
  t2 = check_typedef (value_type (v2));
 
 
  /* Check preconditions.  */
  /* Check preconditions.  */
  gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
  gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
               || TYPE_CODE (t1) == TYPE_CODE_UNION)
               || TYPE_CODE (t1) == TYPE_CODE_UNION)
              && !!"Precondition is that type is of STRUCT or UNION kind.");
              && !!"Precondition is that type is of STRUCT or UNION kind.");
  gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
  gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
               || TYPE_CODE (t2) == TYPE_CODE_UNION)
               || TYPE_CODE (t2) == TYPE_CODE_UNION)
              && !!"Precondition is that value is of STRUCT or UNION kind");
              && !!"Precondition is that value is of STRUCT or UNION kind");
 
 
  if (TYPE_NAME (t1) != NULL
  if (TYPE_NAME (t1) != NULL
      && TYPE_NAME (t2) != NULL
      && TYPE_NAME (t2) != NULL
      && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
      && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
    return NULL;
    return NULL;
 
 
  /* Upcasting: look in the type of the source to see if it contains the
  /* Upcasting: look in the type of the source to see if it contains the
     type of the target as a superclass.  If so, we'll need to
     type of the target as a superclass.  If so, we'll need to
     offset the pointer rather than just change its type.  */
     offset the pointer rather than just change its type.  */
  if (TYPE_NAME (t1) != NULL)
  if (TYPE_NAME (t1) != NULL)
    {
    {
      v = search_struct_field (type_name_no_tag (t1),
      v = search_struct_field (type_name_no_tag (t1),
                               v2, 0, t2, 1);
                               v2, 0, t2, 1);
      if (v)
      if (v)
        return v;
        return v;
    }
    }
 
 
  /* Downcasting: look in the type of the target to see if it contains the
  /* Downcasting: look in the type of the target to see if it contains the
     type of the source as a superclass.  If so, we'll need to
     type of the source as a superclass.  If so, we'll need to
     offset the pointer rather than just change its type.  */
     offset the pointer rather than just change its type.  */
  if (TYPE_NAME (t2) != NULL)
  if (TYPE_NAME (t2) != NULL)
    {
    {
      /* Try downcasting using the run-time type of the value.  */
      /* Try downcasting using the run-time type of the value.  */
      int full, top, using_enc;
      int full, top, using_enc;
      struct type *real_type;
      struct type *real_type;
 
 
      real_type = value_rtti_type (v2, &full, &top, &using_enc);
      real_type = value_rtti_type (v2, &full, &top, &using_enc);
      if (real_type)
      if (real_type)
        {
        {
          v = value_full_object (v2, real_type, full, top, using_enc);
          v = value_full_object (v2, real_type, full, top, using_enc);
          v = value_at_lazy (real_type, value_address (v));
          v = value_at_lazy (real_type, value_address (v));
 
 
          /* We might be trying to cast to the outermost enclosing
          /* We might be trying to cast to the outermost enclosing
             type, in which case search_struct_field won't work.  */
             type, in which case search_struct_field won't work.  */
          if (TYPE_NAME (real_type) != NULL
          if (TYPE_NAME (real_type) != NULL
              && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
              && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
            return v;
            return v;
 
 
          v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
          v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
          if (v)
          if (v)
            return v;
            return v;
        }
        }
 
 
      /* Try downcasting using information from the destination type
      /* Try downcasting using information from the destination type
         T2.  This wouldn't work properly for classes with virtual
         T2.  This wouldn't work properly for classes with virtual
         bases, but those were handled above.  */
         bases, but those were handled above.  */
      v = search_struct_field (type_name_no_tag (t2),
      v = search_struct_field (type_name_no_tag (t2),
                               value_zero (t1, not_lval), 0, t1, 1);
                               value_zero (t1, not_lval), 0, t1, 1);
      if (v)
      if (v)
        {
        {
          /* Downcasting is possible (t1 is superclass of v2).  */
          /* Downcasting is possible (t1 is superclass of v2).  */
          CORE_ADDR addr2 = value_address (v2);
          CORE_ADDR addr2 = value_address (v2);
          addr2 -= value_address (v) + value_embedded_offset (v);
          addr2 -= value_address (v) + value_embedded_offset (v);
          return value_at (type, addr2);
          return value_at (type, addr2);
        }
        }
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Cast one pointer or reference type to another.  Both TYPE and
/* Cast one pointer or reference type to another.  Both TYPE and
   the type of ARG2 should be pointer types, or else both should be
   the type of ARG2 should be pointer types, or else both should be
   reference types.  Returns the new pointer or reference.  */
   reference types.  Returns the new pointer or reference.  */
 
 
struct value *
struct value *
value_cast_pointers (struct type *type, struct value *arg2)
value_cast_pointers (struct type *type, struct value *arg2)
{
{
  struct type *type1 = check_typedef (type);
  struct type *type1 = check_typedef (type);
  struct type *type2 = check_typedef (value_type (arg2));
  struct type *type2 = check_typedef (value_type (arg2));
  struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
  struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
  struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
  struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
 
 
  if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
  if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
      && TYPE_CODE (t2) == TYPE_CODE_STRUCT
      && TYPE_CODE (t2) == TYPE_CODE_STRUCT
      && !value_logical_not (arg2))
      && !value_logical_not (arg2))
    {
    {
      struct value *v2;
      struct value *v2;
 
 
      if (TYPE_CODE (type2) == TYPE_CODE_REF)
      if (TYPE_CODE (type2) == TYPE_CODE_REF)
        v2 = coerce_ref (arg2);
        v2 = coerce_ref (arg2);
      else
      else
        v2 = value_ind (arg2);
        v2 = value_ind (arg2);
      gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
      gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
                  && !!"Why did coercion fail?");
                  && !!"Why did coercion fail?");
      v2 = value_cast_structs (t1, v2);
      v2 = value_cast_structs (t1, v2);
      /* At this point we have what we can have, un-dereference if needed.  */
      /* At this point we have what we can have, un-dereference if needed.  */
      if (v2)
      if (v2)
        {
        {
          struct value *v = value_addr (v2);
          struct value *v = value_addr (v2);
          deprecated_set_value_type (v, type);
          deprecated_set_value_type (v, type);
          return v;
          return v;
        }
        }
   }
   }
 
 
  /* No superclass found, just change the pointer type.  */
  /* No superclass found, just change the pointer type.  */
  arg2 = value_copy (arg2);
  arg2 = value_copy (arg2);
  deprecated_set_value_type (arg2, type);
  deprecated_set_value_type (arg2, type);
  arg2 = value_change_enclosing_type (arg2, type);
  arg2 = value_change_enclosing_type (arg2, type);
  set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
  set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
  return arg2;
  return arg2;
}
}
 
 
/* Cast value ARG2 to type TYPE and return as a value.
/* Cast value ARG2 to type TYPE and return as a value.
   More general than a C cast: accepts any two types of the same length,
   More general than a C cast: accepts any two types of the same length,
   and if ARG2 is an lvalue it can be cast into anything at all.  */
   and if ARG2 is an lvalue it can be cast into anything at all.  */
/* In C++, casts may change pointer or object representations.  */
/* In C++, casts may change pointer or object representations.  */
 
 
struct value *
struct value *
value_cast (struct type *type, struct value *arg2)
value_cast (struct type *type, struct value *arg2)
{
{
  enum type_code code1;
  enum type_code code1;
  enum type_code code2;
  enum type_code code2;
  int scalar;
  int scalar;
  struct type *type2;
  struct type *type2;
 
 
  int convert_to_boolean = 0;
  int convert_to_boolean = 0;
 
 
  if (value_type (arg2) == type)
  if (value_type (arg2) == type)
    return arg2;
    return arg2;
 
 
  code1 = TYPE_CODE (check_typedef (type));
  code1 = TYPE_CODE (check_typedef (type));
 
 
  /* Check if we are casting struct reference to struct reference.  */
  /* Check if we are casting struct reference to struct reference.  */
  if (code1 == TYPE_CODE_REF)
  if (code1 == TYPE_CODE_REF)
    {
    {
      /* We dereference type; then we recurse and finally
      /* We dereference type; then we recurse and finally
         we generate value of the given reference. Nothing wrong with
         we generate value of the given reference. Nothing wrong with
         that.  */
         that.  */
      struct type *t1 = check_typedef (type);
      struct type *t1 = check_typedef (type);
      struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
      struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
      struct value *val =  value_cast (dereftype, arg2);
      struct value *val =  value_cast (dereftype, arg2);
      return value_ref (val);
      return value_ref (val);
    }
    }
 
 
  code2 = TYPE_CODE (check_typedef (value_type (arg2)));
  code2 = TYPE_CODE (check_typedef (value_type (arg2)));
 
 
  if (code2 == TYPE_CODE_REF)
  if (code2 == TYPE_CODE_REF)
    /* We deref the value and then do the cast.  */
    /* We deref the value and then do the cast.  */
    return value_cast (type, coerce_ref (arg2));
    return value_cast (type, coerce_ref (arg2));
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  code1 = TYPE_CODE (type);
  code1 = TYPE_CODE (type);
  arg2 = coerce_ref (arg2);
  arg2 = coerce_ref (arg2);
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
 
 
  /* You can't cast to a reference type.  See value_cast_pointers
  /* You can't cast to a reference type.  See value_cast_pointers
     instead.  */
     instead.  */
  gdb_assert (code1 != TYPE_CODE_REF);
  gdb_assert (code1 != TYPE_CODE_REF);
 
 
  /* A cast to an undetermined-length array_type, such as
  /* A cast to an undetermined-length array_type, such as
     (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
     (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
     where N is sizeof(OBJECT)/sizeof(TYPE).  */
     where N is sizeof(OBJECT)/sizeof(TYPE).  */
  if (code1 == TYPE_CODE_ARRAY)
  if (code1 == TYPE_CODE_ARRAY)
    {
    {
      struct type *element_type = TYPE_TARGET_TYPE (type);
      struct type *element_type = TYPE_TARGET_TYPE (type);
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
      if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
      if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
        {
        {
          struct type *range_type = TYPE_INDEX_TYPE (type);
          struct type *range_type = TYPE_INDEX_TYPE (type);
          int val_length = TYPE_LENGTH (type2);
          int val_length = TYPE_LENGTH (type2);
          LONGEST low_bound, high_bound, new_length;
          LONGEST low_bound, high_bound, new_length;
          if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
          if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
            low_bound = 0, high_bound = 0;
            low_bound = 0, high_bound = 0;
          new_length = val_length / element_length;
          new_length = val_length / element_length;
          if (val_length % element_length != 0)
          if (val_length % element_length != 0)
            warning (_("array element type size does not divide object size in cast"));
            warning (_("array element type size does not divide object size in cast"));
          /* FIXME-type-allocation: need a way to free this type when
          /* FIXME-type-allocation: need a way to free this type when
             we are done with it.  */
             we are done with it.  */
          range_type = create_range_type ((struct type *) NULL,
          range_type = create_range_type ((struct type *) NULL,
                                          TYPE_TARGET_TYPE (range_type),
                                          TYPE_TARGET_TYPE (range_type),
                                          low_bound,
                                          low_bound,
                                          new_length + low_bound - 1);
                                          new_length + low_bound - 1);
          deprecated_set_value_type (arg2,
          deprecated_set_value_type (arg2,
                                     create_array_type ((struct type *) NULL,
                                     create_array_type ((struct type *) NULL,
                                                        element_type,
                                                        element_type,
                                                        range_type));
                                                        range_type));
          return arg2;
          return arg2;
        }
        }
    }
    }
 
 
  if (current_language->c_style_arrays
  if (current_language->c_style_arrays
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
    arg2 = value_coerce_array (arg2);
    arg2 = value_coerce_array (arg2);
 
 
  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
    arg2 = value_coerce_function (arg2);
    arg2 = value_coerce_function (arg2);
 
 
  type2 = check_typedef (value_type (arg2));
  type2 = check_typedef (value_type (arg2));
  code2 = TYPE_CODE (type2);
  code2 = TYPE_CODE (type2);
 
 
  if (code1 == TYPE_CODE_COMPLEX)
  if (code1 == TYPE_CODE_COMPLEX)
    return cast_into_complex (type, arg2);
    return cast_into_complex (type, arg2);
  if (code1 == TYPE_CODE_BOOL)
  if (code1 == TYPE_CODE_BOOL)
    {
    {
      code1 = TYPE_CODE_INT;
      code1 = TYPE_CODE_INT;
      convert_to_boolean = 1;
      convert_to_boolean = 1;
    }
    }
  if (code1 == TYPE_CODE_CHAR)
  if (code1 == TYPE_CODE_CHAR)
    code1 = TYPE_CODE_INT;
    code1 = TYPE_CODE_INT;
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
    code2 = TYPE_CODE_INT;
    code2 = TYPE_CODE_INT;
 
 
  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
            || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
            || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
            || code2 == TYPE_CODE_RANGE);
            || code2 == TYPE_CODE_RANGE);
 
 
  if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
  if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
      && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
      && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
      && TYPE_NAME (type) != 0)
      && TYPE_NAME (type) != 0)
    {
    {
      struct value *v = value_cast_structs (type, arg2);
      struct value *v = value_cast_structs (type, arg2);
      if (v)
      if (v)
        return v;
        return v;
    }
    }
 
 
  if (code1 == TYPE_CODE_FLT && scalar)
  if (code1 == TYPE_CODE_FLT && scalar)
    return value_from_double (type, value_as_double (arg2));
    return value_from_double (type, value_as_double (arg2));
  else if (code1 == TYPE_CODE_DECFLOAT && scalar)
  else if (code1 == TYPE_CODE_DECFLOAT && scalar)
    {
    {
      enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
      enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
      int dec_len = TYPE_LENGTH (type);
      int dec_len = TYPE_LENGTH (type);
      gdb_byte dec[16];
      gdb_byte dec[16];
 
 
      if (code2 == TYPE_CODE_FLT)
      if (code2 == TYPE_CODE_FLT)
        decimal_from_floating (arg2, dec, dec_len, byte_order);
        decimal_from_floating (arg2, dec, dec_len, byte_order);
      else if (code2 == TYPE_CODE_DECFLOAT)
      else if (code2 == TYPE_CODE_DECFLOAT)
        decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
        decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
                         byte_order, dec, dec_len, byte_order);
                         byte_order, dec, dec_len, byte_order);
      else
      else
        /* The only option left is an integral type.  */
        /* The only option left is an integral type.  */
        decimal_from_integral (arg2, dec, dec_len, byte_order);
        decimal_from_integral (arg2, dec, dec_len, byte_order);
 
 
      return value_from_decfloat (type, dec);
      return value_from_decfloat (type, dec);
    }
    }
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
            || code1 == TYPE_CODE_RANGE)
            || code1 == TYPE_CODE_RANGE)
           && (scalar || code2 == TYPE_CODE_PTR
           && (scalar || code2 == TYPE_CODE_PTR
               || code2 == TYPE_CODE_MEMBERPTR))
               || code2 == TYPE_CODE_MEMBERPTR))
    {
    {
      LONGEST longest;
      LONGEST longest;
 
 
      /* When we cast pointers to integers, we mustn't use
      /* When we cast pointers to integers, we mustn't use
         gdbarch_pointer_to_address to find the address the pointer
         gdbarch_pointer_to_address to find the address the pointer
         represents, as value_as_long would.  GDB should evaluate
         represents, as value_as_long would.  GDB should evaluate
         expressions just as the compiler would --- and the compiler
         expressions just as the compiler would --- and the compiler
         sees a cast as a simple reinterpretation of the pointer's
         sees a cast as a simple reinterpretation of the pointer's
         bits.  */
         bits.  */
      if (code2 == TYPE_CODE_PTR)
      if (code2 == TYPE_CODE_PTR)
        longest = extract_unsigned_integer
        longest = extract_unsigned_integer
                    (value_contents (arg2), TYPE_LENGTH (type2),
                    (value_contents (arg2), TYPE_LENGTH (type2),
                     gdbarch_byte_order (get_type_arch (type2)));
                     gdbarch_byte_order (get_type_arch (type2)));
      else
      else
        longest = value_as_long (arg2);
        longest = value_as_long (arg2);
      return value_from_longest (type, convert_to_boolean ?
      return value_from_longest (type, convert_to_boolean ?
                                 (LONGEST) (longest ? 1 : 0) : longest);
                                 (LONGEST) (longest ? 1 : 0) : longest);
    }
    }
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
                                      || code2 == TYPE_CODE_ENUM
                                      || code2 == TYPE_CODE_ENUM
                                      || code2 == TYPE_CODE_RANGE))
                                      || code2 == TYPE_CODE_RANGE))
    {
    {
      /* TYPE_LENGTH (type) is the length of a pointer, but we really
      /* TYPE_LENGTH (type) is the length of a pointer, but we really
         want the length of an address! -- we are really dealing with
         want the length of an address! -- we are really dealing with
         addresses (i.e., gdb representations) not pointers (i.e.,
         addresses (i.e., gdb representations) not pointers (i.e.,
         target representations) here.
         target representations) here.
 
 
         This allows things like "print *(int *)0x01000234" to work
         This allows things like "print *(int *)0x01000234" to work
         without printing a misleading message -- which would
         without printing a misleading message -- which would
         otherwise occur when dealing with a target having two byte
         otherwise occur when dealing with a target having two byte
         pointers and four byte addresses.  */
         pointers and four byte addresses.  */
 
 
      int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
      int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
 
 
      LONGEST longest = value_as_long (arg2);
      LONGEST longest = value_as_long (arg2);
      if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
      if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
        {
        {
          if (longest >= ((LONGEST) 1 << addr_bit)
          if (longest >= ((LONGEST) 1 << addr_bit)
              || longest <= -((LONGEST) 1 << addr_bit))
              || longest <= -((LONGEST) 1 << addr_bit))
            warning (_("value truncated"));
            warning (_("value truncated"));
        }
        }
      return value_from_longest (type, longest);
      return value_from_longest (type, longest);
    }
    }
  else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
  else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
           && value_as_long (arg2) == 0)
           && value_as_long (arg2) == 0)
    {
    {
      struct value *result = allocate_value (type);
      struct value *result = allocate_value (type);
      cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
      cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
      return result;
      return result;
    }
    }
  else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
  else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
           && value_as_long (arg2) == 0)
           && value_as_long (arg2) == 0)
    {
    {
      /* The Itanium C++ ABI represents NULL pointers to members as
      /* The Itanium C++ ABI represents NULL pointers to members as
         minus one, instead of biasing the normal case.  */
         minus one, instead of biasing the normal case.  */
      return value_from_longest (type, -1);
      return value_from_longest (type, -1);
    }
    }
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
    {
    {
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
        return value_cast_pointers (type, arg2);
        return value_cast_pointers (type, arg2);
 
 
      arg2 = value_copy (arg2);
      arg2 = value_copy (arg2);
      deprecated_set_value_type (arg2, type);
      deprecated_set_value_type (arg2, type);
      arg2 = value_change_enclosing_type (arg2, type);
      arg2 = value_change_enclosing_type (arg2, type);
      set_value_pointed_to_offset (arg2, 0);     /* pai: chk_val */
      set_value_pointed_to_offset (arg2, 0);     /* pai: chk_val */
      return arg2;
      return arg2;
    }
    }
  else if (VALUE_LVAL (arg2) == lval_memory)
  else if (VALUE_LVAL (arg2) == lval_memory)
    return value_at_lazy (type, value_address (arg2));
    return value_at_lazy (type, value_address (arg2));
  else if (code1 == TYPE_CODE_VOID)
  else if (code1 == TYPE_CODE_VOID)
    {
    {
      return value_zero (type, not_lval);
      return value_zero (type, not_lval);
    }
    }
  else
  else
    {
    {
      error (_("Invalid cast."));
      error (_("Invalid cast."));
      return 0;
      return 0;
    }
    }
}
}
 
 
/* The C++ reinterpret_cast operator.  */
/* The C++ reinterpret_cast operator.  */
 
 
struct value *
struct value *
value_reinterpret_cast (struct type *type, struct value *arg)
value_reinterpret_cast (struct type *type, struct value *arg)
{
{
  struct value *result;
  struct value *result;
  struct type *real_type = check_typedef (type);
  struct type *real_type = check_typedef (type);
  struct type *arg_type, *dest_type;
  struct type *arg_type, *dest_type;
  int is_ref = 0;
  int is_ref = 0;
  enum type_code dest_code, arg_code;
  enum type_code dest_code, arg_code;
 
 
  /* Do reference, function, and array conversion.  */
  /* Do reference, function, and array conversion.  */
  arg = coerce_array (arg);
  arg = coerce_array (arg);
 
 
  /* Attempt to preserve the type the user asked for.  */
  /* Attempt to preserve the type the user asked for.  */
  dest_type = type;
  dest_type = type;
 
 
  /* If we are casting to a reference type, transform
  /* If we are casting to a reference type, transform
     reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V).  */
     reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V).  */
  if (TYPE_CODE (real_type) == TYPE_CODE_REF)
  if (TYPE_CODE (real_type) == TYPE_CODE_REF)
    {
    {
      is_ref = 1;
      is_ref = 1;
      arg = value_addr (arg);
      arg = value_addr (arg);
      dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
      dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
      real_type = lookup_pointer_type (real_type);
      real_type = lookup_pointer_type (real_type);
    }
    }
 
 
  arg_type = value_type (arg);
  arg_type = value_type (arg);
 
 
  dest_code = TYPE_CODE (real_type);
  dest_code = TYPE_CODE (real_type);
  arg_code = TYPE_CODE (arg_type);
  arg_code = TYPE_CODE (arg_type);
 
 
  /* We can convert pointer types, or any pointer type to int, or int
  /* We can convert pointer types, or any pointer type to int, or int
     type to pointer.  */
     type to pointer.  */
  if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
  if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
      || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
      || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
      || (dest_code == arg_code
      || (dest_code == arg_code
          && (dest_code == TYPE_CODE_PTR
          && (dest_code == TYPE_CODE_PTR
              || dest_code == TYPE_CODE_METHODPTR
              || dest_code == TYPE_CODE_METHODPTR
              || dest_code == TYPE_CODE_MEMBERPTR)))
              || dest_code == TYPE_CODE_MEMBERPTR)))
    result = value_cast (dest_type, arg);
    result = value_cast (dest_type, arg);
  else
  else
    error (_("Invalid reinterpret_cast"));
    error (_("Invalid reinterpret_cast"));
 
 
  if (is_ref)
  if (is_ref)
    result = value_cast (type, value_ref (value_ind (result)));
    result = value_cast (type, value_ref (value_ind (result)));
 
 
  return result;
  return result;
}
}
 
 
/* A helper for value_dynamic_cast.  This implements the first of two
/* A helper for value_dynamic_cast.  This implements the first of two
   runtime checks: we iterate over all the base classes of the value's
   runtime checks: we iterate over all the base classes of the value's
   class which are equal to the desired class; if only one of these
   class which are equal to the desired class; if only one of these
   holds the value, then it is the answer.  */
   holds the value, then it is the answer.  */
 
 
static int
static int
dynamic_cast_check_1 (struct type *desired_type,
dynamic_cast_check_1 (struct type *desired_type,
                      const bfd_byte *contents,
                      const bfd_byte *contents,
                      CORE_ADDR address,
                      CORE_ADDR address,
                      struct type *search_type,
                      struct type *search_type,
                      CORE_ADDR arg_addr,
                      CORE_ADDR arg_addr,
                      struct type *arg_type,
                      struct type *arg_type,
                      struct value **result)
                      struct value **result)
{
{
  int i, result_count = 0;
  int i, result_count = 0;
 
 
  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
    {
    {
      int offset = baseclass_offset (search_type, i, contents, address);
      int offset = baseclass_offset (search_type, i, contents, address);
      if (offset == -1)
      if (offset == -1)
        error (_("virtual baseclass botch"));
        error (_("virtual baseclass botch"));
      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
        {
        {
          if (address + offset >= arg_addr
          if (address + offset >= arg_addr
              && address + offset < arg_addr + TYPE_LENGTH (arg_type))
              && address + offset < arg_addr + TYPE_LENGTH (arg_type))
            {
            {
              ++result_count;
              ++result_count;
              if (!*result)
              if (!*result)
                *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
                *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
                                         address + offset);
                                         address + offset);
            }
            }
        }
        }
      else
      else
        result_count += dynamic_cast_check_1 (desired_type,
        result_count += dynamic_cast_check_1 (desired_type,
                                              contents + offset,
                                              contents + offset,
                                              address + offset,
                                              address + offset,
                                              TYPE_BASECLASS (search_type, i),
                                              TYPE_BASECLASS (search_type, i),
                                              arg_addr,
                                              arg_addr,
                                              arg_type,
                                              arg_type,
                                              result);
                                              result);
    }
    }
 
 
  return result_count;
  return result_count;
}
}
 
 
/* A helper for value_dynamic_cast.  This implements the second of two
/* A helper for value_dynamic_cast.  This implements the second of two
   runtime checks: we look for a unique public sibling class of the
   runtime checks: we look for a unique public sibling class of the
   argument's declared class.  */
   argument's declared class.  */
 
 
static int
static int
dynamic_cast_check_2 (struct type *desired_type,
dynamic_cast_check_2 (struct type *desired_type,
                      const bfd_byte *contents,
                      const bfd_byte *contents,
                      CORE_ADDR address,
                      CORE_ADDR address,
                      struct type *search_type,
                      struct type *search_type,
                      struct value **result)
                      struct value **result)
{
{
  int i, result_count = 0;
  int i, result_count = 0;
 
 
  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
    {
    {
      int offset;
      int offset;
 
 
      if (! BASETYPE_VIA_PUBLIC (search_type, i))
      if (! BASETYPE_VIA_PUBLIC (search_type, i))
        continue;
        continue;
 
 
      offset = baseclass_offset (search_type, i, contents, address);
      offset = baseclass_offset (search_type, i, contents, address);
      if (offset == -1)
      if (offset == -1)
        error (_("virtual baseclass botch"));
        error (_("virtual baseclass botch"));
      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
        {
        {
          ++result_count;
          ++result_count;
          if (*result == NULL)
          if (*result == NULL)
            *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
            *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
                                     address + offset);
                                     address + offset);
        }
        }
      else
      else
        result_count += dynamic_cast_check_2 (desired_type,
        result_count += dynamic_cast_check_2 (desired_type,
                                              contents + offset,
                                              contents + offset,
                                              address + offset,
                                              address + offset,
                                              TYPE_BASECLASS (search_type, i),
                                              TYPE_BASECLASS (search_type, i),
                                              result);
                                              result);
    }
    }
 
 
  return result_count;
  return result_count;
}
}
 
 
/* The C++ dynamic_cast operator.  */
/* The C++ dynamic_cast operator.  */
 
 
struct value *
struct value *
value_dynamic_cast (struct type *type, struct value *arg)
value_dynamic_cast (struct type *type, struct value *arg)
{
{
  int unambiguous = 0, full, top, using_enc;
  int unambiguous = 0, full, top, using_enc;
  struct type *resolved_type = check_typedef (type);
  struct type *resolved_type = check_typedef (type);
  struct type *arg_type = check_typedef (value_type (arg));
  struct type *arg_type = check_typedef (value_type (arg));
  struct type *class_type, *rtti_type;
  struct type *class_type, *rtti_type;
  struct value *result, *tem, *original_arg = arg;
  struct value *result, *tem, *original_arg = arg;
  CORE_ADDR addr;
  CORE_ADDR addr;
  int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
  int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
 
 
  if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
  if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
      && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
      && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
    error (_("Argument to dynamic_cast must be a pointer or reference type"));
    error (_("Argument to dynamic_cast must be a pointer or reference type"));
  if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
  if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
      && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
      && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
    error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
    error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
 
 
  class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
  class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
    {
    {
      if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
      if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
          && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
          && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
                && value_as_long (arg) == 0))
                && value_as_long (arg) == 0))
        error (_("Argument to dynamic_cast does not have pointer type"));
        error (_("Argument to dynamic_cast does not have pointer type"));
      if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
      if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
        {
        {
          arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
          arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
          if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
          if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
            error (_("Argument to dynamic_cast does not have pointer to class type"));
            error (_("Argument to dynamic_cast does not have pointer to class type"));
        }
        }
 
 
      /* Handle NULL pointers.  */
      /* Handle NULL pointers.  */
      if (value_as_long (arg) == 0)
      if (value_as_long (arg) == 0)
        return value_zero (type, not_lval);
        return value_zero (type, not_lval);
 
 
      arg = value_ind (arg);
      arg = value_ind (arg);
    }
    }
  else
  else
    {
    {
      if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
      if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
        error (_("Argument to dynamic_cast does not have class type"));
        error (_("Argument to dynamic_cast does not have class type"));
    }
    }
 
 
  /* If the classes are the same, just return the argument.  */
  /* If the classes are the same, just return the argument.  */
  if (class_types_same_p (class_type, arg_type))
  if (class_types_same_p (class_type, arg_type))
    return value_cast (type, arg);
    return value_cast (type, arg);
 
 
  /* If the target type is a unique base class of the argument's
  /* If the target type is a unique base class of the argument's
     declared type, just cast it.  */
     declared type, just cast it.  */
  if (is_ancestor (class_type, arg_type))
  if (is_ancestor (class_type, arg_type))
    {
    {
      if (is_unique_ancestor (class_type, arg))
      if (is_unique_ancestor (class_type, arg))
        return value_cast (type, original_arg);
        return value_cast (type, original_arg);
      error (_("Ambiguous dynamic_cast"));
      error (_("Ambiguous dynamic_cast"));
    }
    }
 
 
  rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
  rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
  if (! rtti_type)
  if (! rtti_type)
    error (_("Couldn't determine value's most derived type for dynamic_cast"));
    error (_("Couldn't determine value's most derived type for dynamic_cast"));
 
 
  /* Compute the most derived object's address.  */
  /* Compute the most derived object's address.  */
  addr = value_address (arg);
  addr = value_address (arg);
  if (full)
  if (full)
    {
    {
      /* Done.  */
      /* Done.  */
    }
    }
  else if (using_enc)
  else if (using_enc)
    addr += top;
    addr += top;
  else
  else
    addr += top + value_embedded_offset (arg);
    addr += top + value_embedded_offset (arg);
 
 
  /* dynamic_cast<void *> means to return a pointer to the
  /* dynamic_cast<void *> means to return a pointer to the
     most-derived object.  */
     most-derived object.  */
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
      && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
      && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
    return value_at_lazy (type, addr);
    return value_at_lazy (type, addr);
 
 
  tem = value_at (type, addr);
  tem = value_at (type, addr);
 
 
  /* The first dynamic check specified in 5.2.7.  */
  /* The first dynamic check specified in 5.2.7.  */
  if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
  if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
    {
    {
      if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
      if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
        return tem;
        return tem;
      result = NULL;
      result = NULL;
      if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
      if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
                                value_contents (tem), value_address (tem),
                                value_contents (tem), value_address (tem),
                                rtti_type, addr,
                                rtti_type, addr,
                                arg_type,
                                arg_type,
                                &result) == 1)
                                &result) == 1)
        return value_cast (type,
        return value_cast (type,
                           is_ref ? value_ref (result) : value_addr (result));
                           is_ref ? value_ref (result) : value_addr (result));
    }
    }
 
 
  /* The second dynamic check specified in 5.2.7.  */
  /* The second dynamic check specified in 5.2.7.  */
  result = NULL;
  result = NULL;
  if (is_public_ancestor (arg_type, rtti_type)
  if (is_public_ancestor (arg_type, rtti_type)
      && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
      && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
                               value_contents (tem), value_address (tem),
                               value_contents (tem), value_address (tem),
                               rtti_type, &result) == 1)
                               rtti_type, &result) == 1)
    return value_cast (type,
    return value_cast (type,
                       is_ref ? value_ref (result) : value_addr (result));
                       is_ref ? value_ref (result) : value_addr (result));
 
 
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
    return value_zero (type, not_lval);
    return value_zero (type, not_lval);
 
 
  error (_("dynamic_cast failed"));
  error (_("dynamic_cast failed"));
}
}
 
 
/* Create a value of type TYPE that is zero, and return it.  */
/* Create a value of type TYPE that is zero, and return it.  */
 
 
struct value *
struct value *
value_zero (struct type *type, enum lval_type lv)
value_zero (struct type *type, enum lval_type lv)
{
{
  struct value *val = allocate_value (type);
  struct value *val = allocate_value (type);
  VALUE_LVAL (val) = lv;
  VALUE_LVAL (val) = lv;
 
 
  return val;
  return val;
}
}
 
 
/* Create a value of numeric type TYPE that is one, and return it.  */
/* Create a value of numeric type TYPE that is one, and return it.  */
 
 
struct value *
struct value *
value_one (struct type *type, enum lval_type lv)
value_one (struct type *type, enum lval_type lv)
{
{
  struct type *type1 = check_typedef (type);
  struct type *type1 = check_typedef (type);
  struct value *val;
  struct value *val;
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
  if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
    {
    {
      enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
      enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
      gdb_byte v[16];
      gdb_byte v[16];
      decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
      decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
      val = value_from_decfloat (type, v);
      val = value_from_decfloat (type, v);
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
  else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
    {
    {
      val = value_from_double (type, (DOUBLEST) 1);
      val = value_from_double (type, (DOUBLEST) 1);
    }
    }
  else if (is_integral_type (type1))
  else if (is_integral_type (type1))
    {
    {
      val = value_from_longest (type, (LONGEST) 1);
      val = value_from_longest (type, (LONGEST) 1);
    }
    }
  else
  else
    {
    {
      error (_("Not a numeric type."));
      error (_("Not a numeric type."));
    }
    }
 
 
  VALUE_LVAL (val) = lv;
  VALUE_LVAL (val) = lv;
  return val;
  return val;
}
}
 
 
/* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.  */
/* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.  */
 
 
static struct value *
static struct value *
get_value_at (struct type *type, CORE_ADDR addr, int lazy)
get_value_at (struct type *type, CORE_ADDR addr, int lazy)
{
{
  struct value *val;
  struct value *val;
 
 
  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error (_("Attempt to dereference a generic pointer."));
    error (_("Attempt to dereference a generic pointer."));
 
 
  if (lazy)
  if (lazy)
    {
    {
      val = allocate_value_lazy (type);
      val = allocate_value_lazy (type);
    }
    }
  else
  else
    {
    {
      val = allocate_value (type);
      val = allocate_value (type);
      read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
      read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
    }
    }
 
 
  VALUE_LVAL (val) = lval_memory;
  VALUE_LVAL (val) = lval_memory;
  set_value_address (val, addr);
  set_value_address (val, addr);
 
 
  return val;
  return val;
}
}
 
 
/* Return a value with type TYPE located at ADDR.
/* Return a value with type TYPE located at ADDR.
 
 
   Call value_at only if the data needs to be fetched immediately;
   Call value_at only if the data needs to be fetched immediately;
   if we can be 'lazy' and defer the fetch, perhaps indefinately, call
   if we can be 'lazy' and defer the fetch, perhaps indefinately, call
   value_at_lazy instead.  value_at_lazy simply records the address of
   value_at_lazy instead.  value_at_lazy simply records the address of
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   is tested in the value_contents macro, which is used if and when
   is tested in the value_contents macro, which is used if and when
   the contents are actually required.
   the contents are actually required.
 
 
   Note: value_at does *NOT* handle embedded offsets; perform such
   Note: value_at does *NOT* handle embedded offsets; perform such
   adjustments before or after calling it.  */
   adjustments before or after calling it.  */
 
 
struct value *
struct value *
value_at (struct type *type, CORE_ADDR addr)
value_at (struct type *type, CORE_ADDR addr)
{
{
  return get_value_at (type, addr, 0);
  return get_value_at (type, addr, 0);
}
}
 
 
/* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
/* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
 
 
struct value *
struct value *
value_at_lazy (struct type *type, CORE_ADDR addr)
value_at_lazy (struct type *type, CORE_ADDR addr)
{
{
  return get_value_at (type, addr, 1);
  return get_value_at (type, addr, 1);
}
}
 
 
/* Called only from the value_contents and value_contents_all()
/* Called only from the value_contents and value_contents_all()
   macros, if the current data for a variable needs to be loaded into
   macros, if the current data for a variable needs to be loaded into
   value_contents(VAL).  Fetches the data from the user's process, and
   value_contents(VAL).  Fetches the data from the user's process, and
   clears the lazy flag to indicate that the data in the buffer is
   clears the lazy flag to indicate that the data in the buffer is
   valid.
   valid.
 
 
   If the value is zero-length, we avoid calling read_memory, which
   If the value is zero-length, we avoid calling read_memory, which
   would abort.  We mark the value as fetched anyway -- all 0 bytes of
   would abort.  We mark the value as fetched anyway -- all 0 bytes of
   it.
   it.
 
 
   This function returns a value because it is used in the
   This function returns a value because it is used in the
   value_contents macro as part of an expression, where a void would
   value_contents macro as part of an expression, where a void would
   not work.  The value is ignored.  */
   not work.  The value is ignored.  */
 
 
int
int
value_fetch_lazy (struct value *val)
value_fetch_lazy (struct value *val)
{
{
  gdb_assert (value_lazy (val));
  gdb_assert (value_lazy (val));
  allocate_value_contents (val);
  allocate_value_contents (val);
  if (value_bitsize (val))
  if (value_bitsize (val))
    {
    {
      /* To read a lazy bitfield, read the entire enclosing value.  This
      /* To read a lazy bitfield, read the entire enclosing value.  This
         prevents reading the same block of (possibly volatile) memory once
         prevents reading the same block of (possibly volatile) memory once
         per bitfield.  It would be even better to read only the containing
         per bitfield.  It would be even better to read only the containing
         word, but we have no way to record that just specific bits of a
         word, but we have no way to record that just specific bits of a
         value have been fetched.  */
         value have been fetched.  */
      struct type *type = check_typedef (value_type (val));
      struct type *type = check_typedef (value_type (val));
      enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
      enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
      struct value *parent = value_parent (val);
      struct value *parent = value_parent (val);
      LONGEST offset = value_offset (val);
      LONGEST offset = value_offset (val);
      LONGEST num = unpack_bits_as_long (value_type (val),
      LONGEST num = unpack_bits_as_long (value_type (val),
                                         value_contents (parent) + offset,
                                         value_contents (parent) + offset,
                                         value_bitpos (val),
                                         value_bitpos (val),
                                         value_bitsize (val));
                                         value_bitsize (val));
      int length = TYPE_LENGTH (type);
      int length = TYPE_LENGTH (type);
      store_signed_integer (value_contents_raw (val), length, byte_order, num);
      store_signed_integer (value_contents_raw (val), length, byte_order, num);
    }
    }
  else if (VALUE_LVAL (val) == lval_memory)
  else if (VALUE_LVAL (val) == lval_memory)
    {
    {
      CORE_ADDR addr = value_address (val);
      CORE_ADDR addr = value_address (val);
      int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
      int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
 
 
      if (length)
      if (length)
        {
        {
          if (value_stack (val))
          if (value_stack (val))
            read_stack (addr, value_contents_all_raw (val), length);
            read_stack (addr, value_contents_all_raw (val), length);
          else
          else
            read_memory (addr, value_contents_all_raw (val), length);
            read_memory (addr, value_contents_all_raw (val), length);
        }
        }
    }
    }
  else if (VALUE_LVAL (val) == lval_register)
  else if (VALUE_LVAL (val) == lval_register)
    {
    {
      struct frame_info *frame;
      struct frame_info *frame;
      int regnum;
      int regnum;
      struct type *type = check_typedef (value_type (val));
      struct type *type = check_typedef (value_type (val));
      struct value *new_val = val, *mark = value_mark ();
      struct value *new_val = val, *mark = value_mark ();
 
 
      /* Offsets are not supported here; lazy register values must
      /* Offsets are not supported here; lazy register values must
         refer to the entire register.  */
         refer to the entire register.  */
      gdb_assert (value_offset (val) == 0);
      gdb_assert (value_offset (val) == 0);
 
 
      while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
      while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
        {
        {
          frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
          frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
          regnum = VALUE_REGNUM (new_val);
          regnum = VALUE_REGNUM (new_val);
 
 
          gdb_assert (frame != NULL);
          gdb_assert (frame != NULL);
 
 
          /* Convertible register routines are used for multi-register
          /* Convertible register routines are used for multi-register
             values and for interpretation in different types
             values and for interpretation in different types
             (e.g. float or int from a double register).  Lazy
             (e.g. float or int from a double register).  Lazy
             register values should have the register's natural type,
             register values should have the register's natural type,
             so they do not apply.  */
             so they do not apply.  */
          gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
          gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
                                                   regnum, type));
                                                   regnum, type));
 
 
          new_val = get_frame_register_value (frame, regnum);
          new_val = get_frame_register_value (frame, regnum);
        }
        }
 
 
      /* If it's still lazy (for instance, a saved register on the
      /* If it's still lazy (for instance, a saved register on the
         stack), fetch it.  */
         stack), fetch it.  */
      if (value_lazy (new_val))
      if (value_lazy (new_val))
        value_fetch_lazy (new_val);
        value_fetch_lazy (new_val);
 
 
      /* If the register was not saved, mark it unavailable.  */
      /* If the register was not saved, mark it unavailable.  */
      if (value_optimized_out (new_val))
      if (value_optimized_out (new_val))
        set_value_optimized_out (val, 1);
        set_value_optimized_out (val, 1);
      else
      else
        memcpy (value_contents_raw (val), value_contents (new_val),
        memcpy (value_contents_raw (val), value_contents (new_val),
                TYPE_LENGTH (type));
                TYPE_LENGTH (type));
 
 
      if (frame_debug)
      if (frame_debug)
        {
        {
          struct gdbarch *gdbarch;
          struct gdbarch *gdbarch;
          frame = frame_find_by_id (VALUE_FRAME_ID (val));
          frame = frame_find_by_id (VALUE_FRAME_ID (val));
          regnum = VALUE_REGNUM (val);
          regnum = VALUE_REGNUM (val);
          gdbarch = get_frame_arch (frame);
          gdbarch = get_frame_arch (frame);
 
 
          fprintf_unfiltered (gdb_stdlog, "\
          fprintf_unfiltered (gdb_stdlog, "\
{ value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
{ value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
                              frame_relative_level (frame), regnum,
                              frame_relative_level (frame), regnum,
                              user_reg_map_regnum_to_name (gdbarch, regnum));
                              user_reg_map_regnum_to_name (gdbarch, regnum));
 
 
          fprintf_unfiltered (gdb_stdlog, "->");
          fprintf_unfiltered (gdb_stdlog, "->");
          if (value_optimized_out (new_val))
          if (value_optimized_out (new_val))
            fprintf_unfiltered (gdb_stdlog, " optimized out");
            fprintf_unfiltered (gdb_stdlog, " optimized out");
          else
          else
            {
            {
              int i;
              int i;
              const gdb_byte *buf = value_contents (new_val);
              const gdb_byte *buf = value_contents (new_val);
 
 
              if (VALUE_LVAL (new_val) == lval_register)
              if (VALUE_LVAL (new_val) == lval_register)
                fprintf_unfiltered (gdb_stdlog, " register=%d",
                fprintf_unfiltered (gdb_stdlog, " register=%d",
                                    VALUE_REGNUM (new_val));
                                    VALUE_REGNUM (new_val));
              else if (VALUE_LVAL (new_val) == lval_memory)
              else if (VALUE_LVAL (new_val) == lval_memory)
                fprintf_unfiltered (gdb_stdlog, " address=%s",
                fprintf_unfiltered (gdb_stdlog, " address=%s",
                                    paddress (gdbarch,
                                    paddress (gdbarch,
                                              value_address (new_val)));
                                              value_address (new_val)));
              else
              else
                fprintf_unfiltered (gdb_stdlog, " computed");
                fprintf_unfiltered (gdb_stdlog, " computed");
 
 
              fprintf_unfiltered (gdb_stdlog, " bytes=");
              fprintf_unfiltered (gdb_stdlog, " bytes=");
              fprintf_unfiltered (gdb_stdlog, "[");
              fprintf_unfiltered (gdb_stdlog, "[");
              for (i = 0; i < register_size (gdbarch, regnum); i++)
              for (i = 0; i < register_size (gdbarch, regnum); i++)
                fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
                fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
              fprintf_unfiltered (gdb_stdlog, "]");
              fprintf_unfiltered (gdb_stdlog, "]");
            }
            }
 
 
          fprintf_unfiltered (gdb_stdlog, " }\n");
          fprintf_unfiltered (gdb_stdlog, " }\n");
        }
        }
 
 
      /* Dispose of the intermediate values.  This prevents
      /* Dispose of the intermediate values.  This prevents
         watchpoints from trying to watch the saved frame pointer.  */
         watchpoints from trying to watch the saved frame pointer.  */
      value_free_to_mark (mark);
      value_free_to_mark (mark);
    }
    }
  else if (VALUE_LVAL (val) == lval_computed)
  else if (VALUE_LVAL (val) == lval_computed)
    value_computed_funcs (val)->read (val);
    value_computed_funcs (val)->read (val);
  else
  else
    internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
    internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
 
 
  set_value_lazy (val, 0);
  set_value_lazy (val, 0);
  return 0;
  return 0;
}
}
 
 
 
 
/* Store the contents of FROMVAL into the location of TOVAL.
/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of FROMVAL.  */
   Return a new value with the location of TOVAL and contents of FROMVAL.  */
 
 
struct value *
struct value *
value_assign (struct value *toval, struct value *fromval)
value_assign (struct value *toval, struct value *fromval)
{
{
  struct type *type;
  struct type *type;
  struct value *val;
  struct value *val;
  struct frame_id old_frame;
  struct frame_id old_frame;
 
 
  if (!deprecated_value_modifiable (toval))
  if (!deprecated_value_modifiable (toval))
    error (_("Left operand of assignment is not a modifiable lvalue."));
    error (_("Left operand of assignment is not a modifiable lvalue."));
 
 
  toval = coerce_ref (toval);
  toval = coerce_ref (toval);
 
 
  type = value_type (toval);
  type = value_type (toval);
  if (VALUE_LVAL (toval) != lval_internalvar)
  if (VALUE_LVAL (toval) != lval_internalvar)
    {
    {
      toval = value_coerce_to_target (toval);
      toval = value_coerce_to_target (toval);
      fromval = value_cast (type, fromval);
      fromval = value_cast (type, fromval);
    }
    }
  else
  else
    {
    {
      /* Coerce arrays and functions to pointers, except for arrays
      /* Coerce arrays and functions to pointers, except for arrays
         which only live in GDB's storage.  */
         which only live in GDB's storage.  */
      if (!value_must_coerce_to_target (fromval))
      if (!value_must_coerce_to_target (fromval))
        fromval = coerce_array (fromval);
        fromval = coerce_array (fromval);
    }
    }
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  /* Since modifying a register can trash the frame chain, and
  /* Since modifying a register can trash the frame chain, and
     modifying memory can trash the frame cache, we save the old frame
     modifying memory can trash the frame cache, we save the old frame
     and then restore the new frame afterwards.  */
     and then restore the new frame afterwards.  */
  old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
  old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
 
 
  switch (VALUE_LVAL (toval))
  switch (VALUE_LVAL (toval))
    {
    {
    case lval_internalvar:
    case lval_internalvar:
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      val = value_copy (fromval);
      val = value_copy (fromval);
      val = value_change_enclosing_type (val,
      val = value_change_enclosing_type (val,
                                         value_enclosing_type (fromval));
                                         value_enclosing_type (fromval));
      set_value_embedded_offset (val, value_embedded_offset (fromval));
      set_value_embedded_offset (val, value_embedded_offset (fromval));
      set_value_pointed_to_offset (val,
      set_value_pointed_to_offset (val,
                                   value_pointed_to_offset (fromval));
                                   value_pointed_to_offset (fromval));
      return val;
      return val;
 
 
    case lval_internalvar_component:
    case lval_internalvar_component:
      set_internalvar_component (VALUE_INTERNALVAR (toval),
      set_internalvar_component (VALUE_INTERNALVAR (toval),
                                 value_offset (toval),
                                 value_offset (toval),
                                 value_bitpos (toval),
                                 value_bitpos (toval),
                                 value_bitsize (toval),
                                 value_bitsize (toval),
                                 fromval);
                                 fromval);
      break;
      break;
 
 
    case lval_memory:
    case lval_memory:
      {
      {
        const gdb_byte *dest_buffer;
        const gdb_byte *dest_buffer;
        CORE_ADDR changed_addr;
        CORE_ADDR changed_addr;
        int changed_len;
        int changed_len;
        gdb_byte buffer[sizeof (LONGEST)];
        gdb_byte buffer[sizeof (LONGEST)];
 
 
        if (value_bitsize (toval))
        if (value_bitsize (toval))
          {
          {
            struct value *parent = value_parent (toval);
            struct value *parent = value_parent (toval);
            changed_addr = value_address (parent) + value_offset (toval);
            changed_addr = value_address (parent) + value_offset (toval);
 
 
            changed_len = (value_bitpos (toval)
            changed_len = (value_bitpos (toval)
                           + value_bitsize (toval)
                           + value_bitsize (toval)
                           + HOST_CHAR_BIT - 1)
                           + HOST_CHAR_BIT - 1)
              / HOST_CHAR_BIT;
              / HOST_CHAR_BIT;
 
 
            /* If we can read-modify-write exactly the size of the
            /* If we can read-modify-write exactly the size of the
               containing type (e.g. short or int) then do so.  This
               containing type (e.g. short or int) then do so.  This
               is safer for volatile bitfields mapped to hardware
               is safer for volatile bitfields mapped to hardware
               registers.  */
               registers.  */
            if (changed_len < TYPE_LENGTH (type)
            if (changed_len < TYPE_LENGTH (type)
                && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
                && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
                && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
                && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
              changed_len = TYPE_LENGTH (type);
              changed_len = TYPE_LENGTH (type);
 
 
            if (changed_len > (int) sizeof (LONGEST))
            if (changed_len > (int) sizeof (LONGEST))
              error (_("Can't handle bitfields which don't fit in a %d bit word."),
              error (_("Can't handle bitfields which don't fit in a %d bit word."),
                     (int) sizeof (LONGEST) * HOST_CHAR_BIT);
                     (int) sizeof (LONGEST) * HOST_CHAR_BIT);
 
 
            read_memory (changed_addr, buffer, changed_len);
            read_memory (changed_addr, buffer, changed_len);
            modify_field (type, buffer, value_as_long (fromval),
            modify_field (type, buffer, value_as_long (fromval),
                          value_bitpos (toval), value_bitsize (toval));
                          value_bitpos (toval), value_bitsize (toval));
            dest_buffer = buffer;
            dest_buffer = buffer;
          }
          }
        else
        else
          {
          {
            changed_addr = value_address (toval);
            changed_addr = value_address (toval);
            changed_len = TYPE_LENGTH (type);
            changed_len = TYPE_LENGTH (type);
            dest_buffer = value_contents (fromval);
            dest_buffer = value_contents (fromval);
          }
          }
 
 
        write_memory (changed_addr, dest_buffer, changed_len);
        write_memory (changed_addr, dest_buffer, changed_len);
        observer_notify_memory_changed (changed_addr, changed_len,
        observer_notify_memory_changed (changed_addr, changed_len,
                                        dest_buffer);
                                        dest_buffer);
      }
      }
      break;
      break;
 
 
    case lval_register:
    case lval_register:
      {
      {
        struct frame_info *frame;
        struct frame_info *frame;
        struct gdbarch *gdbarch;
        struct gdbarch *gdbarch;
        int value_reg;
        int value_reg;
 
 
        /* Figure out which frame this is in currently.  */
        /* Figure out which frame this is in currently.  */
        frame = frame_find_by_id (VALUE_FRAME_ID (toval));
        frame = frame_find_by_id (VALUE_FRAME_ID (toval));
        value_reg = VALUE_REGNUM (toval);
        value_reg = VALUE_REGNUM (toval);
 
 
        if (!frame)
        if (!frame)
          error (_("Value being assigned to is no longer active."));
          error (_("Value being assigned to is no longer active."));
 
 
        gdbarch = get_frame_arch (frame);
        gdbarch = get_frame_arch (frame);
        if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
        if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
          {
          {
            /* If TOVAL is a special machine register requiring
            /* If TOVAL is a special machine register requiring
               conversion of program values to a special raw
               conversion of program values to a special raw
               format.  */
               format.  */
            gdbarch_value_to_register (gdbarch, frame,
            gdbarch_value_to_register (gdbarch, frame,
                                       VALUE_REGNUM (toval), type,
                                       VALUE_REGNUM (toval), type,
                                       value_contents (fromval));
                                       value_contents (fromval));
          }
          }
        else
        else
          {
          {
            if (value_bitsize (toval))
            if (value_bitsize (toval))
              {
              {
                struct value *parent = value_parent (toval);
                struct value *parent = value_parent (toval);
                int offset = value_offset (parent) + value_offset (toval);
                int offset = value_offset (parent) + value_offset (toval);
                int changed_len;
                int changed_len;
                gdb_byte buffer[sizeof (LONGEST)];
                gdb_byte buffer[sizeof (LONGEST)];
 
 
                changed_len = (value_bitpos (toval)
                changed_len = (value_bitpos (toval)
                               + value_bitsize (toval)
                               + value_bitsize (toval)
                               + HOST_CHAR_BIT - 1)
                               + HOST_CHAR_BIT - 1)
                  / HOST_CHAR_BIT;
                  / HOST_CHAR_BIT;
 
 
                if (changed_len > (int) sizeof (LONGEST))
                if (changed_len > (int) sizeof (LONGEST))
                  error (_("Can't handle bitfields which don't fit in a %d bit word."),
                  error (_("Can't handle bitfields which don't fit in a %d bit word."),
                         (int) sizeof (LONGEST) * HOST_CHAR_BIT);
                         (int) sizeof (LONGEST) * HOST_CHAR_BIT);
 
 
                get_frame_register_bytes (frame, value_reg, offset,
                get_frame_register_bytes (frame, value_reg, offset,
                                          changed_len, buffer);
                                          changed_len, buffer);
 
 
                modify_field (type, buffer, value_as_long (fromval),
                modify_field (type, buffer, value_as_long (fromval),
                              value_bitpos (toval), value_bitsize (toval));
                              value_bitpos (toval), value_bitsize (toval));
 
 
                put_frame_register_bytes (frame, value_reg, offset,
                put_frame_register_bytes (frame, value_reg, offset,
                                          changed_len, buffer);
                                          changed_len, buffer);
              }
              }
            else
            else
              {
              {
                put_frame_register_bytes (frame, value_reg,
                put_frame_register_bytes (frame, value_reg,
                                          value_offset (toval),
                                          value_offset (toval),
                                          TYPE_LENGTH (type),
                                          TYPE_LENGTH (type),
                                          value_contents (fromval));
                                          value_contents (fromval));
              }
              }
          }
          }
 
 
        if (deprecated_register_changed_hook)
        if (deprecated_register_changed_hook)
          deprecated_register_changed_hook (-1);
          deprecated_register_changed_hook (-1);
        observer_notify_target_changed (&current_target);
        observer_notify_target_changed (&current_target);
        break;
        break;
      }
      }
 
 
    case lval_computed:
    case lval_computed:
      {
      {
        struct lval_funcs *funcs = value_computed_funcs (toval);
        struct lval_funcs *funcs = value_computed_funcs (toval);
 
 
        funcs->write (toval, fromval);
        funcs->write (toval, fromval);
      }
      }
      break;
      break;
 
 
    default:
    default:
      error (_("Left operand of assignment is not an lvalue."));
      error (_("Left operand of assignment is not an lvalue."));
    }
    }
 
 
  /* Assigning to the stack pointer, frame pointer, and other
  /* Assigning to the stack pointer, frame pointer, and other
     (architecture and calling convention specific) registers may
     (architecture and calling convention specific) registers may
     cause the frame cache to be out of date.  Assigning to memory
     cause the frame cache to be out of date.  Assigning to memory
     also can.  We just do this on all assignments to registers or
     also can.  We just do this on all assignments to registers or
     memory, for simplicity's sake; I doubt the slowdown matters.  */
     memory, for simplicity's sake; I doubt the slowdown matters.  */
  switch (VALUE_LVAL (toval))
  switch (VALUE_LVAL (toval))
    {
    {
    case lval_memory:
    case lval_memory:
    case lval_register:
    case lval_register:
 
 
      reinit_frame_cache ();
      reinit_frame_cache ();
 
 
      /* Having destroyed the frame cache, restore the selected
      /* Having destroyed the frame cache, restore the selected
         frame.  */
         frame.  */
 
 
      /* FIXME: cagney/2002-11-02: There has to be a better way of
      /* FIXME: cagney/2002-11-02: There has to be a better way of
         doing this.  Instead of constantly saving/restoring the
         doing this.  Instead of constantly saving/restoring the
         frame.  Why not create a get_selected_frame() function that,
         frame.  Why not create a get_selected_frame() function that,
         having saved the selected frame's ID can automatically
         having saved the selected frame's ID can automatically
         re-find the previously selected frame automatically.  */
         re-find the previously selected frame automatically.  */
 
 
      {
      {
        struct frame_info *fi = frame_find_by_id (old_frame);
        struct frame_info *fi = frame_find_by_id (old_frame);
        if (fi != NULL)
        if (fi != NULL)
          select_frame (fi);
          select_frame (fi);
      }
      }
 
 
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* If the field does not entirely fill a LONGEST, then zero the sign
  /* If the field does not entirely fill a LONGEST, then zero the sign
     bits.  If the field is signed, and is negative, then sign
     bits.  If the field is signed, and is negative, then sign
     extend.  */
     extend.  */
  if ((value_bitsize (toval) > 0)
  if ((value_bitsize (toval) > 0)
      && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
      && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
    {
    {
      LONGEST fieldval = value_as_long (fromval);
      LONGEST fieldval = value_as_long (fromval);
      LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
      LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
 
 
      fieldval &= valmask;
      fieldval &= valmask;
      if (!TYPE_UNSIGNED (type)
      if (!TYPE_UNSIGNED (type)
          && (fieldval & (valmask ^ (valmask >> 1))))
          && (fieldval & (valmask ^ (valmask >> 1))))
        fieldval |= ~valmask;
        fieldval |= ~valmask;
 
 
      fromval = value_from_longest (type, fieldval);
      fromval = value_from_longest (type, fieldval);
    }
    }
 
 
  val = value_copy (toval);
  val = value_copy (toval);
  memcpy (value_contents_raw (val), value_contents (fromval),
  memcpy (value_contents_raw (val), value_contents (fromval),
          TYPE_LENGTH (type));
          TYPE_LENGTH (type));
  deprecated_set_value_type (val, type);
  deprecated_set_value_type (val, type);
  val = value_change_enclosing_type (val,
  val = value_change_enclosing_type (val,
                                     value_enclosing_type (fromval));
                                     value_enclosing_type (fromval));
  set_value_embedded_offset (val, value_embedded_offset (fromval));
  set_value_embedded_offset (val, value_embedded_offset (fromval));
  set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
  set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
 
 
  return val;
  return val;
}
}
 
 
/* Extend a value VAL to COUNT repetitions of its type.  */
/* Extend a value VAL to COUNT repetitions of its type.  */
 
 
struct value *
struct value *
value_repeat (struct value *arg1, int count)
value_repeat (struct value *arg1, int count)
{
{
  struct value *val;
  struct value *val;
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Only values in memory can be extended with '@'."));
    error (_("Only values in memory can be extended with '@'."));
  if (count < 1)
  if (count < 1)
    error (_("Invalid number %d of repetitions."), count);
    error (_("Invalid number %d of repetitions."), count);
 
 
  val = allocate_repeat_value (value_enclosing_type (arg1), count);
  val = allocate_repeat_value (value_enclosing_type (arg1), count);
 
 
  read_memory (value_address (arg1),
  read_memory (value_address (arg1),
               value_contents_all_raw (val),
               value_contents_all_raw (val),
               TYPE_LENGTH (value_enclosing_type (val)));
               TYPE_LENGTH (value_enclosing_type (val)));
  VALUE_LVAL (val) = lval_memory;
  VALUE_LVAL (val) = lval_memory;
  set_value_address (val, value_address (arg1));
  set_value_address (val, value_address (arg1));
 
 
  return val;
  return val;
}
}
 
 
struct value *
struct value *
value_of_variable (struct symbol *var, struct block *b)
value_of_variable (struct symbol *var, struct block *b)
{
{
  struct value *val;
  struct value *val;
  struct frame_info *frame;
  struct frame_info *frame;
 
 
  if (!symbol_read_needs_frame (var))
  if (!symbol_read_needs_frame (var))
    frame = NULL;
    frame = NULL;
  else if (!b)
  else if (!b)
    frame = get_selected_frame (_("No frame selected."));
    frame = get_selected_frame (_("No frame selected."));
  else
  else
    {
    {
      frame = block_innermost_frame (b);
      frame = block_innermost_frame (b);
      if (!frame)
      if (!frame)
        {
        {
          if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
          if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
              && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
              && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
            error (_("No frame is currently executing in block %s."),
            error (_("No frame is currently executing in block %s."),
                   SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
                   SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
          else
          else
            error (_("No frame is currently executing in specified block"));
            error (_("No frame is currently executing in specified block"));
        }
        }
    }
    }
 
 
  val = read_var_value (var, frame);
  val = read_var_value (var, frame);
  if (!val)
  if (!val)
    error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
    error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
 
 
  return val;
  return val;
}
}
 
 
struct value *
struct value *
address_of_variable (struct symbol *var, struct block *b)
address_of_variable (struct symbol *var, struct block *b)
{
{
  struct type *type = SYMBOL_TYPE (var);
  struct type *type = SYMBOL_TYPE (var);
  struct value *val;
  struct value *val;
 
 
  /* Evaluate it first; if the result is a memory address, we're fine.
  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here. */
     Lazy evaluation pays off here. */
 
 
  val = value_of_variable (var, b);
  val = value_of_variable (var, b);
 
 
  if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
  if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
    {
      CORE_ADDR addr = value_address (val);
      CORE_ADDR addr = value_address (val);
      return value_from_pointer (lookup_pointer_type (type), addr);
      return value_from_pointer (lookup_pointer_type (type), addr);
    }
    }
 
 
  /* Not a memory address; check what the problem was.  */
  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (val))
  switch (VALUE_LVAL (val))
    {
    {
    case lval_register:
    case lval_register:
      {
      {
        struct frame_info *frame;
        struct frame_info *frame;
        const char *regname;
        const char *regname;
 
 
        frame = frame_find_by_id (VALUE_FRAME_ID (val));
        frame = frame_find_by_id (VALUE_FRAME_ID (val));
        gdb_assert (frame);
        gdb_assert (frame);
 
 
        regname = gdbarch_register_name (get_frame_arch (frame),
        regname = gdbarch_register_name (get_frame_arch (frame),
                                         VALUE_REGNUM (val));
                                         VALUE_REGNUM (val));
        gdb_assert (regname && *regname);
        gdb_assert (regname && *regname);
 
 
        error (_("Address requested for identifier "
        error (_("Address requested for identifier "
                 "\"%s\" which is in register $%s"),
                 "\"%s\" which is in register $%s"),
               SYMBOL_PRINT_NAME (var), regname);
               SYMBOL_PRINT_NAME (var), regname);
        break;
        break;
      }
      }
 
 
    default:
    default:
      error (_("Can't take address of \"%s\" which isn't an lvalue."),
      error (_("Can't take address of \"%s\" which isn't an lvalue."),
             SYMBOL_PRINT_NAME (var));
             SYMBOL_PRINT_NAME (var));
      break;
      break;
    }
    }
 
 
  return val;
  return val;
}
}
 
 
/* Return one if VAL does not live in target memory, but should in order
/* Return one if VAL does not live in target memory, but should in order
   to operate on it.  Otherwise return zero.  */
   to operate on it.  Otherwise return zero.  */
 
 
int
int
value_must_coerce_to_target (struct value *val)
value_must_coerce_to_target (struct value *val)
{
{
  struct type *valtype;
  struct type *valtype;
 
 
  /* The only lval kinds which do not live in target memory.  */
  /* The only lval kinds which do not live in target memory.  */
  if (VALUE_LVAL (val) != not_lval
  if (VALUE_LVAL (val) != not_lval
      && VALUE_LVAL (val) != lval_internalvar)
      && VALUE_LVAL (val) != lval_internalvar)
    return 0;
    return 0;
 
 
  valtype = check_typedef (value_type (val));
  valtype = check_typedef (value_type (val));
 
 
  switch (TYPE_CODE (valtype))
  switch (TYPE_CODE (valtype))
    {
    {
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_STRING:
    case TYPE_CODE_STRING:
      return 1;
      return 1;
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Make sure that VAL lives in target memory if it's supposed to.  For instance,
/* Make sure that VAL lives in target memory if it's supposed to.  For instance,
   strings are constructed as character arrays in GDB's storage, and this
   strings are constructed as character arrays in GDB's storage, and this
   function copies them to the target.  */
   function copies them to the target.  */
 
 
struct value *
struct value *
value_coerce_to_target (struct value *val)
value_coerce_to_target (struct value *val)
{
{
  LONGEST length;
  LONGEST length;
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  if (!value_must_coerce_to_target (val))
  if (!value_must_coerce_to_target (val))
    return val;
    return val;
 
 
  length = TYPE_LENGTH (check_typedef (value_type (val)));
  length = TYPE_LENGTH (check_typedef (value_type (val)));
  addr = allocate_space_in_inferior (length);
  addr = allocate_space_in_inferior (length);
  write_memory (addr, value_contents (val), length);
  write_memory (addr, value_contents (val), length);
  return value_at_lazy (value_type (val), addr);
  return value_at_lazy (value_type (val), addr);
}
}
 
 
/* Given a value which is an array, return a value which is a pointer
/* Given a value which is an array, return a value which is a pointer
   to its first element, regardless of whether or not the array has a
   to its first element, regardless of whether or not the array has a
   nonzero lower bound.
   nonzero lower bound.
 
 
   FIXME: A previous comment here indicated that this routine should
   FIXME: A previous comment here indicated that this routine should
   be substracting the array's lower bound.  It's not clear to me that
   be substracting the array's lower bound.  It's not clear to me that
   this is correct.  Given an array subscripting operation, it would
   this is correct.  Given an array subscripting operation, it would
   certainly work to do the adjustment here, essentially computing:
   certainly work to do the adjustment here, essentially computing:
 
 
   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
 
 
   However I believe a more appropriate and logical place to account
   However I believe a more appropriate and logical place to account
   for the lower bound is to do so in value_subscript, essentially
   for the lower bound is to do so in value_subscript, essentially
   computing:
   computing:
 
 
   (&array[0] + ((index - lowerbound) * sizeof array[0]))
   (&array[0] + ((index - lowerbound) * sizeof array[0]))
 
 
   As further evidence consider what would happen with operations
   As further evidence consider what would happen with operations
   other than array subscripting, where the caller would get back a
   other than array subscripting, where the caller would get back a
   value that had an address somewhere before the actual first element
   value that had an address somewhere before the actual first element
   of the array, and the information about the lower bound would be
   of the array, and the information about the lower bound would be
   lost because of the coercion to pointer type.
   lost because of the coercion to pointer type.
 */
 */
 
 
struct value *
struct value *
value_coerce_array (struct value *arg1)
value_coerce_array (struct value *arg1)
{
{
  struct type *type = check_typedef (value_type (arg1));
  struct type *type = check_typedef (value_type (arg1));
 
 
  /* If the user tries to do something requiring a pointer with an
  /* If the user tries to do something requiring a pointer with an
     array that has not yet been pushed to the target, then this would
     array that has not yet been pushed to the target, then this would
     be a good time to do so.  */
     be a good time to do so.  */
  arg1 = value_coerce_to_target (arg1);
  arg1 = value_coerce_to_target (arg1);
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Attempt to take address of value not located in memory."));
    error (_("Attempt to take address of value not located in memory."));
 
 
  return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
  return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
                             value_address (arg1));
                             value_address (arg1));
}
}
 
 
/* Given a value which is a function, return a value which is a pointer
/* Given a value which is a function, return a value which is a pointer
   to it.  */
   to it.  */
 
 
struct value *
struct value *
value_coerce_function (struct value *arg1)
value_coerce_function (struct value *arg1)
{
{
  struct value *retval;
  struct value *retval;
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Attempt to take address of value not located in memory."));
    error (_("Attempt to take address of value not located in memory."));
 
 
  retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
  retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
                               value_address (arg1));
                               value_address (arg1));
  return retval;
  return retval;
}
}
 
 
/* Return a pointer value for the object for which ARG1 is the
/* Return a pointer value for the object for which ARG1 is the
   contents.  */
   contents.  */
 
 
struct value *
struct value *
value_addr (struct value *arg1)
value_addr (struct value *arg1)
{
{
  struct value *arg2;
  struct value *arg2;
 
 
  struct type *type = check_typedef (value_type (arg1));
  struct type *type = check_typedef (value_type (arg1));
  if (TYPE_CODE (type) == TYPE_CODE_REF)
  if (TYPE_CODE (type) == TYPE_CODE_REF)
    {
    {
      /* Copy the value, but change the type from (T&) to (T*).  We
      /* Copy the value, but change the type from (T&) to (T*).  We
         keep the same location information, which is efficient, and
         keep the same location information, which is efficient, and
         allows &(&X) to get the location containing the reference.  */
         allows &(&X) to get the location containing the reference.  */
      arg2 = value_copy (arg1);
      arg2 = value_copy (arg1);
      deprecated_set_value_type (arg2,
      deprecated_set_value_type (arg2,
                                 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
                                 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
      return arg2;
      return arg2;
    }
    }
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
    return value_coerce_function (arg1);
    return value_coerce_function (arg1);
 
 
  /* If this is an array that has not yet been pushed to the target,
  /* If this is an array that has not yet been pushed to the target,
     then this would be a good time to force it to memory.  */
     then this would be a good time to force it to memory.  */
  arg1 = value_coerce_to_target (arg1);
  arg1 = value_coerce_to_target (arg1);
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Attempt to take address of value not located in memory."));
    error (_("Attempt to take address of value not located in memory."));
 
 
  /* Get target memory address */
  /* Get target memory address */
  arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
  arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
                             (value_address (arg1)
                             (value_address (arg1)
                              + value_embedded_offset (arg1)));
                              + value_embedded_offset (arg1)));
 
 
  /* This may be a pointer to a base subobject; so remember the
  /* This may be a pointer to a base subobject; so remember the
     full derived object's type ...  */
     full derived object's type ...  */
  arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
  arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
  /* ... and also the relative position of the subobject in the full
  /* ... and also the relative position of the subobject in the full
     object.  */
     object.  */
  set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
  set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
  return arg2;
  return arg2;
}
}
 
 
/* Return a reference value for the object for which ARG1 is the
/* Return a reference value for the object for which ARG1 is the
   contents.  */
   contents.  */
 
 
struct value *
struct value *
value_ref (struct value *arg1)
value_ref (struct value *arg1)
{
{
  struct value *arg2;
  struct value *arg2;
 
 
  struct type *type = check_typedef (value_type (arg1));
  struct type *type = check_typedef (value_type (arg1));
  if (TYPE_CODE (type) == TYPE_CODE_REF)
  if (TYPE_CODE (type) == TYPE_CODE_REF)
    return arg1;
    return arg1;
 
 
  arg2 = value_addr (arg1);
  arg2 = value_addr (arg1);
  deprecated_set_value_type (arg2, lookup_reference_type (type));
  deprecated_set_value_type (arg2, lookup_reference_type (type));
  return arg2;
  return arg2;
}
}
 
 
/* Given a value of a pointer type, apply the C unary * operator to
/* Given a value of a pointer type, apply the C unary * operator to
   it.  */
   it.  */
 
 
struct value *
struct value *
value_ind (struct value *arg1)
value_ind (struct value *arg1)
{
{
  struct type *base_type;
  struct type *base_type;
  struct value *arg2;
  struct value *arg2;
 
 
  arg1 = coerce_array (arg1);
  arg1 = coerce_array (arg1);
 
 
  base_type = check_typedef (value_type (arg1));
  base_type = check_typedef (value_type (arg1));
 
 
  if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
  if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
    {
    {
      struct type *enc_type;
      struct type *enc_type;
      /* We may be pointing to something embedded in a larger object.
      /* We may be pointing to something embedded in a larger object.
         Get the real type of the enclosing object.  */
         Get the real type of the enclosing object.  */
      enc_type = check_typedef (value_enclosing_type (arg1));
      enc_type = check_typedef (value_enclosing_type (arg1));
      enc_type = TYPE_TARGET_TYPE (enc_type);
      enc_type = TYPE_TARGET_TYPE (enc_type);
 
 
      if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
      if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
          || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
          || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
        /* For functions, go through find_function_addr, which knows
        /* For functions, go through find_function_addr, which knows
           how to handle function descriptors.  */
           how to handle function descriptors.  */
        arg2 = value_at_lazy (enc_type,
        arg2 = value_at_lazy (enc_type,
                              find_function_addr (arg1, NULL));
                              find_function_addr (arg1, NULL));
      else
      else
        /* Retrieve the enclosing object pointed to */
        /* Retrieve the enclosing object pointed to */
        arg2 = value_at_lazy (enc_type,
        arg2 = value_at_lazy (enc_type,
                              (value_as_address (arg1)
                              (value_as_address (arg1)
                               - value_pointed_to_offset (arg1)));
                               - value_pointed_to_offset (arg1)));
 
 
      /* Re-adjust type.  */
      /* Re-adjust type.  */
      deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
      deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
      /* Add embedding info.  */
      /* Add embedding info.  */
      arg2 = value_change_enclosing_type (arg2, enc_type);
      arg2 = value_change_enclosing_type (arg2, enc_type);
      set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
      set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
 
 
      /* We may be pointing to an object of some derived type.  */
      /* We may be pointing to an object of some derived type.  */
      arg2 = value_full_object (arg2, NULL, 0, 0, 0);
      arg2 = value_full_object (arg2, NULL, 0, 0, 0);
      return arg2;
      return arg2;
    }
    }
 
 
  error (_("Attempt to take contents of a non-pointer value."));
  error (_("Attempt to take contents of a non-pointer value."));
  return 0;                      /* For lint -- never reached.  */
  return 0;                      /* For lint -- never reached.  */
}
}


/* Create a value for an array by allocating space in GDB, copying
/* Create a value for an array by allocating space in GDB, copying
   copying the data into that space, and then setting up an array
   copying the data into that space, and then setting up an array
   value.
   value.
 
 
   The array bounds are set from LOWBOUND and HIGHBOUND, and the array
   The array bounds are set from LOWBOUND and HIGHBOUND, and the array
   is populated from the values passed in ELEMVEC.
   is populated from the values passed in ELEMVEC.
 
 
   The element type of the array is inherited from the type of the
   The element type of the array is inherited from the type of the
   first element, and all elements must have the same size (though we
   first element, and all elements must have the same size (though we
   don't currently enforce any restriction on their types).  */
   don't currently enforce any restriction on their types).  */
 
 
struct value *
struct value *
value_array (int lowbound, int highbound, struct value **elemvec)
value_array (int lowbound, int highbound, struct value **elemvec)
{
{
  int nelem;
  int nelem;
  int idx;
  int idx;
  unsigned int typelength;
  unsigned int typelength;
  struct value *val;
  struct value *val;
  struct type *arraytype;
  struct type *arraytype;
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  /* Validate that the bounds are reasonable and that each of the
  /* Validate that the bounds are reasonable and that each of the
     elements have the same size.  */
     elements have the same size.  */
 
 
  nelem = highbound - lowbound + 1;
  nelem = highbound - lowbound + 1;
  if (nelem <= 0)
  if (nelem <= 0)
    {
    {
      error (_("bad array bounds (%d, %d)"), lowbound, highbound);
      error (_("bad array bounds (%d, %d)"), lowbound, highbound);
    }
    }
  typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
  typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
  for (idx = 1; idx < nelem; idx++)
  for (idx = 1; idx < nelem; idx++)
    {
    {
      if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
      if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
        {
        {
          error (_("array elements must all be the same size"));
          error (_("array elements must all be the same size"));
        }
        }
    }
    }
 
 
  arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
  arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
                                       lowbound, highbound);
                                       lowbound, highbound);
 
 
  if (!current_language->c_style_arrays)
  if (!current_language->c_style_arrays)
    {
    {
      val = allocate_value (arraytype);
      val = allocate_value (arraytype);
      for (idx = 0; idx < nelem; idx++)
      for (idx = 0; idx < nelem; idx++)
        {
        {
          memcpy (value_contents_all_raw (val) + (idx * typelength),
          memcpy (value_contents_all_raw (val) + (idx * typelength),
                  value_contents_all (elemvec[idx]),
                  value_contents_all (elemvec[idx]),
                  typelength);
                  typelength);
        }
        }
      return val;
      return val;
    }
    }
 
 
  /* Allocate space to store the array, and then initialize it by
  /* Allocate space to store the array, and then initialize it by
     copying in each element.  */
     copying in each element.  */
 
 
  val = allocate_value (arraytype);
  val = allocate_value (arraytype);
  for (idx = 0; idx < nelem; idx++)
  for (idx = 0; idx < nelem; idx++)
    memcpy (value_contents_writeable (val) + (idx * typelength),
    memcpy (value_contents_writeable (val) + (idx * typelength),
            value_contents_all (elemvec[idx]),
            value_contents_all (elemvec[idx]),
            typelength);
            typelength);
  return val;
  return val;
}
}
 
 
struct value *
struct value *
value_cstring (char *ptr, int len, struct type *char_type)
value_cstring (char *ptr, int len, struct type *char_type)
{
{
  struct value *val;
  struct value *val;
  int lowbound = current_language->string_lower_bound;
  int lowbound = current_language->string_lower_bound;
  int highbound = len / TYPE_LENGTH (char_type);
  int highbound = len / TYPE_LENGTH (char_type);
  struct type *stringtype
  struct type *stringtype
    = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
    = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
 
 
  val = allocate_value (stringtype);
  val = allocate_value (stringtype);
  memcpy (value_contents_raw (val), ptr, len);
  memcpy (value_contents_raw (val), ptr, len);
  return val;
  return val;
}
}
 
 
/* Create a value for a string constant by allocating space in the
/* Create a value for a string constant by allocating space in the
   inferior, copying the data into that space, and returning the
   inferior, copying the data into that space, and returning the
   address with type TYPE_CODE_STRING.  PTR points to the string
   address with type TYPE_CODE_STRING.  PTR points to the string
   constant data; LEN is number of characters.
   constant data; LEN is number of characters.
 
 
   Note that string types are like array of char types with a lower
   Note that string types are like array of char types with a lower
   bound of zero and an upper bound of LEN - 1.  Also note that the
   bound of zero and an upper bound of LEN - 1.  Also note that the
   string may contain embedded null bytes.  */
   string may contain embedded null bytes.  */
 
 
struct value *
struct value *
value_string (char *ptr, int len, struct type *char_type)
value_string (char *ptr, int len, struct type *char_type)
{
{
  struct value *val;
  struct value *val;
  int lowbound = current_language->string_lower_bound;
  int lowbound = current_language->string_lower_bound;
  int highbound = len / TYPE_LENGTH (char_type);
  int highbound = len / TYPE_LENGTH (char_type);
  struct type *stringtype
  struct type *stringtype
    = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
    = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
 
 
  val = allocate_value (stringtype);
  val = allocate_value (stringtype);
  memcpy (value_contents_raw (val), ptr, len);
  memcpy (value_contents_raw (val), ptr, len);
  return val;
  return val;
}
}
 
 
struct value *
struct value *
value_bitstring (char *ptr, int len, struct type *index_type)
value_bitstring (char *ptr, int len, struct type *index_type)
{
{
  struct value *val;
  struct value *val;
  struct type *domain_type
  struct type *domain_type
    = create_range_type (NULL, index_type, 0, len - 1);
    = create_range_type (NULL, index_type, 0, len - 1);
  struct type *type = create_set_type (NULL, domain_type);
  struct type *type = create_set_type (NULL, domain_type);
  TYPE_CODE (type) = TYPE_CODE_BITSTRING;
  TYPE_CODE (type) = TYPE_CODE_BITSTRING;
  val = allocate_value (type);
  val = allocate_value (type);
  memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
  memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
  return val;
  return val;
}
}


/* See if we can pass arguments in T2 to a function which takes
/* See if we can pass arguments in T2 to a function which takes
   arguments of types T1.  T1 is a list of NARGS arguments, and T2 is
   arguments of types T1.  T1 is a list of NARGS arguments, and T2 is
   a NULL-terminated vector.  If some arguments need coercion of some
   a NULL-terminated vector.  If some arguments need coercion of some
   sort, then the coerced values are written into T2.  Return value is
   sort, then the coerced values are written into T2.  Return value is
   0 if the arguments could be matched, or the position at which they
   0 if the arguments could be matched, or the position at which they
   differ if not.
   differ if not.
 
 
   STATICP is nonzero if the T1 argument list came from a static
   STATICP is nonzero if the T1 argument list came from a static
   member function.  T2 will still include the ``this'' pointer, but
   member function.  T2 will still include the ``this'' pointer, but
   it will be skipped.
   it will be skipped.
 
 
   For non-static member functions, we ignore the first argument,
   For non-static member functions, we ignore the first argument,
   which is the type of the instance variable.  This is because we
   which is the type of the instance variable.  This is because we
   want to handle calls with objects from derived classes.  This is
   want to handle calls with objects from derived classes.  This is
   not entirely correct: we should actually check to make sure that a
   not entirely correct: we should actually check to make sure that a
   requested operation is type secure, shouldn't we?  FIXME.  */
   requested operation is type secure, shouldn't we?  FIXME.  */
 
 
static int
static int
typecmp (int staticp, int varargs, int nargs,
typecmp (int staticp, int varargs, int nargs,
         struct field t1[], struct value *t2[])
         struct field t1[], struct value *t2[])
{
{
  int i;
  int i;
 
 
  if (t2 == 0)
  if (t2 == 0)
    internal_error (__FILE__, __LINE__,
    internal_error (__FILE__, __LINE__,
                    _("typecmp: no argument list"));
                    _("typecmp: no argument list"));
 
 
  /* Skip ``this'' argument if applicable.  T2 will always include
  /* Skip ``this'' argument if applicable.  T2 will always include
     THIS.  */
     THIS.  */
  if (staticp)
  if (staticp)
    t2 ++;
    t2 ++;
 
 
  for (i = 0;
  for (i = 0;
       (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
       (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
       i++)
       i++)
    {
    {
      struct type *tt1, *tt2;
      struct type *tt1, *tt2;
 
 
      if (!t2[i])
      if (!t2[i])
        return i + 1;
        return i + 1;
 
 
      tt1 = check_typedef (t1[i].type);
      tt1 = check_typedef (t1[i].type);
      tt2 = check_typedef (value_type (t2[i]));
      tt2 = check_typedef (value_type (t2[i]));
 
 
      if (TYPE_CODE (tt1) == TYPE_CODE_REF
      if (TYPE_CODE (tt1) == TYPE_CODE_REF
      /* We should be doing hairy argument matching, as below.  */
      /* We should be doing hairy argument matching, as below.  */
          && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
          && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
        {
        {
          if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
          if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
            t2[i] = value_coerce_array (t2[i]);
            t2[i] = value_coerce_array (t2[i]);
          else
          else
            t2[i] = value_ref (t2[i]);
            t2[i] = value_ref (t2[i]);
          continue;
          continue;
        }
        }
 
 
      /* djb - 20000715 - Until the new type structure is in the
      /* djb - 20000715 - Until the new type structure is in the
         place, and we can attempt things like implicit conversions,
         place, and we can attempt things like implicit conversions,
         we need to do this so you can take something like a map<const
         we need to do this so you can take something like a map<const
         char *>, and properly access map["hello"], because the
         char *>, and properly access map["hello"], because the
         argument to [] will be a reference to a pointer to a char,
         argument to [] will be a reference to a pointer to a char,
         and the argument will be a pointer to a char.  */
         and the argument will be a pointer to a char.  */
      while (TYPE_CODE(tt1) == TYPE_CODE_REF
      while (TYPE_CODE(tt1) == TYPE_CODE_REF
             || TYPE_CODE (tt1) == TYPE_CODE_PTR)
             || TYPE_CODE (tt1) == TYPE_CODE_PTR)
        {
        {
          tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
          tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
        }
        }
      while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
      while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
             || TYPE_CODE(tt2) == TYPE_CODE_PTR
             || TYPE_CODE(tt2) == TYPE_CODE_PTR
             || TYPE_CODE(tt2) == TYPE_CODE_REF)
             || TYPE_CODE(tt2) == TYPE_CODE_REF)
        {
        {
          tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
          tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
        }
        }
      if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
      if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
        continue;
        continue;
      /* Array to pointer is a `trivial conversion' according to the
      /* Array to pointer is a `trivial conversion' according to the
         ARM.  */
         ARM.  */
 
 
      /* We should be doing much hairier argument matching (see
      /* We should be doing much hairier argument matching (see
         section 13.2 of the ARM), but as a quick kludge, just check
         section 13.2 of the ARM), but as a quick kludge, just check
         for the same type code.  */
         for the same type code.  */
      if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
      if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
        return i + 1;
        return i + 1;
    }
    }
  if (varargs || t2[i] == NULL)
  if (varargs || t2[i] == NULL)
    return 0;
    return 0;
  return i + 1;
  return i + 1;
}
}
 
 
/* Helper function used by value_struct_elt to recurse through
/* Helper function used by value_struct_elt to recurse through
   baseclasses.  Look for a field NAME in ARG1. Adjust the address of
   baseclasses.  Look for a field NAME in ARG1. Adjust the address of
   ARG1 by OFFSET bytes, and search in it assuming it has (class) type
   ARG1 by OFFSET bytes, and search in it assuming it has (class) type
   TYPE.  If found, return value, else return NULL.
   TYPE.  If found, return value, else return NULL.
 
 
   If LOOKING_FOR_BASECLASS, then instead of looking for struct
   If LOOKING_FOR_BASECLASS, then instead of looking for struct
   fields, look for a baseclass named NAME.  */
   fields, look for a baseclass named NAME.  */
 
 
static struct value *
static struct value *
search_struct_field (const char *name, struct value *arg1, int offset,
search_struct_field (const char *name, struct value *arg1, int offset,
                     struct type *type, int looking_for_baseclass)
                     struct type *type, int looking_for_baseclass)
{
{
  int i;
  int i;
  int nbases;
  int nbases;
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  nbases = TYPE_N_BASECLASSES (type);
  nbases = TYPE_N_BASECLASSES (type);
 
 
  if (!looking_for_baseclass)
  if (!looking_for_baseclass)
    for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
    for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
      {
      {
        char *t_field_name = TYPE_FIELD_NAME (type, i);
        char *t_field_name = TYPE_FIELD_NAME (type, i);
 
 
        if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
          {
          {
            struct value *v;
            struct value *v;
            if (field_is_static (&TYPE_FIELD (type, i)))
            if (field_is_static (&TYPE_FIELD (type, i)))
              {
              {
                v = value_static_field (type, i);
                v = value_static_field (type, i);
                if (v == 0)
                if (v == 0)
                  error (_("field %s is nonexistent or has been optimised out"),
                  error (_("field %s is nonexistent or has been optimised out"),
                         name);
                         name);
              }
              }
            else
            else
              {
              {
                v = value_primitive_field (arg1, offset, i, type);
                v = value_primitive_field (arg1, offset, i, type);
                if (v == 0)
                if (v == 0)
                  error (_("there is no field named %s"), name);
                  error (_("there is no field named %s"), name);
              }
              }
            return v;
            return v;
          }
          }
 
 
        if (t_field_name
        if (t_field_name
            && (t_field_name[0] == '\0'
            && (t_field_name[0] == '\0'
                || (TYPE_CODE (type) == TYPE_CODE_UNION
                || (TYPE_CODE (type) == TYPE_CODE_UNION
                    && (strcmp_iw (t_field_name, "else") == 0))))
                    && (strcmp_iw (t_field_name, "else") == 0))))
          {
          {
            struct type *field_type = TYPE_FIELD_TYPE (type, i);
            struct type *field_type = TYPE_FIELD_TYPE (type, i);
            if (TYPE_CODE (field_type) == TYPE_CODE_UNION
            if (TYPE_CODE (field_type) == TYPE_CODE_UNION
                || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
                || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
              {
              {
                /* Look for a match through the fields of an anonymous
                /* Look for a match through the fields of an anonymous
                   union, or anonymous struct.  C++ provides anonymous
                   union, or anonymous struct.  C++ provides anonymous
                   unions.
                   unions.
 
 
                   In the GNU Chill (now deleted from GDB)
                   In the GNU Chill (now deleted from GDB)
                   implementation of variant record types, each
                   implementation of variant record types, each
                   <alternative field> has an (anonymous) union type,
                   <alternative field> has an (anonymous) union type,
                   each member of the union represents a <variant
                   each member of the union represents a <variant
                   alternative>.  Each <variant alternative> is
                   alternative>.  Each <variant alternative> is
                   represented as a struct, with a member for each
                   represented as a struct, with a member for each
                   <variant field>.  */
                   <variant field>.  */
 
 
                struct value *v;
                struct value *v;
                int new_offset = offset;
                int new_offset = offset;
 
 
                /* This is pretty gross.  In G++, the offset in an
                /* This is pretty gross.  In G++, the offset in an
                   anonymous union is relative to the beginning of the
                   anonymous union is relative to the beginning of the
                   enclosing struct.  In the GNU Chill (now deleted
                   enclosing struct.  In the GNU Chill (now deleted
                   from GDB) implementation of variant records, the
                   from GDB) implementation of variant records, the
                   bitpos is zero in an anonymous union field, so we
                   bitpos is zero in an anonymous union field, so we
                   have to add the offset of the union here.  */
                   have to add the offset of the union here.  */
                if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
                if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
                    || (TYPE_NFIELDS (field_type) > 0
                    || (TYPE_NFIELDS (field_type) > 0
                        && TYPE_FIELD_BITPOS (field_type, 0) == 0))
                        && TYPE_FIELD_BITPOS (field_type, 0) == 0))
                  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
                  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
 
 
                v = search_struct_field (name, arg1, new_offset,
                v = search_struct_field (name, arg1, new_offset,
                                         field_type,
                                         field_type,
                                         looking_for_baseclass);
                                         looking_for_baseclass);
                if (v)
                if (v)
                  return v;
                  return v;
              }
              }
          }
          }
      }
      }
 
 
  for (i = 0; i < nbases; i++)
  for (i = 0; i < nbases; i++)
    {
    {
      struct value *v;
      struct value *v;
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      /* If we are looking for baseclasses, this is what we get when
      /* If we are looking for baseclasses, this is what we get when
         we hit them.  But it could happen that the base part's member
         we hit them.  But it could happen that the base part's member
         name is not yet filled in.  */
         name is not yet filled in.  */
      int found_baseclass = (looking_for_baseclass
      int found_baseclass = (looking_for_baseclass
                             && TYPE_BASECLASS_NAME (type, i) != NULL
                             && TYPE_BASECLASS_NAME (type, i) != NULL
                             && (strcmp_iw (name,
                             && (strcmp_iw (name,
                                            TYPE_BASECLASS_NAME (type,
                                            TYPE_BASECLASS_NAME (type,
                                                                 i)) == 0));
                                                                 i)) == 0));
 
 
      if (BASETYPE_VIA_VIRTUAL (type, i))
      if (BASETYPE_VIA_VIRTUAL (type, i))
        {
        {
          int boffset;
          int boffset;
          struct value *v2;
          struct value *v2;
 
 
          boffset = baseclass_offset (type, i,
          boffset = baseclass_offset (type, i,
                                      value_contents (arg1) + offset,
                                      value_contents (arg1) + offset,
                                      value_address (arg1)
                                      value_address (arg1)
                                      + value_embedded_offset (arg1)
                                      + value_embedded_offset (arg1)
                                      + offset);
                                      + offset);
          if (boffset == -1)
          if (boffset == -1)
            error (_("virtual baseclass botch"));
            error (_("virtual baseclass botch"));
 
 
          /* The virtual base class pointer might have been clobbered
          /* The virtual base class pointer might have been clobbered
             by the user program. Make sure that it still points to a
             by the user program. Make sure that it still points to a
             valid memory location.  */
             valid memory location.  */
 
 
          boffset += value_embedded_offset (arg1) + offset;
          boffset += value_embedded_offset (arg1) + offset;
          if (boffset < 0
          if (boffset < 0
              || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
              || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
            {
            {
              CORE_ADDR base_addr;
              CORE_ADDR base_addr;
 
 
              v2  = allocate_value (basetype);
              v2  = allocate_value (basetype);
              base_addr = value_address (arg1) + boffset;
              base_addr = value_address (arg1) + boffset;
              if (target_read_memory (base_addr,
              if (target_read_memory (base_addr,
                                      value_contents_raw (v2),
                                      value_contents_raw (v2),
                                      TYPE_LENGTH (basetype)) != 0)
                                      TYPE_LENGTH (basetype)) != 0)
                error (_("virtual baseclass botch"));
                error (_("virtual baseclass botch"));
              VALUE_LVAL (v2) = lval_memory;
              VALUE_LVAL (v2) = lval_memory;
              set_value_address (v2, base_addr);
              set_value_address (v2, base_addr);
            }
            }
          else
          else
            {
            {
              v2 = value_copy (arg1);
              v2 = value_copy (arg1);
              deprecated_set_value_type (v2, basetype);
              deprecated_set_value_type (v2, basetype);
              set_value_embedded_offset (v2, boffset);
              set_value_embedded_offset (v2, boffset);
            }
            }
 
 
          if (found_baseclass)
          if (found_baseclass)
            return v2;
            return v2;
          v = search_struct_field (name, v2, 0,
          v = search_struct_field (name, v2, 0,
                                   TYPE_BASECLASS (type, i),
                                   TYPE_BASECLASS (type, i),
                                   looking_for_baseclass);
                                   looking_for_baseclass);
        }
        }
      else if (found_baseclass)
      else if (found_baseclass)
        v = value_primitive_field (arg1, offset, i, type);
        v = value_primitive_field (arg1, offset, i, type);
      else
      else
        v = search_struct_field (name, arg1,
        v = search_struct_field (name, arg1,
                                 offset + TYPE_BASECLASS_BITPOS (type,
                                 offset + TYPE_BASECLASS_BITPOS (type,
                                                                 i) / 8,
                                                                 i) / 8,
                                 basetype, looking_for_baseclass);
                                 basetype, looking_for_baseclass);
      if (v)
      if (v)
        return v;
        return v;
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Helper function used by value_struct_elt to recurse through
/* Helper function used by value_struct_elt to recurse through
   baseclasses.  Look for a field NAME in ARG1. Adjust the address of
   baseclasses.  Look for a field NAME in ARG1. Adjust the address of
   ARG1 by OFFSET bytes, and search in it assuming it has (class) type
   ARG1 by OFFSET bytes, and search in it assuming it has (class) type
   TYPE.
   TYPE.
 
 
   If found, return value, else if name matched and args not return
   If found, return value, else if name matched and args not return
   (value) -1, else return NULL.  */
   (value) -1, else return NULL.  */
 
 
static struct value *
static struct value *
search_struct_method (const char *name, struct value **arg1p,
search_struct_method (const char *name, struct value **arg1p,
                      struct value **args, int offset,
                      struct value **args, int offset,
                      int *static_memfuncp, struct type *type)
                      int *static_memfuncp, struct type *type)
{
{
  int i;
  int i;
  struct value *v;
  struct value *v;
  int name_matched = 0;
  int name_matched = 0;
  char dem_opname[64];
  char dem_opname[64];
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      /* FIXME!  May need to check for ARM demangling here */
      /* FIXME!  May need to check for ARM demangling here */
      if (strncmp (t_field_name, "__", 2) == 0 ||
      if (strncmp (t_field_name, "__", 2) == 0 ||
          strncmp (t_field_name, "op", 2) == 0 ||
          strncmp (t_field_name, "op", 2) == 0 ||
          strncmp (t_field_name, "type", 4) == 0)
          strncmp (t_field_name, "type", 4) == 0)
        {
        {
          if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
          if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
          else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
          else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
        }
        }
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        {
        {
          int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
          int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
          name_matched = 1;
          name_matched = 1;
 
 
          check_stub_method_group (type, i);
          check_stub_method_group (type, i);
          if (j > 0 && args == 0)
          if (j > 0 && args == 0)
            error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
            error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
          else if (j == 0 && args == 0)
          else if (j == 0 && args == 0)
            {
            {
              v = value_fn_field (arg1p, f, j, type, offset);
              v = value_fn_field (arg1p, f, j, type, offset);
              if (v != NULL)
              if (v != NULL)
                return v;
                return v;
            }
            }
          else
          else
            while (j >= 0)
            while (j >= 0)
              {
              {
                if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
                if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
                              TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
                              TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
                              TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
                              TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
                              TYPE_FN_FIELD_ARGS (f, j), args))
                              TYPE_FN_FIELD_ARGS (f, j), args))
                  {
                  {
                    if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
                    if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
                      return value_virtual_fn_field (arg1p, f, j,
                      return value_virtual_fn_field (arg1p, f, j,
                                                     type, offset);
                                                     type, offset);
                    if (TYPE_FN_FIELD_STATIC_P (f, j)
                    if (TYPE_FN_FIELD_STATIC_P (f, j)
                        && static_memfuncp)
                        && static_memfuncp)
                      *static_memfuncp = 1;
                      *static_memfuncp = 1;
                    v = value_fn_field (arg1p, f, j, type, offset);
                    v = value_fn_field (arg1p, f, j, type, offset);
                    if (v != NULL)
                    if (v != NULL)
                      return v;
                      return v;
                  }
                  }
                j--;
                j--;
              }
              }
        }
        }
    }
    }
 
 
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
    {
      int base_offset;
      int base_offset;
 
 
      if (BASETYPE_VIA_VIRTUAL (type, i))
      if (BASETYPE_VIA_VIRTUAL (type, i))
        {
        {
          struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
          struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
          const gdb_byte *base_valaddr;
          const gdb_byte *base_valaddr;
 
 
          /* The virtual base class pointer might have been
          /* The virtual base class pointer might have been
             clobbered by the user program. Make sure that it
             clobbered by the user program. Make sure that it
            still points to a valid memory location.  */
            still points to a valid memory location.  */
 
 
          if (offset < 0 || offset >= TYPE_LENGTH (type))
          if (offset < 0 || offset >= TYPE_LENGTH (type))
            {
            {
              gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
              gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
              if (target_read_memory (value_address (*arg1p) + offset,
              if (target_read_memory (value_address (*arg1p) + offset,
                                      tmp, TYPE_LENGTH (baseclass)) != 0)
                                      tmp, TYPE_LENGTH (baseclass)) != 0)
                error (_("virtual baseclass botch"));
                error (_("virtual baseclass botch"));
              base_valaddr = tmp;
              base_valaddr = tmp;
            }
            }
          else
          else
            base_valaddr = value_contents (*arg1p) + offset;
            base_valaddr = value_contents (*arg1p) + offset;
 
 
          base_offset = baseclass_offset (type, i, base_valaddr,
          base_offset = baseclass_offset (type, i, base_valaddr,
                                          value_address (*arg1p) + offset);
                                          value_address (*arg1p) + offset);
          if (base_offset == -1)
          if (base_offset == -1)
            error (_("virtual baseclass botch"));
            error (_("virtual baseclass botch"));
        }
        }
      else
      else
        {
        {
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
        }
        }
      v = search_struct_method (name, arg1p, args, base_offset + offset,
      v = search_struct_method (name, arg1p, args, base_offset + offset,
                                static_memfuncp, TYPE_BASECLASS (type, i));
                                static_memfuncp, TYPE_BASECLASS (type, i));
      if (v == (struct value *) - 1)
      if (v == (struct value *) - 1)
        {
        {
          name_matched = 1;
          name_matched = 1;
        }
        }
      else if (v)
      else if (v)
        {
        {
          /* FIXME-bothner:  Why is this commented out?  Why is it here?  */
          /* FIXME-bothner:  Why is this commented out?  Why is it here?  */
          /* *arg1p = arg1_tmp; */
          /* *arg1p = arg1_tmp; */
          return v;
          return v;
        }
        }
    }
    }
  if (name_matched)
  if (name_matched)
    return (struct value *) - 1;
    return (struct value *) - 1;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Given *ARGP, a value of type (pointer to a)* structure/union,
/* Given *ARGP, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target
   extract the component named NAME from the ultimate target
   structure/union and return it as a value with its appropriate type.
   structure/union and return it as a value with its appropriate type.
   ERR is used in the error message if *ARGP's type is wrong.
   ERR is used in the error message if *ARGP's type is wrong.
 
 
   C++: ARGS is a list of argument types to aid in the selection of
   C++: ARGS is a list of argument types to aid in the selection of
   an appropriate method. Also, handle derived types.
   an appropriate method. Also, handle derived types.
 
 
   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   where the truthvalue of whether the function that was resolved was
   where the truthvalue of whether the function that was resolved was
   a static member function or not is stored.
   a static member function or not is stored.
 
 
   ERR is an error message to be printed in case the field is not
   ERR is an error message to be printed in case the field is not
   found.  */
   found.  */
 
 
struct value *
struct value *
value_struct_elt (struct value **argp, struct value **args,
value_struct_elt (struct value **argp, struct value **args,
                  const char *name, int *static_memfuncp, const char *err)
                  const char *name, int *static_memfuncp, const char *err)
{
{
  struct type *t;
  struct type *t;
  struct value *v;
  struct value *v;
 
 
  *argp = coerce_array (*argp);
  *argp = coerce_array (*argp);
 
 
  t = check_typedef (value_type (*argp));
  t = check_typedef (value_type (*argp));
 
 
  /* Follow pointers until we get to a non-pointer.  */
  /* Follow pointers until we get to a non-pointer.  */
 
 
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
    {
      *argp = value_ind (*argp);
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
      if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
        *argp = coerce_array (*argp);
        *argp = coerce_array (*argp);
      t = check_typedef (value_type (*argp));
      t = check_typedef (value_type (*argp));
    }
    }
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a %s."), err);
    error (_("Attempt to extract a component of a value that is not a %s."), err);
 
 
  /* Assume it's not, unless we see that it is.  */
  /* Assume it's not, unless we see that it is.  */
  if (static_memfuncp)
  if (static_memfuncp)
    *static_memfuncp = 0;
    *static_memfuncp = 0;
 
 
  if (!args)
  if (!args)
    {
    {
      /* if there are no arguments ...do this...  */
      /* if there are no arguments ...do this...  */
 
 
      /* Try as a field first, because if we succeed, there is less
      /* Try as a field first, because if we succeed, there is less
         work to be done.  */
         work to be done.  */
      v = search_struct_field (name, *argp, 0, t, 0);
      v = search_struct_field (name, *argp, 0, t, 0);
      if (v)
      if (v)
        return v;
        return v;
 
 
      /* C++: If it was not found as a data field, then try to
      /* C++: If it was not found as a data field, then try to
         return it as a pointer to a method.  */
         return it as a pointer to a method.  */
      v = search_struct_method (name, argp, args, 0,
      v = search_struct_method (name, argp, args, 0,
                                static_memfuncp, t);
                                static_memfuncp, t);
 
 
      if (v == (struct value *) - 1)
      if (v == (struct value *) - 1)
        error (_("Cannot take address of method %s."), name);
        error (_("Cannot take address of method %s."), name);
      else if (v == 0)
      else if (v == 0)
        {
        {
          if (TYPE_NFN_FIELDS (t))
          if (TYPE_NFN_FIELDS (t))
            error (_("There is no member or method named %s."), name);
            error (_("There is no member or method named %s."), name);
          else
          else
            error (_("There is no member named %s."), name);
            error (_("There is no member named %s."), name);
        }
        }
      return v;
      return v;
    }
    }
 
 
    v = search_struct_method (name, argp, args, 0,
    v = search_struct_method (name, argp, args, 0,
                              static_memfuncp, t);
                              static_memfuncp, t);
 
 
  if (v == (struct value *) - 1)
  if (v == (struct value *) - 1)
    {
    {
      error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
      error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
    }
    }
  else if (v == 0)
  else if (v == 0)
    {
    {
      /* See if user tried to invoke data as function.  If so, hand it
      /* See if user tried to invoke data as function.  If so, hand it
         back.  If it's not callable (i.e., a pointer to function),
         back.  If it's not callable (i.e., a pointer to function),
         gdb should give an error.  */
         gdb should give an error.  */
      v = search_struct_field (name, *argp, 0, t, 0);
      v = search_struct_field (name, *argp, 0, t, 0);
      /* If we found an ordinary field, then it is not a method call.
      /* If we found an ordinary field, then it is not a method call.
         So, treat it as if it were a static member function.  */
         So, treat it as if it were a static member function.  */
      if (v && static_memfuncp)
      if (v && static_memfuncp)
        *static_memfuncp = 1;
        *static_memfuncp = 1;
    }
    }
 
 
  if (!v)
  if (!v)
    error (_("Structure has no component named %s."), name);
    error (_("Structure has no component named %s."), name);
  return v;
  return v;
}
}
 
 
/* Search through the methods of an object (and its bases) to find a
/* Search through the methods of an object (and its bases) to find a
   specified method.  Return the pointer to the fn_field list of
   specified method.  Return the pointer to the fn_field list of
   overloaded instances.
   overloaded instances.
 
 
   Helper function for value_find_oload_list.
   Helper function for value_find_oload_list.
   ARGP is a pointer to a pointer to a value (the object).
   ARGP is a pointer to a pointer to a value (the object).
   METHOD is a string containing the method name.
   METHOD is a string containing the method name.
   OFFSET is the offset within the value.
   OFFSET is the offset within the value.
   TYPE is the assumed type of the object.
   TYPE is the assumed type of the object.
   NUM_FNS is the number of overloaded instances.
   NUM_FNS is the number of overloaded instances.
   BASETYPE is set to the actual type of the subobject where the
   BASETYPE is set to the actual type of the subobject where the
      method is found.
      method is found.
   BOFFSET is the offset of the base subobject where the method is found.
   BOFFSET is the offset of the base subobject where the method is found.
*/
*/
 
 
static struct fn_field *
static struct fn_field *
find_method_list (struct value **argp, const char *method,
find_method_list (struct value **argp, const char *method,
                  int offset, struct type *type, int *num_fns,
                  int offset, struct type *type, int *num_fns,
                  struct type **basetype, int *boffset)
                  struct type **basetype, int *boffset)
{
{
  int i;
  int i;
  struct fn_field *f;
  struct fn_field *f;
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  *num_fns = 0;
  *num_fns = 0;
 
 
  /* First check in object itself.  */
  /* First check in object itself.  */
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
    {
      /* pai: FIXME What about operators and type conversions?  */
      /* pai: FIXME What about operators and type conversions?  */
      char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
      if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
        {
        {
          int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
          int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
 
 
          *num_fns = len;
          *num_fns = len;
          *basetype = type;
          *basetype = type;
          *boffset = offset;
          *boffset = offset;
 
 
          /* Resolve any stub methods.  */
          /* Resolve any stub methods.  */
          check_stub_method_group (type, i);
          check_stub_method_group (type, i);
 
 
          return f;
          return f;
        }
        }
    }
    }
 
 
  /* Not found in object, check in base subobjects.  */
  /* Not found in object, check in base subobjects.  */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
    {
      int base_offset;
      int base_offset;
      if (BASETYPE_VIA_VIRTUAL (type, i))
      if (BASETYPE_VIA_VIRTUAL (type, i))
        {
        {
          base_offset = value_offset (*argp) + offset;
          base_offset = value_offset (*argp) + offset;
          base_offset = baseclass_offset (type, i,
          base_offset = baseclass_offset (type, i,
                                          value_contents (*argp) + base_offset,
                                          value_contents (*argp) + base_offset,
                                          value_address (*argp) + base_offset);
                                          value_address (*argp) + base_offset);
          if (base_offset == -1)
          if (base_offset == -1)
            error (_("virtual baseclass botch"));
            error (_("virtual baseclass botch"));
        }
        }
      else /* Non-virtual base, simply use bit position from debug
      else /* Non-virtual base, simply use bit position from debug
              info.  */
              info.  */
        {
        {
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
        }
        }
      f = find_method_list (argp, method, base_offset + offset,
      f = find_method_list (argp, method, base_offset + offset,
                            TYPE_BASECLASS (type, i), num_fns,
                            TYPE_BASECLASS (type, i), num_fns,
                            basetype, boffset);
                            basetype, boffset);
      if (f)
      if (f)
        return f;
        return f;
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Return the list of overloaded methods of a specified name.
/* Return the list of overloaded methods of a specified name.
 
 
   ARGP is a pointer to a pointer to a value (the object).
   ARGP is a pointer to a pointer to a value (the object).
   METHOD is the method name.
   METHOD is the method name.
   OFFSET is the offset within the value contents.
   OFFSET is the offset within the value contents.
   NUM_FNS is the number of overloaded instances.
   NUM_FNS is the number of overloaded instances.
   BASETYPE is set to the type of the base subobject that defines the
   BASETYPE is set to the type of the base subobject that defines the
      method.
      method.
   BOFFSET is the offset of the base subobject which defines the method.
   BOFFSET is the offset of the base subobject which defines the method.
*/
*/
 
 
struct fn_field *
struct fn_field *
value_find_oload_method_list (struct value **argp, const char *method,
value_find_oload_method_list (struct value **argp, const char *method,
                              int offset, int *num_fns,
                              int offset, int *num_fns,
                              struct type **basetype, int *boffset)
                              struct type **basetype, int *boffset)
{
{
  struct type *t;
  struct type *t;
 
 
  t = check_typedef (value_type (*argp));
  t = check_typedef (value_type (*argp));
 
 
  /* Code snarfed from value_struct_elt.  */
  /* Code snarfed from value_struct_elt.  */
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
    {
      *argp = value_ind (*argp);
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
      if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
        *argp = coerce_array (*argp);
        *argp = coerce_array (*argp);
      t = check_typedef (value_type (*argp));
      t = check_typedef (value_type (*argp));
    }
    }
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a struct or union"));
    error (_("Attempt to extract a component of a value that is not a struct or union"));
 
 
  return find_method_list (argp, method, 0, t, num_fns,
  return find_method_list (argp, method, 0, t, num_fns,
                           basetype, boffset);
                           basetype, boffset);
}
}
 
 
/* Given an array of argument types (ARGTYPES) (which includes an
/* Given an array of argument types (ARGTYPES) (which includes an
   entry for "this" in the case of C++ methods), the number of
   entry for "this" in the case of C++ methods), the number of
   arguments NARGS, the NAME of a function whether it's a method or
   arguments NARGS, the NAME of a function whether it's a method or
   not (METHOD), and the degree of laxness (LAX) in conforming to
   not (METHOD), and the degree of laxness (LAX) in conforming to
   overload resolution rules in ANSI C++, find the best function that
   overload resolution rules in ANSI C++, find the best function that
   matches on the argument types according to the overload resolution
   matches on the argument types according to the overload resolution
   rules.
   rules.
 
 
   In the case of class methods, the parameter OBJ is an object value
   In the case of class methods, the parameter OBJ is an object value
   in which to search for overloaded methods.
   in which to search for overloaded methods.
 
 
   In the case of non-method functions, the parameter FSYM is a symbol
   In the case of non-method functions, the parameter FSYM is a symbol
   corresponding to one of the overloaded functions.
   corresponding to one of the overloaded functions.
 
 
   Return value is an integer: 0 -> good match, 10 -> debugger applied
   Return value is an integer: 0 -> good match, 10 -> debugger applied
   non-standard coercions, 100 -> incompatible.
   non-standard coercions, 100 -> incompatible.
 
 
   If a method is being searched for, VALP will hold the value.
   If a method is being searched for, VALP will hold the value.
   If a non-method is being searched for, SYMP will hold the symbol
   If a non-method is being searched for, SYMP will hold the symbol
   for it.
   for it.
 
 
   If a method is being searched for, and it is a static method,
   If a method is being searched for, and it is a static method,
   then STATICP will point to a non-zero value.
   then STATICP will point to a non-zero value.
 
 
   Note: This function does *not* check the value of
   Note: This function does *not* check the value of
   overload_resolution.  Caller must check it to see whether overload
   overload_resolution.  Caller must check it to see whether overload
   resolution is permitted.
   resolution is permitted.
*/
*/
 
 
int
int
find_overload_match (struct type **arg_types, int nargs,
find_overload_match (struct type **arg_types, int nargs,
                     const char *name, int method, int lax,
                     const char *name, int method, int lax,
                     struct value **objp, struct symbol *fsym,
                     struct value **objp, struct symbol *fsym,
                     struct value **valp, struct symbol **symp,
                     struct value **valp, struct symbol **symp,
                     int *staticp)
                     int *staticp)
{
{
  struct value *obj = (objp ? *objp : NULL);
  struct value *obj = (objp ? *objp : NULL);
  /* Index of best overloaded function.  */
  /* Index of best overloaded function.  */
  int oload_champ;
  int oload_champ;
  /* The measure for the current best match.  */
  /* The measure for the current best match.  */
  struct badness_vector *oload_champ_bv = NULL;
  struct badness_vector *oload_champ_bv = NULL;
  struct value *temp = obj;
  struct value *temp = obj;
  /* For methods, the list of overloaded methods.  */
  /* For methods, the list of overloaded methods.  */
  struct fn_field *fns_ptr = NULL;
  struct fn_field *fns_ptr = NULL;
  /* For non-methods, the list of overloaded function symbols.  */
  /* For non-methods, the list of overloaded function symbols.  */
  struct symbol **oload_syms = NULL;
  struct symbol **oload_syms = NULL;
  /* Number of overloaded instances being considered.  */
  /* Number of overloaded instances being considered.  */
  int num_fns = 0;
  int num_fns = 0;
  struct type *basetype = NULL;
  struct type *basetype = NULL;
  int boffset;
  int boffset;
  int ix;
  int ix;
  int static_offset;
  int static_offset;
  struct cleanup *old_cleanups = NULL;
  struct cleanup *old_cleanups = NULL;
 
 
  const char *obj_type_name = NULL;
  const char *obj_type_name = NULL;
  char *func_name = NULL;
  char *func_name = NULL;
  enum oload_classification match_quality;
  enum oload_classification match_quality;
 
 
  /* Get the list of overloaded methods or functions.  */
  /* Get the list of overloaded methods or functions.  */
  if (method)
  if (method)
    {
    {
      gdb_assert (obj);
      gdb_assert (obj);
      obj_type_name = TYPE_NAME (value_type (obj));
      obj_type_name = TYPE_NAME (value_type (obj));
      /* Hack: evaluate_subexp_standard often passes in a pointer
      /* Hack: evaluate_subexp_standard often passes in a pointer
         value rather than the object itself, so try again.  */
         value rather than the object itself, so try again.  */
      if ((!obj_type_name || !*obj_type_name)
      if ((!obj_type_name || !*obj_type_name)
          && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
          && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
        obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
        obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
 
 
      fns_ptr = value_find_oload_method_list (&temp, name,
      fns_ptr = value_find_oload_method_list (&temp, name,
                                              0, &num_fns,
                                              0, &num_fns,
                                              &basetype, &boffset);
                                              &basetype, &boffset);
      if (!fns_ptr || !num_fns)
      if (!fns_ptr || !num_fns)
        error (_("Couldn't find method %s%s%s"),
        error (_("Couldn't find method %s%s%s"),
               obj_type_name,
               obj_type_name,
               (obj_type_name && *obj_type_name) ? "::" : "",
               (obj_type_name && *obj_type_name) ? "::" : "",
               name);
               name);
      /* If we are dealing with stub method types, they should have
      /* If we are dealing with stub method types, they should have
         been resolved by find_method_list via
         been resolved by find_method_list via
         value_find_oload_method_list above.  */
         value_find_oload_method_list above.  */
      gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
      gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
      oload_champ = find_oload_champ (arg_types, nargs, method,
      oload_champ = find_oload_champ (arg_types, nargs, method,
                                      num_fns, fns_ptr,
                                      num_fns, fns_ptr,
                                      oload_syms, &oload_champ_bv);
                                      oload_syms, &oload_champ_bv);
    }
    }
  else
  else
    {
    {
      const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
      const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
 
 
      /* If we have a C++ name, try to extract just the function
      /* If we have a C++ name, try to extract just the function
         part.  */
         part.  */
      if (qualified_name)
      if (qualified_name)
        func_name = cp_func_name (qualified_name);
        func_name = cp_func_name (qualified_name);
 
 
      /* If there was no C++ name, this must be a C-style function.
      /* If there was no C++ name, this must be a C-style function.
         Just return the same symbol.  Do the same if cp_func_name
         Just return the same symbol.  Do the same if cp_func_name
         fails for some reason.  */
         fails for some reason.  */
      if (func_name == NULL)
      if (func_name == NULL)
        {
        {
          *symp = fsym;
          *symp = fsym;
          return 0;
          return 0;
        }
        }
 
 
      old_cleanups = make_cleanup (xfree, func_name);
      old_cleanups = make_cleanup (xfree, func_name);
      make_cleanup (xfree, oload_syms);
      make_cleanup (xfree, oload_syms);
      make_cleanup (xfree, oload_champ_bv);
      make_cleanup (xfree, oload_champ_bv);
 
 
      oload_champ = find_oload_champ_namespace (arg_types, nargs,
      oload_champ = find_oload_champ_namespace (arg_types, nargs,
                                                func_name,
                                                func_name,
                                                qualified_name,
                                                qualified_name,
                                                &oload_syms,
                                                &oload_syms,
                                                &oload_champ_bv);
                                                &oload_champ_bv);
    }
    }
 
 
  /* Check how bad the best match is.  */
  /* Check how bad the best match is.  */
 
 
  match_quality =
  match_quality =
    classify_oload_match (oload_champ_bv, nargs,
    classify_oload_match (oload_champ_bv, nargs,
                          oload_method_static (method, fns_ptr,
                          oload_method_static (method, fns_ptr,
                                               oload_champ));
                                               oload_champ));
 
 
  if (match_quality == INCOMPATIBLE)
  if (match_quality == INCOMPATIBLE)
    {
    {
      if (method)
      if (method)
        error (_("Cannot resolve method %s%s%s to any overloaded instance"),
        error (_("Cannot resolve method %s%s%s to any overloaded instance"),
               obj_type_name,
               obj_type_name,
               (obj_type_name && *obj_type_name) ? "::" : "",
               (obj_type_name && *obj_type_name) ? "::" : "",
               name);
               name);
      else
      else
        error (_("Cannot resolve function %s to any overloaded instance"),
        error (_("Cannot resolve function %s to any overloaded instance"),
               func_name);
               func_name);
    }
    }
  else if (match_quality == NON_STANDARD)
  else if (match_quality == NON_STANDARD)
    {
    {
      if (method)
      if (method)
        warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
        warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
                 obj_type_name,
                 obj_type_name,
                 (obj_type_name && *obj_type_name) ? "::" : "",
                 (obj_type_name && *obj_type_name) ? "::" : "",
                 name);
                 name);
      else
      else
        warning (_("Using non-standard conversion to match function %s to supplied arguments"),
        warning (_("Using non-standard conversion to match function %s to supplied arguments"),
                 func_name);
                 func_name);
    }
    }
 
 
  if (method)
  if (method)
    {
    {
      if (staticp != NULL)
      if (staticp != NULL)
        *staticp = oload_method_static (method, fns_ptr, oload_champ);
        *staticp = oload_method_static (method, fns_ptr, oload_champ);
      if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
      if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
        *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
        *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
                                        basetype, boffset);
                                        basetype, boffset);
      else
      else
        *valp = value_fn_field (&temp, fns_ptr, oload_champ,
        *valp = value_fn_field (&temp, fns_ptr, oload_champ,
                                basetype, boffset);
                                basetype, boffset);
    }
    }
  else
  else
    {
    {
      *symp = oload_syms[oload_champ];
      *symp = oload_syms[oload_champ];
    }
    }
 
 
  if (objp)
  if (objp)
    {
    {
      struct type *temp_type = check_typedef (value_type (temp));
      struct type *temp_type = check_typedef (value_type (temp));
      struct type *obj_type = check_typedef (value_type (*objp));
      struct type *obj_type = check_typedef (value_type (*objp));
      if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
      if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
          && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
          && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
              || TYPE_CODE (obj_type) == TYPE_CODE_REF))
              || TYPE_CODE (obj_type) == TYPE_CODE_REF))
        {
        {
          temp = value_addr (temp);
          temp = value_addr (temp);
        }
        }
      *objp = temp;
      *objp = temp;
    }
    }
  if (old_cleanups != NULL)
  if (old_cleanups != NULL)
    do_cleanups (old_cleanups);
    do_cleanups (old_cleanups);
 
 
  switch (match_quality)
  switch (match_quality)
    {
    {
    case INCOMPATIBLE:
    case INCOMPATIBLE:
      return 100;
      return 100;
    case NON_STANDARD:
    case NON_STANDARD:
      return 10;
      return 10;
    default:                            /* STANDARD */
    default:                            /* STANDARD */
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Find the best overload match, searching for FUNC_NAME in namespaces
/* Find the best overload match, searching for FUNC_NAME in namespaces
   contained in QUALIFIED_NAME until it either finds a good match or
   contained in QUALIFIED_NAME until it either finds a good match or
   runs out of namespaces.  It stores the overloaded functions in
   runs out of namespaces.  It stores the overloaded functions in
   *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  The
   *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  The
   calling function is responsible for freeing *OLOAD_SYMS and
   calling function is responsible for freeing *OLOAD_SYMS and
   *OLOAD_CHAMP_BV.  */
   *OLOAD_CHAMP_BV.  */
 
 
static int
static int
find_oload_champ_namespace (struct type **arg_types, int nargs,
find_oload_champ_namespace (struct type **arg_types, int nargs,
                            const char *func_name,
                            const char *func_name,
                            const char *qualified_name,
                            const char *qualified_name,
                            struct symbol ***oload_syms,
                            struct symbol ***oload_syms,
                            struct badness_vector **oload_champ_bv)
                            struct badness_vector **oload_champ_bv)
{
{
  int oload_champ;
  int oload_champ;
 
 
  find_oload_champ_namespace_loop (arg_types, nargs,
  find_oload_champ_namespace_loop (arg_types, nargs,
                                   func_name,
                                   func_name,
                                   qualified_name, 0,
                                   qualified_name, 0,
                                   oload_syms, oload_champ_bv,
                                   oload_syms, oload_champ_bv,
                                   &oload_champ);
                                   &oload_champ);
 
 
  return oload_champ;
  return oload_champ;
}
}
 
 
/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
   how deep we've looked for namespaces, and the champ is stored in
   how deep we've looked for namespaces, and the champ is stored in
   OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0
   OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0
   if it isn't.
   if it isn't.
 
 
   It is the caller's responsibility to free *OLOAD_SYMS and
   It is the caller's responsibility to free *OLOAD_SYMS and
   *OLOAD_CHAMP_BV.  */
   *OLOAD_CHAMP_BV.  */
 
 
static int
static int
find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
                                 const char *func_name,
                                 const char *func_name,
                                 const char *qualified_name,
                                 const char *qualified_name,
                                 int namespace_len,
                                 int namespace_len,
                                 struct symbol ***oload_syms,
                                 struct symbol ***oload_syms,
                                 struct badness_vector **oload_champ_bv,
                                 struct badness_vector **oload_champ_bv,
                                 int *oload_champ)
                                 int *oload_champ)
{
{
  int next_namespace_len = namespace_len;
  int next_namespace_len = namespace_len;
  int searched_deeper = 0;
  int searched_deeper = 0;
  int num_fns = 0;
  int num_fns = 0;
  struct cleanup *old_cleanups;
  struct cleanup *old_cleanups;
  int new_oload_champ;
  int new_oload_champ;
  struct symbol **new_oload_syms;
  struct symbol **new_oload_syms;
  struct badness_vector *new_oload_champ_bv;
  struct badness_vector *new_oload_champ_bv;
  char *new_namespace;
  char *new_namespace;
 
 
  if (next_namespace_len != 0)
  if (next_namespace_len != 0)
    {
    {
      gdb_assert (qualified_name[next_namespace_len] == ':');
      gdb_assert (qualified_name[next_namespace_len] == ':');
      next_namespace_len +=  2;
      next_namespace_len +=  2;
    }
    }
  next_namespace_len +=
  next_namespace_len +=
    cp_find_first_component (qualified_name + next_namespace_len);
    cp_find_first_component (qualified_name + next_namespace_len);
 
 
  /* Initialize these to values that can safely be xfree'd.  */
  /* Initialize these to values that can safely be xfree'd.  */
  *oload_syms = NULL;
  *oload_syms = NULL;
  *oload_champ_bv = NULL;
  *oload_champ_bv = NULL;
 
 
  /* First, see if we have a deeper namespace we can search in.
  /* First, see if we have a deeper namespace we can search in.
     If we get a good match there, use it.  */
     If we get a good match there, use it.  */
 
 
  if (qualified_name[next_namespace_len] == ':')
  if (qualified_name[next_namespace_len] == ':')
    {
    {
      searched_deeper = 1;
      searched_deeper = 1;
 
 
      if (find_oload_champ_namespace_loop (arg_types, nargs,
      if (find_oload_champ_namespace_loop (arg_types, nargs,
                                           func_name, qualified_name,
                                           func_name, qualified_name,
                                           next_namespace_len,
                                           next_namespace_len,
                                           oload_syms, oload_champ_bv,
                                           oload_syms, oload_champ_bv,
                                           oload_champ))
                                           oload_champ))
        {
        {
          return 1;
          return 1;
        }
        }
    };
    };
 
 
  /* If we reach here, either we're in the deepest namespace or we
  /* If we reach here, either we're in the deepest namespace or we
     didn't find a good match in a deeper namespace.  But, in the
     didn't find a good match in a deeper namespace.  But, in the
     latter case, we still have a bad match in a deeper namespace;
     latter case, we still have a bad match in a deeper namespace;
     note that we might not find any match at all in the current
     note that we might not find any match at all in the current
     namespace.  (There's always a match in the deepest namespace,
     namespace.  (There's always a match in the deepest namespace,
     because this overload mechanism only gets called if there's a
     because this overload mechanism only gets called if there's a
     function symbol to start off with.)  */
     function symbol to start off with.)  */
 
 
  old_cleanups = make_cleanup (xfree, *oload_syms);
  old_cleanups = make_cleanup (xfree, *oload_syms);
  old_cleanups = make_cleanup (xfree, *oload_champ_bv);
  old_cleanups = make_cleanup (xfree, *oload_champ_bv);
  new_namespace = alloca (namespace_len + 1);
  new_namespace = alloca (namespace_len + 1);
  strncpy (new_namespace, qualified_name, namespace_len);
  strncpy (new_namespace, qualified_name, namespace_len);
  new_namespace[namespace_len] = '\0';
  new_namespace[namespace_len] = '\0';
  new_oload_syms = make_symbol_overload_list (func_name,
  new_oload_syms = make_symbol_overload_list (func_name,
                                              new_namespace);
                                              new_namespace);
  while (new_oload_syms[num_fns])
  while (new_oload_syms[num_fns])
    ++num_fns;
    ++num_fns;
 
 
  new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
  new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
                                      NULL, new_oload_syms,
                                      NULL, new_oload_syms,
                                      &new_oload_champ_bv);
                                      &new_oload_champ_bv);
 
 
  /* Case 1: We found a good match.  Free earlier matches (if any),
  /* Case 1: We found a good match.  Free earlier matches (if any),
     and return it.  Case 2: We didn't find a good match, but we're
     and return it.  Case 2: We didn't find a good match, but we're
     not the deepest function.  Then go with the bad match that the
     not the deepest function.  Then go with the bad match that the
     deeper function found.  Case 3: We found a bad match, and we're
     deeper function found.  Case 3: We found a bad match, and we're
     the deepest function.  Then return what we found, even though
     the deepest function.  Then return what we found, even though
     it's a bad match.  */
     it's a bad match.  */
 
 
  if (new_oload_champ != -1
  if (new_oload_champ != -1
      && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
      && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
    {
    {
      *oload_syms = new_oload_syms;
      *oload_syms = new_oload_syms;
      *oload_champ = new_oload_champ;
      *oload_champ = new_oload_champ;
      *oload_champ_bv = new_oload_champ_bv;
      *oload_champ_bv = new_oload_champ_bv;
      do_cleanups (old_cleanups);
      do_cleanups (old_cleanups);
      return 1;
      return 1;
    }
    }
  else if (searched_deeper)
  else if (searched_deeper)
    {
    {
      xfree (new_oload_syms);
      xfree (new_oload_syms);
      xfree (new_oload_champ_bv);
      xfree (new_oload_champ_bv);
      discard_cleanups (old_cleanups);
      discard_cleanups (old_cleanups);
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      gdb_assert (new_oload_champ != -1);
      gdb_assert (new_oload_champ != -1);
      *oload_syms = new_oload_syms;
      *oload_syms = new_oload_syms;
      *oload_champ = new_oload_champ;
      *oload_champ = new_oload_champ;
      *oload_champ_bv = new_oload_champ_bv;
      *oload_champ_bv = new_oload_champ_bv;
      discard_cleanups (old_cleanups);
      discard_cleanups (old_cleanups);
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Look for a function to take NARGS args of types ARG_TYPES.  Find
/* Look for a function to take NARGS args of types ARG_TYPES.  Find
   the best match from among the overloaded methods or functions
   the best match from among the overloaded methods or functions
   (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
   (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
   The number of methods/functions in the list is given by NUM_FNS.
   The number of methods/functions in the list is given by NUM_FNS.
   Return the index of the best match; store an indication of the
   Return the index of the best match; store an indication of the
   quality of the match in OLOAD_CHAMP_BV.
   quality of the match in OLOAD_CHAMP_BV.
 
 
   It is the caller's responsibility to free *OLOAD_CHAMP_BV.  */
   It is the caller's responsibility to free *OLOAD_CHAMP_BV.  */
 
 
static int
static int
find_oload_champ (struct type **arg_types, int nargs, int method,
find_oload_champ (struct type **arg_types, int nargs, int method,
                  int num_fns, struct fn_field *fns_ptr,
                  int num_fns, struct fn_field *fns_ptr,
                  struct symbol **oload_syms,
                  struct symbol **oload_syms,
                  struct badness_vector **oload_champ_bv)
                  struct badness_vector **oload_champ_bv)
{
{
  int ix;
  int ix;
  /* A measure of how good an overloaded instance is.  */
  /* A measure of how good an overloaded instance is.  */
  struct badness_vector *bv;
  struct badness_vector *bv;
  /* Index of best overloaded function.  */
  /* Index of best overloaded function.  */
  int oload_champ = -1;
  int oload_champ = -1;
  /* Current ambiguity state for overload resolution.  */
  /* Current ambiguity state for overload resolution.  */
  int oload_ambiguous = 0;
  int oload_ambiguous = 0;
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */
 
 
  *oload_champ_bv = NULL;
  *oload_champ_bv = NULL;
 
 
  /* Consider each candidate in turn.  */
  /* Consider each candidate in turn.  */
  for (ix = 0; ix < num_fns; ix++)
  for (ix = 0; ix < num_fns; ix++)
    {
    {
      int jj;
      int jj;
      int static_offset = oload_method_static (method, fns_ptr, ix);
      int static_offset = oload_method_static (method, fns_ptr, ix);
      int nparms;
      int nparms;
      struct type **parm_types;
      struct type **parm_types;
 
 
      if (method)
      if (method)
        {
        {
          nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
          nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
        }
        }
      else
      else
        {
        {
          /* If it's not a method, this is the proper place.  */
          /* If it's not a method, this is the proper place.  */
          nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
          nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
        }
        }
 
 
      /* Prepare array of parameter types.  */
      /* Prepare array of parameter types.  */
      parm_types = (struct type **)
      parm_types = (struct type **)
        xmalloc (nparms * (sizeof (struct type *)));
        xmalloc (nparms * (sizeof (struct type *)));
      for (jj = 0; jj < nparms; jj++)
      for (jj = 0; jj < nparms; jj++)
        parm_types[jj] = (method
        parm_types[jj] = (method
                          ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
                          ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
                          : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
                          : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
                                             jj));
                                             jj));
 
 
      /* Compare parameter types to supplied argument types.  Skip
      /* Compare parameter types to supplied argument types.  Skip
         THIS for static methods.  */
         THIS for static methods.  */
      bv = rank_function (parm_types, nparms,
      bv = rank_function (parm_types, nparms,
                          arg_types + static_offset,
                          arg_types + static_offset,
                          nargs - static_offset);
                          nargs - static_offset);
 
 
      if (!*oload_champ_bv)
      if (!*oload_champ_bv)
        {
        {
          *oload_champ_bv = bv;
          *oload_champ_bv = bv;
          oload_champ = 0;
          oload_champ = 0;
        }
        }
      else /* See whether current candidate is better or worse than
      else /* See whether current candidate is better or worse than
              previous best.  */
              previous best.  */
        switch (compare_badness (bv, *oload_champ_bv))
        switch (compare_badness (bv, *oload_champ_bv))
          {
          {
          case 0:                /* Top two contenders are equally good.  */
          case 0:                /* Top two contenders are equally good.  */
            oload_ambiguous = 1;
            oload_ambiguous = 1;
            break;
            break;
          case 1:               /* Incomparable top contenders.  */
          case 1:               /* Incomparable top contenders.  */
            oload_ambiguous = 2;
            oload_ambiguous = 2;
            break;
            break;
          case 2:               /* New champion, record details.  */
          case 2:               /* New champion, record details.  */
            *oload_champ_bv = bv;
            *oload_champ_bv = bv;
            oload_ambiguous = 0;
            oload_ambiguous = 0;
            oload_champ = ix;
            oload_champ = ix;
            break;
            break;
          case 3:
          case 3:
          default:
          default:
            break;
            break;
          }
          }
      xfree (parm_types);
      xfree (parm_types);
      if (overload_debug)
      if (overload_debug)
        {
        {
          if (method)
          if (method)
            fprintf_filtered (gdb_stderr,
            fprintf_filtered (gdb_stderr,
                              "Overloaded method instance %s, # of parms %d\n",
                              "Overloaded method instance %s, # of parms %d\n",
                              fns_ptr[ix].physname, nparms);
                              fns_ptr[ix].physname, nparms);
          else
          else
            fprintf_filtered (gdb_stderr,
            fprintf_filtered (gdb_stderr,
                              "Overloaded function instance %s # of parms %d\n",
                              "Overloaded function instance %s # of parms %d\n",
                              SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
                              SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
                              nparms);
                              nparms);
          for (jj = 0; jj < nargs - static_offset; jj++)
          for (jj = 0; jj < nargs - static_offset; jj++)
            fprintf_filtered (gdb_stderr,
            fprintf_filtered (gdb_stderr,
                              "...Badness @ %d : %d\n",
                              "...Badness @ %d : %d\n",
                              jj, bv->rank[jj]);
                              jj, bv->rank[jj]);
          fprintf_filtered (gdb_stderr,
          fprintf_filtered (gdb_stderr,
                            "Overload resolution champion is %d, ambiguous? %d\n",
                            "Overload resolution champion is %d, ambiguous? %d\n",
                            oload_champ, oload_ambiguous);
                            oload_champ, oload_ambiguous);
        }
        }
    }
    }
 
 
  return oload_champ;
  return oload_champ;
}
}
 
 
/* Return 1 if we're looking at a static method, 0 if we're looking at
/* Return 1 if we're looking at a static method, 0 if we're looking at
   a non-static method or a function that isn't a method.  */
   a non-static method or a function that isn't a method.  */
 
 
static int
static int
oload_method_static (int method, struct fn_field *fns_ptr, int index)
oload_method_static (int method, struct fn_field *fns_ptr, int index)
{
{
  if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
  if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Check how good an overload match OLOAD_CHAMP_BV represents.  */
/* Check how good an overload match OLOAD_CHAMP_BV represents.  */
 
 
static enum oload_classification
static enum oload_classification
classify_oload_match (struct badness_vector *oload_champ_bv,
classify_oload_match (struct badness_vector *oload_champ_bv,
                      int nargs,
                      int nargs,
                      int static_offset)
                      int static_offset)
{
{
  int ix;
  int ix;
 
 
  for (ix = 1; ix <= nargs - static_offset; ix++)
  for (ix = 1; ix <= nargs - static_offset; ix++)
    {
    {
      if (oload_champ_bv->rank[ix] >= 100)
      if (oload_champ_bv->rank[ix] >= 100)
        return INCOMPATIBLE;    /* Truly mismatched types.  */
        return INCOMPATIBLE;    /* Truly mismatched types.  */
      else if (oload_champ_bv->rank[ix] >= 10)
      else if (oload_champ_bv->rank[ix] >= 10)
        return NON_STANDARD;    /* Non-standard type conversions
        return NON_STANDARD;    /* Non-standard type conversions
                                   needed.  */
                                   needed.  */
    }
    }
 
 
  return STANDARD;              /* Only standard conversions needed.  */
  return STANDARD;              /* Only standard conversions needed.  */
}
}
 
 
/* C++: return 1 is NAME is a legitimate name for the destructor of
/* C++: return 1 is NAME is a legitimate name for the destructor of
   type TYPE.  If TYPE does not have a destructor, or if NAME is
   type TYPE.  If TYPE does not have a destructor, or if NAME is
   inappropriate for TYPE, an error is signaled.  */
   inappropriate for TYPE, an error is signaled.  */
int
int
destructor_name_p (const char *name, const struct type *type)
destructor_name_p (const char *name, const struct type *type)
{
{
  if (name[0] == '~')
  if (name[0] == '~')
    {
    {
      char *dname = type_name_no_tag (type);
      char *dname = type_name_no_tag (type);
      char *cp = strchr (dname, '<');
      char *cp = strchr (dname, '<');
      unsigned int len;
      unsigned int len;
 
 
      /* Do not compare the template part for template classes.  */
      /* Do not compare the template part for template classes.  */
      if (cp == NULL)
      if (cp == NULL)
        len = strlen (dname);
        len = strlen (dname);
      else
      else
        len = cp - dname;
        len = cp - dname;
      if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
      if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
        error (_("name of destructor must equal name of class"));
        error (_("name of destructor must equal name of class"));
      else
      else
        return 1;
        return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Given TYPE, a structure/union,
/* Given TYPE, a structure/union,
   return 1 if the component named NAME from the ultimate target
   return 1 if the component named NAME from the ultimate target
   structure/union is defined, otherwise, return 0.  */
   structure/union is defined, otherwise, return 0.  */
 
 
int
int
check_field (struct type *type, const char *name)
check_field (struct type *type, const char *name)
{
{
  int i;
  int i;
 
 
  /* The type may be a stub.  */
  /* The type may be a stub.  */
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        return 1;
        return 1;
    }
    }
 
 
  /* C++: If it was not found as a data field, then try to return it
  /* C++: If it was not found as a data field, then try to return it
     as a pointer to a method.  */
     as a pointer to a method.  */
 
 
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
    {
    {
      if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
      if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
        return 1;
        return 1;
    }
    }
 
 
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    if (check_field (TYPE_BASECLASS (type, i), name))
    if (check_field (TYPE_BASECLASS (type, i), name))
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the appropriate member (or the address of the member, if
   return the appropriate member (or the address of the member, if
   WANT_ADDRESS).  This function is used to resolve user expressions
   WANT_ADDRESS).  This function is used to resolve user expressions
   of the form "DOMAIN::NAME".  For more details on what happens, see
   of the form "DOMAIN::NAME".  For more details on what happens, see
   the comment before value_struct_elt_for_reference.  */
   the comment before value_struct_elt_for_reference.  */
 
 
struct value *
struct value *
value_aggregate_elt (struct type *curtype, char *name,
value_aggregate_elt (struct type *curtype, char *name,
                     struct type *expect_type, int want_address,
                     struct type *expect_type, int want_address,
                     enum noside noside)
                     enum noside noside)
{
{
  switch (TYPE_CODE (curtype))
  switch (TYPE_CODE (curtype))
    {
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_UNION:
      return value_struct_elt_for_reference (curtype, 0, curtype,
      return value_struct_elt_for_reference (curtype, 0, curtype,
                                             name, expect_type,
                                             name, expect_type,
                                             want_address, noside);
                                             want_address, noside);
    case TYPE_CODE_NAMESPACE:
    case TYPE_CODE_NAMESPACE:
      return value_namespace_elt (curtype, name,
      return value_namespace_elt (curtype, name,
                                  want_address, noside);
                                  want_address, noside);
    default:
    default:
      internal_error (__FILE__, __LINE__,
      internal_error (__FILE__, __LINE__,
                      _("non-aggregate type in value_aggregate_elt"));
                      _("non-aggregate type in value_aggregate_elt"));
    }
    }
}
}
 
 
/* Compares the two method/function types T1 and T2 for "equality"
/* Compares the two method/function types T1 and T2 for "equality"
   with respect to the the methods' parameters.  If the types of the
   with respect to the the methods' parameters.  If the types of the
   two parameter lists are the same, returns 1; 0 otherwise.  This
   two parameter lists are the same, returns 1; 0 otherwise.  This
   comparison may ignore any artificial parameters in T1 if
   comparison may ignore any artificial parameters in T1 if
   SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip
   SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip
   the first artificial parameter in T1, assumed to be a 'this' pointer.
   the first artificial parameter in T1, assumed to be a 'this' pointer.
 
 
   The type T2 is expected to have come from make_params (in eval.c).  */
   The type T2 is expected to have come from make_params (in eval.c).  */
 
 
static int
static int
compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
{
{
  int start = 0;
  int start = 0;
 
 
  if (TYPE_FIELD_ARTIFICIAL (t1, 0))
  if (TYPE_FIELD_ARTIFICIAL (t1, 0))
    ++start;
    ++start;
 
 
  /* If skipping artificial fields, find the first real field
  /* If skipping artificial fields, find the first real field
     in T1. */
     in T1. */
  if (skip_artificial)
  if (skip_artificial)
    {
    {
      while (start < TYPE_NFIELDS (t1)
      while (start < TYPE_NFIELDS (t1)
             && TYPE_FIELD_ARTIFICIAL (t1, start))
             && TYPE_FIELD_ARTIFICIAL (t1, start))
        ++start;
        ++start;
    }
    }
 
 
  /* Now compare parameters */
  /* Now compare parameters */
 
 
  /* Special case: a method taking void.  T1 will contain no
  /* Special case: a method taking void.  T1 will contain no
     non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */
     non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */
  if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
  if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
      && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
      && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
    return 1;
    return 1;
 
 
  if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
  if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
    {
    {
      int i;
      int i;
      for (i = 0; i < TYPE_NFIELDS (t2); ++i)
      for (i = 0; i < TYPE_NFIELDS (t2); ++i)
        {
        {
          if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
          if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
                              TYPE_FIELD_TYPE (t2, i))
                              TYPE_FIELD_TYPE (t2, i))
              != 0)
              != 0)
            return 0;
            return 0;
        }
        }
 
 
      return 1;
      return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the address of this member as a "pointer to member" type.
   return the address of this member as a "pointer to member" type.
   If INTYPE is non-null, then it will be the type of the member we
   If INTYPE is non-null, then it will be the type of the member we
   are looking for.  This will help us resolve "pointers to member
   are looking for.  This will help us resolve "pointers to member
   functions".  This function is used to resolve user expressions of
   functions".  This function is used to resolve user expressions of
   the form "DOMAIN::NAME".  */
   the form "DOMAIN::NAME".  */
 
 
static struct value *
static struct value *
value_struct_elt_for_reference (struct type *domain, int offset,
value_struct_elt_for_reference (struct type *domain, int offset,
                                struct type *curtype, char *name,
                                struct type *curtype, char *name,
                                struct type *intype,
                                struct type *intype,
                                int want_address,
                                int want_address,
                                enum noside noside)
                                enum noside noside)
{
{
  struct type *t = curtype;
  struct type *t = curtype;
  int i;
  int i;
  struct value *v, *result;
  struct value *v, *result;
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
    error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
 
 
  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
    {
    {
      char *t_field_name = TYPE_FIELD_NAME (t, i);
      char *t_field_name = TYPE_FIELD_NAME (t, i);
 
 
      if (t_field_name && strcmp (t_field_name, name) == 0)
      if (t_field_name && strcmp (t_field_name, name) == 0)
        {
        {
          if (field_is_static (&TYPE_FIELD (t, i)))
          if (field_is_static (&TYPE_FIELD (t, i)))
            {
            {
              v = value_static_field (t, i);
              v = value_static_field (t, i);
              if (v == NULL)
              if (v == NULL)
                error (_("static field %s has been optimized out"),
                error (_("static field %s has been optimized out"),
                       name);
                       name);
              if (want_address)
              if (want_address)
                v = value_addr (v);
                v = value_addr (v);
              return v;
              return v;
            }
            }
          if (TYPE_FIELD_PACKED (t, i))
          if (TYPE_FIELD_PACKED (t, i))
            error (_("pointers to bitfield members not allowed"));
            error (_("pointers to bitfield members not allowed"));
 
 
          if (want_address)
          if (want_address)
            return value_from_longest
            return value_from_longest
              (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
              (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
               offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
               offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
          else if (noside == EVAL_AVOID_SIDE_EFFECTS)
          else if (noside == EVAL_AVOID_SIDE_EFFECTS)
            return allocate_value (TYPE_FIELD_TYPE (t, i));
            return allocate_value (TYPE_FIELD_TYPE (t, i));
          else
          else
            error (_("Cannot reference non-static field \"%s\""), name);
            error (_("Cannot reference non-static field \"%s\""), name);
        }
        }
    }
    }
 
 
  /* C++: If it was not found as a data field, then try to return it
  /* C++: If it was not found as a data field, then try to return it
     as a pointer to a method.  */
     as a pointer to a method.  */
 
 
  /* Perform all necessary dereferencing.  */
  /* Perform all necessary dereferencing.  */
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
    intype = TYPE_TARGET_TYPE (intype);
    intype = TYPE_TARGET_TYPE (intype);
 
 
  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
    {
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
      char dem_opname[64];
      char dem_opname[64];
 
 
      if (strncmp (t_field_name, "__", 2) == 0
      if (strncmp (t_field_name, "__", 2) == 0
          || strncmp (t_field_name, "op", 2) == 0
          || strncmp (t_field_name, "op", 2) == 0
          || strncmp (t_field_name, "type", 4) == 0)
          || strncmp (t_field_name, "type", 4) == 0)
        {
        {
          if (cplus_demangle_opname (t_field_name,
          if (cplus_demangle_opname (t_field_name,
                                     dem_opname, DMGL_ANSI))
                                     dem_opname, DMGL_ANSI))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
          else if (cplus_demangle_opname (t_field_name,
          else if (cplus_demangle_opname (t_field_name,
                                          dem_opname, 0))
                                          dem_opname, 0))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
        }
        }
      if (t_field_name && strcmp (t_field_name, name) == 0)
      if (t_field_name && strcmp (t_field_name, name) == 0)
        {
        {
          int j;
          int j;
          int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
          int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
 
 
          check_stub_method_group (t, i);
          check_stub_method_group (t, i);
 
 
          if (intype)
          if (intype)
            {
            {
              for (j = 0; j < len; ++j)
              for (j = 0; j < len; ++j)
                {
                {
                  if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
                  if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
                      || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
                      || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
                    break;
                    break;
                }
                }
 
 
              if (j == len)
              if (j == len)
                error (_("no member function matches that type instantiation"));
                error (_("no member function matches that type instantiation"));
            }
            }
          else
          else
            {
            {
              int ii;
              int ii;
 
 
              j = -1;
              j = -1;
              for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
              for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
                   ++ii)
                   ++ii)
                {
                {
                  /* Skip artificial methods.  This is necessary if,
                  /* Skip artificial methods.  This is necessary if,
                     for example, the user wants to "print
                     for example, the user wants to "print
                     subclass::subclass" with only one user-defined
                     subclass::subclass" with only one user-defined
                     constructor.  There is no ambiguity in this
                     constructor.  There is no ambiguity in this
                     case.  */
                     case.  */
                  if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
                  if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
                    continue;
                    continue;
 
 
                  /* Desired method is ambiguous if more than one
                  /* Desired method is ambiguous if more than one
                     method is defined.  */
                     method is defined.  */
                  if (j != -1)
                  if (j != -1)
                    error (_("non-unique member `%s' requires type instantiation"), name);
                    error (_("non-unique member `%s' requires type instantiation"), name);
 
 
                  j = ii;
                  j = ii;
                }
                }
            }
            }
 
 
          if (TYPE_FN_FIELD_STATIC_P (f, j))
          if (TYPE_FN_FIELD_STATIC_P (f, j))
            {
            {
              struct symbol *s =
              struct symbol *s =
                lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
                lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
                               0, VAR_DOMAIN, 0);
                               0, VAR_DOMAIN, 0);
              if (s == NULL)
              if (s == NULL)
                return NULL;
                return NULL;
 
 
              if (want_address)
              if (want_address)
                return value_addr (read_var_value (s, 0));
                return value_addr (read_var_value (s, 0));
              else
              else
                return read_var_value (s, 0);
                return read_var_value (s, 0);
            }
            }
 
 
          if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
          if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
            {
            {
              if (want_address)
              if (want_address)
                {
                {
                  result = allocate_value
                  result = allocate_value
                    (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
                    (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
                  cplus_make_method_ptr (value_type (result),
                  cplus_make_method_ptr (value_type (result),
                                         value_contents_writeable (result),
                                         value_contents_writeable (result),
                                         TYPE_FN_FIELD_VOFFSET (f, j), 1);
                                         TYPE_FN_FIELD_VOFFSET (f, j), 1);
                }
                }
              else if (noside == EVAL_AVOID_SIDE_EFFECTS)
              else if (noside == EVAL_AVOID_SIDE_EFFECTS)
                return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
                return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
              else
              else
                error (_("Cannot reference virtual member function \"%s\""),
                error (_("Cannot reference virtual member function \"%s\""),
                       name);
                       name);
            }
            }
          else
          else
            {
            {
              struct symbol *s =
              struct symbol *s =
                lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
                lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
                               0, VAR_DOMAIN, 0);
                               0, VAR_DOMAIN, 0);
              if (s == NULL)
              if (s == NULL)
                return NULL;
                return NULL;
 
 
              v = read_var_value (s, 0);
              v = read_var_value (s, 0);
              if (!want_address)
              if (!want_address)
                result = v;
                result = v;
              else
              else
                {
                {
                  result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
                  result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
                  cplus_make_method_ptr (value_type (result),
                  cplus_make_method_ptr (value_type (result),
                                         value_contents_writeable (result),
                                         value_contents_writeable (result),
                                         value_address (v), 0);
                                         value_address (v), 0);
                }
                }
            }
            }
          return result;
          return result;
        }
        }
    }
    }
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
    {
    {
      struct value *v;
      struct value *v;
      int base_offset;
      int base_offset;
 
 
      if (BASETYPE_VIA_VIRTUAL (t, i))
      if (BASETYPE_VIA_VIRTUAL (t, i))
        base_offset = 0;
        base_offset = 0;
      else
      else
        base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
        base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
      v = value_struct_elt_for_reference (domain,
      v = value_struct_elt_for_reference (domain,
                                          offset + base_offset,
                                          offset + base_offset,
                                          TYPE_BASECLASS (t, i),
                                          TYPE_BASECLASS (t, i),
                                          name, intype,
                                          name, intype,
                                          want_address, noside);
                                          want_address, noside);
      if (v)
      if (v)
        return v;
        return v;
    }
    }
 
 
  /* As a last chance, pretend that CURTYPE is a namespace, and look
  /* As a last chance, pretend that CURTYPE is a namespace, and look
     it up that way; this (frequently) works for types nested inside
     it up that way; this (frequently) works for types nested inside
     classes.  */
     classes.  */
 
 
  return value_maybe_namespace_elt (curtype, name,
  return value_maybe_namespace_elt (curtype, name,
                                    want_address, noside);
                                    want_address, noside);
}
}
 
 
/* C++: Return the member NAME of the namespace given by the type
/* C++: Return the member NAME of the namespace given by the type
   CURTYPE.  */
   CURTYPE.  */
 
 
static struct value *
static struct value *
value_namespace_elt (const struct type *curtype,
value_namespace_elt (const struct type *curtype,
                     char *name, int want_address,
                     char *name, int want_address,
                     enum noside noside)
                     enum noside noside)
{
{
  struct value *retval = value_maybe_namespace_elt (curtype, name,
  struct value *retval = value_maybe_namespace_elt (curtype, name,
                                                    want_address,
                                                    want_address,
                                                    noside);
                                                    noside);
 
 
  if (retval == NULL)
  if (retval == NULL)
    error (_("No symbol \"%s\" in namespace \"%s\"."),
    error (_("No symbol \"%s\" in namespace \"%s\"."),
           name, TYPE_TAG_NAME (curtype));
           name, TYPE_TAG_NAME (curtype));
 
 
  return retval;
  return retval;
}
}
 
 
/* A helper function used by value_namespace_elt and
/* A helper function used by value_namespace_elt and
   value_struct_elt_for_reference.  It looks up NAME inside the
   value_struct_elt_for_reference.  It looks up NAME inside the
   context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
   context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
   is a class and NAME refers to a type in CURTYPE itself (as opposed
   is a class and NAME refers to a type in CURTYPE itself (as opposed
   to, say, some base class of CURTYPE).  */
   to, say, some base class of CURTYPE).  */
 
 
static struct value *
static struct value *
value_maybe_namespace_elt (const struct type *curtype,
value_maybe_namespace_elt (const struct type *curtype,
                           char *name, int want_address,
                           char *name, int want_address,
                           enum noside noside)
                           enum noside noside)
{
{
  const char *namespace_name = TYPE_TAG_NAME (curtype);
  const char *namespace_name = TYPE_TAG_NAME (curtype);
  struct symbol *sym;
  struct symbol *sym;
  struct value *result;
  struct value *result;
 
 
  sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
  sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
                                    get_selected_block (0),
                                    get_selected_block (0),
                                    VAR_DOMAIN, 1);
                                    VAR_DOMAIN, 1);
 
 
  if (sym == NULL)
  if (sym == NULL)
    return NULL;
    return NULL;
  else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
  else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
           && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
           && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
    result = allocate_value (SYMBOL_TYPE (sym));
    result = allocate_value (SYMBOL_TYPE (sym));
  else
  else
    result = value_of_variable (sym, get_selected_block (0));
    result = value_of_variable (sym, get_selected_block (0));
 
 
  if (result && want_address)
  if (result && want_address)
    result = value_addr (result);
    result = value_addr (result);
 
 
  return result;
  return result;
}
}
 
 
/* Given a pointer value V, find the real (RTTI) type of the object it
/* Given a pointer value V, find the real (RTTI) type of the object it
   points to.
   points to.
 
 
   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   and refer to the values computed for the object pointed to.  */
   and refer to the values computed for the object pointed to.  */
 
 
struct type *
struct type *
value_rtti_target_type (struct value *v, int *full,
value_rtti_target_type (struct value *v, int *full,
                        int *top, int *using_enc)
                        int *top, int *using_enc)
{
{
  struct value *target;
  struct value *target;
 
 
  target = value_ind (v);
  target = value_ind (v);
 
 
  return value_rtti_type (target, full, top, using_enc);
  return value_rtti_type (target, full, top, using_enc);
}
}
 
 
/* Given a value pointed to by ARGP, check its real run-time type, and
/* Given a value pointed to by ARGP, check its real run-time type, and
   if that is different from the enclosing type, create a new value
   if that is different from the enclosing type, create a new value
   using the real run-time type as the enclosing type (and of the same
   using the real run-time type as the enclosing type (and of the same
   type as ARGP) and return it, with the embedded offset adjusted to
   type as ARGP) and return it, with the embedded offset adjusted to
   be the correct offset to the enclosed object.  RTYPE is the type,
   be the correct offset to the enclosed object.  RTYPE is the type,
   and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
   and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
   by value_rtti_type().  If these are available, they can be supplied
   by value_rtti_type().  If these are available, they can be supplied
   and a second call to value_rtti_type() is avoided.  (Pass RTYPE ==
   and a second call to value_rtti_type() is avoided.  (Pass RTYPE ==
   NULL if they're not available.  */
   NULL if they're not available.  */
 
 
struct value *
struct value *
value_full_object (struct value *argp,
value_full_object (struct value *argp,
                   struct type *rtype,
                   struct type *rtype,
                   int xfull, int xtop,
                   int xfull, int xtop,
                   int xusing_enc)
                   int xusing_enc)
{
{
  struct type *real_type;
  struct type *real_type;
  int full = 0;
  int full = 0;
  int top = -1;
  int top = -1;
  int using_enc = 0;
  int using_enc = 0;
  struct value *new_val;
  struct value *new_val;
 
 
  if (rtype)
  if (rtype)
    {
    {
      real_type = rtype;
      real_type = rtype;
      full = xfull;
      full = xfull;
      top = xtop;
      top = xtop;
      using_enc = xusing_enc;
      using_enc = xusing_enc;
    }
    }
  else
  else
    real_type = value_rtti_type (argp, &full, &top, &using_enc);
    real_type = value_rtti_type (argp, &full, &top, &using_enc);
 
 
  /* If no RTTI data, or if object is already complete, do nothing.  */
  /* If no RTTI data, or if object is already complete, do nothing.  */
  if (!real_type || real_type == value_enclosing_type (argp))
  if (!real_type || real_type == value_enclosing_type (argp))
    return argp;
    return argp;
 
 
  /* If we have the full object, but for some reason the enclosing
  /* If we have the full object, but for some reason the enclosing
     type is wrong, set it.  */
     type is wrong, set it.  */
  /* pai: FIXME -- sounds iffy */
  /* pai: FIXME -- sounds iffy */
  if (full)
  if (full)
    {
    {
      argp = value_change_enclosing_type (argp, real_type);
      argp = value_change_enclosing_type (argp, real_type);
      return argp;
      return argp;
    }
    }
 
 
  /* Check if object is in memory */
  /* Check if object is in memory */
  if (VALUE_LVAL (argp) != lval_memory)
  if (VALUE_LVAL (argp) != lval_memory)
    {
    {
      warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
      warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
               TYPE_NAME (real_type));
               TYPE_NAME (real_type));
 
 
      return argp;
      return argp;
    }
    }
 
 
  /* All other cases -- retrieve the complete object.  */
  /* All other cases -- retrieve the complete object.  */
  /* Go back by the computed top_offset from the beginning of the
  /* Go back by the computed top_offset from the beginning of the
     object, adjusting for the embedded offset of argp if that's what
     object, adjusting for the embedded offset of argp if that's what
     value_rtti_type used for its computation.  */
     value_rtti_type used for its computation.  */
  new_val = value_at_lazy (real_type, value_address (argp) - top +
  new_val = value_at_lazy (real_type, value_address (argp) - top +
                           (using_enc ? 0 : value_embedded_offset (argp)));
                           (using_enc ? 0 : value_embedded_offset (argp)));
  deprecated_set_value_type (new_val, value_type (argp));
  deprecated_set_value_type (new_val, value_type (argp));
  set_value_embedded_offset (new_val, (using_enc
  set_value_embedded_offset (new_val, (using_enc
                                       ? top + value_embedded_offset (argp)
                                       ? top + value_embedded_offset (argp)
                                       : top));
                                       : top));
  return new_val;
  return new_val;
}
}
 
 
 
 
/* Return the value of the local variable, if one exists.
/* Return the value of the local variable, if one exists.
   Flag COMPLAIN signals an error if the request is made in an
   Flag COMPLAIN signals an error if the request is made in an
   inappropriate context.  */
   inappropriate context.  */
 
 
struct value *
struct value *
value_of_local (const char *name, int complain)
value_of_local (const char *name, int complain)
{
{
  struct symbol *func, *sym;
  struct symbol *func, *sym;
  struct block *b;
  struct block *b;
  struct value * ret;
  struct value * ret;
  struct frame_info *frame;
  struct frame_info *frame;
 
 
  if (complain)
  if (complain)
    frame = get_selected_frame (_("no frame selected"));
    frame = get_selected_frame (_("no frame selected"));
  else
  else
    {
    {
      frame = deprecated_safe_get_selected_frame ();
      frame = deprecated_safe_get_selected_frame ();
      if (frame == 0)
      if (frame == 0)
        return 0;
        return 0;
    }
    }
 
 
  func = get_frame_function (frame);
  func = get_frame_function (frame);
  if (!func)
  if (!func)
    {
    {
      if (complain)
      if (complain)
        error (_("no `%s' in nameless context"), name);
        error (_("no `%s' in nameless context"), name);
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  b = SYMBOL_BLOCK_VALUE (func);
  b = SYMBOL_BLOCK_VALUE (func);
  if (dict_empty (BLOCK_DICT (b)))
  if (dict_empty (BLOCK_DICT (b)))
    {
    {
      if (complain)
      if (complain)
        error (_("no args, no `%s'"), name);
        error (_("no args, no `%s'"), name);
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
  /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
     symbol instead of the LOC_ARG one (if both exist).  */
     symbol instead of the LOC_ARG one (if both exist).  */
  sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
  sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
  if (sym == NULL)
  if (sym == NULL)
    {
    {
      if (complain)
      if (complain)
        error (_("current stack frame does not contain a variable named `%s'"),
        error (_("current stack frame does not contain a variable named `%s'"),
               name);
               name);
      else
      else
        return NULL;
        return NULL;
    }
    }
 
 
  ret = read_var_value (sym, frame);
  ret = read_var_value (sym, frame);
  if (ret == 0 && complain)
  if (ret == 0 && complain)
    error (_("`%s' argument unreadable"), name);
    error (_("`%s' argument unreadable"), name);
  return ret;
  return ret;
}
}
 
 
/* C++/Objective-C: return the value of the class instance variable,
/* C++/Objective-C: return the value of the class instance variable,
   if one exists.  Flag COMPLAIN signals an error if the request is
   if one exists.  Flag COMPLAIN signals an error if the request is
   made in an inappropriate context.  */
   made in an inappropriate context.  */
 
 
struct value *
struct value *
value_of_this (int complain)
value_of_this (int complain)
{
{
  if (!current_language->la_name_of_this)
  if (!current_language->la_name_of_this)
    return 0;
    return 0;
  return value_of_local (current_language->la_name_of_this, complain);
  return value_of_local (current_language->la_name_of_this, complain);
}
}
 
 
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
   elements long, starting at LOWBOUND.  The result has the same lower
   elements long, starting at LOWBOUND.  The result has the same lower
   bound as the original ARRAY.  */
   bound as the original ARRAY.  */
 
 
struct value *
struct value *
value_slice (struct value *array, int lowbound, int length)
value_slice (struct value *array, int lowbound, int length)
{
{
  struct type *slice_range_type, *slice_type, *range_type;
  struct type *slice_range_type, *slice_type, *range_type;
  LONGEST lowerbound, upperbound;
  LONGEST lowerbound, upperbound;
  struct value *slice;
  struct value *slice;
  struct type *array_type;
  struct type *array_type;
 
 
  array_type = check_typedef (value_type (array));
  array_type = check_typedef (value_type (array));
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
      && TYPE_CODE (array_type) != TYPE_CODE_STRING
      && TYPE_CODE (array_type) != TYPE_CODE_STRING
      && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
      && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
    error (_("cannot take slice of non-array"));
    error (_("cannot take slice of non-array"));
 
 
  range_type = TYPE_INDEX_TYPE (array_type);
  range_type = TYPE_INDEX_TYPE (array_type);
  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
    error (_("slice from bad array or bitstring"));
    error (_("slice from bad array or bitstring"));
 
 
  if (lowbound < lowerbound || length < 0
  if (lowbound < lowerbound || length < 0
      || lowbound + length - 1 > upperbound)
      || lowbound + length - 1 > upperbound)
    error (_("slice out of range"));
    error (_("slice out of range"));
 
 
  /* FIXME-type-allocation: need a way to free this type when we are
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
     done with it.  */
  slice_range_type = create_range_type ((struct type *) NULL,
  slice_range_type = create_range_type ((struct type *) NULL,
                                        TYPE_TARGET_TYPE (range_type),
                                        TYPE_TARGET_TYPE (range_type),
                                        lowbound,
                                        lowbound,
                                        lowbound + length - 1);
                                        lowbound + length - 1);
  if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
  if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
    {
    {
      int i;
      int i;
 
 
      slice_type = create_set_type ((struct type *) NULL,
      slice_type = create_set_type ((struct type *) NULL,
                                    slice_range_type);
                                    slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
      TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
      slice = value_zero (slice_type, not_lval);
      slice = value_zero (slice_type, not_lval);
 
 
      for (i = 0; i < length; i++)
      for (i = 0; i < length; i++)
        {
        {
          int element = value_bit_index (array_type,
          int element = value_bit_index (array_type,
                                         value_contents (array),
                                         value_contents (array),
                                         lowbound + i);
                                         lowbound + i);
          if (element < 0)
          if (element < 0)
            error (_("internal error accessing bitstring"));
            error (_("internal error accessing bitstring"));
          else if (element > 0)
          else if (element > 0)
            {
            {
              int j = i % TARGET_CHAR_BIT;
              int j = i % TARGET_CHAR_BIT;
              if (gdbarch_bits_big_endian (get_type_arch (array_type)))
              if (gdbarch_bits_big_endian (get_type_arch (array_type)))
                j = TARGET_CHAR_BIT - 1 - j;
                j = TARGET_CHAR_BIT - 1 - j;
              value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
              value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
            }
            }
        }
        }
      /* We should set the address, bitssize, and bitspos, so the
      /* We should set the address, bitssize, and bitspos, so the
         slice can be used on the LHS, but that may require extensions
         slice can be used on the LHS, but that may require extensions
         to value_assign.  For now, just leave as a non_lval.
         to value_assign.  For now, just leave as a non_lval.
         FIXME.  */
         FIXME.  */
    }
    }
  else
  else
    {
    {
      struct type *element_type = TYPE_TARGET_TYPE (array_type);
      struct type *element_type = TYPE_TARGET_TYPE (array_type);
      LONGEST offset =
      LONGEST offset =
        (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
        (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
 
 
      slice_type = create_array_type ((struct type *) NULL,
      slice_type = create_array_type ((struct type *) NULL,
                                      element_type,
                                      element_type,
                                      slice_range_type);
                                      slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE (array_type);
      TYPE_CODE (slice_type) = TYPE_CODE (array_type);
 
 
      if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
      if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
        slice = allocate_value_lazy (slice_type);
        slice = allocate_value_lazy (slice_type);
      else
      else
        {
        {
          slice = allocate_value (slice_type);
          slice = allocate_value (slice_type);
          memcpy (value_contents_writeable (slice),
          memcpy (value_contents_writeable (slice),
                  value_contents (array) + offset,
                  value_contents (array) + offset,
                  TYPE_LENGTH (slice_type));
                  TYPE_LENGTH (slice_type));
        }
        }
 
 
      set_value_component_location (slice, array);
      set_value_component_location (slice, array);
      VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
      VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
      set_value_offset (slice, value_offset (array) + offset);
      set_value_offset (slice, value_offset (array) + offset);
    }
    }
  return slice;
  return slice;
}
}
 
 
/* Create a value for a FORTRAN complex number.  Currently most of the
/* Create a value for a FORTRAN complex number.  Currently most of the
   time values are coerced to COMPLEX*16 (i.e. a complex number
   time values are coerced to COMPLEX*16 (i.e. a complex number
   composed of 2 doubles.  This really should be a smarter routine
   composed of 2 doubles.  This really should be a smarter routine
   that figures out precision inteligently as opposed to assuming
   that figures out precision inteligently as opposed to assuming
   doubles.  FIXME: fmb  */
   doubles.  FIXME: fmb  */
 
 
struct value *
struct value *
value_literal_complex (struct value *arg1,
value_literal_complex (struct value *arg1,
                       struct value *arg2,
                       struct value *arg2,
                       struct type *type)
                       struct type *type)
{
{
  struct value *val;
  struct value *val;
  struct type *real_type = TYPE_TARGET_TYPE (type);
  struct type *real_type = TYPE_TARGET_TYPE (type);
 
 
  val = allocate_value (type);
  val = allocate_value (type);
  arg1 = value_cast (real_type, arg1);
  arg1 = value_cast (real_type, arg1);
  arg2 = value_cast (real_type, arg2);
  arg2 = value_cast (real_type, arg2);
 
 
  memcpy (value_contents_raw (val),
  memcpy (value_contents_raw (val),
          value_contents (arg1), TYPE_LENGTH (real_type));
          value_contents (arg1), TYPE_LENGTH (real_type));
  memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
  memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
          value_contents (arg2), TYPE_LENGTH (real_type));
          value_contents (arg2), TYPE_LENGTH (real_type));
  return val;
  return val;
}
}
 
 
/* Cast a value into the appropriate complex data type.  */
/* Cast a value into the appropriate complex data type.  */
 
 
static struct value *
static struct value *
cast_into_complex (struct type *type, struct value *val)
cast_into_complex (struct type *type, struct value *val)
{
{
  struct type *real_type = TYPE_TARGET_TYPE (type);
  struct type *real_type = TYPE_TARGET_TYPE (type);
 
 
  if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
  if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
    {
    {
      struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
      struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
      struct value *re_val = allocate_value (val_real_type);
      struct value *re_val = allocate_value (val_real_type);
      struct value *im_val = allocate_value (val_real_type);
      struct value *im_val = allocate_value (val_real_type);
 
 
      memcpy (value_contents_raw (re_val),
      memcpy (value_contents_raw (re_val),
              value_contents (val), TYPE_LENGTH (val_real_type));
              value_contents (val), TYPE_LENGTH (val_real_type));
      memcpy (value_contents_raw (im_val),
      memcpy (value_contents_raw (im_val),
              value_contents (val) + TYPE_LENGTH (val_real_type),
              value_contents (val) + TYPE_LENGTH (val_real_type),
              TYPE_LENGTH (val_real_type));
              TYPE_LENGTH (val_real_type));
 
 
      return value_literal_complex (re_val, im_val, type);
      return value_literal_complex (re_val, im_val, type);
    }
    }
  else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
  else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
           || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
           || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
    return value_literal_complex (val,
    return value_literal_complex (val,
                                  value_zero (real_type, not_lval),
                                  value_zero (real_type, not_lval),
                                  type);
                                  type);
  else
  else
    error (_("cannot cast non-number to complex"));
    error (_("cannot cast non-number to complex"));
}
}
 
 
void
void
_initialize_valops (void)
_initialize_valops (void)
{
{
  add_setshow_boolean_cmd ("overload-resolution", class_support,
  add_setshow_boolean_cmd ("overload-resolution", class_support,
                           &overload_resolution, _("\
                           &overload_resolution, _("\
Set overload resolution in evaluating C++ functions."), _("\
Set overload resolution in evaluating C++ functions."), _("\
Show overload resolution in evaluating C++ functions."),
Show overload resolution in evaluating C++ functions."),
                           NULL, NULL,
                           NULL, NULL,
                           show_overload_resolution,
                           show_overload_resolution,
                           &setlist, &showlist);
                           &setlist, &showlist);
  overload_resolution = 1;
  overload_resolution = 1;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.