/* Copyright (C) 1998, Cygnus Solutions
|
/* Copyright (C) 1998, Cygnus Solutions
|
|
|
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
the Free Software Foundation; either version 2 of the License, or
|
the Free Software Foundation; either version 2 of the License, or
|
(at your option) any later version.
|
(at your option) any later version.
|
|
|
This program is distributed in the hope that it will be useful,
|
This program is distributed in the hope that it will be useful,
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
GNU General Public License for more details.
|
GNU General Public License for more details.
|
|
|
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
along with this program; if not, write to the Free Software
|
along with this program; if not, write to the Free Software
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
*/
|
*/
|
|
|
|
|
#ifndef SIM_MAIN_C
|
#ifndef SIM_MAIN_C
|
#define SIM_MAIN_C
|
#define SIM_MAIN_C
|
|
|
#include "sim-main.h"
|
#include "sim-main.h"
|
#include "sim-assert.h"
|
#include "sim-assert.h"
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
/*-- simulator engine -------------------------------------------------------*/
|
/*-- simulator engine -------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
(revision 3.1) */
|
(revision 3.1) */
|
/* Translate a virtual address to a physical address and cache
|
/* Translate a virtual address to a physical address and cache
|
coherence algorithm describing the mechanism used to resolve the
|
coherence algorithm describing the mechanism used to resolve the
|
memory reference. Given the virtual address vAddr, and whether the
|
memory reference. Given the virtual address vAddr, and whether the
|
reference is to Instructions ot Data (IorD), find the corresponding
|
reference is to Instructions ot Data (IorD), find the corresponding
|
physical address (pAddr) and the cache coherence algorithm (CCA)
|
physical address (pAddr) and the cache coherence algorithm (CCA)
|
used to resolve the reference. If the virtual address is in one of
|
used to resolve the reference. If the virtual address is in one of
|
the unmapped address spaces the physical address and the CCA are
|
the unmapped address spaces the physical address and the CCA are
|
determined directly by the virtual address. If the virtual address
|
determined directly by the virtual address. If the virtual address
|
is in one of the mapped address spaces then the TLB is used to
|
is in one of the mapped address spaces then the TLB is used to
|
determine the physical address and access type; if the required
|
determine the physical address and access type; if the required
|
translation is not present in the TLB or the desired access is not
|
translation is not present in the TLB or the desired access is not
|
permitted the function fails and an exception is taken.
|
permitted the function fails and an exception is taken.
|
|
|
NOTE: Normally (RAW == 0), when address translation fails, this
|
NOTE: Normally (RAW == 0), when address translation fails, this
|
function raises an exception and does not return. */
|
function raises an exception and does not return. */
|
|
|
INLINE_SIM_MAIN
|
INLINE_SIM_MAIN
|
(int)
|
(int)
|
address_translation (SIM_DESC sd,
|
address_translation (SIM_DESC sd,
|
sim_cpu * cpu,
|
sim_cpu * cpu,
|
address_word cia,
|
address_word cia,
|
address_word vAddr,
|
address_word vAddr,
|
int IorD,
|
int IorD,
|
int LorS,
|
int LorS,
|
address_word * pAddr,
|
address_word * pAddr,
|
int *CCA,
|
int *CCA,
|
int raw)
|
int raw)
|
{
|
{
|
int res = -1; /* TRUE : Assume good return */
|
int res = -1; /* TRUE : Assume good return */
|
|
|
#ifdef DEBUG
|
#ifdef DEBUG
|
sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
|
sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
|
#endif
|
#endif
|
|
|
/* Check that the address is valid for this memory model */
|
/* Check that the address is valid for this memory model */
|
|
|
/* For a simple (flat) memory model, we simply pass virtual
|
/* For a simple (flat) memory model, we simply pass virtual
|
addressess through (mostly) unchanged. */
|
addressess through (mostly) unchanged. */
|
vAddr &= 0xFFFFFFFF;
|
vAddr &= 0xFFFFFFFF;
|
|
|
*pAddr = vAddr; /* default for isTARGET */
|
*pAddr = vAddr; /* default for isTARGET */
|
*CCA = Uncached; /* not used for isHOST */
|
*CCA = Uncached; /* not used for isHOST */
|
|
|
return (res);
|
return (res);
|
}
|
}
|
|
|
|
|
|
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
(revision 3.1) */
|
(revision 3.1) */
|
/* Prefetch data from memory. Prefetch is an advisory instruction for
|
/* Prefetch data from memory. Prefetch is an advisory instruction for
|
which an implementation specific action is taken. The action taken
|
which an implementation specific action is taken. The action taken
|
may increase performance, but must not change the meaning of the
|
may increase performance, but must not change the meaning of the
|
program, or alter architecturally-visible state. */
|
program, or alter architecturally-visible state. */
|
|
|
INLINE_SIM_MAIN (void)
|
INLINE_SIM_MAIN (void)
|
prefetch (SIM_DESC sd,
|
prefetch (SIM_DESC sd,
|
sim_cpu *cpu,
|
sim_cpu *cpu,
|
address_word cia,
|
address_word cia,
|
int CCA,
|
int CCA,
|
address_word pAddr,
|
address_word pAddr,
|
address_word vAddr,
|
address_word vAddr,
|
int DATA,
|
int DATA,
|
int hint)
|
int hint)
|
{
|
{
|
#ifdef DEBUG
|
#ifdef DEBUG
|
sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
|
sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
/* For our simple memory model we do nothing */
|
/* For our simple memory model we do nothing */
|
return;
|
return;
|
}
|
}
|
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
(revision 3.1) */
|
(revision 3.1) */
|
/* Load a value from memory. Use the cache and main memory as
|
/* Load a value from memory. Use the cache and main memory as
|
specified in the Cache Coherence Algorithm (CCA) and the sort of
|
specified in the Cache Coherence Algorithm (CCA) and the sort of
|
access (IorD) to find the contents of AccessLength memory bytes
|
access (IorD) to find the contents of AccessLength memory bytes
|
starting at physical location pAddr. The data is returned in the
|
starting at physical location pAddr. The data is returned in the
|
fixed width naturally-aligned memory element (MemElem). The
|
fixed width naturally-aligned memory element (MemElem). The
|
low-order two (or three) bits of the address and the AccessLength
|
low-order two (or three) bits of the address and the AccessLength
|
indicate which of the bytes within MemElem needs to be given to the
|
indicate which of the bytes within MemElem needs to be given to the
|
processor. If the memory access type of the reference is uncached
|
processor. If the memory access type of the reference is uncached
|
then only the referenced bytes are read from memory and valid
|
then only the referenced bytes are read from memory and valid
|
within the memory element. If the access type is cached, and the
|
within the memory element. If the access type is cached, and the
|
data is not present in cache, an implementation specific size and
|
data is not present in cache, an implementation specific size and
|
alignment block of memory is read and loaded into the cache to
|
alignment block of memory is read and loaded into the cache to
|
satisfy a load reference. At a minimum, the block is the entire
|
satisfy a load reference. At a minimum, the block is the entire
|
memory element. */
|
memory element. */
|
INLINE_SIM_MAIN (void)
|
INLINE_SIM_MAIN (void)
|
load_memory (SIM_DESC SD,
|
load_memory (SIM_DESC SD,
|
sim_cpu *CPU,
|
sim_cpu *CPU,
|
address_word cia,
|
address_word cia,
|
uword64* memvalp,
|
uword64* memvalp,
|
uword64* memval1p,
|
uword64* memval1p,
|
int CCA,
|
int CCA,
|
unsigned int AccessLength,
|
unsigned int AccessLength,
|
address_word pAddr,
|
address_word pAddr,
|
address_word vAddr,
|
address_word vAddr,
|
int IorD)
|
int IorD)
|
{
|
{
|
uword64 value = 0;
|
uword64 value = 0;
|
uword64 value1 = 0;
|
uword64 value1 = 0;
|
|
|
#ifdef DEBUG
|
#ifdef DEBUG
|
sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
|
sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
#if defined(WARN_MEM)
|
#if defined(WARN_MEM)
|
if (CCA != uncached)
|
if (CCA != uncached)
|
sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
#endif /* WARN_MEM */
|
#endif /* WARN_MEM */
|
|
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
{
|
{
|
/* In reality this should be a Bus Error */
|
/* In reality this should be a Bus Error */
|
sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
AccessLength,
|
AccessLength,
|
(LOADDRMASK + 1) << 3,
|
(LOADDRMASK + 1) << 3,
|
pr_addr (pAddr));
|
pr_addr (pAddr));
|
}
|
}
|
|
|
#if defined(TRACE)
|
#if defined(TRACE)
|
dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
|
dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
|
#endif /* TRACE */
|
#endif /* TRACE */
|
|
|
/* Read the specified number of bytes from memory. Adjust for
|
/* Read the specified number of bytes from memory. Adjust for
|
host/target byte ordering/ Align the least significant byte
|
host/target byte ordering/ Align the least significant byte
|
read. */
|
read. */
|
|
|
switch (AccessLength)
|
switch (AccessLength)
|
{
|
{
|
case AccessLength_QUADWORD:
|
case AccessLength_QUADWORD:
|
{
|
{
|
unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr);
|
unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr);
|
value1 = VH8_16 (val);
|
value1 = VH8_16 (val);
|
value = VL8_16 (val);
|
value = VL8_16 (val);
|
break;
|
break;
|
}
|
}
|
case AccessLength_DOUBLEWORD:
|
case AccessLength_DOUBLEWORD:
|
value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_SEPTIBYTE:
|
case AccessLength_SEPTIBYTE:
|
value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_SEXTIBYTE:
|
case AccessLength_SEXTIBYTE:
|
value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_QUINTIBYTE:
|
case AccessLength_QUINTIBYTE:
|
value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_WORD:
|
case AccessLength_WORD:
|
value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_TRIPLEBYTE:
|
case AccessLength_TRIPLEBYTE:
|
value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_HALFWORD:
|
case AccessLength_HALFWORD:
|
value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
case AccessLength_BYTE:
|
case AccessLength_BYTE:
|
value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr);
|
value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr);
|
break;
|
break;
|
default:
|
default:
|
abort ();
|
abort ();
|
}
|
}
|
|
|
#ifdef DEBUG
|
#ifdef DEBUG
|
printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
|
printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
|
(int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
|
(int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
/* See also store_memory. Position data in correct byte lanes. */
|
/* See also store_memory. Position data in correct byte lanes. */
|
if (AccessLength <= LOADDRMASK)
|
if (AccessLength <= LOADDRMASK)
|
{
|
{
|
if (BigEndianMem)
|
if (BigEndianMem)
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
shifted to the most significant byte position. */
|
shifted to the most significant byte position. */
|
value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
else
|
else
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
is already in the correct postition. */
|
is already in the correct postition. */
|
value <<= ((pAddr & LOADDRMASK) * 8);
|
value <<= ((pAddr & LOADDRMASK) * 8);
|
}
|
}
|
|
|
#ifdef DEBUG
|
#ifdef DEBUG
|
printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
|
printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
|
pr_uword64(value1),pr_uword64(value));
|
pr_uword64(value1),pr_uword64(value));
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
*memvalp = value;
|
*memvalp = value;
|
if (memval1p) *memval1p = value1;
|
if (memval1p) *memval1p = value1;
|
}
|
}
|
|
|
|
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
(revision 3.1) */
|
(revision 3.1) */
|
/* Store a value to memory. The specified data is stored into the
|
/* Store a value to memory. The specified data is stored into the
|
physical location pAddr using the memory hierarchy (data caches and
|
physical location pAddr using the memory hierarchy (data caches and
|
main memory) as specified by the Cache Coherence Algorithm
|
main memory) as specified by the Cache Coherence Algorithm
|
(CCA). The MemElem contains the data for an aligned, fixed-width
|
(CCA). The MemElem contains the data for an aligned, fixed-width
|
memory element (word for 32-bit processors, doubleword for 64-bit
|
memory element (word for 32-bit processors, doubleword for 64-bit
|
processors), though only the bytes that will actually be stored to
|
processors), though only the bytes that will actually be stored to
|
memory need to be valid. The low-order two (or three) bits of pAddr
|
memory need to be valid. The low-order two (or three) bits of pAddr
|
and the AccessLength field indicates which of the bytes within the
|
and the AccessLength field indicates which of the bytes within the
|
MemElem data should actually be stored; only these bytes in memory
|
MemElem data should actually be stored; only these bytes in memory
|
will be changed. */
|
will be changed. */
|
|
|
INLINE_SIM_MAIN (void)
|
INLINE_SIM_MAIN (void)
|
store_memory (SIM_DESC SD,
|
store_memory (SIM_DESC SD,
|
sim_cpu *CPU,
|
sim_cpu *CPU,
|
address_word cia,
|
address_word cia,
|
int CCA,
|
int CCA,
|
unsigned int AccessLength,
|
unsigned int AccessLength,
|
uword64 MemElem,
|
uword64 MemElem,
|
uword64 MemElem1, /* High order 64 bits */
|
uword64 MemElem1, /* High order 64 bits */
|
address_word pAddr,
|
address_word pAddr,
|
address_word vAddr)
|
address_word vAddr)
|
{
|
{
|
#ifdef DEBUG
|
#ifdef DEBUG
|
sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
|
sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
#if defined(WARN_MEM)
|
#if defined(WARN_MEM)
|
if (CCA != uncached)
|
if (CCA != uncached)
|
sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
#endif /* WARN_MEM */
|
#endif /* WARN_MEM */
|
|
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
AccessLength,
|
AccessLength,
|
(LOADDRMASK + 1) << 3,
|
(LOADDRMASK + 1) << 3,
|
pr_addr(pAddr));
|
pr_addr(pAddr));
|
|
|
#if defined(TRACE)
|
#if defined(TRACE)
|
dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
|
dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
|
#endif /* TRACE */
|
#endif /* TRACE */
|
|
|
#ifdef DEBUG
|
#ifdef DEBUG
|
printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
|
printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
/* See also load_memory. Position data in correct byte lanes. */
|
/* See also load_memory. Position data in correct byte lanes. */
|
if (AccessLength <= LOADDRMASK)
|
if (AccessLength <= LOADDRMASK)
|
{
|
{
|
if (BigEndianMem)
|
if (BigEndianMem)
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
shifted to the most significant byte position. */
|
shifted to the most significant byte position. */
|
MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
else
|
else
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
is already in the correct postition. */
|
is already in the correct postition. */
|
MemElem >>= ((pAddr & LOADDRMASK) * 8);
|
MemElem >>= ((pAddr & LOADDRMASK) * 8);
|
}
|
}
|
|
|
#ifdef DEBUG
|
#ifdef DEBUG
|
printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
|
printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
|
|
switch (AccessLength)
|
switch (AccessLength)
|
{
|
{
|
case AccessLength_QUADWORD:
|
case AccessLength_QUADWORD:
|
{
|
{
|
unsigned_16 val = U16_8 (MemElem1, MemElem);
|
unsigned_16 val = U16_8 (MemElem1, MemElem);
|
sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val);
|
sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val);
|
break;
|
break;
|
}
|
}
|
case AccessLength_DOUBLEWORD:
|
case AccessLength_DOUBLEWORD:
|
sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_SEPTIBYTE:
|
case AccessLength_SEPTIBYTE:
|
sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_SEXTIBYTE:
|
case AccessLength_SEXTIBYTE:
|
sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_QUINTIBYTE:
|
case AccessLength_QUINTIBYTE:
|
sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_WORD:
|
case AccessLength_WORD:
|
sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_TRIPLEBYTE:
|
case AccessLength_TRIPLEBYTE:
|
sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_HALFWORD:
|
case AccessLength_HALFWORD:
|
sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
case AccessLength_BYTE:
|
case AccessLength_BYTE:
|
sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem);
|
sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem);
|
break;
|
break;
|
default:
|
default:
|
abort ();
|
abort ();
|
}
|
}
|
|
|
return;
|
return;
|
}
|
}
|
|
|
|
|
INLINE_SIM_MAIN (unsigned32)
|
INLINE_SIM_MAIN (unsigned32)
|
ifetch32 (SIM_DESC SD,
|
ifetch32 (SIM_DESC SD,
|
sim_cpu *CPU,
|
sim_cpu *CPU,
|
address_word cia,
|
address_word cia,
|
address_word vaddr)
|
address_word vaddr)
|
{
|
{
|
/* Copy the action of the LW instruction */
|
/* Copy the action of the LW instruction */
|
address_word mask = LOADDRMASK;
|
address_word mask = LOADDRMASK;
|
address_word access = AccessLength_WORD;
|
address_word access = AccessLength_WORD;
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
unsigned int byte;
|
unsigned int byte;
|
address_word paddr;
|
address_word paddr;
|
int uncached;
|
int uncached;
|
unsigned64 memval;
|
unsigned64 memval;
|
|
|
if ((vaddr & access) != 0)
|
if ((vaddr & access) != 0)
|
SignalExceptionInstructionFetch ();
|
SignalExceptionInstructionFetch ();
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
return (memval >> (8 * byte));
|
return (memval >> (8 * byte));
|
}
|
}
|
|
|
|
|
INLINE_SIM_MAIN (unsigned16)
|
INLINE_SIM_MAIN (unsigned16)
|
ifetch16 (SIM_DESC SD,
|
ifetch16 (SIM_DESC SD,
|
sim_cpu *CPU,
|
sim_cpu *CPU,
|
address_word cia,
|
address_word cia,
|
address_word vaddr)
|
address_word vaddr)
|
{
|
{
|
/* Copy the action of the LH instruction */
|
/* Copy the action of the LH instruction */
|
address_word mask = LOADDRMASK;
|
address_word mask = LOADDRMASK;
|
address_word access = AccessLength_HALFWORD;
|
address_word access = AccessLength_HALFWORD;
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
unsigned int byte;
|
unsigned int byte;
|
address_word paddr;
|
address_word paddr;
|
int uncached;
|
int uncached;
|
unsigned64 memval;
|
unsigned64 memval;
|
|
|
if ((vaddr & access) != 0)
|
if ((vaddr & access) != 0)
|
SignalExceptionInstructionFetch ();
|
SignalExceptionInstructionFetch ();
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
return (memval >> (8 * byte));
|
return (memval >> (8 * byte));
|
}
|
}
|
|
|
|
|
|
|
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
|
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
|
/* Order loads and stores to synchronise shared memory. Perform the
|
/* Order loads and stores to synchronise shared memory. Perform the
|
action necessary to make the effects of groups of synchronizable
|
action necessary to make the effects of groups of synchronizable
|
loads and stores indicated by stype occur in the same order for all
|
loads and stores indicated by stype occur in the same order for all
|
processors. */
|
processors. */
|
INLINE_SIM_MAIN (void)
|
INLINE_SIM_MAIN (void)
|
sync_operation (SIM_DESC sd,
|
sync_operation (SIM_DESC sd,
|
sim_cpu *cpu,
|
sim_cpu *cpu,
|
address_word cia,
|
address_word cia,
|
int stype)
|
int stype)
|
{
|
{
|
#ifdef DEBUG
|
#ifdef DEBUG
|
sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
|
sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
|
#endif /* DEBUG */
|
#endif /* DEBUG */
|
return;
|
return;
|
}
|
}
|
|
|
INLINE_SIM_MAIN (void)
|
INLINE_SIM_MAIN (void)
|
cache_op (SIM_DESC SD,
|
cache_op (SIM_DESC SD,
|
sim_cpu *CPU,
|
sim_cpu *CPU,
|
address_word cia,
|
address_word cia,
|
int op,
|
int op,
|
address_word pAddr,
|
address_word pAddr,
|
address_word vAddr,
|
address_word vAddr,
|
unsigned int instruction)
|
unsigned int instruction)
|
{
|
{
|
#if 1 /* stop warning message being displayed (we should really just remove the code) */
|
#if 1 /* stop warning message being displayed (we should really just remove the code) */
|
static int icache_warning = 1;
|
static int icache_warning = 1;
|
static int dcache_warning = 1;
|
static int dcache_warning = 1;
|
#else
|
#else
|
static int icache_warning = 0;
|
static int icache_warning = 0;
|
static int dcache_warning = 0;
|
static int dcache_warning = 0;
|
#endif
|
#endif
|
|
|
/* If CP0 is not useable (User or Supervisor mode) and the CP0
|
/* If CP0 is not useable (User or Supervisor mode) and the CP0
|
enable bit in the Status Register is clear - a coprocessor
|
enable bit in the Status Register is clear - a coprocessor
|
unusable exception is taken. */
|
unusable exception is taken. */
|
#if 0
|
#if 0
|
sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
|
sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
|
#endif
|
#endif
|
|
|
switch (op & 0x3) {
|
switch (op & 0x3) {
|
case 0: /* instruction cache */
|
case 0: /* instruction cache */
|
switch (op >> 2) {
|
switch (op >> 2) {
|
case 0: /* Index Invalidate */
|
case 0: /* Index Invalidate */
|
case 1: /* Index Load Tag */
|
case 1: /* Index Load Tag */
|
case 2: /* Index Store Tag */
|
case 2: /* Index Store Tag */
|
case 4: /* Hit Invalidate */
|
case 4: /* Hit Invalidate */
|
case 5: /* Fill */
|
case 5: /* Fill */
|
case 6: /* Hit Writeback */
|
case 6: /* Hit Writeback */
|
if (!icache_warning)
|
if (!icache_warning)
|
{
|
{
|
sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
|
sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
|
icache_warning = 1;
|
icache_warning = 1;
|
}
|
}
|
break;
|
break;
|
|
|
default:
|
default:
|
SignalException(ReservedInstruction,instruction);
|
SignalException(ReservedInstruction,instruction);
|
break;
|
break;
|
}
|
}
|
break;
|
break;
|
|
|
case 1: /* data cache */
|
case 1: /* data cache */
|
case 3: /* secondary data cache */
|
case 3: /* secondary data cache */
|
switch (op >> 2) {
|
switch (op >> 2) {
|
case 0: /* Index Writeback Invalidate */
|
case 0: /* Index Writeback Invalidate */
|
case 1: /* Index Load Tag */
|
case 1: /* Index Load Tag */
|
case 2: /* Index Store Tag */
|
case 2: /* Index Store Tag */
|
case 3: /* Create Dirty */
|
case 3: /* Create Dirty */
|
case 4: /* Hit Invalidate */
|
case 4: /* Hit Invalidate */
|
case 5: /* Hit Writeback Invalidate */
|
case 5: /* Hit Writeback Invalidate */
|
case 6: /* Hit Writeback */
|
case 6: /* Hit Writeback */
|
if (!dcache_warning)
|
if (!dcache_warning)
|
{
|
{
|
sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
|
sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
|
dcache_warning = 1;
|
dcache_warning = 1;
|
}
|
}
|
break;
|
break;
|
|
|
default:
|
default:
|
SignalException(ReservedInstruction,instruction);
|
SignalException(ReservedInstruction,instruction);
|
break;
|
break;
|
}
|
}
|
break;
|
break;
|
|
|
default: /* unrecognised cache ID */
|
default: /* unrecognised cache ID */
|
SignalException(ReservedInstruction,instruction);
|
SignalException(ReservedInstruction,instruction);
|
break;
|
break;
|
}
|
}
|
|
|
return;
|
return;
|
}
|
}
|
|
|
|
|
INLINE_SIM_MAIN (void)
|
INLINE_SIM_MAIN (void)
|
pending_tick (SIM_DESC SD,
|
pending_tick (SIM_DESC SD,
|
sim_cpu *CPU,
|
sim_cpu *CPU,
|
address_word cia)
|
address_word cia)
|
{
|
{
|
if (PENDING_TRACE)
|
if (PENDING_TRACE)
|
sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL);
|
sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL);
|
if (PENDING_OUT != PENDING_IN)
|
if (PENDING_OUT != PENDING_IN)
|
{
|
{
|
int loop;
|
int loop;
|
int index = PENDING_OUT;
|
int index = PENDING_OUT;
|
int total = PENDING_TOTAL;
|
int total = PENDING_TOTAL;
|
if (PENDING_TOTAL == 0)
|
if (PENDING_TOTAL == 0)
|
sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
|
sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
|
for (loop = 0, index = PENDING_OUT;
|
for (loop = 0, index = PENDING_OUT;
|
(loop < total);
|
(loop < total);
|
loop++, index = (index + 1) % PSLOTS)
|
loop++, index = (index + 1) % PSLOTS)
|
{
|
{
|
if (PENDING_SLOT_DEST[index] != NULL)
|
if (PENDING_SLOT_DEST[index] != NULL)
|
{
|
{
|
PENDING_SLOT_DELAY[index] -= 1;
|
PENDING_SLOT_DELAY[index] -= 1;
|
if (PENDING_SLOT_DELAY[index] == 0)
|
if (PENDING_SLOT_DELAY[index] == 0)
|
{
|
{
|
if (PENDING_TRACE)
|
if (PENDING_TRACE)
|
sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
index,
|
index,
|
(unsigned long) PENDING_SLOT_DEST[index],
|
(unsigned long) PENDING_SLOT_DEST[index],
|
PENDING_SLOT_BIT[index],
|
PENDING_SLOT_BIT[index],
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
PENDING_SLOT_SIZE[index]);
|
PENDING_SLOT_SIZE[index]);
|
if (PENDING_SLOT_BIT[index] >= 0)
|
if (PENDING_SLOT_BIT[index] >= 0)
|
switch (PENDING_SLOT_SIZE[index])
|
switch (PENDING_SLOT_SIZE[index])
|
{
|
{
|
case 4:
|
case 4:
|
if (PENDING_SLOT_VALUE[index])
|
if (PENDING_SLOT_VALUE[index])
|
*(unsigned32*)PENDING_SLOT_DEST[index] |=
|
*(unsigned32*)PENDING_SLOT_DEST[index] |=
|
BIT32 (PENDING_SLOT_BIT[index]);
|
BIT32 (PENDING_SLOT_BIT[index]);
|
else
|
else
|
*(unsigned32*)PENDING_SLOT_DEST[index] &=
|
*(unsigned32*)PENDING_SLOT_DEST[index] &=
|
BIT32 (PENDING_SLOT_BIT[index]);
|
BIT32 (PENDING_SLOT_BIT[index]);
|
break;
|
break;
|
case 8:
|
case 8:
|
if (PENDING_SLOT_VALUE[index])
|
if (PENDING_SLOT_VALUE[index])
|
*(unsigned64*)PENDING_SLOT_DEST[index] |=
|
*(unsigned64*)PENDING_SLOT_DEST[index] |=
|
BIT64 (PENDING_SLOT_BIT[index]);
|
BIT64 (PENDING_SLOT_BIT[index]);
|
else
|
else
|
*(unsigned64*)PENDING_SLOT_DEST[index] &=
|
*(unsigned64*)PENDING_SLOT_DEST[index] &=
|
BIT64 (PENDING_SLOT_BIT[index]);
|
BIT64 (PENDING_SLOT_BIT[index]);
|
break;
|
break;
|
}
|
}
|
else
|
else
|
switch (PENDING_SLOT_SIZE[index])
|
switch (PENDING_SLOT_SIZE[index])
|
{
|
{
|
case 4:
|
case 4:
|
*(unsigned32*)PENDING_SLOT_DEST[index] =
|
*(unsigned32*)PENDING_SLOT_DEST[index] =
|
PENDING_SLOT_VALUE[index];
|
PENDING_SLOT_VALUE[index];
|
break;
|
break;
|
case 8:
|
case 8:
|
*(unsigned64*)PENDING_SLOT_DEST[index] =
|
*(unsigned64*)PENDING_SLOT_DEST[index] =
|
PENDING_SLOT_VALUE[index];
|
PENDING_SLOT_VALUE[index];
|
break;
|
break;
|
}
|
}
|
if (PENDING_OUT == index)
|
if (PENDING_OUT == index)
|
{
|
{
|
PENDING_SLOT_DEST[index] = NULL;
|
PENDING_SLOT_DEST[index] = NULL;
|
PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
|
PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
|
PENDING_TOTAL--;
|
PENDING_TOTAL--;
|
}
|
}
|
}
|
}
|
else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
|
else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
|
sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
index, PENDING_SLOT_DELAY[index],
|
index, PENDING_SLOT_DELAY[index],
|
(unsigned long) PENDING_SLOT_DEST[index],
|
(unsigned long) PENDING_SLOT_DEST[index],
|
PENDING_SLOT_BIT[index],
|
PENDING_SLOT_BIT[index],
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
PENDING_SLOT_SIZE[index]);
|
PENDING_SLOT_SIZE[index]);
|
|
|
}
|
}
|
}
|
}
|
}
|
}
|
}
|
}
|
|
|
|
|
#endif
|
#endif
|
|
|