OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [c4x/] [c4x.c] - Diff between revs 38 and 154

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 38 Rev 154
/* Subroutines for assembler code output on the TMS320C[34]x
/* Subroutines for assembler code output on the TMS320C[34]x
   Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003,
   Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003,
   2004, 2005, 2007
   2004, 2005, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
   Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
              and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
              and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* Some output-actions in c4x.md need these.  */
/* Some output-actions in c4x.md need these.  */
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "real.h"
#include "real.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "conditions.h"
#include "conditions.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "flags.h"
#include "flags.h"
#include "recog.h"
#include "recog.h"
#include "ggc.h"
#include "ggc.h"
#include "cpplib.h"
#include "cpplib.h"
#include "toplev.h"
#include "toplev.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "target-def.h"
#include "target-def.h"
#include "langhooks.h"
#include "langhooks.h"
 
 
rtx smulhi3_libfunc;
rtx smulhi3_libfunc;
rtx umulhi3_libfunc;
rtx umulhi3_libfunc;
rtx fix_truncqfhi2_libfunc;
rtx fix_truncqfhi2_libfunc;
rtx fixuns_truncqfhi2_libfunc;
rtx fixuns_truncqfhi2_libfunc;
rtx fix_trunchfhi2_libfunc;
rtx fix_trunchfhi2_libfunc;
rtx fixuns_trunchfhi2_libfunc;
rtx fixuns_trunchfhi2_libfunc;
rtx floathiqf2_libfunc;
rtx floathiqf2_libfunc;
rtx floatunshiqf2_libfunc;
rtx floatunshiqf2_libfunc;
rtx floathihf2_libfunc;
rtx floathihf2_libfunc;
rtx floatunshihf2_libfunc;
rtx floatunshihf2_libfunc;
 
 
static int c4x_leaf_function;
static int c4x_leaf_function;
 
 
static const char *const float_reg_names[] = FLOAT_REGISTER_NAMES;
static const char *const float_reg_names[] = FLOAT_REGISTER_NAMES;
 
 
/* Array of the smallest class containing reg number REGNO, indexed by
/* Array of the smallest class containing reg number REGNO, indexed by
   REGNO.  Used by REGNO_REG_CLASS in c4x.h.  We assume that all these
   REGNO.  Used by REGNO_REG_CLASS in c4x.h.  We assume that all these
   registers are available and set the class to NO_REGS for registers
   registers are available and set the class to NO_REGS for registers
   that the target switches say are unavailable.  */
   that the target switches say are unavailable.  */
 
 
enum reg_class c4x_regclass_map[FIRST_PSEUDO_REGISTER] =
enum reg_class c4x_regclass_map[FIRST_PSEUDO_REGISTER] =
{
{
                                /* Reg          Modes           Saved.  */
                                /* Reg          Modes           Saved.  */
  R0R1_REGS,                    /* R0           QI, QF, HF      No.  */
  R0R1_REGS,                    /* R0           QI, QF, HF      No.  */
  R0R1_REGS,                    /* R1           QI, QF, HF      No.  */
  R0R1_REGS,                    /* R1           QI, QF, HF      No.  */
  R2R3_REGS,                    /* R2           QI, QF, HF      No.  */
  R2R3_REGS,                    /* R2           QI, QF, HF      No.  */
  R2R3_REGS,                    /* R3           QI, QF, HF      No.  */
  R2R3_REGS,                    /* R3           QI, QF, HF      No.  */
  EXT_LOW_REGS,                 /* R4           QI, QF, HF      QI.  */
  EXT_LOW_REGS,                 /* R4           QI, QF, HF      QI.  */
  EXT_LOW_REGS,                 /* R5           QI, QF, HF      QI.  */
  EXT_LOW_REGS,                 /* R5           QI, QF, HF      QI.  */
  EXT_LOW_REGS,                 /* R6           QI, QF, HF      QF.  */
  EXT_LOW_REGS,                 /* R6           QI, QF, HF      QF.  */
  EXT_LOW_REGS,                 /* R7           QI, QF, HF      QF.  */
  EXT_LOW_REGS,                 /* R7           QI, QF, HF      QF.  */
  ADDR_REGS,                    /* AR0          QI              No.  */
  ADDR_REGS,                    /* AR0          QI              No.  */
  ADDR_REGS,                    /* AR1          QI              No.  */
  ADDR_REGS,                    /* AR1          QI              No.  */
  ADDR_REGS,                    /* AR2          QI              No.  */
  ADDR_REGS,                    /* AR2          QI              No.  */
  ADDR_REGS,                    /* AR3          QI              QI.  */
  ADDR_REGS,                    /* AR3          QI              QI.  */
  ADDR_REGS,                    /* AR4          QI              QI.  */
  ADDR_REGS,                    /* AR4          QI              QI.  */
  ADDR_REGS,                    /* AR5          QI              QI.  */
  ADDR_REGS,                    /* AR5          QI              QI.  */
  ADDR_REGS,                    /* AR6          QI              QI.  */
  ADDR_REGS,                    /* AR6          QI              QI.  */
  ADDR_REGS,                    /* AR7          QI              QI.  */
  ADDR_REGS,                    /* AR7          QI              QI.  */
  DP_REG,                       /* DP           QI              No.  */
  DP_REG,                       /* DP           QI              No.  */
  INDEX_REGS,                   /* IR0          QI              No.  */
  INDEX_REGS,                   /* IR0          QI              No.  */
  INDEX_REGS,                   /* IR1          QI              No.  */
  INDEX_REGS,                   /* IR1          QI              No.  */
  BK_REG,                       /* BK           QI              QI.  */
  BK_REG,                       /* BK           QI              QI.  */
  SP_REG,                       /* SP           QI              No.  */
  SP_REG,                       /* SP           QI              No.  */
  ST_REG,                       /* ST           CC              No.  */
  ST_REG,                       /* ST           CC              No.  */
  NO_REGS,                      /* DIE/IE                       No.  */
  NO_REGS,                      /* DIE/IE                       No.  */
  NO_REGS,                      /* IIE/IF                       No.  */
  NO_REGS,                      /* IIE/IF                       No.  */
  NO_REGS,                      /* IIF/IOF                      No.  */
  NO_REGS,                      /* IIF/IOF                      No.  */
  INT_REGS,                     /* RS           QI              No.  */
  INT_REGS,                     /* RS           QI              No.  */
  INT_REGS,                     /* RE           QI              No.  */
  INT_REGS,                     /* RE           QI              No.  */
  RC_REG,                       /* RC           QI              No.  */
  RC_REG,                       /* RC           QI              No.  */
  EXT_REGS,                     /* R8           QI, QF, HF      QI.  */
  EXT_REGS,                     /* R8           QI, QF, HF      QI.  */
  EXT_REGS,                     /* R9           QI, QF, HF      No.  */
  EXT_REGS,                     /* R9           QI, QF, HF      No.  */
  EXT_REGS,                     /* R10          QI, QF, HF      No.  */
  EXT_REGS,                     /* R10          QI, QF, HF      No.  */
  EXT_REGS,                     /* R11          QI, QF, HF      No.  */
  EXT_REGS,                     /* R11          QI, QF, HF      No.  */
};
};
 
 
enum machine_mode c4x_caller_save_map[FIRST_PSEUDO_REGISTER] =
enum machine_mode c4x_caller_save_map[FIRST_PSEUDO_REGISTER] =
{
{
                                /* Reg          Modes           Saved.  */
                                /* Reg          Modes           Saved.  */
  HFmode,                       /* R0           QI, QF, HF      No.  */
  HFmode,                       /* R0           QI, QF, HF      No.  */
  HFmode,                       /* R1           QI, QF, HF      No.  */
  HFmode,                       /* R1           QI, QF, HF      No.  */
  HFmode,                       /* R2           QI, QF, HF      No.  */
  HFmode,                       /* R2           QI, QF, HF      No.  */
  HFmode,                       /* R3           QI, QF, HF      No.  */
  HFmode,                       /* R3           QI, QF, HF      No.  */
  QFmode,                       /* R4           QI, QF, HF      QI.  */
  QFmode,                       /* R4           QI, QF, HF      QI.  */
  QFmode,                       /* R5           QI, QF, HF      QI.  */
  QFmode,                       /* R5           QI, QF, HF      QI.  */
  QImode,                       /* R6           QI, QF, HF      QF.  */
  QImode,                       /* R6           QI, QF, HF      QF.  */
  QImode,                       /* R7           QI, QF, HF      QF.  */
  QImode,                       /* R7           QI, QF, HF      QF.  */
  QImode,                       /* AR0          QI              No.  */
  QImode,                       /* AR0          QI              No.  */
  QImode,                       /* AR1          QI              No.  */
  QImode,                       /* AR1          QI              No.  */
  QImode,                       /* AR2          QI              No.  */
  QImode,                       /* AR2          QI              No.  */
  QImode,                       /* AR3          QI              QI.  */
  QImode,                       /* AR3          QI              QI.  */
  QImode,                       /* AR4          QI              QI.  */
  QImode,                       /* AR4          QI              QI.  */
  QImode,                       /* AR5          QI              QI.  */
  QImode,                       /* AR5          QI              QI.  */
  QImode,                       /* AR6          QI              QI.  */
  QImode,                       /* AR6          QI              QI.  */
  QImode,                       /* AR7          QI              QI.  */
  QImode,                       /* AR7          QI              QI.  */
  VOIDmode,                     /* DP           QI              No.  */
  VOIDmode,                     /* DP           QI              No.  */
  QImode,                       /* IR0          QI              No.  */
  QImode,                       /* IR0          QI              No.  */
  QImode,                       /* IR1          QI              No.  */
  QImode,                       /* IR1          QI              No.  */
  QImode,                       /* BK           QI              QI.  */
  QImode,                       /* BK           QI              QI.  */
  VOIDmode,                     /* SP           QI              No.  */
  VOIDmode,                     /* SP           QI              No.  */
  VOIDmode,                     /* ST           CC              No.  */
  VOIDmode,                     /* ST           CC              No.  */
  VOIDmode,                     /* DIE/IE                       No.  */
  VOIDmode,                     /* DIE/IE                       No.  */
  VOIDmode,                     /* IIE/IF                       No.  */
  VOIDmode,                     /* IIE/IF                       No.  */
  VOIDmode,                     /* IIF/IOF                      No.  */
  VOIDmode,                     /* IIF/IOF                      No.  */
  QImode,                       /* RS           QI              No.  */
  QImode,                       /* RS           QI              No.  */
  QImode,                       /* RE           QI              No.  */
  QImode,                       /* RE           QI              No.  */
  VOIDmode,                     /* RC           QI              No.  */
  VOIDmode,                     /* RC           QI              No.  */
  QFmode,                       /* R8           QI, QF, HF      QI.  */
  QFmode,                       /* R8           QI, QF, HF      QI.  */
  HFmode,                       /* R9           QI, QF, HF      No.  */
  HFmode,                       /* R9           QI, QF, HF      No.  */
  HFmode,                       /* R10          QI, QF, HF      No.  */
  HFmode,                       /* R10          QI, QF, HF      No.  */
  HFmode,                       /* R11          QI, QF, HF      No.  */
  HFmode,                       /* R11          QI, QF, HF      No.  */
};
};
 
 
 
 
/* Test and compare insns in c4x.md store the information needed to
/* Test and compare insns in c4x.md store the information needed to
   generate branch and scc insns here.  */
   generate branch and scc insns here.  */
 
 
rtx c4x_compare_op0;
rtx c4x_compare_op0;
rtx c4x_compare_op1;
rtx c4x_compare_op1;
 
 
int c4x_cpu_version = 40;       /* CPU version C30/31/32/33/40/44.  */
int c4x_cpu_version = 40;       /* CPU version C30/31/32/33/40/44.  */
 
 
/* Pragma definitions.  */
/* Pragma definitions.  */
 
 
tree code_tree = NULL_TREE;
tree code_tree = NULL_TREE;
tree data_tree = NULL_TREE;
tree data_tree = NULL_TREE;
tree pure_tree = NULL_TREE;
tree pure_tree = NULL_TREE;
tree noreturn_tree = NULL_TREE;
tree noreturn_tree = NULL_TREE;
tree interrupt_tree = NULL_TREE;
tree interrupt_tree = NULL_TREE;
tree naked_tree = NULL_TREE;
tree naked_tree = NULL_TREE;
 
 
/* Forward declarations */
/* Forward declarations */
static bool c4x_handle_option (size_t, const char *, int);
static bool c4x_handle_option (size_t, const char *, int);
static int c4x_isr_reg_used_p (unsigned int);
static int c4x_isr_reg_used_p (unsigned int);
static int c4x_leaf_function_p (void);
static int c4x_leaf_function_p (void);
static int c4x_naked_function_p (void);
static int c4x_naked_function_p (void);
static int c4x_immed_int_constant (rtx);
static int c4x_immed_int_constant (rtx);
static int c4x_immed_float_constant (rtx);
static int c4x_immed_float_constant (rtx);
static int c4x_R_indirect (rtx);
static int c4x_R_indirect (rtx);
static void c4x_S_address_parse (rtx , int *, int *, int *, int *);
static void c4x_S_address_parse (rtx , int *, int *, int *, int *);
static int c4x_valid_operands (enum rtx_code, rtx *, enum machine_mode, int);
static int c4x_valid_operands (enum rtx_code, rtx *, enum machine_mode, int);
static int c4x_arn_reg_operand (rtx, enum machine_mode, unsigned int);
static int c4x_arn_reg_operand (rtx, enum machine_mode, unsigned int);
static int c4x_arn_mem_operand (rtx, enum machine_mode, unsigned int);
static int c4x_arn_mem_operand (rtx, enum machine_mode, unsigned int);
static void c4x_file_start (void);
static void c4x_file_start (void);
static void c4x_file_end (void);
static void c4x_file_end (void);
static void c4x_check_attribute (const char *, tree, tree, tree *);
static void c4x_check_attribute (const char *, tree, tree, tree *);
static int c4x_r11_set_p (rtx);
static int c4x_r11_set_p (rtx);
static int c4x_rptb_valid_p (rtx, rtx);
static int c4x_rptb_valid_p (rtx, rtx);
static void c4x_reorg (void);
static void c4x_reorg (void);
static int c4x_label_ref_used_p (rtx, rtx);
static int c4x_label_ref_used_p (rtx, rtx);
static tree c4x_handle_fntype_attribute (tree *, tree, tree, int, bool *);
static tree c4x_handle_fntype_attribute (tree *, tree, tree, int, bool *);
const struct attribute_spec c4x_attribute_table[];
const struct attribute_spec c4x_attribute_table[];
static void c4x_insert_attributes (tree, tree *);
static void c4x_insert_attributes (tree, tree *);
static void c4x_asm_named_section (const char *, unsigned int, tree);
static void c4x_asm_named_section (const char *, unsigned int, tree);
static int c4x_adjust_cost (rtx, rtx, rtx, int);
static int c4x_adjust_cost (rtx, rtx, rtx, int);
static void c4x_globalize_label (FILE *, const char *);
static void c4x_globalize_label (FILE *, const char *);
static bool c4x_rtx_costs (rtx, int, int, int *);
static bool c4x_rtx_costs (rtx, int, int, int *);
static int c4x_address_cost (rtx);
static int c4x_address_cost (rtx);
static void c4x_init_libfuncs (void);
static void c4x_init_libfuncs (void);
static void c4x_external_libcall (rtx);
static void c4x_external_libcall (rtx);
static rtx c4x_struct_value_rtx (tree, int);
static rtx c4x_struct_value_rtx (tree, int);
static tree c4x_gimplify_va_arg_expr (tree, tree, tree *, tree *);
static tree c4x_gimplify_va_arg_expr (tree, tree, tree *, tree *);


/* Initialize the GCC target structure.  */
/* Initialize the GCC target structure.  */
#undef TARGET_ASM_BYTE_OP
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\t.word\t"
#define TARGET_ASM_BYTE_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP NULL
#define TARGET_ASM_ALIGNED_HI_OP NULL
#undef TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP NULL
#define TARGET_ASM_ALIGNED_SI_OP NULL
#undef TARGET_ASM_FILE_START
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START c4x_file_start
#define TARGET_ASM_FILE_START c4x_file_start
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#undef TARGET_ASM_FILE_END
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END c4x_file_end
#define TARGET_ASM_FILE_END c4x_file_end
 
 
#undef TARGET_ASM_EXTERNAL_LIBCALL
#undef TARGET_ASM_EXTERNAL_LIBCALL
#define TARGET_ASM_EXTERNAL_LIBCALL c4x_external_libcall
#define TARGET_ASM_EXTERNAL_LIBCALL c4x_external_libcall
 
 
/* Play safe, not the fastest code.  */
/* Play safe, not the fastest code.  */
#undef TARGET_DEFAULT_TARGET_FLAGS
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_ALIASES | MASK_PARALLEL \
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_ALIASES | MASK_PARALLEL \
                                     | MASK_PARALLEL_MPY | MASK_RPTB)
                                     | MASK_PARALLEL_MPY | MASK_RPTB)
#undef TARGET_HANDLE_OPTION
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION c4x_handle_option
#define TARGET_HANDLE_OPTION c4x_handle_option
 
 
#undef TARGET_ATTRIBUTE_TABLE
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE c4x_attribute_table
#define TARGET_ATTRIBUTE_TABLE c4x_attribute_table
 
 
#undef TARGET_INSERT_ATTRIBUTES
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES c4x_insert_attributes
#define TARGET_INSERT_ATTRIBUTES c4x_insert_attributes
 
 
#undef TARGET_INIT_BUILTINS
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS c4x_init_builtins
#define TARGET_INIT_BUILTINS c4x_init_builtins
 
 
#undef TARGET_EXPAND_BUILTIN
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN c4x_expand_builtin
#define TARGET_EXPAND_BUILTIN c4x_expand_builtin
 
 
#undef TARGET_SCHED_ADJUST_COST
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST c4x_adjust_cost
#define TARGET_SCHED_ADJUST_COST c4x_adjust_cost
 
 
#undef TARGET_ASM_GLOBALIZE_LABEL
#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL c4x_globalize_label
#define TARGET_ASM_GLOBALIZE_LABEL c4x_globalize_label
 
 
#undef TARGET_RTX_COSTS
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS c4x_rtx_costs
#define TARGET_RTX_COSTS c4x_rtx_costs
#undef TARGET_ADDRESS_COST
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST c4x_address_cost
#define TARGET_ADDRESS_COST c4x_address_cost
 
 
#undef TARGET_MACHINE_DEPENDENT_REORG
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG c4x_reorg
#define TARGET_MACHINE_DEPENDENT_REORG c4x_reorg
 
 
#undef TARGET_INIT_LIBFUNCS
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS c4x_init_libfuncs
#define TARGET_INIT_LIBFUNCS c4x_init_libfuncs
 
 
#undef TARGET_STRUCT_VALUE_RTX
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX c4x_struct_value_rtx
#define TARGET_STRUCT_VALUE_RTX c4x_struct_value_rtx
 
 
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR c4x_gimplify_va_arg_expr
#define TARGET_GIMPLIFY_VA_ARG_EXPR c4x_gimplify_va_arg_expr
 
 
struct gcc_target targetm = TARGET_INITIALIZER;
struct gcc_target targetm = TARGET_INITIALIZER;


/* Implement TARGET_HANDLE_OPTION.  */
/* Implement TARGET_HANDLE_OPTION.  */
 
 
static bool
static bool
c4x_handle_option (size_t code, const char *arg, int value)
c4x_handle_option (size_t code, const char *arg, int value)
{
{
  switch (code)
  switch (code)
    {
    {
    case OPT_m30: c4x_cpu_version = 30; return true;
    case OPT_m30: c4x_cpu_version = 30; return true;
    case OPT_m31: c4x_cpu_version = 31; return true;
    case OPT_m31: c4x_cpu_version = 31; return true;
    case OPT_m32: c4x_cpu_version = 32; return true;
    case OPT_m32: c4x_cpu_version = 32; return true;
    case OPT_m33: c4x_cpu_version = 33; return true;
    case OPT_m33: c4x_cpu_version = 33; return true;
    case OPT_m40: c4x_cpu_version = 40; return true;
    case OPT_m40: c4x_cpu_version = 40; return true;
    case OPT_m44: c4x_cpu_version = 44; return true;
    case OPT_m44: c4x_cpu_version = 44; return true;
 
 
    case OPT_mcpu_:
    case OPT_mcpu_:
      if (arg[0] == 'c' || arg[0] == 'C')
      if (arg[0] == 'c' || arg[0] == 'C')
        arg++;
        arg++;
      value = atoi (arg);
      value = atoi (arg);
      switch (value)
      switch (value)
        {
        {
        case 30: case 31: case 32: case 33: case 40: case 44:
        case 30: case 31: case 32: case 33: case 40: case 44:
          c4x_cpu_version = value;
          c4x_cpu_version = value;
          return true;
          return true;
        }
        }
      return false;
      return false;
 
 
    default:
    default:
      return true;
      return true;
    }
    }
}
}
 
 
/* Override command line options.
/* Override command line options.
   Called once after all options have been parsed.
   Called once after all options have been parsed.
   Mostly we process the processor
   Mostly we process the processor
   type and sometimes adjust other TARGET_ options.  */
   type and sometimes adjust other TARGET_ options.  */
 
 
void
void
c4x_override_options (void)
c4x_override_options (void)
{
{
  /* Convert foo / 8.0 into foo * 0.125, etc.  */
  /* Convert foo / 8.0 into foo * 0.125, etc.  */
  set_fast_math_flags (1);
  set_fast_math_flags (1);
 
 
  /* We should phase out the following at some stage.
  /* We should phase out the following at some stage.
     This provides compatibility with the old -mno-aliases option.  */
     This provides compatibility with the old -mno-aliases option.  */
  if (! TARGET_ALIASES && ! flag_argument_noalias)
  if (! TARGET_ALIASES && ! flag_argument_noalias)
    flag_argument_noalias = 1;
    flag_argument_noalias = 1;
 
 
  if (!TARGET_C3X)
  if (!TARGET_C3X)
    target_flags |= MASK_MPYI | MASK_DB;
    target_flags |= MASK_MPYI | MASK_DB;
 
 
  if (optimize < 2)
  if (optimize < 2)
    target_flags &= ~(MASK_RPTB | MASK_PARALLEL);
    target_flags &= ~(MASK_RPTB | MASK_PARALLEL);
 
 
  if (!TARGET_PARALLEL)
  if (!TARGET_PARALLEL)
    target_flags &= ~MASK_PARALLEL_MPY;
    target_flags &= ~MASK_PARALLEL_MPY;
}
}
 
 
 
 
/* This is called before c4x_override_options.  */
/* This is called before c4x_override_options.  */
 
 
void
void
c4x_optimization_options (int level ATTRIBUTE_UNUSED,
c4x_optimization_options (int level ATTRIBUTE_UNUSED,
                          int size ATTRIBUTE_UNUSED)
                          int size ATTRIBUTE_UNUSED)
{
{
  /* Scheduling before register allocation can screw up global
  /* Scheduling before register allocation can screw up global
     register allocation, especially for functions that use MPY||ADD
     register allocation, especially for functions that use MPY||ADD
     instructions.  The benefit we gain we get by scheduling before
     instructions.  The benefit we gain we get by scheduling before
     register allocation is probably marginal anyhow.  */
     register allocation is probably marginal anyhow.  */
  flag_schedule_insns = 0;
  flag_schedule_insns = 0;
}
}
 
 
 
 
/* Write an ASCII string.  */
/* Write an ASCII string.  */
 
 
#define C4X_ASCII_LIMIT 40
#define C4X_ASCII_LIMIT 40
 
 
void
void
c4x_output_ascii (FILE *stream, const char *ptr, int len)
c4x_output_ascii (FILE *stream, const char *ptr, int len)
{
{
  char sbuf[C4X_ASCII_LIMIT + 1];
  char sbuf[C4X_ASCII_LIMIT + 1];
  int s, l, special, first = 1, onlys;
  int s, l, special, first = 1, onlys;
 
 
  if (len)
  if (len)
      fprintf (stream, "\t.byte\t");
      fprintf (stream, "\t.byte\t");
 
 
  for (s = l = 0; len > 0; --len, ++ptr)
  for (s = l = 0; len > 0; --len, ++ptr)
    {
    {
      onlys = 0;
      onlys = 0;
 
 
      /* Escape " and \ with a \".  */
      /* Escape " and \ with a \".  */
      special = *ptr == '\"' || *ptr == '\\';
      special = *ptr == '\"' || *ptr == '\\';
 
 
      /* If printable - add to buff.  */
      /* If printable - add to buff.  */
      if ((! TARGET_TI || ! special) && *ptr >= 0x20 && *ptr < 0x7f)
      if ((! TARGET_TI || ! special) && *ptr >= 0x20 && *ptr < 0x7f)
        {
        {
          if (special)
          if (special)
            sbuf[s++] = '\\';
            sbuf[s++] = '\\';
          sbuf[s++] = *ptr;
          sbuf[s++] = *ptr;
          if (s < C4X_ASCII_LIMIT - 1)
          if (s < C4X_ASCII_LIMIT - 1)
            continue;
            continue;
          onlys = 1;
          onlys = 1;
        }
        }
      if (s)
      if (s)
        {
        {
          if (first)
          if (first)
            first = 0;
            first = 0;
          else
          else
            {
            {
              fputc (',', stream);
              fputc (',', stream);
              l++;
              l++;
            }
            }
 
 
          sbuf[s] = 0;
          sbuf[s] = 0;
          fprintf (stream, "\"%s\"", sbuf);
          fprintf (stream, "\"%s\"", sbuf);
          l += s + 2;
          l += s + 2;
          if (TARGET_TI && l >= 80 && len > 1)
          if (TARGET_TI && l >= 80 && len > 1)
            {
            {
              fprintf (stream, "\n\t.byte\t");
              fprintf (stream, "\n\t.byte\t");
              first = 1;
              first = 1;
              l = 0;
              l = 0;
            }
            }
 
 
          s = 0;
          s = 0;
        }
        }
      if (onlys)
      if (onlys)
        continue;
        continue;
 
 
      if (first)
      if (first)
        first = 0;
        first = 0;
      else
      else
        {
        {
          fputc (',', stream);
          fputc (',', stream);
          l++;
          l++;
        }
        }
 
 
      fprintf (stream, "%d", *ptr);
      fprintf (stream, "%d", *ptr);
      l += 3;
      l += 3;
      if (TARGET_TI && l >= 80 && len > 1)
      if (TARGET_TI && l >= 80 && len > 1)
        {
        {
          fprintf (stream, "\n\t.byte\t");
          fprintf (stream, "\n\t.byte\t");
          first = 1;
          first = 1;
          l = 0;
          l = 0;
        }
        }
    }
    }
  if (s)
  if (s)
    {
    {
      if (! first)
      if (! first)
        fputc (',', stream);
        fputc (',', stream);
 
 
      sbuf[s] = 0;
      sbuf[s] = 0;
      fprintf (stream, "\"%s\"", sbuf);
      fprintf (stream, "\"%s\"", sbuf);
      s = 0;
      s = 0;
    }
    }
  fputc ('\n', stream);
  fputc ('\n', stream);
}
}
 
 
 
 
int
int
c4x_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
c4x_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
{
{
  switch (mode)
  switch (mode)
    {
    {
#if Pmode != QImode
#if Pmode != QImode
    case Pmode:                 /* Pointer (24/32 bits).  */
    case Pmode:                 /* Pointer (24/32 bits).  */
#endif
#endif
    case QImode:                /* Integer (32 bits).  */
    case QImode:                /* Integer (32 bits).  */
      return IS_INT_REGNO (regno);
      return IS_INT_REGNO (regno);
 
 
    case QFmode:                /* Float, Double (32 bits).  */
    case QFmode:                /* Float, Double (32 bits).  */
    case HFmode:                /* Long Double (40 bits).  */
    case HFmode:                /* Long Double (40 bits).  */
      return IS_EXT_REGNO (regno);
      return IS_EXT_REGNO (regno);
 
 
    case CCmode:                /* Condition Codes.  */
    case CCmode:                /* Condition Codes.  */
    case CC_NOOVmode:           /* Condition Codes.  */
    case CC_NOOVmode:           /* Condition Codes.  */
      return IS_ST_REGNO (regno);
      return IS_ST_REGNO (regno);
 
 
    case HImode:                /* Long Long (64 bits).  */
    case HImode:                /* Long Long (64 bits).  */
      /* We need two registers to store long longs.  Note that
      /* We need two registers to store long longs.  Note that
         it is much easier to constrain the first register
         it is much easier to constrain the first register
         to start on an even boundary.  */
         to start on an even boundary.  */
      return IS_INT_REGNO (regno)
      return IS_INT_REGNO (regno)
        && IS_INT_REGNO (regno + 1)
        && IS_INT_REGNO (regno + 1)
        && (regno & 1) == 0;
        && (regno & 1) == 0;
 
 
    default:
    default:
      return 0;                  /* We don't support these modes.  */
      return 0;                  /* We don't support these modes.  */
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return nonzero if REGNO1 can be renamed to REGNO2.  */
/* Return nonzero if REGNO1 can be renamed to REGNO2.  */
int
int
c4x_hard_regno_rename_ok (unsigned int regno1, unsigned int regno2)
c4x_hard_regno_rename_ok (unsigned int regno1, unsigned int regno2)
{
{
  /* We cannot copy call saved registers from mode QI into QF or from
  /* We cannot copy call saved registers from mode QI into QF or from
     mode QF into QI.  */
     mode QF into QI.  */
  if (IS_FLOAT_CALL_SAVED_REGNO (regno1) && IS_INT_CALL_SAVED_REGNO (regno2))
  if (IS_FLOAT_CALL_SAVED_REGNO (regno1) && IS_INT_CALL_SAVED_REGNO (regno2))
    return 0;
    return 0;
  if (IS_INT_CALL_SAVED_REGNO (regno1) && IS_FLOAT_CALL_SAVED_REGNO (regno2))
  if (IS_INT_CALL_SAVED_REGNO (regno1) && IS_FLOAT_CALL_SAVED_REGNO (regno2))
    return 0;
    return 0;
  /* We cannot copy from an extended (40 bit) register to a standard
  /* We cannot copy from an extended (40 bit) register to a standard
     (32 bit) register because we only set the condition codes for
     (32 bit) register because we only set the condition codes for
     extended registers.  */
     extended registers.  */
  if (IS_EXT_REGNO (regno1) && ! IS_EXT_REGNO (regno2))
  if (IS_EXT_REGNO (regno1) && ! IS_EXT_REGNO (regno2))
    return 0;
    return 0;
  if (IS_EXT_REGNO (regno2) && ! IS_EXT_REGNO (regno1))
  if (IS_EXT_REGNO (regno2) && ! IS_EXT_REGNO (regno1))
    return 0;
    return 0;
  return 1;
  return 1;
}
}
 
 
/* The TI C3x C compiler register argument runtime model uses 6 registers,
/* The TI C3x C compiler register argument runtime model uses 6 registers,
   AR2, R2, R3, RC, RS, RE.
   AR2, R2, R3, RC, RS, RE.
 
 
   The first two floating point arguments (float, double, long double)
   The first two floating point arguments (float, double, long double)
   that are found scanning from left to right are assigned to R2 and R3.
   that are found scanning from left to right are assigned to R2 and R3.
 
 
   The remaining integer (char, short, int, long) or pointer arguments
   The remaining integer (char, short, int, long) or pointer arguments
   are assigned to the remaining registers in the order AR2, R2, R3,
   are assigned to the remaining registers in the order AR2, R2, R3,
   RC, RS, RE when scanning left to right, except for the last named
   RC, RS, RE when scanning left to right, except for the last named
   argument prior to an ellipsis denoting variable number of
   argument prior to an ellipsis denoting variable number of
   arguments.  We don't have to worry about the latter condition since
   arguments.  We don't have to worry about the latter condition since
   function.c treats the last named argument as anonymous (unnamed).
   function.c treats the last named argument as anonymous (unnamed).
 
 
   All arguments that cannot be passed in registers are pushed onto
   All arguments that cannot be passed in registers are pushed onto
   the stack in reverse order (right to left).  GCC handles that for us.
   the stack in reverse order (right to left).  GCC handles that for us.
 
 
   c4x_init_cumulative_args() is called at the start, so we can parse
   c4x_init_cumulative_args() is called at the start, so we can parse
   the args to see how many floating point arguments and how many
   the args to see how many floating point arguments and how many
   integer (or pointer) arguments there are.  c4x_function_arg() is
   integer (or pointer) arguments there are.  c4x_function_arg() is
   then called (sometimes repeatedly) for each argument (parsed left
   then called (sometimes repeatedly) for each argument (parsed left
   to right) to obtain the register to pass the argument in, or zero
   to right) to obtain the register to pass the argument in, or zero
   if the argument is to be passed on the stack.  Once the compiler is
   if the argument is to be passed on the stack.  Once the compiler is
   happy, c4x_function_arg_advance() is called.
   happy, c4x_function_arg_advance() is called.
 
 
   Don't use R0 to pass arguments in, we use 0 to indicate a stack
   Don't use R0 to pass arguments in, we use 0 to indicate a stack
   argument.  */
   argument.  */
 
 
static const int c4x_int_reglist[3][6] =
static const int c4x_int_reglist[3][6] =
{
{
  {AR2_REGNO, R2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO},
  {AR2_REGNO, R2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO},
  {AR2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0},
  {AR2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0},
  {AR2_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0, 0}
  {AR2_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0, 0}
};
};
 
 
static const int c4x_fp_reglist[2] = {R2_REGNO, R3_REGNO};
static const int c4x_fp_reglist[2] = {R2_REGNO, R3_REGNO};
 
 
 
 
/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
   function whose data type is FNTYPE.
   function whose data type is FNTYPE.
   For a library call, FNTYPE is  0.  */
   For a library call, FNTYPE is  0.  */
 
 
void
void
c4x_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname)
c4x_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname)
{
{
  tree param, next_param;
  tree param, next_param;
 
 
  cum->floats = cum->ints = 0;
  cum->floats = cum->ints = 0;
  cum->init = 0;
  cum->init = 0;
  cum->var = 0;
  cum->var = 0;
  cum->args = 0;
  cum->args = 0;
 
 
  if (TARGET_DEBUG)
  if (TARGET_DEBUG)
    {
    {
      fprintf (stderr, "\nc4x_init_cumulative_args (");
      fprintf (stderr, "\nc4x_init_cumulative_args (");
      if (fntype)
      if (fntype)
        {
        {
          tree ret_type = TREE_TYPE (fntype);
          tree ret_type = TREE_TYPE (fntype);
 
 
          fprintf (stderr, "fntype code = %s, ret code = %s",
          fprintf (stderr, "fntype code = %s, ret code = %s",
                   tree_code_name[(int) TREE_CODE (fntype)],
                   tree_code_name[(int) TREE_CODE (fntype)],
                   tree_code_name[(int) TREE_CODE (ret_type)]);
                   tree_code_name[(int) TREE_CODE (ret_type)]);
        }
        }
      else
      else
        fprintf (stderr, "no fntype");
        fprintf (stderr, "no fntype");
 
 
      if (libname)
      if (libname)
        fprintf (stderr, ", libname = %s", XSTR (libname, 0));
        fprintf (stderr, ", libname = %s", XSTR (libname, 0));
    }
    }
 
 
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
 
 
  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
       param; param = next_param)
       param; param = next_param)
    {
    {
      tree type;
      tree type;
 
 
      next_param = TREE_CHAIN (param);
      next_param = TREE_CHAIN (param);
 
 
      type = TREE_VALUE (param);
      type = TREE_VALUE (param);
      if (type && type != void_type_node)
      if (type && type != void_type_node)
        {
        {
          enum machine_mode mode;
          enum machine_mode mode;
 
 
          /* If the last arg doesn't have void type then we have
          /* If the last arg doesn't have void type then we have
             variable arguments.  */
             variable arguments.  */
          if (! next_param)
          if (! next_param)
            cum->var = 1;
            cum->var = 1;
 
 
          if ((mode = TYPE_MODE (type)))
          if ((mode = TYPE_MODE (type)))
            {
            {
              if (! targetm.calls.must_pass_in_stack (mode, type))
              if (! targetm.calls.must_pass_in_stack (mode, type))
                {
                {
                  /* Look for float, double, or long double argument.  */
                  /* Look for float, double, or long double argument.  */
                  if (mode == QFmode || mode == HFmode)
                  if (mode == QFmode || mode == HFmode)
                    cum->floats++;
                    cum->floats++;
                  /* Look for integer, enumeral, boolean, char, or pointer
                  /* Look for integer, enumeral, boolean, char, or pointer
                     argument.  */
                     argument.  */
                  else if (mode == QImode || mode == Pmode)
                  else if (mode == QImode || mode == Pmode)
                    cum->ints++;
                    cum->ints++;
                }
                }
            }
            }
          cum->args++;
          cum->args++;
        }
        }
    }
    }
 
 
  if (TARGET_DEBUG)
  if (TARGET_DEBUG)
    fprintf (stderr, "%s%s, args = %d)\n",
    fprintf (stderr, "%s%s, args = %d)\n",
             cum->prototype ? ", prototype" : "",
             cum->prototype ? ", prototype" : "",
             cum->var ? ", variable args" : "",
             cum->var ? ", variable args" : "",
             cum->args);
             cum->args);
}
}
 
 
 
 
/* Update the data in CUM to advance over an argument
/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */
   (TYPE is null for libcalls where that information may not be available.)  */
 
 
void
void
c4x_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
c4x_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
                          tree type, int named)
                          tree type, int named)
{
{
  if (TARGET_DEBUG)
  if (TARGET_DEBUG)
    fprintf (stderr, "c4x_function_adv(mode=%s, named=%d)\n\n",
    fprintf (stderr, "c4x_function_adv(mode=%s, named=%d)\n\n",
             GET_MODE_NAME (mode), named);
             GET_MODE_NAME (mode), named);
  if (! TARGET_MEMPARM
  if (! TARGET_MEMPARM
      && named
      && named
      && type
      && type
      && ! targetm.calls.must_pass_in_stack (mode, type))
      && ! targetm.calls.must_pass_in_stack (mode, type))
    {
    {
      /* Look for float, double, or long double argument.  */
      /* Look for float, double, or long double argument.  */
      if (mode == QFmode || mode == HFmode)
      if (mode == QFmode || mode == HFmode)
        cum->floats++;
        cum->floats++;
      /* Look for integer, enumeral, boolean, char, or pointer argument.  */
      /* Look for integer, enumeral, boolean, char, or pointer argument.  */
      else if (mode == QImode || mode == Pmode)
      else if (mode == QImode || mode == Pmode)
        cum->ints++;
        cum->ints++;
    }
    }
  else if (! TARGET_MEMPARM && ! type)
  else if (! TARGET_MEMPARM && ! type)
    {
    {
      /* Handle libcall arguments.  */
      /* Handle libcall arguments.  */
      if (mode == QFmode || mode == HFmode)
      if (mode == QFmode || mode == HFmode)
        cum->floats++;
        cum->floats++;
      else if (mode == QImode || mode == Pmode)
      else if (mode == QImode || mode == Pmode)
        cum->ints++;
        cum->ints++;
    }
    }
  return;
  return;
}
}
 
 
 
 
/* Define where to put the arguments to a function.  Value is zero to
/* Define where to put the arguments to a function.  Value is zero to
   push the argument on the stack, or a hard register in which to
   push the argument on the stack, or a hard register in which to
   store the argument.
   store the argument.
 
 
   MODE is the argument's machine mode.
   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
   TYPE is the data type of the argument (as a tree).
   This is null for libcalls where that information may
   This is null for libcalls where that information may
   not be available.
   not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
   the preceding args and about the function being called.
   the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
   NAMED is nonzero if this argument is a named parameter
   (otherwise it is an extra parameter matching an ellipsis).  */
   (otherwise it is an extra parameter matching an ellipsis).  */
 
 
struct rtx_def *
struct rtx_def *
c4x_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
c4x_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
                  tree type, int named)
                  tree type, int named)
{
{
  int reg = 0;                   /* Default to passing argument on stack.  */
  int reg = 0;                   /* Default to passing argument on stack.  */
 
 
  if (! cum->init)
  if (! cum->init)
    {
    {
      /* We can handle at most 2 floats in R2, R3.  */
      /* We can handle at most 2 floats in R2, R3.  */
      cum->maxfloats = (cum->floats > 2) ? 2 : cum->floats;
      cum->maxfloats = (cum->floats > 2) ? 2 : cum->floats;
 
 
      /* We can handle at most 6 integers minus number of floats passed
      /* We can handle at most 6 integers minus number of floats passed
         in registers.  */
         in registers.  */
      cum->maxints = (cum->ints > 6 - cum->maxfloats) ?
      cum->maxints = (cum->ints > 6 - cum->maxfloats) ?
        6 - cum->maxfloats : cum->ints;
        6 - cum->maxfloats : cum->ints;
 
 
      /* If there is no prototype, assume all the arguments are integers.  */
      /* If there is no prototype, assume all the arguments are integers.  */
      if (! cum->prototype)
      if (! cum->prototype)
        cum->maxints = 6;
        cum->maxints = 6;
 
 
      cum->ints = cum->floats = 0;
      cum->ints = cum->floats = 0;
      cum->init = 1;
      cum->init = 1;
    }
    }
 
 
  /* This marks the last argument.  We don't need to pass this through
  /* This marks the last argument.  We don't need to pass this through
     to the call insn.  */
     to the call insn.  */
  if (type == void_type_node)
  if (type == void_type_node)
    return 0;
    return 0;
 
 
  if (! TARGET_MEMPARM
  if (! TARGET_MEMPARM
      && named
      && named
      && type
      && type
      && ! targetm.calls.must_pass_in_stack (mode, type))
      && ! targetm.calls.must_pass_in_stack (mode, type))
    {
    {
      /* Look for float, double, or long double argument.  */
      /* Look for float, double, or long double argument.  */
      if (mode == QFmode || mode == HFmode)
      if (mode == QFmode || mode == HFmode)
        {
        {
          if (cum->floats < cum->maxfloats)
          if (cum->floats < cum->maxfloats)
            reg = c4x_fp_reglist[cum->floats];
            reg = c4x_fp_reglist[cum->floats];
        }
        }
      /* Look for integer, enumeral, boolean, char, or pointer argument.  */
      /* Look for integer, enumeral, boolean, char, or pointer argument.  */
      else if (mode == QImode || mode == Pmode)
      else if (mode == QImode || mode == Pmode)
        {
        {
          if (cum->ints < cum->maxints)
          if (cum->ints < cum->maxints)
            reg = c4x_int_reglist[cum->maxfloats][cum->ints];
            reg = c4x_int_reglist[cum->maxfloats][cum->ints];
        }
        }
    }
    }
  else if (! TARGET_MEMPARM && ! type)
  else if (! TARGET_MEMPARM && ! type)
    {
    {
      /* We could use a different argument calling model for libcalls,
      /* We could use a different argument calling model for libcalls,
         since we're only calling functions in libgcc.  Thus we could
         since we're only calling functions in libgcc.  Thus we could
         pass arguments for long longs in registers rather than on the
         pass arguments for long longs in registers rather than on the
         stack.  In the meantime, use the odd TI format.  We make the
         stack.  In the meantime, use the odd TI format.  We make the
         assumption that we won't have more than two floating point
         assumption that we won't have more than two floating point
         args, six integer args, and that all the arguments are of the
         args, six integer args, and that all the arguments are of the
         same mode.  */
         same mode.  */
      if (mode == QFmode || mode == HFmode)
      if (mode == QFmode || mode == HFmode)
        reg = c4x_fp_reglist[cum->floats];
        reg = c4x_fp_reglist[cum->floats];
      else if (mode == QImode || mode == Pmode)
      else if (mode == QImode || mode == Pmode)
        reg = c4x_int_reglist[0][cum->ints];
        reg = c4x_int_reglist[0][cum->ints];
    }
    }
 
 
  if (TARGET_DEBUG)
  if (TARGET_DEBUG)
    {
    {
      fprintf (stderr, "c4x_function_arg(mode=%s, named=%d",
      fprintf (stderr, "c4x_function_arg(mode=%s, named=%d",
               GET_MODE_NAME (mode), named);
               GET_MODE_NAME (mode), named);
      if (reg)
      if (reg)
        fprintf (stderr, ", reg=%s", reg_names[reg]);
        fprintf (stderr, ", reg=%s", reg_names[reg]);
      else
      else
        fprintf (stderr, ", stack");
        fprintf (stderr, ", stack");
      fprintf (stderr, ")\n");
      fprintf (stderr, ")\n");
    }
    }
  if (reg)
  if (reg)
    return gen_rtx_REG (mode, reg);
    return gen_rtx_REG (mode, reg);
  else
  else
    return NULL_RTX;
    return NULL_RTX;
}
}
 
 
/* C[34]x arguments grow in weird ways (downwards) that the standard
/* C[34]x arguments grow in weird ways (downwards) that the standard
   varargs stuff can't handle..  */
   varargs stuff can't handle..  */
 
 
static tree
static tree
c4x_gimplify_va_arg_expr (tree valist, tree type,
c4x_gimplify_va_arg_expr (tree valist, tree type,
                          tree *pre_p ATTRIBUTE_UNUSED,
                          tree *pre_p ATTRIBUTE_UNUSED,
                          tree *post_p ATTRIBUTE_UNUSED)
                          tree *post_p ATTRIBUTE_UNUSED)
{
{
  tree t;
  tree t;
  bool indirect;
  bool indirect;
 
 
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  if (indirect)
  if (indirect)
    type = build_pointer_type (type);
    type = build_pointer_type (type);
 
 
  t = build2 (PREDECREMENT_EXPR, TREE_TYPE (valist), valist,
  t = build2 (PREDECREMENT_EXPR, TREE_TYPE (valist), valist,
              build_int_cst (NULL_TREE, int_size_in_bytes (type)));
              build_int_cst (NULL_TREE, int_size_in_bytes (type)));
  t = fold_convert (build_pointer_type (type), t);
  t = fold_convert (build_pointer_type (type), t);
  t = build_va_arg_indirect_ref (t);
  t = build_va_arg_indirect_ref (t);
 
 
  if (indirect)
  if (indirect)
    t = build_va_arg_indirect_ref (t);
    t = build_va_arg_indirect_ref (t);
 
 
  return t;
  return t;
}
}
 
 
 
 
static int
static int
c4x_isr_reg_used_p (unsigned int regno)
c4x_isr_reg_used_p (unsigned int regno)
{
{
  /* Don't save/restore FP or ST, we handle them separately.  */
  /* Don't save/restore FP or ST, we handle them separately.  */
  if (regno == FRAME_POINTER_REGNUM
  if (regno == FRAME_POINTER_REGNUM
      || IS_ST_REGNO (regno))
      || IS_ST_REGNO (regno))
    return 0;
    return 0;
 
 
  /* We could be a little smarter abut saving/restoring DP.
  /* We could be a little smarter abut saving/restoring DP.
     We'll only save if for the big memory model or if
     We'll only save if for the big memory model or if
     we're paranoid. ;-)  */
     we're paranoid. ;-)  */
  if (IS_DP_REGNO (regno))
  if (IS_DP_REGNO (regno))
    return ! TARGET_SMALL || TARGET_PARANOID;
    return ! TARGET_SMALL || TARGET_PARANOID;
 
 
  /* Only save/restore regs in leaf function that are used.  */
  /* Only save/restore regs in leaf function that are used.  */
  if (c4x_leaf_function)
  if (c4x_leaf_function)
    return regs_ever_live[regno] && fixed_regs[regno] == 0;
    return regs_ever_live[regno] && fixed_regs[regno] == 0;
 
 
  /* Only save/restore regs that are used by the ISR and regs
  /* Only save/restore regs that are used by the ISR and regs
     that are likely to be used by functions the ISR calls
     that are likely to be used by functions the ISR calls
     if they are not fixed.  */
     if they are not fixed.  */
  return IS_EXT_REGNO (regno)
  return IS_EXT_REGNO (regno)
    || ((regs_ever_live[regno] || call_used_regs[regno])
    || ((regs_ever_live[regno] || call_used_regs[regno])
        && fixed_regs[regno] == 0);
        && fixed_regs[regno] == 0);
}
}
 
 
 
 
static int
static int
c4x_leaf_function_p (void)
c4x_leaf_function_p (void)
{
{
  /* A leaf function makes no calls, so we only need
  /* A leaf function makes no calls, so we only need
     to save/restore the registers we actually use.
     to save/restore the registers we actually use.
     For the global variable leaf_function to be set, we need
     For the global variable leaf_function to be set, we need
     to define LEAF_REGISTERS and all that it entails.
     to define LEAF_REGISTERS and all that it entails.
     Let's check ourselves....  */
     Let's check ourselves....  */
 
 
  if (lookup_attribute ("leaf_pretend",
  if (lookup_attribute ("leaf_pretend",
                        TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
                        TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
    return 1;
    return 1;
 
 
  /* Use the leaf_pretend attribute at your own risk.  This is a hack
  /* Use the leaf_pretend attribute at your own risk.  This is a hack
     to speed up ISRs that call a function infrequently where the
     to speed up ISRs that call a function infrequently where the
     overhead of saving and restoring the additional registers is not
     overhead of saving and restoring the additional registers is not
     warranted.  You must save and restore the additional registers
     warranted.  You must save and restore the additional registers
     required by the called function.  Caveat emptor.  Here's enough
     required by the called function.  Caveat emptor.  Here's enough
     rope...  */
     rope...  */
 
 
  if (leaf_function_p ())
  if (leaf_function_p ())
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
 
 
static int
static int
c4x_naked_function_p (void)
c4x_naked_function_p (void)
{
{
  tree type;
  tree type;
 
 
  type = TREE_TYPE (current_function_decl);
  type = TREE_TYPE (current_function_decl);
  return lookup_attribute ("naked", TYPE_ATTRIBUTES (type)) != NULL;
  return lookup_attribute ("naked", TYPE_ATTRIBUTES (type)) != NULL;
}
}
 
 
 
 
int
int
c4x_interrupt_function_p (void)
c4x_interrupt_function_p (void)
{
{
  const char *cfun_name;
  const char *cfun_name;
  if (lookup_attribute ("interrupt",
  if (lookup_attribute ("interrupt",
                        TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
                        TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
    return 1;
    return 1;
 
 
  /* Look for TI style c_intnn.  */
  /* Look for TI style c_intnn.  */
  cfun_name = current_function_name ();
  cfun_name = current_function_name ();
  return cfun_name[0] == 'c'
  return cfun_name[0] == 'c'
    && cfun_name[1] == '_'
    && cfun_name[1] == '_'
    && cfun_name[2] == 'i'
    && cfun_name[2] == 'i'
    && cfun_name[3] == 'n'
    && cfun_name[3] == 'n'
    && cfun_name[4] == 't'
    && cfun_name[4] == 't'
    && ISDIGIT (cfun_name[5])
    && ISDIGIT (cfun_name[5])
    && ISDIGIT (cfun_name[6]);
    && ISDIGIT (cfun_name[6]);
}
}
 
 
void
void
c4x_expand_prologue (void)
c4x_expand_prologue (void)
{
{
  unsigned int regno;
  unsigned int regno;
  int size = get_frame_size ();
  int size = get_frame_size ();
  rtx insn;
  rtx insn;
 
 
  /* In functions where ar3 is not used but frame pointers are still
  /* In functions where ar3 is not used but frame pointers are still
     specified, frame pointers are not adjusted (if >= -O2) and this
     specified, frame pointers are not adjusted (if >= -O2) and this
     is used so it won't needlessly push the frame pointer.  */
     is used so it won't needlessly push the frame pointer.  */
  int dont_push_ar3;
  int dont_push_ar3;
 
 
  /* For __naked__ function don't build a prologue.  */
  /* For __naked__ function don't build a prologue.  */
  if (c4x_naked_function_p ())
  if (c4x_naked_function_p ())
    {
    {
      return;
      return;
    }
    }
 
 
  /* For __interrupt__ function build specific prologue.  */
  /* For __interrupt__ function build specific prologue.  */
  if (c4x_interrupt_function_p ())
  if (c4x_interrupt_function_p ())
    {
    {
      c4x_leaf_function = c4x_leaf_function_p ();
      c4x_leaf_function = c4x_leaf_function_p ();
 
 
      insn = emit_insn (gen_push_st ());
      insn = emit_insn (gen_push_st ());
      RTX_FRAME_RELATED_P (insn) = 1;
      RTX_FRAME_RELATED_P (insn) = 1;
      if (size)
      if (size)
        {
        {
          insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, AR3_REGNO)));
          insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, AR3_REGNO)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
          insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, AR3_REGNO),
          insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, AR3_REGNO),
                                       gen_rtx_REG (QImode, SP_REGNO)));
                                       gen_rtx_REG (QImode, SP_REGNO)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
          /* We require that an ISR uses fewer than 32768 words of
          /* We require that an ISR uses fewer than 32768 words of
             local variables, otherwise we have to go to lots of
             local variables, otherwise we have to go to lots of
             effort to save a register, load it with the desired size,
             effort to save a register, load it with the desired size,
             adjust the stack pointer, and then restore the modified
             adjust the stack pointer, and then restore the modified
             register.  Frankly, I think it is a poor ISR that
             register.  Frankly, I think it is a poor ISR that
             requires more than 32767 words of local temporary
             requires more than 32767 words of local temporary
             storage!  */
             storage!  */
          if (size > 32767)
          if (size > 32767)
            error ("ISR %s requires %d words of local vars, max is 32767",
            error ("ISR %s requires %d words of local vars, max is 32767",
                   current_function_name (), size);
                   current_function_name (), size);
 
 
          insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
          insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        GEN_INT (size)));
                                        GEN_INT (size)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        {
        {
          if (c4x_isr_reg_used_p (regno))
          if (c4x_isr_reg_used_p (regno))
            {
            {
              if (regno == DP_REGNO)
              if (regno == DP_REGNO)
                {
                {
                  insn = emit_insn (gen_push_dp ());
                  insn = emit_insn (gen_push_dp ());
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                }
                }
              else
              else
                {
                {
                  insn = emit_insn (gen_pushqi (gen_rtx_REG (QImode, regno)));
                  insn = emit_insn (gen_pushqi (gen_rtx_REG (QImode, regno)));
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                  if (IS_EXT_REGNO (regno))
                  if (IS_EXT_REGNO (regno))
                    {
                    {
                      insn = emit_insn (gen_pushqf
                      insn = emit_insn (gen_pushqf
                                        (gen_rtx_REG (QFmode, regno)));
                                        (gen_rtx_REG (QFmode, regno)));
                      RTX_FRAME_RELATED_P (insn) = 1;
                      RTX_FRAME_RELATED_P (insn) = 1;
                    }
                    }
                }
                }
            }
            }
        }
        }
      /* We need to clear the repeat mode flag if the ISR is
      /* We need to clear the repeat mode flag if the ISR is
         going to use a RPTB instruction or uses the RC, RS, or RE
         going to use a RPTB instruction or uses the RC, RS, or RE
         registers.  */
         registers.  */
      if (regs_ever_live[RC_REGNO]
      if (regs_ever_live[RC_REGNO]
          || regs_ever_live[RS_REGNO]
          || regs_ever_live[RS_REGNO]
          || regs_ever_live[RE_REGNO])
          || regs_ever_live[RE_REGNO])
        {
        {
          insn = emit_insn (gen_andn_st (GEN_INT(~0x100)));
          insn = emit_insn (gen_andn_st (GEN_INT(~0x100)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
 
 
      /* Reload DP reg if we are paranoid about some turkey
      /* Reload DP reg if we are paranoid about some turkey
         violating small memory model rules.  */
         violating small memory model rules.  */
      if (TARGET_SMALL && TARGET_PARANOID)
      if (TARGET_SMALL && TARGET_PARANOID)
        {
        {
          insn = emit_insn (gen_set_ldp_prologue
          insn = emit_insn (gen_set_ldp_prologue
                            (gen_rtx_REG (QImode, DP_REGNO),
                            (gen_rtx_REG (QImode, DP_REGNO),
                             gen_rtx_SYMBOL_REF (QImode, "data_sec")));
                             gen_rtx_SYMBOL_REF (QImode, "data_sec")));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
    }
    }
  else
  else
    {
    {
      if (frame_pointer_needed)
      if (frame_pointer_needed)
        {
        {
          if ((size != 0)
          if ((size != 0)
              || (current_function_args_size != 0)
              || (current_function_args_size != 0)
              || (optimize < 2))
              || (optimize < 2))
            {
            {
              insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, AR3_REGNO)));
              insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, AR3_REGNO)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, AR3_REGNO),
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, AR3_REGNO),
                                           gen_rtx_REG (QImode, SP_REGNO)));
                                           gen_rtx_REG (QImode, SP_REGNO)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
              dont_push_ar3 = 1;
              dont_push_ar3 = 1;
            }
            }
          else
          else
            {
            {
              /* Since ar3 is not used, we don't need to push it.  */
              /* Since ar3 is not used, we don't need to push it.  */
              dont_push_ar3 = 1;
              dont_push_ar3 = 1;
            }
            }
        }
        }
      else
      else
        {
        {
          /* If we use ar3, we need to push it.  */
          /* If we use ar3, we need to push it.  */
          dont_push_ar3 = 0;
          dont_push_ar3 = 0;
          if ((size != 0) || (current_function_args_size != 0))
          if ((size != 0) || (current_function_args_size != 0))
            {
            {
              /* If we are omitting the frame pointer, we still have
              /* If we are omitting the frame pointer, we still have
                 to make space for it so the offsets are correct
                 to make space for it so the offsets are correct
                 unless we don't use anything on the stack at all.  */
                 unless we don't use anything on the stack at all.  */
              size += 1;
              size += 1;
            }
            }
        }
        }
 
 
      if (size > 32767)
      if (size > 32767)
        {
        {
          /* Local vars are too big, it will take multiple operations
          /* Local vars are too big, it will take multiple operations
             to increment SP.  */
             to increment SP.  */
          if (TARGET_C3X)
          if (TARGET_C3X)
            {
            {
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R1_REGNO),
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R1_REGNO),
                                           GEN_INT(size >> 16)));
                                           GEN_INT(size >> 16)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
              insn = emit_insn (gen_lshrqi3 (gen_rtx_REG (QImode, R1_REGNO),
              insn = emit_insn (gen_lshrqi3 (gen_rtx_REG (QImode, R1_REGNO),
                                             gen_rtx_REG (QImode, R1_REGNO),
                                             gen_rtx_REG (QImode, R1_REGNO),
                                             GEN_INT(-16)));
                                             GEN_INT(-16)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
          else
          else
            {
            {
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R1_REGNO),
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R1_REGNO),
                                           GEN_INT(size & ~0xffff)));
                                           GEN_INT(size & ~0xffff)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
          insn = emit_insn (gen_iorqi3 (gen_rtx_REG (QImode, R1_REGNO),
          insn = emit_insn (gen_iorqi3 (gen_rtx_REG (QImode, R1_REGNO),
                                        gen_rtx_REG (QImode, R1_REGNO),
                                        gen_rtx_REG (QImode, R1_REGNO),
                                        GEN_INT(size & 0xffff)));
                                        GEN_INT(size & 0xffff)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
          insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
          insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, R1_REGNO)));
                                        gen_rtx_REG (QImode, R1_REGNO)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
      else if (size != 0)
      else if (size != 0)
        {
        {
          /* Local vars take up less than 32767 words, so we can directly
          /* Local vars take up less than 32767 words, so we can directly
             add the number.  */
             add the number.  */
          insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
          insn = emit_insn (gen_addqi3 (gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        GEN_INT (size)));
                                        GEN_INT (size)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
 
 
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        {
        {
          if (regs_ever_live[regno] && ! call_used_regs[regno])
          if (regs_ever_live[regno] && ! call_used_regs[regno])
            {
            {
              if (IS_FLOAT_CALL_SAVED_REGNO (regno))
              if (IS_FLOAT_CALL_SAVED_REGNO (regno))
                {
                {
                  if (TARGET_PRESERVE_FLOAT)
                  if (TARGET_PRESERVE_FLOAT)
                    {
                    {
                      insn = emit_insn (gen_pushqi
                      insn = emit_insn (gen_pushqi
                                        (gen_rtx_REG (QImode, regno)));
                                        (gen_rtx_REG (QImode, regno)));
                      RTX_FRAME_RELATED_P (insn) = 1;
                      RTX_FRAME_RELATED_P (insn) = 1;
                    }
                    }
                  insn = emit_insn (gen_pushqf (gen_rtx_REG (QFmode, regno)));
                  insn = emit_insn (gen_pushqf (gen_rtx_REG (QFmode, regno)));
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                }
                }
              else if ((! dont_push_ar3) || (regno != AR3_REGNO))
              else if ((! dont_push_ar3) || (regno != AR3_REGNO))
                {
                {
                  insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, regno)));
                  insn = emit_insn (gen_pushqi ( gen_rtx_REG (QImode, regno)));
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
void
void
c4x_expand_epilogue(void)
c4x_expand_epilogue(void)
{
{
  int regno;
  int regno;
  int jump = 0;
  int jump = 0;
  int dont_pop_ar3;
  int dont_pop_ar3;
  rtx insn;
  rtx insn;
  int size = get_frame_size ();
  int size = get_frame_size ();
 
 
  /* For __naked__ function build no epilogue.  */
  /* For __naked__ function build no epilogue.  */
  if (c4x_naked_function_p ())
  if (c4x_naked_function_p ())
    {
    {
      insn = emit_jump_insn (gen_return_from_epilogue ());
      insn = emit_jump_insn (gen_return_from_epilogue ());
      RTX_FRAME_RELATED_P (insn) = 1;
      RTX_FRAME_RELATED_P (insn) = 1;
      return;
      return;
    }
    }
 
 
  /* For __interrupt__ function build specific epilogue.  */
  /* For __interrupt__ function build specific epilogue.  */
  if (c4x_interrupt_function_p ())
  if (c4x_interrupt_function_p ())
    {
    {
      for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
      for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
        {
        {
          if (! c4x_isr_reg_used_p (regno))
          if (! c4x_isr_reg_used_p (regno))
            continue;
            continue;
          if (regno == DP_REGNO)
          if (regno == DP_REGNO)
            {
            {
              insn = emit_insn (gen_pop_dp ());
              insn = emit_insn (gen_pop_dp ());
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
          else
          else
            {
            {
              /* We have to use unspec because the compiler will delete insns
              /* We have to use unspec because the compiler will delete insns
                 that are not call-saved.  */
                 that are not call-saved.  */
              if (IS_EXT_REGNO (regno))
              if (IS_EXT_REGNO (regno))
                {
                {
                  insn = emit_insn (gen_popqf_unspec
                  insn = emit_insn (gen_popqf_unspec
                                    (gen_rtx_REG (QFmode, regno)));
                                    (gen_rtx_REG (QFmode, regno)));
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                }
                }
              insn = emit_insn (gen_popqi_unspec (gen_rtx_REG (QImode, regno)));
              insn = emit_insn (gen_popqi_unspec (gen_rtx_REG (QImode, regno)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
        }
        }
      if (size)
      if (size)
        {
        {
          insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
          insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        GEN_INT(size)));
                                        GEN_INT(size)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
          insn = emit_insn (gen_popqi
          insn = emit_insn (gen_popqi
                            (gen_rtx_REG (QImode, AR3_REGNO)));
                            (gen_rtx_REG (QImode, AR3_REGNO)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
      insn = emit_insn (gen_pop_st ());
      insn = emit_insn (gen_pop_st ());
      RTX_FRAME_RELATED_P (insn) = 1;
      RTX_FRAME_RELATED_P (insn) = 1;
      insn = emit_jump_insn (gen_return_from_interrupt_epilogue ());
      insn = emit_jump_insn (gen_return_from_interrupt_epilogue ());
      RTX_FRAME_RELATED_P (insn) = 1;
      RTX_FRAME_RELATED_P (insn) = 1;
    }
    }
  else
  else
    {
    {
      if (frame_pointer_needed)
      if (frame_pointer_needed)
        {
        {
          if ((size != 0)
          if ((size != 0)
              || (current_function_args_size != 0)
              || (current_function_args_size != 0)
              || (optimize < 2))
              || (optimize < 2))
            {
            {
              insn = emit_insn
              insn = emit_insn
                (gen_movqi (gen_rtx_REG (QImode, R2_REGNO),
                (gen_movqi (gen_rtx_REG (QImode, R2_REGNO),
                            gen_rtx_MEM (QImode,
                            gen_rtx_MEM (QImode,
                                         gen_rtx_PLUS
                                         gen_rtx_PLUS
                                         (QImode, gen_rtx_REG (QImode,
                                         (QImode, gen_rtx_REG (QImode,
                                                               AR3_REGNO),
                                                               AR3_REGNO),
                                          constm1_rtx))));
                                          constm1_rtx))));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
 
 
              /* We already have the return value and the fp,
              /* We already have the return value and the fp,
                 so we need to add those to the stack.  */
                 so we need to add those to the stack.  */
              size += 2;
              size += 2;
              jump = 1;
              jump = 1;
              dont_pop_ar3 = 1;
              dont_pop_ar3 = 1;
            }
            }
          else
          else
            {
            {
              /* Since ar3 is not used for anything, we don't need to
              /* Since ar3 is not used for anything, we don't need to
                 pop it.  */
                 pop it.  */
              dont_pop_ar3 = 1;
              dont_pop_ar3 = 1;
            }
            }
        }
        }
      else
      else
        {
        {
          dont_pop_ar3 = 0;      /* If we use ar3, we need to pop it.  */
          dont_pop_ar3 = 0;      /* If we use ar3, we need to pop it.  */
          if (size || current_function_args_size)
          if (size || current_function_args_size)
            {
            {
              /* If we are omitting the frame pointer, we still have
              /* If we are omitting the frame pointer, we still have
                 to make space for it so the offsets are correct
                 to make space for it so the offsets are correct
                 unless we don't use anything on the stack at all.  */
                 unless we don't use anything on the stack at all.  */
              size += 1;
              size += 1;
            }
            }
        }
        }
 
 
      /* Now restore the saved registers, putting in the delayed branch
      /* Now restore the saved registers, putting in the delayed branch
         where required.  */
         where required.  */
      for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
      for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
        {
        {
          if (regs_ever_live[regno] && ! call_used_regs[regno])
          if (regs_ever_live[regno] && ! call_used_regs[regno])
            {
            {
              if (regno == AR3_REGNO && dont_pop_ar3)
              if (regno == AR3_REGNO && dont_pop_ar3)
                continue;
                continue;
 
 
              if (IS_FLOAT_CALL_SAVED_REGNO (regno))
              if (IS_FLOAT_CALL_SAVED_REGNO (regno))
                {
                {
                  insn = emit_insn (gen_popqf_unspec
                  insn = emit_insn (gen_popqf_unspec
                                    (gen_rtx_REG (QFmode, regno)));
                                    (gen_rtx_REG (QFmode, regno)));
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                  if (TARGET_PRESERVE_FLOAT)
                  if (TARGET_PRESERVE_FLOAT)
                    {
                    {
                      insn = emit_insn (gen_popqi_unspec
                      insn = emit_insn (gen_popqi_unspec
                                        (gen_rtx_REG (QImode, regno)));
                                        (gen_rtx_REG (QImode, regno)));
                      RTX_FRAME_RELATED_P (insn) = 1;
                      RTX_FRAME_RELATED_P (insn) = 1;
                    }
                    }
                }
                }
              else
              else
                {
                {
                  insn = emit_insn (gen_popqi (gen_rtx_REG (QImode, regno)));
                  insn = emit_insn (gen_popqi (gen_rtx_REG (QImode, regno)));
                  RTX_FRAME_RELATED_P (insn) = 1;
                  RTX_FRAME_RELATED_P (insn) = 1;
                }
                }
            }
            }
        }
        }
 
 
      if (frame_pointer_needed)
      if (frame_pointer_needed)
        {
        {
          if ((size != 0)
          if ((size != 0)
              || (current_function_args_size != 0)
              || (current_function_args_size != 0)
              || (optimize < 2))
              || (optimize < 2))
            {
            {
              /* Restore the old FP.  */
              /* Restore the old FP.  */
              insn = emit_insn
              insn = emit_insn
                (gen_movqi
                (gen_movqi
                 (gen_rtx_REG (QImode, AR3_REGNO),
                 (gen_rtx_REG (QImode, AR3_REGNO),
                  gen_rtx_MEM (QImode, gen_rtx_REG (QImode, AR3_REGNO))));
                  gen_rtx_MEM (QImode, gen_rtx_REG (QImode, AR3_REGNO))));
 
 
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
        }
        }
 
 
      if (size > 32767)
      if (size > 32767)
        {
        {
          /* Local vars are too big, it will take multiple operations
          /* Local vars are too big, it will take multiple operations
             to decrement SP.  */
             to decrement SP.  */
          if (TARGET_C3X)
          if (TARGET_C3X)
            {
            {
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R3_REGNO),
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R3_REGNO),
                                           GEN_INT(size >> 16)));
                                           GEN_INT(size >> 16)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
              insn = emit_insn (gen_lshrqi3 (gen_rtx_REG (QImode, R3_REGNO),
              insn = emit_insn (gen_lshrqi3 (gen_rtx_REG (QImode, R3_REGNO),
                                             gen_rtx_REG (QImode, R3_REGNO),
                                             gen_rtx_REG (QImode, R3_REGNO),
                                             GEN_INT(-16)));
                                             GEN_INT(-16)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
          else
          else
            {
            {
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R3_REGNO),
              insn = emit_insn (gen_movqi (gen_rtx_REG (QImode, R3_REGNO),
                                           GEN_INT(size & ~0xffff)));
                                           GEN_INT(size & ~0xffff)));
              RTX_FRAME_RELATED_P (insn) = 1;
              RTX_FRAME_RELATED_P (insn) = 1;
            }
            }
          insn = emit_insn (gen_iorqi3 (gen_rtx_REG (QImode, R3_REGNO),
          insn = emit_insn (gen_iorqi3 (gen_rtx_REG (QImode, R3_REGNO),
                                        gen_rtx_REG (QImode, R3_REGNO),
                                        gen_rtx_REG (QImode, R3_REGNO),
                                        GEN_INT(size & 0xffff)));
                                        GEN_INT(size & 0xffff)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
          insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
          insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, R3_REGNO)));
                                        gen_rtx_REG (QImode, R3_REGNO)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
      else if (size != 0)
      else if (size != 0)
        {
        {
          /* Local vars take up less than 32768 words, so we can directly
          /* Local vars take up less than 32768 words, so we can directly
             subtract the number.  */
             subtract the number.  */
          insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
          insn = emit_insn (gen_subqi3 (gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        gen_rtx_REG (QImode, SP_REGNO),
                                        GEN_INT(size)));
                                        GEN_INT(size)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
 
 
      if (jump)
      if (jump)
        {
        {
          insn = emit_jump_insn (gen_return_indirect_internal
          insn = emit_jump_insn (gen_return_indirect_internal
                                 (gen_rtx_REG (QImode, R2_REGNO)));
                                 (gen_rtx_REG (QImode, R2_REGNO)));
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
      else
      else
        {
        {
          insn = emit_jump_insn (gen_return_from_epilogue ());
          insn = emit_jump_insn (gen_return_from_epilogue ());
          RTX_FRAME_RELATED_P (insn) = 1;
          RTX_FRAME_RELATED_P (insn) = 1;
        }
        }
    }
    }
}
}
 
 
 
 
int
int
c4x_null_epilogue_p (void)
c4x_null_epilogue_p (void)
{
{
  int regno;
  int regno;
 
 
  if (reload_completed
  if (reload_completed
      && ! c4x_naked_function_p ()
      && ! c4x_naked_function_p ()
      && ! c4x_interrupt_function_p ()
      && ! c4x_interrupt_function_p ()
      && ! current_function_calls_alloca
      && ! current_function_calls_alloca
      && ! current_function_args_size
      && ! current_function_args_size
      && ! (optimize < 2)
      && ! (optimize < 2)
      && ! get_frame_size ())
      && ! get_frame_size ())
    {
    {
      for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
      for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
        if (regs_ever_live[regno] && ! call_used_regs[regno]
        if (regs_ever_live[regno] && ! call_used_regs[regno]
            && (regno != AR3_REGNO))
            && (regno != AR3_REGNO))
          return 1;
          return 1;
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
 
 
int
int
c4x_emit_move_sequence (rtx *operands, enum machine_mode mode)
c4x_emit_move_sequence (rtx *operands, enum machine_mode mode)
{
{
  rtx op0 = operands[0];
  rtx op0 = operands[0];
  rtx op1 = operands[1];
  rtx op1 = operands[1];
 
 
  if (! reload_in_progress
  if (! reload_in_progress
      && ! REG_P (op0)
      && ! REG_P (op0)
      && ! REG_P (op1)
      && ! REG_P (op1)
      && ! (stik_const_operand (op1, mode) && ! push_operand (op0, mode)))
      && ! (stik_const_operand (op1, mode) && ! push_operand (op0, mode)))
    op1 = force_reg (mode, op1);
    op1 = force_reg (mode, op1);
 
 
  if (GET_CODE (op1) == LO_SUM
  if (GET_CODE (op1) == LO_SUM
      && GET_MODE (op1) == Pmode
      && GET_MODE (op1) == Pmode
      && dp_reg_operand (XEXP (op1, 0), mode))
      && dp_reg_operand (XEXP (op1, 0), mode))
    {
    {
      /* expand_increment will sometimes create a LO_SUM immediate
      /* expand_increment will sometimes create a LO_SUM immediate
         address.  Undo this silliness.  */
         address.  Undo this silliness.  */
      op1 = XEXP (op1, 1);
      op1 = XEXP (op1, 1);
    }
    }
 
 
  if (symbolic_address_operand (op1, mode))
  if (symbolic_address_operand (op1, mode))
    {
    {
      if (TARGET_LOAD_ADDRESS)
      if (TARGET_LOAD_ADDRESS)
        {
        {
          /* Alias analysis seems to do a better job if we force
          /* Alias analysis seems to do a better job if we force
             constant addresses to memory after reload.  */
             constant addresses to memory after reload.  */
          emit_insn (gen_load_immed_address (op0, op1));
          emit_insn (gen_load_immed_address (op0, op1));
          return 1;
          return 1;
        }
        }
      else
      else
        {
        {
          /* Stick symbol or label address into the constant pool.  */
          /* Stick symbol or label address into the constant pool.  */
          op1 = force_const_mem (Pmode, op1);
          op1 = force_const_mem (Pmode, op1);
        }
        }
    }
    }
  else if (mode == HFmode && CONSTANT_P (op1) && ! LEGITIMATE_CONSTANT_P (op1))
  else if (mode == HFmode && CONSTANT_P (op1) && ! LEGITIMATE_CONSTANT_P (op1))
    {
    {
      /* We could be a lot smarter about loading some of these
      /* We could be a lot smarter about loading some of these
         constants...  */
         constants...  */
      op1 = force_const_mem (mode, op1);
      op1 = force_const_mem (mode, op1);
    }
    }
 
 
  /* Convert (MEM (SYMREF)) to a (MEM (LO_SUM (REG) (SYMREF)))
  /* Convert (MEM (SYMREF)) to a (MEM (LO_SUM (REG) (SYMREF)))
     and emit associated (HIGH (SYMREF)) if large memory model.
     and emit associated (HIGH (SYMREF)) if large memory model.
     c4x_legitimize_address could be used to do this,
     c4x_legitimize_address could be used to do this,
     perhaps by calling validize_address.  */
     perhaps by calling validize_address.  */
  if (TARGET_EXPOSE_LDP
  if (TARGET_EXPOSE_LDP
      && ! (reload_in_progress || reload_completed)
      && ! (reload_in_progress || reload_completed)
      && GET_CODE (op1) == MEM
      && GET_CODE (op1) == MEM
      && symbolic_address_operand (XEXP (op1, 0), Pmode))
      && symbolic_address_operand (XEXP (op1, 0), Pmode))
    {
    {
      rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
      rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
      if (! TARGET_SMALL)
      if (! TARGET_SMALL)
        emit_insn (gen_set_ldp (dp_reg, XEXP (op1, 0)));
        emit_insn (gen_set_ldp (dp_reg, XEXP (op1, 0)));
      op1 = change_address (op1, mode,
      op1 = change_address (op1, mode,
                            gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op1, 0)));
                            gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op1, 0)));
    }
    }
 
 
  if (TARGET_EXPOSE_LDP
  if (TARGET_EXPOSE_LDP
      && ! (reload_in_progress || reload_completed)
      && ! (reload_in_progress || reload_completed)
      && GET_CODE (op0) == MEM
      && GET_CODE (op0) == MEM
      && symbolic_address_operand (XEXP (op0, 0), Pmode))
      && symbolic_address_operand (XEXP (op0, 0), Pmode))
    {
    {
      rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
      rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
      if (! TARGET_SMALL)
      if (! TARGET_SMALL)
        emit_insn (gen_set_ldp (dp_reg, XEXP (op0, 0)));
        emit_insn (gen_set_ldp (dp_reg, XEXP (op0, 0)));
      op0 = change_address (op0, mode,
      op0 = change_address (op0, mode,
                            gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op0, 0)));
                            gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op0, 0)));
    }
    }
 
 
  if (GET_CODE (op0) == SUBREG
  if (GET_CODE (op0) == SUBREG
      && mixed_subreg_operand (op0, mode))
      && mixed_subreg_operand (op0, mode))
    {
    {
      /* We should only generate these mixed mode patterns
      /* We should only generate these mixed mode patterns
         during RTL generation.  If we need do it later on
         during RTL generation.  If we need do it later on
         then we'll have to emit patterns that won't clobber CC.  */
         then we'll have to emit patterns that won't clobber CC.  */
      if (reload_in_progress || reload_completed)
      if (reload_in_progress || reload_completed)
        abort ();
        abort ();
      if (GET_MODE (SUBREG_REG (op0)) == QImode)
      if (GET_MODE (SUBREG_REG (op0)) == QImode)
        op0 = SUBREG_REG (op0);
        op0 = SUBREG_REG (op0);
      else if (GET_MODE (SUBREG_REG (op0)) == HImode)
      else if (GET_MODE (SUBREG_REG (op0)) == HImode)
        {
        {
          op0 = copy_rtx (op0);
          op0 = copy_rtx (op0);
          PUT_MODE (op0, QImode);
          PUT_MODE (op0, QImode);
        }
        }
      else
      else
        abort ();
        abort ();
 
 
      if (mode == QFmode)
      if (mode == QFmode)
        emit_insn (gen_storeqf_int_clobber (op0, op1));
        emit_insn (gen_storeqf_int_clobber (op0, op1));
      else
      else
        abort ();
        abort ();
      return 1;
      return 1;
    }
    }
 
 
  if (GET_CODE (op1) == SUBREG
  if (GET_CODE (op1) == SUBREG
      && mixed_subreg_operand (op1, mode))
      && mixed_subreg_operand (op1, mode))
    {
    {
      /* We should only generate these mixed mode patterns
      /* We should only generate these mixed mode patterns
         during RTL generation.  If we need do it later on
         during RTL generation.  If we need do it later on
         then we'll have to emit patterns that won't clobber CC.  */
         then we'll have to emit patterns that won't clobber CC.  */
      if (reload_in_progress || reload_completed)
      if (reload_in_progress || reload_completed)
        abort ();
        abort ();
      if (GET_MODE (SUBREG_REG (op1)) == QImode)
      if (GET_MODE (SUBREG_REG (op1)) == QImode)
        op1 = SUBREG_REG (op1);
        op1 = SUBREG_REG (op1);
      else if (GET_MODE (SUBREG_REG (op1)) == HImode)
      else if (GET_MODE (SUBREG_REG (op1)) == HImode)
        {
        {
          op1 = copy_rtx (op1);
          op1 = copy_rtx (op1);
          PUT_MODE (op1, QImode);
          PUT_MODE (op1, QImode);
        }
        }
      else
      else
        abort ();
        abort ();
 
 
      if (mode == QFmode)
      if (mode == QFmode)
        emit_insn (gen_loadqf_int_clobber (op0, op1));
        emit_insn (gen_loadqf_int_clobber (op0, op1));
      else
      else
        abort ();
        abort ();
      return 1;
      return 1;
    }
    }
 
 
  if (mode == QImode
  if (mode == QImode
      && reg_operand (op0, mode)
      && reg_operand (op0, mode)
      && const_int_operand (op1, mode)
      && const_int_operand (op1, mode)
      && ! IS_INT16_CONST (INTVAL (op1))
      && ! IS_INT16_CONST (INTVAL (op1))
      && ! IS_HIGH_CONST (INTVAL (op1)))
      && ! IS_HIGH_CONST (INTVAL (op1)))
    {
    {
      emit_insn (gen_loadqi_big_constant (op0, op1));
      emit_insn (gen_loadqi_big_constant (op0, op1));
      return 1;
      return 1;
    }
    }
 
 
  if (mode == HImode
  if (mode == HImode
      && reg_operand (op0, mode)
      && reg_operand (op0, mode)
      && const_int_operand (op1, mode))
      && const_int_operand (op1, mode))
    {
    {
      emit_insn (gen_loadhi_big_constant (op0, op1));
      emit_insn (gen_loadhi_big_constant (op0, op1));
      return 1;
      return 1;
    }
    }
 
 
  /* Adjust operands in case we have modified them.  */
  /* Adjust operands in case we have modified them.  */
  operands[0] = op0;
  operands[0] = op0;
  operands[1] = op1;
  operands[1] = op1;
 
 
  /* Emit normal pattern.  */
  /* Emit normal pattern.  */
  return 0;
  return 0;
}
}
 
 
 
 
void
void
c4x_emit_libcall (rtx libcall, enum rtx_code code,
c4x_emit_libcall (rtx libcall, enum rtx_code code,
                  enum machine_mode dmode, enum machine_mode smode,
                  enum machine_mode dmode, enum machine_mode smode,
                  int noperands, rtx *operands)
                  int noperands, rtx *operands)
{
{
  rtx ret;
  rtx ret;
  rtx insns;
  rtx insns;
  rtx equiv;
  rtx equiv;
 
 
  start_sequence ();
  start_sequence ();
  switch (noperands)
  switch (noperands)
    {
    {
    case 2:
    case 2:
      ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 1,
      ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 1,
                                     operands[1], smode);
                                     operands[1], smode);
      equiv = gen_rtx_fmt_e (code, dmode, operands[1]);
      equiv = gen_rtx_fmt_e (code, dmode, operands[1]);
      break;
      break;
 
 
    case 3:
    case 3:
      ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 2,
      ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 2,
                                     operands[1], smode, operands[2], smode);
                                     operands[1], smode, operands[2], smode);
      equiv = gen_rtx_fmt_ee (code, dmode, operands[1], operands[2]);
      equiv = gen_rtx_fmt_ee (code, dmode, operands[1], operands[2]);
      break;
      break;
 
 
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
  insns = get_insns ();
  insns = get_insns ();
  end_sequence ();
  end_sequence ();
  emit_libcall_block (insns, operands[0], ret, equiv);
  emit_libcall_block (insns, operands[0], ret, equiv);
}
}
 
 
 
 
void
void
c4x_emit_libcall3 (rtx libcall, enum rtx_code code,
c4x_emit_libcall3 (rtx libcall, enum rtx_code code,
                   enum machine_mode mode, rtx *operands)
                   enum machine_mode mode, rtx *operands)
{
{
  c4x_emit_libcall (libcall, code, mode, mode, 3, operands);
  c4x_emit_libcall (libcall, code, mode, mode, 3, operands);
}
}
 
 
 
 
void
void
c4x_emit_libcall_mulhi (rtx libcall, enum rtx_code code,
c4x_emit_libcall_mulhi (rtx libcall, enum rtx_code code,
                        enum machine_mode mode, rtx *operands)
                        enum machine_mode mode, rtx *operands)
{
{
  rtx ret;
  rtx ret;
  rtx insns;
  rtx insns;
  rtx equiv;
  rtx equiv;
 
 
  start_sequence ();
  start_sequence ();
  ret = emit_library_call_value (libcall, NULL_RTX, 1, mode, 2,
  ret = emit_library_call_value (libcall, NULL_RTX, 1, mode, 2,
                                 operands[1], mode, operands[2], mode);
                                 operands[1], mode, operands[2], mode);
  equiv = gen_rtx_TRUNCATE (mode,
  equiv = gen_rtx_TRUNCATE (mode,
                   gen_rtx_LSHIFTRT (HImode,
                   gen_rtx_LSHIFTRT (HImode,
                            gen_rtx_MULT (HImode,
                            gen_rtx_MULT (HImode,
                                     gen_rtx_fmt_e (code, HImode, operands[1]),
                                     gen_rtx_fmt_e (code, HImode, operands[1]),
                                     gen_rtx_fmt_e (code, HImode, operands[2])),
                                     gen_rtx_fmt_e (code, HImode, operands[2])),
                                     GEN_INT (32)));
                                     GEN_INT (32)));
  insns = get_insns ();
  insns = get_insns ();
  end_sequence ();
  end_sequence ();
  emit_libcall_block (insns, operands[0], ret, equiv);
  emit_libcall_block (insns, operands[0], ret, equiv);
}
}
 
 
 
 
int
int
c4x_legitimate_address_p (enum machine_mode mode, rtx addr, int strict)
c4x_legitimate_address_p (enum machine_mode mode, rtx addr, int strict)
{
{
  rtx base = NULL_RTX;          /* Base register (AR0-AR7).  */
  rtx base = NULL_RTX;          /* Base register (AR0-AR7).  */
  rtx indx = NULL_RTX;          /* Index register (IR0,IR1).  */
  rtx indx = NULL_RTX;          /* Index register (IR0,IR1).  */
  rtx disp = NULL_RTX;          /* Displacement.  */
  rtx disp = NULL_RTX;          /* Displacement.  */
  enum rtx_code code;
  enum rtx_code code;
 
 
  code = GET_CODE (addr);
  code = GET_CODE (addr);
  switch (code)
  switch (code)
    {
    {
      /* Register indirect with auto increment/decrement.  We don't
      /* Register indirect with auto increment/decrement.  We don't
         allow SP here---push_operand should recognize an operand
         allow SP here---push_operand should recognize an operand
         being pushed on the stack.  */
         being pushed on the stack.  */
 
 
    case PRE_DEC:
    case PRE_DEC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
      if (mode != QImode && mode != QFmode)
      if (mode != QImode && mode != QFmode)
        return 0;
        return 0;
 
 
    case POST_INC:
    case POST_INC:
      base = XEXP (addr, 0);
      base = XEXP (addr, 0);
      if (! REG_P (base))
      if (! REG_P (base))
        return 0;
        return 0;
      break;
      break;
 
 
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      {
      {
        rtx op0 = XEXP (addr, 0);
        rtx op0 = XEXP (addr, 0);
        rtx op1 = XEXP (addr, 1);
        rtx op1 = XEXP (addr, 1);
 
 
        if (mode != QImode && mode != QFmode)
        if (mode != QImode && mode != QFmode)
          return 0;
          return 0;
 
 
        if (! REG_P (op0)
        if (! REG_P (op0)
            || (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS))
            || (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS))
          return 0;
          return 0;
        base = XEXP (op1, 0);
        base = XEXP (op1, 0);
        if (! REG_P (base))
        if (! REG_P (base))
            return 0;
            return 0;
        if (REGNO (base) != REGNO (op0))
        if (REGNO (base) != REGNO (op0))
          return 0;
          return 0;
        if (REG_P (XEXP (op1, 1)))
        if (REG_P (XEXP (op1, 1)))
          indx = XEXP (op1, 1);
          indx = XEXP (op1, 1);
        else
        else
          disp = XEXP (op1, 1);
          disp = XEXP (op1, 1);
      }
      }
      break;
      break;
 
 
      /* Register indirect.  */
      /* Register indirect.  */
    case REG:
    case REG:
      base = addr;
      base = addr;
      break;
      break;
 
 
      /* Register indirect with displacement or index.  */
      /* Register indirect with displacement or index.  */
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (addr, 0);
        rtx op0 = XEXP (addr, 0);
        rtx op1 = XEXP (addr, 1);
        rtx op1 = XEXP (addr, 1);
        enum rtx_code code0 = GET_CODE (op0);
        enum rtx_code code0 = GET_CODE (op0);
 
 
        switch (code0)
        switch (code0)
          {
          {
          case REG:
          case REG:
            if (REG_P (op1))
            if (REG_P (op1))
              {
              {
                base = op0;     /* Base + index.  */
                base = op0;     /* Base + index.  */
                indx = op1;
                indx = op1;
                if (IS_INDEX_REG (base) || IS_ADDR_REG (indx))
                if (IS_INDEX_REG (base) || IS_ADDR_REG (indx))
                  {
                  {
                    base = op1;
                    base = op1;
                    indx = op0;
                    indx = op0;
                  }
                  }
              }
              }
            else
            else
              {
              {
                base = op0;     /* Base + displacement.  */
                base = op0;     /* Base + displacement.  */
                disp = op1;
                disp = op1;
              }
              }
            break;
            break;
 
 
          default:
          default:
            return 0;
            return 0;
          }
          }
      }
      }
      break;
      break;
 
 
      /* Direct addressing with DP register.  */
      /* Direct addressing with DP register.  */
    case LO_SUM:
    case LO_SUM:
      {
      {
        rtx op0 = XEXP (addr, 0);
        rtx op0 = XEXP (addr, 0);
        rtx op1 = XEXP (addr, 1);
        rtx op1 = XEXP (addr, 1);
 
 
        /* HImode and HFmode direct memory references aren't truly
        /* HImode and HFmode direct memory references aren't truly
           offsettable (consider case at end of data page).  We
           offsettable (consider case at end of data page).  We
           probably get better code by loading a pointer and using an
           probably get better code by loading a pointer and using an
           indirect memory reference.  */
           indirect memory reference.  */
        if (mode == HImode || mode == HFmode)
        if (mode == HImode || mode == HFmode)
          return 0;
          return 0;
 
 
        if (!REG_P (op0) || REGNO (op0) != DP_REGNO)
        if (!REG_P (op0) || REGNO (op0) != DP_REGNO)
          return 0;
          return 0;
 
 
        if ((GET_CODE (op1) == SYMBOL_REF || GET_CODE (op1) == LABEL_REF))
        if ((GET_CODE (op1) == SYMBOL_REF || GET_CODE (op1) == LABEL_REF))
          return 1;
          return 1;
 
 
        if (GET_CODE (op1) == CONST)
        if (GET_CODE (op1) == CONST)
          return 1;
          return 1;
        return 0;
        return 0;
      }
      }
      break;
      break;
 
 
      /* Direct addressing with some work for the assembler...  */
      /* Direct addressing with some work for the assembler...  */
    case CONST:
    case CONST:
      /* Direct addressing.  */
      /* Direct addressing.  */
    case LABEL_REF:
    case LABEL_REF:
    case SYMBOL_REF:
    case SYMBOL_REF:
      if (! TARGET_EXPOSE_LDP && ! strict && mode != HFmode && mode != HImode)
      if (! TARGET_EXPOSE_LDP && ! strict && mode != HFmode && mode != HImode)
        return 1;
        return 1;
      /* These need to be converted to a LO_SUM (...).
      /* These need to be converted to a LO_SUM (...).
         LEGITIMIZE_RELOAD_ADDRESS will do this during reload.  */
         LEGITIMIZE_RELOAD_ADDRESS will do this during reload.  */
      return 0;
      return 0;
 
 
      /* Do not allow direct memory access to absolute addresses.
      /* Do not allow direct memory access to absolute addresses.
         This is more pain than it's worth, especially for the
         This is more pain than it's worth, especially for the
         small memory model where we can't guarantee that
         small memory model where we can't guarantee that
         this address is within the data page---we don't want
         this address is within the data page---we don't want
         to modify the DP register in the small memory model,
         to modify the DP register in the small memory model,
         even temporarily, since an interrupt can sneak in....  */
         even temporarily, since an interrupt can sneak in....  */
    case CONST_INT:
    case CONST_INT:
      return 0;
      return 0;
 
 
      /* Indirect indirect addressing.  */
      /* Indirect indirect addressing.  */
    case MEM:
    case MEM:
      return 0;
      return 0;
 
 
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      fatal_insn ("using CONST_DOUBLE for address", addr);
      fatal_insn ("using CONST_DOUBLE for address", addr);
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
 
 
  /* Validate the base register.  */
  /* Validate the base register.  */
  if (base)
  if (base)
    {
    {
      /* Check that the address is offsettable for HImode and HFmode.  */
      /* Check that the address is offsettable for HImode and HFmode.  */
      if (indx && (mode == HImode || mode == HFmode))
      if (indx && (mode == HImode || mode == HFmode))
        return 0;
        return 0;
 
 
      /* Handle DP based stuff.  */
      /* Handle DP based stuff.  */
      if (REGNO (base) == DP_REGNO)
      if (REGNO (base) == DP_REGNO)
        return 1;
        return 1;
      if (strict && ! REGNO_OK_FOR_BASE_P (REGNO (base)))
      if (strict && ! REGNO_OK_FOR_BASE_P (REGNO (base)))
        return 0;
        return 0;
      else if (! strict && ! IS_ADDR_OR_PSEUDO_REG (base))
      else if (! strict && ! IS_ADDR_OR_PSEUDO_REG (base))
        return 0;
        return 0;
    }
    }
 
 
  /* Now validate the index register.  */
  /* Now validate the index register.  */
  if (indx)
  if (indx)
    {
    {
      if (GET_CODE (indx) != REG)
      if (GET_CODE (indx) != REG)
        return 0;
        return 0;
      if (strict && ! REGNO_OK_FOR_INDEX_P (REGNO (indx)))
      if (strict && ! REGNO_OK_FOR_INDEX_P (REGNO (indx)))
        return 0;
        return 0;
      else if (! strict && ! IS_INDEX_OR_PSEUDO_REG (indx))
      else if (! strict && ! IS_INDEX_OR_PSEUDO_REG (indx))
        return 0;
        return 0;
    }
    }
 
 
  /* Validate displacement.  */
  /* Validate displacement.  */
  if (disp)
  if (disp)
    {
    {
      if (GET_CODE (disp) != CONST_INT)
      if (GET_CODE (disp) != CONST_INT)
        return 0;
        return 0;
      if (mode == HImode || mode == HFmode)
      if (mode == HImode || mode == HFmode)
        {
        {
          /* The offset displacement must be legitimate.  */
          /* The offset displacement must be legitimate.  */
          if (! IS_DISP8_OFF_CONST (INTVAL (disp)))
          if (! IS_DISP8_OFF_CONST (INTVAL (disp)))
            return 0;
            return 0;
        }
        }
      else
      else
        {
        {
          if (! IS_DISP8_CONST (INTVAL (disp)))
          if (! IS_DISP8_CONST (INTVAL (disp)))
            return 0;
            return 0;
        }
        }
      /* Can't add an index with a disp.  */
      /* Can't add an index with a disp.  */
      if (indx)
      if (indx)
        return 0;
        return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
 
 
rtx
rtx
c4x_legitimize_address (rtx orig ATTRIBUTE_UNUSED,
c4x_legitimize_address (rtx orig ATTRIBUTE_UNUSED,
                        enum machine_mode mode ATTRIBUTE_UNUSED)
                        enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  if (GET_CODE (orig) == SYMBOL_REF
  if (GET_CODE (orig) == SYMBOL_REF
      || GET_CODE (orig) == LABEL_REF)
      || GET_CODE (orig) == LABEL_REF)
    {
    {
      if (mode == HImode || mode == HFmode)
      if (mode == HImode || mode == HFmode)
        {
        {
          /* We need to force the address into
          /* We need to force the address into
             a register so that it is offsettable.  */
             a register so that it is offsettable.  */
          rtx addr_reg = gen_reg_rtx (Pmode);
          rtx addr_reg = gen_reg_rtx (Pmode);
          emit_move_insn (addr_reg, orig);
          emit_move_insn (addr_reg, orig);
          return addr_reg;
          return addr_reg;
        }
        }
      else
      else
        {
        {
          rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
          rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
 
 
          if (! TARGET_SMALL)
          if (! TARGET_SMALL)
            emit_insn (gen_set_ldp (dp_reg, orig));
            emit_insn (gen_set_ldp (dp_reg, orig));
 
 
          return gen_rtx_LO_SUM (Pmode, dp_reg, orig);
          return gen_rtx_LO_SUM (Pmode, dp_reg, orig);
        }
        }
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
 
 
/* Provide the costs of an addressing mode that contains ADDR.
/* Provide the costs of an addressing mode that contains ADDR.
   If ADDR is not a valid address, its cost is irrelevant.
   If ADDR is not a valid address, its cost is irrelevant.
   This is used in cse and loop optimization to determine
   This is used in cse and loop optimization to determine
   if it is worthwhile storing a common address into a register.
   if it is worthwhile storing a common address into a register.
   Unfortunately, the C4x address cost depends on other operands.  */
   Unfortunately, the C4x address cost depends on other operands.  */
 
 
static int
static int
c4x_address_cost (rtx addr)
c4x_address_cost (rtx addr)
{
{
  switch (GET_CODE (addr))
  switch (GET_CODE (addr))
    {
    {
    case REG:
    case REG:
      return 1;
      return 1;
 
 
    case POST_INC:
    case POST_INC:
    case POST_DEC:
    case POST_DEC:
    case PRE_INC:
    case PRE_INC:
    case PRE_DEC:
    case PRE_DEC:
      return 1;
      return 1;
 
 
      /* These shouldn't be directly generated.  */
      /* These shouldn't be directly generated.  */
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case CONST:
    case CONST:
      return 10;
      return 10;
 
 
    case LO_SUM:
    case LO_SUM:
      {
      {
        rtx op1 = XEXP (addr, 1);
        rtx op1 = XEXP (addr, 1);
 
 
        if (GET_CODE (op1) == LABEL_REF || GET_CODE (op1) == SYMBOL_REF)
        if (GET_CODE (op1) == LABEL_REF || GET_CODE (op1) == SYMBOL_REF)
          return TARGET_SMALL ? 3 : 4;
          return TARGET_SMALL ? 3 : 4;
 
 
        if (GET_CODE (op1) == CONST)
        if (GET_CODE (op1) == CONST)
          {
          {
            rtx offset = const0_rtx;
            rtx offset = const0_rtx;
 
 
            op1 = eliminate_constant_term (op1, &offset);
            op1 = eliminate_constant_term (op1, &offset);
 
 
            /* ??? These costs need rethinking...  */
            /* ??? These costs need rethinking...  */
            if (GET_CODE (op1) == LABEL_REF)
            if (GET_CODE (op1) == LABEL_REF)
              return 3;
              return 3;
 
 
            if (GET_CODE (op1) != SYMBOL_REF)
            if (GET_CODE (op1) != SYMBOL_REF)
              return 4;
              return 4;
 
 
            if (INTVAL (offset) == 0)
            if (INTVAL (offset) == 0)
              return 3;
              return 3;
 
 
            return 4;
            return 4;
          }
          }
        fatal_insn ("c4x_address_cost: Invalid addressing mode", addr);
        fatal_insn ("c4x_address_cost: Invalid addressing mode", addr);
      }
      }
      break;
      break;
 
 
    case PLUS:
    case PLUS:
      {
      {
        register rtx op0 = XEXP (addr, 0);
        register rtx op0 = XEXP (addr, 0);
        register rtx op1 = XEXP (addr, 1);
        register rtx op1 = XEXP (addr, 1);
 
 
        if (GET_CODE (op0) != REG)
        if (GET_CODE (op0) != REG)
          break;
          break;
 
 
        switch (GET_CODE (op1))
        switch (GET_CODE (op1))
          {
          {
          default:
          default:
            break;
            break;
 
 
          case REG:
          case REG:
            /* This cost for REG+REG must be greater than the cost
            /* This cost for REG+REG must be greater than the cost
               for REG if we want autoincrement addressing modes.  */
               for REG if we want autoincrement addressing modes.  */
            return 2;
            return 2;
 
 
          case CONST_INT:
          case CONST_INT:
            /* The following tries to improve GIV combination
            /* The following tries to improve GIV combination
               in strength reduce but appears not to help.  */
               in strength reduce but appears not to help.  */
            if (TARGET_DEVEL && IS_UINT5_CONST (INTVAL (op1)))
            if (TARGET_DEVEL && IS_UINT5_CONST (INTVAL (op1)))
              return 1;
              return 1;
 
 
            if (IS_DISP1_CONST (INTVAL (op1)))
            if (IS_DISP1_CONST (INTVAL (op1)))
              return 1;
              return 1;
 
 
            if (! TARGET_C3X && IS_UINT5_CONST (INTVAL (op1)))
            if (! TARGET_C3X && IS_UINT5_CONST (INTVAL (op1)))
              return 2;
              return 2;
 
 
            return 3;
            return 3;
          }
          }
      }
      }
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 4;
  return 4;
}
}
 
 
 
 
rtx
rtx
c4x_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
c4x_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
{
{
  enum machine_mode mode = SELECT_CC_MODE (code, x, y);
  enum machine_mode mode = SELECT_CC_MODE (code, x, y);
  rtx cc_reg;
  rtx cc_reg;
 
 
  if (mode == CC_NOOVmode
  if (mode == CC_NOOVmode
      && (code == LE || code == GE || code == LT || code == GT))
      && (code == LE || code == GE || code == LT || code == GT))
    return NULL_RTX;
    return NULL_RTX;
 
 
  cc_reg = gen_rtx_REG (mode, ST_REGNO);
  cc_reg = gen_rtx_REG (mode, ST_REGNO);
  emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
  emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
                          gen_rtx_COMPARE (mode, x, y)));
                          gen_rtx_COMPARE (mode, x, y)));
  return cc_reg;
  return cc_reg;
}
}
 
 
char *
char *
c4x_output_cbranch (const char *form, rtx seq)
c4x_output_cbranch (const char *form, rtx seq)
{
{
  int delayed = 0;
  int delayed = 0;
  int annultrue = 0;
  int annultrue = 0;
  int annulfalse = 0;
  int annulfalse = 0;
  rtx delay;
  rtx delay;
  char *cp;
  char *cp;
  static char str[100];
  static char str[100];
 
 
  if (final_sequence)
  if (final_sequence)
    {
    {
      delay = XVECEXP (final_sequence, 0, 1);
      delay = XVECEXP (final_sequence, 0, 1);
      delayed = ! INSN_ANNULLED_BRANCH_P (seq);
      delayed = ! INSN_ANNULLED_BRANCH_P (seq);
      annultrue = INSN_ANNULLED_BRANCH_P (seq) && ! INSN_FROM_TARGET_P (delay);
      annultrue = INSN_ANNULLED_BRANCH_P (seq) && ! INSN_FROM_TARGET_P (delay);
      annulfalse = INSN_ANNULLED_BRANCH_P (seq) && INSN_FROM_TARGET_P (delay);
      annulfalse = INSN_ANNULLED_BRANCH_P (seq) && INSN_FROM_TARGET_P (delay);
    }
    }
  strcpy (str, form);
  strcpy (str, form);
  cp = &str [strlen (str)];
  cp = &str [strlen (str)];
  if (delayed)
  if (delayed)
    {
    {
      *cp++ = '%';
      *cp++ = '%';
      *cp++ = '#';
      *cp++ = '#';
    }
    }
  if (annultrue)
  if (annultrue)
    {
    {
      *cp++ = 'a';
      *cp++ = 'a';
      *cp++ = 't';
      *cp++ = 't';
    }
    }
  if (annulfalse)
  if (annulfalse)
    {
    {
      *cp++ = 'a';
      *cp++ = 'a';
      *cp++ = 'f';
      *cp++ = 'f';
    }
    }
  *cp++ = '\t';
  *cp++ = '\t';
  *cp++ = '%';
  *cp++ = '%';
  *cp++ = 'l';
  *cp++ = 'l';
  *cp++ = '1';
  *cp++ = '1';
  *cp = 0;
  *cp = 0;
  return str;
  return str;
}
}
 
 
void
void
c4x_print_operand (FILE *file, rtx op, int letter)
c4x_print_operand (FILE *file, rtx op, int letter)
{
{
  rtx op1;
  rtx op1;
  enum rtx_code code;
  enum rtx_code code;
 
 
  switch (letter)
  switch (letter)
    {
    {
    case '#':                   /* Delayed.  */
    case '#':                   /* Delayed.  */
      if (final_sequence)
      if (final_sequence)
        fprintf (file, "d");
        fprintf (file, "d");
      return;
      return;
    }
    }
 
 
  code = GET_CODE (op);
  code = GET_CODE (op);
  switch (letter)
  switch (letter)
    {
    {
    case 'A':                   /* Direct address.  */
    case 'A':                   /* Direct address.  */
      if (code == CONST_INT || code == SYMBOL_REF || code == CONST)
      if (code == CONST_INT || code == SYMBOL_REF || code == CONST)
        fprintf (file, "@");
        fprintf (file, "@");
      break;
      break;
 
 
    case 'H':                   /* Sethi.  */
    case 'H':                   /* Sethi.  */
      output_addr_const (file, op);
      output_addr_const (file, op);
      return;
      return;
 
 
    case 'I':                   /* Reversed condition.  */
    case 'I':                   /* Reversed condition.  */
      code = reverse_condition (code);
      code = reverse_condition (code);
      break;
      break;
 
 
    case 'L':                   /* Log 2 of constant.  */
    case 'L':                   /* Log 2 of constant.  */
      if (code != CONST_INT)
      if (code != CONST_INT)
        fatal_insn ("c4x_print_operand: %%L inconsistency", op);
        fatal_insn ("c4x_print_operand: %%L inconsistency", op);
      fprintf (file, "%d", exact_log2 (INTVAL (op)));
      fprintf (file, "%d", exact_log2 (INTVAL (op)));
      return;
      return;
 
 
    case 'N':                   /* Ones complement of small constant.  */
    case 'N':                   /* Ones complement of small constant.  */
      if (code != CONST_INT)
      if (code != CONST_INT)
        fatal_insn ("c4x_print_operand: %%N inconsistency", op);
        fatal_insn ("c4x_print_operand: %%N inconsistency", op);
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (op));
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (op));
      return;
      return;
 
 
    case 'K':                   /* Generate ldp(k) if direct address.  */
    case 'K':                   /* Generate ldp(k) if direct address.  */
      if (! TARGET_SMALL
      if (! TARGET_SMALL
          && code == MEM
          && code == MEM
          && GET_CODE (XEXP (op, 0)) == LO_SUM
          && GET_CODE (XEXP (op, 0)) == LO_SUM
          && GET_CODE (XEXP (XEXP (op, 0), 0)) == REG
          && GET_CODE (XEXP (XEXP (op, 0), 0)) == REG
          && REGNO (XEXP (XEXP (op, 0), 0)) == DP_REGNO)
          && REGNO (XEXP (XEXP (op, 0), 0)) == DP_REGNO)
        {
        {
          op1 = XEXP (XEXP (op, 0), 1);
          op1 = XEXP (XEXP (op, 0), 1);
          if (GET_CODE(op1) == CONST_INT || GET_CODE(op1) == SYMBOL_REF)
          if (GET_CODE(op1) == CONST_INT || GET_CODE(op1) == SYMBOL_REF)
            {
            {
              fprintf (file, "\t%s\t@", TARGET_C3X ? "ldp" : "ldpk");
              fprintf (file, "\t%s\t@", TARGET_C3X ? "ldp" : "ldpk");
              output_address (XEXP (adjust_address (op, VOIDmode, 1), 0));
              output_address (XEXP (adjust_address (op, VOIDmode, 1), 0));
              fprintf (file, "\n");
              fprintf (file, "\n");
            }
            }
        }
        }
      return;
      return;
 
 
    case 'M':                   /* Generate ldp(k) if direct address.  */
    case 'M':                   /* Generate ldp(k) if direct address.  */
      if (! TARGET_SMALL        /* Only used in asm statements.  */
      if (! TARGET_SMALL        /* Only used in asm statements.  */
          && code == MEM
          && code == MEM
          && (GET_CODE (XEXP (op, 0)) == CONST
          && (GET_CODE (XEXP (op, 0)) == CONST
              || GET_CODE (XEXP (op, 0)) == SYMBOL_REF))
              || GET_CODE (XEXP (op, 0)) == SYMBOL_REF))
        {
        {
          fprintf (file, "%s\t@", TARGET_C3X ? "ldp" : "ldpk");
          fprintf (file, "%s\t@", TARGET_C3X ? "ldp" : "ldpk");
          output_address (XEXP (op, 0));
          output_address (XEXP (op, 0));
          fprintf (file, "\n\t");
          fprintf (file, "\n\t");
        }
        }
      return;
      return;
 
 
    case 'O':                   /* Offset address.  */
    case 'O':                   /* Offset address.  */
      if (code == MEM && c4x_autoinc_operand (op, Pmode))
      if (code == MEM && c4x_autoinc_operand (op, Pmode))
        break;
        break;
      else if (code == MEM)
      else if (code == MEM)
        output_address (XEXP (adjust_address (op, VOIDmode, 1), 0));
        output_address (XEXP (adjust_address (op, VOIDmode, 1), 0));
      else if (code == REG)
      else if (code == REG)
        fprintf (file, "%s", reg_names[REGNO (op) + 1]);
        fprintf (file, "%s", reg_names[REGNO (op) + 1]);
      else
      else
        fatal_insn ("c4x_print_operand: %%O inconsistency", op);
        fatal_insn ("c4x_print_operand: %%O inconsistency", op);
      return;
      return;
 
 
    case 'C':                   /* Call.  */
    case 'C':                   /* Call.  */
      break;
      break;
 
 
    case 'U':                   /* Call/callu.  */
    case 'U':                   /* Call/callu.  */
      if (code != SYMBOL_REF)
      if (code != SYMBOL_REF)
        fprintf (file, "u");
        fprintf (file, "u");
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case REG:
    case REG:
      if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
      if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
          && ! TARGET_TI)
          && ! TARGET_TI)
        fprintf (file, "%s", float_reg_names[REGNO (op)]);
        fprintf (file, "%s", float_reg_names[REGNO (op)]);
      else
      else
        fprintf (file, "%s", reg_names[REGNO (op)]);
        fprintf (file, "%s", reg_names[REGNO (op)]);
      break;
      break;
 
 
    case MEM:
    case MEM:
      output_address (XEXP (op, 0));
      output_address (XEXP (op, 0));
      break;
      break;
 
 
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      {
      {
        char str[64];
        char str[64];
 
 
        real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (op),
        real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (op),
                         sizeof (str), 0, 1);
                         sizeof (str), 0, 1);
        fprintf (file, "%s", str);
        fprintf (file, "%s", str);
      }
      }
      break;
      break;
 
 
    case CONST_INT:
    case CONST_INT:
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
      fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
      break;
      break;
 
 
    case NE:
    case NE:
      fprintf (file, "ne");
      fprintf (file, "ne");
      break;
      break;
 
 
    case EQ:
    case EQ:
      fprintf (file, "eq");
      fprintf (file, "eq");
      break;
      break;
 
 
    case GE:
    case GE:
      fprintf (file, "ge");
      fprintf (file, "ge");
      break;
      break;
 
 
    case GT:
    case GT:
      fprintf (file, "gt");
      fprintf (file, "gt");
      break;
      break;
 
 
    case LE:
    case LE:
      fprintf (file, "le");
      fprintf (file, "le");
      break;
      break;
 
 
    case LT:
    case LT:
      fprintf (file, "lt");
      fprintf (file, "lt");
      break;
      break;
 
 
    case GEU:
    case GEU:
      fprintf (file, "hs");
      fprintf (file, "hs");
      break;
      break;
 
 
    case GTU:
    case GTU:
      fprintf (file, "hi");
      fprintf (file, "hi");
      break;
      break;
 
 
    case LEU:
    case LEU:
      fprintf (file, "ls");
      fprintf (file, "ls");
      break;
      break;
 
 
    case LTU:
    case LTU:
      fprintf (file, "lo");
      fprintf (file, "lo");
      break;
      break;
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
      output_addr_const (file, op);
      output_addr_const (file, op);
      break;
      break;
 
 
    case CONST:
    case CONST:
      output_addr_const (file, XEXP (op, 0));
      output_addr_const (file, XEXP (op, 0));
      break;
      break;
 
 
    case CODE_LABEL:
    case CODE_LABEL:
      break;
      break;
 
 
    default:
    default:
      fatal_insn ("c4x_print_operand: Bad operand case", op);
      fatal_insn ("c4x_print_operand: Bad operand case", op);
      break;
      break;
    }
    }
}
}
 
 
 
 
void
void
c4x_print_operand_address (FILE *file, rtx addr)
c4x_print_operand_address (FILE *file, rtx addr)
{
{
  switch (GET_CODE (addr))
  switch (GET_CODE (addr))
    {
    {
    case REG:
    case REG:
      fprintf (file, "*%s", reg_names[REGNO (addr)]);
      fprintf (file, "*%s", reg_names[REGNO (addr)]);
      break;
      break;
 
 
    case PRE_DEC:
    case PRE_DEC:
      fprintf (file, "*--%s", reg_names[REGNO (XEXP (addr, 0))]);
      fprintf (file, "*--%s", reg_names[REGNO (XEXP (addr, 0))]);
      break;
      break;
 
 
    case POST_INC:
    case POST_INC:
      fprintf (file, "*%s++", reg_names[REGNO (XEXP (addr, 0))]);
      fprintf (file, "*%s++", reg_names[REGNO (XEXP (addr, 0))]);
      break;
      break;
 
 
    case POST_MODIFY:
    case POST_MODIFY:
      {
      {
        rtx op0 = XEXP (XEXP (addr, 1), 0);
        rtx op0 = XEXP (XEXP (addr, 1), 0);
        rtx op1 = XEXP (XEXP (addr, 1), 1);
        rtx op1 = XEXP (XEXP (addr, 1), 1);
 
 
        if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
        if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
          fprintf (file, "*%s++(%s)", reg_names[REGNO (op0)],
          fprintf (file, "*%s++(%s)", reg_names[REGNO (op0)],
                   reg_names[REGNO (op1)]);
                   reg_names[REGNO (op1)]);
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
          fprintf (file, "*%s++(" HOST_WIDE_INT_PRINT_DEC ")",
          fprintf (file, "*%s++(" HOST_WIDE_INT_PRINT_DEC ")",
                   reg_names[REGNO (op0)], INTVAL (op1));
                   reg_names[REGNO (op0)], INTVAL (op1));
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
          fprintf (file, "*%s--(" HOST_WIDE_INT_PRINT_DEC ")",
          fprintf (file, "*%s--(" HOST_WIDE_INT_PRINT_DEC ")",
                   reg_names[REGNO (op0)], -INTVAL (op1));
                   reg_names[REGNO (op0)], -INTVAL (op1));
        else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
        else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
          fprintf (file, "*%s--(%s)", reg_names[REGNO (op0)],
          fprintf (file, "*%s--(%s)", reg_names[REGNO (op0)],
                   reg_names[REGNO (op1)]);
                   reg_names[REGNO (op1)]);
        else
        else
          fatal_insn ("c4x_print_operand_address: Bad post_modify", addr);
          fatal_insn ("c4x_print_operand_address: Bad post_modify", addr);
      }
      }
      break;
      break;
 
 
    case PRE_MODIFY:
    case PRE_MODIFY:
      {
      {
        rtx op0 = XEXP (XEXP (addr, 1), 0);
        rtx op0 = XEXP (XEXP (addr, 1), 0);
        rtx op1 = XEXP (XEXP (addr, 1), 1);
        rtx op1 = XEXP (XEXP (addr, 1), 1);
 
 
        if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
        if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
          fprintf (file, "*++%s(%s)", reg_names[REGNO (op0)],
          fprintf (file, "*++%s(%s)", reg_names[REGNO (op0)],
                   reg_names[REGNO (op1)]);
                   reg_names[REGNO (op1)]);
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
          fprintf (file, "*++%s(" HOST_WIDE_INT_PRINT_DEC ")",
          fprintf (file, "*++%s(" HOST_WIDE_INT_PRINT_DEC ")",
                   reg_names[REGNO (op0)], INTVAL (op1));
                   reg_names[REGNO (op0)], INTVAL (op1));
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
        else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
          fprintf (file, "*--%s(" HOST_WIDE_INT_PRINT_DEC ")",
          fprintf (file, "*--%s(" HOST_WIDE_INT_PRINT_DEC ")",
                   reg_names[REGNO (op0)], -INTVAL (op1));
                   reg_names[REGNO (op0)], -INTVAL (op1));
        else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
        else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
          fprintf (file, "*--%s(%s)", reg_names[REGNO (op0)],
          fprintf (file, "*--%s(%s)", reg_names[REGNO (op0)],
                   reg_names[REGNO (op1)]);
                   reg_names[REGNO (op1)]);
        else
        else
          fatal_insn ("c4x_print_operand_address: Bad pre_modify", addr);
          fatal_insn ("c4x_print_operand_address: Bad pre_modify", addr);
      }
      }
      break;
      break;
 
 
    case PRE_INC:
    case PRE_INC:
      fprintf (file, "*++%s", reg_names[REGNO (XEXP (addr, 0))]);
      fprintf (file, "*++%s", reg_names[REGNO (XEXP (addr, 0))]);
      break;
      break;
 
 
    case POST_DEC:
    case POST_DEC:
      fprintf (file, "*%s--", reg_names[REGNO (XEXP (addr, 0))]);
      fprintf (file, "*%s--", reg_names[REGNO (XEXP (addr, 0))]);
      break;
      break;
 
 
    case PLUS:                  /* Indirect with displacement.  */
    case PLUS:                  /* Indirect with displacement.  */
      {
      {
        rtx op0 = XEXP (addr, 0);
        rtx op0 = XEXP (addr, 0);
        rtx op1 = XEXP (addr, 1);
        rtx op1 = XEXP (addr, 1);
 
 
        if (REG_P (op0))
        if (REG_P (op0))
          {
          {
            if (REG_P (op1))
            if (REG_P (op1))
              {
              {
                if (IS_INDEX_REG (op0))
                if (IS_INDEX_REG (op0))
                  {
                  {
                    fprintf (file, "*+%s(%s)",
                    fprintf (file, "*+%s(%s)",
                             reg_names[REGNO (op1)],
                             reg_names[REGNO (op1)],
                             reg_names[REGNO (op0)]);   /* Index + base.  */
                             reg_names[REGNO (op0)]);   /* Index + base.  */
                  }
                  }
                else
                else
                  {
                  {
                    fprintf (file, "*+%s(%s)",
                    fprintf (file, "*+%s(%s)",
                             reg_names[REGNO (op0)],
                             reg_names[REGNO (op0)],
                             reg_names[REGNO (op1)]);   /* Base + index.  */
                             reg_names[REGNO (op1)]);   /* Base + index.  */
                  }
                  }
              }
              }
            else if (INTVAL (op1) < 0)
            else if (INTVAL (op1) < 0)
              {
              {
                fprintf (file, "*-%s(" HOST_WIDE_INT_PRINT_DEC ")",
                fprintf (file, "*-%s(" HOST_WIDE_INT_PRINT_DEC ")",
                         reg_names[REGNO (op0)],
                         reg_names[REGNO (op0)],
                         -INTVAL (op1));        /* Base - displacement.  */
                         -INTVAL (op1));        /* Base - displacement.  */
              }
              }
            else
            else
              {
              {
                fprintf (file, "*+%s(" HOST_WIDE_INT_PRINT_DEC ")",
                fprintf (file, "*+%s(" HOST_WIDE_INT_PRINT_DEC ")",
                         reg_names[REGNO (op0)],
                         reg_names[REGNO (op0)],
                         INTVAL (op1)); /* Base + displacement.  */
                         INTVAL (op1)); /* Base + displacement.  */
              }
              }
          }
          }
        else
        else
          fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
          fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
      }
      }
      break;
      break;
 
 
    case LO_SUM:
    case LO_SUM:
      {
      {
        rtx op0 = XEXP (addr, 0);
        rtx op0 = XEXP (addr, 0);
        rtx op1 = XEXP (addr, 1);
        rtx op1 = XEXP (addr, 1);
 
 
        if (REG_P (op0) && REGNO (op0) == DP_REGNO)
        if (REG_P (op0) && REGNO (op0) == DP_REGNO)
          c4x_print_operand_address (file, op1);
          c4x_print_operand_address (file, op1);
        else
        else
          fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
          fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
      }
      }
      break;
      break;
 
 
    case CONST:
    case CONST:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
      fprintf (file, "@");
      fprintf (file, "@");
      output_addr_const (file, addr);
      output_addr_const (file, addr);
      break;
      break;
 
 
      /* We shouldn't access CONST_INT addresses.  */
      /* We shouldn't access CONST_INT addresses.  */
    case CONST_INT:
    case CONST_INT:
 
 
    default:
    default:
      fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
      fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
      break;
      break;
    }
    }
}
}
 
 
 
 
/* Return nonzero if the floating point operand will fit
/* Return nonzero if the floating point operand will fit
   in the immediate field.  */
   in the immediate field.  */
 
 
int
int
c4x_immed_float_p (rtx op)
c4x_immed_float_p (rtx op)
{
{
  long convval[2];
  long convval[2];
  int exponent;
  int exponent;
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
 
 
  REAL_VALUE_FROM_CONST_DOUBLE (r, op);
  REAL_VALUE_FROM_CONST_DOUBLE (r, op);
  if (GET_MODE (op) == HFmode)
  if (GET_MODE (op) == HFmode)
    REAL_VALUE_TO_TARGET_DOUBLE (r, convval);
    REAL_VALUE_TO_TARGET_DOUBLE (r, convval);
  else
  else
    {
    {
      REAL_VALUE_TO_TARGET_SINGLE (r, convval[0]);
      REAL_VALUE_TO_TARGET_SINGLE (r, convval[0]);
      convval[1] = 0;
      convval[1] = 0;
    }
    }
 
 
  /* Sign extend exponent.  */
  /* Sign extend exponent.  */
  exponent = (((convval[0] >> 24) & 0xff) ^ 0x80) - 0x80;
  exponent = (((convval[0] >> 24) & 0xff) ^ 0x80) - 0x80;
  if (exponent == -128)
  if (exponent == -128)
    return 1;                   /* 0.0  */
    return 1;                   /* 0.0  */
  if ((convval[0] & 0x00000fff) != 0 || convval[1] != 0)
  if ((convval[0] & 0x00000fff) != 0 || convval[1] != 0)
    return 0;                    /* Precision doesn't fit.  */
    return 0;                    /* Precision doesn't fit.  */
  return (exponent <= 7)        /* Positive exp.  */
  return (exponent <= 7)        /* Positive exp.  */
    && (exponent >= -7);        /* Negative exp.  */
    && (exponent >= -7);        /* Negative exp.  */
}
}
 
 
 
 
/* The last instruction in a repeat block cannot be a Bcond, DBcound,
/* The last instruction in a repeat block cannot be a Bcond, DBcound,
   CALL, CALLCond, TRAPcond, RETIcond, RETScond, IDLE, RPTB or RPTS.
   CALL, CALLCond, TRAPcond, RETIcond, RETScond, IDLE, RPTB or RPTS.
 
 
   None of the last four instructions from the bottom of the block can
   None of the last four instructions from the bottom of the block can
   be a BcondD, BRD, DBcondD, RPTBD, LAJ, LAJcond, LATcond, BcondAF,
   be a BcondD, BRD, DBcondD, RPTBD, LAJ, LAJcond, LATcond, BcondAF,
   BcondAT or RETIcondD.
   BcondAT or RETIcondD.
 
 
   This routine scans the four previous insns for a jump insn, and if
   This routine scans the four previous insns for a jump insn, and if
   one is found, returns 1 so that we bung in a nop instruction.
   one is found, returns 1 so that we bung in a nop instruction.
   This simple minded strategy will add a nop, when it may not
   This simple minded strategy will add a nop, when it may not
   be required.  Say when there is a JUMP_INSN near the end of the
   be required.  Say when there is a JUMP_INSN near the end of the
   block that doesn't get converted into a delayed branch.
   block that doesn't get converted into a delayed branch.
 
 
   Note that we cannot have a call insn, since we don't generate
   Note that we cannot have a call insn, since we don't generate
   repeat loops with calls in them (although I suppose we could, but
   repeat loops with calls in them (although I suppose we could, but
   there's no benefit.)
   there's no benefit.)
 
 
   !!! FIXME.  The rptb_top insn may be sucked into a SEQUENCE.  */
   !!! FIXME.  The rptb_top insn may be sucked into a SEQUENCE.  */
 
 
int
int
c4x_rptb_nop_p (rtx insn)
c4x_rptb_nop_p (rtx insn)
{
{
  rtx start_label;
  rtx start_label;
  int i;
  int i;
 
 
  /* Extract the start label from the jump pattern (rptb_end).  */
  /* Extract the start label from the jump pattern (rptb_end).  */
  start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
  start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
 
 
  /* If there is a label at the end of the loop we must insert
  /* If there is a label at the end of the loop we must insert
     a NOP.  */
     a NOP.  */
  do {
  do {
    insn = previous_insn (insn);
    insn = previous_insn (insn);
  } while (GET_CODE (insn) == NOTE
  } while (GET_CODE (insn) == NOTE
           || GET_CODE (insn) == USE
           || GET_CODE (insn) == USE
           || GET_CODE (insn) == CLOBBER);
           || GET_CODE (insn) == CLOBBER);
  if (GET_CODE (insn) == CODE_LABEL)
  if (GET_CODE (insn) == CODE_LABEL)
    return 1;
    return 1;
 
 
  for (i = 0; i < 4; i++)
  for (i = 0; i < 4; i++)
    {
    {
      /* Search back for prev non-note and non-label insn.  */
      /* Search back for prev non-note and non-label insn.  */
      while (GET_CODE (insn) == NOTE || GET_CODE (insn) == CODE_LABEL
      while (GET_CODE (insn) == NOTE || GET_CODE (insn) == CODE_LABEL
             || GET_CODE (insn) == USE || GET_CODE (insn) == CLOBBER)
             || GET_CODE (insn) == USE || GET_CODE (insn) == CLOBBER)
        {
        {
          if (insn == start_label)
          if (insn == start_label)
            return i == 0;
            return i == 0;
 
 
          insn = previous_insn (insn);
          insn = previous_insn (insn);
        };
        };
 
 
      /* If we have a jump instruction we should insert a NOP. If we
      /* If we have a jump instruction we should insert a NOP. If we
         hit repeat block top we should only insert a NOP if the loop
         hit repeat block top we should only insert a NOP if the loop
         is empty.  */
         is empty.  */
      if (GET_CODE (insn) == JUMP_INSN)
      if (GET_CODE (insn) == JUMP_INSN)
        return 1;
        return 1;
      insn = previous_insn (insn);
      insn = previous_insn (insn);
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* The C4x looping instruction needs to be emitted at the top of the
/* The C4x looping instruction needs to be emitted at the top of the
  loop.  Emitting the true RTL for a looping instruction at the top of
  loop.  Emitting the true RTL for a looping instruction at the top of
  the loop can cause problems with flow analysis.  So instead, a dummy
  the loop can cause problems with flow analysis.  So instead, a dummy
  doloop insn is emitted at the end of the loop.  This routine checks
  doloop insn is emitted at the end of the loop.  This routine checks
  for the presence of this doloop insn and then searches back to the
  for the presence of this doloop insn and then searches back to the
  top of the loop, where it inserts the true looping insn (provided
  top of the loop, where it inserts the true looping insn (provided
  there are no instructions in the loop which would cause problems).
  there are no instructions in the loop which would cause problems).
  Any additional labels can be emitted at this point.  In addition, if
  Any additional labels can be emitted at this point.  In addition, if
  the desired loop count register was not allocated, this routine does
  the desired loop count register was not allocated, this routine does
  nothing.
  nothing.
 
 
  Before we can create a repeat block looping instruction we have to
  Before we can create a repeat block looping instruction we have to
  verify that there are no jumps outside the loop and no jumps outside
  verify that there are no jumps outside the loop and no jumps outside
  the loop go into this loop. This can happen in the basic blocks reorder
  the loop go into this loop. This can happen in the basic blocks reorder
  pass. The C4x cpu cannot handle this.  */
  pass. The C4x cpu cannot handle this.  */
 
 
static int
static int
c4x_label_ref_used_p (rtx x, rtx code_label)
c4x_label_ref_used_p (rtx x, rtx code_label)
{
{
  enum rtx_code code;
  enum rtx_code code;
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
 
 
  if (x == 0)
  if (x == 0)
    return 0;
    return 0;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  if (code == LABEL_REF)
  if (code == LABEL_REF)
    return INSN_UID (XEXP (x,0)) == INSN_UID (code_label);
    return INSN_UID (XEXP (x,0)) == INSN_UID (code_label);
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          if (c4x_label_ref_used_p (XEXP (x, i), code_label))
          if (c4x_label_ref_used_p (XEXP (x, i), code_label))
            return 1;
            return 1;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          if (c4x_label_ref_used_p (XVECEXP (x, i, j), code_label))
          if (c4x_label_ref_used_p (XVECEXP (x, i, j), code_label))
            return 1;
            return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
static int
static int
c4x_rptb_valid_p (rtx insn, rtx start_label)
c4x_rptb_valid_p (rtx insn, rtx start_label)
{
{
  rtx end = insn;
  rtx end = insn;
  rtx start;
  rtx start;
  rtx tmp;
  rtx tmp;
 
 
  /* Find the start label.  */
  /* Find the start label.  */
  for (; insn; insn = PREV_INSN (insn))
  for (; insn; insn = PREV_INSN (insn))
    if (insn == start_label)
    if (insn == start_label)
      break;
      break;
 
 
  /* Note found then we cannot use a rptb or rpts.  The label was
  /* Note found then we cannot use a rptb or rpts.  The label was
     probably moved by the basic block reorder pass.  */
     probably moved by the basic block reorder pass.  */
  if (! insn)
  if (! insn)
    return 0;
    return 0;
 
 
  start = insn;
  start = insn;
  /* If any jump jumps inside this block then we must fail.  */
  /* If any jump jumps inside this block then we must fail.  */
  for (insn = PREV_INSN (start); insn; insn = PREV_INSN (insn))
  for (insn = PREV_INSN (start); insn; insn = PREV_INSN (insn))
    {
    {
      if (GET_CODE (insn) == CODE_LABEL)
      if (GET_CODE (insn) == CODE_LABEL)
        {
        {
          for (tmp = NEXT_INSN (start); tmp != end; tmp = NEXT_INSN(tmp))
          for (tmp = NEXT_INSN (start); tmp != end; tmp = NEXT_INSN(tmp))
            if (GET_CODE (tmp) == JUMP_INSN
            if (GET_CODE (tmp) == JUMP_INSN
                && c4x_label_ref_used_p (tmp, insn))
                && c4x_label_ref_used_p (tmp, insn))
              return 0;
              return 0;
        }
        }
    }
    }
  for (insn = NEXT_INSN (end); insn; insn = NEXT_INSN (insn))
  for (insn = NEXT_INSN (end); insn; insn = NEXT_INSN (insn))
    {
    {
      if (GET_CODE (insn) == CODE_LABEL)
      if (GET_CODE (insn) == CODE_LABEL)
        {
        {
          for (tmp = NEXT_INSN (start); tmp != end; tmp = NEXT_INSN(tmp))
          for (tmp = NEXT_INSN (start); tmp != end; tmp = NEXT_INSN(tmp))
            if (GET_CODE (tmp) == JUMP_INSN
            if (GET_CODE (tmp) == JUMP_INSN
                && c4x_label_ref_used_p (tmp, insn))
                && c4x_label_ref_used_p (tmp, insn))
              return 0;
              return 0;
        }
        }
    }
    }
  /* If any jump jumps outside this block then we must fail.  */
  /* If any jump jumps outside this block then we must fail.  */
  for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
  for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
    {
    {
      if (GET_CODE (insn) == CODE_LABEL)
      if (GET_CODE (insn) == CODE_LABEL)
        {
        {
          for (tmp = NEXT_INSN (end); tmp; tmp = NEXT_INSN(tmp))
          for (tmp = NEXT_INSN (end); tmp; tmp = NEXT_INSN(tmp))
            if (GET_CODE (tmp) == JUMP_INSN
            if (GET_CODE (tmp) == JUMP_INSN
                && c4x_label_ref_used_p (tmp, insn))
                && c4x_label_ref_used_p (tmp, insn))
              return 0;
              return 0;
          for (tmp = PREV_INSN (start); tmp; tmp = PREV_INSN(tmp))
          for (tmp = PREV_INSN (start); tmp; tmp = PREV_INSN(tmp))
            if (GET_CODE (tmp) == JUMP_INSN
            if (GET_CODE (tmp) == JUMP_INSN
                && c4x_label_ref_used_p (tmp, insn))
                && c4x_label_ref_used_p (tmp, insn))
              return 0;
              return 0;
        }
        }
    }
    }
 
 
  /* All checks OK.  */
  /* All checks OK.  */
  return 1;
  return 1;
}
}
 
 
 
 
void
void
c4x_rptb_insert (rtx insn)
c4x_rptb_insert (rtx insn)
{
{
  rtx end_label;
  rtx end_label;
  rtx start_label;
  rtx start_label;
  rtx new_start_label;
  rtx new_start_label;
  rtx count_reg;
  rtx count_reg;
 
 
  /* If the count register has not been allocated to RC, say if
  /* If the count register has not been allocated to RC, say if
     there is a movmem pattern in the loop, then do not insert a
     there is a movmem pattern in the loop, then do not insert a
     RPTB instruction.  Instead we emit a decrement and branch
     RPTB instruction.  Instead we emit a decrement and branch
     at the end of the loop.  */
     at the end of the loop.  */
  count_reg = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 0), 0);
  count_reg = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 0), 0);
  if (REGNO (count_reg) != RC_REGNO)
  if (REGNO (count_reg) != RC_REGNO)
    return;
    return;
 
 
  /* Extract the start label from the jump pattern (rptb_end).  */
  /* Extract the start label from the jump pattern (rptb_end).  */
  start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
  start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
 
 
  if (! c4x_rptb_valid_p (insn, start_label))
  if (! c4x_rptb_valid_p (insn, start_label))
    {
    {
      /* We cannot use the rptb insn.  Replace it so reorg can use
      /* We cannot use the rptb insn.  Replace it so reorg can use
         the delay slots of the jump insn.  */
         the delay slots of the jump insn.  */
      emit_insn_before (gen_addqi3 (count_reg, count_reg, constm1_rtx), insn);
      emit_insn_before (gen_addqi3 (count_reg, count_reg, constm1_rtx), insn);
      emit_insn_before (gen_cmpqi (count_reg, const0_rtx), insn);
      emit_insn_before (gen_cmpqi (count_reg, const0_rtx), insn);
      emit_insn_before (gen_bge (start_label), insn);
      emit_insn_before (gen_bge (start_label), insn);
      LABEL_NUSES (start_label)++;
      LABEL_NUSES (start_label)++;
      delete_insn (insn);
      delete_insn (insn);
      return;
      return;
    }
    }
 
 
  end_label = gen_label_rtx ();
  end_label = gen_label_rtx ();
  LABEL_NUSES (end_label)++;
  LABEL_NUSES (end_label)++;
  emit_label_after (end_label, insn);
  emit_label_after (end_label, insn);
 
 
  new_start_label = gen_label_rtx ();
  new_start_label = gen_label_rtx ();
  LABEL_NUSES (new_start_label)++;
  LABEL_NUSES (new_start_label)++;
 
 
  for (; insn; insn = PREV_INSN (insn))
  for (; insn; insn = PREV_INSN (insn))
    {
    {
      if (insn == start_label)
      if (insn == start_label)
         break;
         break;
      if (GET_CODE (insn) == JUMP_INSN &&
      if (GET_CODE (insn) == JUMP_INSN &&
          JUMP_LABEL (insn) == start_label)
          JUMP_LABEL (insn) == start_label)
        redirect_jump (insn, new_start_label, 0);
        redirect_jump (insn, new_start_label, 0);
    }
    }
  if (! insn)
  if (! insn)
    fatal_insn ("c4x_rptb_insert: Cannot find start label", start_label);
    fatal_insn ("c4x_rptb_insert: Cannot find start label", start_label);
 
 
  emit_label_after (new_start_label, insn);
  emit_label_after (new_start_label, insn);
 
 
  if (TARGET_RPTS && c4x_rptb_rpts_p (PREV_INSN (insn), 0))
  if (TARGET_RPTS && c4x_rptb_rpts_p (PREV_INSN (insn), 0))
    emit_insn_after (gen_rpts_top (new_start_label, end_label), insn);
    emit_insn_after (gen_rpts_top (new_start_label, end_label), insn);
  else
  else
    emit_insn_after (gen_rptb_top (new_start_label, end_label), insn);
    emit_insn_after (gen_rptb_top (new_start_label, end_label), insn);
  if (LABEL_NUSES (start_label) == 0)
  if (LABEL_NUSES (start_label) == 0)
    delete_insn (start_label);
    delete_insn (start_label);
}
}
 
 
 
 
/* We need to use direct addressing for large constants and addresses
/* We need to use direct addressing for large constants and addresses
   that cannot fit within an instruction.  We must check for these
   that cannot fit within an instruction.  We must check for these
   after after the final jump optimization pass, since this may
   after after the final jump optimization pass, since this may
   introduce a local_move insn for a SYMBOL_REF.  This pass
   introduce a local_move insn for a SYMBOL_REF.  This pass
   must come before delayed branch slot filling since it can generate
   must come before delayed branch slot filling since it can generate
   additional instructions.
   additional instructions.
 
 
   This function also fixes up RTPB style loops that didn't get RC
   This function also fixes up RTPB style loops that didn't get RC
   allocated as the loop counter.  */
   allocated as the loop counter.  */
 
 
static void
static void
c4x_reorg (void)
c4x_reorg (void)
{
{
  rtx insn;
  rtx insn;
 
 
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
    {
      /* Look for insn.  */
      /* Look for insn.  */
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          int insn_code_number;
          int insn_code_number;
          rtx old;
          rtx old;
 
 
          insn_code_number = recog_memoized (insn);
          insn_code_number = recog_memoized (insn);
 
 
          if (insn_code_number < 0)
          if (insn_code_number < 0)
            continue;
            continue;
 
 
          /* Insert the RTX for RPTB at the top of the loop
          /* Insert the RTX for RPTB at the top of the loop
             and a label at the end of the loop.  */
             and a label at the end of the loop.  */
          if (insn_code_number == CODE_FOR_rptb_end)
          if (insn_code_number == CODE_FOR_rptb_end)
            c4x_rptb_insert(insn);
            c4x_rptb_insert(insn);
 
 
          /* We need to split the insn here. Otherwise the calls to
          /* We need to split the insn here. Otherwise the calls to
             force_const_mem will not work for load_immed_address.  */
             force_const_mem will not work for load_immed_address.  */
          old = insn;
          old = insn;
 
 
          /* Don't split the insn if it has been deleted.  */
          /* Don't split the insn if it has been deleted.  */
          if (! INSN_DELETED_P (old))
          if (! INSN_DELETED_P (old))
            insn = try_split (PATTERN(old), old, 1);
            insn = try_split (PATTERN(old), old, 1);
 
 
          /* When not optimizing, the old insn will be still left around
          /* When not optimizing, the old insn will be still left around
             with only the 'deleted' bit set.  Transform it into a note
             with only the 'deleted' bit set.  Transform it into a note
             to avoid confusion of subsequent processing.  */
             to avoid confusion of subsequent processing.  */
          if (INSN_DELETED_P (old))
          if (INSN_DELETED_P (old))
            {
            {
              PUT_CODE (old, NOTE);
              PUT_CODE (old, NOTE);
              NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
              NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
              NOTE_SOURCE_FILE (old) = 0;
              NOTE_SOURCE_FILE (old) = 0;
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
int
int
c4x_a_register (rtx op)
c4x_a_register (rtx op)
{
{
  return REG_P (op) && IS_ADDR_OR_PSEUDO_REG (op);
  return REG_P (op) && IS_ADDR_OR_PSEUDO_REG (op);
}
}
 
 
 
 
int
int
c4x_x_register (rtx op)
c4x_x_register (rtx op)
{
{
  return REG_P (op) && IS_INDEX_OR_PSEUDO_REG (op);
  return REG_P (op) && IS_INDEX_OR_PSEUDO_REG (op);
}
}
 
 
 
 
static int
static int
c4x_immed_int_constant (rtx op)
c4x_immed_int_constant (rtx op)
{
{
  if (GET_CODE (op) != CONST_INT)
  if (GET_CODE (op) != CONST_INT)
    return 0;
    return 0;
 
 
  return GET_MODE (op) == VOIDmode
  return GET_MODE (op) == VOIDmode
    || GET_MODE_CLASS (GET_MODE (op)) == MODE_INT
    || GET_MODE_CLASS (GET_MODE (op)) == MODE_INT
    || GET_MODE_CLASS (GET_MODE (op)) == MODE_PARTIAL_INT;
    || GET_MODE_CLASS (GET_MODE (op)) == MODE_PARTIAL_INT;
}
}
 
 
 
 
static int
static int
c4x_immed_float_constant (rtx op)
c4x_immed_float_constant (rtx op)
{
{
  if (GET_CODE (op) != CONST_DOUBLE)
  if (GET_CODE (op) != CONST_DOUBLE)
    return 0;
    return 0;
 
 
  /* Do not check if the CONST_DOUBLE is in memory. If there is a MEM
  /* Do not check if the CONST_DOUBLE is in memory. If there is a MEM
     present this only means that a MEM rtx has been generated. It does
     present this only means that a MEM rtx has been generated. It does
     not mean the rtx is really in memory.  */
     not mean the rtx is really in memory.  */
 
 
  return GET_MODE (op) == QFmode || GET_MODE (op) == HFmode;
  return GET_MODE (op) == QFmode || GET_MODE (op) == HFmode;
}
}
 
 
 
 
int
int
c4x_shiftable_constant (rtx op)
c4x_shiftable_constant (rtx op)
{
{
  int i;
  int i;
  int mask;
  int mask;
  int val = INTVAL (op);
  int val = INTVAL (op);
 
 
  for (i = 0; i < 16; i++)
  for (i = 0; i < 16; i++)
    {
    {
      if (val & (1 << i))
      if (val & (1 << i))
        break;
        break;
    }
    }
  mask = ((0xffff >> i) << 16) | 0xffff;
  mask = ((0xffff >> i) << 16) | 0xffff;
  if (IS_INT16_CONST (val & (1 << 31) ? (val >> i) | ~mask
  if (IS_INT16_CONST (val & (1 << 31) ? (val >> i) | ~mask
                                      : (val >> i) & mask))
                                      : (val >> i) & mask))
    return i;
    return i;
  return -1;
  return -1;
}
}
 
 
 
 
int
int
c4x_H_constant (rtx op)
c4x_H_constant (rtx op)
{
{
  return c4x_immed_float_constant (op) && c4x_immed_float_p (op);
  return c4x_immed_float_constant (op) && c4x_immed_float_p (op);
}
}
 
 
 
 
int
int
c4x_I_constant (rtx op)
c4x_I_constant (rtx op)
{
{
  return c4x_immed_int_constant (op) && IS_INT16_CONST (INTVAL (op));
  return c4x_immed_int_constant (op) && IS_INT16_CONST (INTVAL (op));
}
}
 
 
 
 
int
int
c4x_J_constant (rtx op)
c4x_J_constant (rtx op)
{
{
  if (TARGET_C3X)
  if (TARGET_C3X)
    return 0;
    return 0;
  return c4x_immed_int_constant (op) && IS_INT8_CONST (INTVAL (op));
  return c4x_immed_int_constant (op) && IS_INT8_CONST (INTVAL (op));
}
}
 
 
 
 
int
int
c4x_K_constant (rtx op)
c4x_K_constant (rtx op)
{
{
  if (TARGET_C3X || ! c4x_immed_int_constant (op))
  if (TARGET_C3X || ! c4x_immed_int_constant (op))
    return 0;
    return 0;
  return IS_INT5_CONST (INTVAL (op));
  return IS_INT5_CONST (INTVAL (op));
}
}
 
 
 
 
int
int
c4x_L_constant (rtx op)
c4x_L_constant (rtx op)
{
{
  return c4x_immed_int_constant (op) && IS_UINT16_CONST (INTVAL (op));
  return c4x_immed_int_constant (op) && IS_UINT16_CONST (INTVAL (op));
}
}
 
 
 
 
int
int
c4x_N_constant (rtx op)
c4x_N_constant (rtx op)
{
{
  return c4x_immed_int_constant (op) && IS_NOT_UINT16_CONST (INTVAL (op));
  return c4x_immed_int_constant (op) && IS_NOT_UINT16_CONST (INTVAL (op));
}
}
 
 
 
 
int
int
c4x_O_constant (rtx op)
c4x_O_constant (rtx op)
{
{
  return c4x_immed_int_constant (op) && IS_HIGH_CONST (INTVAL (op));
  return c4x_immed_int_constant (op) && IS_HIGH_CONST (INTVAL (op));
}
}
 
 
 
 
/* The constraints do not have to check the register class,
/* The constraints do not have to check the register class,
   except when needed to discriminate between the constraints.
   except when needed to discriminate between the constraints.
   The operand has been checked by the predicates to be valid.  */
   The operand has been checked by the predicates to be valid.  */
 
 
/* ARx + 9-bit signed const or IRn
/* ARx + 9-bit signed const or IRn
   *ARx, *+ARx(n), *-ARx(n), *+ARx(IRn), *-Arx(IRn) for -256 < n < 256
   *ARx, *+ARx(n), *-ARx(n), *+ARx(IRn), *-Arx(IRn) for -256 < n < 256
   We don't include the pre/post inc/dec forms here since
   We don't include the pre/post inc/dec forms here since
   they are handled by the <> constraints.  */
   they are handled by the <> constraints.  */
 
 
int
int
c4x_Q_constraint (rtx op)
c4x_Q_constraint (rtx op)
{
{
  enum machine_mode mode = GET_MODE (op);
  enum machine_mode mode = GET_MODE (op);
 
 
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    return 0;
    return 0;
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case REG:
    case REG:
      return 1;
      return 1;
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (! REG_P (op0))
        if (! REG_P (op0))
          return 0;
          return 0;
 
 
        if (REG_P (op1))
        if (REG_P (op1))
          return 1;
          return 1;
 
 
        if (GET_CODE (op1) != CONST_INT)
        if (GET_CODE (op1) != CONST_INT)
          return 0;
          return 0;
 
 
        /* HImode and HFmode must be offsettable.  */
        /* HImode and HFmode must be offsettable.  */
        if (mode == HImode || mode == HFmode)
        if (mode == HImode || mode == HFmode)
          return IS_DISP8_OFF_CONST (INTVAL (op1));
          return IS_DISP8_OFF_CONST (INTVAL (op1));
 
 
        return IS_DISP8_CONST (INTVAL (op1));
        return IS_DISP8_CONST (INTVAL (op1));
      }
      }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* ARx + 5-bit unsigned const
/* ARx + 5-bit unsigned const
   *ARx, *+ARx(n) for n < 32.  */
   *ARx, *+ARx(n) for n < 32.  */
 
 
int
int
c4x_R_constraint (rtx op)
c4x_R_constraint (rtx op)
{
{
  enum machine_mode mode = GET_MODE (op);
  enum machine_mode mode = GET_MODE (op);
 
 
  if (TARGET_C3X)
  if (TARGET_C3X)
    return 0;
    return 0;
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    return 0;
    return 0;
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case REG:
    case REG:
      return 1;
      return 1;
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (! REG_P (op0))
        if (! REG_P (op0))
          return 0;
          return 0;
 
 
        if (GET_CODE (op1) != CONST_INT)
        if (GET_CODE (op1) != CONST_INT)
          return 0;
          return 0;
 
 
        /* HImode and HFmode must be offsettable.  */
        /* HImode and HFmode must be offsettable.  */
        if (mode == HImode || mode == HFmode)
        if (mode == HImode || mode == HFmode)
          return IS_UINT5_CONST (INTVAL (op1) + 1);
          return IS_UINT5_CONST (INTVAL (op1) + 1);
 
 
        return IS_UINT5_CONST (INTVAL (op1));
        return IS_UINT5_CONST (INTVAL (op1));
      }
      }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
static int
static int
c4x_R_indirect (rtx op)
c4x_R_indirect (rtx op)
{
{
  enum machine_mode mode = GET_MODE (op);
  enum machine_mode mode = GET_MODE (op);
 
 
  if (TARGET_C3X || GET_CODE (op) != MEM)
  if (TARGET_C3X || GET_CODE (op) != MEM)
    return 0;
    return 0;
 
 
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case REG:
    case REG:
      return IS_ADDR_OR_PSEUDO_REG (op);
      return IS_ADDR_OR_PSEUDO_REG (op);
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        /* HImode and HFmode must be offsettable.  */
        /* HImode and HFmode must be offsettable.  */
        if (mode == HImode || mode == HFmode)
        if (mode == HImode || mode == HFmode)
          return IS_ADDR_OR_PSEUDO_REG (op0)
          return IS_ADDR_OR_PSEUDO_REG (op0)
            && GET_CODE (op1) == CONST_INT
            && GET_CODE (op1) == CONST_INT
            && IS_UINT5_CONST (INTVAL (op1) + 1);
            && IS_UINT5_CONST (INTVAL (op1) + 1);
 
 
        return REG_P (op0)
        return REG_P (op0)
          && IS_ADDR_OR_PSEUDO_REG (op0)
          && IS_ADDR_OR_PSEUDO_REG (op0)
          && GET_CODE (op1) == CONST_INT
          && GET_CODE (op1) == CONST_INT
          && IS_UINT5_CONST (INTVAL (op1));
          && IS_UINT5_CONST (INTVAL (op1));
      }
      }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* ARx + 1-bit unsigned const or IRn
/* ARx + 1-bit unsigned const or IRn
   *ARx, *+ARx(1), *-ARx(1), *+ARx(IRn), *-Arx(IRn)
   *ARx, *+ARx(1), *-ARx(1), *+ARx(IRn), *-Arx(IRn)
   We don't include the pre/post inc/dec forms here since
   We don't include the pre/post inc/dec forms here since
   they are handled by the <> constraints.  */
   they are handled by the <> constraints.  */
 
 
int
int
c4x_S_constraint (rtx op)
c4x_S_constraint (rtx op)
{
{
  enum machine_mode mode = GET_MODE (op);
  enum machine_mode mode = GET_MODE (op);
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    return 0;
    return 0;
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case REG:
    case REG:
      return 1;
      return 1;
 
 
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
        if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
            || (op0 != XEXP (op1, 0)))
            || (op0 != XEXP (op1, 0)))
          return 0;
          return 0;
 
 
        op0 = XEXP (op1, 0);
        op0 = XEXP (op1, 0);
        op1 = XEXP (op1, 1);
        op1 = XEXP (op1, 1);
        return REG_P (op0) && REG_P (op1);
        return REG_P (op0) && REG_P (op1);
        /* Pre or post_modify with a displacement of 0 or 1
        /* Pre or post_modify with a displacement of 0 or 1
           should not be generated.  */
           should not be generated.  */
      }
      }
      break;
      break;
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (!REG_P (op0))
        if (!REG_P (op0))
          return 0;
          return 0;
 
 
        if (REG_P (op1))
        if (REG_P (op1))
          return 1;
          return 1;
 
 
        if (GET_CODE (op1) != CONST_INT)
        if (GET_CODE (op1) != CONST_INT)
          return 0;
          return 0;
 
 
        /* HImode and HFmode must be offsettable.  */
        /* HImode and HFmode must be offsettable.  */
        if (mode == HImode || mode == HFmode)
        if (mode == HImode || mode == HFmode)
          return IS_DISP1_OFF_CONST (INTVAL (op1));
          return IS_DISP1_OFF_CONST (INTVAL (op1));
 
 
        return IS_DISP1_CONST (INTVAL (op1));
        return IS_DISP1_CONST (INTVAL (op1));
      }
      }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
int
int
c4x_S_indirect (rtx op)
c4x_S_indirect (rtx op)
{
{
  enum machine_mode mode = GET_MODE (op);
  enum machine_mode mode = GET_MODE (op);
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    return 0;
    return 0;
 
 
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case PRE_DEC:
    case PRE_DEC:
    case POST_DEC:
    case POST_DEC:
      if (mode != QImode && mode != QFmode)
      if (mode != QImode && mode != QFmode)
        return 0;
        return 0;
    case PRE_INC:
    case PRE_INC:
    case POST_INC:
    case POST_INC:
      op = XEXP (op, 0);
      op = XEXP (op, 0);
 
 
    case REG:
    case REG:
      return IS_ADDR_OR_PSEUDO_REG (op);
      return IS_ADDR_OR_PSEUDO_REG (op);
 
 
    case PRE_MODIFY:
    case PRE_MODIFY:
    case POST_MODIFY:
    case POST_MODIFY:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (mode != QImode && mode != QFmode)
        if (mode != QImode && mode != QFmode)
          return 0;
          return 0;
 
 
        if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
        if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
            || (op0 != XEXP (op1, 0)))
            || (op0 != XEXP (op1, 0)))
          return 0;
          return 0;
 
 
        op0 = XEXP (op1, 0);
        op0 = XEXP (op1, 0);
        op1 = XEXP (op1, 1);
        op1 = XEXP (op1, 1);
        return REG_P (op0) && IS_ADDR_OR_PSEUDO_REG (op0)
        return REG_P (op0) && IS_ADDR_OR_PSEUDO_REG (op0)
          && REG_P (op1) && IS_INDEX_OR_PSEUDO_REG (op1);
          && REG_P (op1) && IS_INDEX_OR_PSEUDO_REG (op1);
        /* Pre or post_modify with a displacement of 0 or 1
        /* Pre or post_modify with a displacement of 0 or 1
           should not be generated.  */
           should not be generated.  */
      }
      }
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (REG_P (op0))
        if (REG_P (op0))
          {
          {
            /* HImode and HFmode must be offsettable.  */
            /* HImode and HFmode must be offsettable.  */
            if (mode == HImode || mode == HFmode)
            if (mode == HImode || mode == HFmode)
              return IS_ADDR_OR_PSEUDO_REG (op0)
              return IS_ADDR_OR_PSEUDO_REG (op0)
                && GET_CODE (op1) == CONST_INT
                && GET_CODE (op1) == CONST_INT
                && IS_DISP1_OFF_CONST (INTVAL (op1));
                && IS_DISP1_OFF_CONST (INTVAL (op1));
 
 
            if (REG_P (op1))
            if (REG_P (op1))
              return (IS_INDEX_OR_PSEUDO_REG (op1)
              return (IS_INDEX_OR_PSEUDO_REG (op1)
                      && IS_ADDR_OR_PSEUDO_REG (op0))
                      && IS_ADDR_OR_PSEUDO_REG (op0))
                || (IS_ADDR_OR_PSEUDO_REG (op1)
                || (IS_ADDR_OR_PSEUDO_REG (op1)
                    && IS_INDEX_OR_PSEUDO_REG (op0));
                    && IS_INDEX_OR_PSEUDO_REG (op0));
 
 
            return IS_ADDR_OR_PSEUDO_REG (op0)
            return IS_ADDR_OR_PSEUDO_REG (op0)
              && GET_CODE (op1) == CONST_INT
              && GET_CODE (op1) == CONST_INT
              && IS_DISP1_CONST (INTVAL (op1));
              && IS_DISP1_CONST (INTVAL (op1));
          }
          }
      }
      }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* Direct memory operand.  */
/* Direct memory operand.  */
 
 
int
int
c4x_T_constraint (rtx op)
c4x_T_constraint (rtx op)
{
{
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    return 0;
    return 0;
  op = XEXP (op, 0);
  op = XEXP (op, 0);
 
 
  if (GET_CODE (op) != LO_SUM)
  if (GET_CODE (op) != LO_SUM)
    {
    {
      /* Allow call operands.  */
      /* Allow call operands.  */
      return GET_CODE (op) == SYMBOL_REF
      return GET_CODE (op) == SYMBOL_REF
        && GET_MODE (op) == Pmode
        && GET_MODE (op) == Pmode
        && SYMBOL_REF_FUNCTION_P (op);
        && SYMBOL_REF_FUNCTION_P (op);
    }
    }
 
 
  /* HImode and HFmode are not offsettable.  */
  /* HImode and HFmode are not offsettable.  */
  if (GET_MODE (op) == HImode || GET_CODE (op) == HFmode)
  if (GET_MODE (op) == HImode || GET_CODE (op) == HFmode)
    return 0;
    return 0;
 
 
  if ((GET_CODE (XEXP (op, 0)) == REG)
  if ((GET_CODE (XEXP (op, 0)) == REG)
      && (REGNO (XEXP (op, 0)) == DP_REGNO))
      && (REGNO (XEXP (op, 0)) == DP_REGNO))
    return c4x_U_constraint (XEXP (op, 1));
    return c4x_U_constraint (XEXP (op, 1));
 
 
  return 0;
  return 0;
}
}
 
 
 
 
/* Symbolic operand.  */
/* Symbolic operand.  */
 
 
int
int
c4x_U_constraint (rtx op)
c4x_U_constraint (rtx op)
{
{
  /* Don't allow direct addressing to an arbitrary constant.  */
  /* Don't allow direct addressing to an arbitrary constant.  */
  return GET_CODE (op) == CONST
  return GET_CODE (op) == CONST
         || GET_CODE (op) == SYMBOL_REF
         || GET_CODE (op) == SYMBOL_REF
         || GET_CODE (op) == LABEL_REF;
         || GET_CODE (op) == LABEL_REF;
}
}
 
 
 
 
int
int
c4x_autoinc_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
c4x_autoinc_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  if (GET_CODE (op) == MEM)
  if (GET_CODE (op) == MEM)
    {
    {
      enum rtx_code code = GET_CODE (XEXP (op, 0));
      enum rtx_code code = GET_CODE (XEXP (op, 0));
 
 
      if (code == PRE_INC
      if (code == PRE_INC
          || code == PRE_DEC
          || code == PRE_DEC
          || code == POST_INC
          || code == POST_INC
          || code == POST_DEC
          || code == POST_DEC
          || code == PRE_MODIFY
          || code == PRE_MODIFY
          || code == POST_MODIFY
          || code == POST_MODIFY
          )
          )
        return 1;
        return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
int
int
mixed_subreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
mixed_subreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  /* Allow (subreg:HF (reg:HI)) that be generated for a union of an
  /* Allow (subreg:HF (reg:HI)) that be generated for a union of an
     int and a long double.  */
     int and a long double.  */
  if (GET_CODE (op) == SUBREG
  if (GET_CODE (op) == SUBREG
      && (GET_MODE (op) == QFmode)
      && (GET_MODE (op) == QFmode)
      && (GET_MODE (SUBREG_REG (op)) == QImode
      && (GET_MODE (SUBREG_REG (op)) == QImode
          || GET_MODE (SUBREG_REG (op)) == HImode))
          || GET_MODE (SUBREG_REG (op)) == HImode))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
 
 
int
int
reg_imm_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
reg_imm_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  if (REG_P (op) || CONSTANT_P (op))
  if (REG_P (op) || CONSTANT_P (op))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
 
 
int
int
not_modify_reg (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
not_modify_reg (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  if (REG_P (op) || CONSTANT_P (op))
  if (REG_P (op) || CONSTANT_P (op))
    return 1;
    return 1;
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    return 0;
    return 0;
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case REG:
    case REG:
      return 1;
      return 1;
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (! REG_P (op0))
        if (! REG_P (op0))
          return 0;
          return 0;
 
 
        if (REG_P (op1) || GET_CODE (op1) == CONST_INT)
        if (REG_P (op1) || GET_CODE (op1) == CONST_INT)
          return 1;
          return 1;
      }
      }
 
 
    case LO_SUM:
    case LO_SUM:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
 
 
        if (REG_P (op0) && REGNO (op0) == DP_REGNO)
        if (REG_P (op0) && REGNO (op0) == DP_REGNO)
          return 1;
          return 1;
      }
      }
      break;
      break;
 
 
    case CONST:
    case CONST:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
      return 1;
      return 1;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
int
int
not_rc_reg (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
not_rc_reg (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  if (REG_P (op) && REGNO (op) == RC_REGNO)
  if (REG_P (op) && REGNO (op) == RC_REGNO)
    return 0;
    return 0;
  return 1;
  return 1;
}
}
 
 
 
 
static void
static void
c4x_S_address_parse (rtx op, int *base, int *incdec, int *index, int *disp)
c4x_S_address_parse (rtx op, int *base, int *incdec, int *index, int *disp)
{
{
  *base = 0;
  *base = 0;
  *incdec = 0;
  *incdec = 0;
  *index = 0;
  *index = 0;
  *disp = 0;
  *disp = 0;
 
 
  if (GET_CODE (op) != MEM)
  if (GET_CODE (op) != MEM)
    fatal_insn ("invalid indirect memory address", op);
    fatal_insn ("invalid indirect memory address", op);
 
 
  op = XEXP (op, 0);
  op = XEXP (op, 0);
  switch (GET_CODE (op))
  switch (GET_CODE (op))
    {
    {
    case PRE_DEC:
    case PRE_DEC:
      *base = REGNO (XEXP (op, 0));
      *base = REGNO (XEXP (op, 0));
      *incdec = 1;
      *incdec = 1;
      *disp = -1;
      *disp = -1;
      return;
      return;
 
 
    case POST_DEC:
    case POST_DEC:
      *base = REGNO (XEXP (op, 0));
      *base = REGNO (XEXP (op, 0));
      *incdec = 1;
      *incdec = 1;
      *disp = 0;
      *disp = 0;
      return;
      return;
 
 
    case PRE_INC:
    case PRE_INC:
      *base = REGNO (XEXP (op, 0));
      *base = REGNO (XEXP (op, 0));
      *incdec = 1;
      *incdec = 1;
      *disp = 1;
      *disp = 1;
      return;
      return;
 
 
    case POST_INC:
    case POST_INC:
      *base = REGNO (XEXP (op, 0));
      *base = REGNO (XEXP (op, 0));
      *incdec = 1;
      *incdec = 1;
      *disp = 0;
      *disp = 0;
      return;
      return;
 
 
    case POST_MODIFY:
    case POST_MODIFY:
      *base = REGNO (XEXP (op, 0));
      *base = REGNO (XEXP (op, 0));
      if (REG_P (XEXP (XEXP (op, 1), 1)))
      if (REG_P (XEXP (XEXP (op, 1), 1)))
        {
        {
          *index = REGNO (XEXP (XEXP (op, 1), 1));
          *index = REGNO (XEXP (XEXP (op, 1), 1));
          *disp = 0;             /* ??? */
          *disp = 0;             /* ??? */
        }
        }
      else
      else
          *disp = INTVAL (XEXP (XEXP (op, 1), 1));
          *disp = INTVAL (XEXP (XEXP (op, 1), 1));
      *incdec = 1;
      *incdec = 1;
      return;
      return;
 
 
    case PRE_MODIFY:
    case PRE_MODIFY:
      *base = REGNO (XEXP (op, 0));
      *base = REGNO (XEXP (op, 0));
      if (REG_P (XEXP (XEXP (op, 1), 1)))
      if (REG_P (XEXP (XEXP (op, 1), 1)))
        {
        {
          *index = REGNO (XEXP (XEXP (op, 1), 1));
          *index = REGNO (XEXP (XEXP (op, 1), 1));
          *disp = 1;            /* ??? */
          *disp = 1;            /* ??? */
        }
        }
      else
      else
          *disp = INTVAL (XEXP (XEXP (op, 1), 1));
          *disp = INTVAL (XEXP (XEXP (op, 1), 1));
      *incdec = 1;
      *incdec = 1;
 
 
      return;
      return;
 
 
    case REG:
    case REG:
      *base = REGNO (op);
      *base = REGNO (op);
      return;
      return;
 
 
    case PLUS:
    case PLUS:
      {
      {
        rtx op0 = XEXP (op, 0);
        rtx op0 = XEXP (op, 0);
        rtx op1 = XEXP (op, 1);
        rtx op1 = XEXP (op, 1);
 
 
        if (c4x_a_register (op0))
        if (c4x_a_register (op0))
          {
          {
            if (c4x_x_register (op1))
            if (c4x_x_register (op1))
              {
              {
                *base = REGNO (op0);
                *base = REGNO (op0);
                *index = REGNO (op1);
                *index = REGNO (op1);
                return;
                return;
              }
              }
            else if ((GET_CODE (op1) == CONST_INT
            else if ((GET_CODE (op1) == CONST_INT
                      && IS_DISP1_CONST (INTVAL (op1))))
                      && IS_DISP1_CONST (INTVAL (op1))))
              {
              {
                *base = REGNO (op0);
                *base = REGNO (op0);
                *disp = INTVAL (op1);
                *disp = INTVAL (op1);
                return;
                return;
              }
              }
          }
          }
        else if (c4x_x_register (op0) && c4x_a_register (op1))
        else if (c4x_x_register (op0) && c4x_a_register (op1))
          {
          {
            *base = REGNO (op1);
            *base = REGNO (op1);
            *index = REGNO (op0);
            *index = REGNO (op0);
            return;
            return;
          }
          }
      }
      }
      /* Fall through.  */
      /* Fall through.  */
 
 
    default:
    default:
      fatal_insn ("invalid indirect (S) memory address", op);
      fatal_insn ("invalid indirect (S) memory address", op);
    }
    }
}
}
 
 
 
 
int
int
c4x_address_conflict (rtx op0, rtx op1, int store0, int store1)
c4x_address_conflict (rtx op0, rtx op1, int store0, int store1)
{
{
  int base0;
  int base0;
  int base1;
  int base1;
  int incdec0;
  int incdec0;
  int incdec1;
  int incdec1;
  int index0;
  int index0;
  int index1;
  int index1;
  int disp0;
  int disp0;
  int disp1;
  int disp1;
 
 
  if (MEM_VOLATILE_P (op0) && MEM_VOLATILE_P (op1))
  if (MEM_VOLATILE_P (op0) && MEM_VOLATILE_P (op1))
    return 1;
    return 1;
 
 
  c4x_S_address_parse (op0, &base0, &incdec0, &index0, &disp0);
  c4x_S_address_parse (op0, &base0, &incdec0, &index0, &disp0);
  c4x_S_address_parse (op1, &base1, &incdec1, &index1, &disp1);
  c4x_S_address_parse (op1, &base1, &incdec1, &index1, &disp1);
 
 
  if (store0 && store1)
  if (store0 && store1)
    {
    {
      /* If we have two stores in parallel to the same address, then
      /* If we have two stores in parallel to the same address, then
         the C4x only executes one of the stores.  This is unlikely to
         the C4x only executes one of the stores.  This is unlikely to
         cause problems except when writing to a hardware device such
         cause problems except when writing to a hardware device such
         as a FIFO since the second write will be lost.  The user
         as a FIFO since the second write will be lost.  The user
         should flag the hardware location as being volatile so that
         should flag the hardware location as being volatile so that
         we don't do this optimization.  While it is unlikely that we
         we don't do this optimization.  While it is unlikely that we
         have an aliased address if both locations are not marked
         have an aliased address if both locations are not marked
         volatile, it is probably safer to flag a potential conflict
         volatile, it is probably safer to flag a potential conflict
         if either location is volatile.  */
         if either location is volatile.  */
      if (! flag_argument_noalias)
      if (! flag_argument_noalias)
        {
        {
          if (MEM_VOLATILE_P (op0) || MEM_VOLATILE_P (op1))
          if (MEM_VOLATILE_P (op0) || MEM_VOLATILE_P (op1))
            return 1;
            return 1;
        }
        }
    }
    }
 
 
  /* If have a parallel load and a store to the same address, the load
  /* If have a parallel load and a store to the same address, the load
     is performed first, so there is no conflict.  Similarly, there is
     is performed first, so there is no conflict.  Similarly, there is
     no conflict if have parallel loads from the same address.  */
     no conflict if have parallel loads from the same address.  */
 
 
  /* Cannot use auto increment or auto decrement twice for same
  /* Cannot use auto increment or auto decrement twice for same
     base register.  */
     base register.  */
  if (base0 == base1 && incdec0 && incdec0)
  if (base0 == base1 && incdec0 && incdec0)
    return 1;
    return 1;
 
 
  /* It might be too confusing for GCC if we have use a base register
  /* It might be too confusing for GCC if we have use a base register
     with a side effect and a memory reference using the same register
     with a side effect and a memory reference using the same register
     in parallel.  */
     in parallel.  */
  if (! TARGET_DEVEL && base0 == base1 && (incdec0 || incdec1))
  if (! TARGET_DEVEL && base0 == base1 && (incdec0 || incdec1))
    return 1;
    return 1;
 
 
  /* We cannot optimize the case where op1 and op2 refer to the same
  /* We cannot optimize the case where op1 and op2 refer to the same
     address.  */
     address.  */
  if (base0 == base1 && disp0 == disp1 && index0 == index1)
  if (base0 == base1 && disp0 == disp1 && index0 == index1)
    return 1;
    return 1;
 
 
  /* No conflict.  */
  /* No conflict.  */
  return 0;
  return 0;
}
}
 
 
 
 
/* Check for while loop inside a decrement and branch loop.  */
/* Check for while loop inside a decrement and branch loop.  */
 
 
int
int
c4x_label_conflict (rtx insn, rtx jump, rtx db)
c4x_label_conflict (rtx insn, rtx jump, rtx db)
{
{
  while (insn)
  while (insn)
    {
    {
      if (GET_CODE (insn) == CODE_LABEL)
      if (GET_CODE (insn) == CODE_LABEL)
        {
        {
          if (CODE_LABEL_NUMBER (jump) == CODE_LABEL_NUMBER (insn))
          if (CODE_LABEL_NUMBER (jump) == CODE_LABEL_NUMBER (insn))
            return 1;
            return 1;
          if (CODE_LABEL_NUMBER (db) == CODE_LABEL_NUMBER (insn))
          if (CODE_LABEL_NUMBER (db) == CODE_LABEL_NUMBER (insn))
            return 0;
            return 0;
        }
        }
      insn = PREV_INSN (insn);
      insn = PREV_INSN (insn);
    }
    }
  return 1;
  return 1;
}
}
 
 
 
 
/* Validate combination of operands for parallel load/store instructions.  */
/* Validate combination of operands for parallel load/store instructions.  */
 
 
int
int
valid_parallel_load_store (rtx *operands,
valid_parallel_load_store (rtx *operands,
                           enum machine_mode mode ATTRIBUTE_UNUSED)
                           enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  rtx op0 = operands[0];
  rtx op0 = operands[0];
  rtx op1 = operands[1];
  rtx op1 = operands[1];
  rtx op2 = operands[2];
  rtx op2 = operands[2];
  rtx op3 = operands[3];
  rtx op3 = operands[3];
 
 
  if (GET_CODE (op0) == SUBREG)
  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);
    op0 = SUBREG_REG (op0);
  if (GET_CODE (op1) == SUBREG)
  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);
    op1 = SUBREG_REG (op1);
  if (GET_CODE (op2) == SUBREG)
  if (GET_CODE (op2) == SUBREG)
    op2 = SUBREG_REG (op2);
    op2 = SUBREG_REG (op2);
  if (GET_CODE (op3) == SUBREG)
  if (GET_CODE (op3) == SUBREG)
    op3 = SUBREG_REG (op3);
    op3 = SUBREG_REG (op3);
 
 
  /* The patterns should only allow ext_low_reg_operand() or
  /* The patterns should only allow ext_low_reg_operand() or
     par_ind_operand() operands.  Thus of the 4 operands, only 2
     par_ind_operand() operands.  Thus of the 4 operands, only 2
     should be REGs and the other 2 should be MEMs.  */
     should be REGs and the other 2 should be MEMs.  */
 
 
  /* This test prevents the multipack pass from using this pattern if
  /* This test prevents the multipack pass from using this pattern if
     op0 is used as an index or base register in op2 or op3, since
     op0 is used as an index or base register in op2 or op3, since
     this combination will require reloading.  */
     this combination will require reloading.  */
  if (GET_CODE (op0) == REG
  if (GET_CODE (op0) == REG
      && ((GET_CODE (op2) == MEM && reg_mentioned_p (op0, XEXP (op2, 0)))
      && ((GET_CODE (op2) == MEM && reg_mentioned_p (op0, XEXP (op2, 0)))
          || (GET_CODE (op3) == MEM && reg_mentioned_p (op0, XEXP (op3, 0)))))
          || (GET_CODE (op3) == MEM && reg_mentioned_p (op0, XEXP (op3, 0)))))
    return 0;
    return 0;
 
 
  /* LDI||LDI.  */
  /* LDI||LDI.  */
  if (GET_CODE (op0) == REG && GET_CODE (op2) == REG)
  if (GET_CODE (op0) == REG && GET_CODE (op2) == REG)
    return (REGNO (op0) != REGNO (op2))
    return (REGNO (op0) != REGNO (op2))
      && GET_CODE (op1) == MEM && GET_CODE (op3) == MEM
      && GET_CODE (op1) == MEM && GET_CODE (op3) == MEM
      && ! c4x_address_conflict (op1, op3, 0, 0);
      && ! c4x_address_conflict (op1, op3, 0, 0);
 
 
  /* STI||STI.  */
  /* STI||STI.  */
  if (GET_CODE (op1) == REG && GET_CODE (op3) == REG)
  if (GET_CODE (op1) == REG && GET_CODE (op3) == REG)
    return GET_CODE (op0) == MEM && GET_CODE (op2) == MEM
    return GET_CODE (op0) == MEM && GET_CODE (op2) == MEM
      && ! c4x_address_conflict (op0, op2, 1, 1);
      && ! c4x_address_conflict (op0, op2, 1, 1);
 
 
  /* LDI||STI.  */
  /* LDI||STI.  */
  if (GET_CODE (op0) == REG && GET_CODE (op3) == REG)
  if (GET_CODE (op0) == REG && GET_CODE (op3) == REG)
    return GET_CODE (op1) == MEM && GET_CODE (op2) == MEM
    return GET_CODE (op1) == MEM && GET_CODE (op2) == MEM
      && ! c4x_address_conflict (op1, op2, 0, 1);
      && ! c4x_address_conflict (op1, op2, 0, 1);
 
 
  /* STI||LDI.  */
  /* STI||LDI.  */
  if (GET_CODE (op1) == REG && GET_CODE (op2) == REG)
  if (GET_CODE (op1) == REG && GET_CODE (op2) == REG)
    return GET_CODE (op0) == MEM && GET_CODE (op3) == MEM
    return GET_CODE (op0) == MEM && GET_CODE (op3) == MEM
      && ! c4x_address_conflict (op0, op3, 1, 0);
      && ! c4x_address_conflict (op0, op3, 1, 0);
 
 
  return 0;
  return 0;
}
}
 
 
 
 
int
int
valid_parallel_operands_4 (rtx *operands,
valid_parallel_operands_4 (rtx *operands,
                           enum machine_mode mode ATTRIBUTE_UNUSED)
                           enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  rtx op0 = operands[0];
  rtx op0 = operands[0];
  rtx op2 = operands[2];
  rtx op2 = operands[2];
 
 
  if (GET_CODE (op0) == SUBREG)
  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);
    op0 = SUBREG_REG (op0);
  if (GET_CODE (op2) == SUBREG)
  if (GET_CODE (op2) == SUBREG)
    op2 = SUBREG_REG (op2);
    op2 = SUBREG_REG (op2);
 
 
  /* This test prevents the multipack pass from using this pattern if
  /* This test prevents the multipack pass from using this pattern if
     op0 is used as an index or base register in op2, since this combination
     op0 is used as an index or base register in op2, since this combination
     will require reloading.  */
     will require reloading.  */
  if (GET_CODE (op0) == REG
  if (GET_CODE (op0) == REG
      && GET_CODE (op2) == MEM
      && GET_CODE (op2) == MEM
      && reg_mentioned_p (op0, XEXP (op2, 0)))
      && reg_mentioned_p (op0, XEXP (op2, 0)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
 
 
int
int
valid_parallel_operands_5 (rtx *operands,
valid_parallel_operands_5 (rtx *operands,
                           enum machine_mode mode ATTRIBUTE_UNUSED)
                           enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  int regs = 0;
  int regs = 0;
  rtx op0 = operands[0];
  rtx op0 = operands[0];
  rtx op1 = operands[1];
  rtx op1 = operands[1];
  rtx op2 = operands[2];
  rtx op2 = operands[2];
  rtx op3 = operands[3];
  rtx op3 = operands[3];
 
 
  if (GET_CODE (op0) == SUBREG)
  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);
    op0 = SUBREG_REG (op0);
  if (GET_CODE (op1) == SUBREG)
  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);
    op1 = SUBREG_REG (op1);
  if (GET_CODE (op2) == SUBREG)
  if (GET_CODE (op2) == SUBREG)
    op2 = SUBREG_REG (op2);
    op2 = SUBREG_REG (op2);
 
 
  /* The patterns should only allow ext_low_reg_operand() or
  /* The patterns should only allow ext_low_reg_operand() or
     par_ind_operand() operands.  Operands 1 and 2 may be commutative
     par_ind_operand() operands.  Operands 1 and 2 may be commutative
     but only one of them can be a register.  */
     but only one of them can be a register.  */
  if (GET_CODE (op1) == REG)
  if (GET_CODE (op1) == REG)
    regs++;
    regs++;
  if (GET_CODE (op2) == REG)
  if (GET_CODE (op2) == REG)
    regs++;
    regs++;
 
 
  if (regs != 1)
  if (regs != 1)
    return 0;
    return 0;
 
 
  /* This test prevents the multipack pass from using this pattern if
  /* This test prevents the multipack pass from using this pattern if
     op0 is used as an index or base register in op3, since this combination
     op0 is used as an index or base register in op3, since this combination
     will require reloading.  */
     will require reloading.  */
  if (GET_CODE (op0) == REG
  if (GET_CODE (op0) == REG
      && GET_CODE (op3) == MEM
      && GET_CODE (op3) == MEM
      && reg_mentioned_p (op0, XEXP (op3, 0)))
      && reg_mentioned_p (op0, XEXP (op3, 0)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
 
 
int
int
valid_parallel_operands_6 (rtx *operands,
valid_parallel_operands_6 (rtx *operands,
                           enum machine_mode mode ATTRIBUTE_UNUSED)
                           enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  int regs = 0;
  int regs = 0;
  rtx op0 = operands[0];
  rtx op0 = operands[0];
  rtx op1 = operands[1];
  rtx op1 = operands[1];
  rtx op2 = operands[2];
  rtx op2 = operands[2];
  rtx op4 = operands[4];
  rtx op4 = operands[4];
  rtx op5 = operands[5];
  rtx op5 = operands[5];
 
 
  if (GET_CODE (op1) == SUBREG)
  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);
    op1 = SUBREG_REG (op1);
  if (GET_CODE (op2) == SUBREG)
  if (GET_CODE (op2) == SUBREG)
    op2 = SUBREG_REG (op2);
    op2 = SUBREG_REG (op2);
  if (GET_CODE (op4) == SUBREG)
  if (GET_CODE (op4) == SUBREG)
    op4 = SUBREG_REG (op4);
    op4 = SUBREG_REG (op4);
  if (GET_CODE (op5) == SUBREG)
  if (GET_CODE (op5) == SUBREG)
    op5 = SUBREG_REG (op5);
    op5 = SUBREG_REG (op5);
 
 
  /* The patterns should only allow ext_low_reg_operand() or
  /* The patterns should only allow ext_low_reg_operand() or
     par_ind_operand() operands.  Thus of the 4 input operands, only 2
     par_ind_operand() operands.  Thus of the 4 input operands, only 2
     should be REGs and the other 2 should be MEMs.  */
     should be REGs and the other 2 should be MEMs.  */
 
 
  if (GET_CODE (op1) == REG)
  if (GET_CODE (op1) == REG)
    regs++;
    regs++;
  if (GET_CODE (op2) == REG)
  if (GET_CODE (op2) == REG)
    regs++;
    regs++;
  if (GET_CODE (op4) == REG)
  if (GET_CODE (op4) == REG)
    regs++;
    regs++;
  if (GET_CODE (op5) == REG)
  if (GET_CODE (op5) == REG)
    regs++;
    regs++;
 
 
  /* The new C30/C40 silicon dies allow 3 regs of the 4 input operands.
  /* The new C30/C40 silicon dies allow 3 regs of the 4 input operands.
     Perhaps we should count the MEMs as well?  */
     Perhaps we should count the MEMs as well?  */
  if (regs != 2)
  if (regs != 2)
    return 0;
    return 0;
 
 
  /* This test prevents the multipack pass from using this pattern if
  /* This test prevents the multipack pass from using this pattern if
     op0 is used as an index or base register in op4 or op5, since
     op0 is used as an index or base register in op4 or op5, since
     this combination will require reloading.  */
     this combination will require reloading.  */
  if (GET_CODE (op0) == REG
  if (GET_CODE (op0) == REG
      && ((GET_CODE (op4) == MEM && reg_mentioned_p (op0, XEXP (op4, 0)))
      && ((GET_CODE (op4) == MEM && reg_mentioned_p (op0, XEXP (op4, 0)))
          || (GET_CODE (op5) == MEM && reg_mentioned_p (op0, XEXP (op5, 0)))))
          || (GET_CODE (op5) == MEM && reg_mentioned_p (op0, XEXP (op5, 0)))))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
 
 
/* Validate combination of src operands.  Note that the operands have
/* Validate combination of src operands.  Note that the operands have
   been screened by the src_operand predicate.  We just have to check
   been screened by the src_operand predicate.  We just have to check
   that the combination of operands is valid.  If FORCE is set, ensure
   that the combination of operands is valid.  If FORCE is set, ensure
   that the destination regno is valid if we have a 2 operand insn.  */
   that the destination regno is valid if we have a 2 operand insn.  */
 
 
static int
static int
c4x_valid_operands (enum rtx_code code, rtx *operands,
c4x_valid_operands (enum rtx_code code, rtx *operands,
                    enum machine_mode mode ATTRIBUTE_UNUSED,
                    enum machine_mode mode ATTRIBUTE_UNUSED,
                    int force)
                    int force)
{
{
  rtx op0;
  rtx op0;
  rtx op1;
  rtx op1;
  rtx op2;
  rtx op2;
  enum rtx_code code1;
  enum rtx_code code1;
  enum rtx_code code2;
  enum rtx_code code2;
 
 
 
 
  /* FIXME, why can't we tighten the operands for IF_THEN_ELSE?  */
  /* FIXME, why can't we tighten the operands for IF_THEN_ELSE?  */
  if (code == IF_THEN_ELSE)
  if (code == IF_THEN_ELSE)
      return 1 || (operands[0] == operands[2] || operands[0] == operands[3]);
      return 1 || (operands[0] == operands[2] || operands[0] == operands[3]);
 
 
  if (code == COMPARE)
  if (code == COMPARE)
    {
    {
      op1 = operands[0];
      op1 = operands[0];
      op2 = operands[1];
      op2 = operands[1];
    }
    }
  else
  else
    {
    {
      op1 = operands[1];
      op1 = operands[1];
      op2 = operands[2];
      op2 = operands[2];
    }
    }
 
 
  op0 = operands[0];
  op0 = operands[0];
 
 
  if (GET_CODE (op0) == SUBREG)
  if (GET_CODE (op0) == SUBREG)
    op0 = SUBREG_REG (op0);
    op0 = SUBREG_REG (op0);
  if (GET_CODE (op1) == SUBREG)
  if (GET_CODE (op1) == SUBREG)
    op1 = SUBREG_REG (op1);
    op1 = SUBREG_REG (op1);
  if (GET_CODE (op2) == SUBREG)
  if (GET_CODE (op2) == SUBREG)
    op2 = SUBREG_REG (op2);
    op2 = SUBREG_REG (op2);
 
 
  code1 = GET_CODE (op1);
  code1 = GET_CODE (op1);
  code2 = GET_CODE (op2);
  code2 = GET_CODE (op2);
 
 
 
 
  if (code1 == REG && code2 == REG)
  if (code1 == REG && code2 == REG)
    return 1;
    return 1;
 
 
  if (code1 == MEM && code2 == MEM)
  if (code1 == MEM && code2 == MEM)
    {
    {
      if (c4x_S_indirect (op1) && c4x_S_indirect (op2))
      if (c4x_S_indirect (op1) && c4x_S_indirect (op2))
        return 1;
        return 1;
      return c4x_R_indirect (op1) && c4x_R_indirect (op2);
      return c4x_R_indirect (op1) && c4x_R_indirect (op2);
    }
    }
 
 
  /* We cannot handle two MEMs or two CONSTS, etc.  */
  /* We cannot handle two MEMs or two CONSTS, etc.  */
  if (code1 == code2)
  if (code1 == code2)
    return 0;
    return 0;
 
 
  if (code1 == REG)
  if (code1 == REG)
    {
    {
      switch (code2)
      switch (code2)
        {
        {
        case CONST_INT:
        case CONST_INT:
          if (c4x_J_constant (op2) && c4x_R_indirect (op1))
          if (c4x_J_constant (op2) && c4x_R_indirect (op1))
            return 1;
            return 1;
          break;
          break;
 
 
        case CONST_DOUBLE:
        case CONST_DOUBLE:
          if (! c4x_H_constant (op2))
          if (! c4x_H_constant (op2))
            return 0;
            return 0;
          break;
          break;
 
 
          /* Any valid memory operand screened by src_operand is OK.  */
          /* Any valid memory operand screened by src_operand is OK.  */
        case MEM:
        case MEM:
          break;
          break;
 
 
        default:
        default:
          fatal_insn ("c4x_valid_operands: Internal error", op2);
          fatal_insn ("c4x_valid_operands: Internal error", op2);
          break;
          break;
        }
        }
 
 
      if (GET_CODE (op0) == SCRATCH)
      if (GET_CODE (op0) == SCRATCH)
          return 1;
          return 1;
 
 
      if (!REG_P (op0))
      if (!REG_P (op0))
          return 0;
          return 0;
 
 
      /* Check that we have a valid destination register for a two operand
      /* Check that we have a valid destination register for a two operand
         instruction.  */
         instruction.  */
      return ! force || code == COMPARE || REGNO (op1) == REGNO (op0);
      return ! force || code == COMPARE || REGNO (op1) == REGNO (op0);
    }
    }
 
 
 
 
  /* Check non-commutative operators.  */
  /* Check non-commutative operators.  */
  if (code == ASHIFTRT || code == LSHIFTRT
  if (code == ASHIFTRT || code == LSHIFTRT
      || code == ASHIFT || code == COMPARE)
      || code == ASHIFT || code == COMPARE)
    return code2 == REG
    return code2 == REG
      && (c4x_S_indirect (op1) || c4x_R_indirect (op1));
      && (c4x_S_indirect (op1) || c4x_R_indirect (op1));
 
 
 
 
  /* Assume MINUS is commutative since the subtract patterns
  /* Assume MINUS is commutative since the subtract patterns
     also support the reverse subtract instructions.  Since op1
     also support the reverse subtract instructions.  Since op1
     is not a register, and op2 is a register, op1 can only
     is not a register, and op2 is a register, op1 can only
     be a restricted memory operand for a shift instruction.  */
     be a restricted memory operand for a shift instruction.  */
  if (code2 == REG)
  if (code2 == REG)
    {
    {
      switch (code1)
      switch (code1)
        {
        {
        case CONST_INT:
        case CONST_INT:
          break;
          break;
 
 
        case CONST_DOUBLE:
        case CONST_DOUBLE:
          if (! c4x_H_constant (op1))
          if (! c4x_H_constant (op1))
            return 0;
            return 0;
          break;
          break;
 
 
          /* Any valid memory operand screened by src_operand is OK.  */
          /* Any valid memory operand screened by src_operand is OK.  */
        case MEM:
        case MEM:
          break;
          break;
 
 
        default:
        default:
          abort ();
          abort ();
          break;
          break;
        }
        }
 
 
      if (GET_CODE (op0) == SCRATCH)
      if (GET_CODE (op0) == SCRATCH)
          return 1;
          return 1;
 
 
      if (!REG_P (op0))
      if (!REG_P (op0))
          return 0;
          return 0;
 
 
      /* Check that we have a valid destination register for a two operand
      /* Check that we have a valid destination register for a two operand
         instruction.  */
         instruction.  */
      return ! force || REGNO (op1) == REGNO (op0);
      return ! force || REGNO (op1) == REGNO (op0);
    }
    }
 
 
  if (c4x_J_constant (op1) && c4x_R_indirect (op2))
  if (c4x_J_constant (op1) && c4x_R_indirect (op2))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
 
 
int valid_operands (enum rtx_code code, rtx *operands, enum machine_mode mode)
int valid_operands (enum rtx_code code, rtx *operands, enum machine_mode mode)
{
{
 
 
  /* If we are not optimizing then we have to let anything go and let
  /* If we are not optimizing then we have to let anything go and let
     reload fix things up.  instantiate_decl in function.c can produce
     reload fix things up.  instantiate_decl in function.c can produce
     invalid insns by changing the offset of a memory operand from a
     invalid insns by changing the offset of a memory operand from a
     valid one into an invalid one, when the second operand is also a
     valid one into an invalid one, when the second operand is also a
     memory operand.  The alternative is not to allow two memory
     memory operand.  The alternative is not to allow two memory
     operands for an insn when not optimizing.  The problem only rarely
     operands for an insn when not optimizing.  The problem only rarely
     occurs, for example with the C-torture program DFcmp.c.  */
     occurs, for example with the C-torture program DFcmp.c.  */
 
 
  return ! optimize || c4x_valid_operands (code, operands, mode, 0);
  return ! optimize || c4x_valid_operands (code, operands, mode, 0);
}
}
 
 
 
 
int
int
legitimize_operands (enum rtx_code code, rtx *operands, enum machine_mode mode)
legitimize_operands (enum rtx_code code, rtx *operands, enum machine_mode mode)
{
{
  /* Compare only has 2 operands.  */
  /* Compare only has 2 operands.  */
  if (code == COMPARE)
  if (code == COMPARE)
    {
    {
      /* During RTL generation, force constants into pseudos so that
      /* During RTL generation, force constants into pseudos so that
         they can get hoisted out of loops.  This will tie up an extra
         they can get hoisted out of loops.  This will tie up an extra
         register but can save an extra cycle.  Only do this if loop
         register but can save an extra cycle.  Only do this if loop
         optimization enabled.  (We cannot pull this trick for add and
         optimization enabled.  (We cannot pull this trick for add and
         sub instructions since the flow pass won't find
         sub instructions since the flow pass won't find
         autoincrements etc.)  This allows us to generate compare
         autoincrements etc.)  This allows us to generate compare
         instructions like CMPI R0, *AR0++ where R0 = 42, say, instead
         instructions like CMPI R0, *AR0++ where R0 = 42, say, instead
         of LDI *AR0++, R0; CMPI 42, R0.
         of LDI *AR0++, R0; CMPI 42, R0.
 
 
         Note that expand_binops will try to load an expensive constant
         Note that expand_binops will try to load an expensive constant
         into a register if it is used within a loop.  Unfortunately,
         into a register if it is used within a loop.  Unfortunately,
         the cost mechanism doesn't allow us to look at the other
         the cost mechanism doesn't allow us to look at the other
         operand to decide whether the constant is expensive.  */
         operand to decide whether the constant is expensive.  */
 
 
      if (! reload_in_progress
      if (! reload_in_progress
          && TARGET_HOIST
          && TARGET_HOIST
          && optimize > 0
          && optimize > 0
          && GET_CODE (operands[1]) == CONST_INT
          && GET_CODE (operands[1]) == CONST_INT
          && rtx_cost (operands[1], code) > 1)
          && rtx_cost (operands[1], code) > 1)
        operands[1] = force_reg (mode, operands[1]);
        operands[1] = force_reg (mode, operands[1]);
 
 
      if (! reload_in_progress
      if (! reload_in_progress
          && ! c4x_valid_operands (code, operands, mode, 0))
          && ! c4x_valid_operands (code, operands, mode, 0))
        operands[0] = force_reg (mode, operands[0]);
        operands[0] = force_reg (mode, operands[0]);
      return 1;
      return 1;
    }
    }
 
 
  /* We cannot do this for ADDI/SUBI insns since we will
  /* We cannot do this for ADDI/SUBI insns since we will
     defeat the flow pass from finding autoincrement addressing
     defeat the flow pass from finding autoincrement addressing
     opportunities.  */
     opportunities.  */
  if (! reload_in_progress
  if (! reload_in_progress
      && ! ((code == PLUS || code == MINUS) && mode == Pmode)
      && ! ((code == PLUS || code == MINUS) && mode == Pmode)
      && TARGET_HOIST
      && TARGET_HOIST
      && optimize > 1
      && optimize > 1
      && GET_CODE (operands[2]) == CONST_INT
      && GET_CODE (operands[2]) == CONST_INT
      && rtx_cost (operands[2], code) > 1)
      && rtx_cost (operands[2], code) > 1)
    operands[2] = force_reg (mode, operands[2]);
    operands[2] = force_reg (mode, operands[2]);
 
 
  /* We can get better code on a C30 if we force constant shift counts
  /* We can get better code on a C30 if we force constant shift counts
     into a register.  This way they can get hoisted out of loops,
     into a register.  This way they can get hoisted out of loops,
     tying up a register but saving an instruction.  The downside is
     tying up a register but saving an instruction.  The downside is
     that they may get allocated to an address or index register, and
     that they may get allocated to an address or index register, and
     thus we will get a pipeline conflict if there is a nearby
     thus we will get a pipeline conflict if there is a nearby
     indirect address using an address register.
     indirect address using an address register.
 
 
     Note that expand_binops will not try to load an expensive constant
     Note that expand_binops will not try to load an expensive constant
     into a register if it is used within a loop for a shift insn.  */
     into a register if it is used within a loop for a shift insn.  */
 
 
  if (! reload_in_progress
  if (! reload_in_progress
      && ! c4x_valid_operands (code, operands, mode, TARGET_FORCE))
      && ! c4x_valid_operands (code, operands, mode, TARGET_FORCE))
    {
    {
      /* If the operand combination is invalid, we force operand1 into a
      /* If the operand combination is invalid, we force operand1 into a
         register, preventing reload from having doing to do this at a
         register, preventing reload from having doing to do this at a
         later stage.  */
         later stage.  */
      operands[1] = force_reg (mode, operands[1]);
      operands[1] = force_reg (mode, operands[1]);
      if (TARGET_FORCE)
      if (TARGET_FORCE)
        {
        {
          emit_move_insn (operands[0], operands[1]);
          emit_move_insn (operands[0], operands[1]);
          operands[1] = copy_rtx (operands[0]);
          operands[1] = copy_rtx (operands[0]);
        }
        }
      else
      else
        {
        {
          /* Just in case...  */
          /* Just in case...  */
          if (! c4x_valid_operands (code, operands, mode, 0))
          if (! c4x_valid_operands (code, operands, mode, 0))
            operands[2] = force_reg (mode, operands[2]);
            operands[2] = force_reg (mode, operands[2]);
        }
        }
    }
    }
 
 
  /* Right shifts require a negative shift count, but GCC expects
  /* Right shifts require a negative shift count, but GCC expects
     a positive count, so we emit a NEG.  */
     a positive count, so we emit a NEG.  */
  if ((code == ASHIFTRT || code == LSHIFTRT)
  if ((code == ASHIFTRT || code == LSHIFTRT)
      && (GET_CODE (operands[2]) != CONST_INT))
      && (GET_CODE (operands[2]) != CONST_INT))
    operands[2] = gen_rtx_NEG (mode, negate_rtx (mode, operands[2]));
    operands[2] = gen_rtx_NEG (mode, negate_rtx (mode, operands[2]));
 
 
 
 
  /* When the shift count is greater than 32 then the result
  /* When the shift count is greater than 32 then the result
     can be implementation dependent.  We truncate the result to
     can be implementation dependent.  We truncate the result to
     fit in 5 bits so that we do not emit invalid code when
     fit in 5 bits so that we do not emit invalid code when
     optimizing---such as trying to generate lhu2 with 20021124-1.c.  */
     optimizing---such as trying to generate lhu2 with 20021124-1.c.  */
  if (((code == ASHIFTRT || code == LSHIFTRT || code == ASHIFT)
  if (((code == ASHIFTRT || code == LSHIFTRT || code == ASHIFT)
      && (GET_CODE (operands[2]) == CONST_INT))
      && (GET_CODE (operands[2]) == CONST_INT))
      && INTVAL (operands[2]) > (GET_MODE_BITSIZE (mode) - 1))
      && INTVAL (operands[2]) > (GET_MODE_BITSIZE (mode) - 1))
      operands[2]
      operands[2]
          = GEN_INT (INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1));
          = GEN_INT (INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1));
 
 
  return 1;
  return 1;
}
}
 
 
 
 
/* The following predicates are used for instruction scheduling.  */
/* The following predicates are used for instruction scheduling.  */
 
 
int
int
group1_reg_operand (rtx op, enum machine_mode mode)
group1_reg_operand (rtx op, enum machine_mode mode)
{
{
  if (mode != VOIDmode && mode != GET_MODE (op))
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
    return 0;
  if (GET_CODE (op) == SUBREG)
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
    op = SUBREG_REG (op);
  return REG_P (op) && (! reload_completed || IS_GROUP1_REG (op));
  return REG_P (op) && (! reload_completed || IS_GROUP1_REG (op));
}
}
 
 
 
 
int
int
group1_mem_operand (rtx op, enum machine_mode mode)
group1_mem_operand (rtx op, enum machine_mode mode)
{
{
  if (mode != VOIDmode && mode != GET_MODE (op))
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
    return 0;
 
 
  if (GET_CODE (op) == MEM)
  if (GET_CODE (op) == MEM)
    {
    {
      op = XEXP (op, 0);
      op = XEXP (op, 0);
      if (GET_CODE (op) == PLUS)
      if (GET_CODE (op) == PLUS)
        {
        {
          rtx op0 = XEXP (op, 0);
          rtx op0 = XEXP (op, 0);
          rtx op1 = XEXP (op, 1);
          rtx op1 = XEXP (op, 1);
 
 
          if ((REG_P (op0) && (! reload_completed || IS_GROUP1_REG (op0)))
          if ((REG_P (op0) && (! reload_completed || IS_GROUP1_REG (op0)))
              || (REG_P (op1) && (! reload_completed || IS_GROUP1_REG (op1))))
              || (REG_P (op1) && (! reload_completed || IS_GROUP1_REG (op1))))
            return 1;
            return 1;
        }
        }
      else if ((REG_P (op)) && (! reload_completed || IS_GROUP1_REG (op)))
      else if ((REG_P (op)) && (! reload_completed || IS_GROUP1_REG (op)))
        return 1;
        return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
 
 
/* Return true if any one of the address registers.  */
/* Return true if any one of the address registers.  */
 
 
int
int
arx_reg_operand (rtx op, enum machine_mode mode)
arx_reg_operand (rtx op, enum machine_mode mode)
{
{
  if (mode != VOIDmode && mode != GET_MODE (op))
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
    return 0;
  if (GET_CODE (op) == SUBREG)
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
    op = SUBREG_REG (op);
  return REG_P (op) && (! reload_completed || IS_ADDR_REG (op));
  return REG_P (op) && (! reload_completed || IS_ADDR_REG (op));
}
}
 
 
 
 
static int
static int
c4x_arn_reg_operand (rtx op, enum machine_mode mode, unsigned int regno)
c4x_arn_reg_operand (rtx op, enum machine_mode mode, unsigned int regno)
{
{
  if (mode != VOIDmode && mode != GET_MODE (op))
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
    return 0;
  if (GET_CODE (op) == SUBREG)
  if (GET_CODE (op) == SUBREG)
    op = SUBREG_REG (op);
    op = SUBREG_REG (op);
  return REG_P (op) && (! reload_completed || (REGNO (op) == regno));
  return REG_P (op) && (! reload_completed || (REGNO (op) == regno));
}
}
 
 
 
 
static int
static int
c4x_arn_mem_operand (rtx op, enum machine_mode mode, unsigned int regno)
c4x_arn_mem_operand (rtx op, enum machine_mode mode, unsigned int regno)
{
{
  if (mode != VOIDmode && mode != GET_MODE (op))
  if (mode != VOIDmode && mode != GET_MODE (op))
    return 0;
    return 0;
 
 
  if (GET_CODE (op) == MEM)
  if (GET_CODE (op) == MEM)
    {
    {
      op = XEXP (op, 0);
      op = XEXP (op, 0);
      switch (GET_CODE (op))
      switch (GET_CODE (op))
        {
        {
        case PRE_DEC:
        case PRE_DEC:
        case POST_DEC:
        case POST_DEC:
        case PRE_INC:
        case PRE_INC:
        case POST_INC:
        case POST_INC:
          op = XEXP (op, 0);
          op = XEXP (op, 0);
 
 
        case REG:
        case REG:
          return REG_P (op) && (! reload_completed || (REGNO (op) == regno));
          return REG_P (op) && (! reload_completed || (REGNO (op) == regno));
 
 
        case PRE_MODIFY:
        case PRE_MODIFY:
        case POST_MODIFY:
        case POST_MODIFY:
          if (REG_P (XEXP (op, 0)) && (! reload_completed
          if (REG_P (XEXP (op, 0)) && (! reload_completed
                                       || (REGNO (XEXP (op, 0)) == regno)))
                                       || (REGNO (XEXP (op, 0)) == regno)))
            return 1;
            return 1;
          if (REG_P (XEXP (XEXP (op, 1), 1))
          if (REG_P (XEXP (XEXP (op, 1), 1))
              && (! reload_completed
              && (! reload_completed
                  || (REGNO (XEXP (XEXP (op, 1), 1)) == regno)))
                  || (REGNO (XEXP (XEXP (op, 1), 1)) == regno)))
            return 1;
            return 1;
          break;
          break;
 
 
        case PLUS:
        case PLUS:
          {
          {
            rtx op0 = XEXP (op, 0);
            rtx op0 = XEXP (op, 0);
            rtx op1 = XEXP (op, 1);
            rtx op1 = XEXP (op, 1);
 
 
            if ((REG_P (op0) && (! reload_completed
            if ((REG_P (op0) && (! reload_completed
                                 || (REGNO (op0) == regno)))
                                 || (REGNO (op0) == regno)))
                || (REG_P (op1) && (! reload_completed
                || (REG_P (op1) && (! reload_completed
                                    || (REGNO (op1) == regno))))
                                    || (REGNO (op1) == regno))))
              return 1;
              return 1;
          }
          }
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
int
int
ar0_reg_operand (rtx op, enum machine_mode mode)
ar0_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR0_REGNO);
  return c4x_arn_reg_operand (op, mode, AR0_REGNO);
}
}
 
 
 
 
int
int
ar0_mem_operand (rtx op, enum machine_mode mode)
ar0_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR0_REGNO);
  return c4x_arn_mem_operand (op, mode, AR0_REGNO);
}
}
 
 
 
 
int
int
ar1_reg_operand (rtx op, enum machine_mode mode)
ar1_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR1_REGNO);
  return c4x_arn_reg_operand (op, mode, AR1_REGNO);
}
}
 
 
 
 
int
int
ar1_mem_operand (rtx op, enum machine_mode mode)
ar1_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR1_REGNO);
  return c4x_arn_mem_operand (op, mode, AR1_REGNO);
}
}
 
 
 
 
int
int
ar2_reg_operand (rtx op, enum machine_mode mode)
ar2_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR2_REGNO);
  return c4x_arn_reg_operand (op, mode, AR2_REGNO);
}
}
 
 
 
 
int
int
ar2_mem_operand (rtx op, enum machine_mode mode)
ar2_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR2_REGNO);
  return c4x_arn_mem_operand (op, mode, AR2_REGNO);
}
}
 
 
 
 
int
int
ar3_reg_operand (rtx op, enum machine_mode mode)
ar3_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR3_REGNO);
  return c4x_arn_reg_operand (op, mode, AR3_REGNO);
}
}
 
 
 
 
int
int
ar3_mem_operand (rtx op, enum machine_mode mode)
ar3_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR3_REGNO);
  return c4x_arn_mem_operand (op, mode, AR3_REGNO);
}
}
 
 
 
 
int
int
ar4_reg_operand (rtx op, enum machine_mode mode)
ar4_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR4_REGNO);
  return c4x_arn_reg_operand (op, mode, AR4_REGNO);
}
}
 
 
 
 
int
int
ar4_mem_operand (rtx op, enum machine_mode mode)
ar4_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR4_REGNO);
  return c4x_arn_mem_operand (op, mode, AR4_REGNO);
}
}
 
 
 
 
int
int
ar5_reg_operand (rtx op, enum machine_mode mode)
ar5_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR5_REGNO);
  return c4x_arn_reg_operand (op, mode, AR5_REGNO);
}
}
 
 
 
 
int
int
ar5_mem_operand (rtx op, enum machine_mode mode)
ar5_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR5_REGNO);
  return c4x_arn_mem_operand (op, mode, AR5_REGNO);
}
}
 
 
 
 
int
int
ar6_reg_operand (rtx op, enum machine_mode mode)
ar6_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR6_REGNO);
  return c4x_arn_reg_operand (op, mode, AR6_REGNO);
}
}
 
 
 
 
int
int
ar6_mem_operand (rtx op, enum machine_mode mode)
ar6_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR6_REGNO);
  return c4x_arn_mem_operand (op, mode, AR6_REGNO);
}
}
 
 
 
 
int
int
ar7_reg_operand (rtx op, enum machine_mode mode)
ar7_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, AR7_REGNO);
  return c4x_arn_reg_operand (op, mode, AR7_REGNO);
}
}
 
 
 
 
int
int
ar7_mem_operand (rtx op, enum machine_mode mode)
ar7_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, AR7_REGNO);
  return c4x_arn_mem_operand (op, mode, AR7_REGNO);
}
}
 
 
 
 
int
int
ir0_reg_operand (rtx op, enum machine_mode mode)
ir0_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, IR0_REGNO);
  return c4x_arn_reg_operand (op, mode, IR0_REGNO);
}
}
 
 
 
 
int
int
ir0_mem_operand (rtx op, enum machine_mode mode)
ir0_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, IR0_REGNO);
  return c4x_arn_mem_operand (op, mode, IR0_REGNO);
}
}
 
 
 
 
int
int
ir1_reg_operand (rtx op, enum machine_mode mode)
ir1_reg_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_reg_operand (op, mode, IR1_REGNO);
  return c4x_arn_reg_operand (op, mode, IR1_REGNO);
}
}
 
 
 
 
int
int
ir1_mem_operand (rtx op, enum machine_mode mode)
ir1_mem_operand (rtx op, enum machine_mode mode)
{
{
  return c4x_arn_mem_operand (op, mode, IR1_REGNO);
  return c4x_arn_mem_operand (op, mode, IR1_REGNO);
}
}
 
 
 
 
/* This is similar to operand_subword but allows autoincrement
/* This is similar to operand_subword but allows autoincrement
   addressing.  */
   addressing.  */
 
 
rtx
rtx
c4x_operand_subword (rtx op, int i, int validate_address,
c4x_operand_subword (rtx op, int i, int validate_address,
                     enum machine_mode  mode)
                     enum machine_mode  mode)
{
{
  if (mode != HImode && mode != HFmode)
  if (mode != HImode && mode != HFmode)
    fatal_insn ("c4x_operand_subword: invalid mode", op);
    fatal_insn ("c4x_operand_subword: invalid mode", op);
 
 
  if (mode == HFmode && REG_P (op))
  if (mode == HFmode && REG_P (op))
    fatal_insn ("c4x_operand_subword: invalid operand", op);
    fatal_insn ("c4x_operand_subword: invalid operand", op);
 
 
  if (GET_CODE (op) == MEM)
  if (GET_CODE (op) == MEM)
    {
    {
      enum rtx_code code = GET_CODE (XEXP (op, 0));
      enum rtx_code code = GET_CODE (XEXP (op, 0));
      enum machine_mode mode = GET_MODE (XEXP (op, 0));
      enum machine_mode mode = GET_MODE (XEXP (op, 0));
      enum machine_mode submode;
      enum machine_mode submode;
 
 
      submode = mode;
      submode = mode;
      if (mode == HImode)
      if (mode == HImode)
        submode = QImode;
        submode = QImode;
      else if (mode == HFmode)
      else if (mode == HFmode)
        submode = QFmode;
        submode = QFmode;
 
 
      switch (code)
      switch (code)
        {
        {
        case POST_INC:
        case POST_INC:
        case PRE_INC:
        case PRE_INC:
          return gen_rtx_MEM (submode, XEXP (op, 0));
          return gen_rtx_MEM (submode, XEXP (op, 0));
 
 
        case POST_DEC:
        case POST_DEC:
        case PRE_DEC:
        case PRE_DEC:
        case PRE_MODIFY:
        case PRE_MODIFY:
        case POST_MODIFY:
        case POST_MODIFY:
          /* We could handle these with some difficulty.
          /* We could handle these with some difficulty.
             e.g., *p-- => *(p-=2); *(p+1).  */
             e.g., *p-- => *(p-=2); *(p+1).  */
          fatal_insn ("c4x_operand_subword: invalid autoincrement", op);
          fatal_insn ("c4x_operand_subword: invalid autoincrement", op);
 
 
        case SYMBOL_REF:
        case SYMBOL_REF:
        case LABEL_REF:
        case LABEL_REF:
        case CONST:
        case CONST:
        case CONST_INT:
        case CONST_INT:
          fatal_insn ("c4x_operand_subword: invalid address", op);
          fatal_insn ("c4x_operand_subword: invalid address", op);
 
 
          /* Even though offsettable_address_p considers (MEM
          /* Even though offsettable_address_p considers (MEM
             (LO_SUM)) to be offsettable, it is not safe if the
             (LO_SUM)) to be offsettable, it is not safe if the
             address is at the end of the data page since we also have
             address is at the end of the data page since we also have
             to fix up the associated high PART.  In this case where
             to fix up the associated high PART.  In this case where
             we are trying to split a HImode or HFmode memory
             we are trying to split a HImode or HFmode memory
             reference, we would have to emit another insn to reload a
             reference, we would have to emit another insn to reload a
             new HIGH value.  It's easier to disable LO_SUM memory references
             new HIGH value.  It's easier to disable LO_SUM memory references
             in HImode or HFmode and we probably get better code.  */
             in HImode or HFmode and we probably get better code.  */
        case LO_SUM:
        case LO_SUM:
          fatal_insn ("c4x_operand_subword: address not offsettable", op);
          fatal_insn ("c4x_operand_subword: address not offsettable", op);
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  return operand_subword (op, i, validate_address, mode);
  return operand_subword (op, i, validate_address, mode);
}
}
 
 
struct name_list
struct name_list
{
{
  struct name_list *next;
  struct name_list *next;
  const char *name;
  const char *name;
};
};
 
 
static struct name_list *global_head;
static struct name_list *global_head;
static struct name_list *extern_head;
static struct name_list *extern_head;
 
 
 
 
/* Add NAME to list of global symbols and remove from external list if
/* Add NAME to list of global symbols and remove from external list if
   present on external list.  */
   present on external list.  */
 
 
void
void
c4x_global_label (const char *name)
c4x_global_label (const char *name)
{
{
  struct name_list *p, *last;
  struct name_list *p, *last;
 
 
  /* Do not insert duplicate names, so linearly search through list of
  /* Do not insert duplicate names, so linearly search through list of
     existing names.  */
     existing names.  */
  p = global_head;
  p = global_head;
  while (p)
  while (p)
    {
    {
      if (strcmp (p->name, name) == 0)
      if (strcmp (p->name, name) == 0)
        return;
        return;
      p = p->next;
      p = p->next;
    }
    }
  p = (struct name_list *) xmalloc (sizeof *p);
  p = (struct name_list *) xmalloc (sizeof *p);
  p->next = global_head;
  p->next = global_head;
  p->name = name;
  p->name = name;
  global_head = p;
  global_head = p;
 
 
  /* Remove this name from ref list if present.  */
  /* Remove this name from ref list if present.  */
  last = NULL;
  last = NULL;
  p = extern_head;
  p = extern_head;
  while (p)
  while (p)
    {
    {
      if (strcmp (p->name, name) == 0)
      if (strcmp (p->name, name) == 0)
        {
        {
          if (last)
          if (last)
            last->next = p->next;
            last->next = p->next;
          else
          else
            extern_head = p->next;
            extern_head = p->next;
          break;
          break;
        }
        }
      last = p;
      last = p;
      p = p->next;
      p = p->next;
    }
    }
}
}
 
 
 
 
/* Add NAME to list of external symbols.  */
/* Add NAME to list of external symbols.  */
 
 
void
void
c4x_external_ref (const char *name)
c4x_external_ref (const char *name)
{
{
  struct name_list *p;
  struct name_list *p;
 
 
  /* Do not insert duplicate names.  */
  /* Do not insert duplicate names.  */
  p = extern_head;
  p = extern_head;
  while (p)
  while (p)
    {
    {
      if (strcmp (p->name, name) == 0)
      if (strcmp (p->name, name) == 0)
        return;
        return;
      p = p->next;
      p = p->next;
    }
    }
 
 
  /* Do not insert ref if global found.  */
  /* Do not insert ref if global found.  */
  p = global_head;
  p = global_head;
  while (p)
  while (p)
    {
    {
      if (strcmp (p->name, name) == 0)
      if (strcmp (p->name, name) == 0)
        return;
        return;
      p = p->next;
      p = p->next;
    }
    }
  p = (struct name_list *) xmalloc (sizeof *p);
  p = (struct name_list *) xmalloc (sizeof *p);
  p->next = extern_head;
  p->next = extern_head;
  p->name = name;
  p->name = name;
  extern_head = p;
  extern_head = p;
}
}
 
 
/* We need to have a data section we can identify so that we can set
/* We need to have a data section we can identify so that we can set
   the DP register back to a data pointer in the small memory model.
   the DP register back to a data pointer in the small memory model.
   This is only required for ISRs if we are paranoid that someone
   This is only required for ISRs if we are paranoid that someone
   may have quietly changed this register on the sly.  */
   may have quietly changed this register on the sly.  */
static void
static void
c4x_file_start (void)
c4x_file_start (void)
{
{
  default_file_start ();
  default_file_start ();
  fprintf (asm_out_file, "\t.version\t%d\n", c4x_cpu_version);
  fprintf (asm_out_file, "\t.version\t%d\n", c4x_cpu_version);
  fputs ("\n\t.data\ndata_sec:\n", asm_out_file);
  fputs ("\n\t.data\ndata_sec:\n", asm_out_file);
}
}
 
 
 
 
static void
static void
c4x_file_end (void)
c4x_file_end (void)
{
{
  struct name_list *p;
  struct name_list *p;
 
 
  /* Output all external names that are not global.  */
  /* Output all external names that are not global.  */
  p = extern_head;
  p = extern_head;
  while (p)
  while (p)
    {
    {
      fprintf (asm_out_file, "\t.ref\t");
      fprintf (asm_out_file, "\t.ref\t");
      assemble_name (asm_out_file, p->name);
      assemble_name (asm_out_file, p->name);
      fprintf (asm_out_file, "\n");
      fprintf (asm_out_file, "\n");
      p = p->next;
      p = p->next;
    }
    }
  fprintf (asm_out_file, "\t.end\n");
  fprintf (asm_out_file, "\t.end\n");
}
}
 
 
 
 
static void
static void
c4x_check_attribute (const char *attrib, tree list, tree decl, tree *attributes)
c4x_check_attribute (const char *attrib, tree list, tree decl, tree *attributes)
{
{
  while (list != NULL_TREE
  while (list != NULL_TREE
         && IDENTIFIER_POINTER (TREE_PURPOSE (list))
         && IDENTIFIER_POINTER (TREE_PURPOSE (list))
         != IDENTIFIER_POINTER (DECL_NAME (decl)))
         != IDENTIFIER_POINTER (DECL_NAME (decl)))
    list = TREE_CHAIN (list);
    list = TREE_CHAIN (list);
  if (list)
  if (list)
    *attributes = tree_cons (get_identifier (attrib), TREE_VALUE (list),
    *attributes = tree_cons (get_identifier (attrib), TREE_VALUE (list),
                             *attributes);
                             *attributes);
}
}
 
 
 
 
static void
static void
c4x_insert_attributes (tree decl, tree *attributes)
c4x_insert_attributes (tree decl, tree *attributes)
{
{
  switch (TREE_CODE (decl))
  switch (TREE_CODE (decl))
    {
    {
    case FUNCTION_DECL:
    case FUNCTION_DECL:
      c4x_check_attribute ("section", code_tree, decl, attributes);
      c4x_check_attribute ("section", code_tree, decl, attributes);
      c4x_check_attribute ("const", pure_tree, decl, attributes);
      c4x_check_attribute ("const", pure_tree, decl, attributes);
      c4x_check_attribute ("noreturn", noreturn_tree, decl, attributes);
      c4x_check_attribute ("noreturn", noreturn_tree, decl, attributes);
      c4x_check_attribute ("interrupt", interrupt_tree, decl, attributes);
      c4x_check_attribute ("interrupt", interrupt_tree, decl, attributes);
      c4x_check_attribute ("naked", naked_tree, decl, attributes);
      c4x_check_attribute ("naked", naked_tree, decl, attributes);
      break;
      break;
 
 
    case VAR_DECL:
    case VAR_DECL:
      c4x_check_attribute ("section", data_tree, decl, attributes);
      c4x_check_attribute ("section", data_tree, decl, attributes);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
/* Table of valid machine attributes.  */
/* Table of valid machine attributes.  */
const struct attribute_spec c4x_attribute_table[] =
const struct attribute_spec c4x_attribute_table[] =
{
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "interrupt",    0, 0, false, true,  true,  c4x_handle_fntype_attribute },
  { "interrupt",    0, 0, false, true,  true,  c4x_handle_fntype_attribute },
  { "naked",    0, 0, false, true,  true,  c4x_handle_fntype_attribute },
  { "naked",    0, 0, false, true,  true,  c4x_handle_fntype_attribute },
  { "leaf_pretend", 0, 0, false, true,  true,  c4x_handle_fntype_attribute },
  { "leaf_pretend", 0, 0, false, true,  true,  c4x_handle_fntype_attribute },
  { NULL,           0, 0, false, false, false, NULL }
  { NULL,           0, 0, false, false, false, NULL }
};
};
 
 
/* Handle an attribute requiring a FUNCTION_TYPE;
/* Handle an attribute requiring a FUNCTION_TYPE;
   arguments as in struct attribute_spec.handler.  */
   arguments as in struct attribute_spec.handler.  */
static tree
static tree
c4x_handle_fntype_attribute (tree *node, tree name,
c4x_handle_fntype_attribute (tree *node, tree name,
                             tree args ATTRIBUTE_UNUSED,
                             tree args ATTRIBUTE_UNUSED,
                             int flags ATTRIBUTE_UNUSED,
                             int flags ATTRIBUTE_UNUSED,
                             bool *no_add_attrs)
                             bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) != FUNCTION_TYPE)
  if (TREE_CODE (*node) != FUNCTION_TYPE)
    {
    {
      warning (OPT_Wattributes, "%qs attribute only applies to functions",
      warning (OPT_Wattributes, "%qs attribute only applies to functions",
               IDENTIFIER_POINTER (name));
               IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* !!! FIXME to emit RPTS correctly.  */
/* !!! FIXME to emit RPTS correctly.  */
 
 
int
int
c4x_rptb_rpts_p (rtx insn, rtx op)
c4x_rptb_rpts_p (rtx insn, rtx op)
{
{
  /* The next insn should be our label marking where the
  /* The next insn should be our label marking where the
     repeat block starts.  */
     repeat block starts.  */
  insn = NEXT_INSN (insn);
  insn = NEXT_INSN (insn);
  if (GET_CODE (insn) != CODE_LABEL)
  if (GET_CODE (insn) != CODE_LABEL)
    {
    {
      /* Some insns may have been shifted between the RPTB insn
      /* Some insns may have been shifted between the RPTB insn
         and the top label... They were probably destined to
         and the top label... They were probably destined to
         be moved out of the loop.  For now, let's leave them
         be moved out of the loop.  For now, let's leave them
         where they are and print a warning.  We should
         where they are and print a warning.  We should
         probably move these insns before the repeat block insn.  */
         probably move these insns before the repeat block insn.  */
      if (TARGET_DEBUG)
      if (TARGET_DEBUG)
        fatal_insn ("c4x_rptb_rpts_p: Repeat block top label moved",
        fatal_insn ("c4x_rptb_rpts_p: Repeat block top label moved",
                    insn);
                    insn);
      return 0;
      return 0;
    }
    }
 
 
  /* Skip any notes.  */
  /* Skip any notes.  */
  insn = next_nonnote_insn (insn);
  insn = next_nonnote_insn (insn);
 
 
  /* This should be our first insn in the loop.  */
  /* This should be our first insn in the loop.  */
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return 0;
    return 0;
 
 
  /* Skip any notes.  */
  /* Skip any notes.  */
  insn = next_nonnote_insn (insn);
  insn = next_nonnote_insn (insn);
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return 0;
    return 0;
 
 
  if (recog_memoized (insn) != CODE_FOR_rptb_end)
  if (recog_memoized (insn) != CODE_FOR_rptb_end)
    return 0;
    return 0;
 
 
  if (TARGET_RPTS)
  if (TARGET_RPTS)
    return 1;
    return 1;
 
 
  return (GET_CODE (op) == CONST_INT) && TARGET_RPTS_CYCLES (INTVAL (op));
  return (GET_CODE (op) == CONST_INT) && TARGET_RPTS_CYCLES (INTVAL (op));
}
}
 
 
 
 
/* Check if register r11 is used as the destination of an insn.  */
/* Check if register r11 is used as the destination of an insn.  */
 
 
static int
static int
c4x_r11_set_p(rtx x)
c4x_r11_set_p(rtx x)
{
{
  rtx set;
  rtx set;
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
 
 
  if (x == 0)
  if (x == 0)
    return 0;
    return 0;
 
 
  if (INSN_P (x) && GET_CODE (PATTERN (x)) == SEQUENCE)
  if (INSN_P (x) && GET_CODE (PATTERN (x)) == SEQUENCE)
    x = XVECEXP (PATTERN (x), 0, XVECLEN (PATTERN (x), 0) - 1);
    x = XVECEXP (PATTERN (x), 0, XVECLEN (PATTERN (x), 0) - 1);
 
 
  if (INSN_P (x) && (set = single_set (x)))
  if (INSN_P (x) && (set = single_set (x)))
    x = SET_DEST (set);
    x = SET_DEST (set);
 
 
  if (GET_CODE (x) == REG && REGNO (x) == R11_REGNO)
  if (GET_CODE (x) == REG && REGNO (x) == R11_REGNO)
    return 1;
    return 1;
 
 
  fmt = GET_RTX_FORMAT (GET_CODE (x));
  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          if (c4x_r11_set_p (XEXP (x, i)))
          if (c4x_r11_set_p (XEXP (x, i)))
            return 1;
            return 1;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          if (c4x_r11_set_p (XVECEXP (x, i, j)))
          if (c4x_r11_set_p (XVECEXP (x, i, j)))
            return 1;
            return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* The c4x sometimes has a problem when the insn before the laj insn
/* The c4x sometimes has a problem when the insn before the laj insn
   sets the r11 register.  Check for this situation.  */
   sets the r11 register.  Check for this situation.  */
 
 
int
int
c4x_check_laj_p (rtx insn)
c4x_check_laj_p (rtx insn)
{
{
  insn = prev_nonnote_insn (insn);
  insn = prev_nonnote_insn (insn);
 
 
  /* If this is the start of the function no nop is needed.  */
  /* If this is the start of the function no nop is needed.  */
  if (insn == 0)
  if (insn == 0)
    return 0;
    return 0;
 
 
  /* If the previous insn is a code label we have to insert a nop. This
  /* If the previous insn is a code label we have to insert a nop. This
     could be a jump or table jump. We can find the normal jumps by
     could be a jump or table jump. We can find the normal jumps by
     scanning the function but this will not find table jumps.  */
     scanning the function but this will not find table jumps.  */
  if (GET_CODE (insn) == CODE_LABEL)
  if (GET_CODE (insn) == CODE_LABEL)
    return 1;
    return 1;
 
 
  /* If the previous insn sets register r11 we have to insert a nop.  */
  /* If the previous insn sets register r11 we have to insert a nop.  */
  if (c4x_r11_set_p (insn))
  if (c4x_r11_set_p (insn))
    return 1;
    return 1;
 
 
  /* No nop needed.  */
  /* No nop needed.  */
  return 0;
  return 0;
}
}
 
 
 
 
/* Adjust the cost of a scheduling dependency.  Return the new cost of
/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.
   A set of an address register followed by a use occurs a 2 cycle
   A set of an address register followed by a use occurs a 2 cycle
   stall (reduced to a single cycle on the c40 using LDA), while
   stall (reduced to a single cycle on the c40 using LDA), while
   a read of an address register followed by a use occurs a single cycle.  */
   a read of an address register followed by a use occurs a single cycle.  */
 
 
#define SET_USE_COST    3
#define SET_USE_COST    3
#define SETLDA_USE_COST 2
#define SETLDA_USE_COST 2
#define READ_USE_COST   2
#define READ_USE_COST   2
 
 
static int
static int
c4x_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
c4x_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
{
  /* Don't worry about this until we know what registers have been
  /* Don't worry about this until we know what registers have been
     assigned.  */
     assigned.  */
  if (flag_schedule_insns == 0 && ! reload_completed)
  if (flag_schedule_insns == 0 && ! reload_completed)
    return 0;
    return 0;
 
 
  /* How do we handle dependencies where a read followed by another
  /* How do we handle dependencies where a read followed by another
     read causes a pipeline stall?  For example, a read of ar0 followed
     read causes a pipeline stall?  For example, a read of ar0 followed
     by the use of ar0 for a memory reference.  It looks like we
     by the use of ar0 for a memory reference.  It looks like we
     need to extend the scheduler to handle this case.  */
     need to extend the scheduler to handle this case.  */
 
 
  /* Reload sometimes generates a CLOBBER of a stack slot, e.g.,
  /* Reload sometimes generates a CLOBBER of a stack slot, e.g.,
     (clobber (mem:QI (plus:QI (reg:QI 11 ar3) (const_int 261)))),
     (clobber (mem:QI (plus:QI (reg:QI 11 ar3) (const_int 261)))),
     so only deal with insns we know about.  */
     so only deal with insns we know about.  */
  if (recog_memoized (dep_insn) < 0)
  if (recog_memoized (dep_insn) < 0)
    return 0;
    return 0;
 
 
  if (REG_NOTE_KIND (link) == 0)
  if (REG_NOTE_KIND (link) == 0)
    {
    {
      int max = 0;
      int max = 0;
 
 
      /* Data dependency; DEP_INSN writes a register that INSN reads some
      /* Data dependency; DEP_INSN writes a register that INSN reads some
         cycles later.  */
         cycles later.  */
      if (TARGET_C3X)
      if (TARGET_C3X)
        {
        {
          if (get_attr_setgroup1 (dep_insn) && get_attr_usegroup1 (insn))
          if (get_attr_setgroup1 (dep_insn) && get_attr_usegroup1 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_readarx (dep_insn) && get_attr_usegroup1 (insn))
          if (get_attr_readarx (dep_insn) && get_attr_usegroup1 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
        }
        }
      else
      else
        {
        {
          /* This could be significantly optimized. We should look
          /* This could be significantly optimized. We should look
             to see if dep_insn sets ar0-ar7 or ir0-ir1 and if
             to see if dep_insn sets ar0-ar7 or ir0-ir1 and if
             insn uses ar0-ar7.  We then test if the same register
             insn uses ar0-ar7.  We then test if the same register
             is used.  The tricky bit is that some operands will
             is used.  The tricky bit is that some operands will
             use several registers...  */
             use several registers...  */
          if (get_attr_setar0 (dep_insn) && get_attr_usear0 (insn))
          if (get_attr_setar0 (dep_insn) && get_attr_usear0 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar0 (dep_insn) && get_attr_usear0 (insn))
          if (get_attr_setlda_ar0 (dep_insn) && get_attr_usear0 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar0 (dep_insn) && get_attr_usear0 (insn))
          if (get_attr_readar0 (dep_insn) && get_attr_usear0 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar1 (dep_insn) && get_attr_usear1 (insn))
          if (get_attr_setar1 (dep_insn) && get_attr_usear1 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar1 (dep_insn) && get_attr_usear1 (insn))
          if (get_attr_setlda_ar1 (dep_insn) && get_attr_usear1 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar1 (dep_insn) && get_attr_usear1 (insn))
          if (get_attr_readar1 (dep_insn) && get_attr_usear1 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar2 (dep_insn) && get_attr_usear2 (insn))
          if (get_attr_setar2 (dep_insn) && get_attr_usear2 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar2 (dep_insn) && get_attr_usear2 (insn))
          if (get_attr_setlda_ar2 (dep_insn) && get_attr_usear2 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar2 (dep_insn) && get_attr_usear2 (insn))
          if (get_attr_readar2 (dep_insn) && get_attr_usear2 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar3 (dep_insn) && get_attr_usear3 (insn))
          if (get_attr_setar3 (dep_insn) && get_attr_usear3 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar3 (dep_insn) && get_attr_usear3 (insn))
          if (get_attr_setlda_ar3 (dep_insn) && get_attr_usear3 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar3 (dep_insn) && get_attr_usear3 (insn))
          if (get_attr_readar3 (dep_insn) && get_attr_usear3 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar4 (dep_insn) && get_attr_usear4 (insn))
          if (get_attr_setar4 (dep_insn) && get_attr_usear4 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar4 (dep_insn) && get_attr_usear4 (insn))
          if (get_attr_setlda_ar4 (dep_insn) && get_attr_usear4 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar4 (dep_insn) && get_attr_usear4 (insn))
          if (get_attr_readar4 (dep_insn) && get_attr_usear4 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar5 (dep_insn) && get_attr_usear5 (insn))
          if (get_attr_setar5 (dep_insn) && get_attr_usear5 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar5 (dep_insn) && get_attr_usear5 (insn))
          if (get_attr_setlda_ar5 (dep_insn) && get_attr_usear5 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar5 (dep_insn) && get_attr_usear5 (insn))
          if (get_attr_readar5 (dep_insn) && get_attr_usear5 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar6 (dep_insn) && get_attr_usear6 (insn))
          if (get_attr_setar6 (dep_insn) && get_attr_usear6 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar6 (dep_insn) && get_attr_usear6 (insn))
          if (get_attr_setlda_ar6 (dep_insn) && get_attr_usear6 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar6 (dep_insn) && get_attr_usear6 (insn))
          if (get_attr_readar6 (dep_insn) && get_attr_usear6 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setar7 (dep_insn) && get_attr_usear7 (insn))
          if (get_attr_setar7 (dep_insn) && get_attr_usear7 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ar7 (dep_insn) && get_attr_usear7 (insn))
          if (get_attr_setlda_ar7 (dep_insn) && get_attr_usear7 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
          if (get_attr_readar7 (dep_insn) && get_attr_usear7 (insn))
          if (get_attr_readar7 (dep_insn) && get_attr_usear7 (insn))
            max = READ_USE_COST > max ? READ_USE_COST : max;
            max = READ_USE_COST > max ? READ_USE_COST : max;
 
 
          if (get_attr_setir0 (dep_insn) && get_attr_useir0 (insn))
          if (get_attr_setir0 (dep_insn) && get_attr_useir0 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ir0 (dep_insn) && get_attr_useir0 (insn))
          if (get_attr_setlda_ir0 (dep_insn) && get_attr_useir0 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
 
 
          if (get_attr_setir1 (dep_insn) && get_attr_useir1 (insn))
          if (get_attr_setir1 (dep_insn) && get_attr_useir1 (insn))
            max = SET_USE_COST > max ? SET_USE_COST : max;
            max = SET_USE_COST > max ? SET_USE_COST : max;
          if (get_attr_setlda_ir1 (dep_insn) && get_attr_useir1 (insn))
          if (get_attr_setlda_ir1 (dep_insn) && get_attr_useir1 (insn))
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
            max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
        }
        }
 
 
      if (max)
      if (max)
        cost = max;
        cost = max;
 
 
      /* For other data dependencies, the default cost specified in the
      /* For other data dependencies, the default cost specified in the
         md is correct.  */
         md is correct.  */
      return cost;
      return cost;
    }
    }
  else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
  else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
    {
    {
      /* Anti dependency; DEP_INSN reads a register that INSN writes some
      /* Anti dependency; DEP_INSN reads a register that INSN writes some
         cycles later.  */
         cycles later.  */
 
 
      /* For c4x anti dependencies, the cost is 0.  */
      /* For c4x anti dependencies, the cost is 0.  */
      return 0;
      return 0;
    }
    }
  else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
  else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
    {
    {
      /* Output dependency; DEP_INSN writes a register that INSN writes some
      /* Output dependency; DEP_INSN writes a register that INSN writes some
         cycles later.  */
         cycles later.  */
 
 
      /* For c4x output dependencies, the cost is 0.  */
      /* For c4x output dependencies, the cost is 0.  */
      return 0;
      return 0;
    }
    }
  else
  else
    abort ();
    abort ();
}
}
 
 
void
void
c4x_init_builtins (void)
c4x_init_builtins (void)
{
{
  tree endlink = void_list_node;
  tree endlink = void_list_node;
 
 
  lang_hooks.builtin_function ("fast_ftoi",
  lang_hooks.builtin_function ("fast_ftoi",
                               build_function_type
                               build_function_type
                               (integer_type_node,
                               (integer_type_node,
                                tree_cons (NULL_TREE, double_type_node,
                                tree_cons (NULL_TREE, double_type_node,
                                           endlink)),
                                           endlink)),
                               C4X_BUILTIN_FIX, BUILT_IN_MD, NULL, NULL_TREE);
                               C4X_BUILTIN_FIX, BUILT_IN_MD, NULL, NULL_TREE);
  lang_hooks.builtin_function ("ansi_ftoi",
  lang_hooks.builtin_function ("ansi_ftoi",
                               build_function_type
                               build_function_type
                               (integer_type_node,
                               (integer_type_node,
                                tree_cons (NULL_TREE, double_type_node,
                                tree_cons (NULL_TREE, double_type_node,
                                           endlink)),
                                           endlink)),
                               C4X_BUILTIN_FIX_ANSI, BUILT_IN_MD, NULL,
                               C4X_BUILTIN_FIX_ANSI, BUILT_IN_MD, NULL,
                               NULL_TREE);
                               NULL_TREE);
  if (TARGET_C3X)
  if (TARGET_C3X)
    lang_hooks.builtin_function ("fast_imult",
    lang_hooks.builtin_function ("fast_imult",
                                 build_function_type
                                 build_function_type
                                 (integer_type_node,
                                 (integer_type_node,
                                  tree_cons (NULL_TREE, integer_type_node,
                                  tree_cons (NULL_TREE, integer_type_node,
                                             tree_cons (NULL_TREE,
                                             tree_cons (NULL_TREE,
                                                        integer_type_node,
                                                        integer_type_node,
                                                        endlink))),
                                                        endlink))),
                                 C4X_BUILTIN_MPYI, BUILT_IN_MD, NULL,
                                 C4X_BUILTIN_MPYI, BUILT_IN_MD, NULL,
                                 NULL_TREE);
                                 NULL_TREE);
  else
  else
    {
    {
      lang_hooks.builtin_function ("toieee",
      lang_hooks.builtin_function ("toieee",
                                   build_function_type
                                   build_function_type
                                   (double_type_node,
                                   (double_type_node,
                                    tree_cons (NULL_TREE, double_type_node,
                                    tree_cons (NULL_TREE, double_type_node,
                                               endlink)),
                                               endlink)),
                                   C4X_BUILTIN_TOIEEE, BUILT_IN_MD, NULL,
                                   C4X_BUILTIN_TOIEEE, BUILT_IN_MD, NULL,
                                   NULL_TREE);
                                   NULL_TREE);
      lang_hooks.builtin_function ("frieee",
      lang_hooks.builtin_function ("frieee",
                                   build_function_type
                                   build_function_type
                                   (double_type_node,
                                   (double_type_node,
                                    tree_cons (NULL_TREE, double_type_node,
                                    tree_cons (NULL_TREE, double_type_node,
                                               endlink)),
                                               endlink)),
                                   C4X_BUILTIN_FRIEEE, BUILT_IN_MD, NULL,
                                   C4X_BUILTIN_FRIEEE, BUILT_IN_MD, NULL,
                                   NULL_TREE);
                                   NULL_TREE);
      lang_hooks.builtin_function ("fast_invf",
      lang_hooks.builtin_function ("fast_invf",
                                   build_function_type
                                   build_function_type
                                   (double_type_node,
                                   (double_type_node,
                                    tree_cons (NULL_TREE, double_type_node,
                                    tree_cons (NULL_TREE, double_type_node,
                                               endlink)),
                                               endlink)),
                                   C4X_BUILTIN_RCPF, BUILT_IN_MD, NULL,
                                   C4X_BUILTIN_RCPF, BUILT_IN_MD, NULL,
                                   NULL_TREE);
                                   NULL_TREE);
    }
    }
}
}
 
 
 
 
rtx
rtx
c4x_expand_builtin (tree exp, rtx target,
c4x_expand_builtin (tree exp, rtx target,
                    rtx subtarget ATTRIBUTE_UNUSED,
                    rtx subtarget ATTRIBUTE_UNUSED,
                    enum machine_mode mode ATTRIBUTE_UNUSED,
                    enum machine_mode mode ATTRIBUTE_UNUSED,
                    int ignore ATTRIBUTE_UNUSED)
                    int ignore ATTRIBUTE_UNUSED)
{
{
  tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
  tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arg0, arg1;
  tree arg0, arg1;
  rtx r0, r1;
  rtx r0, r1;
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    case C4X_BUILTIN_FIX:
    case C4X_BUILTIN_FIX:
      arg0 = TREE_VALUE (arglist);
      arg0 = TREE_VALUE (arglist);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      if (! target || ! register_operand (target, QImode))
      if (! target || ! register_operand (target, QImode))
        target = gen_reg_rtx (QImode);
        target = gen_reg_rtx (QImode);
      emit_insn (gen_fixqfqi_clobber (target, r0));
      emit_insn (gen_fixqfqi_clobber (target, r0));
      return target;
      return target;
 
 
    case C4X_BUILTIN_FIX_ANSI:
    case C4X_BUILTIN_FIX_ANSI:
      arg0 = TREE_VALUE (arglist);
      arg0 = TREE_VALUE (arglist);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      if (! target || ! register_operand (target, QImode))
      if (! target || ! register_operand (target, QImode))
        target = gen_reg_rtx (QImode);
        target = gen_reg_rtx (QImode);
      emit_insn (gen_fix_truncqfqi2 (target, r0));
      emit_insn (gen_fix_truncqfqi2 (target, r0));
      return target;
      return target;
 
 
    case C4X_BUILTIN_MPYI:
    case C4X_BUILTIN_MPYI:
      if (! TARGET_C3X)
      if (! TARGET_C3X)
        break;
        break;
      arg0 = TREE_VALUE (arglist);
      arg0 = TREE_VALUE (arglist);
      arg1 = TREE_VALUE (TREE_CHAIN (arglist));
      arg1 = TREE_VALUE (TREE_CHAIN (arglist));
      r0 = expand_expr (arg0, NULL_RTX, QImode, 0);
      r0 = expand_expr (arg0, NULL_RTX, QImode, 0);
      r1 = expand_expr (arg1, NULL_RTX, QImode, 0);
      r1 = expand_expr (arg1, NULL_RTX, QImode, 0);
      if (! target || ! register_operand (target, QImode))
      if (! target || ! register_operand (target, QImode))
        target = gen_reg_rtx (QImode);
        target = gen_reg_rtx (QImode);
      emit_insn (gen_mulqi3_24_clobber (target, r0, r1));
      emit_insn (gen_mulqi3_24_clobber (target, r0, r1));
      return target;
      return target;
 
 
    case C4X_BUILTIN_TOIEEE:
    case C4X_BUILTIN_TOIEEE:
      if (TARGET_C3X)
      if (TARGET_C3X)
        break;
        break;
      arg0 = TREE_VALUE (arglist);
      arg0 = TREE_VALUE (arglist);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      if (! target || ! register_operand (target, QFmode))
      if (! target || ! register_operand (target, QFmode))
        target = gen_reg_rtx (QFmode);
        target = gen_reg_rtx (QFmode);
      emit_insn (gen_toieee (target, r0));
      emit_insn (gen_toieee (target, r0));
      return target;
      return target;
 
 
    case C4X_BUILTIN_FRIEEE:
    case C4X_BUILTIN_FRIEEE:
      if (TARGET_C3X)
      if (TARGET_C3X)
        break;
        break;
      arg0 = TREE_VALUE (arglist);
      arg0 = TREE_VALUE (arglist);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      if (register_operand (r0, QFmode))
      if (register_operand (r0, QFmode))
        {
        {
          r1 = assign_stack_local (QFmode, GET_MODE_SIZE (QFmode), 0);
          r1 = assign_stack_local (QFmode, GET_MODE_SIZE (QFmode), 0);
          emit_move_insn (r1, r0);
          emit_move_insn (r1, r0);
          r0 = r1;
          r0 = r1;
        }
        }
      if (! target || ! register_operand (target, QFmode))
      if (! target || ! register_operand (target, QFmode))
        target = gen_reg_rtx (QFmode);
        target = gen_reg_rtx (QFmode);
      emit_insn (gen_frieee (target, r0));
      emit_insn (gen_frieee (target, r0));
      return target;
      return target;
 
 
    case C4X_BUILTIN_RCPF:
    case C4X_BUILTIN_RCPF:
      if (TARGET_C3X)
      if (TARGET_C3X)
        break;
        break;
      arg0 = TREE_VALUE (arglist);
      arg0 = TREE_VALUE (arglist);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      r0 = expand_expr (arg0, NULL_RTX, QFmode, 0);
      if (! target || ! register_operand (target, QFmode))
      if (! target || ! register_operand (target, QFmode))
        target = gen_reg_rtx (QFmode);
        target = gen_reg_rtx (QFmode);
      emit_insn (gen_rcpfqf_clobber (target, r0));
      emit_insn (gen_rcpfqf_clobber (target, r0));
      return target;
      return target;
    }
    }
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
static void
static void
c4x_init_libfuncs (void)
c4x_init_libfuncs (void)
{
{
  set_optab_libfunc (smul_optab, QImode, "__mulqi3");
  set_optab_libfunc (smul_optab, QImode, "__mulqi3");
  set_optab_libfunc (sdiv_optab, QImode, "__divqi3");
  set_optab_libfunc (sdiv_optab, QImode, "__divqi3");
  set_optab_libfunc (udiv_optab, QImode, "__udivqi3");
  set_optab_libfunc (udiv_optab, QImode, "__udivqi3");
  set_optab_libfunc (smod_optab, QImode, "__modqi3");
  set_optab_libfunc (smod_optab, QImode, "__modqi3");
  set_optab_libfunc (umod_optab, QImode, "__umodqi3");
  set_optab_libfunc (umod_optab, QImode, "__umodqi3");
  set_optab_libfunc (sdiv_optab, QFmode, "__divqf3");
  set_optab_libfunc (sdiv_optab, QFmode, "__divqf3");
  set_optab_libfunc (smul_optab, HFmode, "__mulhf3");
  set_optab_libfunc (smul_optab, HFmode, "__mulhf3");
  set_optab_libfunc (sdiv_optab, HFmode, "__divhf3");
  set_optab_libfunc (sdiv_optab, HFmode, "__divhf3");
  set_optab_libfunc (smul_optab, HImode, "__mulhi3");
  set_optab_libfunc (smul_optab, HImode, "__mulhi3");
  set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
  set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
  set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
  set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
  set_optab_libfunc (smod_optab, HImode, "__modhi3");
  set_optab_libfunc (smod_optab, HImode, "__modhi3");
  set_optab_libfunc (umod_optab, HImode, "__umodhi3");
  set_optab_libfunc (umod_optab, HImode, "__umodhi3");
  set_optab_libfunc (ffs_optab,  QImode, "__ffs");
  set_optab_libfunc (ffs_optab,  QImode, "__ffs");
  smulhi3_libfunc           = init_one_libfunc ("__smulhi3_high");
  smulhi3_libfunc           = init_one_libfunc ("__smulhi3_high");
  umulhi3_libfunc           = init_one_libfunc ("__umulhi3_high");
  umulhi3_libfunc           = init_one_libfunc ("__umulhi3_high");
  fix_truncqfhi2_libfunc    = init_one_libfunc ("__fix_truncqfhi2");
  fix_truncqfhi2_libfunc    = init_one_libfunc ("__fix_truncqfhi2");
  fixuns_truncqfhi2_libfunc = init_one_libfunc ("__ufix_truncqfhi2");
  fixuns_truncqfhi2_libfunc = init_one_libfunc ("__ufix_truncqfhi2");
  fix_trunchfhi2_libfunc    = init_one_libfunc ("__fix_trunchfhi2");
  fix_trunchfhi2_libfunc    = init_one_libfunc ("__fix_trunchfhi2");
  fixuns_trunchfhi2_libfunc = init_one_libfunc ("__ufix_trunchfhi2");
  fixuns_trunchfhi2_libfunc = init_one_libfunc ("__ufix_trunchfhi2");
  floathiqf2_libfunc        = init_one_libfunc ("__floathiqf2");
  floathiqf2_libfunc        = init_one_libfunc ("__floathiqf2");
  floatunshiqf2_libfunc     = init_one_libfunc ("__ufloathiqf2");
  floatunshiqf2_libfunc     = init_one_libfunc ("__ufloathiqf2");
  floathihf2_libfunc        = init_one_libfunc ("__floathihf2");
  floathihf2_libfunc        = init_one_libfunc ("__floathihf2");
  floatunshihf2_libfunc     = init_one_libfunc ("__ufloathihf2");
  floatunshihf2_libfunc     = init_one_libfunc ("__ufloathihf2");
}
}
 
 
static void
static void
c4x_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED,
c4x_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED,
                       tree decl ATTRIBUTE_UNUSED)
                       tree decl ATTRIBUTE_UNUSED)
{
{
  fprintf (asm_out_file, "\t.sect\t\"%s\"\n", name);
  fprintf (asm_out_file, "\t.sect\t\"%s\"\n", name);
}
}
 
 
static void
static void
c4x_globalize_label (FILE *stream, const char *name)
c4x_globalize_label (FILE *stream, const char *name)
{
{
  default_globalize_label (stream, name);
  default_globalize_label (stream, name);
  c4x_global_label (name);
  c4x_global_label (name);
}
}


#define SHIFT_CODE_P(C) \
#define SHIFT_CODE_P(C) \
  ((C) == ASHIFT || (C) == ASHIFTRT || (C) == LSHIFTRT)
  ((C) == ASHIFT || (C) == ASHIFTRT || (C) == LSHIFTRT)
#define LOGICAL_CODE_P(C) \
#define LOGICAL_CODE_P(C) \
  ((C) == NOT || (C) == AND || (C) == IOR || (C) == XOR)
  ((C) == NOT || (C) == AND || (C) == IOR || (C) == XOR)
 
 
/* Compute a (partial) cost for rtx X.  Return true if the complete
/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */
   scanned.  In either case, *TOTAL contains the cost result.  */
 
 
static bool
static bool
c4x_rtx_costs (rtx x, int code, int outer_code, int *total)
c4x_rtx_costs (rtx x, int code, int outer_code, int *total)
{
{
  HOST_WIDE_INT val;
  HOST_WIDE_INT val;
 
 
  switch (code)
  switch (code)
    {
    {
      /* Some small integers are effectively free for the C40.  We should
      /* Some small integers are effectively free for the C40.  We should
         also consider if we are using the small memory model.  With
         also consider if we are using the small memory model.  With
         the big memory model we require an extra insn for a constant
         the big memory model we require an extra insn for a constant
         loaded from memory.  */
         loaded from memory.  */
 
 
    case CONST_INT:
    case CONST_INT:
      val = INTVAL (x);
      val = INTVAL (x);
      if (c4x_J_constant (x))
      if (c4x_J_constant (x))
        *total = 0;
        *total = 0;
      else if (! TARGET_C3X
      else if (! TARGET_C3X
               && outer_code == AND
               && outer_code == AND
               && (val == 255 || val == 65535))
               && (val == 255 || val == 65535))
        *total = 0;
        *total = 0;
      else if (! TARGET_C3X
      else if (! TARGET_C3X
               && (outer_code == ASHIFTRT || outer_code == LSHIFTRT)
               && (outer_code == ASHIFTRT || outer_code == LSHIFTRT)
               && (val == 16 || val == 24))
               && (val == 16 || val == 24))
        *total = 0;
        *total = 0;
      else if (TARGET_C3X && SHIFT_CODE_P (outer_code))
      else if (TARGET_C3X && SHIFT_CODE_P (outer_code))
        *total = 3;
        *total = 3;
      else if (LOGICAL_CODE_P (outer_code)
      else if (LOGICAL_CODE_P (outer_code)
               ? c4x_L_constant (x) : c4x_I_constant (x))
               ? c4x_L_constant (x) : c4x_I_constant (x))
        *total = 2;
        *total = 2;
      else
      else
        *total = 4;
        *total = 4;
      return true;
      return true;
 
 
    case CONST:
    case CONST:
    case LABEL_REF:
    case LABEL_REF:
    case SYMBOL_REF:
    case SYMBOL_REF:
      *total = 4;
      *total = 4;
      return true;
      return true;
 
 
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      if (c4x_H_constant (x))
      if (c4x_H_constant (x))
        *total = 2;
        *total = 2;
      else if (GET_MODE (x) == QFmode)
      else if (GET_MODE (x) == QFmode)
        *total = 4;
        *total = 4;
      else
      else
        *total = 8;
        *total = 8;
      return true;
      return true;
 
 
    /* ??? Note that we return true, rather than false so that rtx_cost
    /* ??? Note that we return true, rather than false so that rtx_cost
       doesn't include the constant costs.  Otherwise expand_mult will
       doesn't include the constant costs.  Otherwise expand_mult will
       think that it is cheaper to synthesize a multiply rather than to
       think that it is cheaper to synthesize a multiply rather than to
       use a multiply instruction.  I think this is because the algorithm
       use a multiply instruction.  I think this is because the algorithm
       synth_mult doesn't take into account the loading of the operands,
       synth_mult doesn't take into account the loading of the operands,
       whereas the calculation of mult_cost does.  */
       whereas the calculation of mult_cost does.  */
    case PLUS:
    case PLUS:
    case MINUS:
    case MINUS:
    case AND:
    case AND:
    case IOR:
    case IOR:
    case XOR:
    case XOR:
    case ASHIFT:
    case ASHIFT:
    case ASHIFTRT:
    case ASHIFTRT:
    case LSHIFTRT:
    case LSHIFTRT:
      *total = COSTS_N_INSNS (1);
      *total = COSTS_N_INSNS (1);
      return true;
      return true;
 
 
    case MULT:
    case MULT:
      *total = COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
      *total = COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
                              || TARGET_MPYI ? 1 : 14);
                              || TARGET_MPYI ? 1 : 14);
      return true;
      return true;
 
 
    case DIV:
    case DIV:
    case UDIV:
    case UDIV:
    case MOD:
    case MOD:
    case UMOD:
    case UMOD:
      *total = COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
      *total = COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
                              ? 15 : 50);
                              ? 15 : 50);
      return true;
      return true;
 
 
    default:
    default:
      return false;
      return false;
    }
    }
}
}


/* Worker function for TARGET_ASM_EXTERNAL_LIBCALL.  */
/* Worker function for TARGET_ASM_EXTERNAL_LIBCALL.  */
 
 
static void
static void
c4x_external_libcall (rtx fun)
c4x_external_libcall (rtx fun)
{
{
  /* This is only needed to keep asm30 happy for ___divqf3 etc.  */
  /* This is only needed to keep asm30 happy for ___divqf3 etc.  */
  c4x_external_ref (XSTR (fun, 0));
  c4x_external_ref (XSTR (fun, 0));
}
}
 
 
/* Worker function for TARGET_STRUCT_VALUE_RTX.  */
/* Worker function for TARGET_STRUCT_VALUE_RTX.  */
 
 
static rtx
static rtx
c4x_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
c4x_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
                      int incoming ATTRIBUTE_UNUSED)
                      int incoming ATTRIBUTE_UNUSED)
{
{
  return gen_rtx_REG (Pmode, AR0_REGNO);
  return gen_rtx_REG (Pmode, AR0_REGNO);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.