OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [mips/] [mips.c] - Diff between revs 38 and 154

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 38 Rev 154
/* Subroutines used for MIPS code generation.
/* Subroutines used for MIPS code generation.
   Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   Contributed by A. Lichnewsky, lich@inria.inria.fr.
   Contributed by A. Lichnewsky, lich@inria.inria.fr.
   Changes by Michael Meissner, meissner@osf.org.
   Changes by Michael Meissner, meissner@osf.org.
   64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
   64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
   Brendan Eich, brendan@microunity.com.
   Brendan Eich, brendan@microunity.com.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include <signal.h>
#include <signal.h>
#include "rtl.h"
#include "rtl.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "real.h"
#include "real.h"
#include "insn-config.h"
#include "insn-config.h"
#include "conditions.h"
#include "conditions.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "recog.h"
#include "recog.h"
#include "toplev.h"
#include "toplev.h"
#include "output.h"
#include "output.h"
#include "tree.h"
#include "tree.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "flags.h"
#include "flags.h"
#include "reload.h"
#include "reload.h"
#include "tm_p.h"
#include "tm_p.h"
#include "ggc.h"
#include "ggc.h"
#include "gstab.h"
#include "gstab.h"
#include "hashtab.h"
#include "hashtab.h"
#include "debug.h"
#include "debug.h"
#include "target.h"
#include "target.h"
#include "target-def.h"
#include "target-def.h"
#include "integrate.h"
#include "integrate.h"
#include "langhooks.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "cfglayout.h"
#include "sched-int.h"
#include "sched-int.h"
#include "tree-gimple.h"
#include "tree-gimple.h"
#include "bitmap.h"
#include "bitmap.h"
 
 
/* True if X is an unspec wrapper around a SYMBOL_REF or LABEL_REF.  */
/* True if X is an unspec wrapper around a SYMBOL_REF or LABEL_REF.  */
#define UNSPEC_ADDRESS_P(X)                                     \
#define UNSPEC_ADDRESS_P(X)                                     \
  (GET_CODE (X) == UNSPEC                                       \
  (GET_CODE (X) == UNSPEC                                       \
   && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST                       \
   && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST                       \
   && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
   && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
 
 
/* Extract the symbol or label from UNSPEC wrapper X.  */
/* Extract the symbol or label from UNSPEC wrapper X.  */
#define UNSPEC_ADDRESS(X) \
#define UNSPEC_ADDRESS(X) \
  XVECEXP (X, 0, 0)
  XVECEXP (X, 0, 0)
 
 
/* Extract the symbol type from UNSPEC wrapper X.  */
/* Extract the symbol type from UNSPEC wrapper X.  */
#define UNSPEC_ADDRESS_TYPE(X) \
#define UNSPEC_ADDRESS_TYPE(X) \
  ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
  ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
 
 
/* The maximum distance between the top of the stack frame and the
/* The maximum distance between the top of the stack frame and the
   value $sp has when we save & restore registers.
   value $sp has when we save & restore registers.
 
 
   Use a maximum gap of 0x100 in the mips16 case.  We can then use
   Use a maximum gap of 0x100 in the mips16 case.  We can then use
   unextended instructions to save and restore registers, and to
   unextended instructions to save and restore registers, and to
   allocate and deallocate the top part of the frame.
   allocate and deallocate the top part of the frame.
 
 
   The value in the !mips16 case must be a SMALL_OPERAND and must
   The value in the !mips16 case must be a SMALL_OPERAND and must
   preserve the maximum stack alignment.  */
   preserve the maximum stack alignment.  */
#define MIPS_MAX_FIRST_STACK_STEP (TARGET_MIPS16 ? 0x100 : 0x7ff0)
#define MIPS_MAX_FIRST_STACK_STEP (TARGET_MIPS16 ? 0x100 : 0x7ff0)
 
 
/* True if INSN is a mips.md pattern or asm statement.  */
/* True if INSN is a mips.md pattern or asm statement.  */
#define USEFUL_INSN_P(INSN)                                             \
#define USEFUL_INSN_P(INSN)                                             \
  (INSN_P (INSN)                                                        \
  (INSN_P (INSN)                                                        \
   && GET_CODE (PATTERN (INSN)) != USE                                  \
   && GET_CODE (PATTERN (INSN)) != USE                                  \
   && GET_CODE (PATTERN (INSN)) != CLOBBER                              \
   && GET_CODE (PATTERN (INSN)) != CLOBBER                              \
   && GET_CODE (PATTERN (INSN)) != ADDR_VEC                             \
   && GET_CODE (PATTERN (INSN)) != ADDR_VEC                             \
   && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
   && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
 
 
/* If INSN is a delayed branch sequence, return the first instruction
/* If INSN is a delayed branch sequence, return the first instruction
   in the sequence, otherwise return INSN itself.  */
   in the sequence, otherwise return INSN itself.  */
#define SEQ_BEGIN(INSN)                                                 \
#define SEQ_BEGIN(INSN)                                                 \
  (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE               \
  (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE               \
   ? XVECEXP (PATTERN (INSN), 0, 0)                                       \
   ? XVECEXP (PATTERN (INSN), 0, 0)                                       \
   : (INSN))
   : (INSN))
 
 
/* Likewise for the last instruction in a delayed branch sequence.  */
/* Likewise for the last instruction in a delayed branch sequence.  */
#define SEQ_END(INSN)                                                   \
#define SEQ_END(INSN)                                                   \
  (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE               \
  (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE               \
   ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
   ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
   : (INSN))
   : (INSN))
 
 
/* Execute the following loop body with SUBINSN set to each instruction
/* Execute the following loop body with SUBINSN set to each instruction
   between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive.  */
   between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive.  */
#define FOR_EACH_SUBINSN(SUBINSN, INSN)                                 \
#define FOR_EACH_SUBINSN(SUBINSN, INSN)                                 \
  for ((SUBINSN) = SEQ_BEGIN (INSN);                                    \
  for ((SUBINSN) = SEQ_BEGIN (INSN);                                    \
       (SUBINSN) != NEXT_INSN (SEQ_END (INSN));                         \
       (SUBINSN) != NEXT_INSN (SEQ_END (INSN));                         \
       (SUBINSN) = NEXT_INSN (SUBINSN))
       (SUBINSN) = NEXT_INSN (SUBINSN))
 
 
/* Classifies an address.
/* Classifies an address.
 
 
   ADDRESS_REG
   ADDRESS_REG
       A natural register + offset address.  The register satisfies
       A natural register + offset address.  The register satisfies
       mips_valid_base_register_p and the offset is a const_arith_operand.
       mips_valid_base_register_p and the offset is a const_arith_operand.
 
 
   ADDRESS_LO_SUM
   ADDRESS_LO_SUM
       A LO_SUM rtx.  The first operand is a valid base register and
       A LO_SUM rtx.  The first operand is a valid base register and
       the second operand is a symbolic address.
       the second operand is a symbolic address.
 
 
   ADDRESS_CONST_INT
   ADDRESS_CONST_INT
       A signed 16-bit constant address.
       A signed 16-bit constant address.
 
 
   ADDRESS_SYMBOLIC:
   ADDRESS_SYMBOLIC:
       A constant symbolic address (equivalent to CONSTANT_SYMBOLIC).  */
       A constant symbolic address (equivalent to CONSTANT_SYMBOLIC).  */
enum mips_address_type {
enum mips_address_type {
  ADDRESS_REG,
  ADDRESS_REG,
  ADDRESS_LO_SUM,
  ADDRESS_LO_SUM,
  ADDRESS_CONST_INT,
  ADDRESS_CONST_INT,
  ADDRESS_SYMBOLIC
  ADDRESS_SYMBOLIC
};
};
 
 
/* Classifies the prototype of a builtin function.  */
/* Classifies the prototype of a builtin function.  */
enum mips_function_type
enum mips_function_type
{
{
  MIPS_V2SF_FTYPE_V2SF,
  MIPS_V2SF_FTYPE_V2SF,
  MIPS_V2SF_FTYPE_V2SF_V2SF,
  MIPS_V2SF_FTYPE_V2SF_V2SF,
  MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
  MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
  MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,
  MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,
  MIPS_V2SF_FTYPE_SF_SF,
  MIPS_V2SF_FTYPE_SF_SF,
  MIPS_INT_FTYPE_V2SF_V2SF,
  MIPS_INT_FTYPE_V2SF_V2SF,
  MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,
  MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,
  MIPS_INT_FTYPE_SF_SF,
  MIPS_INT_FTYPE_SF_SF,
  MIPS_INT_FTYPE_DF_DF,
  MIPS_INT_FTYPE_DF_DF,
  MIPS_SF_FTYPE_V2SF,
  MIPS_SF_FTYPE_V2SF,
  MIPS_SF_FTYPE_SF,
  MIPS_SF_FTYPE_SF,
  MIPS_SF_FTYPE_SF_SF,
  MIPS_SF_FTYPE_SF_SF,
  MIPS_DF_FTYPE_DF,
  MIPS_DF_FTYPE_DF,
  MIPS_DF_FTYPE_DF_DF,
  MIPS_DF_FTYPE_DF_DF,
 
 
  /* For MIPS DSP ASE  */
  /* For MIPS DSP ASE  */
  MIPS_DI_FTYPE_DI_SI,
  MIPS_DI_FTYPE_DI_SI,
  MIPS_DI_FTYPE_DI_SI_SI,
  MIPS_DI_FTYPE_DI_SI_SI,
  MIPS_DI_FTYPE_DI_V2HI_V2HI,
  MIPS_DI_FTYPE_DI_V2HI_V2HI,
  MIPS_DI_FTYPE_DI_V4QI_V4QI,
  MIPS_DI_FTYPE_DI_V4QI_V4QI,
  MIPS_SI_FTYPE_DI_SI,
  MIPS_SI_FTYPE_DI_SI,
  MIPS_SI_FTYPE_PTR_SI,
  MIPS_SI_FTYPE_PTR_SI,
  MIPS_SI_FTYPE_SI,
  MIPS_SI_FTYPE_SI,
  MIPS_SI_FTYPE_SI_SI,
  MIPS_SI_FTYPE_SI_SI,
  MIPS_SI_FTYPE_V2HI,
  MIPS_SI_FTYPE_V2HI,
  MIPS_SI_FTYPE_V2HI_V2HI,
  MIPS_SI_FTYPE_V2HI_V2HI,
  MIPS_SI_FTYPE_V4QI,
  MIPS_SI_FTYPE_V4QI,
  MIPS_SI_FTYPE_V4QI_V4QI,
  MIPS_SI_FTYPE_V4QI_V4QI,
  MIPS_SI_FTYPE_VOID,
  MIPS_SI_FTYPE_VOID,
  MIPS_V2HI_FTYPE_SI,
  MIPS_V2HI_FTYPE_SI,
  MIPS_V2HI_FTYPE_SI_SI,
  MIPS_V2HI_FTYPE_SI_SI,
  MIPS_V2HI_FTYPE_V2HI,
  MIPS_V2HI_FTYPE_V2HI,
  MIPS_V2HI_FTYPE_V2HI_SI,
  MIPS_V2HI_FTYPE_V2HI_SI,
  MIPS_V2HI_FTYPE_V2HI_V2HI,
  MIPS_V2HI_FTYPE_V2HI_V2HI,
  MIPS_V2HI_FTYPE_V4QI,
  MIPS_V2HI_FTYPE_V4QI,
  MIPS_V2HI_FTYPE_V4QI_V2HI,
  MIPS_V2HI_FTYPE_V4QI_V2HI,
  MIPS_V4QI_FTYPE_SI,
  MIPS_V4QI_FTYPE_SI,
  MIPS_V4QI_FTYPE_V2HI_V2HI,
  MIPS_V4QI_FTYPE_V2HI_V2HI,
  MIPS_V4QI_FTYPE_V4QI_SI,
  MIPS_V4QI_FTYPE_V4QI_SI,
  MIPS_V4QI_FTYPE_V4QI_V4QI,
  MIPS_V4QI_FTYPE_V4QI_V4QI,
  MIPS_VOID_FTYPE_SI_SI,
  MIPS_VOID_FTYPE_SI_SI,
  MIPS_VOID_FTYPE_V2HI_V2HI,
  MIPS_VOID_FTYPE_V2HI_V2HI,
  MIPS_VOID_FTYPE_V4QI_V4QI,
  MIPS_VOID_FTYPE_V4QI_V4QI,
 
 
  /* The last type.  */
  /* The last type.  */
  MIPS_MAX_FTYPE_MAX
  MIPS_MAX_FTYPE_MAX
};
};
 
 
/* Specifies how a builtin function should be converted into rtl.  */
/* Specifies how a builtin function should be converted into rtl.  */
enum mips_builtin_type
enum mips_builtin_type
{
{
  /* The builtin corresponds directly to an .md pattern.  The return
  /* The builtin corresponds directly to an .md pattern.  The return
     value is mapped to operand 0 and the arguments are mapped to
     value is mapped to operand 0 and the arguments are mapped to
     operands 1 and above.  */
     operands 1 and above.  */
  MIPS_BUILTIN_DIRECT,
  MIPS_BUILTIN_DIRECT,
 
 
  /* The builtin corresponds directly to an .md pattern.  There is no return
  /* The builtin corresponds directly to an .md pattern.  There is no return
     value and the arguments are mapped to operands 0 and above.  */
     value and the arguments are mapped to operands 0 and above.  */
  MIPS_BUILTIN_DIRECT_NO_TARGET,
  MIPS_BUILTIN_DIRECT_NO_TARGET,
 
 
  /* The builtin corresponds to a comparison instruction followed by
  /* The builtin corresponds to a comparison instruction followed by
     a mips_cond_move_tf_ps pattern.  The first two arguments are the
     a mips_cond_move_tf_ps pattern.  The first two arguments are the
     values to compare and the second two arguments are the vector
     values to compare and the second two arguments are the vector
     operands for the movt.ps or movf.ps instruction (in assembly order).  */
     operands for the movt.ps or movf.ps instruction (in assembly order).  */
  MIPS_BUILTIN_MOVF,
  MIPS_BUILTIN_MOVF,
  MIPS_BUILTIN_MOVT,
  MIPS_BUILTIN_MOVT,
 
 
  /* The builtin corresponds to a V2SF comparison instruction.  Operand 0
  /* The builtin corresponds to a V2SF comparison instruction.  Operand 0
     of this instruction is the result of the comparison, which has mode
     of this instruction is the result of the comparison, which has mode
     CCV2 or CCV4.  The function arguments are mapped to operands 1 and
     CCV2 or CCV4.  The function arguments are mapped to operands 1 and
     above.  The function's return value is an SImode boolean that is
     above.  The function's return value is an SImode boolean that is
     true under the following conditions:
     true under the following conditions:
 
 
     MIPS_BUILTIN_CMP_ANY: one of the registers is true
     MIPS_BUILTIN_CMP_ANY: one of the registers is true
     MIPS_BUILTIN_CMP_ALL: all of the registers are true
     MIPS_BUILTIN_CMP_ALL: all of the registers are true
     MIPS_BUILTIN_CMP_LOWER: the first register is true
     MIPS_BUILTIN_CMP_LOWER: the first register is true
     MIPS_BUILTIN_CMP_UPPER: the second register is true.  */
     MIPS_BUILTIN_CMP_UPPER: the second register is true.  */
  MIPS_BUILTIN_CMP_ANY,
  MIPS_BUILTIN_CMP_ANY,
  MIPS_BUILTIN_CMP_ALL,
  MIPS_BUILTIN_CMP_ALL,
  MIPS_BUILTIN_CMP_UPPER,
  MIPS_BUILTIN_CMP_UPPER,
  MIPS_BUILTIN_CMP_LOWER,
  MIPS_BUILTIN_CMP_LOWER,
 
 
  /* As above, but the instruction only sets a single $fcc register.  */
  /* As above, but the instruction only sets a single $fcc register.  */
  MIPS_BUILTIN_CMP_SINGLE,
  MIPS_BUILTIN_CMP_SINGLE,
 
 
  /* For generating bposge32 branch instructions in MIPS32 DSP ASE.  */
  /* For generating bposge32 branch instructions in MIPS32 DSP ASE.  */
  MIPS_BUILTIN_BPOSGE32
  MIPS_BUILTIN_BPOSGE32
};
};
 
 
/* Invokes MACRO (COND) for each c.cond.fmt condition.  */
/* Invokes MACRO (COND) for each c.cond.fmt condition.  */
#define MIPS_FP_CONDITIONS(MACRO) \
#define MIPS_FP_CONDITIONS(MACRO) \
  MACRO (f),    \
  MACRO (f),    \
  MACRO (un),   \
  MACRO (un),   \
  MACRO (eq),   \
  MACRO (eq),   \
  MACRO (ueq),  \
  MACRO (ueq),  \
  MACRO (olt),  \
  MACRO (olt),  \
  MACRO (ult),  \
  MACRO (ult),  \
  MACRO (ole),  \
  MACRO (ole),  \
  MACRO (ule),  \
  MACRO (ule),  \
  MACRO (sf),   \
  MACRO (sf),   \
  MACRO (ngle), \
  MACRO (ngle), \
  MACRO (seq),  \
  MACRO (seq),  \
  MACRO (ngl),  \
  MACRO (ngl),  \
  MACRO (lt),   \
  MACRO (lt),   \
  MACRO (nge),  \
  MACRO (nge),  \
  MACRO (le),   \
  MACRO (le),   \
  MACRO (ngt)
  MACRO (ngt)
 
 
/* Enumerates the codes above as MIPS_FP_COND_<X>.  */
/* Enumerates the codes above as MIPS_FP_COND_<X>.  */
#define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
#define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
enum mips_fp_condition {
enum mips_fp_condition {
  MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
  MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
};
};
 
 
/* Index X provides the string representation of MIPS_FP_COND_<X>.  */
/* Index X provides the string representation of MIPS_FP_COND_<X>.  */
#define STRINGIFY(X) #X
#define STRINGIFY(X) #X
static const char *const mips_fp_conditions[] = {
static const char *const mips_fp_conditions[] = {
  MIPS_FP_CONDITIONS (STRINGIFY)
  MIPS_FP_CONDITIONS (STRINGIFY)
};
};
 
 
/* A function to save or store a register.  The first argument is the
/* A function to save or store a register.  The first argument is the
   register and the second is the stack slot.  */
   register and the second is the stack slot.  */
typedef void (*mips_save_restore_fn) (rtx, rtx);
typedef void (*mips_save_restore_fn) (rtx, rtx);
 
 
struct mips16_constant;
struct mips16_constant;
struct mips_arg_info;
struct mips_arg_info;
struct mips_address_info;
struct mips_address_info;
struct mips_integer_op;
struct mips_integer_op;
struct mips_sim;
struct mips_sim;
 
 
static enum mips_symbol_type mips_classify_symbol (rtx);
static enum mips_symbol_type mips_classify_symbol (rtx);
static void mips_split_const (rtx, rtx *, HOST_WIDE_INT *);
static void mips_split_const (rtx, rtx *, HOST_WIDE_INT *);
static bool mips_offset_within_object_p (rtx, HOST_WIDE_INT);
static bool mips_offset_within_object_p (rtx, HOST_WIDE_INT);
static bool mips_valid_base_register_p (rtx, enum machine_mode, int);
static bool mips_valid_base_register_p (rtx, enum machine_mode, int);
static bool mips_symbolic_address_p (enum mips_symbol_type, enum machine_mode);
static bool mips_symbolic_address_p (enum mips_symbol_type, enum machine_mode);
static bool mips_classify_address (struct mips_address_info *, rtx,
static bool mips_classify_address (struct mips_address_info *, rtx,
                                   enum machine_mode, int);
                                   enum machine_mode, int);
static bool mips_cannot_force_const_mem (rtx);
static bool mips_cannot_force_const_mem (rtx);
static bool mips_use_blocks_for_constant_p (enum machine_mode, rtx);
static bool mips_use_blocks_for_constant_p (enum machine_mode, rtx);
static int mips_symbol_insns (enum mips_symbol_type);
static int mips_symbol_insns (enum mips_symbol_type);
static bool mips16_unextended_reference_p (enum machine_mode mode, rtx, rtx);
static bool mips16_unextended_reference_p (enum machine_mode mode, rtx, rtx);
static rtx mips_force_temporary (rtx, rtx);
static rtx mips_force_temporary (rtx, rtx);
static rtx mips_unspec_offset_high (rtx, rtx, rtx, enum mips_symbol_type);
static rtx mips_unspec_offset_high (rtx, rtx, rtx, enum mips_symbol_type);
static rtx mips_add_offset (rtx, rtx, HOST_WIDE_INT);
static rtx mips_add_offset (rtx, rtx, HOST_WIDE_INT);
static unsigned int mips_build_shift (struct mips_integer_op *, HOST_WIDE_INT);
static unsigned int mips_build_shift (struct mips_integer_op *, HOST_WIDE_INT);
static unsigned int mips_build_lower (struct mips_integer_op *,
static unsigned int mips_build_lower (struct mips_integer_op *,
                                      unsigned HOST_WIDE_INT);
                                      unsigned HOST_WIDE_INT);
static unsigned int mips_build_integer (struct mips_integer_op *,
static unsigned int mips_build_integer (struct mips_integer_op *,
                                        unsigned HOST_WIDE_INT);
                                        unsigned HOST_WIDE_INT);
static void mips_legitimize_const_move (enum machine_mode, rtx, rtx);
static void mips_legitimize_const_move (enum machine_mode, rtx, rtx);
static int m16_check_op (rtx, int, int, int);
static int m16_check_op (rtx, int, int, int);
static bool mips_rtx_costs (rtx, int, int, int *);
static bool mips_rtx_costs (rtx, int, int, int *);
static int mips_address_cost (rtx);
static int mips_address_cost (rtx);
static void mips_emit_compare (enum rtx_code *, rtx *, rtx *, bool);
static void mips_emit_compare (enum rtx_code *, rtx *, rtx *, bool);
static void mips_load_call_address (rtx, rtx, int);
static void mips_load_call_address (rtx, rtx, int);
static bool mips_function_ok_for_sibcall (tree, tree);
static bool mips_function_ok_for_sibcall (tree, tree);
static void mips_block_move_straight (rtx, rtx, HOST_WIDE_INT);
static void mips_block_move_straight (rtx, rtx, HOST_WIDE_INT);
static void mips_adjust_block_mem (rtx, HOST_WIDE_INT, rtx *, rtx *);
static void mips_adjust_block_mem (rtx, HOST_WIDE_INT, rtx *, rtx *);
static void mips_block_move_loop (rtx, rtx, HOST_WIDE_INT);
static void mips_block_move_loop (rtx, rtx, HOST_WIDE_INT);
static void mips_arg_info (const CUMULATIVE_ARGS *, enum machine_mode,
static void mips_arg_info (const CUMULATIVE_ARGS *, enum machine_mode,
                           tree, int, struct mips_arg_info *);
                           tree, int, struct mips_arg_info *);
static bool mips_get_unaligned_mem (rtx *, unsigned int, int, rtx *, rtx *);
static bool mips_get_unaligned_mem (rtx *, unsigned int, int, rtx *, rtx *);
static void mips_set_architecture (const struct mips_cpu_info *);
static void mips_set_architecture (const struct mips_cpu_info *);
static void mips_set_tune (const struct mips_cpu_info *);
static void mips_set_tune (const struct mips_cpu_info *);
static bool mips_handle_option (size_t, const char *, int);
static bool mips_handle_option (size_t, const char *, int);
static struct machine_function *mips_init_machine_status (void);
static struct machine_function *mips_init_machine_status (void);
static void print_operand_reloc (FILE *, rtx, const char **);
static void print_operand_reloc (FILE *, rtx, const char **);
#if TARGET_IRIX
#if TARGET_IRIX
static void irix_output_external_libcall (rtx);
static void irix_output_external_libcall (rtx);
#endif
#endif
static void mips_file_start (void);
static void mips_file_start (void);
static void mips_file_end (void);
static void mips_file_end (void);
static bool mips_rewrite_small_data_p (rtx);
static bool mips_rewrite_small_data_p (rtx);
static int mips_small_data_pattern_1 (rtx *, void *);
static int mips_small_data_pattern_1 (rtx *, void *);
static int mips_rewrite_small_data_1 (rtx *, void *);
static int mips_rewrite_small_data_1 (rtx *, void *);
static bool mips_function_has_gp_insn (void);
static bool mips_function_has_gp_insn (void);
static unsigned int mips_global_pointer (void);
static unsigned int mips_global_pointer (void);
static bool mips_save_reg_p (unsigned int);
static bool mips_save_reg_p (unsigned int);
static void mips_save_restore_reg (enum machine_mode, int, HOST_WIDE_INT,
static void mips_save_restore_reg (enum machine_mode, int, HOST_WIDE_INT,
                                   mips_save_restore_fn);
                                   mips_save_restore_fn);
static void mips_for_each_saved_reg (HOST_WIDE_INT, mips_save_restore_fn);
static void mips_for_each_saved_reg (HOST_WIDE_INT, mips_save_restore_fn);
static void mips_output_cplocal (void);
static void mips_output_cplocal (void);
static void mips_emit_loadgp (void);
static void mips_emit_loadgp (void);
static void mips_output_function_prologue (FILE *, HOST_WIDE_INT);
static void mips_output_function_prologue (FILE *, HOST_WIDE_INT);
static void mips_set_frame_expr (rtx);
static void mips_set_frame_expr (rtx);
static rtx mips_frame_set (rtx, rtx);
static rtx mips_frame_set (rtx, rtx);
static void mips_save_reg (rtx, rtx);
static void mips_save_reg (rtx, rtx);
static void mips_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void mips_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void mips_restore_reg (rtx, rtx);
static void mips_restore_reg (rtx, rtx);
static void mips_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
static void mips_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
                                  HOST_WIDE_INT, tree);
                                  HOST_WIDE_INT, tree);
static int symbolic_expression_p (rtx);
static int symbolic_expression_p (rtx);
static section *mips_select_rtx_section (enum machine_mode, rtx,
static section *mips_select_rtx_section (enum machine_mode, rtx,
                                         unsigned HOST_WIDE_INT);
                                         unsigned HOST_WIDE_INT);
static section *mips_function_rodata_section (tree);
static section *mips_function_rodata_section (tree);
static bool mips_in_small_data_p (tree);
static bool mips_in_small_data_p (tree);
static bool mips_use_anchors_for_symbol_p (rtx);
static bool mips_use_anchors_for_symbol_p (rtx);
static int mips_fpr_return_fields (tree, tree *);
static int mips_fpr_return_fields (tree, tree *);
static bool mips_return_in_msb (tree);
static bool mips_return_in_msb (tree);
static rtx mips_return_fpr_pair (enum machine_mode mode,
static rtx mips_return_fpr_pair (enum machine_mode mode,
                                 enum machine_mode mode1, HOST_WIDE_INT,
                                 enum machine_mode mode1, HOST_WIDE_INT,
                                 enum machine_mode mode2, HOST_WIDE_INT);
                                 enum machine_mode mode2, HOST_WIDE_INT);
static rtx mips16_gp_pseudo_reg (void);
static rtx mips16_gp_pseudo_reg (void);
static void mips16_fp_args (FILE *, int, int);
static void mips16_fp_args (FILE *, int, int);
static void build_mips16_function_stub (FILE *);
static void build_mips16_function_stub (FILE *);
static rtx dump_constants_1 (enum machine_mode, rtx, rtx);
static rtx dump_constants_1 (enum machine_mode, rtx, rtx);
static void dump_constants (struct mips16_constant *, rtx);
static void dump_constants (struct mips16_constant *, rtx);
static int mips16_insn_length (rtx);
static int mips16_insn_length (rtx);
static int mips16_rewrite_pool_refs (rtx *, void *);
static int mips16_rewrite_pool_refs (rtx *, void *);
static void mips16_lay_out_constants (void);
static void mips16_lay_out_constants (void);
static void mips_sim_reset (struct mips_sim *);
static void mips_sim_reset (struct mips_sim *);
static void mips_sim_init (struct mips_sim *, state_t);
static void mips_sim_init (struct mips_sim *, state_t);
static void mips_sim_next_cycle (struct mips_sim *);
static void mips_sim_next_cycle (struct mips_sim *);
static void mips_sim_wait_reg (struct mips_sim *, rtx, rtx);
static void mips_sim_wait_reg (struct mips_sim *, rtx, rtx);
static int mips_sim_wait_regs_2 (rtx *, void *);
static int mips_sim_wait_regs_2 (rtx *, void *);
static void mips_sim_wait_regs_1 (rtx *, void *);
static void mips_sim_wait_regs_1 (rtx *, void *);
static void mips_sim_wait_regs (struct mips_sim *, rtx);
static void mips_sim_wait_regs (struct mips_sim *, rtx);
static void mips_sim_wait_units (struct mips_sim *, rtx);
static void mips_sim_wait_units (struct mips_sim *, rtx);
static void mips_sim_wait_insn (struct mips_sim *, rtx);
static void mips_sim_wait_insn (struct mips_sim *, rtx);
static void mips_sim_record_set (rtx, rtx, void *);
static void mips_sim_record_set (rtx, rtx, void *);
static void mips_sim_issue_insn (struct mips_sim *, rtx);
static void mips_sim_issue_insn (struct mips_sim *, rtx);
static void mips_sim_issue_nop (struct mips_sim *);
static void mips_sim_issue_nop (struct mips_sim *);
static void mips_sim_finish_insn (struct mips_sim *, rtx);
static void mips_sim_finish_insn (struct mips_sim *, rtx);
static void vr4130_avoid_branch_rt_conflict (rtx);
static void vr4130_avoid_branch_rt_conflict (rtx);
static void vr4130_align_insns (void);
static void vr4130_align_insns (void);
static void mips_avoid_hazard (rtx, rtx, int *, rtx *, rtx);
static void mips_avoid_hazard (rtx, rtx, int *, rtx *, rtx);
static void mips_avoid_hazards (void);
static void mips_avoid_hazards (void);
static void mips_reorg (void);
static void mips_reorg (void);
static bool mips_strict_matching_cpu_name_p (const char *, const char *);
static bool mips_strict_matching_cpu_name_p (const char *, const char *);
static bool mips_matching_cpu_name_p (const char *, const char *);
static bool mips_matching_cpu_name_p (const char *, const char *);
static const struct mips_cpu_info *mips_parse_cpu (const char *);
static const struct mips_cpu_info *mips_parse_cpu (const char *);
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
static bool mips_return_in_memory (tree, tree);
static bool mips_return_in_memory (tree, tree);
static bool mips_strict_argument_naming (CUMULATIVE_ARGS *);
static bool mips_strict_argument_naming (CUMULATIVE_ARGS *);
static void mips_macc_chains_record (rtx);
static void mips_macc_chains_record (rtx);
static void mips_macc_chains_reorder (rtx *, int);
static void mips_macc_chains_reorder (rtx *, int);
static void vr4130_true_reg_dependence_p_1 (rtx, rtx, void *);
static void vr4130_true_reg_dependence_p_1 (rtx, rtx, void *);
static bool vr4130_true_reg_dependence_p (rtx);
static bool vr4130_true_reg_dependence_p (rtx);
static bool vr4130_swap_insns_p (rtx, rtx);
static bool vr4130_swap_insns_p (rtx, rtx);
static void vr4130_reorder (rtx *, int);
static void vr4130_reorder (rtx *, int);
static void mips_promote_ready (rtx *, int, int);
static void mips_promote_ready (rtx *, int, int);
static int mips_sched_reorder (FILE *, int, rtx *, int *, int);
static int mips_sched_reorder (FILE *, int, rtx *, int *, int);
static int mips_variable_issue (FILE *, int, rtx, int);
static int mips_variable_issue (FILE *, int, rtx, int);
static int mips_adjust_cost (rtx, rtx, rtx, int);
static int mips_adjust_cost (rtx, rtx, rtx, int);
static int mips_issue_rate (void);
static int mips_issue_rate (void);
static int mips_multipass_dfa_lookahead (void);
static int mips_multipass_dfa_lookahead (void);
static void mips_init_libfuncs (void);
static void mips_init_libfuncs (void);
static void mips_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
static void mips_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
                                         tree, int *, int);
                                         tree, int *, int);
static tree mips_build_builtin_va_list (void);
static tree mips_build_builtin_va_list (void);
static tree mips_gimplify_va_arg_expr (tree, tree, tree *, tree *);
static tree mips_gimplify_va_arg_expr (tree, tree, tree *, tree *);
static bool mips_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode mode,
static bool mips_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode mode,
                                    tree, bool);
                                    tree, bool);
static bool mips_callee_copies (CUMULATIVE_ARGS *, enum machine_mode mode,
static bool mips_callee_copies (CUMULATIVE_ARGS *, enum machine_mode mode,
                                tree, bool);
                                tree, bool);
static int mips_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode mode,
static int mips_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode mode,
                                   tree, bool);
                                   tree, bool);
static bool mips_valid_pointer_mode (enum machine_mode);
static bool mips_valid_pointer_mode (enum machine_mode);
static bool mips_vector_mode_supported_p (enum machine_mode);
static bool mips_vector_mode_supported_p (enum machine_mode);
static rtx mips_prepare_builtin_arg (enum insn_code, unsigned int, tree *);
static rtx mips_prepare_builtin_arg (enum insn_code, unsigned int, tree *);
static rtx mips_prepare_builtin_target (enum insn_code, unsigned int, rtx);
static rtx mips_prepare_builtin_target (enum insn_code, unsigned int, rtx);
static rtx mips_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static rtx mips_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static void mips_init_builtins (void);
static void mips_init_builtins (void);
static rtx mips_expand_builtin_direct (enum insn_code, rtx, tree, bool);
static rtx mips_expand_builtin_direct (enum insn_code, rtx, tree, bool);
static rtx mips_expand_builtin_movtf (enum mips_builtin_type,
static rtx mips_expand_builtin_movtf (enum mips_builtin_type,
                                      enum insn_code, enum mips_fp_condition,
                                      enum insn_code, enum mips_fp_condition,
                                      rtx, tree);
                                      rtx, tree);
static rtx mips_expand_builtin_compare (enum mips_builtin_type,
static rtx mips_expand_builtin_compare (enum mips_builtin_type,
                                        enum insn_code, enum mips_fp_condition,
                                        enum insn_code, enum mips_fp_condition,
                                        rtx, tree);
                                        rtx, tree);
static rtx mips_expand_builtin_bposge (enum mips_builtin_type, rtx);
static rtx mips_expand_builtin_bposge (enum mips_builtin_type, rtx);
static void mips_encode_section_info (tree, rtx, int);
static void mips_encode_section_info (tree, rtx, int);
static void mips_extra_live_on_entry (bitmap);
static void mips_extra_live_on_entry (bitmap);
static int mips_mode_rep_extended (enum machine_mode, enum machine_mode);
static int mips_mode_rep_extended (enum machine_mode, enum machine_mode);
 
 
/* Structure to be filled in by compute_frame_size with register
/* Structure to be filled in by compute_frame_size with register
   save masks, and offsets for the current function.  */
   save masks, and offsets for the current function.  */
 
 
struct mips_frame_info GTY(())
struct mips_frame_info GTY(())
{
{
  HOST_WIDE_INT total_size;     /* # bytes that the entire frame takes up */
  HOST_WIDE_INT total_size;     /* # bytes that the entire frame takes up */
  HOST_WIDE_INT var_size;       /* # bytes that variables take up */
  HOST_WIDE_INT var_size;       /* # bytes that variables take up */
  HOST_WIDE_INT args_size;      /* # bytes that outgoing arguments take up */
  HOST_WIDE_INT args_size;      /* # bytes that outgoing arguments take up */
  HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
  HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
  HOST_WIDE_INT gp_reg_size;    /* # bytes needed to store gp regs */
  HOST_WIDE_INT gp_reg_size;    /* # bytes needed to store gp regs */
  HOST_WIDE_INT fp_reg_size;    /* # bytes needed to store fp regs */
  HOST_WIDE_INT fp_reg_size;    /* # bytes needed to store fp regs */
  unsigned int mask;            /* mask of saved gp registers */
  unsigned int mask;            /* mask of saved gp registers */
  unsigned int fmask;           /* mask of saved fp registers */
  unsigned int fmask;           /* mask of saved fp registers */
  HOST_WIDE_INT gp_save_offset; /* offset from vfp to store gp registers */
  HOST_WIDE_INT gp_save_offset; /* offset from vfp to store gp registers */
  HOST_WIDE_INT fp_save_offset; /* offset from vfp to store fp registers */
  HOST_WIDE_INT fp_save_offset; /* offset from vfp to store fp registers */
  HOST_WIDE_INT gp_sp_offset;   /* offset from new sp to store gp registers */
  HOST_WIDE_INT gp_sp_offset;   /* offset from new sp to store gp registers */
  HOST_WIDE_INT fp_sp_offset;   /* offset from new sp to store fp registers */
  HOST_WIDE_INT fp_sp_offset;   /* offset from new sp to store fp registers */
  bool initialized;             /* true if frame size already calculated */
  bool initialized;             /* true if frame size already calculated */
  int num_gp;                   /* number of gp registers saved */
  int num_gp;                   /* number of gp registers saved */
  int num_fp;                   /* number of fp registers saved */
  int num_fp;                   /* number of fp registers saved */
};
};
 
 
struct machine_function GTY(()) {
struct machine_function GTY(()) {
  /* Pseudo-reg holding the value of $28 in a mips16 function which
  /* Pseudo-reg holding the value of $28 in a mips16 function which
     refers to GP relative global variables.  */
     refers to GP relative global variables.  */
  rtx mips16_gp_pseudo_rtx;
  rtx mips16_gp_pseudo_rtx;
 
 
  /* The number of extra stack bytes taken up by register varargs.
  /* The number of extra stack bytes taken up by register varargs.
     This area is allocated by the callee at the very top of the frame.  */
     This area is allocated by the callee at the very top of the frame.  */
  int varargs_size;
  int varargs_size;
 
 
  /* Current frame information, calculated by compute_frame_size.  */
  /* Current frame information, calculated by compute_frame_size.  */
  struct mips_frame_info frame;
  struct mips_frame_info frame;
 
 
  /* The register to use as the global pointer within this function.  */
  /* The register to use as the global pointer within this function.  */
  unsigned int global_pointer;
  unsigned int global_pointer;
 
 
  /* True if mips_adjust_insn_length should ignore an instruction's
  /* True if mips_adjust_insn_length should ignore an instruction's
     hazard attribute.  */
     hazard attribute.  */
  bool ignore_hazard_length_p;
  bool ignore_hazard_length_p;
 
 
  /* True if the whole function is suitable for .set noreorder and
  /* True if the whole function is suitable for .set noreorder and
     .set nomacro.  */
     .set nomacro.  */
  bool all_noreorder_p;
  bool all_noreorder_p;
 
 
  /* True if the function is known to have an instruction that needs $gp.  */
  /* True if the function is known to have an instruction that needs $gp.  */
  bool has_gp_insn_p;
  bool has_gp_insn_p;
};
};
 
 
/* Information about a single argument.  */
/* Information about a single argument.  */
struct mips_arg_info
struct mips_arg_info
{
{
  /* True if the argument is passed in a floating-point register, or
  /* True if the argument is passed in a floating-point register, or
     would have been if we hadn't run out of registers.  */
     would have been if we hadn't run out of registers.  */
  bool fpr_p;
  bool fpr_p;
 
 
  /* The number of words passed in registers, rounded up.  */
  /* The number of words passed in registers, rounded up.  */
  unsigned int reg_words;
  unsigned int reg_words;
 
 
  /* For EABI, the offset of the first register from GP_ARG_FIRST or
  /* For EABI, the offset of the first register from GP_ARG_FIRST or
     FP_ARG_FIRST.  For other ABIs, the offset of the first register from
     FP_ARG_FIRST.  For other ABIs, the offset of the first register from
     the start of the ABI's argument structure (see the CUMULATIVE_ARGS
     the start of the ABI's argument structure (see the CUMULATIVE_ARGS
     comment for details).
     comment for details).
 
 
     The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
     The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
     on the stack.  */
     on the stack.  */
  unsigned int reg_offset;
  unsigned int reg_offset;
 
 
  /* The number of words that must be passed on the stack, rounded up.  */
  /* The number of words that must be passed on the stack, rounded up.  */
  unsigned int stack_words;
  unsigned int stack_words;
 
 
  /* The offset from the start of the stack overflow area of the argument's
  /* The offset from the start of the stack overflow area of the argument's
     first stack word.  Only meaningful when STACK_WORDS is nonzero.  */
     first stack word.  Only meaningful when STACK_WORDS is nonzero.  */
  unsigned int stack_offset;
  unsigned int stack_offset;
};
};
 
 
 
 
/* Information about an address described by mips_address_type.
/* Information about an address described by mips_address_type.
 
 
   ADDRESS_CONST_INT
   ADDRESS_CONST_INT
       No fields are used.
       No fields are used.
 
 
   ADDRESS_REG
   ADDRESS_REG
       REG is the base register and OFFSET is the constant offset.
       REG is the base register and OFFSET is the constant offset.
 
 
   ADDRESS_LO_SUM
   ADDRESS_LO_SUM
       REG is the register that contains the high part of the address,
       REG is the register that contains the high part of the address,
       OFFSET is the symbolic address being referenced and SYMBOL_TYPE
       OFFSET is the symbolic address being referenced and SYMBOL_TYPE
       is the type of OFFSET's symbol.
       is the type of OFFSET's symbol.
 
 
   ADDRESS_SYMBOLIC
   ADDRESS_SYMBOLIC
       SYMBOL_TYPE is the type of symbol being referenced.  */
       SYMBOL_TYPE is the type of symbol being referenced.  */
 
 
struct mips_address_info
struct mips_address_info
{
{
  enum mips_address_type type;
  enum mips_address_type type;
  rtx reg;
  rtx reg;
  rtx offset;
  rtx offset;
  enum mips_symbol_type symbol_type;
  enum mips_symbol_type symbol_type;
};
};
 
 
 
 
/* One stage in a constant building sequence.  These sequences have
/* One stage in a constant building sequence.  These sequences have
   the form:
   the form:
 
 
        A = VALUE[0]
        A = VALUE[0]
        A = A CODE[1] VALUE[1]
        A = A CODE[1] VALUE[1]
        A = A CODE[2] VALUE[2]
        A = A CODE[2] VALUE[2]
        ...
        ...
 
 
   where A is an accumulator, each CODE[i] is a binary rtl operation
   where A is an accumulator, each CODE[i] is a binary rtl operation
   and each VALUE[i] is a constant integer.  */
   and each VALUE[i] is a constant integer.  */
struct mips_integer_op {
struct mips_integer_op {
  enum rtx_code code;
  enum rtx_code code;
  unsigned HOST_WIDE_INT value;
  unsigned HOST_WIDE_INT value;
};
};
 
 
 
 
/* The largest number of operations needed to load an integer constant.
/* The largest number of operations needed to load an integer constant.
   The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
   The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
   When the lowest bit is clear, we can try, but reject a sequence with
   When the lowest bit is clear, we can try, but reject a sequence with
   an extra SLL at the end.  */
   an extra SLL at the end.  */
#define MIPS_MAX_INTEGER_OPS 7
#define MIPS_MAX_INTEGER_OPS 7
 
 
 
 
/* Global variables for machine-dependent things.  */
/* Global variables for machine-dependent things.  */
 
 
/* Threshold for data being put into the small data/bss area, instead
/* Threshold for data being put into the small data/bss area, instead
   of the normal data area.  */
   of the normal data area.  */
int mips_section_threshold = -1;
int mips_section_threshold = -1;
 
 
/* Count the number of .file directives, so that .loc is up to date.  */
/* Count the number of .file directives, so that .loc is up to date.  */
int num_source_filenames = 0;
int num_source_filenames = 0;
 
 
/* Count the number of sdb related labels are generated (to find block
/* Count the number of sdb related labels are generated (to find block
   start and end boundaries).  */
   start and end boundaries).  */
int sdb_label_count = 0;
int sdb_label_count = 0;
 
 
/* Next label # for each statement for Silicon Graphics IRIS systems.  */
/* Next label # for each statement for Silicon Graphics IRIS systems.  */
int sym_lineno = 0;
int sym_lineno = 0;
 
 
/* Linked list of all externals that are to be emitted when optimizing
/* Linked list of all externals that are to be emitted when optimizing
   for the global pointer if they haven't been declared by the end of
   for the global pointer if they haven't been declared by the end of
   the program with an appropriate .comm or initialization.  */
   the program with an appropriate .comm or initialization.  */
 
 
struct extern_list GTY (())
struct extern_list GTY (())
{
{
  struct extern_list *next;     /* next external */
  struct extern_list *next;     /* next external */
  const char *name;             /* name of the external */
  const char *name;             /* name of the external */
  int size;                     /* size in bytes */
  int size;                     /* size in bytes */
};
};
 
 
static GTY (()) struct extern_list *extern_head = 0;
static GTY (()) struct extern_list *extern_head = 0;
 
 
/* Name of the file containing the current function.  */
/* Name of the file containing the current function.  */
const char *current_function_file = "";
const char *current_function_file = "";
 
 
/* Number of nested .set noreorder, noat, nomacro, and volatile requests.  */
/* Number of nested .set noreorder, noat, nomacro, and volatile requests.  */
int set_noreorder;
int set_noreorder;
int set_noat;
int set_noat;
int set_nomacro;
int set_nomacro;
int set_volatile;
int set_volatile;
 
 
/* The next branch instruction is a branch likely, not branch normal.  */
/* The next branch instruction is a branch likely, not branch normal.  */
int mips_branch_likely;
int mips_branch_likely;
 
 
/* The operands passed to the last cmpMM expander.  */
/* The operands passed to the last cmpMM expander.  */
rtx cmp_operands[2];
rtx cmp_operands[2];
 
 
/* The target cpu for code generation.  */
/* The target cpu for code generation.  */
enum processor_type mips_arch;
enum processor_type mips_arch;
const struct mips_cpu_info *mips_arch_info;
const struct mips_cpu_info *mips_arch_info;
 
 
/* The target cpu for optimization and scheduling.  */
/* The target cpu for optimization and scheduling.  */
enum processor_type mips_tune;
enum processor_type mips_tune;
const struct mips_cpu_info *mips_tune_info;
const struct mips_cpu_info *mips_tune_info;
 
 
/* Which instruction set architecture to use.  */
/* Which instruction set architecture to use.  */
int mips_isa;
int mips_isa;
 
 
/* Which ABI to use.  */
/* Which ABI to use.  */
int mips_abi = MIPS_ABI_DEFAULT;
int mips_abi = MIPS_ABI_DEFAULT;
 
 
/* Cost information to use.  */
/* Cost information to use.  */
const struct mips_rtx_cost_data *mips_cost;
const struct mips_rtx_cost_data *mips_cost;
 
 
/* Whether we are generating mips16 hard float code.  In mips16 mode
/* Whether we are generating mips16 hard float code.  In mips16 mode
   we always set TARGET_SOFT_FLOAT; this variable is nonzero if
   we always set TARGET_SOFT_FLOAT; this variable is nonzero if
   -msoft-float was not specified by the user, which means that we
   -msoft-float was not specified by the user, which means that we
   should arrange to call mips32 hard floating point code.  */
   should arrange to call mips32 hard floating point code.  */
int mips16_hard_float;
int mips16_hard_float;
 
 
/* The architecture selected by -mipsN.  */
/* The architecture selected by -mipsN.  */
static const struct mips_cpu_info *mips_isa_info;
static const struct mips_cpu_info *mips_isa_info;
 
 
/* If TRUE, we split addresses into their high and low parts in the RTL.  */
/* If TRUE, we split addresses into their high and low parts in the RTL.  */
int mips_split_addresses;
int mips_split_addresses;
 
 
/* Mode used for saving/restoring general purpose registers.  */
/* Mode used for saving/restoring general purpose registers.  */
static enum machine_mode gpr_mode;
static enum machine_mode gpr_mode;
 
 
/* Array giving truth value on whether or not a given hard register
/* Array giving truth value on whether or not a given hard register
   can support a given mode.  */
   can support a given mode.  */
char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
 
 
/* List of all MIPS punctuation characters used by print_operand.  */
/* List of all MIPS punctuation characters used by print_operand.  */
char mips_print_operand_punct[256];
char mips_print_operand_punct[256];
 
 
/* Map GCC register number to debugger register number.  */
/* Map GCC register number to debugger register number.  */
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
 
 
/* A copy of the original flag_delayed_branch: see override_options.  */
/* A copy of the original flag_delayed_branch: see override_options.  */
static int mips_flag_delayed_branch;
static int mips_flag_delayed_branch;
 
 
static GTY (()) int mips_output_filename_first_time = 1;
static GTY (()) int mips_output_filename_first_time = 1;
 
 
/* mips_split_p[X] is true if symbols of type X can be split by
/* mips_split_p[X] is true if symbols of type X can be split by
   mips_split_symbol().  */
   mips_split_symbol().  */
bool mips_split_p[NUM_SYMBOL_TYPES];
bool mips_split_p[NUM_SYMBOL_TYPES];
 
 
/* mips_lo_relocs[X] is the relocation to use when a symbol of type X
/* mips_lo_relocs[X] is the relocation to use when a symbol of type X
   appears in a LO_SUM.  It can be null if such LO_SUMs aren't valid or
   appears in a LO_SUM.  It can be null if such LO_SUMs aren't valid or
   if they are matched by a special .md file pattern.  */
   if they are matched by a special .md file pattern.  */
static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
 
 
/* Likewise for HIGHs.  */
/* Likewise for HIGHs.  */
static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
 
 
/* Map hard register number to register class */
/* Map hard register number to register class */
const enum reg_class mips_regno_to_class[] =
const enum reg_class mips_regno_to_class[] =
{
{
  LEA_REGS,     LEA_REGS,       M16_NA_REGS,    V1_REG,
  LEA_REGS,     LEA_REGS,       M16_NA_REGS,    V1_REG,
  M16_REGS,     M16_REGS,       M16_REGS,       M16_REGS,
  M16_REGS,     M16_REGS,       M16_REGS,       M16_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  M16_NA_REGS,  M16_NA_REGS,    LEA_REGS,       LEA_REGS,
  M16_NA_REGS,  M16_NA_REGS,    LEA_REGS,       LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  T_REG,        PIC_FN_ADDR_REG, LEA_REGS,      LEA_REGS,
  T_REG,        PIC_FN_ADDR_REG, LEA_REGS,      LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  LEA_REGS,     LEA_REGS,       LEA_REGS,       LEA_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  FP_REGS,      FP_REGS,        FP_REGS,        FP_REGS,
  HI_REG,       LO_REG,         NO_REGS,        ST_REGS,
  HI_REG,       LO_REG,         NO_REGS,        ST_REGS,
  ST_REGS,      ST_REGS,        ST_REGS,        ST_REGS,
  ST_REGS,      ST_REGS,        ST_REGS,        ST_REGS,
  ST_REGS,      ST_REGS,        ST_REGS,        NO_REGS,
  ST_REGS,      ST_REGS,        ST_REGS,        NO_REGS,
  NO_REGS,      ALL_REGS,       ALL_REGS,       NO_REGS,
  NO_REGS,      ALL_REGS,       ALL_REGS,       NO_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP0_REGS,    COP0_REGS,      COP0_REGS,      COP0_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP2_REGS,    COP2_REGS,      COP2_REGS,      COP2_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  COP3_REGS,    COP3_REGS,      COP3_REGS,      COP3_REGS,
  DSP_ACC_REGS, DSP_ACC_REGS,   DSP_ACC_REGS,   DSP_ACC_REGS,
  DSP_ACC_REGS, DSP_ACC_REGS,   DSP_ACC_REGS,   DSP_ACC_REGS,
  DSP_ACC_REGS, DSP_ACC_REGS,   ALL_REGS,       ALL_REGS,
  DSP_ACC_REGS, DSP_ACC_REGS,   ALL_REGS,       ALL_REGS,
  ALL_REGS,     ALL_REGS,       ALL_REGS,       ALL_REGS
  ALL_REGS,     ALL_REGS,       ALL_REGS,       ALL_REGS
};
};
 
 
/* Table of machine dependent attributes.  */
/* Table of machine dependent attributes.  */
const struct attribute_spec mips_attribute_table[] =
const struct attribute_spec mips_attribute_table[] =
{
{
  { "long_call",   0, 0, false, true,  true,  NULL },
  { "long_call",   0, 0, false, true,  true,  NULL },
  { NULL,          0, 0, false, false, false, NULL }
  { NULL,          0, 0, false, false, false, NULL }
};
};


/* A table describing all the processors gcc knows about.  Names are
/* A table describing all the processors gcc knows about.  Names are
   matched in the order listed.  The first mention of an ISA level is
   matched in the order listed.  The first mention of an ISA level is
   taken as the canonical name for that ISA.
   taken as the canonical name for that ISA.
 
 
   To ease comparison, please keep this table in the same order as
   To ease comparison, please keep this table in the same order as
   gas's mips_cpu_info_table[].  */
   gas's mips_cpu_info_table[].  */
const struct mips_cpu_info mips_cpu_info_table[] = {
const struct mips_cpu_info mips_cpu_info_table[] = {
  /* Entries for generic ISAs */
  /* Entries for generic ISAs */
  { "mips1", PROCESSOR_R3000, 1 },
  { "mips1", PROCESSOR_R3000, 1 },
  { "mips2", PROCESSOR_R6000, 2 },
  { "mips2", PROCESSOR_R6000, 2 },
  { "mips3", PROCESSOR_R4000, 3 },
  { "mips3", PROCESSOR_R4000, 3 },
  { "mips4", PROCESSOR_R8000, 4 },
  { "mips4", PROCESSOR_R8000, 4 },
  { "mips32", PROCESSOR_4KC, 32 },
  { "mips32", PROCESSOR_4KC, 32 },
  { "mips32r2", PROCESSOR_M4K, 33 },
  { "mips32r2", PROCESSOR_M4K, 33 },
  { "mips64", PROCESSOR_5KC, 64 },
  { "mips64", PROCESSOR_5KC, 64 },
 
 
  /* MIPS I */
  /* MIPS I */
  { "r3000", PROCESSOR_R3000, 1 },
  { "r3000", PROCESSOR_R3000, 1 },
  { "r2000", PROCESSOR_R3000, 1 }, /* = r3000 */
  { "r2000", PROCESSOR_R3000, 1 }, /* = r3000 */
  { "r3900", PROCESSOR_R3900, 1 },
  { "r3900", PROCESSOR_R3900, 1 },
 
 
  /* MIPS II */
  /* MIPS II */
  { "r6000", PROCESSOR_R6000, 2 },
  { "r6000", PROCESSOR_R6000, 2 },
 
 
  /* MIPS III */
  /* MIPS III */
  { "r4000", PROCESSOR_R4000, 3 },
  { "r4000", PROCESSOR_R4000, 3 },
  { "vr4100", PROCESSOR_R4100, 3 },
  { "vr4100", PROCESSOR_R4100, 3 },
  { "vr4111", PROCESSOR_R4111, 3 },
  { "vr4111", PROCESSOR_R4111, 3 },
  { "vr4120", PROCESSOR_R4120, 3 },
  { "vr4120", PROCESSOR_R4120, 3 },
  { "vr4130", PROCESSOR_R4130, 3 },
  { "vr4130", PROCESSOR_R4130, 3 },
  { "vr4300", PROCESSOR_R4300, 3 },
  { "vr4300", PROCESSOR_R4300, 3 },
  { "r4400", PROCESSOR_R4000, 3 }, /* = r4000 */
  { "r4400", PROCESSOR_R4000, 3 }, /* = r4000 */
  { "r4600", PROCESSOR_R4600, 3 },
  { "r4600", PROCESSOR_R4600, 3 },
  { "orion", PROCESSOR_R4600, 3 }, /* = r4600 */
  { "orion", PROCESSOR_R4600, 3 }, /* = r4600 */
  { "r4650", PROCESSOR_R4650, 3 },
  { "r4650", PROCESSOR_R4650, 3 },
 
 
  /* MIPS IV */
  /* MIPS IV */
  { "r8000", PROCESSOR_R8000, 4 },
  { "r8000", PROCESSOR_R8000, 4 },
  { "vr5000", PROCESSOR_R5000, 4 },
  { "vr5000", PROCESSOR_R5000, 4 },
  { "vr5400", PROCESSOR_R5400, 4 },
  { "vr5400", PROCESSOR_R5400, 4 },
  { "vr5500", PROCESSOR_R5500, 4 },
  { "vr5500", PROCESSOR_R5500, 4 },
  { "rm7000", PROCESSOR_R7000, 4 },
  { "rm7000", PROCESSOR_R7000, 4 },
  { "rm9000", PROCESSOR_R9000, 4 },
  { "rm9000", PROCESSOR_R9000, 4 },
 
 
  /* MIPS32 */
  /* MIPS32 */
  { "4kc", PROCESSOR_4KC, 32 },
  { "4kc", PROCESSOR_4KC, 32 },
  { "4km", PROCESSOR_4KC, 32 }, /* = 4kc */
  { "4km", PROCESSOR_4KC, 32 }, /* = 4kc */
  { "4kp", PROCESSOR_4KP, 32 },
  { "4kp", PROCESSOR_4KP, 32 },
 
 
  /* MIPS32 Release 2 */
  /* MIPS32 Release 2 */
  { "m4k", PROCESSOR_M4K, 33 },
  { "m4k", PROCESSOR_M4K, 33 },
  { "24k", PROCESSOR_24K, 33 },
  { "24k", PROCESSOR_24K, 33 },
  { "24kc", PROCESSOR_24K, 33 },  /* 24K  no FPU */
  { "24kc", PROCESSOR_24K, 33 },  /* 24K  no FPU */
  { "24kf", PROCESSOR_24K, 33 },  /* 24K 1:2 FPU */
  { "24kf", PROCESSOR_24K, 33 },  /* 24K 1:2 FPU */
  { "24kx", PROCESSOR_24KX, 33 }, /* 24K 1:1 FPU */
  { "24kx", PROCESSOR_24KX, 33 }, /* 24K 1:1 FPU */
 
 
  /* MIPS64 */
  /* MIPS64 */
  { "5kc", PROCESSOR_5KC, 64 },
  { "5kc", PROCESSOR_5KC, 64 },
  { "5kf", PROCESSOR_5KF, 64 },
  { "5kf", PROCESSOR_5KF, 64 },
  { "20kc", PROCESSOR_20KC, 64 },
  { "20kc", PROCESSOR_20KC, 64 },
  { "sb1", PROCESSOR_SB1, 64 },
  { "sb1", PROCESSOR_SB1, 64 },
  { "sb1a", PROCESSOR_SB1A, 64 },
  { "sb1a", PROCESSOR_SB1A, 64 },
  { "sr71000", PROCESSOR_SR71000, 64 },
  { "sr71000", PROCESSOR_SR71000, 64 },
 
 
  /* End marker */
  /* End marker */
  { 0, 0, 0 }
  { 0, 0, 0 }
};
};
 
 
/* Default costs. If these are used for a processor we should look
/* Default costs. If these are used for a processor we should look
   up the actual costs.  */
   up the actual costs.  */
#define DEFAULT_COSTS COSTS_N_INSNS (6),  /* fp_add */       \
#define DEFAULT_COSTS COSTS_N_INSNS (6),  /* fp_add */       \
                      COSTS_N_INSNS (7),  /* fp_mult_sf */   \
                      COSTS_N_INSNS (7),  /* fp_mult_sf */   \
                      COSTS_N_INSNS (8),  /* fp_mult_df */   \
                      COSTS_N_INSNS (8),  /* fp_mult_df */   \
                      COSTS_N_INSNS (23), /* fp_div_sf */    \
                      COSTS_N_INSNS (23), /* fp_div_sf */    \
                      COSTS_N_INSNS (36), /* fp_div_df */    \
                      COSTS_N_INSNS (36), /* fp_div_df */    \
                      COSTS_N_INSNS (10), /* int_mult_si */  \
                      COSTS_N_INSNS (10), /* int_mult_si */  \
                      COSTS_N_INSNS (10), /* int_mult_di */  \
                      COSTS_N_INSNS (10), /* int_mult_di */  \
                      COSTS_N_INSNS (69), /* int_div_si */   \
                      COSTS_N_INSNS (69), /* int_div_si */   \
                      COSTS_N_INSNS (69), /* int_div_di */   \
                      COSTS_N_INSNS (69), /* int_div_di */   \
                                       2, /* branch_cost */  \
                                       2, /* branch_cost */  \
                                       4  /* memory_latency */
                                       4  /* memory_latency */
 
 
/* Need to replace these with the costs of calling the appropriate
/* Need to replace these with the costs of calling the appropriate
   libgcc routine.  */
   libgcc routine.  */
#define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */       \
#define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */       \
                      COSTS_N_INSNS (256), /* fp_mult_sf */   \
                      COSTS_N_INSNS (256), /* fp_mult_sf */   \
                      COSTS_N_INSNS (256), /* fp_mult_df */   \
                      COSTS_N_INSNS (256), /* fp_mult_df */   \
                      COSTS_N_INSNS (256), /* fp_div_sf */    \
                      COSTS_N_INSNS (256), /* fp_div_sf */    \
                      COSTS_N_INSNS (256)  /* fp_div_df */
                      COSTS_N_INSNS (256)  /* fp_div_df */
 
 
static struct mips_rtx_cost_data const mips_rtx_cost_data[PROCESSOR_MAX] =
static struct mips_rtx_cost_data const mips_rtx_cost_data[PROCESSOR_MAX] =
  {
  {
    { /* R3000 */
    { /* R3000 */
      COSTS_N_INSNS (2),            /* fp_add */
      COSTS_N_INSNS (2),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (12),           /* fp_div_sf */
      COSTS_N_INSNS (12),           /* fp_div_sf */
      COSTS_N_INSNS (19),           /* fp_div_df */
      COSTS_N_INSNS (19),           /* fp_div_df */
      COSTS_N_INSNS (12),           /* int_mult_si */
      COSTS_N_INSNS (12),           /* int_mult_si */
      COSTS_N_INSNS (12),           /* int_mult_di */
      COSTS_N_INSNS (12),           /* int_mult_di */
      COSTS_N_INSNS (35),           /* int_div_si */
      COSTS_N_INSNS (35),           /* int_div_si */
      COSTS_N_INSNS (35),           /* int_div_di */
      COSTS_N_INSNS (35),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
 
 
    },
    },
    { /* 4KC */
    { /* 4KC */
      SOFT_FP_COSTS,
      SOFT_FP_COSTS,
      COSTS_N_INSNS (6),            /* int_mult_si */
      COSTS_N_INSNS (6),            /* int_mult_si */
      COSTS_N_INSNS (6),            /* int_mult_di */
      COSTS_N_INSNS (6),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_di */
      COSTS_N_INSNS (36),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* 4KP */
    { /* 4KP */
      SOFT_FP_COSTS,
      SOFT_FP_COSTS,
      COSTS_N_INSNS (36),           /* int_mult_si */
      COSTS_N_INSNS (36),           /* int_mult_si */
      COSTS_N_INSNS (36),           /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_mult_di */
      COSTS_N_INSNS (37),           /* int_div_si */
      COSTS_N_INSNS (37),           /* int_div_si */
      COSTS_N_INSNS (37),           /* int_div_di */
      COSTS_N_INSNS (37),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* 5KC */
    { /* 5KC */
      SOFT_FP_COSTS,
      SOFT_FP_COSTS,
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (11),           /* int_mult_di */
      COSTS_N_INSNS (11),           /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* 5KF */
    { /* 5KF */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (17),           /* fp_div_sf */
      COSTS_N_INSNS (17),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (11),           /* int_mult_di */
      COSTS_N_INSNS (11),           /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* 20KC */
    { /* 20KC */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* 24k */
    { /* 24k */
      COSTS_N_INSNS (8),            /* fp_add */
      COSTS_N_INSNS (8),            /* fp_add */
      COSTS_N_INSNS (8),            /* fp_mult_sf */
      COSTS_N_INSNS (8),            /* fp_mult_sf */
      COSTS_N_INSNS (10),           /* fp_mult_df */
      COSTS_N_INSNS (10),           /* fp_mult_df */
      COSTS_N_INSNS (34),           /* fp_div_sf */
      COSTS_N_INSNS (34),           /* fp_div_sf */
      COSTS_N_INSNS (64),           /* fp_div_df */
      COSTS_N_INSNS (64),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (41),           /* int_div_si */
      COSTS_N_INSNS (41),           /* int_div_si */
      COSTS_N_INSNS (41),           /* int_div_di */
      COSTS_N_INSNS (41),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* 24kx */
    { /* 24kx */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (17),           /* fp_div_sf */
      COSTS_N_INSNS (17),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (41),           /* int_div_si */
      COSTS_N_INSNS (41),           /* int_div_si */
      COSTS_N_INSNS (41),           /* int_div_di */
      COSTS_N_INSNS (41),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* M4k */
    { /* M4k */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R3900 */
    { /* R3900 */
      COSTS_N_INSNS (2),            /* fp_add */
      COSTS_N_INSNS (2),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (12),           /* fp_div_sf */
      COSTS_N_INSNS (12),           /* fp_div_sf */
      COSTS_N_INSNS (19),           /* fp_div_df */
      COSTS_N_INSNS (19),           /* fp_div_df */
      COSTS_N_INSNS (2),            /* int_mult_si */
      COSTS_N_INSNS (2),            /* int_mult_si */
      COSTS_N_INSNS (2),            /* int_mult_di */
      COSTS_N_INSNS (2),            /* int_mult_di */
      COSTS_N_INSNS (35),           /* int_div_si */
      COSTS_N_INSNS (35),           /* int_div_si */
      COSTS_N_INSNS (35),           /* int_div_di */
      COSTS_N_INSNS (35),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* R6000 */
    { /* R6000 */
      COSTS_N_INSNS (3),            /* fp_add */
      COSTS_N_INSNS (3),            /* fp_add */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (15),           /* fp_div_sf */
      COSTS_N_INSNS (15),           /* fp_div_sf */
      COSTS_N_INSNS (16),           /* fp_div_df */
      COSTS_N_INSNS (16),           /* fp_div_df */
      COSTS_N_INSNS (17),           /* int_mult_si */
      COSTS_N_INSNS (17),           /* int_mult_si */
      COSTS_N_INSNS (17),           /* int_mult_di */
      COSTS_N_INSNS (17),           /* int_mult_di */
      COSTS_N_INSNS (38),           /* int_div_si */
      COSTS_N_INSNS (38),           /* int_div_si */
      COSTS_N_INSNS (38),           /* int_div_di */
      COSTS_N_INSNS (38),           /* int_div_di */
                       2,           /* branch_cost */
                       2,           /* branch_cost */
                       6            /* memory_latency */
                       6            /* memory_latency */
    },
    },
    { /* R4000 */
    { /* R4000 */
       COSTS_N_INSNS (6),           /* fp_add */
       COSTS_N_INSNS (6),           /* fp_add */
       COSTS_N_INSNS (7),           /* fp_mult_sf */
       COSTS_N_INSNS (7),           /* fp_mult_sf */
       COSTS_N_INSNS (8),           /* fp_mult_df */
       COSTS_N_INSNS (8),           /* fp_mult_df */
       COSTS_N_INSNS (23),          /* fp_div_sf */
       COSTS_N_INSNS (23),          /* fp_div_sf */
       COSTS_N_INSNS (36),          /* fp_div_df */
       COSTS_N_INSNS (36),          /* fp_div_df */
       COSTS_N_INSNS (10),          /* int_mult_si */
       COSTS_N_INSNS (10),          /* int_mult_si */
       COSTS_N_INSNS (10),          /* int_mult_di */
       COSTS_N_INSNS (10),          /* int_mult_di */
       COSTS_N_INSNS (69),          /* int_div_si */
       COSTS_N_INSNS (69),          /* int_div_si */
       COSTS_N_INSNS (69),          /* int_div_di */
       COSTS_N_INSNS (69),          /* int_div_di */
                        2,          /* branch_cost */
                        2,          /* branch_cost */
                        6           /* memory_latency */
                        6           /* memory_latency */
    },
    },
    { /* R4100 */
    { /* R4100 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R4111 */
    { /* R4111 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R4120 */
    { /* R4120 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R4130 */
    { /* R4130 */
      /* The only costs that appear to be updated here are
      /* The only costs that appear to be updated here are
         integer multiplication.  */
         integer multiplication.  */
      SOFT_FP_COSTS,
      SOFT_FP_COSTS,
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (6),            /* int_mult_di */
      COSTS_N_INSNS (6),            /* int_mult_di */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_di */
      COSTS_N_INSNS (69),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* R4300 */
    { /* R4300 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R4600 */
    { /* R4600 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R4650 */
    { /* R4650 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R5000 */
    { /* R5000 */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_di */
      COSTS_N_INSNS (36),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* R5400 */
    { /* R5400 */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (30),           /* fp_div_sf */
      COSTS_N_INSNS (30),           /* fp_div_sf */
      COSTS_N_INSNS (59),           /* fp_div_df */
      COSTS_N_INSNS (59),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (42),           /* int_div_si */
      COSTS_N_INSNS (42),           /* int_div_si */
      COSTS_N_INSNS (74),           /* int_div_di */
      COSTS_N_INSNS (74),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* R5500 */
    { /* R5500 */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (30),           /* fp_div_sf */
      COSTS_N_INSNS (30),           /* fp_div_sf */
      COSTS_N_INSNS (59),           /* fp_div_df */
      COSTS_N_INSNS (59),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (9),            /* int_mult_di */
      COSTS_N_INSNS (9),            /* int_mult_di */
      COSTS_N_INSNS (42),           /* int_div_si */
      COSTS_N_INSNS (42),           /* int_div_si */
      COSTS_N_INSNS (74),           /* int_div_di */
      COSTS_N_INSNS (74),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* R7000 */
    { /* R7000 */
      /* The only costs that are changed here are
      /* The only costs that are changed here are
         integer multiplication.  */
         integer multiplication.  */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (7),            /* fp_mult_sf */
      COSTS_N_INSNS (7),            /* fp_mult_sf */
      COSTS_N_INSNS (8),            /* fp_mult_df */
      COSTS_N_INSNS (8),            /* fp_mult_df */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (9),            /* int_mult_di */
      COSTS_N_INSNS (9),            /* int_mult_di */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_di */
      COSTS_N_INSNS (69),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* R8000 */
    { /* R8000 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
    { /* R9000 */
    { /* R9000 */
      /* The only costs that are changed here are
      /* The only costs that are changed here are
         integer multiplication.  */
         integer multiplication.  */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (7),            /* fp_mult_sf */
      COSTS_N_INSNS (7),            /* fp_mult_sf */
      COSTS_N_INSNS (8),            /* fp_mult_df */
      COSTS_N_INSNS (8),            /* fp_mult_df */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (8),            /* int_mult_di */
      COSTS_N_INSNS (8),            /* int_mult_di */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_di */
      COSTS_N_INSNS (69),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* SB1 */
    { /* SB1 */
      /* These costs are the same as the SB-1A below.  */
      /* These costs are the same as the SB-1A below.  */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_df */
      COSTS_N_INSNS (4),            /* fp_mult_df */
      COSTS_N_INSNS (24),           /* fp_div_sf */
      COSTS_N_INSNS (24),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* SB1-A */
    { /* SB1-A */
      /* These costs are the same as the SB-1 above.  */
      /* These costs are the same as the SB-1 above.  */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_df */
      COSTS_N_INSNS (4),            /* fp_mult_df */
      COSTS_N_INSNS (24),           /* fp_div_sf */
      COSTS_N_INSNS (24),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       1,           /* branch_cost */
                       4            /* memory_latency */
                       4            /* memory_latency */
    },
    },
    { /* SR71000 */
    { /* SR71000 */
      DEFAULT_COSTS
      DEFAULT_COSTS
    },
    },
  };
  };
 
 


/* Nonzero if -march should decide the default value of MASK_SOFT_FLOAT.  */
/* Nonzero if -march should decide the default value of MASK_SOFT_FLOAT.  */
#ifndef MIPS_MARCH_CONTROLS_SOFT_FLOAT
#ifndef MIPS_MARCH_CONTROLS_SOFT_FLOAT
#define MIPS_MARCH_CONTROLS_SOFT_FLOAT 0
#define MIPS_MARCH_CONTROLS_SOFT_FLOAT 0
#endif
#endif


/* Initialize the GCC target structure.  */
/* Initialize the GCC target structure.  */
#undef TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
 
 
#undef TARGET_ASM_FUNCTION_PROLOGUE
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
#define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
#define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
#undef TARGET_ASM_SELECT_RTX_SECTION
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
#define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
#define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
#define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
 
 
#undef TARGET_SCHED_REORDER
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER mips_sched_reorder
#define TARGET_SCHED_REORDER mips_sched_reorder
#undef TARGET_SCHED_VARIABLE_ISSUE
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
#define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
#undef TARGET_SCHED_ADJUST_COST
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST mips_adjust_cost
#define TARGET_SCHED_ADJUST_COST mips_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE mips_issue_rate
#define TARGET_SCHED_ISSUE_RATE mips_issue_rate
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  mips_multipass_dfa_lookahead
  mips_multipass_dfa_lookahead
 
 
#undef TARGET_DEFAULT_TARGET_FLAGS
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS             \
#define TARGET_DEFAULT_TARGET_FLAGS             \
  (TARGET_DEFAULT                               \
  (TARGET_DEFAULT                               \
   | TARGET_CPU_DEFAULT                         \
   | TARGET_CPU_DEFAULT                         \
   | TARGET_ENDIAN_DEFAULT                      \
   | TARGET_ENDIAN_DEFAULT                      \
   | TARGET_FP_EXCEPTIONS_DEFAULT               \
   | TARGET_FP_EXCEPTIONS_DEFAULT               \
   | MASK_CHECK_ZERO_DIV                        \
   | MASK_CHECK_ZERO_DIV                        \
   | MASK_FUSED_MADD)
   | MASK_FUSED_MADD)
#undef TARGET_HANDLE_OPTION
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION mips_handle_option
#define TARGET_HANDLE_OPTION mips_handle_option
 
 
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
#define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
 
 
#undef TARGET_VALID_POINTER_MODE
#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
#define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
#undef TARGET_RTX_COSTS
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS mips_rtx_costs
#define TARGET_RTX_COSTS mips_rtx_costs
#undef TARGET_ADDRESS_COST
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST mips_address_cost
#define TARGET_ADDRESS_COST mips_address_cost
 
 
#undef TARGET_IN_SMALL_DATA_P
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
#define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
 
 
#undef TARGET_MACHINE_DEPENDENT_REORG
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
#define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
 
 
#undef TARGET_ASM_FILE_START
#undef TARGET_ASM_FILE_START
#undef TARGET_ASM_FILE_END
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_START mips_file_start
#define TARGET_ASM_FILE_START mips_file_start
#define TARGET_ASM_FILE_END mips_file_end
#define TARGET_ASM_FILE_END mips_file_end
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
 
 
#undef TARGET_INIT_LIBFUNCS
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS mips_init_libfuncs
#define TARGET_INIT_LIBFUNCS mips_init_libfuncs
 
 
#undef TARGET_BUILD_BUILTIN_VA_LIST
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
#define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
#define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
 
 
#undef TARGET_PROMOTE_FUNCTION_ARGS
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_RETURN
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_PROMOTE_PROTOTYPES
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
 
 
#undef TARGET_RETURN_IN_MEMORY
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY mips_return_in_memory
#define TARGET_RETURN_IN_MEMORY mips_return_in_memory
#undef TARGET_RETURN_IN_MSB
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB mips_return_in_msb
#define TARGET_RETURN_IN_MSB mips_return_in_msb
 
 
#undef TARGET_ASM_OUTPUT_MI_THUNK
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
#define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
 
 
#undef TARGET_SETUP_INCOMING_VARARGS
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
#define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
#define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
#undef TARGET_MUST_PASS_IN_STACK
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
#define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
#undef TARGET_CALLEE_COPIES
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES mips_callee_copies
#define TARGET_CALLEE_COPIES mips_callee_copies
#undef TARGET_ARG_PARTIAL_BYTES
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
#define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
 
 
#undef TARGET_MODE_REP_EXTENDED
#undef TARGET_MODE_REP_EXTENDED
#define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
#define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
 
 
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
#define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
 
 
#undef TARGET_INIT_BUILTINS
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS mips_init_builtins
#define TARGET_INIT_BUILTINS mips_init_builtins
#undef TARGET_EXPAND_BUILTIN
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN mips_expand_builtin
#define TARGET_EXPAND_BUILTIN mips_expand_builtin
 
 
#undef TARGET_HAVE_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
 
 
#undef TARGET_CANNOT_FORCE_CONST_MEM
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
#define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
 
 
#undef TARGET_ENCODE_SECTION_INFO
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
#define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
 
 
#undef TARGET_ATTRIBUTE_TABLE
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE mips_attribute_table
#define TARGET_ATTRIBUTE_TABLE mips_attribute_table
 
 
#undef TARGET_EXTRA_LIVE_ON_ENTRY
#undef TARGET_EXTRA_LIVE_ON_ENTRY
#define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
#define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
 
 
#undef TARGET_MIN_ANCHOR_OFFSET
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -32768
#define TARGET_MIN_ANCHOR_OFFSET -32768
#undef TARGET_MAX_ANCHOR_OFFSET
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 32767
#define TARGET_MAX_ANCHOR_OFFSET 32767
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
#undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
#undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
#define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
#define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
 
 
struct gcc_target targetm = TARGET_INITIALIZER;
struct gcc_target targetm = TARGET_INITIALIZER;


/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF.  */
/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF.  */
 
 
static enum mips_symbol_type
static enum mips_symbol_type
mips_classify_symbol (rtx x)
mips_classify_symbol (rtx x)
{
{
  if (GET_CODE (x) == LABEL_REF)
  if (GET_CODE (x) == LABEL_REF)
    {
    {
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        return SYMBOL_CONSTANT_POOL;
        return SYMBOL_CONSTANT_POOL;
      if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
      if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
        return SYMBOL_GOT_LOCAL;
        return SYMBOL_GOT_LOCAL;
      return SYMBOL_GENERAL;
      return SYMBOL_GENERAL;
    }
    }
 
 
  gcc_assert (GET_CODE (x) == SYMBOL_REF);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);
 
 
  if (SYMBOL_REF_TLS_MODEL (x))
  if (SYMBOL_REF_TLS_MODEL (x))
    return SYMBOL_TLS;
    return SYMBOL_TLS;
 
 
  if (CONSTANT_POOL_ADDRESS_P (x))
  if (CONSTANT_POOL_ADDRESS_P (x))
    {
    {
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        return SYMBOL_CONSTANT_POOL;
        return SYMBOL_CONSTANT_POOL;
 
 
      if (GET_MODE_SIZE (get_pool_mode (x)) <= mips_section_threshold)
      if (GET_MODE_SIZE (get_pool_mode (x)) <= mips_section_threshold)
        return SYMBOL_SMALL_DATA;
        return SYMBOL_SMALL_DATA;
    }
    }
 
 
  /* Do not use small-data accesses for weak symbols; they may end up
  /* Do not use small-data accesses for weak symbols; they may end up
     being zero.  */
     being zero.  */
  if (SYMBOL_REF_SMALL_P (x)
  if (SYMBOL_REF_SMALL_P (x)
      && !SYMBOL_REF_WEAK (x))
      && !SYMBOL_REF_WEAK (x))
    return SYMBOL_SMALL_DATA;
    return SYMBOL_SMALL_DATA;
 
 
  if (TARGET_ABICALLS)
  if (TARGET_ABICALLS)
    {
    {
      if (SYMBOL_REF_DECL (x) == 0)
      if (SYMBOL_REF_DECL (x) == 0)
        {
        {
          if (!SYMBOL_REF_LOCAL_P (x))
          if (!SYMBOL_REF_LOCAL_P (x))
            return SYMBOL_GOT_GLOBAL;
            return SYMBOL_GOT_GLOBAL;
        }
        }
      else
      else
        {
        {
          /* Don't use GOT accesses for locally-binding symbols if
          /* Don't use GOT accesses for locally-binding symbols if
             TARGET_ABSOLUTE_ABICALLS.  Otherwise, there are three
             TARGET_ABSOLUTE_ABICALLS.  Otherwise, there are three
             cases to consider:
             cases to consider:
 
 
                - o32 PIC (either with or without explicit relocs)
                - o32 PIC (either with or without explicit relocs)
                - n32/n64 PIC without explicit relocs
                - n32/n64 PIC without explicit relocs
                - n32/n64 PIC with explicit relocs
                - n32/n64 PIC with explicit relocs
 
 
             In the first case, both local and global accesses will use an
             In the first case, both local and global accesses will use an
             R_MIPS_GOT16 relocation.  We must correctly predict which of
             R_MIPS_GOT16 relocation.  We must correctly predict which of
             the two semantics (local or global) the assembler and linker
             the two semantics (local or global) the assembler and linker
             will apply.  The choice doesn't depend on the symbol's
             will apply.  The choice doesn't depend on the symbol's
             visibility, so we deliberately ignore decl_visibility and
             visibility, so we deliberately ignore decl_visibility and
             binds_local_p here.
             binds_local_p here.
 
 
             In the second case, the assembler will not use R_MIPS_GOT16
             In the second case, the assembler will not use R_MIPS_GOT16
             relocations, but it chooses between local and global accesses
             relocations, but it chooses between local and global accesses
             in the same way as for o32 PIC.
             in the same way as for o32 PIC.
 
 
             In the third case we have more freedom since both forms of
             In the third case we have more freedom since both forms of
             access will work for any kind of symbol.  However, there seems
             access will work for any kind of symbol.  However, there seems
             little point in doing things differently.  */
             little point in doing things differently.  */
          if (DECL_P (SYMBOL_REF_DECL (x))
          if (DECL_P (SYMBOL_REF_DECL (x))
              && TREE_PUBLIC (SYMBOL_REF_DECL (x))
              && TREE_PUBLIC (SYMBOL_REF_DECL (x))
              && !(TARGET_ABSOLUTE_ABICALLS
              && !(TARGET_ABSOLUTE_ABICALLS
                   && targetm.binds_local_p (SYMBOL_REF_DECL (x))))
                   && targetm.binds_local_p (SYMBOL_REF_DECL (x))))
            return SYMBOL_GOT_GLOBAL;
            return SYMBOL_GOT_GLOBAL;
        }
        }
 
 
      if (!TARGET_ABSOLUTE_ABICALLS)
      if (!TARGET_ABSOLUTE_ABICALLS)
        return SYMBOL_GOT_LOCAL;
        return SYMBOL_GOT_LOCAL;
    }
    }
 
 
  return SYMBOL_GENERAL;
  return SYMBOL_GENERAL;
}
}
 
 
 
 
/* Split X into a base and a constant offset, storing them in *BASE
/* Split X into a base and a constant offset, storing them in *BASE
   and *OFFSET respectively.  */
   and *OFFSET respectively.  */
 
 
static void
static void
mips_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
mips_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
{
{
  *offset = 0;
  *offset = 0;
 
 
  if (GET_CODE (x) == CONST)
  if (GET_CODE (x) == CONST)
    {
    {
      x = XEXP (x, 0);
      x = XEXP (x, 0);
      if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
      if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
        {
        {
          *offset += INTVAL (XEXP (x, 1));
          *offset += INTVAL (XEXP (x, 1));
          x = XEXP (x, 0);
          x = XEXP (x, 0);
        }
        }
    }
    }
  *base = x;
  *base = x;
}
}
 
 
/* Classify symbolic expression X, given that it appears in context
/* Classify symbolic expression X, given that it appears in context
   CONTEXT.  */
   CONTEXT.  */
 
 
static enum mips_symbol_type
static enum mips_symbol_type
mips_classify_symbolic_expression (rtx x)
mips_classify_symbolic_expression (rtx x)
{
{
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  mips_split_const (x, &x, &offset);
  mips_split_const (x, &x, &offset);
  if (UNSPEC_ADDRESS_P (x))
  if (UNSPEC_ADDRESS_P (x))
    return UNSPEC_ADDRESS_TYPE (x);
    return UNSPEC_ADDRESS_TYPE (x);
 
 
  return mips_classify_symbol (x);
  return mips_classify_symbol (x);
}
}
 
 
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
   to the same object as SYMBOL, or to the same object_block.  */
   to the same object as SYMBOL, or to the same object_block.  */
 
 
static bool
static bool
mips_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
mips_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
{
{
  if (GET_CODE (symbol) != SYMBOL_REF)
  if (GET_CODE (symbol) != SYMBOL_REF)
    return false;
    return false;
 
 
  if (CONSTANT_POOL_ADDRESS_P (symbol)
  if (CONSTANT_POOL_ADDRESS_P (symbol)
      && offset >= 0
      && offset >= 0
      && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
      && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
    return true;
    return true;
 
 
  if (SYMBOL_REF_DECL (symbol) != 0
  if (SYMBOL_REF_DECL (symbol) != 0
      && offset >= 0
      && offset >= 0
      && offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
      && offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
    return true;
    return true;
 
 
  if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
  if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
      && SYMBOL_REF_BLOCK (symbol)
      && SYMBOL_REF_BLOCK (symbol)
      && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
      && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
      && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
      && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
          < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
          < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Return true if X is a symbolic constant that can be calculated in
/* Return true if X is a symbolic constant that can be calculated in
   the same way as a bare symbol.  If it is, store the type of the
   the same way as a bare symbol.  If it is, store the type of the
   symbol in *SYMBOL_TYPE.  */
   symbol in *SYMBOL_TYPE.  */
 
 
bool
bool
mips_symbolic_constant_p (rtx x, enum mips_symbol_type *symbol_type)
mips_symbolic_constant_p (rtx x, enum mips_symbol_type *symbol_type)
{
{
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  mips_split_const (x, &x, &offset);
  mips_split_const (x, &x, &offset);
  if (UNSPEC_ADDRESS_P (x))
  if (UNSPEC_ADDRESS_P (x))
    *symbol_type = UNSPEC_ADDRESS_TYPE (x);
    *symbol_type = UNSPEC_ADDRESS_TYPE (x);
  else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
  else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
    {
    {
      *symbol_type = mips_classify_symbol (x);
      *symbol_type = mips_classify_symbol (x);
      if (*symbol_type == SYMBOL_TLS)
      if (*symbol_type == SYMBOL_TLS)
        return false;
        return false;
    }
    }
  else
  else
    return false;
    return false;
 
 
  if (offset == 0)
  if (offset == 0)
    return true;
    return true;
 
 
  /* Check whether a nonzero offset is valid for the underlying
  /* Check whether a nonzero offset is valid for the underlying
     relocations.  */
     relocations.  */
  switch (*symbol_type)
  switch (*symbol_type)
    {
    {
    case SYMBOL_GENERAL:
    case SYMBOL_GENERAL:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_MID:
    case SYMBOL_64_MID:
    case SYMBOL_64_LOW:
    case SYMBOL_64_LOW:
      /* If the target has 64-bit pointers and the object file only
      /* If the target has 64-bit pointers and the object file only
         supports 32-bit symbols, the values of those symbols will be
         supports 32-bit symbols, the values of those symbols will be
         sign-extended.  In this case we can't allow an arbitrary offset
         sign-extended.  In this case we can't allow an arbitrary offset
         in case the 32-bit value X + OFFSET has a different sign from X.  */
         in case the 32-bit value X + OFFSET has a different sign from X.  */
      if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
      if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
        return mips_offset_within_object_p (x, offset);
        return mips_offset_within_object_p (x, offset);
 
 
      /* In other cases the relocations can handle any offset.  */
      /* In other cases the relocations can handle any offset.  */
      return true;
      return true;
 
 
    case SYMBOL_CONSTANT_POOL:
    case SYMBOL_CONSTANT_POOL:
      /* Allow constant pool references to be converted to LABEL+CONSTANT.
      /* Allow constant pool references to be converted to LABEL+CONSTANT.
         In this case, we no longer have access to the underlying constant,
         In this case, we no longer have access to the underlying constant,
         but the original symbol-based access was known to be valid.  */
         but the original symbol-based access was known to be valid.  */
      if (GET_CODE (x) == LABEL_REF)
      if (GET_CODE (x) == LABEL_REF)
        return true;
        return true;
 
 
      /* Fall through.  */
      /* Fall through.  */
 
 
    case SYMBOL_SMALL_DATA:
    case SYMBOL_SMALL_DATA:
      /* Make sure that the offset refers to something within the
      /* Make sure that the offset refers to something within the
         underlying object.  This should guarantee that the final
         underlying object.  This should guarantee that the final
         PC- or GP-relative offset is within the 16-bit limit.  */
         PC- or GP-relative offset is within the 16-bit limit.  */
      return mips_offset_within_object_p (x, offset);
      return mips_offset_within_object_p (x, offset);
 
 
    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_PAGE:
      /* The linker should provide enough local GOT entries for a
      /* The linker should provide enough local GOT entries for a
         16-bit offset.  Larger offsets may lead to GOT overflow.  */
         16-bit offset.  Larger offsets may lead to GOT overflow.  */
      return SMALL_OPERAND (offset);
      return SMALL_OPERAND (offset);
 
 
    case SYMBOL_GOT_GLOBAL:
    case SYMBOL_GOT_GLOBAL:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_TLSLDM:
    case SYMBOL_DTPREL:
    case SYMBOL_DTPREL:
    case SYMBOL_TPREL:
    case SYMBOL_TPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_TLS:
    case SYMBOL_TLS:
      return false;
      return false;
    }
    }
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
 
 
/* This function is used to implement REG_MODE_OK_FOR_BASE_P.  */
/* This function is used to implement REG_MODE_OK_FOR_BASE_P.  */
 
 
int
int
mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode, int strict)
mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode, int strict)
{
{
  if (regno >= FIRST_PSEUDO_REGISTER)
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
    {
      if (!strict)
      if (!strict)
        return true;
        return true;
      regno = reg_renumber[regno];
      regno = reg_renumber[regno];
    }
    }
 
 
  /* These fake registers will be eliminated to either the stack or
  /* These fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
     Reload deals with the cases where the eliminated form isn't valid.  */
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
    return true;
    return true;
 
 
  /* In mips16 mode, the stack pointer can only address word and doubleword
  /* In mips16 mode, the stack pointer can only address word and doubleword
     values, nothing smaller.  There are two problems here:
     values, nothing smaller.  There are two problems here:
 
 
       (a) Instantiating virtual registers can introduce new uses of the
       (a) Instantiating virtual registers can introduce new uses of the
           stack pointer.  If these virtual registers are valid addresses,
           stack pointer.  If these virtual registers are valid addresses,
           the stack pointer should be too.
           the stack pointer should be too.
 
 
       (b) Most uses of the stack pointer are not made explicit until
       (b) Most uses of the stack pointer are not made explicit until
           FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
           FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
           We don't know until that stage whether we'll be eliminating to the
           We don't know until that stage whether we'll be eliminating to the
           stack pointer (which needs the restriction) or the hard frame
           stack pointer (which needs the restriction) or the hard frame
           pointer (which doesn't).
           pointer (which doesn't).
 
 
     All in all, it seems more consistent to only enforce this restriction
     All in all, it seems more consistent to only enforce this restriction
     during and after reload.  */
     during and after reload.  */
  if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
  if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
    return !strict || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
    return !strict || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
 
 
  return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
  return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
}
}
 
 
 
 
/* Return true if X is a valid base register for the given mode.
/* Return true if X is a valid base register for the given mode.
   Allow only hard registers if STRICT.  */
   Allow only hard registers if STRICT.  */
 
 
static bool
static bool
mips_valid_base_register_p (rtx x, enum machine_mode mode, int strict)
mips_valid_base_register_p (rtx x, enum machine_mode mode, int strict)
{
{
  if (!strict && GET_CODE (x) == SUBREG)
  if (!strict && GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);
    x = SUBREG_REG (x);
 
 
  return (REG_P (x)
  return (REG_P (x)
          && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict));
          && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict));
}
}
 
 
 
 
/* Return true if symbols of type SYMBOL_TYPE can directly address a value
/* Return true if symbols of type SYMBOL_TYPE can directly address a value
   with mode MODE.  This is used for both symbolic and LO_SUM addresses.  */
   with mode MODE.  This is used for both symbolic and LO_SUM addresses.  */
 
 
static bool
static bool
mips_symbolic_address_p (enum mips_symbol_type symbol_type,
mips_symbolic_address_p (enum mips_symbol_type symbol_type,
                         enum machine_mode mode)
                         enum machine_mode mode)
{
{
  switch (symbol_type)
  switch (symbol_type)
    {
    {
    case SYMBOL_GENERAL:
    case SYMBOL_GENERAL:
      return !TARGET_MIPS16;
      return !TARGET_MIPS16;
 
 
    case SYMBOL_SMALL_DATA:
    case SYMBOL_SMALL_DATA:
      return true;
      return true;
 
 
    case SYMBOL_CONSTANT_POOL:
    case SYMBOL_CONSTANT_POOL:
      /* PC-relative addressing is only available for lw and ld.  */
      /* PC-relative addressing is only available for lw and ld.  */
      return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
      return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
 
 
    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOT_LOCAL:
      return true;
      return true;
 
 
    case SYMBOL_GOT_GLOBAL:
    case SYMBOL_GOT_GLOBAL:
      /* The address will have to be loaded from the GOT first.  */
      /* The address will have to be loaded from the GOT first.  */
      return false;
      return false;
 
 
    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_TLS:
    case SYMBOL_TLS:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_TLSLDM:
    case SYMBOL_DTPREL:
    case SYMBOL_DTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_TPREL:
    case SYMBOL_TPREL:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_MID:
    case SYMBOL_64_MID:
    case SYMBOL_64_LOW:
    case SYMBOL_64_LOW:
      return true;
      return true;
    }
    }
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
 
 
/* Return true if X is a valid address for machine mode MODE.  If it is,
/* Return true if X is a valid address for machine mode MODE.  If it is,
   fill in INFO appropriately.  STRICT is true if we should only accept
   fill in INFO appropriately.  STRICT is true if we should only accept
   hard base registers.  */
   hard base registers.  */
 
 
static bool
static bool
mips_classify_address (struct mips_address_info *info, rtx x,
mips_classify_address (struct mips_address_info *info, rtx x,
                       enum machine_mode mode, int strict)
                       enum machine_mode mode, int strict)
{
{
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case REG:
    case REG:
    case SUBREG:
    case SUBREG:
      info->type = ADDRESS_REG;
      info->type = ADDRESS_REG;
      info->reg = x;
      info->reg = x;
      info->offset = const0_rtx;
      info->offset = const0_rtx;
      return mips_valid_base_register_p (info->reg, mode, strict);
      return mips_valid_base_register_p (info->reg, mode, strict);
 
 
    case PLUS:
    case PLUS:
      info->type = ADDRESS_REG;
      info->type = ADDRESS_REG;
      info->reg = XEXP (x, 0);
      info->reg = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      info->offset = XEXP (x, 1);
      return (mips_valid_base_register_p (info->reg, mode, strict)
      return (mips_valid_base_register_p (info->reg, mode, strict)
              && const_arith_operand (info->offset, VOIDmode));
              && const_arith_operand (info->offset, VOIDmode));
 
 
    case LO_SUM:
    case LO_SUM:
      info->type = ADDRESS_LO_SUM;
      info->type = ADDRESS_LO_SUM;
      info->reg = XEXP (x, 0);
      info->reg = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      info->offset = XEXP (x, 1);
      /* We have to trust the creator of the LO_SUM to do something vaguely
      /* We have to trust the creator of the LO_SUM to do something vaguely
         sane.  Target-independent code that creates a LO_SUM should also
         sane.  Target-independent code that creates a LO_SUM should also
         create and verify the matching HIGH.  Target-independent code that
         create and verify the matching HIGH.  Target-independent code that
         adds an offset to a LO_SUM must prove that the offset will not
         adds an offset to a LO_SUM must prove that the offset will not
         induce a carry.  Failure to do either of these things would be
         induce a carry.  Failure to do either of these things would be
         a bug, and we are not required to check for it here.  The MIPS
         a bug, and we are not required to check for it here.  The MIPS
         backend itself should only create LO_SUMs for valid symbolic
         backend itself should only create LO_SUMs for valid symbolic
         constants, with the high part being either a HIGH or a copy
         constants, with the high part being either a HIGH or a copy
         of _gp. */
         of _gp. */
      info->symbol_type = mips_classify_symbolic_expression (info->offset);
      info->symbol_type = mips_classify_symbolic_expression (info->offset);
      return (mips_valid_base_register_p (info->reg, mode, strict)
      return (mips_valid_base_register_p (info->reg, mode, strict)
              && mips_symbolic_address_p (info->symbol_type, mode)
              && mips_symbolic_address_p (info->symbol_type, mode)
              && mips_lo_relocs[info->symbol_type] != 0);
              && mips_lo_relocs[info->symbol_type] != 0);
 
 
    case CONST_INT:
    case CONST_INT:
      /* Small-integer addresses don't occur very often, but they
      /* Small-integer addresses don't occur very often, but they
         are legitimate if $0 is a valid base register.  */
         are legitimate if $0 is a valid base register.  */
      info->type = ADDRESS_CONST_INT;
      info->type = ADDRESS_CONST_INT;
      return !TARGET_MIPS16 && SMALL_INT (x);
      return !TARGET_MIPS16 && SMALL_INT (x);
 
 
    case CONST:
    case CONST:
    case LABEL_REF:
    case LABEL_REF:
    case SYMBOL_REF:
    case SYMBOL_REF:
      info->type = ADDRESS_SYMBOLIC;
      info->type = ADDRESS_SYMBOLIC;
      return (mips_symbolic_constant_p (x, &info->symbol_type)
      return (mips_symbolic_constant_p (x, &info->symbol_type)
              && mips_symbolic_address_p (info->symbol_type, mode)
              && mips_symbolic_address_p (info->symbol_type, mode)
              && !mips_split_p[info->symbol_type]);
              && !mips_split_p[info->symbol_type]);
 
 
    default:
    default:
      return false;
      return false;
    }
    }
}
}
 
 
/* Return true if X is a thread-local symbol.  */
/* Return true if X is a thread-local symbol.  */
 
 
static bool
static bool
mips_tls_operand_p (rtx x)
mips_tls_operand_p (rtx x)
{
{
  return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
  return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
}
}
 
 
/* Return true if X can not be forced into a constant pool.  */
/* Return true if X can not be forced into a constant pool.  */
 
 
static int
static int
mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
{
  return mips_tls_operand_p (*x);
  return mips_tls_operand_p (*x);
}
}
 
 
/* Return true if X can not be forced into a constant pool.  */
/* Return true if X can not be forced into a constant pool.  */
 
 
static bool
static bool
mips_cannot_force_const_mem (rtx x)
mips_cannot_force_const_mem (rtx x)
{
{
  rtx base;
  rtx base;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  if (!TARGET_MIPS16)
  if (!TARGET_MIPS16)
    {
    {
      /* As an optimization, reject constants that mips_legitimize_move
      /* As an optimization, reject constants that mips_legitimize_move
         can expand inline.
         can expand inline.
 
 
         Suppose we have a multi-instruction sequence that loads constant C
         Suppose we have a multi-instruction sequence that loads constant C
         into register R.  If R does not get allocated a hard register, and
         into register R.  If R does not get allocated a hard register, and
         R is used in an operand that allows both registers and memory
         R is used in an operand that allows both registers and memory
         references, reload will consider forcing C into memory and using
         references, reload will consider forcing C into memory and using
         one of the instruction's memory alternatives.  Returning false
         one of the instruction's memory alternatives.  Returning false
         here will force it to use an input reload instead.  */
         here will force it to use an input reload instead.  */
      if (GET_CODE (x) == CONST_INT)
      if (GET_CODE (x) == CONST_INT)
        return true;
        return true;
 
 
      mips_split_const (x, &base, &offset);
      mips_split_const (x, &base, &offset);
      if (symbolic_operand (base, VOIDmode) && SMALL_OPERAND (offset))
      if (symbolic_operand (base, VOIDmode) && SMALL_OPERAND (offset))
        return true;
        return true;
    }
    }
 
 
  if (TARGET_HAVE_TLS && for_each_rtx (&x, &mips_tls_symbol_ref_1, 0))
  if (TARGET_HAVE_TLS && for_each_rtx (&x, &mips_tls_symbol_ref_1, 0))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 
/* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P.  MIPS16 uses per-function
/* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P.  MIPS16 uses per-function
   constant pools, but normal-mode code doesn't need to.  */
   constant pools, but normal-mode code doesn't need to.  */
 
 
static bool
static bool
mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
                                rtx x ATTRIBUTE_UNUSED)
                                rtx x ATTRIBUTE_UNUSED)
{
{
  return !TARGET_MIPS16;
  return !TARGET_MIPS16;
}
}


/* Return the number of instructions needed to load a symbol of the
/* Return the number of instructions needed to load a symbol of the
   given type into a register.  If valid in an address, the same number
   given type into a register.  If valid in an address, the same number
   of instructions are needed for loads and stores.  Treat extended
   of instructions are needed for loads and stores.  Treat extended
   mips16 instructions as two instructions.  */
   mips16 instructions as two instructions.  */
 
 
static int
static int
mips_symbol_insns (enum mips_symbol_type type)
mips_symbol_insns (enum mips_symbol_type type)
{
{
  switch (type)
  switch (type)
    {
    {
    case SYMBOL_GENERAL:
    case SYMBOL_GENERAL:
      /* In mips16 code, general symbols must be fetched from the
      /* In mips16 code, general symbols must be fetched from the
         constant pool.  */
         constant pool.  */
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        return 0;
        return 0;
 
 
      /* When using 64-bit symbols, we need 5 preparatory instructions,
      /* When using 64-bit symbols, we need 5 preparatory instructions,
         such as:
         such as:
 
 
             lui     $at,%highest(symbol)
             lui     $at,%highest(symbol)
             daddiu  $at,$at,%higher(symbol)
             daddiu  $at,$at,%higher(symbol)
             dsll    $at,$at,16
             dsll    $at,$at,16
             daddiu  $at,$at,%hi(symbol)
             daddiu  $at,$at,%hi(symbol)
             dsll    $at,$at,16
             dsll    $at,$at,16
 
 
         The final address is then $at + %lo(symbol).  With 32-bit
         The final address is then $at + %lo(symbol).  With 32-bit
         symbols we just need a preparatory lui.  */
         symbols we just need a preparatory lui.  */
      return (ABI_HAS_64BIT_SYMBOLS ? 6 : 2);
      return (ABI_HAS_64BIT_SYMBOLS ? 6 : 2);
 
 
    case SYMBOL_SMALL_DATA:
    case SYMBOL_SMALL_DATA:
      return 1;
      return 1;
 
 
    case SYMBOL_CONSTANT_POOL:
    case SYMBOL_CONSTANT_POOL:
      /* This case is for mips16 only.  Assume we'll need an
      /* This case is for mips16 only.  Assume we'll need an
         extended instruction.  */
         extended instruction.  */
      return 2;
      return 2;
 
 
    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOT_GLOBAL:
    case SYMBOL_GOT_GLOBAL:
      /* Unless -funit-at-a-time is in effect, we can't be sure whether
      /* Unless -funit-at-a-time is in effect, we can't be sure whether
         the local/global classification is accurate.  See override_options
         the local/global classification is accurate.  See override_options
         for details.
         for details.
 
 
         The worst cases are:
         The worst cases are:
 
 
         (1) For local symbols when generating o32 or o64 code.  The assembler
         (1) For local symbols when generating o32 or o64 code.  The assembler
             will use:
             will use:
 
 
                 lw           $at,%got(symbol)
                 lw           $at,%got(symbol)
                 nop
                 nop
 
 
             ...and the final address will be $at + %lo(symbol).
             ...and the final address will be $at + %lo(symbol).
 
 
         (2) For global symbols when -mxgot.  The assembler will use:
         (2) For global symbols when -mxgot.  The assembler will use:
 
 
                 lui     $at,%got_hi(symbol)
                 lui     $at,%got_hi(symbol)
                 (d)addu $at,$at,$gp
                 (d)addu $at,$at,$gp
 
 
             ...and the final address will be $at + %got_lo(symbol).  */
             ...and the final address will be $at + %got_lo(symbol).  */
      return 3;
      return 3;
 
 
    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_MID:
    case SYMBOL_64_MID:
    case SYMBOL_64_LOW:
    case SYMBOL_64_LOW:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_TLSLDM:
    case SYMBOL_DTPREL:
    case SYMBOL_DTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_TPREL:
    case SYMBOL_TPREL:
      /* Check whether the offset is a 16- or 32-bit value.  */
      /* Check whether the offset is a 16- or 32-bit value.  */
      return mips_split_p[type] ? 2 : 1;
      return mips_split_p[type] ? 2 : 1;
 
 
    case SYMBOL_TLS:
    case SYMBOL_TLS:
      /* We don't treat a bare TLS symbol as a constant.  */
      /* We don't treat a bare TLS symbol as a constant.  */
      return 0;
      return 0;
    }
    }
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* Return true if X is a legitimate $sp-based address for mode MDOE.  */
/* Return true if X is a legitimate $sp-based address for mode MDOE.  */
 
 
bool
bool
mips_stack_address_p (rtx x, enum machine_mode mode)
mips_stack_address_p (rtx x, enum machine_mode mode)
{
{
  struct mips_address_info addr;
  struct mips_address_info addr;
 
 
  return (mips_classify_address (&addr, x, mode, false)
  return (mips_classify_address (&addr, x, mode, false)
          && addr.type == ADDRESS_REG
          && addr.type == ADDRESS_REG
          && addr.reg == stack_pointer_rtx);
          && addr.reg == stack_pointer_rtx);
}
}
 
 
/* Return true if a value at OFFSET bytes from BASE can be accessed
/* Return true if a value at OFFSET bytes from BASE can be accessed
   using an unextended mips16 instruction.  MODE is the mode of the
   using an unextended mips16 instruction.  MODE is the mode of the
   value.
   value.
 
 
   Usually the offset in an unextended instruction is a 5-bit field.
   Usually the offset in an unextended instruction is a 5-bit field.
   The offset is unsigned and shifted left once for HIs, twice
   The offset is unsigned and shifted left once for HIs, twice
   for SIs, and so on.  An exception is SImode accesses off the
   for SIs, and so on.  An exception is SImode accesses off the
   stack pointer, which have an 8-bit immediate field.  */
   stack pointer, which have an 8-bit immediate field.  */
 
 
static bool
static bool
mips16_unextended_reference_p (enum machine_mode mode, rtx base, rtx offset)
mips16_unextended_reference_p (enum machine_mode mode, rtx base, rtx offset)
{
{
  if (TARGET_MIPS16
  if (TARGET_MIPS16
      && GET_CODE (offset) == CONST_INT
      && GET_CODE (offset) == CONST_INT
      && INTVAL (offset) >= 0
      && INTVAL (offset) >= 0
      && (INTVAL (offset) & (GET_MODE_SIZE (mode) - 1)) == 0)
      && (INTVAL (offset) & (GET_MODE_SIZE (mode) - 1)) == 0)
    {
    {
      if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
      if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
        return INTVAL (offset) < 256 * GET_MODE_SIZE (mode);
        return INTVAL (offset) < 256 * GET_MODE_SIZE (mode);
      return INTVAL (offset) < 32 * GET_MODE_SIZE (mode);
      return INTVAL (offset) < 32 * GET_MODE_SIZE (mode);
    }
    }
  return false;
  return false;
}
}
 
 
 
 
/* Return the number of instructions needed to load or store a value
/* Return the number of instructions needed to load or store a value
   of mode MODE at X.  Return 0 if X isn't valid for MODE.
   of mode MODE at X.  Return 0 if X isn't valid for MODE.
 
 
   For mips16 code, count extended instructions as two instructions.  */
   For mips16 code, count extended instructions as two instructions.  */
 
 
int
int
mips_address_insns (rtx x, enum machine_mode mode)
mips_address_insns (rtx x, enum machine_mode mode)
{
{
  struct mips_address_info addr;
  struct mips_address_info addr;
  int factor;
  int factor;
 
 
  if (mode == BLKmode)
  if (mode == BLKmode)
    /* BLKmode is used for single unaligned loads and stores.  */
    /* BLKmode is used for single unaligned loads and stores.  */
    factor = 1;
    factor = 1;
  else
  else
    /* Each word of a multi-word value will be accessed individually.  */
    /* Each word of a multi-word value will be accessed individually.  */
    factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
 
 
  if (mips_classify_address (&addr, x, mode, false))
  if (mips_classify_address (&addr, x, mode, false))
    switch (addr.type)
    switch (addr.type)
      {
      {
      case ADDRESS_REG:
      case ADDRESS_REG:
        if (TARGET_MIPS16
        if (TARGET_MIPS16
            && !mips16_unextended_reference_p (mode, addr.reg, addr.offset))
            && !mips16_unextended_reference_p (mode, addr.reg, addr.offset))
          return factor * 2;
          return factor * 2;
        return factor;
        return factor;
 
 
      case ADDRESS_LO_SUM:
      case ADDRESS_LO_SUM:
        return (TARGET_MIPS16 ? factor * 2 : factor);
        return (TARGET_MIPS16 ? factor * 2 : factor);
 
 
      case ADDRESS_CONST_INT:
      case ADDRESS_CONST_INT:
        return factor;
        return factor;
 
 
      case ADDRESS_SYMBOLIC:
      case ADDRESS_SYMBOLIC:
        return factor * mips_symbol_insns (addr.symbol_type);
        return factor * mips_symbol_insns (addr.symbol_type);
      }
      }
  return 0;
  return 0;
}
}
 
 
 
 
/* Likewise for constant X.  */
/* Likewise for constant X.  */
 
 
int
int
mips_const_insns (rtx x)
mips_const_insns (rtx x)
{
{
  struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
  struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
  enum mips_symbol_type symbol_type;
  enum mips_symbol_type symbol_type;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case HIGH:
    case HIGH:
      if (TARGET_MIPS16
      if (TARGET_MIPS16
          || !mips_symbolic_constant_p (XEXP (x, 0), &symbol_type)
          || !mips_symbolic_constant_p (XEXP (x, 0), &symbol_type)
          || !mips_split_p[symbol_type])
          || !mips_split_p[symbol_type])
        return 0;
        return 0;
 
 
      return 1;
      return 1;
 
 
    case CONST_INT:
    case CONST_INT:
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        /* Unsigned 8-bit constants can be loaded using an unextended
        /* Unsigned 8-bit constants can be loaded using an unextended
           LI instruction.  Unsigned 16-bit constants can be loaded
           LI instruction.  Unsigned 16-bit constants can be loaded
           using an extended LI.  Negative constants must be loaded
           using an extended LI.  Negative constants must be loaded
           using LI and then negated.  */
           using LI and then negated.  */
        return (INTVAL (x) >= 0 && INTVAL (x) < 256 ? 1
        return (INTVAL (x) >= 0 && INTVAL (x) < 256 ? 1
                : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
                : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
                : INTVAL (x) > -256 && INTVAL (x) < 0 ? 2
                : INTVAL (x) > -256 && INTVAL (x) < 0 ? 2
                : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
                : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
                : 0);
                : 0);
 
 
      return mips_build_integer (codes, INTVAL (x));
      return mips_build_integer (codes, INTVAL (x));
 
 
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST_VECTOR:
      return (!TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0);
      return (!TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0);
 
 
    case CONST:
    case CONST:
      if (CONST_GP_P (x))
      if (CONST_GP_P (x))
        return 1;
        return 1;
 
 
      /* See if we can refer to X directly.  */
      /* See if we can refer to X directly.  */
      if (mips_symbolic_constant_p (x, &symbol_type))
      if (mips_symbolic_constant_p (x, &symbol_type))
        return mips_symbol_insns (symbol_type);
        return mips_symbol_insns (symbol_type);
 
 
      /* Otherwise try splitting the constant into a base and offset.
      /* Otherwise try splitting the constant into a base and offset.
         16-bit offsets can be added using an extra addiu.  Larger offsets
         16-bit offsets can be added using an extra addiu.  Larger offsets
         must be calculated separately and then added to the base.  */
         must be calculated separately and then added to the base.  */
      mips_split_const (x, &x, &offset);
      mips_split_const (x, &x, &offset);
      if (offset != 0)
      if (offset != 0)
        {
        {
          int n = mips_const_insns (x);
          int n = mips_const_insns (x);
          if (n != 0)
          if (n != 0)
            {
            {
              if (SMALL_OPERAND (offset))
              if (SMALL_OPERAND (offset))
                return n + 1;
                return n + 1;
              else
              else
                return n + 1 + mips_build_integer (codes, offset);
                return n + 1 + mips_build_integer (codes, offset);
            }
            }
        }
        }
      return 0;
      return 0;
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
      return mips_symbol_insns (mips_classify_symbol (x));
      return mips_symbol_insns (mips_classify_symbol (x));
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
 
 
/* Return the number of instructions needed for memory reference X.
/* Return the number of instructions needed for memory reference X.
   Count extended mips16 instructions as two instructions.  */
   Count extended mips16 instructions as two instructions.  */
 
 
int
int
mips_fetch_insns (rtx x)
mips_fetch_insns (rtx x)
{
{
  gcc_assert (MEM_P (x));
  gcc_assert (MEM_P (x));
  return mips_address_insns (XEXP (x, 0), GET_MODE (x));
  return mips_address_insns (XEXP (x, 0), GET_MODE (x));
}
}
 
 
 
 
/* Return the number of instructions needed for an integer division.  */
/* Return the number of instructions needed for an integer division.  */
 
 
int
int
mips_idiv_insns (void)
mips_idiv_insns (void)
{
{
  int count;
  int count;
 
 
  count = 1;
  count = 1;
  if (TARGET_CHECK_ZERO_DIV)
  if (TARGET_CHECK_ZERO_DIV)
    {
    {
      if (GENERATE_DIVIDE_TRAPS)
      if (GENERATE_DIVIDE_TRAPS)
        count++;
        count++;
      else
      else
        count += 2;
        count += 2;
    }
    }
 
 
  if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
  if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
    count++;
    count++;
  return count;
  return count;
}
}


/* This function is used to implement GO_IF_LEGITIMATE_ADDRESS.  It
/* This function is used to implement GO_IF_LEGITIMATE_ADDRESS.  It
   returns a nonzero value if X is a legitimate address for a memory
   returns a nonzero value if X is a legitimate address for a memory
   operand of the indicated MODE.  STRICT is nonzero if this function
   operand of the indicated MODE.  STRICT is nonzero if this function
   is called during reload.  */
   is called during reload.  */
 
 
bool
bool
mips_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
mips_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
{
  struct mips_address_info addr;
  struct mips_address_info addr;
 
 
  return mips_classify_address (&addr, x, mode, strict);
  return mips_classify_address (&addr, x, mode, strict);
}
}
 
 
 
 
/* Copy VALUE to a register and return that register.  If new psuedos
/* Copy VALUE to a register and return that register.  If new psuedos
   are allowed, copy it into a new register, otherwise use DEST.  */
   are allowed, copy it into a new register, otherwise use DEST.  */
 
 
static rtx
static rtx
mips_force_temporary (rtx dest, rtx value)
mips_force_temporary (rtx dest, rtx value)
{
{
  if (!no_new_pseudos)
  if (!no_new_pseudos)
    return force_reg (Pmode, value);
    return force_reg (Pmode, value);
  else
  else
    {
    {
      emit_move_insn (copy_rtx (dest), value);
      emit_move_insn (copy_rtx (dest), value);
      return dest;
      return dest;
    }
    }
}
}
 
 
 
 
/* Return a LO_SUM expression for ADDR.  TEMP is as for mips_force_temporary
/* Return a LO_SUM expression for ADDR.  TEMP is as for mips_force_temporary
   and is used to load the high part into a register.  */
   and is used to load the high part into a register.  */
 
 
rtx
rtx
mips_split_symbol (rtx temp, rtx addr)
mips_split_symbol (rtx temp, rtx addr)
{
{
  rtx high;
  rtx high;
 
 
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    high = mips16_gp_pseudo_reg ();
    high = mips16_gp_pseudo_reg ();
  else
  else
    high = mips_force_temporary (temp, gen_rtx_HIGH (Pmode, copy_rtx (addr)));
    high = mips_force_temporary (temp, gen_rtx_HIGH (Pmode, copy_rtx (addr)));
  return gen_rtx_LO_SUM (Pmode, high, addr);
  return gen_rtx_LO_SUM (Pmode, high, addr);
}
}
 
 
 
 
/* Return an UNSPEC address with underlying address ADDRESS and symbol
/* Return an UNSPEC address with underlying address ADDRESS and symbol
   type SYMBOL_TYPE.  */
   type SYMBOL_TYPE.  */
 
 
rtx
rtx
mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
{
{
  rtx base;
  rtx base;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  mips_split_const (address, &base, &offset);
  mips_split_const (address, &base, &offset);
  base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
  base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
                         UNSPEC_ADDRESS_FIRST + symbol_type);
                         UNSPEC_ADDRESS_FIRST + symbol_type);
  return plus_constant (gen_rtx_CONST (Pmode, base), offset);
  return plus_constant (gen_rtx_CONST (Pmode, base), offset);
}
}
 
 
 
 
/* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
/* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
   high part to BASE and return the result.  Just return BASE otherwise.
   high part to BASE and return the result.  Just return BASE otherwise.
   TEMP is available as a temporary register if needed.
   TEMP is available as a temporary register if needed.
 
 
   The returned expression can be used as the first operand to a LO_SUM.  */
   The returned expression can be used as the first operand to a LO_SUM.  */
 
 
static rtx
static rtx
mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
                         enum mips_symbol_type symbol_type)
                         enum mips_symbol_type symbol_type)
{
{
  if (mips_split_p[symbol_type])
  if (mips_split_p[symbol_type])
    {
    {
      addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
      addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
      addr = mips_force_temporary (temp, addr);
      addr = mips_force_temporary (temp, addr);
      return mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
      return mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
    }
    }
  return base;
  return base;
}
}
 
 
 
 
/* Return a legitimate address for REG + OFFSET.  TEMP is as for
/* Return a legitimate address for REG + OFFSET.  TEMP is as for
   mips_force_temporary; it is only needed when OFFSET is not a
   mips_force_temporary; it is only needed when OFFSET is not a
   SMALL_OPERAND.  */
   SMALL_OPERAND.  */
 
 
static rtx
static rtx
mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
{
{
  if (!SMALL_OPERAND (offset))
  if (!SMALL_OPERAND (offset))
    {
    {
      rtx high;
      rtx high;
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        {
        {
          /* Load the full offset into a register so that we can use
          /* Load the full offset into a register so that we can use
             an unextended instruction for the address itself.  */
             an unextended instruction for the address itself.  */
          high = GEN_INT (offset);
          high = GEN_INT (offset);
          offset = 0;
          offset = 0;
        }
        }
      else
      else
        {
        {
          /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.  */
          /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.  */
          high = GEN_INT (CONST_HIGH_PART (offset));
          high = GEN_INT (CONST_HIGH_PART (offset));
          offset = CONST_LOW_PART (offset);
          offset = CONST_LOW_PART (offset);
        }
        }
      high = mips_force_temporary (temp, high);
      high = mips_force_temporary (temp, high);
      reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
      reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
    }
    }
  return plus_constant (reg, offset);
  return plus_constant (reg, offset);
}
}
 
 
/* Emit a call to __tls_get_addr.  SYM is the TLS symbol we are
/* Emit a call to __tls_get_addr.  SYM is the TLS symbol we are
   referencing, and TYPE is the symbol type to use (either global
   referencing, and TYPE is the symbol type to use (either global
   dynamic or local dynamic).  V0 is an RTX for the return value
   dynamic or local dynamic).  V0 is an RTX for the return value
   location.  The entire insn sequence is returned.  */
   location.  The entire insn sequence is returned.  */
 
 
static GTY(()) rtx mips_tls_symbol;
static GTY(()) rtx mips_tls_symbol;
 
 
static rtx
static rtx
mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
{
{
  rtx insn, loc, tga, a0;
  rtx insn, loc, tga, a0;
 
 
  a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
  a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
 
 
  if (!mips_tls_symbol)
  if (!mips_tls_symbol)
    mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
    mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
 
 
  loc = mips_unspec_address (sym, type);
  loc = mips_unspec_address (sym, type);
 
 
  start_sequence ();
  start_sequence ();
 
 
  emit_insn (gen_rtx_SET (Pmode, a0,
  emit_insn (gen_rtx_SET (Pmode, a0,
                          gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
                          gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
  tga = gen_rtx_MEM (Pmode, mips_tls_symbol);
  tga = gen_rtx_MEM (Pmode, mips_tls_symbol);
  insn = emit_call_insn (gen_call_value (v0, tga, const0_rtx, const0_rtx));
  insn = emit_call_insn (gen_call_value (v0, tga, const0_rtx, const0_rtx));
  CONST_OR_PURE_CALL_P (insn) = 1;
  CONST_OR_PURE_CALL_P (insn) = 1;
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), v0);
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), v0);
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
  insn = get_insns ();
  insn = get_insns ();
 
 
  end_sequence ();
  end_sequence ();
 
 
  return insn;
  return insn;
}
}
 
 
/* Generate the code to access LOC, a thread local SYMBOL_REF.  The
/* Generate the code to access LOC, a thread local SYMBOL_REF.  The
   return value will be a valid address and move_operand (either a REG
   return value will be a valid address and move_operand (either a REG
   or a LO_SUM).  */
   or a LO_SUM).  */
 
 
static rtx
static rtx
mips_legitimize_tls_address (rtx loc)
mips_legitimize_tls_address (rtx loc)
{
{
  rtx dest, insn, v0, v1, tmp1, tmp2, eqv;
  rtx dest, insn, v0, v1, tmp1, tmp2, eqv;
  enum tls_model model;
  enum tls_model model;
 
 
  v0 = gen_rtx_REG (Pmode, GP_RETURN);
  v0 = gen_rtx_REG (Pmode, GP_RETURN);
  v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);
  v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);
 
 
  model = SYMBOL_REF_TLS_MODEL (loc);
  model = SYMBOL_REF_TLS_MODEL (loc);
  /* Only TARGET_ABICALLS code can have more than one module; other
  /* Only TARGET_ABICALLS code can have more than one module; other
     code must be be static and should not use a GOT.  All TLS models
     code must be be static and should not use a GOT.  All TLS models
     reduce to local exec in this situation.  */
     reduce to local exec in this situation.  */
  if (!TARGET_ABICALLS)
  if (!TARGET_ABICALLS)
    model = TLS_MODEL_LOCAL_EXEC;
    model = TLS_MODEL_LOCAL_EXEC;
 
 
  switch (model)
  switch (model)
    {
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
    case TLS_MODEL_GLOBAL_DYNAMIC:
      insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
      insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
      dest = gen_reg_rtx (Pmode);
      dest = gen_reg_rtx (Pmode);
      emit_libcall_block (insn, dest, v0, loc);
      emit_libcall_block (insn, dest, v0, loc);
      break;
      break;
 
 
    case TLS_MODEL_LOCAL_DYNAMIC:
    case TLS_MODEL_LOCAL_DYNAMIC:
      insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
      insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
      tmp1 = gen_reg_rtx (Pmode);
      tmp1 = gen_reg_rtx (Pmode);
 
 
      /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
      /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
         share the LDM result with other LD model accesses.  */
         share the LDM result with other LD model accesses.  */
      eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
      eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
                            UNSPEC_TLS_LDM);
                            UNSPEC_TLS_LDM);
      emit_libcall_block (insn, tmp1, v0, eqv);
      emit_libcall_block (insn, tmp1, v0, eqv);
 
 
      tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
      tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
      dest = gen_rtx_LO_SUM (Pmode, tmp2,
      dest = gen_rtx_LO_SUM (Pmode, tmp2,
                             mips_unspec_address (loc, SYMBOL_DTPREL));
                             mips_unspec_address (loc, SYMBOL_DTPREL));
      break;
      break;
 
 
    case TLS_MODEL_INITIAL_EXEC:
    case TLS_MODEL_INITIAL_EXEC:
      tmp1 = gen_reg_rtx (Pmode);
      tmp1 = gen_reg_rtx (Pmode);
      tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
      tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
      if (Pmode == DImode)
      if (Pmode == DImode)
        {
        {
          emit_insn (gen_tls_get_tp_di (v1));
          emit_insn (gen_tls_get_tp_di (v1));
          emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
          emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
        }
        }
      else
      else
        {
        {
          emit_insn (gen_tls_get_tp_si (v1));
          emit_insn (gen_tls_get_tp_si (v1));
          emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
          emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
        }
        }
      dest = gen_reg_rtx (Pmode);
      dest = gen_reg_rtx (Pmode);
      emit_insn (gen_add3_insn (dest, tmp1, v1));
      emit_insn (gen_add3_insn (dest, tmp1, v1));
      break;
      break;
 
 
    case TLS_MODEL_LOCAL_EXEC:
    case TLS_MODEL_LOCAL_EXEC:
      if (Pmode == DImode)
      if (Pmode == DImode)
        emit_insn (gen_tls_get_tp_di (v1));
        emit_insn (gen_tls_get_tp_di (v1));
      else
      else
        emit_insn (gen_tls_get_tp_si (v1));
        emit_insn (gen_tls_get_tp_si (v1));
 
 
      tmp1 = mips_unspec_offset_high (NULL, v1, loc, SYMBOL_TPREL);
      tmp1 = mips_unspec_offset_high (NULL, v1, loc, SYMBOL_TPREL);
      dest = gen_rtx_LO_SUM (Pmode, tmp1,
      dest = gen_rtx_LO_SUM (Pmode, tmp1,
                             mips_unspec_address (loc, SYMBOL_TPREL));
                             mips_unspec_address (loc, SYMBOL_TPREL));
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return dest;
  return dest;
}
}
 
 
/* This function is used to implement LEGITIMIZE_ADDRESS.  If *XLOC can
/* This function is used to implement LEGITIMIZE_ADDRESS.  If *XLOC can
   be legitimized in a way that the generic machinery might not expect,
   be legitimized in a way that the generic machinery might not expect,
   put the new address in *XLOC and return true.  MODE is the mode of
   put the new address in *XLOC and return true.  MODE is the mode of
   the memory being accessed.  */
   the memory being accessed.  */
 
 
bool
bool
mips_legitimize_address (rtx *xloc, enum machine_mode mode)
mips_legitimize_address (rtx *xloc, enum machine_mode mode)
{
{
  enum mips_symbol_type symbol_type;
  enum mips_symbol_type symbol_type;
 
 
  if (mips_tls_operand_p (*xloc))
  if (mips_tls_operand_p (*xloc))
    {
    {
      *xloc = mips_legitimize_tls_address (*xloc);
      *xloc = mips_legitimize_tls_address (*xloc);
      return true;
      return true;
    }
    }
 
 
  /* See if the address can split into a high part and a LO_SUM.  */
  /* See if the address can split into a high part and a LO_SUM.  */
  if (mips_symbolic_constant_p (*xloc, &symbol_type)
  if (mips_symbolic_constant_p (*xloc, &symbol_type)
      && mips_symbolic_address_p (symbol_type, mode)
      && mips_symbolic_address_p (symbol_type, mode)
      && mips_split_p[symbol_type])
      && mips_split_p[symbol_type])
    {
    {
      *xloc = mips_split_symbol (0, *xloc);
      *xloc = mips_split_symbol (0, *xloc);
      return true;
      return true;
    }
    }
 
 
  if (GET_CODE (*xloc) == PLUS && GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
  if (GET_CODE (*xloc) == PLUS && GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
    {
    {
      /* Handle REG + CONSTANT using mips_add_offset.  */
      /* Handle REG + CONSTANT using mips_add_offset.  */
      rtx reg;
      rtx reg;
 
 
      reg = XEXP (*xloc, 0);
      reg = XEXP (*xloc, 0);
      if (!mips_valid_base_register_p (reg, mode, 0))
      if (!mips_valid_base_register_p (reg, mode, 0))
        reg = copy_to_mode_reg (Pmode, reg);
        reg = copy_to_mode_reg (Pmode, reg);
      *xloc = mips_add_offset (0, reg, INTVAL (XEXP (*xloc, 1)));
      *xloc = mips_add_offset (0, reg, INTVAL (XEXP (*xloc, 1)));
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Subroutine of mips_build_integer (with the same interface).
/* Subroutine of mips_build_integer (with the same interface).
   Assume that the final action in the sequence should be a left shift.  */
   Assume that the final action in the sequence should be a left shift.  */
 
 
static unsigned int
static unsigned int
mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
{
{
  unsigned int i, shift;
  unsigned int i, shift;
 
 
  /* Shift VALUE right until its lowest bit is set.  Shift arithmetically
  /* Shift VALUE right until its lowest bit is set.  Shift arithmetically
     since signed numbers are easier to load than unsigned ones.  */
     since signed numbers are easier to load than unsigned ones.  */
  shift = 0;
  shift = 0;
  while ((value & 1) == 0)
  while ((value & 1) == 0)
    value /= 2, shift++;
    value /= 2, shift++;
 
 
  i = mips_build_integer (codes, value);
  i = mips_build_integer (codes, value);
  codes[i].code = ASHIFT;
  codes[i].code = ASHIFT;
  codes[i].value = shift;
  codes[i].value = shift;
  return i + 1;
  return i + 1;
}
}
 
 
 
 
/* As for mips_build_shift, but assume that the final action will be
/* As for mips_build_shift, but assume that the final action will be
   an IOR or PLUS operation.  */
   an IOR or PLUS operation.  */
 
 
static unsigned int
static unsigned int
mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
{
{
  unsigned HOST_WIDE_INT high;
  unsigned HOST_WIDE_INT high;
  unsigned int i;
  unsigned int i;
 
 
  high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
  high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
  if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
  if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
    {
    {
      /* The constant is too complex to load with a simple lui/ori pair
      /* The constant is too complex to load with a simple lui/ori pair
         so our goal is to clear as many trailing zeros as possible.
         so our goal is to clear as many trailing zeros as possible.
         In this case, we know bit 16 is set and that the low 16 bits
         In this case, we know bit 16 is set and that the low 16 bits
         form a negative number.  If we subtract that number from VALUE,
         form a negative number.  If we subtract that number from VALUE,
         we will clear at least the lowest 17 bits, maybe more.  */
         we will clear at least the lowest 17 bits, maybe more.  */
      i = mips_build_integer (codes, CONST_HIGH_PART (value));
      i = mips_build_integer (codes, CONST_HIGH_PART (value));
      codes[i].code = PLUS;
      codes[i].code = PLUS;
      codes[i].value = CONST_LOW_PART (value);
      codes[i].value = CONST_LOW_PART (value);
    }
    }
  else
  else
    {
    {
      i = mips_build_integer (codes, high);
      i = mips_build_integer (codes, high);
      codes[i].code = IOR;
      codes[i].code = IOR;
      codes[i].value = value & 0xffff;
      codes[i].value = value & 0xffff;
    }
    }
  return i + 1;
  return i + 1;
}
}
 
 
 
 
/* Fill CODES with a sequence of rtl operations to load VALUE.
/* Fill CODES with a sequence of rtl operations to load VALUE.
   Return the number of operations needed.  */
   Return the number of operations needed.  */
 
 
static unsigned int
static unsigned int
mips_build_integer (struct mips_integer_op *codes,
mips_build_integer (struct mips_integer_op *codes,
                    unsigned HOST_WIDE_INT value)
                    unsigned HOST_WIDE_INT value)
{
{
  if (SMALL_OPERAND (value)
  if (SMALL_OPERAND (value)
      || SMALL_OPERAND_UNSIGNED (value)
      || SMALL_OPERAND_UNSIGNED (value)
      || LUI_OPERAND (value))
      || LUI_OPERAND (value))
    {
    {
      /* The value can be loaded with a single instruction.  */
      /* The value can be loaded with a single instruction.  */
      codes[0].code = UNKNOWN;
      codes[0].code = UNKNOWN;
      codes[0].value = value;
      codes[0].value = value;
      return 1;
      return 1;
    }
    }
  else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
  else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
    {
    {
      /* Either the constant is a simple LUI/ORI combination or its
      /* Either the constant is a simple LUI/ORI combination or its
         lowest bit is set.  We don't want to shift in this case.  */
         lowest bit is set.  We don't want to shift in this case.  */
      return mips_build_lower (codes, value);
      return mips_build_lower (codes, value);
    }
    }
  else if ((value & 0xffff) == 0)
  else if ((value & 0xffff) == 0)
    {
    {
      /* The constant will need at least three actions.  The lowest
      /* The constant will need at least three actions.  The lowest
         16 bits are clear, so the final action will be a shift.  */
         16 bits are clear, so the final action will be a shift.  */
      return mips_build_shift (codes, value);
      return mips_build_shift (codes, value);
    }
    }
  else
  else
    {
    {
      /* The final action could be a shift, add or inclusive OR.
      /* The final action could be a shift, add or inclusive OR.
         Rather than use a complex condition to select the best
         Rather than use a complex condition to select the best
         approach, try both mips_build_shift and mips_build_lower
         approach, try both mips_build_shift and mips_build_lower
         and pick the one that gives the shortest sequence.
         and pick the one that gives the shortest sequence.
         Note that this case is only used once per constant.  */
         Note that this case is only used once per constant.  */
      struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
      struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
      unsigned int cost, alt_cost;
      unsigned int cost, alt_cost;
 
 
      cost = mips_build_shift (codes, value);
      cost = mips_build_shift (codes, value);
      alt_cost = mips_build_lower (alt_codes, value);
      alt_cost = mips_build_lower (alt_codes, value);
      if (alt_cost < cost)
      if (alt_cost < cost)
        {
        {
          memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
          memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
          cost = alt_cost;
          cost = alt_cost;
        }
        }
      return cost;
      return cost;
    }
    }
}
}
 
 
 
 
/* Load VALUE into DEST, using TEMP as a temporary register if need be.  */
/* Load VALUE into DEST, using TEMP as a temporary register if need be.  */
 
 
void
void
mips_move_integer (rtx dest, rtx temp, unsigned HOST_WIDE_INT value)
mips_move_integer (rtx dest, rtx temp, unsigned HOST_WIDE_INT value)
{
{
  struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
  struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
  enum machine_mode mode;
  enum machine_mode mode;
  unsigned int i, cost;
  unsigned int i, cost;
  rtx x;
  rtx x;
 
 
  mode = GET_MODE (dest);
  mode = GET_MODE (dest);
  cost = mips_build_integer (codes, value);
  cost = mips_build_integer (codes, value);
 
 
  /* Apply each binary operation to X.  Invariant: X is a legitimate
  /* Apply each binary operation to X.  Invariant: X is a legitimate
     source operand for a SET pattern.  */
     source operand for a SET pattern.  */
  x = GEN_INT (codes[0].value);
  x = GEN_INT (codes[0].value);
  for (i = 1; i < cost; i++)
  for (i = 1; i < cost; i++)
    {
    {
      if (no_new_pseudos)
      if (no_new_pseudos)
        {
        {
          emit_insn (gen_rtx_SET (VOIDmode, temp, x));
          emit_insn (gen_rtx_SET (VOIDmode, temp, x));
          x = temp;
          x = temp;
        }
        }
      else
      else
        x = force_reg (mode, x);
        x = force_reg (mode, x);
      x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
      x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
    }
    }
 
 
  emit_insn (gen_rtx_SET (VOIDmode, dest, x));
  emit_insn (gen_rtx_SET (VOIDmode, dest, x));
}
}
 
 
 
 
/* Subroutine of mips_legitimize_move.  Move constant SRC into register
/* Subroutine of mips_legitimize_move.  Move constant SRC into register
   DEST given that SRC satisfies immediate_operand but doesn't satisfy
   DEST given that SRC satisfies immediate_operand but doesn't satisfy
   move_operand.  */
   move_operand.  */
 
 
static void
static void
mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
{
{
  rtx base;
  rtx base;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  /* Split moves of big integers into smaller pieces.  */
  /* Split moves of big integers into smaller pieces.  */
  if (splittable_const_int_operand (src, mode))
  if (splittable_const_int_operand (src, mode))
    {
    {
      mips_move_integer (dest, dest, INTVAL (src));
      mips_move_integer (dest, dest, INTVAL (src));
      return;
      return;
    }
    }
 
 
  /* Split moves of symbolic constants into high/low pairs.  */
  /* Split moves of symbolic constants into high/low pairs.  */
  if (splittable_symbolic_operand (src, mode))
  if (splittable_symbolic_operand (src, mode))
    {
    {
      emit_insn (gen_rtx_SET (VOIDmode, dest, mips_split_symbol (dest, src)));
      emit_insn (gen_rtx_SET (VOIDmode, dest, mips_split_symbol (dest, src)));
      return;
      return;
    }
    }
 
 
  if (mips_tls_operand_p (src))
  if (mips_tls_operand_p (src))
    {
    {
      emit_move_insn (dest, mips_legitimize_tls_address (src));
      emit_move_insn (dest, mips_legitimize_tls_address (src));
      return;
      return;
    }
    }
 
 
  /* If we have (const (plus symbol offset)), load the symbol first
  /* If we have (const (plus symbol offset)), load the symbol first
     and then add in the offset.  This is usually better than forcing
     and then add in the offset.  This is usually better than forcing
     the constant into memory, at least in non-mips16 code.  */
     the constant into memory, at least in non-mips16 code.  */
  mips_split_const (src, &base, &offset);
  mips_split_const (src, &base, &offset);
  if (!TARGET_MIPS16
  if (!TARGET_MIPS16
      && offset != 0
      && offset != 0
      && (!no_new_pseudos || SMALL_OPERAND (offset)))
      && (!no_new_pseudos || SMALL_OPERAND (offset)))
    {
    {
      base = mips_force_temporary (dest, base);
      base = mips_force_temporary (dest, base);
      emit_move_insn (dest, mips_add_offset (0, base, offset));
      emit_move_insn (dest, mips_add_offset (0, base, offset));
      return;
      return;
    }
    }
 
 
  src = force_const_mem (mode, src);
  src = force_const_mem (mode, src);
 
 
  /* When using explicit relocs, constant pool references are sometimes
  /* When using explicit relocs, constant pool references are sometimes
     not legitimate addresses.  */
     not legitimate addresses.  */
  if (!memory_operand (src, VOIDmode))
  if (!memory_operand (src, VOIDmode))
    src = replace_equiv_address (src, mips_split_symbol (dest, XEXP (src, 0)));
    src = replace_equiv_address (src, mips_split_symbol (dest, XEXP (src, 0)));
  emit_move_insn (dest, src);
  emit_move_insn (dest, src);
}
}
 
 
 
 
/* If (set DEST SRC) is not a valid instruction, emit an equivalent
/* If (set DEST SRC) is not a valid instruction, emit an equivalent
   sequence that is valid.  */
   sequence that is valid.  */
 
 
bool
bool
mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
{
{
  if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
  if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
    {
    {
      emit_move_insn (dest, force_reg (mode, src));
      emit_move_insn (dest, force_reg (mode, src));
      return true;
      return true;
    }
    }
 
 
  /* Check for individual, fully-reloaded mflo and mfhi instructions.  */
  /* Check for individual, fully-reloaded mflo and mfhi instructions.  */
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
      && REG_P (src) && MD_REG_P (REGNO (src))
      && REG_P (src) && MD_REG_P (REGNO (src))
      && REG_P (dest) && GP_REG_P (REGNO (dest)))
      && REG_P (dest) && GP_REG_P (REGNO (dest)))
    {
    {
      int other_regno = REGNO (src) == HI_REGNUM ? LO_REGNUM : HI_REGNUM;
      int other_regno = REGNO (src) == HI_REGNUM ? LO_REGNUM : HI_REGNUM;
      if (GET_MODE_SIZE (mode) <= 4)
      if (GET_MODE_SIZE (mode) <= 4)
        emit_insn (gen_mfhilo_si (gen_rtx_REG (SImode, REGNO (dest)),
        emit_insn (gen_mfhilo_si (gen_rtx_REG (SImode, REGNO (dest)),
                                  gen_rtx_REG (SImode, REGNO (src)),
                                  gen_rtx_REG (SImode, REGNO (src)),
                                  gen_rtx_REG (SImode, other_regno)));
                                  gen_rtx_REG (SImode, other_regno)));
      else
      else
        emit_insn (gen_mfhilo_di (gen_rtx_REG (DImode, REGNO (dest)),
        emit_insn (gen_mfhilo_di (gen_rtx_REG (DImode, REGNO (dest)),
                                  gen_rtx_REG (DImode, REGNO (src)),
                                  gen_rtx_REG (DImode, REGNO (src)),
                                  gen_rtx_REG (DImode, other_regno)));
                                  gen_rtx_REG (DImode, other_regno)));
      return true;
      return true;
    }
    }
 
 
  /* We need to deal with constants that would be legitimate
  /* We need to deal with constants that would be legitimate
     immediate_operands but not legitimate move_operands.  */
     immediate_operands but not legitimate move_operands.  */
  if (CONSTANT_P (src) && !move_operand (src, mode))
  if (CONSTANT_P (src) && !move_operand (src, mode))
    {
    {
      mips_legitimize_const_move (mode, dest, src);
      mips_legitimize_const_move (mode, dest, src);
      set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
      set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}


/* We need a lot of little routines to check constant values on the
/* We need a lot of little routines to check constant values on the
   mips16.  These are used to figure out how long the instruction will
   mips16.  These are used to figure out how long the instruction will
   be.  It would be much better to do this using constraints, but
   be.  It would be much better to do this using constraints, but
   there aren't nearly enough letters available.  */
   there aren't nearly enough letters available.  */
 
 
static int
static int
m16_check_op (rtx op, int low, int high, int mask)
m16_check_op (rtx op, int low, int high, int mask)
{
{
  return (GET_CODE (op) == CONST_INT
  return (GET_CODE (op) == CONST_INT
          && INTVAL (op) >= low
          && INTVAL (op) >= low
          && INTVAL (op) <= high
          && INTVAL (op) <= high
          && (INTVAL (op) & mask) == 0);
          && (INTVAL (op) & mask) == 0);
}
}
 
 
int
int
m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, 0x1, 0x8, 0);
  return m16_check_op (op, 0x1, 0x8, 0);
}
}
 
 
int
int
m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0x8, 0x7, 0);
  return m16_check_op (op, - 0x8, 0x7, 0);
}
}
 
 
int
int
m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0x7, 0x8, 0);
  return m16_check_op (op, - 0x7, 0x8, 0);
}
}
 
 
int
int
m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0x10, 0xf, 0);
  return m16_check_op (op, - 0x10, 0xf, 0);
}
}
 
 
int
int
m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0xf, 0x10, 0);
  return m16_check_op (op, - 0xf, 0x10, 0);
}
}
 
 
int
int
m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, (- 0x10) << 2, 0xf << 2, 3);
  return m16_check_op (op, (- 0x10) << 2, 0xf << 2, 3);
}
}
 
 
int
int
m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, (- 0xf) << 2, 0x10 << 2, 3);
  return m16_check_op (op, (- 0xf) << 2, 0x10 << 2, 3);
}
}
 
 
int
int
m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0x80, 0x7f, 0);
  return m16_check_op (op, - 0x80, 0x7f, 0);
}
}
 
 
int
int
m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0x7f, 0x80, 0);
  return m16_check_op (op, - 0x7f, 0x80, 0);
}
}
 
 
int
int
m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, 0x0, 0xff, 0);
  return m16_check_op (op, 0x0, 0xff, 0);
}
}
 
 
int
int
m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0xff, 0x0, 0);
  return m16_check_op (op, - 0xff, 0x0, 0);
}
}
 
 
int
int
m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, - 0x1, 0xfe, 0);
  return m16_check_op (op, - 0x1, 0xfe, 0);
}
}
 
 
int
int
m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, 0x0, 0xff << 2, 3);
  return m16_check_op (op, 0x0, 0xff << 2, 3);
}
}
 
 
int
int
m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, (- 0xff) << 2, 0x0, 3);
  return m16_check_op (op, (- 0xff) << 2, 0x0, 3);
}
}
 
 
int
int
m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, (- 0x80) << 3, 0x7f << 3, 7);
  return m16_check_op (op, (- 0x80) << 3, 0x7f << 3, 7);
}
}
 
 
int
int
m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
{
  return m16_check_op (op, (- 0x7f) << 3, 0x80 << 3, 7);
  return m16_check_op (op, (- 0x7f) << 3, 0x80 << 3, 7);
}
}


static bool
static bool
mips_rtx_costs (rtx x, int code, int outer_code, int *total)
mips_rtx_costs (rtx x, int code, int outer_code, int *total)
{
{
  enum machine_mode mode = GET_MODE (x);
  enum machine_mode mode = GET_MODE (x);
  bool float_mode_p = FLOAT_MODE_P (mode);
  bool float_mode_p = FLOAT_MODE_P (mode);
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        {
        {
          /* A number between 1 and 8 inclusive is efficient for a shift.
          /* A number between 1 and 8 inclusive is efficient for a shift.
             Otherwise, we will need an extended instruction.  */
             Otherwise, we will need an extended instruction.  */
          if ((outer_code) == ASHIFT || (outer_code) == ASHIFTRT
          if ((outer_code) == ASHIFT || (outer_code) == ASHIFTRT
              || (outer_code) == LSHIFTRT)
              || (outer_code) == LSHIFTRT)
            {
            {
              if (INTVAL (x) >= 1 && INTVAL (x) <= 8)
              if (INTVAL (x) >= 1 && INTVAL (x) <= 8)
                *total = 0;
                *total = 0;
              else
              else
                *total = COSTS_N_INSNS (1);
                *total = COSTS_N_INSNS (1);
              return true;
              return true;
            }
            }
 
 
          /* We can use cmpi for an xor with an unsigned 16 bit value.  */
          /* We can use cmpi for an xor with an unsigned 16 bit value.  */
          if ((outer_code) == XOR
          if ((outer_code) == XOR
              && INTVAL (x) >= 0 && INTVAL (x) < 0x10000)
              && INTVAL (x) >= 0 && INTVAL (x) < 0x10000)
            {
            {
              *total = 0;
              *total = 0;
              return true;
              return true;
            }
            }
 
 
          /* We may be able to use slt or sltu for a comparison with a
          /* We may be able to use slt or sltu for a comparison with a
             signed 16 bit value.  (The boundary conditions aren't quite
             signed 16 bit value.  (The boundary conditions aren't quite
             right, but this is just a heuristic anyhow.)  */
             right, but this is just a heuristic anyhow.)  */
          if (((outer_code) == LT || (outer_code) == LE
          if (((outer_code) == LT || (outer_code) == LE
               || (outer_code) == GE || (outer_code) == GT
               || (outer_code) == GE || (outer_code) == GT
               || (outer_code) == LTU || (outer_code) == LEU
               || (outer_code) == LTU || (outer_code) == LEU
               || (outer_code) == GEU || (outer_code) == GTU)
               || (outer_code) == GEU || (outer_code) == GTU)
              && INTVAL (x) >= -0x8000 && INTVAL (x) < 0x8000)
              && INTVAL (x) >= -0x8000 && INTVAL (x) < 0x8000)
            {
            {
              *total = 0;
              *total = 0;
              return true;
              return true;
            }
            }
 
 
          /* Equality comparisons with 0 are cheap.  */
          /* Equality comparisons with 0 are cheap.  */
          if (((outer_code) == EQ || (outer_code) == NE)
          if (((outer_code) == EQ || (outer_code) == NE)
              && INTVAL (x) == 0)
              && INTVAL (x) == 0)
            {
            {
              *total = 0;
              *total = 0;
              return true;
              return true;
            }
            }
 
 
          /* Constants in the range 0...255 can be loaded with an unextended
          /* Constants in the range 0...255 can be loaded with an unextended
             instruction.  They are therefore as cheap as a register move.
             instruction.  They are therefore as cheap as a register move.
 
 
             Given the choice between "li R1,0...255" and "move R1,R2"
             Given the choice between "li R1,0...255" and "move R1,R2"
             (where R2 is a known constant), it is usually better to use "li",
             (where R2 is a known constant), it is usually better to use "li",
             since we do not want to unnecessarily extend the lifetime
             since we do not want to unnecessarily extend the lifetime
             of R2.  */
             of R2.  */
          if (outer_code == SET
          if (outer_code == SET
              && INTVAL (x) >= 0
              && INTVAL (x) >= 0
              && INTVAL (x) < 256)
              && INTVAL (x) < 256)
            {
            {
              *total = 0;
              *total = 0;
              return true;
              return true;
            }
            }
        }
        }
      else
      else
        {
        {
          /* These can be used anywhere. */
          /* These can be used anywhere. */
          *total = 0;
          *total = 0;
          return true;
          return true;
        }
        }
 
 
      /* Otherwise fall through to the handling below because
      /* Otherwise fall through to the handling below because
         we'll need to construct the constant.  */
         we'll need to construct the constant.  */
 
 
    case CONST:
    case CONST:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      if (LEGITIMATE_CONSTANT_P (x))
      if (LEGITIMATE_CONSTANT_P (x))
        {
        {
          *total = COSTS_N_INSNS (1);
          *total = COSTS_N_INSNS (1);
          return true;
          return true;
        }
        }
      else
      else
        {
        {
          /* The value will need to be fetched from the constant pool.  */
          /* The value will need to be fetched from the constant pool.  */
          *total = CONSTANT_POOL_COST;
          *total = CONSTANT_POOL_COST;
          return true;
          return true;
        }
        }
 
 
    case MEM:
    case MEM:
      {
      {
        /* If the address is legitimate, return the number of
        /* If the address is legitimate, return the number of
           instructions it needs, otherwise use the default handling.  */
           instructions it needs, otherwise use the default handling.  */
        int n = mips_address_insns (XEXP (x, 0), GET_MODE (x));
        int n = mips_address_insns (XEXP (x, 0), GET_MODE (x));
        if (n > 0)
        if (n > 0)
          {
          {
            *total = COSTS_N_INSNS (n + 1);
            *total = COSTS_N_INSNS (n + 1);
            return true;
            return true;
          }
          }
        return false;
        return false;
      }
      }
 
 
    case FFS:
    case FFS:
      *total = COSTS_N_INSNS (6);
      *total = COSTS_N_INSNS (6);
      return true;
      return true;
 
 
    case NOT:
    case NOT:
      *total = COSTS_N_INSNS ((mode == DImode && !TARGET_64BIT) ? 2 : 1);
      *total = COSTS_N_INSNS ((mode == DImode && !TARGET_64BIT) ? 2 : 1);
      return true;
      return true;
 
 
    case AND:
    case AND:
    case IOR:
    case IOR:
    case XOR:
    case XOR:
      if (mode == DImode && !TARGET_64BIT)
      if (mode == DImode && !TARGET_64BIT)
        {
        {
          *total = COSTS_N_INSNS (2);
          *total = COSTS_N_INSNS (2);
          return true;
          return true;
        }
        }
      return false;
      return false;
 
 
    case ASHIFT:
    case ASHIFT:
    case ASHIFTRT:
    case ASHIFTRT:
    case LSHIFTRT:
    case LSHIFTRT:
      if (mode == DImode && !TARGET_64BIT)
      if (mode == DImode && !TARGET_64BIT)
        {
        {
          *total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
          *total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
                                  ? 4 : 12);
                                  ? 4 : 12);
          return true;
          return true;
        }
        }
      return false;
      return false;
 
 
    case ABS:
    case ABS:
      if (float_mode_p)
      if (float_mode_p)
        *total = COSTS_N_INSNS (1);
        *total = COSTS_N_INSNS (1);
      else
      else
        *total = COSTS_N_INSNS (4);
        *total = COSTS_N_INSNS (4);
      return true;
      return true;
 
 
    case LO_SUM:
    case LO_SUM:
      *total = COSTS_N_INSNS (1);
      *total = COSTS_N_INSNS (1);
      return true;
      return true;
 
 
    case PLUS:
    case PLUS:
    case MINUS:
    case MINUS:
      if (float_mode_p)
      if (float_mode_p)
        {
        {
          *total = mips_cost->fp_add;
          *total = mips_cost->fp_add;
          return true;
          return true;
        }
        }
 
 
      else if (mode == DImode && !TARGET_64BIT)
      else if (mode == DImode && !TARGET_64BIT)
        {
        {
          *total = COSTS_N_INSNS (4);
          *total = COSTS_N_INSNS (4);
          return true;
          return true;
        }
        }
      return false;
      return false;
 
 
    case NEG:
    case NEG:
      if (mode == DImode && !TARGET_64BIT)
      if (mode == DImode && !TARGET_64BIT)
        {
        {
          *total = COSTS_N_INSNS (4);
          *total = COSTS_N_INSNS (4);
          return true;
          return true;
        }
        }
      return false;
      return false;
 
 
    case MULT:
    case MULT:
      if (mode == SFmode)
      if (mode == SFmode)
        *total = mips_cost->fp_mult_sf;
        *total = mips_cost->fp_mult_sf;
 
 
      else if (mode == DFmode)
      else if (mode == DFmode)
        *total = mips_cost->fp_mult_df;
        *total = mips_cost->fp_mult_df;
 
 
      else if (mode == SImode)
      else if (mode == SImode)
        *total = mips_cost->int_mult_si;
        *total = mips_cost->int_mult_si;
 
 
      else
      else
        *total = mips_cost->int_mult_di;
        *total = mips_cost->int_mult_di;
 
 
      return true;
      return true;
 
 
    case DIV:
    case DIV:
    case MOD:
    case MOD:
      if (float_mode_p)
      if (float_mode_p)
        {
        {
          if (mode == SFmode)
          if (mode == SFmode)
            *total = mips_cost->fp_div_sf;
            *total = mips_cost->fp_div_sf;
          else
          else
            *total = mips_cost->fp_div_df;
            *total = mips_cost->fp_div_df;
 
 
          return true;
          return true;
        }
        }
      /* Fall through.  */
      /* Fall through.  */
 
 
    case UDIV:
    case UDIV:
    case UMOD:
    case UMOD:
      if (mode == DImode)
      if (mode == DImode)
        *total = mips_cost->int_div_di;
        *total = mips_cost->int_div_di;
      else
      else
        *total = mips_cost->int_div_si;
        *total = mips_cost->int_div_si;
 
 
      return true;
      return true;
 
 
    case SIGN_EXTEND:
    case SIGN_EXTEND:
      /* A sign extend from SImode to DImode in 64 bit mode is often
      /* A sign extend from SImode to DImode in 64 bit mode is often
         zero instructions, because the result can often be used
         zero instructions, because the result can often be used
         directly by another instruction; we'll call it one.  */
         directly by another instruction; we'll call it one.  */
      if (TARGET_64BIT && mode == DImode
      if (TARGET_64BIT && mode == DImode
          && GET_MODE (XEXP (x, 0)) == SImode)
          && GET_MODE (XEXP (x, 0)) == SImode)
        *total = COSTS_N_INSNS (1);
        *total = COSTS_N_INSNS (1);
      else
      else
        *total = COSTS_N_INSNS (2);
        *total = COSTS_N_INSNS (2);
      return true;
      return true;
 
 
    case ZERO_EXTEND:
    case ZERO_EXTEND:
      if (TARGET_64BIT && mode == DImode
      if (TARGET_64BIT && mode == DImode
          && GET_MODE (XEXP (x, 0)) == SImode)
          && GET_MODE (XEXP (x, 0)) == SImode)
        *total = COSTS_N_INSNS (2);
        *total = COSTS_N_INSNS (2);
      else
      else
        *total = COSTS_N_INSNS (1);
        *total = COSTS_N_INSNS (1);
      return true;
      return true;
 
 
    case FLOAT:
    case FLOAT:
    case UNSIGNED_FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case FIX:
    case FLOAT_EXTEND:
    case FLOAT_EXTEND:
    case FLOAT_TRUNCATE:
    case FLOAT_TRUNCATE:
    case SQRT:
    case SQRT:
      *total = mips_cost->fp_add;
      *total = mips_cost->fp_add;
      return true;
      return true;
 
 
    default:
    default:
      return false;
      return false;
    }
    }
}
}
 
 
/* Provide the costs of an addressing mode that contains ADDR.
/* Provide the costs of an addressing mode that contains ADDR.
   If ADDR is not a valid address, its cost is irrelevant.  */
   If ADDR is not a valid address, its cost is irrelevant.  */
 
 
static int
static int
mips_address_cost (rtx addr)
mips_address_cost (rtx addr)
{
{
  return mips_address_insns (addr, SImode);
  return mips_address_insns (addr, SImode);
}
}


/* Return one word of double-word value OP, taking into account the fixed
/* Return one word of double-word value OP, taking into account the fixed
   endianness of certain registers.  HIGH_P is true to select the high part,
   endianness of certain registers.  HIGH_P is true to select the high part,
   false to select the low part.  */
   false to select the low part.  */
 
 
rtx
rtx
mips_subword (rtx op, int high_p)
mips_subword (rtx op, int high_p)
{
{
  unsigned int byte;
  unsigned int byte;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  mode = GET_MODE (op);
  mode = GET_MODE (op);
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = DImode;
    mode = DImode;
 
 
  if (TARGET_BIG_ENDIAN ? !high_p : high_p)
  if (TARGET_BIG_ENDIAN ? !high_p : high_p)
    byte = UNITS_PER_WORD;
    byte = UNITS_PER_WORD;
  else
  else
    byte = 0;
    byte = 0;
 
 
  if (REG_P (op))
  if (REG_P (op))
    {
    {
      if (FP_REG_P (REGNO (op)))
      if (FP_REG_P (REGNO (op)))
        return gen_rtx_REG (word_mode, high_p ? REGNO (op) + 1 : REGNO (op));
        return gen_rtx_REG (word_mode, high_p ? REGNO (op) + 1 : REGNO (op));
      if (ACC_HI_REG_P (REGNO (op)))
      if (ACC_HI_REG_P (REGNO (op)))
        return gen_rtx_REG (word_mode, high_p ? REGNO (op) : REGNO (op) + 1);
        return gen_rtx_REG (word_mode, high_p ? REGNO (op) : REGNO (op) + 1);
    }
    }
 
 
  if (MEM_P (op))
  if (MEM_P (op))
    return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
    return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
 
 
  return simplify_gen_subreg (word_mode, op, mode, byte);
  return simplify_gen_subreg (word_mode, op, mode, byte);
}
}
 
 
 
 
/* Return true if a 64-bit move from SRC to DEST should be split into two.  */
/* Return true if a 64-bit move from SRC to DEST should be split into two.  */
 
 
bool
bool
mips_split_64bit_move_p (rtx dest, rtx src)
mips_split_64bit_move_p (rtx dest, rtx src)
{
{
  if (TARGET_64BIT)
  if (TARGET_64BIT)
    return false;
    return false;
 
 
  /* FP->FP moves can be done in a single instruction.  */
  /* FP->FP moves can be done in a single instruction.  */
  if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
  if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
    return false;
    return false;
 
 
  /* Check for floating-point loads and stores.  They can be done using
  /* Check for floating-point loads and stores.  They can be done using
     ldc1 and sdc1 on MIPS II and above.  */
     ldc1 and sdc1 on MIPS II and above.  */
  if (mips_isa > 1)
  if (mips_isa > 1)
    {
    {
      if (FP_REG_RTX_P (dest) && MEM_P (src))
      if (FP_REG_RTX_P (dest) && MEM_P (src))
        return false;
        return false;
      if (FP_REG_RTX_P (src) && MEM_P (dest))
      if (FP_REG_RTX_P (src) && MEM_P (dest))
        return false;
        return false;
    }
    }
  return true;
  return true;
}
}
 
 
 
 
/* Split a 64-bit move from SRC to DEST assuming that
/* Split a 64-bit move from SRC to DEST assuming that
   mips_split_64bit_move_p holds.
   mips_split_64bit_move_p holds.
 
 
   Moves into and out of FPRs cause some difficulty here.  Such moves
   Moves into and out of FPRs cause some difficulty here.  Such moves
   will always be DFmode, since paired FPRs are not allowed to store
   will always be DFmode, since paired FPRs are not allowed to store
   DImode values.  The most natural representation would be two separate
   DImode values.  The most natural representation would be two separate
   32-bit moves, such as:
   32-bit moves, such as:
 
 
        (set (reg:SI $f0) (mem:SI ...))
        (set (reg:SI $f0) (mem:SI ...))
        (set (reg:SI $f1) (mem:SI ...))
        (set (reg:SI $f1) (mem:SI ...))
 
 
   However, the second insn is invalid because odd-numbered FPRs are
   However, the second insn is invalid because odd-numbered FPRs are
   not allowed to store independent values.  Use the patterns load_df_low,
   not allowed to store independent values.  Use the patterns load_df_low,
   load_df_high and store_df_high instead.  */
   load_df_high and store_df_high instead.  */
 
 
void
void
mips_split_64bit_move (rtx dest, rtx src)
mips_split_64bit_move (rtx dest, rtx src)
{
{
  if (FP_REG_RTX_P (dest))
  if (FP_REG_RTX_P (dest))
    {
    {
      /* Loading an FPR from memory or from GPRs.  */
      /* Loading an FPR from memory or from GPRs.  */
      emit_insn (gen_load_df_low (copy_rtx (dest), mips_subword (src, 0)));
      emit_insn (gen_load_df_low (copy_rtx (dest), mips_subword (src, 0)));
      emit_insn (gen_load_df_high (dest, mips_subword (src, 1),
      emit_insn (gen_load_df_high (dest, mips_subword (src, 1),
                                   copy_rtx (dest)));
                                   copy_rtx (dest)));
    }
    }
  else if (FP_REG_RTX_P (src))
  else if (FP_REG_RTX_P (src))
    {
    {
      /* Storing an FPR into memory or GPRs.  */
      /* Storing an FPR into memory or GPRs.  */
      emit_move_insn (mips_subword (dest, 0), mips_subword (src, 0));
      emit_move_insn (mips_subword (dest, 0), mips_subword (src, 0));
      emit_insn (gen_store_df_high (mips_subword (dest, 1), src));
      emit_insn (gen_store_df_high (mips_subword (dest, 1), src));
    }
    }
  else
  else
    {
    {
      /* The operation can be split into two normal moves.  Decide in
      /* The operation can be split into two normal moves.  Decide in
         which order to do them.  */
         which order to do them.  */
      rtx low_dest;
      rtx low_dest;
 
 
      low_dest = mips_subword (dest, 0);
      low_dest = mips_subword (dest, 0);
      if (REG_P (low_dest)
      if (REG_P (low_dest)
          && reg_overlap_mentioned_p (low_dest, src))
          && reg_overlap_mentioned_p (low_dest, src))
        {
        {
          emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
          emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
          emit_move_insn (low_dest, mips_subword (src, 0));
          emit_move_insn (low_dest, mips_subword (src, 0));
        }
        }
      else
      else
        {
        {
          emit_move_insn (low_dest, mips_subword (src, 0));
          emit_move_insn (low_dest, mips_subword (src, 0));
          emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
          emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
        }
        }
    }
    }
}
}


/* Return the appropriate instructions to move SRC into DEST.  Assume
/* Return the appropriate instructions to move SRC into DEST.  Assume
   that SRC is operand 1 and DEST is operand 0.  */
   that SRC is operand 1 and DEST is operand 0.  */
 
 
const char *
const char *
mips_output_move (rtx dest, rtx src)
mips_output_move (rtx dest, rtx src)
{
{
  enum rtx_code dest_code, src_code;
  enum rtx_code dest_code, src_code;
  bool dbl_p;
  bool dbl_p;
 
 
  dest_code = GET_CODE (dest);
  dest_code = GET_CODE (dest);
  src_code = GET_CODE (src);
  src_code = GET_CODE (src);
  dbl_p = (GET_MODE_SIZE (GET_MODE (dest)) == 8);
  dbl_p = (GET_MODE_SIZE (GET_MODE (dest)) == 8);
 
 
  if (dbl_p && mips_split_64bit_move_p (dest, src))
  if (dbl_p && mips_split_64bit_move_p (dest, src))
    return "#";
    return "#";
 
 
  if ((src_code == REG && GP_REG_P (REGNO (src)))
  if ((src_code == REG && GP_REG_P (REGNO (src)))
      || (!TARGET_MIPS16 && src == CONST0_RTX (GET_MODE (dest))))
      || (!TARGET_MIPS16 && src == CONST0_RTX (GET_MODE (dest))))
    {
    {
      if (dest_code == REG)
      if (dest_code == REG)
        {
        {
          if (GP_REG_P (REGNO (dest)))
          if (GP_REG_P (REGNO (dest)))
            return "move\t%0,%z1";
            return "move\t%0,%z1";
 
 
          if (MD_REG_P (REGNO (dest)))
          if (MD_REG_P (REGNO (dest)))
            return "mt%0\t%z1";
            return "mt%0\t%z1";
 
 
          if (DSP_ACC_REG_P (REGNO (dest)))
          if (DSP_ACC_REG_P (REGNO (dest)))
            {
            {
              static char retval[] = "mt__\t%z1,%q0";
              static char retval[] = "mt__\t%z1,%q0";
              retval[2] = reg_names[REGNO (dest)][4];
              retval[2] = reg_names[REGNO (dest)][4];
              retval[3] = reg_names[REGNO (dest)][5];
              retval[3] = reg_names[REGNO (dest)][5];
              return retval;
              return retval;
            }
            }
 
 
          if (FP_REG_P (REGNO (dest)))
          if (FP_REG_P (REGNO (dest)))
            return (dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0");
            return (dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0");
 
 
          if (ALL_COP_REG_P (REGNO (dest)))
          if (ALL_COP_REG_P (REGNO (dest)))
            {
            {
              static char retval[] = "dmtc_\t%z1,%0";
              static char retval[] = "dmtc_\t%z1,%0";
 
 
              retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
              retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
              return (dbl_p ? retval : retval + 1);
              return (dbl_p ? retval : retval + 1);
            }
            }
        }
        }
      if (dest_code == MEM)
      if (dest_code == MEM)
        return (dbl_p ? "sd\t%z1,%0" : "sw\t%z1,%0");
        return (dbl_p ? "sd\t%z1,%0" : "sw\t%z1,%0");
    }
    }
  if (dest_code == REG && GP_REG_P (REGNO (dest)))
  if (dest_code == REG && GP_REG_P (REGNO (dest)))
    {
    {
      if (src_code == REG)
      if (src_code == REG)
        {
        {
          if (DSP_ACC_REG_P (REGNO (src)))
          if (DSP_ACC_REG_P (REGNO (src)))
            {
            {
              static char retval[] = "mf__\t%0,%q1";
              static char retval[] = "mf__\t%0,%q1";
              retval[2] = reg_names[REGNO (src)][4];
              retval[2] = reg_names[REGNO (src)][4];
              retval[3] = reg_names[REGNO (src)][5];
              retval[3] = reg_names[REGNO (src)][5];
              return retval;
              return retval;
            }
            }
 
 
          if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
          if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
            return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
            return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
 
 
          if (FP_REG_P (REGNO (src)))
          if (FP_REG_P (REGNO (src)))
            return (dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1");
            return (dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1");
 
 
          if (ALL_COP_REG_P (REGNO (src)))
          if (ALL_COP_REG_P (REGNO (src)))
            {
            {
              static char retval[] = "dmfc_\t%0,%1";
              static char retval[] = "dmfc_\t%0,%1";
 
 
              retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
              retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
              return (dbl_p ? retval : retval + 1);
              return (dbl_p ? retval : retval + 1);
            }
            }
        }
        }
 
 
      if (src_code == MEM)
      if (src_code == MEM)
        return (dbl_p ? "ld\t%0,%1" : "lw\t%0,%1");
        return (dbl_p ? "ld\t%0,%1" : "lw\t%0,%1");
 
 
      if (src_code == CONST_INT)
      if (src_code == CONST_INT)
        {
        {
          /* Don't use the X format, because that will give out of
          /* Don't use the X format, because that will give out of
             range numbers for 64 bit hosts and 32 bit targets.  */
             range numbers for 64 bit hosts and 32 bit targets.  */
          if (!TARGET_MIPS16)
          if (!TARGET_MIPS16)
            return "li\t%0,%1\t\t\t# %X1";
            return "li\t%0,%1\t\t\t# %X1";
 
 
          if (INTVAL (src) >= 0 && INTVAL (src) <= 0xffff)
          if (INTVAL (src) >= 0 && INTVAL (src) <= 0xffff)
            return "li\t%0,%1";
            return "li\t%0,%1";
 
 
          if (INTVAL (src) < 0 && INTVAL (src) >= -0xffff)
          if (INTVAL (src) < 0 && INTVAL (src) >= -0xffff)
            return "#";
            return "#";
        }
        }
 
 
      if (src_code == HIGH)
      if (src_code == HIGH)
        return "lui\t%0,%h1";
        return "lui\t%0,%h1";
 
 
      if (CONST_GP_P (src))
      if (CONST_GP_P (src))
        return "move\t%0,%1";
        return "move\t%0,%1";
 
 
      if (symbolic_operand (src, VOIDmode))
      if (symbolic_operand (src, VOIDmode))
        return (dbl_p ? "dla\t%0,%1" : "la\t%0,%1");
        return (dbl_p ? "dla\t%0,%1" : "la\t%0,%1");
    }
    }
  if (src_code == REG && FP_REG_P (REGNO (src)))
  if (src_code == REG && FP_REG_P (REGNO (src)))
    {
    {
      if (dest_code == REG && FP_REG_P (REGNO (dest)))
      if (dest_code == REG && FP_REG_P (REGNO (dest)))
        {
        {
          if (GET_MODE (dest) == V2SFmode)
          if (GET_MODE (dest) == V2SFmode)
            return "mov.ps\t%0,%1";
            return "mov.ps\t%0,%1";
          else
          else
            return (dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1");
            return (dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1");
        }
        }
 
 
      if (dest_code == MEM)
      if (dest_code == MEM)
        return (dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0");
        return (dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0");
    }
    }
  if (dest_code == REG && FP_REG_P (REGNO (dest)))
  if (dest_code == REG && FP_REG_P (REGNO (dest)))
    {
    {
      if (src_code == MEM)
      if (src_code == MEM)
        return (dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1");
        return (dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1");
    }
    }
  if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
  if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
    {
    {
      static char retval[] = "l_c_\t%0,%1";
      static char retval[] = "l_c_\t%0,%1";
 
 
      retval[1] = (dbl_p ? 'd' : 'w');
      retval[1] = (dbl_p ? 'd' : 'w');
      retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
      retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
      return retval;
      return retval;
    }
    }
  if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
  if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
    {
    {
      static char retval[] = "s_c_\t%1,%0";
      static char retval[] = "s_c_\t%1,%0";
 
 
      retval[1] = (dbl_p ? 'd' : 'w');
      retval[1] = (dbl_p ? 'd' : 'w');
      retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
      retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
      return retval;
      return retval;
    }
    }
  gcc_unreachable ();
  gcc_unreachable ();
}
}


/* Restore $gp from its save slot.  Valid only when using o32 or
/* Restore $gp from its save slot.  Valid only when using o32 or
   o64 abicalls.  */
   o64 abicalls.  */
 
 
void
void
mips_restore_gp (void)
mips_restore_gp (void)
{
{
  rtx address, slot;
  rtx address, slot;
 
 
  gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);
  gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);
 
 
  address = mips_add_offset (pic_offset_table_rtx,
  address = mips_add_offset (pic_offset_table_rtx,
                             frame_pointer_needed
                             frame_pointer_needed
                             ? hard_frame_pointer_rtx
                             ? hard_frame_pointer_rtx
                             : stack_pointer_rtx,
                             : stack_pointer_rtx,
                             current_function_outgoing_args_size);
                             current_function_outgoing_args_size);
  slot = gen_rtx_MEM (Pmode, address);
  slot = gen_rtx_MEM (Pmode, address);
 
 
  emit_move_insn (pic_offset_table_rtx, slot);
  emit_move_insn (pic_offset_table_rtx, slot);
  if (!TARGET_EXPLICIT_RELOCS)
  if (!TARGET_EXPLICIT_RELOCS)
    emit_insn (gen_blockage ());
    emit_insn (gen_blockage ());
}
}


/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)).  */
/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)).  */
 
 
static void
static void
mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
{
{
  emit_insn (gen_rtx_SET (VOIDmode, target,
  emit_insn (gen_rtx_SET (VOIDmode, target,
                          gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
                          gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
}
}
 
 
/* Return true if CMP1 is a suitable second operand for relational
/* Return true if CMP1 is a suitable second operand for relational
   operator CODE.  See also the *sCC patterns in mips.md.  */
   operator CODE.  See also the *sCC patterns in mips.md.  */
 
 
static bool
static bool
mips_relational_operand_ok_p (enum rtx_code code, rtx cmp1)
mips_relational_operand_ok_p (enum rtx_code code, rtx cmp1)
{
{
  switch (code)
  switch (code)
    {
    {
    case GT:
    case GT:
    case GTU:
    case GTU:
      return reg_or_0_operand (cmp1, VOIDmode);
      return reg_or_0_operand (cmp1, VOIDmode);
 
 
    case GE:
    case GE:
    case GEU:
    case GEU:
      return !TARGET_MIPS16 && cmp1 == const1_rtx;
      return !TARGET_MIPS16 && cmp1 == const1_rtx;
 
 
    case LT:
    case LT:
    case LTU:
    case LTU:
      return arith_operand (cmp1, VOIDmode);
      return arith_operand (cmp1, VOIDmode);
 
 
    case LE:
    case LE:
      return sle_operand (cmp1, VOIDmode);
      return sle_operand (cmp1, VOIDmode);
 
 
    case LEU:
    case LEU:
      return sleu_operand (cmp1, VOIDmode);
      return sleu_operand (cmp1, VOIDmode);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Canonicalize LE or LEU comparisons into LT comparisons when
/* Canonicalize LE or LEU comparisons into LT comparisons when
   possible to avoid extra instructions or inverting the
   possible to avoid extra instructions or inverting the
   comparison.  */
   comparison.  */
 
 
static bool
static bool
mips_canonicalize_comparison (enum rtx_code *code, rtx *cmp1,
mips_canonicalize_comparison (enum rtx_code *code, rtx *cmp1,
                              enum machine_mode mode)
                              enum machine_mode mode)
{
{
  HOST_WIDE_INT original, plus_one;
  HOST_WIDE_INT original, plus_one;
 
 
  if (GET_CODE (*cmp1) != CONST_INT)
  if (GET_CODE (*cmp1) != CONST_INT)
    return false;
    return false;
 
 
  original = INTVAL (*cmp1);
  original = INTVAL (*cmp1);
  plus_one = trunc_int_for_mode ((unsigned HOST_WIDE_INT) original + 1, mode);
  plus_one = trunc_int_for_mode ((unsigned HOST_WIDE_INT) original + 1, mode);
 
 
  switch (*code)
  switch (*code)
    {
    {
    case LE:
    case LE:
      if (original < plus_one)
      if (original < plus_one)
        {
        {
          *code = LT;
          *code = LT;
          *cmp1 = force_reg (mode, GEN_INT (plus_one));
          *cmp1 = force_reg (mode, GEN_INT (plus_one));
          return true;
          return true;
        }
        }
      break;
      break;
 
 
    case LEU:
    case LEU:
      if (plus_one != 0)
      if (plus_one != 0)
        {
        {
          *code = LTU;
          *code = LTU;
          *cmp1 = force_reg (mode, GEN_INT (plus_one));
          *cmp1 = force_reg (mode, GEN_INT (plus_one));
          return true;
          return true;
        }
        }
      break;
      break;
 
 
    default:
    default:
      return false;
      return false;
   }
   }
 
 
  return false;
  return false;
 
 
}
}
 
 
/* Compare CMP0 and CMP1 using relational operator CODE and store the
/* Compare CMP0 and CMP1 using relational operator CODE and store the
   result in TARGET.  CMP0 and TARGET are register_operands that have
   result in TARGET.  CMP0 and TARGET are register_operands that have
   the same integer mode.  If INVERT_PTR is nonnull, it's OK to set
   the same integer mode.  If INVERT_PTR is nonnull, it's OK to set
   TARGET to the inverse of the result and flip *INVERT_PTR instead.  */
   TARGET to the inverse of the result and flip *INVERT_PTR instead.  */
 
 
static void
static void
mips_emit_int_relational (enum rtx_code code, bool *invert_ptr,
mips_emit_int_relational (enum rtx_code code, bool *invert_ptr,
                          rtx target, rtx cmp0, rtx cmp1)
                          rtx target, rtx cmp0, rtx cmp1)
{
{
  /* First see if there is a MIPS instruction that can do this operation
  /* First see if there is a MIPS instruction that can do this operation
     with CMP1 in its current form. If not, try to canonicalize the
     with CMP1 in its current form. If not, try to canonicalize the
     comparison to LT. If that fails, try doing the same for the
     comparison to LT. If that fails, try doing the same for the
     inverse operation.  If that also fails, force CMP1 into a register
     inverse operation.  If that also fails, force CMP1 into a register
     and try again.  */
     and try again.  */
  if (mips_relational_operand_ok_p (code, cmp1))
  if (mips_relational_operand_ok_p (code, cmp1))
    mips_emit_binary (code, target, cmp0, cmp1);
    mips_emit_binary (code, target, cmp0, cmp1);
  else if (mips_canonicalize_comparison (&code, &cmp1, GET_MODE (target)))
  else if (mips_canonicalize_comparison (&code, &cmp1, GET_MODE (target)))
    mips_emit_binary (code, target, cmp0, cmp1);
    mips_emit_binary (code, target, cmp0, cmp1);
  else
  else
    {
    {
      enum rtx_code inv_code = reverse_condition (code);
      enum rtx_code inv_code = reverse_condition (code);
      if (!mips_relational_operand_ok_p (inv_code, cmp1))
      if (!mips_relational_operand_ok_p (inv_code, cmp1))
        {
        {
          cmp1 = force_reg (GET_MODE (cmp0), cmp1);
          cmp1 = force_reg (GET_MODE (cmp0), cmp1);
          mips_emit_int_relational (code, invert_ptr, target, cmp0, cmp1);
          mips_emit_int_relational (code, invert_ptr, target, cmp0, cmp1);
        }
        }
      else if (invert_ptr == 0)
      else if (invert_ptr == 0)
        {
        {
          rtx inv_target = gen_reg_rtx (GET_MODE (target));
          rtx inv_target = gen_reg_rtx (GET_MODE (target));
          mips_emit_binary (inv_code, inv_target, cmp0, cmp1);
          mips_emit_binary (inv_code, inv_target, cmp0, cmp1);
          mips_emit_binary (XOR, target, inv_target, const1_rtx);
          mips_emit_binary (XOR, target, inv_target, const1_rtx);
        }
        }
      else
      else
        {
        {
          *invert_ptr = !*invert_ptr;
          *invert_ptr = !*invert_ptr;
          mips_emit_binary (inv_code, target, cmp0, cmp1);
          mips_emit_binary (inv_code, target, cmp0, cmp1);
        }
        }
    }
    }
}
}
 
 
/* Return a register that is zero iff CMP0 and CMP1 are equal.
/* Return a register that is zero iff CMP0 and CMP1 are equal.
   The register will have the same mode as CMP0.  */
   The register will have the same mode as CMP0.  */
 
 
static rtx
static rtx
mips_zero_if_equal (rtx cmp0, rtx cmp1)
mips_zero_if_equal (rtx cmp0, rtx cmp1)
{
{
  if (cmp1 == const0_rtx)
  if (cmp1 == const0_rtx)
    return cmp0;
    return cmp0;
 
 
  if (uns_arith_operand (cmp1, VOIDmode))
  if (uns_arith_operand (cmp1, VOIDmode))
    return expand_binop (GET_MODE (cmp0), xor_optab,
    return expand_binop (GET_MODE (cmp0), xor_optab,
                         cmp0, cmp1, 0, 0, OPTAB_DIRECT);
                         cmp0, cmp1, 0, 0, OPTAB_DIRECT);
 
 
  return expand_binop (GET_MODE (cmp0), sub_optab,
  return expand_binop (GET_MODE (cmp0), sub_optab,
                       cmp0, cmp1, 0, 0, OPTAB_DIRECT);
                       cmp0, cmp1, 0, 0, OPTAB_DIRECT);
}
}
 
 
/* Convert *CODE into a code that can be used in a floating-point
/* Convert *CODE into a code that can be used in a floating-point
   scc instruction (c.<cond>.<fmt>).  Return true if the values of
   scc instruction (c.<cond>.<fmt>).  Return true if the values of
   the condition code registers will be inverted, with 0 indicating
   the condition code registers will be inverted, with 0 indicating
   that the condition holds.  */
   that the condition holds.  */
 
 
static bool
static bool
mips_reverse_fp_cond_p (enum rtx_code *code)
mips_reverse_fp_cond_p (enum rtx_code *code)
{
{
  switch (*code)
  switch (*code)
    {
    {
    case NE:
    case NE:
    case LTGT:
    case LTGT:
    case ORDERED:
    case ORDERED:
      *code = reverse_condition_maybe_unordered (*code);
      *code = reverse_condition_maybe_unordered (*code);
      return true;
      return true;
 
 
    default:
    default:
      return false;
      return false;
    }
    }
}
}
 
 
/* Convert a comparison into something that can be used in a branch or
/* Convert a comparison into something that can be used in a branch or
   conditional move.  cmp_operands[0] and cmp_operands[1] are the values
   conditional move.  cmp_operands[0] and cmp_operands[1] are the values
   being compared and *CODE is the code used to compare them.
   being compared and *CODE is the code used to compare them.
 
 
   Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
   Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
   If NEED_EQ_NE_P, then only EQ/NE comparisons against zero are possible,
   If NEED_EQ_NE_P, then only EQ/NE comparisons against zero are possible,
   otherwise any standard branch condition can be used.  The standard branch
   otherwise any standard branch condition can be used.  The standard branch
   conditions are:
   conditions are:
 
 
      - EQ/NE between two registers.
      - EQ/NE between two registers.
      - any comparison between a register and zero.  */
      - any comparison between a register and zero.  */
 
 
static void
static void
mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
{
{
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT)
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT)
    {
    {
      if (!need_eq_ne_p && cmp_operands[1] == const0_rtx)
      if (!need_eq_ne_p && cmp_operands[1] == const0_rtx)
        {
        {
          *op0 = cmp_operands[0];
          *op0 = cmp_operands[0];
          *op1 = cmp_operands[1];
          *op1 = cmp_operands[1];
        }
        }
      else if (*code == EQ || *code == NE)
      else if (*code == EQ || *code == NE)
        {
        {
          if (need_eq_ne_p)
          if (need_eq_ne_p)
            {
            {
              *op0 = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
              *op0 = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
              *op1 = const0_rtx;
              *op1 = const0_rtx;
            }
            }
          else
          else
            {
            {
              *op0 = cmp_operands[0];
              *op0 = cmp_operands[0];
              *op1 = force_reg (GET_MODE (*op0), cmp_operands[1]);
              *op1 = force_reg (GET_MODE (*op0), cmp_operands[1]);
            }
            }
        }
        }
      else
      else
        {
        {
          /* The comparison needs a separate scc instruction.  Store the
          /* The comparison needs a separate scc instruction.  Store the
             result of the scc in *OP0 and compare it against zero.  */
             result of the scc in *OP0 and compare it against zero.  */
          bool invert = false;
          bool invert = false;
          *op0 = gen_reg_rtx (GET_MODE (cmp_operands[0]));
          *op0 = gen_reg_rtx (GET_MODE (cmp_operands[0]));
          *op1 = const0_rtx;
          *op1 = const0_rtx;
          mips_emit_int_relational (*code, &invert, *op0,
          mips_emit_int_relational (*code, &invert, *op0,
                                    cmp_operands[0], cmp_operands[1]);
                                    cmp_operands[0], cmp_operands[1]);
          *code = (invert ? EQ : NE);
          *code = (invert ? EQ : NE);
        }
        }
    }
    }
  else
  else
    {
    {
      enum rtx_code cmp_code;
      enum rtx_code cmp_code;
 
 
      /* Floating-point tests use a separate c.cond.fmt comparison to
      /* Floating-point tests use a separate c.cond.fmt comparison to
         set a condition code register.  The branch or conditional move
         set a condition code register.  The branch or conditional move
         will then compare that register against zero.
         will then compare that register against zero.
 
 
         Set CMP_CODE to the code of the comparison instruction and
         Set CMP_CODE to the code of the comparison instruction and
         *CODE to the code that the branch or move should use.  */
         *CODE to the code that the branch or move should use.  */
      cmp_code = *code;
      cmp_code = *code;
      *code = mips_reverse_fp_cond_p (&cmp_code) ? EQ : NE;
      *code = mips_reverse_fp_cond_p (&cmp_code) ? EQ : NE;
      *op0 = (ISA_HAS_8CC
      *op0 = (ISA_HAS_8CC
              ? gen_reg_rtx (CCmode)
              ? gen_reg_rtx (CCmode)
              : gen_rtx_REG (CCmode, FPSW_REGNUM));
              : gen_rtx_REG (CCmode, FPSW_REGNUM));
      *op1 = const0_rtx;
      *op1 = const0_rtx;
      mips_emit_binary (cmp_code, *op0, cmp_operands[0], cmp_operands[1]);
      mips_emit_binary (cmp_code, *op0, cmp_operands[0], cmp_operands[1]);
    }
    }
}
}


/* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
/* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
   Store the result in TARGET and return true if successful.
   Store the result in TARGET and return true if successful.
 
 
   On 64-bit targets, TARGET may be wider than cmp_operands[0].  */
   On 64-bit targets, TARGET may be wider than cmp_operands[0].  */
 
 
bool
bool
mips_emit_scc (enum rtx_code code, rtx target)
mips_emit_scc (enum rtx_code code, rtx target)
{
{
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) != MODE_INT)
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) != MODE_INT)
    return false;
    return false;
 
 
  target = gen_lowpart (GET_MODE (cmp_operands[0]), target);
  target = gen_lowpart (GET_MODE (cmp_operands[0]), target);
  if (code == EQ || code == NE)
  if (code == EQ || code == NE)
    {
    {
      rtx zie = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
      rtx zie = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
      mips_emit_binary (code, target, zie, const0_rtx);
      mips_emit_binary (code, target, zie, const0_rtx);
    }
    }
  else
  else
    mips_emit_int_relational (code, 0, target,
    mips_emit_int_relational (code, 0, target,
                              cmp_operands[0], cmp_operands[1]);
                              cmp_operands[0], cmp_operands[1]);
  return true;
  return true;
}
}
 
 
/* Emit the common code for doing conditional branches.
/* Emit the common code for doing conditional branches.
   operand[0] is the label to jump to.
   operand[0] is the label to jump to.
   The comparison operands are saved away by cmp{si,di,sf,df}.  */
   The comparison operands are saved away by cmp{si,di,sf,df}.  */
 
 
void
void
gen_conditional_branch (rtx *operands, enum rtx_code code)
gen_conditional_branch (rtx *operands, enum rtx_code code)
{
{
  rtx op0, op1, condition;
  rtx op0, op1, condition;
 
 
  mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
  mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
  condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
  condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
  emit_jump_insn (gen_condjump (condition, operands[0]));
  emit_jump_insn (gen_condjump (condition, operands[0]));
}
}
 
 
/* Implement:
/* Implement:
 
 
   (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
   (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
   (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS))  */
   (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS))  */
 
 
void
void
mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
                       enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
                       enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
{
{
  rtx cmp_result;
  rtx cmp_result;
  bool reversed_p;
  bool reversed_p;
 
 
  reversed_p = mips_reverse_fp_cond_p (&cond);
  reversed_p = mips_reverse_fp_cond_p (&cond);
  cmp_result = gen_reg_rtx (CCV2mode);
  cmp_result = gen_reg_rtx (CCV2mode);
  emit_insn (gen_scc_ps (cmp_result,
  emit_insn (gen_scc_ps (cmp_result,
                         gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
                         gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
  if (reversed_p)
  if (reversed_p)
    emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
    emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
                                         cmp_result));
                                         cmp_result));
  else
  else
    emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
    emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
                                         cmp_result));
                                         cmp_result));
}
}
 
 
/* Emit the common code for conditional moves.  OPERANDS is the array
/* Emit the common code for conditional moves.  OPERANDS is the array
   of operands passed to the conditional move define_expand.  */
   of operands passed to the conditional move define_expand.  */
 
 
void
void
gen_conditional_move (rtx *operands)
gen_conditional_move (rtx *operands)
{
{
  enum rtx_code code;
  enum rtx_code code;
  rtx op0, op1;
  rtx op0, op1;
 
 
  code = GET_CODE (operands[1]);
  code = GET_CODE (operands[1]);
  mips_emit_compare (&code, &op0, &op1, true);
  mips_emit_compare (&code, &op0, &op1, true);
  emit_insn (gen_rtx_SET (VOIDmode, operands[0],
  emit_insn (gen_rtx_SET (VOIDmode, operands[0],
                          gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
                          gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
                                                gen_rtx_fmt_ee (code,
                                                gen_rtx_fmt_ee (code,
                                                                GET_MODE (op0),
                                                                GET_MODE (op0),
                                                                op0, op1),
                                                                op0, op1),
                                                operands[2], operands[3])));
                                                operands[2], operands[3])));
}
}
 
 
/* Emit a conditional trap.  OPERANDS is the array of operands passed to
/* Emit a conditional trap.  OPERANDS is the array of operands passed to
   the conditional_trap expander.  */
   the conditional_trap expander.  */
 
 
void
void
mips_gen_conditional_trap (rtx *operands)
mips_gen_conditional_trap (rtx *operands)
{
{
  rtx op0, op1;
  rtx op0, op1;
  enum rtx_code cmp_code = GET_CODE (operands[0]);
  enum rtx_code cmp_code = GET_CODE (operands[0]);
  enum machine_mode mode = GET_MODE (cmp_operands[0]);
  enum machine_mode mode = GET_MODE (cmp_operands[0]);
 
 
  /* MIPS conditional trap machine instructions don't have GT or LE
  /* MIPS conditional trap machine instructions don't have GT or LE
     flavors, so we must invert the comparison and convert to LT and
     flavors, so we must invert the comparison and convert to LT and
     GE, respectively.  */
     GE, respectively.  */
  switch (cmp_code)
  switch (cmp_code)
    {
    {
    case GT: cmp_code = LT; break;
    case GT: cmp_code = LT; break;
    case LE: cmp_code = GE; break;
    case LE: cmp_code = GE; break;
    case GTU: cmp_code = LTU; break;
    case GTU: cmp_code = LTU; break;
    case LEU: cmp_code = GEU; break;
    case LEU: cmp_code = GEU; break;
    default: break;
    default: break;
    }
    }
  if (cmp_code == GET_CODE (operands[0]))
  if (cmp_code == GET_CODE (operands[0]))
    {
    {
      op0 = cmp_operands[0];
      op0 = cmp_operands[0];
      op1 = cmp_operands[1];
      op1 = cmp_operands[1];
    }
    }
  else
  else
    {
    {
      op0 = cmp_operands[1];
      op0 = cmp_operands[1];
      op1 = cmp_operands[0];
      op1 = cmp_operands[0];
    }
    }
  op0 = force_reg (mode, op0);
  op0 = force_reg (mode, op0);
  if (!arith_operand (op1, mode))
  if (!arith_operand (op1, mode))
    op1 = force_reg (mode, op1);
    op1 = force_reg (mode, op1);
 
 
  emit_insn (gen_rtx_TRAP_IF (VOIDmode,
  emit_insn (gen_rtx_TRAP_IF (VOIDmode,
                              gen_rtx_fmt_ee (cmp_code, mode, op0, op1),
                              gen_rtx_fmt_ee (cmp_code, mode, op0, op1),
                              operands[1]));
                              operands[1]));
}
}


/* Load function address ADDR into register DEST.  SIBCALL_P is true
/* Load function address ADDR into register DEST.  SIBCALL_P is true
   if the address is needed for a sibling call.  */
   if the address is needed for a sibling call.  */
 
 
static void
static void
mips_load_call_address (rtx dest, rtx addr, int sibcall_p)
mips_load_call_address (rtx dest, rtx addr, int sibcall_p)
{
{
  /* If we're generating PIC, and this call is to a global function,
  /* If we're generating PIC, and this call is to a global function,
     try to allow its address to be resolved lazily.  This isn't
     try to allow its address to be resolved lazily.  This isn't
     possible for NewABI sibcalls since the value of $gp on entry
     possible for NewABI sibcalls since the value of $gp on entry
     to the stub would be our caller's gp, not ours.  */
     to the stub would be our caller's gp, not ours.  */
  if (TARGET_EXPLICIT_RELOCS
  if (TARGET_EXPLICIT_RELOCS
      && !(sibcall_p && TARGET_NEWABI)
      && !(sibcall_p && TARGET_NEWABI)
      && global_got_operand (addr, VOIDmode))
      && global_got_operand (addr, VOIDmode))
    {
    {
      rtx high, lo_sum_symbol;
      rtx high, lo_sum_symbol;
 
 
      high = mips_unspec_offset_high (dest, pic_offset_table_rtx,
      high = mips_unspec_offset_high (dest, pic_offset_table_rtx,
                                      addr, SYMBOL_GOTOFF_CALL);
                                      addr, SYMBOL_GOTOFF_CALL);
      lo_sum_symbol = mips_unspec_address (addr, SYMBOL_GOTOFF_CALL);
      lo_sum_symbol = mips_unspec_address (addr, SYMBOL_GOTOFF_CALL);
      if (Pmode == SImode)
      if (Pmode == SImode)
        emit_insn (gen_load_callsi (dest, high, lo_sum_symbol));
        emit_insn (gen_load_callsi (dest, high, lo_sum_symbol));
      else
      else
        emit_insn (gen_load_calldi (dest, high, lo_sum_symbol));
        emit_insn (gen_load_calldi (dest, high, lo_sum_symbol));
    }
    }
  else
  else
    emit_move_insn (dest, addr);
    emit_move_insn (dest, addr);
}
}
 
 
 
 
/* Expand a call or call_value instruction.  RESULT is where the
/* Expand a call or call_value instruction.  RESULT is where the
   result will go (null for calls), ADDR is the address of the
   result will go (null for calls), ADDR is the address of the
   function, ARGS_SIZE is the size of the arguments and AUX is
   function, ARGS_SIZE is the size of the arguments and AUX is
   the value passed to us by mips_function_arg.  SIBCALL_P is true
   the value passed to us by mips_function_arg.  SIBCALL_P is true
   if we are expanding a sibling call, false if we're expanding
   if we are expanding a sibling call, false if we're expanding
   a normal call.  */
   a normal call.  */
 
 
void
void
mips_expand_call (rtx result, rtx addr, rtx args_size, rtx aux, int sibcall_p)
mips_expand_call (rtx result, rtx addr, rtx args_size, rtx aux, int sibcall_p)
{
{
  rtx orig_addr, pattern, insn;
  rtx orig_addr, pattern, insn;
 
 
  orig_addr = addr;
  orig_addr = addr;
  if (!call_insn_operand (addr, VOIDmode))
  if (!call_insn_operand (addr, VOIDmode))
    {
    {
      addr = gen_reg_rtx (Pmode);
      addr = gen_reg_rtx (Pmode);
      mips_load_call_address (addr, orig_addr, sibcall_p);
      mips_load_call_address (addr, orig_addr, sibcall_p);
    }
    }
 
 
  if (TARGET_MIPS16
  if (TARGET_MIPS16
      && mips16_hard_float
      && mips16_hard_float
      && build_mips16_call_stub (result, addr, args_size,
      && build_mips16_call_stub (result, addr, args_size,
                                 aux == 0 ? 0 : (int) GET_MODE (aux)))
                                 aux == 0 ? 0 : (int) GET_MODE (aux)))
    return;
    return;
 
 
  if (result == 0)
  if (result == 0)
    pattern = (sibcall_p
    pattern = (sibcall_p
               ? gen_sibcall_internal (addr, args_size)
               ? gen_sibcall_internal (addr, args_size)
               : gen_call_internal (addr, args_size));
               : gen_call_internal (addr, args_size));
  else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
  else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
    {
    {
      rtx reg1, reg2;
      rtx reg1, reg2;
 
 
      reg1 = XEXP (XVECEXP (result, 0, 0), 0);
      reg1 = XEXP (XVECEXP (result, 0, 0), 0);
      reg2 = XEXP (XVECEXP (result, 0, 1), 0);
      reg2 = XEXP (XVECEXP (result, 0, 1), 0);
      pattern =
      pattern =
        (sibcall_p
        (sibcall_p
         ? gen_sibcall_value_multiple_internal (reg1, addr, args_size, reg2)
         ? gen_sibcall_value_multiple_internal (reg1, addr, args_size, reg2)
         : gen_call_value_multiple_internal (reg1, addr, args_size, reg2));
         : gen_call_value_multiple_internal (reg1, addr, args_size, reg2));
    }
    }
  else
  else
    pattern = (sibcall_p
    pattern = (sibcall_p
               ? gen_sibcall_value_internal (result, addr, args_size)
               ? gen_sibcall_value_internal (result, addr, args_size)
               : gen_call_value_internal (result, addr, args_size));
               : gen_call_value_internal (result, addr, args_size));
 
 
  insn = emit_call_insn (pattern);
  insn = emit_call_insn (pattern);
 
 
  /* Lazy-binding stubs require $gp to be valid on entry.  */
  /* Lazy-binding stubs require $gp to be valid on entry.  */
  if (global_got_operand (orig_addr, VOIDmode))
  if (global_got_operand (orig_addr, VOIDmode))
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
}
}
 
 
 
 
/* We can handle any sibcall when TARGET_SIBCALLS is true.  */
/* We can handle any sibcall when TARGET_SIBCALLS is true.  */
 
 
static bool
static bool
mips_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
mips_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
                              tree exp ATTRIBUTE_UNUSED)
                              tree exp ATTRIBUTE_UNUSED)
{
{
  return TARGET_SIBCALLS;
  return TARGET_SIBCALLS;
}
}


/* Emit code to move general operand SRC into condition-code
/* Emit code to move general operand SRC into condition-code
   register DEST.  SCRATCH is a scratch TFmode float register.
   register DEST.  SCRATCH is a scratch TFmode float register.
   The sequence is:
   The sequence is:
 
 
        FP1 = SRC
        FP1 = SRC
        FP2 = 0.0f
        FP2 = 0.0f
        DEST = FP2 < FP1
        DEST = FP2 < FP1
 
 
   where FP1 and FP2 are single-precision float registers
   where FP1 and FP2 are single-precision float registers
   taken from SCRATCH.  */
   taken from SCRATCH.  */
 
 
void
void
mips_emit_fcc_reload (rtx dest, rtx src, rtx scratch)
mips_emit_fcc_reload (rtx dest, rtx src, rtx scratch)
{
{
  rtx fp1, fp2;
  rtx fp1, fp2;
 
 
  /* Change the source to SFmode.  */
  /* Change the source to SFmode.  */
  if (MEM_P (src))
  if (MEM_P (src))
    src = adjust_address (src, SFmode, 0);
    src = adjust_address (src, SFmode, 0);
  else if (REG_P (src) || GET_CODE (src) == SUBREG)
  else if (REG_P (src) || GET_CODE (src) == SUBREG)
    src = gen_rtx_REG (SFmode, true_regnum (src));
    src = gen_rtx_REG (SFmode, true_regnum (src));
 
 
  fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
  fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
  fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + FP_INC);
  fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + FP_INC);
 
 
  emit_move_insn (copy_rtx (fp1), src);
  emit_move_insn (copy_rtx (fp1), src);
  emit_move_insn (copy_rtx (fp2), CONST0_RTX (SFmode));
  emit_move_insn (copy_rtx (fp2), CONST0_RTX (SFmode));
  emit_insn (gen_slt_sf (dest, fp2, fp1));
  emit_insn (gen_slt_sf (dest, fp2, fp1));
}
}


/* Emit code to change the current function's return address to
/* Emit code to change the current function's return address to
   ADDRESS.  SCRATCH is available as a scratch register, if needed.
   ADDRESS.  SCRATCH is available as a scratch register, if needed.
   ADDRESS and SCRATCH are both word-mode GPRs.  */
   ADDRESS and SCRATCH are both word-mode GPRs.  */
 
 
void
void
mips_set_return_address (rtx address, rtx scratch)
mips_set_return_address (rtx address, rtx scratch)
{
{
  rtx slot_address;
  rtx slot_address;
 
 
  compute_frame_size (get_frame_size ());
  compute_frame_size (get_frame_size ());
  gcc_assert ((cfun->machine->frame.mask >> 31) & 1);
  gcc_assert ((cfun->machine->frame.mask >> 31) & 1);
  slot_address = mips_add_offset (scratch, stack_pointer_rtx,
  slot_address = mips_add_offset (scratch, stack_pointer_rtx,
                                  cfun->machine->frame.gp_sp_offset);
                                  cfun->machine->frame.gp_sp_offset);
 
 
  emit_move_insn (gen_rtx_MEM (GET_MODE (address), slot_address), address);
  emit_move_insn (gen_rtx_MEM (GET_MODE (address), slot_address), address);
}
}


/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
   Assume that the areas do not overlap.  */
   Assume that the areas do not overlap.  */
 
 
static void
static void
mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
{
{
  HOST_WIDE_INT offset, delta;
  HOST_WIDE_INT offset, delta;
  unsigned HOST_WIDE_INT bits;
  unsigned HOST_WIDE_INT bits;
  int i;
  int i;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx *regs;
  rtx *regs;
 
 
  /* Work out how many bits to move at a time.  If both operands have
  /* Work out how many bits to move at a time.  If both operands have
     half-word alignment, it is usually better to move in half words.
     half-word alignment, it is usually better to move in half words.
     For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
     For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
     and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
     and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
     Otherwise move word-sized chunks.  */
     Otherwise move word-sized chunks.  */
  if (MEM_ALIGN (src) == BITS_PER_WORD / 2
  if (MEM_ALIGN (src) == BITS_PER_WORD / 2
      && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
      && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
    bits = BITS_PER_WORD / 2;
    bits = BITS_PER_WORD / 2;
  else
  else
    bits = BITS_PER_WORD;
    bits = BITS_PER_WORD;
 
 
  mode = mode_for_size (bits, MODE_INT, 0);
  mode = mode_for_size (bits, MODE_INT, 0);
  delta = bits / BITS_PER_UNIT;
  delta = bits / BITS_PER_UNIT;
 
 
  /* Allocate a buffer for the temporary registers.  */
  /* Allocate a buffer for the temporary registers.  */
  regs = alloca (sizeof (rtx) * length / delta);
  regs = alloca (sizeof (rtx) * length / delta);
 
 
  /* Load as many BITS-sized chunks as possible.  Use a normal load if
  /* Load as many BITS-sized chunks as possible.  Use a normal load if
     the source has enough alignment, otherwise use left/right pairs.  */
     the source has enough alignment, otherwise use left/right pairs.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    {
    {
      regs[i] = gen_reg_rtx (mode);
      regs[i] = gen_reg_rtx (mode);
      if (MEM_ALIGN (src) >= bits)
      if (MEM_ALIGN (src) >= bits)
        emit_move_insn (regs[i], adjust_address (src, mode, offset));
        emit_move_insn (regs[i], adjust_address (src, mode, offset));
      else
      else
        {
        {
          rtx part = adjust_address (src, BLKmode, offset);
          rtx part = adjust_address (src, BLKmode, offset);
          if (!mips_expand_unaligned_load (regs[i], part, bits, 0))
          if (!mips_expand_unaligned_load (regs[i], part, bits, 0))
            gcc_unreachable ();
            gcc_unreachable ();
        }
        }
    }
    }
 
 
  /* Copy the chunks to the destination.  */
  /* Copy the chunks to the destination.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    if (MEM_ALIGN (dest) >= bits)
    if (MEM_ALIGN (dest) >= bits)
      emit_move_insn (adjust_address (dest, mode, offset), regs[i]);
      emit_move_insn (adjust_address (dest, mode, offset), regs[i]);
    else
    else
      {
      {
        rtx part = adjust_address (dest, BLKmode, offset);
        rtx part = adjust_address (dest, BLKmode, offset);
        if (!mips_expand_unaligned_store (part, regs[i], bits, 0))
        if (!mips_expand_unaligned_store (part, regs[i], bits, 0))
          gcc_unreachable ();
          gcc_unreachable ();
      }
      }
 
 
  /* Mop up any left-over bytes.  */
  /* Mop up any left-over bytes.  */
  if (offset < length)
  if (offset < length)
    {
    {
      src = adjust_address (src, BLKmode, offset);
      src = adjust_address (src, BLKmode, offset);
      dest = adjust_address (dest, BLKmode, offset);
      dest = adjust_address (dest, BLKmode, offset);
      move_by_pieces (dest, src, length - offset,
      move_by_pieces (dest, src, length - offset,
                      MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
                      MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
    }
    }
}
}


#define MAX_MOVE_REGS 4
#define MAX_MOVE_REGS 4
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
 
 
 
 
/* Helper function for doing a loop-based block operation on memory
/* Helper function for doing a loop-based block operation on memory
   reference MEM.  Each iteration of the loop will operate on LENGTH
   reference MEM.  Each iteration of the loop will operate on LENGTH
   bytes of MEM.
   bytes of MEM.
 
 
   Create a new base register for use within the loop and point it to
   Create a new base register for use within the loop and point it to
   the start of MEM.  Create a new memory reference that uses this
   the start of MEM.  Create a new memory reference that uses this
   register.  Store them in *LOOP_REG and *LOOP_MEM respectively.  */
   register.  Store them in *LOOP_REG and *LOOP_MEM respectively.  */
 
 
static void
static void
mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
                       rtx *loop_reg, rtx *loop_mem)
                       rtx *loop_reg, rtx *loop_mem)
{
{
  *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
  *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
 
 
  /* Although the new mem does not refer to a known location,
  /* Although the new mem does not refer to a known location,
     it does keep up to LENGTH bytes of alignment.  */
     it does keep up to LENGTH bytes of alignment.  */
  *loop_mem = change_address (mem, BLKmode, *loop_reg);
  *loop_mem = change_address (mem, BLKmode, *loop_reg);
  set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
  set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
}
}
 
 
 
 
/* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
/* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
   per iteration.  LENGTH must be at least MAX_MOVE_BYTES.  Assume that the
   per iteration.  LENGTH must be at least MAX_MOVE_BYTES.  Assume that the
   memory regions do not overlap.  */
   memory regions do not overlap.  */
 
 
static void
static void
mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
{
{
  rtx label, src_reg, dest_reg, final_src;
  rtx label, src_reg, dest_reg, final_src;
  HOST_WIDE_INT leftover;
  HOST_WIDE_INT leftover;
 
 
  leftover = length % MAX_MOVE_BYTES;
  leftover = length % MAX_MOVE_BYTES;
  length -= leftover;
  length -= leftover;
 
 
  /* Create registers and memory references for use within the loop.  */
  /* Create registers and memory references for use within the loop.  */
  mips_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
  mips_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
  mips_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);
  mips_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);
 
 
  /* Calculate the value that SRC_REG should have after the last iteration
  /* Calculate the value that SRC_REG should have after the last iteration
     of the loop.  */
     of the loop.  */
  final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
  final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
                                   0, 0, OPTAB_WIDEN);
                                   0, 0, OPTAB_WIDEN);
 
 
  /* Emit the start of the loop.  */
  /* Emit the start of the loop.  */
  label = gen_label_rtx ();
  label = gen_label_rtx ();
  emit_label (label);
  emit_label (label);
 
 
  /* Emit the loop body.  */
  /* Emit the loop body.  */
  mips_block_move_straight (dest, src, MAX_MOVE_BYTES);
  mips_block_move_straight (dest, src, MAX_MOVE_BYTES);
 
 
  /* Move on to the next block.  */
  /* Move on to the next block.  */
  emit_move_insn (src_reg, plus_constant (src_reg, MAX_MOVE_BYTES));
  emit_move_insn (src_reg, plus_constant (src_reg, MAX_MOVE_BYTES));
  emit_move_insn (dest_reg, plus_constant (dest_reg, MAX_MOVE_BYTES));
  emit_move_insn (dest_reg, plus_constant (dest_reg, MAX_MOVE_BYTES));
 
 
  /* Emit the loop condition.  */
  /* Emit the loop condition.  */
  if (Pmode == DImode)
  if (Pmode == DImode)
    emit_insn (gen_cmpdi (src_reg, final_src));
    emit_insn (gen_cmpdi (src_reg, final_src));
  else
  else
    emit_insn (gen_cmpsi (src_reg, final_src));
    emit_insn (gen_cmpsi (src_reg, final_src));
  emit_jump_insn (gen_bne (label));
  emit_jump_insn (gen_bne (label));
 
 
  /* Mop up any left-over bytes.  */
  /* Mop up any left-over bytes.  */
  if (leftover)
  if (leftover)
    mips_block_move_straight (dest, src, leftover);
    mips_block_move_straight (dest, src, leftover);
}
}


/* Expand a movmemsi instruction.  */
/* Expand a movmemsi instruction.  */
 
 
bool
bool
mips_expand_block_move (rtx dest, rtx src, rtx length)
mips_expand_block_move (rtx dest, rtx src, rtx length)
{
{
  if (GET_CODE (length) == CONST_INT)
  if (GET_CODE (length) == CONST_INT)
    {
    {
      if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
      if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
        {
        {
          mips_block_move_straight (dest, src, INTVAL (length));
          mips_block_move_straight (dest, src, INTVAL (length));
          return true;
          return true;
        }
        }
      else if (optimize)
      else if (optimize)
        {
        {
          mips_block_move_loop (dest, src, INTVAL (length));
          mips_block_move_loop (dest, src, INTVAL (length));
          return true;
          return true;
        }
        }
    }
    }
  return false;
  return false;
}
}


/* Argument support functions.  */
/* Argument support functions.  */
 
 
/* Initialize CUMULATIVE_ARGS for a function.  */
/* Initialize CUMULATIVE_ARGS for a function.  */
 
 
void
void
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
                      rtx libname ATTRIBUTE_UNUSED)
                      rtx libname ATTRIBUTE_UNUSED)
{
{
  static CUMULATIVE_ARGS zero_cum;
  static CUMULATIVE_ARGS zero_cum;
  tree param, next_param;
  tree param, next_param;
 
 
  *cum = zero_cum;
  *cum = zero_cum;
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
 
 
  /* Determine if this function has variable arguments.  This is
  /* Determine if this function has variable arguments.  This is
     indicated by the last argument being 'void_type_mode' if there
     indicated by the last argument being 'void_type_mode' if there
     are no variable arguments.  The standard MIPS calling sequence
     are no variable arguments.  The standard MIPS calling sequence
     passes all arguments in the general purpose registers in this case.  */
     passes all arguments in the general purpose registers in this case.  */
 
 
  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
       param != 0; param = next_param)
       param != 0; param = next_param)
    {
    {
      next_param = TREE_CHAIN (param);
      next_param = TREE_CHAIN (param);
      if (next_param == 0 && TREE_VALUE (param) != void_type_node)
      if (next_param == 0 && TREE_VALUE (param) != void_type_node)
        cum->gp_reg_found = 1;
        cum->gp_reg_found = 1;
    }
    }
}
}
 
 
 
 
/* Fill INFO with information about a single argument.  CUM is the
/* Fill INFO with information about a single argument.  CUM is the
   cumulative state for earlier arguments.  MODE is the mode of this
   cumulative state for earlier arguments.  MODE is the mode of this
   argument and TYPE is its type (if known).  NAMED is true if this
   argument and TYPE is its type (if known).  NAMED is true if this
   is a named (fixed) argument rather than a variable one.  */
   is a named (fixed) argument rather than a variable one.  */
 
 
static void
static void
mips_arg_info (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
mips_arg_info (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
               tree type, int named, struct mips_arg_info *info)
               tree type, int named, struct mips_arg_info *info)
{
{
  bool doubleword_aligned_p;
  bool doubleword_aligned_p;
  unsigned int num_bytes, num_words, max_regs;
  unsigned int num_bytes, num_words, max_regs;
 
 
  /* Work out the size of the argument.  */
  /* Work out the size of the argument.  */
  num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
  num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
 
 
  /* Decide whether it should go in a floating-point register, assuming
  /* Decide whether it should go in a floating-point register, assuming
     one is free.  Later code checks for availability.
     one is free.  Later code checks for availability.
 
 
     The checks against UNITS_PER_FPVALUE handle the soft-float and
     The checks against UNITS_PER_FPVALUE handle the soft-float and
     single-float cases.  */
     single-float cases.  */
  switch (mips_abi)
  switch (mips_abi)
    {
    {
    case ABI_EABI:
    case ABI_EABI:
      /* The EABI conventions have traditionally been defined in terms
      /* The EABI conventions have traditionally been defined in terms
         of TYPE_MODE, regardless of the actual type.  */
         of TYPE_MODE, regardless of the actual type.  */
      info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
      info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
                      || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
                      || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
                     && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
                     && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
      break;
      break;
 
 
    case ABI_32:
    case ABI_32:
    case ABI_O64:
    case ABI_O64:
      /* Only leading floating-point scalars are passed in
      /* Only leading floating-point scalars are passed in
         floating-point registers.  We also handle vector floats the same
         floating-point registers.  We also handle vector floats the same
         say, which is OK because they are not covered by the standard ABI.  */
         say, which is OK because they are not covered by the standard ABI.  */
      info->fpr_p = (!cum->gp_reg_found
      info->fpr_p = (!cum->gp_reg_found
                     && cum->arg_number < 2
                     && cum->arg_number < 2
                     && (type == 0 || SCALAR_FLOAT_TYPE_P (type)
                     && (type == 0 || SCALAR_FLOAT_TYPE_P (type)
                         || VECTOR_FLOAT_TYPE_P (type))
                         || VECTOR_FLOAT_TYPE_P (type))
                     && (GET_MODE_CLASS (mode) == MODE_FLOAT
                     && (GET_MODE_CLASS (mode) == MODE_FLOAT
                         || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
                         || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
                     && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
                     && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
      break;
      break;
 
 
    case ABI_N32:
    case ABI_N32:
    case ABI_64:
    case ABI_64:
      /* Scalar and complex floating-point types are passed in
      /* Scalar and complex floating-point types are passed in
         floating-point registers.  */
         floating-point registers.  */
      info->fpr_p = (named
      info->fpr_p = (named
                     && (type == 0 || FLOAT_TYPE_P (type))
                     && (type == 0 || FLOAT_TYPE_P (type))
                     && (GET_MODE_CLASS (mode) == MODE_FLOAT
                     && (GET_MODE_CLASS (mode) == MODE_FLOAT
                         || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
                         || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
                         || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
                         || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
                     && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
                     && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
 
 
      /* ??? According to the ABI documentation, the real and imaginary
      /* ??? According to the ABI documentation, the real and imaginary
         parts of complex floats should be passed in individual registers.
         parts of complex floats should be passed in individual registers.
         The real and imaginary parts of stack arguments are supposed
         The real and imaginary parts of stack arguments are supposed
         to be contiguous and there should be an extra word of padding
         to be contiguous and there should be an extra word of padding
         at the end.
         at the end.
 
 
         This has two problems.  First, it makes it impossible to use a
         This has two problems.  First, it makes it impossible to use a
         single "void *" va_list type, since register and stack arguments
         single "void *" va_list type, since register and stack arguments
         are passed differently.  (At the time of writing, MIPSpro cannot
         are passed differently.  (At the time of writing, MIPSpro cannot
         handle complex float varargs correctly.)  Second, it's unclear
         handle complex float varargs correctly.)  Second, it's unclear
         what should happen when there is only one register free.
         what should happen when there is only one register free.
 
 
         For now, we assume that named complex floats should go into FPRs
         For now, we assume that named complex floats should go into FPRs
         if there are two FPRs free, otherwise they should be passed in the
         if there are two FPRs free, otherwise they should be passed in the
         same way as a struct containing two floats.  */
         same way as a struct containing two floats.  */
      if (info->fpr_p
      if (info->fpr_p
          && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
          && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
          && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
          && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
        {
        {
          if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
          if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
            info->fpr_p = false;
            info->fpr_p = false;
          else
          else
            num_words = 2;
            num_words = 2;
        }
        }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* See whether the argument has doubleword alignment.  */
  /* See whether the argument has doubleword alignment.  */
  doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;
  doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;
 
 
  /* Set REG_OFFSET to the register count we're interested in.
  /* Set REG_OFFSET to the register count we're interested in.
     The EABI allocates the floating-point registers separately,
     The EABI allocates the floating-point registers separately,
     but the other ABIs allocate them like integer registers.  */
     but the other ABIs allocate them like integer registers.  */
  info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
  info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
                      ? cum->num_fprs
                      ? cum->num_fprs
                      : cum->num_gprs);
                      : cum->num_gprs);
 
 
  /* Advance to an even register if the argument is doubleword-aligned.  */
  /* Advance to an even register if the argument is doubleword-aligned.  */
  if (doubleword_aligned_p)
  if (doubleword_aligned_p)
    info->reg_offset += info->reg_offset & 1;
    info->reg_offset += info->reg_offset & 1;
 
 
  /* Work out the offset of a stack argument.  */
  /* Work out the offset of a stack argument.  */
  info->stack_offset = cum->stack_words;
  info->stack_offset = cum->stack_words;
  if (doubleword_aligned_p)
  if (doubleword_aligned_p)
    info->stack_offset += info->stack_offset & 1;
    info->stack_offset += info->stack_offset & 1;
 
 
  max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
  max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
 
 
  /* Partition the argument between registers and stack.  */
  /* Partition the argument between registers and stack.  */
  info->reg_words = MIN (num_words, max_regs);
  info->reg_words = MIN (num_words, max_regs);
  info->stack_words = num_words - info->reg_words;
  info->stack_words = num_words - info->reg_words;
}
}
 
 
 
 
/* Implement FUNCTION_ARG_ADVANCE.  */
/* Implement FUNCTION_ARG_ADVANCE.  */
 
 
void
void
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
                      tree type, int named)
                      tree type, int named)
{
{
  struct mips_arg_info info;
  struct mips_arg_info info;
 
 
  mips_arg_info (cum, mode, type, named, &info);
  mips_arg_info (cum, mode, type, named, &info);
 
 
  if (!info.fpr_p)
  if (!info.fpr_p)
    cum->gp_reg_found = true;
    cum->gp_reg_found = true;
 
 
  /* See the comment above the cumulative args structure in mips.h
  /* See the comment above the cumulative args structure in mips.h
     for an explanation of what this code does.  It assumes the O32
     for an explanation of what this code does.  It assumes the O32
     ABI, which passes at most 2 arguments in float registers.  */
     ABI, which passes at most 2 arguments in float registers.  */
  if (cum->arg_number < 2 && info.fpr_p)
  if (cum->arg_number < 2 && info.fpr_p)
    cum->fp_code += (mode == SFmode ? 1 : 2) << ((cum->arg_number - 1) * 2);
    cum->fp_code += (mode == SFmode ? 1 : 2) << ((cum->arg_number - 1) * 2);
 
 
  if (mips_abi != ABI_EABI || !info.fpr_p)
  if (mips_abi != ABI_EABI || !info.fpr_p)
    cum->num_gprs = info.reg_offset + info.reg_words;
    cum->num_gprs = info.reg_offset + info.reg_words;
  else if (info.reg_words > 0)
  else if (info.reg_words > 0)
    cum->num_fprs += FP_INC;
    cum->num_fprs += FP_INC;
 
 
  if (info.stack_words > 0)
  if (info.stack_words > 0)
    cum->stack_words = info.stack_offset + info.stack_words;
    cum->stack_words = info.stack_offset + info.stack_words;
 
 
  cum->arg_number++;
  cum->arg_number++;
}
}
 
 
/* Implement FUNCTION_ARG.  */
/* Implement FUNCTION_ARG.  */
 
 
struct rtx_def *
struct rtx_def *
function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
              tree type, int named)
              tree type, int named)
{
{
  struct mips_arg_info info;
  struct mips_arg_info info;
 
 
  /* We will be called with a mode of VOIDmode after the last argument
  /* We will be called with a mode of VOIDmode after the last argument
     has been seen.  Whatever we return will be passed to the call
     has been seen.  Whatever we return will be passed to the call
     insn.  If we need a mips16 fp_code, return a REG with the code
     insn.  If we need a mips16 fp_code, return a REG with the code
     stored as the mode.  */
     stored as the mode.  */
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    {
    {
      if (TARGET_MIPS16 && cum->fp_code != 0)
      if (TARGET_MIPS16 && cum->fp_code != 0)
        return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
        return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
 
 
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  mips_arg_info (cum, mode, type, named, &info);
  mips_arg_info (cum, mode, type, named, &info);
 
 
  /* Return straight away if the whole argument is passed on the stack.  */
  /* Return straight away if the whole argument is passed on the stack.  */
  if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
  if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
    return 0;
    return 0;
 
 
  if (type != 0
  if (type != 0
      && TREE_CODE (type) == RECORD_TYPE
      && TREE_CODE (type) == RECORD_TYPE
      && TARGET_NEWABI
      && TARGET_NEWABI
      && TYPE_SIZE_UNIT (type)
      && TYPE_SIZE_UNIT (type)
      && host_integerp (TYPE_SIZE_UNIT (type), 1)
      && host_integerp (TYPE_SIZE_UNIT (type), 1)
      && named)
      && named)
    {
    {
      /* The Irix 6 n32/n64 ABIs say that if any 64 bit chunk of the
      /* The Irix 6 n32/n64 ABIs say that if any 64 bit chunk of the
         structure contains a double in its entirety, then that 64 bit
         structure contains a double in its entirety, then that 64 bit
         chunk is passed in a floating point register.  */
         chunk is passed in a floating point register.  */
      tree field;
      tree field;
 
 
      /* First check to see if there is any such field.  */
      /* First check to see if there is any such field.  */
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
        if (TREE_CODE (field) == FIELD_DECL
        if (TREE_CODE (field) == FIELD_DECL
            && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
            && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
            && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
            && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
            && host_integerp (bit_position (field), 0)
            && host_integerp (bit_position (field), 0)
            && int_bit_position (field) % BITS_PER_WORD == 0)
            && int_bit_position (field) % BITS_PER_WORD == 0)
          break;
          break;
 
 
      if (field != 0)
      if (field != 0)
        {
        {
          /* Now handle the special case by returning a PARALLEL
          /* Now handle the special case by returning a PARALLEL
             indicating where each 64 bit chunk goes.  INFO.REG_WORDS
             indicating where each 64 bit chunk goes.  INFO.REG_WORDS
             chunks are passed in registers.  */
             chunks are passed in registers.  */
          unsigned int i;
          unsigned int i;
          HOST_WIDE_INT bitpos;
          HOST_WIDE_INT bitpos;
          rtx ret;
          rtx ret;
 
 
          /* assign_parms checks the mode of ENTRY_PARM, so we must
          /* assign_parms checks the mode of ENTRY_PARM, so we must
             use the actual mode here.  */
             use the actual mode here.  */
          ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
          ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
 
 
          bitpos = 0;
          bitpos = 0;
          field = TYPE_FIELDS (type);
          field = TYPE_FIELDS (type);
          for (i = 0; i < info.reg_words; i++)
          for (i = 0; i < info.reg_words; i++)
            {
            {
              rtx reg;
              rtx reg;
 
 
              for (; field; field = TREE_CHAIN (field))
              for (; field; field = TREE_CHAIN (field))
                if (TREE_CODE (field) == FIELD_DECL
                if (TREE_CODE (field) == FIELD_DECL
                    && int_bit_position (field) >= bitpos)
                    && int_bit_position (field) >= bitpos)
                  break;
                  break;
 
 
              if (field
              if (field
                  && int_bit_position (field) == bitpos
                  && int_bit_position (field) == bitpos
                  && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
                  && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
                  && !TARGET_SOFT_FLOAT
                  && !TARGET_SOFT_FLOAT
                  && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
                  && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
                reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
                reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
              else
              else
                reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
                reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
 
 
              XVECEXP (ret, 0, i)
              XVECEXP (ret, 0, i)
                = gen_rtx_EXPR_LIST (VOIDmode, reg,
                = gen_rtx_EXPR_LIST (VOIDmode, reg,
                                     GEN_INT (bitpos / BITS_PER_UNIT));
                                     GEN_INT (bitpos / BITS_PER_UNIT));
 
 
              bitpos += BITS_PER_WORD;
              bitpos += BITS_PER_WORD;
            }
            }
          return ret;
          return ret;
        }
        }
    }
    }
 
 
  /* Handle the n32/n64 conventions for passing complex floating-point
  /* Handle the n32/n64 conventions for passing complex floating-point
     arguments in FPR pairs.  The real part goes in the lower register
     arguments in FPR pairs.  The real part goes in the lower register
     and the imaginary part goes in the upper register.  */
     and the imaginary part goes in the upper register.  */
  if (TARGET_NEWABI
  if (TARGET_NEWABI
      && info.fpr_p
      && info.fpr_p
      && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
      && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
    {
      rtx real, imag;
      rtx real, imag;
      enum machine_mode inner;
      enum machine_mode inner;
      int reg;
      int reg;
 
 
      inner = GET_MODE_INNER (mode);
      inner = GET_MODE_INNER (mode);
      reg = FP_ARG_FIRST + info.reg_offset;
      reg = FP_ARG_FIRST + info.reg_offset;
      if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
      if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
        {
        {
          /* Real part in registers, imaginary part on stack.  */
          /* Real part in registers, imaginary part on stack.  */
          gcc_assert (info.stack_words == info.reg_words);
          gcc_assert (info.stack_words == info.reg_words);
          return gen_rtx_REG (inner, reg);
          return gen_rtx_REG (inner, reg);
        }
        }
      else
      else
        {
        {
          gcc_assert (info.stack_words == 0);
          gcc_assert (info.stack_words == 0);
          real = gen_rtx_EXPR_LIST (VOIDmode,
          real = gen_rtx_EXPR_LIST (VOIDmode,
                                    gen_rtx_REG (inner, reg),
                                    gen_rtx_REG (inner, reg),
                                    const0_rtx);
                                    const0_rtx);
          imag = gen_rtx_EXPR_LIST (VOIDmode,
          imag = gen_rtx_EXPR_LIST (VOIDmode,
                                    gen_rtx_REG (inner,
                                    gen_rtx_REG (inner,
                                                 reg + info.reg_words / 2),
                                                 reg + info.reg_words / 2),
                                    GEN_INT (GET_MODE_SIZE (inner)));
                                    GEN_INT (GET_MODE_SIZE (inner)));
          return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
          return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
        }
        }
    }
    }
 
 
  if (!info.fpr_p)
  if (!info.fpr_p)
    return gen_rtx_REG (mode, GP_ARG_FIRST + info.reg_offset);
    return gen_rtx_REG (mode, GP_ARG_FIRST + info.reg_offset);
  else if (info.reg_offset == 1)
  else if (info.reg_offset == 1)
    /* This code handles the special o32 case in which the second word
    /* This code handles the special o32 case in which the second word
       of the argument structure is passed in floating-point registers.  */
       of the argument structure is passed in floating-point registers.  */
    return gen_rtx_REG (mode, FP_ARG_FIRST + FP_INC);
    return gen_rtx_REG (mode, FP_ARG_FIRST + FP_INC);
  else
  else
    return gen_rtx_REG (mode, FP_ARG_FIRST + info.reg_offset);
    return gen_rtx_REG (mode, FP_ARG_FIRST + info.reg_offset);
}
}
 
 
 
 
/* Implement TARGET_ARG_PARTIAL_BYTES.  */
/* Implement TARGET_ARG_PARTIAL_BYTES.  */
 
 
static int
static int
mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
                        enum machine_mode mode, tree type, bool named)
                        enum machine_mode mode, tree type, bool named)
{
{
  struct mips_arg_info info;
  struct mips_arg_info info;
 
 
  mips_arg_info (cum, mode, type, named, &info);
  mips_arg_info (cum, mode, type, named, &info);
  return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
  return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
}
}
 
 
 
 
/* Implement FUNCTION_ARG_BOUNDARY.  Every parameter gets at least
/* Implement FUNCTION_ARG_BOUNDARY.  Every parameter gets at least
   PARM_BOUNDARY bits of alignment, but will be given anything up
   PARM_BOUNDARY bits of alignment, but will be given anything up
   to STACK_BOUNDARY bits if the type requires it.  */
   to STACK_BOUNDARY bits if the type requires it.  */
 
 
int
int
function_arg_boundary (enum machine_mode mode, tree type)
function_arg_boundary (enum machine_mode mode, tree type)
{
{
  unsigned int alignment;
  unsigned int alignment;
 
 
  alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
  alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
  if (alignment < PARM_BOUNDARY)
  if (alignment < PARM_BOUNDARY)
    alignment = PARM_BOUNDARY;
    alignment = PARM_BOUNDARY;
  if (alignment > STACK_BOUNDARY)
  if (alignment > STACK_BOUNDARY)
    alignment = STACK_BOUNDARY;
    alignment = STACK_BOUNDARY;
  return alignment;
  return alignment;
}
}
 
 
/* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
/* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
   upward rather than downward.  In other words, return true if the
   upward rather than downward.  In other words, return true if the
   first byte of the stack slot has useful data, false if the last
   first byte of the stack slot has useful data, false if the last
   byte does.  */
   byte does.  */
 
 
bool
bool
mips_pad_arg_upward (enum machine_mode mode, tree type)
mips_pad_arg_upward (enum machine_mode mode, tree type)
{
{
  /* On little-endian targets, the first byte of every stack argument
  /* On little-endian targets, the first byte of every stack argument
     is passed in the first byte of the stack slot.  */
     is passed in the first byte of the stack slot.  */
  if (!BYTES_BIG_ENDIAN)
  if (!BYTES_BIG_ENDIAN)
    return true;
    return true;
 
 
  /* Otherwise, integral types are padded downward: the last byte of a
  /* Otherwise, integral types are padded downward: the last byte of a
     stack argument is passed in the last byte of the stack slot.  */
     stack argument is passed in the last byte of the stack slot.  */
  if (type != 0
  if (type != 0
      ? INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)
      ? INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)
      : GET_MODE_CLASS (mode) == MODE_INT)
      : GET_MODE_CLASS (mode) == MODE_INT)
    return false;
    return false;
 
 
  /* Big-endian o64 pads floating-point arguments downward.  */
  /* Big-endian o64 pads floating-point arguments downward.  */
  if (mips_abi == ABI_O64)
  if (mips_abi == ABI_O64)
    if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
    if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
      return false;
      return false;
 
 
  /* Other types are padded upward for o32, o64, n32 and n64.  */
  /* Other types are padded upward for o32, o64, n32 and n64.  */
  if (mips_abi != ABI_EABI)
  if (mips_abi != ABI_EABI)
    return true;
    return true;
 
 
  /* Arguments smaller than a stack slot are padded downward.  */
  /* Arguments smaller than a stack slot are padded downward.  */
  if (mode != BLKmode)
  if (mode != BLKmode)
    return (GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY);
    return (GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY);
  else
  else
    return (int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT));
    return (int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT));
}
}
 
 
 
 
/* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...).  Return !BYTES_BIG_ENDIAN
/* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...).  Return !BYTES_BIG_ENDIAN
   if the least significant byte of the register has useful data.  Return
   if the least significant byte of the register has useful data.  Return
   the opposite if the most significant byte does.  */
   the opposite if the most significant byte does.  */
 
 
bool
bool
mips_pad_reg_upward (enum machine_mode mode, tree type)
mips_pad_reg_upward (enum machine_mode mode, tree type)
{
{
  /* No shifting is required for floating-point arguments.  */
  /* No shifting is required for floating-point arguments.  */
  if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
  if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
    return !BYTES_BIG_ENDIAN;
    return !BYTES_BIG_ENDIAN;
 
 
  /* Otherwise, apply the same padding to register arguments as we do
  /* Otherwise, apply the same padding to register arguments as we do
     to stack arguments.  */
     to stack arguments.  */
  return mips_pad_arg_upward (mode, type);
  return mips_pad_arg_upward (mode, type);
}
}


static void
static void
mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
                             tree type, int *pretend_size ATTRIBUTE_UNUSED,
                             tree type, int *pretend_size ATTRIBUTE_UNUSED,
                             int no_rtl)
                             int no_rtl)
{
{
  CUMULATIVE_ARGS local_cum;
  CUMULATIVE_ARGS local_cum;
  int gp_saved, fp_saved;
  int gp_saved, fp_saved;
 
 
  /* The caller has advanced CUM up to, but not beyond, the last named
  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */
     argument, to find out how many registers are left over.  */
 
 
  local_cum = *cum;
  local_cum = *cum;
  FUNCTION_ARG_ADVANCE (local_cum, mode, type, 1);
  FUNCTION_ARG_ADVANCE (local_cum, mode, type, 1);
 
 
  /* Found out how many registers we need to save.  */
  /* Found out how many registers we need to save.  */
  gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
  gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
  fp_saved = (EABI_FLOAT_VARARGS_P
  fp_saved = (EABI_FLOAT_VARARGS_P
              ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
              ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
              : 0);
              : 0);
 
 
  if (!no_rtl)
  if (!no_rtl)
    {
    {
      if (gp_saved > 0)
      if (gp_saved > 0)
        {
        {
          rtx ptr, mem;
          rtx ptr, mem;
 
 
          ptr = plus_constant (virtual_incoming_args_rtx,
          ptr = plus_constant (virtual_incoming_args_rtx,
                               REG_PARM_STACK_SPACE (cfun->decl)
                               REG_PARM_STACK_SPACE (cfun->decl)
                               - gp_saved * UNITS_PER_WORD);
                               - gp_saved * UNITS_PER_WORD);
          mem = gen_rtx_MEM (BLKmode, ptr);
          mem = gen_rtx_MEM (BLKmode, ptr);
          set_mem_alias_set (mem, get_varargs_alias_set ());
          set_mem_alias_set (mem, get_varargs_alias_set ());
 
 
          move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
          move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
                               mem, gp_saved);
                               mem, gp_saved);
        }
        }
      if (fp_saved > 0)
      if (fp_saved > 0)
        {
        {
          /* We can't use move_block_from_reg, because it will use
          /* We can't use move_block_from_reg, because it will use
             the wrong mode.  */
             the wrong mode.  */
          enum machine_mode mode;
          enum machine_mode mode;
          int off, i;
          int off, i;
 
 
          /* Set OFF to the offset from virtual_incoming_args_rtx of
          /* Set OFF to the offset from virtual_incoming_args_rtx of
             the first float register.  The FP save area lies below
             the first float register.  The FP save area lies below
             the integer one, and is aligned to UNITS_PER_FPVALUE bytes.  */
             the integer one, and is aligned to UNITS_PER_FPVALUE bytes.  */
          off = -gp_saved * UNITS_PER_WORD;
          off = -gp_saved * UNITS_PER_WORD;
          off &= ~(UNITS_PER_FPVALUE - 1);
          off &= ~(UNITS_PER_FPVALUE - 1);
          off -= fp_saved * UNITS_PER_FPREG;
          off -= fp_saved * UNITS_PER_FPREG;
 
 
          mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
          mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
 
 
          for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS; i += FP_INC)
          for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS; i += FP_INC)
            {
            {
              rtx ptr, mem;
              rtx ptr, mem;
 
 
              ptr = plus_constant (virtual_incoming_args_rtx, off);
              ptr = plus_constant (virtual_incoming_args_rtx, off);
              mem = gen_rtx_MEM (mode, ptr);
              mem = gen_rtx_MEM (mode, ptr);
              set_mem_alias_set (mem, get_varargs_alias_set ());
              set_mem_alias_set (mem, get_varargs_alias_set ());
              emit_move_insn (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
              emit_move_insn (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
              off += UNITS_PER_HWFPVALUE;
              off += UNITS_PER_HWFPVALUE;
            }
            }
        }
        }
    }
    }
  if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
  if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
    cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
    cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
                                   + fp_saved * UNITS_PER_FPREG);
                                   + fp_saved * UNITS_PER_FPREG);
}
}
 
 
/* Create the va_list data type.
/* Create the va_list data type.
   We keep 3 pointers, and two offsets.
   We keep 3 pointers, and two offsets.
   Two pointers are to the overflow area, which starts at the CFA.
   Two pointers are to the overflow area, which starts at the CFA.
     One of these is constant, for addressing into the GPR save area below it.
     One of these is constant, for addressing into the GPR save area below it.
     The other is advanced up the stack through the overflow region.
     The other is advanced up the stack through the overflow region.
   The third pointer is to the GPR save area.  Since the FPR save area
   The third pointer is to the GPR save area.  Since the FPR save area
     is just below it, we can address FPR slots off this pointer.
     is just below it, we can address FPR slots off this pointer.
   We also keep two one-byte offsets, which are to be subtracted from the
   We also keep two one-byte offsets, which are to be subtracted from the
     constant pointers to yield addresses in the GPR and FPR save areas.
     constant pointers to yield addresses in the GPR and FPR save areas.
     These are downcounted as float or non-float arguments are used,
     These are downcounted as float or non-float arguments are used,
     and when they get to zero, the argument must be obtained from the
     and when they get to zero, the argument must be obtained from the
     overflow region.
     overflow region.
   If !EABI_FLOAT_VARARGS_P, then no FPR save area exists, and a single
   If !EABI_FLOAT_VARARGS_P, then no FPR save area exists, and a single
     pointer is enough.  It's started at the GPR save area, and is
     pointer is enough.  It's started at the GPR save area, and is
     advanced, period.
     advanced, period.
   Note that the GPR save area is not constant size, due to optimization
   Note that the GPR save area is not constant size, due to optimization
     in the prologue.  Hence, we can't use a design with two pointers
     in the prologue.  Hence, we can't use a design with two pointers
     and two offsets, although we could have designed this with two pointers
     and two offsets, although we could have designed this with two pointers
     and three offsets.  */
     and three offsets.  */
 
 
static tree
static tree
mips_build_builtin_va_list (void)
mips_build_builtin_va_list (void)
{
{
  if (EABI_FLOAT_VARARGS_P)
  if (EABI_FLOAT_VARARGS_P)
    {
    {
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
      tree array, index;
      tree array, index;
 
 
      record = (*lang_hooks.types.make_type) (RECORD_TYPE);
      record = (*lang_hooks.types.make_type) (RECORD_TYPE);
 
 
      f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
      f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
                          ptr_type_node);
                          ptr_type_node);
      f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
      f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
                          ptr_type_node);
                          ptr_type_node);
      f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
      f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
                          ptr_type_node);
                          ptr_type_node);
      f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
      f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
                          unsigned_char_type_node);
                          unsigned_char_type_node);
      f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
      f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
                          unsigned_char_type_node);
                          unsigned_char_type_node);
      /* Explicitly pad to the size of a pointer, so that -Wpadded won't
      /* Explicitly pad to the size of a pointer, so that -Wpadded won't
         warn on every user file.  */
         warn on every user file.  */
      index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
      index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
      array = build_array_type (unsigned_char_type_node,
      array = build_array_type (unsigned_char_type_node,
                                build_index_type (index));
                                build_index_type (index));
      f_res = build_decl (FIELD_DECL, get_identifier ("__reserved"), array);
      f_res = build_decl (FIELD_DECL, get_identifier ("__reserved"), array);
 
 
      DECL_FIELD_CONTEXT (f_ovfl) = record;
      DECL_FIELD_CONTEXT (f_ovfl) = record;
      DECL_FIELD_CONTEXT (f_gtop) = record;
      DECL_FIELD_CONTEXT (f_gtop) = record;
      DECL_FIELD_CONTEXT (f_ftop) = record;
      DECL_FIELD_CONTEXT (f_ftop) = record;
      DECL_FIELD_CONTEXT (f_goff) = record;
      DECL_FIELD_CONTEXT (f_goff) = record;
      DECL_FIELD_CONTEXT (f_foff) = record;
      DECL_FIELD_CONTEXT (f_foff) = record;
      DECL_FIELD_CONTEXT (f_res) = record;
      DECL_FIELD_CONTEXT (f_res) = record;
 
 
      TYPE_FIELDS (record) = f_ovfl;
      TYPE_FIELDS (record) = f_ovfl;
      TREE_CHAIN (f_ovfl) = f_gtop;
      TREE_CHAIN (f_ovfl) = f_gtop;
      TREE_CHAIN (f_gtop) = f_ftop;
      TREE_CHAIN (f_gtop) = f_ftop;
      TREE_CHAIN (f_ftop) = f_goff;
      TREE_CHAIN (f_ftop) = f_goff;
      TREE_CHAIN (f_goff) = f_foff;
      TREE_CHAIN (f_goff) = f_foff;
      TREE_CHAIN (f_foff) = f_res;
      TREE_CHAIN (f_foff) = f_res;
 
 
      layout_type (record);
      layout_type (record);
      return record;
      return record;
    }
    }
  else if (TARGET_IRIX && TARGET_IRIX6)
  else if (TARGET_IRIX && TARGET_IRIX6)
    /* On IRIX 6, this type is 'char *'.  */
    /* On IRIX 6, this type is 'char *'.  */
    return build_pointer_type (char_type_node);
    return build_pointer_type (char_type_node);
  else
  else
    /* Otherwise, we use 'void *'.  */
    /* Otherwise, we use 'void *'.  */
    return ptr_type_node;
    return ptr_type_node;
}
}
 
 
/* Implement va_start.  */
/* Implement va_start.  */
 
 
void
void
mips_va_start (tree valist, rtx nextarg)
mips_va_start (tree valist, rtx nextarg)
{
{
  if (EABI_FLOAT_VARARGS_P)
  if (EABI_FLOAT_VARARGS_P)
    {
    {
      const CUMULATIVE_ARGS *cum;
      const CUMULATIVE_ARGS *cum;
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
      tree ovfl, gtop, ftop, goff, foff;
      tree ovfl, gtop, ftop, goff, foff;
      tree t;
      tree t;
      int gpr_save_area_size;
      int gpr_save_area_size;
      int fpr_save_area_size;
      int fpr_save_area_size;
      int fpr_offset;
      int fpr_offset;
 
 
      cum = &current_function_args_info;
      cum = &current_function_args_info;
      gpr_save_area_size
      gpr_save_area_size
        = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
        = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
      fpr_save_area_size
      fpr_save_area_size
        = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
        = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
 
 
      f_ovfl = TYPE_FIELDS (va_list_type_node);
      f_ovfl = TYPE_FIELDS (va_list_type_node);
      f_gtop = TREE_CHAIN (f_ovfl);
      f_gtop = TREE_CHAIN (f_ovfl);
      f_ftop = TREE_CHAIN (f_gtop);
      f_ftop = TREE_CHAIN (f_gtop);
      f_goff = TREE_CHAIN (f_ftop);
      f_goff = TREE_CHAIN (f_ftop);
      f_foff = TREE_CHAIN (f_goff);
      f_foff = TREE_CHAIN (f_goff);
 
 
      ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
      ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
                     NULL_TREE);
                     NULL_TREE);
      gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
      gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
                     NULL_TREE);
                     NULL_TREE);
      ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
      ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
                     NULL_TREE);
                     NULL_TREE);
      goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
      goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
                     NULL_TREE);
                     NULL_TREE);
      foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
      foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
                     NULL_TREE);
                     NULL_TREE);
 
 
      /* Emit code to initialize OVFL, which points to the next varargs
      /* Emit code to initialize OVFL, which points to the next varargs
         stack argument.  CUM->STACK_WORDS gives the number of stack
         stack argument.  CUM->STACK_WORDS gives the number of stack
         words used by named arguments.  */
         words used by named arguments.  */
      t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
      t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
      if (cum->stack_words > 0)
      if (cum->stack_words > 0)
        t = build2 (PLUS_EXPR, TREE_TYPE (ovfl), t,
        t = build2 (PLUS_EXPR, TREE_TYPE (ovfl), t,
                    build_int_cst (NULL_TREE,
                    build_int_cst (NULL_TREE,
                                   cum->stack_words * UNITS_PER_WORD));
                                   cum->stack_words * UNITS_PER_WORD));
      t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
      t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
      /* Emit code to initialize GTOP, the top of the GPR save area.  */
      /* Emit code to initialize GTOP, the top of the GPR save area.  */
      t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
      t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
      t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
      t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
      /* Emit code to initialize FTOP, the top of the FPR save area.
      /* Emit code to initialize FTOP, the top of the FPR save area.
         This address is gpr_save_area_bytes below GTOP, rounded
         This address is gpr_save_area_bytes below GTOP, rounded
         down to the next fp-aligned boundary.  */
         down to the next fp-aligned boundary.  */
      t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
      t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
      fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
      fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
      fpr_offset &= ~(UNITS_PER_FPVALUE - 1);
      fpr_offset &= ~(UNITS_PER_FPVALUE - 1);
      if (fpr_offset)
      if (fpr_offset)
        t = build2 (PLUS_EXPR, TREE_TYPE (ftop), t,
        t = build2 (PLUS_EXPR, TREE_TYPE (ftop), t,
                    build_int_cst (NULL_TREE, -fpr_offset));
                    build_int_cst (NULL_TREE, -fpr_offset));
      t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
      t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
      /* Emit code to initialize GOFF, the offset from GTOP of the
      /* Emit code to initialize GOFF, the offset from GTOP of the
         next GPR argument.  */
         next GPR argument.  */
      t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
      t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
                  build_int_cst (NULL_TREE, gpr_save_area_size));
                  build_int_cst (NULL_TREE, gpr_save_area_size));
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
      /* Likewise emit code to initialize FOFF, the offset from FTOP
      /* Likewise emit code to initialize FOFF, the offset from FTOP
         of the next FPR argument.  */
         of the next FPR argument.  */
      t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
      t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
                  build_int_cst (NULL_TREE, fpr_save_area_size));
                  build_int_cst (NULL_TREE, fpr_save_area_size));
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
    }
    }
  else
  else
    {
    {
      nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
      nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
      std_expand_builtin_va_start (valist, nextarg);
      std_expand_builtin_va_start (valist, nextarg);
    }
    }
}
}


/* Implement va_arg.  */
/* Implement va_arg.  */
 
 
static tree
static tree
mips_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
mips_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
{
{
  HOST_WIDE_INT size, rsize;
  HOST_WIDE_INT size, rsize;
  tree addr;
  tree addr;
  bool indirect;
  bool indirect;
 
 
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
 
 
  if (indirect)
  if (indirect)
    type = build_pointer_type (type);
    type = build_pointer_type (type);
 
 
  size = int_size_in_bytes (type);
  size = int_size_in_bytes (type);
  rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
  rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
 
 
  if (mips_abi != ABI_EABI || !EABI_FLOAT_VARARGS_P)
  if (mips_abi != ABI_EABI || !EABI_FLOAT_VARARGS_P)
    addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
    addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
  else
  else
    {
    {
      /* Not a simple merged stack.      */
      /* Not a simple merged stack.      */
 
 
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
      tree ovfl, top, off, align;
      tree ovfl, top, off, align;
      HOST_WIDE_INT osize;
      HOST_WIDE_INT osize;
      tree t, u;
      tree t, u;
 
 
      f_ovfl = TYPE_FIELDS (va_list_type_node);
      f_ovfl = TYPE_FIELDS (va_list_type_node);
      f_gtop = TREE_CHAIN (f_ovfl);
      f_gtop = TREE_CHAIN (f_ovfl);
      f_ftop = TREE_CHAIN (f_gtop);
      f_ftop = TREE_CHAIN (f_gtop);
      f_goff = TREE_CHAIN (f_ftop);
      f_goff = TREE_CHAIN (f_ftop);
      f_foff = TREE_CHAIN (f_goff);
      f_foff = TREE_CHAIN (f_goff);
 
 
      /* We maintain separate pointers and offsets for floating-point
      /* We maintain separate pointers and offsets for floating-point
         and integer arguments, but we need similar code in both cases.
         and integer arguments, but we need similar code in both cases.
         Let:
         Let:
 
 
         TOP be the top of the register save area;
         TOP be the top of the register save area;
         OFF be the offset from TOP of the next register;
         OFF be the offset from TOP of the next register;
         ADDR_RTX be the address of the argument;
         ADDR_RTX be the address of the argument;
         RSIZE be the number of bytes used to store the argument
         RSIZE be the number of bytes used to store the argument
         when it's in the register save area;
         when it's in the register save area;
         OSIZE be the number of bytes used to store it when it's
         OSIZE be the number of bytes used to store it when it's
         in the stack overflow area; and
         in the stack overflow area; and
         PADDING be (BYTES_BIG_ENDIAN ? OSIZE - RSIZE : 0)
         PADDING be (BYTES_BIG_ENDIAN ? OSIZE - RSIZE : 0)
 
 
         The code we want is:
         The code we want is:
 
 
         1: off &= -rsize;        // round down
         1: off &= -rsize;        // round down
         2: if (off != 0)
         2: if (off != 0)
         3:   {
         3:   {
         4:      addr_rtx = top - off;
         4:      addr_rtx = top - off;
         5:      off -= rsize;
         5:      off -= rsize;
         6:   }
         6:   }
         7: else
         7: else
         8:   {
         8:   {
         9:      ovfl += ((intptr_t) ovfl + osize - 1) & -osize;
         9:      ovfl += ((intptr_t) ovfl + osize - 1) & -osize;
         10:     addr_rtx = ovfl + PADDING;
         10:     addr_rtx = ovfl + PADDING;
         11:     ovfl += osize;
         11:     ovfl += osize;
         14:   }
         14:   }
 
 
         [1] and [9] can sometimes be optimized away.  */
         [1] and [9] can sometimes be optimized away.  */
 
 
      ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
      ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
                     NULL_TREE);
                     NULL_TREE);
 
 
      if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
      if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
          && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
          && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
        {
        {
          top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
          top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
                        NULL_TREE);
                        NULL_TREE);
          off = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
          off = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
                        NULL_TREE);
                        NULL_TREE);
 
 
          /* When floating-point registers are saved to the stack,
          /* When floating-point registers are saved to the stack,
             each one will take up UNITS_PER_HWFPVALUE bytes, regardless
             each one will take up UNITS_PER_HWFPVALUE bytes, regardless
             of the float's precision.  */
             of the float's precision.  */
          rsize = UNITS_PER_HWFPVALUE;
          rsize = UNITS_PER_HWFPVALUE;
 
 
          /* Overflow arguments are padded to UNITS_PER_WORD bytes
          /* Overflow arguments are padded to UNITS_PER_WORD bytes
             (= PARM_BOUNDARY bits).  This can be different from RSIZE
             (= PARM_BOUNDARY bits).  This can be different from RSIZE
             in two cases:
             in two cases:
 
 
             (1) On 32-bit targets when TYPE is a structure such as:
             (1) On 32-bit targets when TYPE is a structure such as:
 
 
             struct s { float f; };
             struct s { float f; };
 
 
             Such structures are passed in paired FPRs, so RSIZE
             Such structures are passed in paired FPRs, so RSIZE
             will be 8 bytes.  However, the structure only takes
             will be 8 bytes.  However, the structure only takes
             up 4 bytes of memory, so OSIZE will only be 4.
             up 4 bytes of memory, so OSIZE will only be 4.
 
 
             (2) In combinations such as -mgp64 -msingle-float
             (2) In combinations such as -mgp64 -msingle-float
             -fshort-double.  Doubles passed in registers
             -fshort-double.  Doubles passed in registers
             will then take up 4 (UNITS_PER_HWFPVALUE) bytes,
             will then take up 4 (UNITS_PER_HWFPVALUE) bytes,
             but those passed on the stack take up
             but those passed on the stack take up
             UNITS_PER_WORD bytes.  */
             UNITS_PER_WORD bytes.  */
          osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
          osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
        }
        }
      else
      else
        {
        {
          top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
          top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
                        NULL_TREE);
                        NULL_TREE);
          off = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
          off = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
                        NULL_TREE);
                        NULL_TREE);
          if (rsize > UNITS_PER_WORD)
          if (rsize > UNITS_PER_WORD)
            {
            {
              /* [1] Emit code for: off &= -rsize.      */
              /* [1] Emit code for: off &= -rsize.      */
              t = build2 (BIT_AND_EXPR, TREE_TYPE (off), off,
              t = build2 (BIT_AND_EXPR, TREE_TYPE (off), off,
                          build_int_cst (NULL_TREE, -rsize));
                          build_int_cst (NULL_TREE, -rsize));
              t = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t);
              t = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t);
              gimplify_and_add (t, pre_p);
              gimplify_and_add (t, pre_p);
            }
            }
          osize = rsize;
          osize = rsize;
        }
        }
 
 
      /* [2] Emit code to branch if off == 0.  */
      /* [2] Emit code to branch if off == 0.  */
      t = build2 (NE_EXPR, boolean_type_node, off,
      t = build2 (NE_EXPR, boolean_type_node, off,
                  build_int_cst (TREE_TYPE (off), 0));
                  build_int_cst (TREE_TYPE (off), 0));
      addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
      addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
 
 
      /* [5] Emit code for: off -= rsize.  We do this as a form of
      /* [5] Emit code for: off -= rsize.  We do this as a form of
         post-increment not available to C.  Also widen for the
         post-increment not available to C.  Also widen for the
         coming pointer arithmetic.  */
         coming pointer arithmetic.  */
      t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
      t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
      t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
      t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
      t = fold_convert (sizetype, t);
      t = fold_convert (sizetype, t);
      t = fold_convert (TREE_TYPE (top), t);
      t = fold_convert (TREE_TYPE (top), t);
 
 
      /* [4] Emit code for: addr_rtx = top - off.  On big endian machines,
      /* [4] Emit code for: addr_rtx = top - off.  On big endian machines,
         the argument has RSIZE - SIZE bytes of leading padding.  */
         the argument has RSIZE - SIZE bytes of leading padding.  */
      t = build2 (MINUS_EXPR, TREE_TYPE (top), top, t);
      t = build2 (MINUS_EXPR, TREE_TYPE (top), top, t);
      if (BYTES_BIG_ENDIAN && rsize > size)
      if (BYTES_BIG_ENDIAN && rsize > size)
        {
        {
          u = fold_convert (TREE_TYPE (t), build_int_cst (NULL_TREE,
          u = fold_convert (TREE_TYPE (t), build_int_cst (NULL_TREE,
                                                          rsize - size));
                                                          rsize - size));
          t = build2 (PLUS_EXPR, TREE_TYPE (t), t, u);
          t = build2 (PLUS_EXPR, TREE_TYPE (t), t, u);
        }
        }
      COND_EXPR_THEN (addr) = t;
      COND_EXPR_THEN (addr) = t;
 
 
      if (osize > UNITS_PER_WORD)
      if (osize > UNITS_PER_WORD)
        {
        {
          /* [9] Emit: ovfl += ((intptr_t) ovfl + osize - 1) & -osize.  */
          /* [9] Emit: ovfl += ((intptr_t) ovfl + osize - 1) & -osize.  */
          u = fold_convert (TREE_TYPE (ovfl),
          u = fold_convert (TREE_TYPE (ovfl),
                            build_int_cst (NULL_TREE, osize - 1));
                            build_int_cst (NULL_TREE, osize - 1));
          t = build2 (PLUS_EXPR, TREE_TYPE (ovfl), ovfl, u);
          t = build2 (PLUS_EXPR, TREE_TYPE (ovfl), ovfl, u);
          u = fold_convert (TREE_TYPE (ovfl),
          u = fold_convert (TREE_TYPE (ovfl),
                            build_int_cst (NULL_TREE, -osize));
                            build_int_cst (NULL_TREE, -osize));
          t = build2 (BIT_AND_EXPR, TREE_TYPE (ovfl), t, u);
          t = build2 (BIT_AND_EXPR, TREE_TYPE (ovfl), t, u);
          align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
          align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
        }
        }
      else
      else
        align = NULL;
        align = NULL;
 
 
      /* [10, 11].      Emit code to store ovfl in addr_rtx, then
      /* [10, 11].      Emit code to store ovfl in addr_rtx, then
         post-increment ovfl by osize.  On big-endian machines,
         post-increment ovfl by osize.  On big-endian machines,
         the argument has OSIZE - SIZE bytes of leading padding.  */
         the argument has OSIZE - SIZE bytes of leading padding.  */
      u = fold_convert (TREE_TYPE (ovfl),
      u = fold_convert (TREE_TYPE (ovfl),
                        build_int_cst (NULL_TREE, osize));
                        build_int_cst (NULL_TREE, osize));
      t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
      t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
      if (BYTES_BIG_ENDIAN && osize > size)
      if (BYTES_BIG_ENDIAN && osize > size)
        {
        {
          u = fold_convert (TREE_TYPE (t),
          u = fold_convert (TREE_TYPE (t),
                            build_int_cst (NULL_TREE, osize - size));
                            build_int_cst (NULL_TREE, osize - size));
          t = build2 (PLUS_EXPR, TREE_TYPE (t), t, u);
          t = build2 (PLUS_EXPR, TREE_TYPE (t), t, u);
        }
        }
 
 
      /* String [9] and [10,11] together.  */
      /* String [9] and [10,11] together.  */
      if (align)
      if (align)
        t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
        t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
      COND_EXPR_ELSE (addr) = t;
      COND_EXPR_ELSE (addr) = t;
 
 
      addr = fold_convert (build_pointer_type (type), addr);
      addr = fold_convert (build_pointer_type (type), addr);
      addr = build_va_arg_indirect_ref (addr);
      addr = build_va_arg_indirect_ref (addr);
    }
    }
 
 
  if (indirect)
  if (indirect)
    addr = build_va_arg_indirect_ref (addr);
    addr = build_va_arg_indirect_ref (addr);
 
 
  return addr;
  return addr;
}
}


/* Return true if it is possible to use left/right accesses for a
/* Return true if it is possible to use left/right accesses for a
   bitfield of WIDTH bits starting BITPOS bits into *OP.  When
   bitfield of WIDTH bits starting BITPOS bits into *OP.  When
   returning true, update *OP, *LEFT and *RIGHT as follows:
   returning true, update *OP, *LEFT and *RIGHT as follows:
 
 
   *OP is a BLKmode reference to the whole field.
   *OP is a BLKmode reference to the whole field.
 
 
   *LEFT is a QImode reference to the first byte if big endian or
   *LEFT is a QImode reference to the first byte if big endian or
   the last byte if little endian.  This address can be used in the
   the last byte if little endian.  This address can be used in the
   left-side instructions (lwl, swl, ldl, sdl).
   left-side instructions (lwl, swl, ldl, sdl).
 
 
   *RIGHT is a QImode reference to the opposite end of the field and
   *RIGHT is a QImode reference to the opposite end of the field and
   can be used in the patterning right-side instruction.  */
   can be used in the patterning right-side instruction.  */
 
 
static bool
static bool
mips_get_unaligned_mem (rtx *op, unsigned int width, int bitpos,
mips_get_unaligned_mem (rtx *op, unsigned int width, int bitpos,
                        rtx *left, rtx *right)
                        rtx *left, rtx *right)
{
{
  rtx first, last;
  rtx first, last;
 
 
  /* Check that the operand really is a MEM.  Not all the extv and
  /* Check that the operand really is a MEM.  Not all the extv and
     extzv predicates are checked.  */
     extzv predicates are checked.  */
  if (!MEM_P (*op))
  if (!MEM_P (*op))
    return false;
    return false;
 
 
  /* Check that the size is valid.  */
  /* Check that the size is valid.  */
  if (width != 32 && (!TARGET_64BIT || width != 64))
  if (width != 32 && (!TARGET_64BIT || width != 64))
    return false;
    return false;
 
 
  /* We can only access byte-aligned values.  Since we are always passed
  /* We can only access byte-aligned values.  Since we are always passed
     a reference to the first byte of the field, it is not necessary to
     a reference to the first byte of the field, it is not necessary to
     do anything with BITPOS after this check.  */
     do anything with BITPOS after this check.  */
  if (bitpos % BITS_PER_UNIT != 0)
  if (bitpos % BITS_PER_UNIT != 0)
    return false;
    return false;
 
 
  /* Reject aligned bitfields: we want to use a normal load or store
  /* Reject aligned bitfields: we want to use a normal load or store
     instead of a left/right pair.  */
     instead of a left/right pair.  */
  if (MEM_ALIGN (*op) >= width)
  if (MEM_ALIGN (*op) >= width)
    return false;
    return false;
 
 
  /* Adjust *OP to refer to the whole field.  This also has the effect
  /* Adjust *OP to refer to the whole field.  This also has the effect
     of legitimizing *OP's address for BLKmode, possibly simplifying it.  */
     of legitimizing *OP's address for BLKmode, possibly simplifying it.  */
  *op = adjust_address (*op, BLKmode, 0);
  *op = adjust_address (*op, BLKmode, 0);
  set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));
  set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));
 
 
  /* Get references to both ends of the field.  We deliberately don't
  /* Get references to both ends of the field.  We deliberately don't
     use the original QImode *OP for FIRST since the new BLKmode one
     use the original QImode *OP for FIRST since the new BLKmode one
     might have a simpler address.  */
     might have a simpler address.  */
  first = adjust_address (*op, QImode, 0);
  first = adjust_address (*op, QImode, 0);
  last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);
  last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);
 
 
  /* Allocate to LEFT and RIGHT according to endianness.  LEFT should
  /* Allocate to LEFT and RIGHT according to endianness.  LEFT should
     be the upper word and RIGHT the lower word.  */
     be the upper word and RIGHT the lower word.  */
  if (TARGET_BIG_ENDIAN)
  if (TARGET_BIG_ENDIAN)
    *left = first, *right = last;
    *left = first, *right = last;
  else
  else
    *left = last, *right = first;
    *left = last, *right = first;
 
 
  return true;
  return true;
}
}
 
 
 
 
/* Try to emit the equivalent of (set DEST (zero_extract SRC WIDTH BITPOS)).
/* Try to emit the equivalent of (set DEST (zero_extract SRC WIDTH BITPOS)).
   Return true on success.  We only handle cases where zero_extract is
   Return true on success.  We only handle cases where zero_extract is
   equivalent to sign_extract.  */
   equivalent to sign_extract.  */
 
 
bool
bool
mips_expand_unaligned_load (rtx dest, rtx src, unsigned int width, int bitpos)
mips_expand_unaligned_load (rtx dest, rtx src, unsigned int width, int bitpos)
{
{
  rtx left, right, temp;
  rtx left, right, temp;
 
 
  /* If TARGET_64BIT, the destination of a 32-bit load will be a
  /* If TARGET_64BIT, the destination of a 32-bit load will be a
     paradoxical word_mode subreg.  This is the only case in which
     paradoxical word_mode subreg.  This is the only case in which
     we allow the destination to be larger than the source.  */
     we allow the destination to be larger than the source.  */
  if (GET_CODE (dest) == SUBREG
  if (GET_CODE (dest) == SUBREG
      && GET_MODE (dest) == DImode
      && GET_MODE (dest) == DImode
      && SUBREG_BYTE (dest) == 0
      && SUBREG_BYTE (dest) == 0
      && GET_MODE (SUBREG_REG (dest)) == SImode)
      && GET_MODE (SUBREG_REG (dest)) == SImode)
    dest = SUBREG_REG (dest);
    dest = SUBREG_REG (dest);
 
 
  /* After the above adjustment, the destination must be the same
  /* After the above adjustment, the destination must be the same
     width as the source.  */
     width as the source.  */
  if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
  if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
    return false;
    return false;
 
 
  if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
  if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
    return false;
    return false;
 
 
  temp = gen_reg_rtx (GET_MODE (dest));
  temp = gen_reg_rtx (GET_MODE (dest));
  if (GET_MODE (dest) == DImode)
  if (GET_MODE (dest) == DImode)
    {
    {
      emit_insn (gen_mov_ldl (temp, src, left));
      emit_insn (gen_mov_ldl (temp, src, left));
      emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
      emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
    }
    }
  else
  else
    {
    {
      emit_insn (gen_mov_lwl (temp, src, left));
      emit_insn (gen_mov_lwl (temp, src, left));
      emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
      emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
    }
    }
  return true;
  return true;
}
}
 
 
 
 
/* Try to expand (set (zero_extract DEST WIDTH BITPOS) SRC).  Return
/* Try to expand (set (zero_extract DEST WIDTH BITPOS) SRC).  Return
   true on success.  */
   true on success.  */
 
 
bool
bool
mips_expand_unaligned_store (rtx dest, rtx src, unsigned int width, int bitpos)
mips_expand_unaligned_store (rtx dest, rtx src, unsigned int width, int bitpos)
{
{
  rtx left, right;
  rtx left, right;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
  if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
    return false;
    return false;
 
 
  mode = mode_for_size (width, MODE_INT, 0);
  mode = mode_for_size (width, MODE_INT, 0);
  src = gen_lowpart (mode, src);
  src = gen_lowpart (mode, src);
 
 
  if (mode == DImode)
  if (mode == DImode)
    {
    {
      emit_insn (gen_mov_sdl (dest, src, left));
      emit_insn (gen_mov_sdl (dest, src, left));
      emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
      emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
    }
    }
  else
  else
    {
    {
      emit_insn (gen_mov_swl (dest, src, left));
      emit_insn (gen_mov_swl (dest, src, left));
      emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
      emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
    }
    }
  return true;
  return true;
}
}
 
 
/* Return true if X is a MEM with the same size as MODE.  */
/* Return true if X is a MEM with the same size as MODE.  */
 
 
bool
bool
mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
{
{
  rtx size;
  rtx size;
 
 
  if (!MEM_P (x))
  if (!MEM_P (x))
    return false;
    return false;
 
 
  size = MEM_SIZE (x);
  size = MEM_SIZE (x);
  return size && INTVAL (size) == GET_MODE_SIZE (mode);
  return size && INTVAL (size) == GET_MODE_SIZE (mode);
}
}
 
 
/* Return true if (zero_extract OP SIZE POSITION) can be used as the
/* Return true if (zero_extract OP SIZE POSITION) can be used as the
   source of an "ext" instruction or the destination of an "ins"
   source of an "ext" instruction or the destination of an "ins"
   instruction.  OP must be a register operand and the following
   instruction.  OP must be a register operand and the following
   conditions must hold:
   conditions must hold:
 
 
     0 <= POSITION < GET_MODE_BITSIZE (GET_MODE (op))
     0 <= POSITION < GET_MODE_BITSIZE (GET_MODE (op))
     0 < SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
     0 < SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
     0 < POSITION + SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
     0 < POSITION + SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
 
 
   Also reject lengths equal to a word as they are better handled
   Also reject lengths equal to a word as they are better handled
   by the move patterns.  */
   by the move patterns.  */
 
 
bool
bool
mips_use_ins_ext_p (rtx op, rtx size, rtx position)
mips_use_ins_ext_p (rtx op, rtx size, rtx position)
{
{
  HOST_WIDE_INT len, pos;
  HOST_WIDE_INT len, pos;
 
 
  if (!ISA_HAS_EXT_INS
  if (!ISA_HAS_EXT_INS
      || !register_operand (op, VOIDmode)
      || !register_operand (op, VOIDmode)
      || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
      || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
    return false;
    return false;
 
 
  len = INTVAL (size);
  len = INTVAL (size);
  pos = INTVAL (position);
  pos = INTVAL (position);
 
 
  if (len <= 0 || len >= GET_MODE_BITSIZE (GET_MODE (op))
  if (len <= 0 || len >= GET_MODE_BITSIZE (GET_MODE (op))
      || pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (op)))
      || pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (op)))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Set up globals to generate code for the ISA or processor
/* Set up globals to generate code for the ISA or processor
   described by INFO.  */
   described by INFO.  */
 
 
static void
static void
mips_set_architecture (const struct mips_cpu_info *info)
mips_set_architecture (const struct mips_cpu_info *info)
{
{
  if (info != 0)
  if (info != 0)
    {
    {
      mips_arch_info = info;
      mips_arch_info = info;
      mips_arch = info->cpu;
      mips_arch = info->cpu;
      mips_isa = info->isa;
      mips_isa = info->isa;
    }
    }
}
}
 
 
 
 
/* Likewise for tuning.  */
/* Likewise for tuning.  */
 
 
static void
static void
mips_set_tune (const struct mips_cpu_info *info)
mips_set_tune (const struct mips_cpu_info *info)
{
{
  if (info != 0)
  if (info != 0)
    {
    {
      mips_tune_info = info;
      mips_tune_info = info;
      mips_tune = info->cpu;
      mips_tune = info->cpu;
    }
    }
}
}
 
 
/* Implement TARGET_HANDLE_OPTION.  */
/* Implement TARGET_HANDLE_OPTION.  */
 
 
static bool
static bool
mips_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
mips_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
{
{
  switch (code)
  switch (code)
    {
    {
    case OPT_mabi_:
    case OPT_mabi_:
      if (strcmp (arg, "32") == 0)
      if (strcmp (arg, "32") == 0)
        mips_abi = ABI_32;
        mips_abi = ABI_32;
      else if (strcmp (arg, "o64") == 0)
      else if (strcmp (arg, "o64") == 0)
        mips_abi = ABI_O64;
        mips_abi = ABI_O64;
      else if (strcmp (arg, "n32") == 0)
      else if (strcmp (arg, "n32") == 0)
        mips_abi = ABI_N32;
        mips_abi = ABI_N32;
      else if (strcmp (arg, "64") == 0)
      else if (strcmp (arg, "64") == 0)
        mips_abi = ABI_64;
        mips_abi = ABI_64;
      else if (strcmp (arg, "eabi") == 0)
      else if (strcmp (arg, "eabi") == 0)
        mips_abi = ABI_EABI;
        mips_abi = ABI_EABI;
      else
      else
        return false;
        return false;
      return true;
      return true;
 
 
    case OPT_march_:
    case OPT_march_:
    case OPT_mtune_:
    case OPT_mtune_:
      return mips_parse_cpu (arg) != 0;
      return mips_parse_cpu (arg) != 0;
 
 
    case OPT_mips:
    case OPT_mips:
      mips_isa_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
      mips_isa_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
      return mips_isa_info != 0;
      return mips_isa_info != 0;
 
 
    case OPT_mno_flush_func:
    case OPT_mno_flush_func:
      mips_cache_flush_func = NULL;
      mips_cache_flush_func = NULL;
      return true;
      return true;
 
 
    default:
    default:
      return true;
      return true;
    }
    }
}
}
 
 
/* Set up the threshold for data to go into the small data area, instead
/* Set up the threshold for data to go into the small data area, instead
   of the normal data area, and detect any conflicts in the switches.  */
   of the normal data area, and detect any conflicts in the switches.  */
 
 
void
void
override_options (void)
override_options (void)
{
{
  int i, start, regno;
  int i, start, regno;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  mips_section_threshold = g_switch_set ? g_switch_value : MIPS_DEFAULT_GVALUE;
  mips_section_threshold = g_switch_set ? g_switch_value : MIPS_DEFAULT_GVALUE;
 
 
  /* The following code determines the architecture and register size.
  /* The following code determines the architecture and register size.
     Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
     Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
     The GAS and GCC code should be kept in sync as much as possible.  */
     The GAS and GCC code should be kept in sync as much as possible.  */
 
 
  if (mips_arch_string != 0)
  if (mips_arch_string != 0)
    mips_set_architecture (mips_parse_cpu (mips_arch_string));
    mips_set_architecture (mips_parse_cpu (mips_arch_string));
 
 
  if (mips_isa_info != 0)
  if (mips_isa_info != 0)
    {
    {
      if (mips_arch_info == 0)
      if (mips_arch_info == 0)
        mips_set_architecture (mips_isa_info);
        mips_set_architecture (mips_isa_info);
      else if (mips_arch_info->isa != mips_isa_info->isa)
      else if (mips_arch_info->isa != mips_isa_info->isa)
        error ("-%s conflicts with the other architecture options, "
        error ("-%s conflicts with the other architecture options, "
               "which specify a %s processor",
               "which specify a %s processor",
               mips_isa_info->name,
               mips_isa_info->name,
               mips_cpu_info_from_isa (mips_arch_info->isa)->name);
               mips_cpu_info_from_isa (mips_arch_info->isa)->name);
    }
    }
 
 
  if (mips_arch_info == 0)
  if (mips_arch_info == 0)
    {
    {
#ifdef MIPS_CPU_STRING_DEFAULT
#ifdef MIPS_CPU_STRING_DEFAULT
      mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
      mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
#else
#else
      mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
      mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
#endif
#endif
    }
    }
 
 
  if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
  if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
    error ("-march=%s is not compatible with the selected ABI",
    error ("-march=%s is not compatible with the selected ABI",
           mips_arch_info->name);
           mips_arch_info->name);
 
 
  /* Optimize for mips_arch, unless -mtune selects a different processor.  */
  /* Optimize for mips_arch, unless -mtune selects a different processor.  */
  if (mips_tune_string != 0)
  if (mips_tune_string != 0)
    mips_set_tune (mips_parse_cpu (mips_tune_string));
    mips_set_tune (mips_parse_cpu (mips_tune_string));
 
 
  if (mips_tune_info == 0)
  if (mips_tune_info == 0)
    mips_set_tune (mips_arch_info);
    mips_set_tune (mips_arch_info);
 
 
  /* Set cost structure for the processor.  */
  /* Set cost structure for the processor.  */
  mips_cost = &mips_rtx_cost_data[mips_tune];
  mips_cost = &mips_rtx_cost_data[mips_tune];
 
 
  if ((target_flags_explicit & MASK_64BIT) != 0)
  if ((target_flags_explicit & MASK_64BIT) != 0)
    {
    {
      /* The user specified the size of the integer registers.  Make sure
      /* The user specified the size of the integer registers.  Make sure
         it agrees with the ABI and ISA.  */
         it agrees with the ABI and ISA.  */
      if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
      if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
        error ("-mgp64 used with a 32-bit processor");
        error ("-mgp64 used with a 32-bit processor");
      else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
      else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
        error ("-mgp32 used with a 64-bit ABI");
        error ("-mgp32 used with a 64-bit ABI");
      else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
      else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
        error ("-mgp64 used with a 32-bit ABI");
        error ("-mgp64 used with a 32-bit ABI");
    }
    }
  else
  else
    {
    {
      /* Infer the integer register size from the ABI and processor.
      /* Infer the integer register size from the ABI and processor.
         Restrict ourselves to 32-bit registers if that's all the
         Restrict ourselves to 32-bit registers if that's all the
         processor has, or if the ABI cannot handle 64-bit registers.  */
         processor has, or if the ABI cannot handle 64-bit registers.  */
      if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
      if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
        target_flags &= ~MASK_64BIT;
        target_flags &= ~MASK_64BIT;
      else
      else
        target_flags |= MASK_64BIT;
        target_flags |= MASK_64BIT;
    }
    }
 
 
  if ((target_flags_explicit & MASK_FLOAT64) != 0)
  if ((target_flags_explicit & MASK_FLOAT64) != 0)
    {
    {
      /* Really, -mfp32 and -mfp64 are ornamental options.  There's
      /* Really, -mfp32 and -mfp64 are ornamental options.  There's
         only one right answer here.  */
         only one right answer here.  */
      if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
      if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
        error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
        error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
      else if (!TARGET_64BIT && TARGET_FLOAT64)
      else if (!TARGET_64BIT && TARGET_FLOAT64)
        error ("unsupported combination: %s", "-mgp32 -mfp64");
        error ("unsupported combination: %s", "-mgp32 -mfp64");
      else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
      else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
        error ("unsupported combination: %s", "-mfp64 -msingle-float");
        error ("unsupported combination: %s", "-mfp64 -msingle-float");
    }
    }
  else
  else
    {
    {
      /* -msingle-float selects 32-bit float registers.  Otherwise the
      /* -msingle-float selects 32-bit float registers.  Otherwise the
         float registers should be the same size as the integer ones.  */
         float registers should be the same size as the integer ones.  */
      if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
      if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
        target_flags |= MASK_FLOAT64;
        target_flags |= MASK_FLOAT64;
      else
      else
        target_flags &= ~MASK_FLOAT64;
        target_flags &= ~MASK_FLOAT64;
    }
    }
 
 
  /* End of code shared with GAS.  */
  /* End of code shared with GAS.  */
 
 
  if ((target_flags_explicit & MASK_LONG64) == 0)
  if ((target_flags_explicit & MASK_LONG64) == 0)
    {
    {
      if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
      if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
        target_flags |= MASK_LONG64;
        target_flags |= MASK_LONG64;
      else
      else
        target_flags &= ~MASK_LONG64;
        target_flags &= ~MASK_LONG64;
    }
    }
 
 
  if (MIPS_MARCH_CONTROLS_SOFT_FLOAT
  if (MIPS_MARCH_CONTROLS_SOFT_FLOAT
      && (target_flags_explicit & MASK_SOFT_FLOAT) == 0)
      && (target_flags_explicit & MASK_SOFT_FLOAT) == 0)
    {
    {
      /* For some configurations, it is useful to have -march control
      /* For some configurations, it is useful to have -march control
         the default setting of MASK_SOFT_FLOAT.  */
         the default setting of MASK_SOFT_FLOAT.  */
      switch ((int) mips_arch)
      switch ((int) mips_arch)
        {
        {
        case PROCESSOR_R4100:
        case PROCESSOR_R4100:
        case PROCESSOR_R4111:
        case PROCESSOR_R4111:
        case PROCESSOR_R4120:
        case PROCESSOR_R4120:
        case PROCESSOR_R4130:
        case PROCESSOR_R4130:
          target_flags |= MASK_SOFT_FLOAT;
          target_flags |= MASK_SOFT_FLOAT;
          break;
          break;
 
 
        default:
        default:
          target_flags &= ~MASK_SOFT_FLOAT;
          target_flags &= ~MASK_SOFT_FLOAT;
          break;
          break;
        }
        }
    }
    }
 
 
  if (!TARGET_OLDABI)
  if (!TARGET_OLDABI)
    flag_pcc_struct_return = 0;
    flag_pcc_struct_return = 0;
 
 
  if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
  if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
    {
    {
      /* If neither -mbranch-likely nor -mno-branch-likely was given
      /* If neither -mbranch-likely nor -mno-branch-likely was given
         on the command line, set MASK_BRANCHLIKELY based on the target
         on the command line, set MASK_BRANCHLIKELY based on the target
         architecture.
         architecture.
 
 
         By default, we enable use of Branch Likely instructions on
         By default, we enable use of Branch Likely instructions on
         all architectures which support them with the following
         all architectures which support them with the following
         exceptions: when creating MIPS32 or MIPS64 code, and when
         exceptions: when creating MIPS32 or MIPS64 code, and when
         tuning for architectures where their use tends to hurt
         tuning for architectures where their use tends to hurt
         performance.
         performance.
 
 
         The MIPS32 and MIPS64 architecture specifications say "Software
         The MIPS32 and MIPS64 architecture specifications say "Software
         is strongly encouraged to avoid use of Branch Likely
         is strongly encouraged to avoid use of Branch Likely
         instructions, as they will be removed from a future revision
         instructions, as they will be removed from a future revision
         of the [MIPS32 and MIPS64] architecture."  Therefore, we do not
         of the [MIPS32 and MIPS64] architecture."  Therefore, we do not
         issue those instructions unless instructed to do so by
         issue those instructions unless instructed to do so by
         -mbranch-likely.  */
         -mbranch-likely.  */
      if (ISA_HAS_BRANCHLIKELY
      if (ISA_HAS_BRANCHLIKELY
          && !(ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64)
          && !(ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64)
          && !(TUNE_MIPS5500 || TUNE_SB1))
          && !(TUNE_MIPS5500 || TUNE_SB1))
        target_flags |= MASK_BRANCHLIKELY;
        target_flags |= MASK_BRANCHLIKELY;
      else
      else
        target_flags &= ~MASK_BRANCHLIKELY;
        target_flags &= ~MASK_BRANCHLIKELY;
    }
    }
  if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
  if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
    warning (0, "generation of Branch Likely instructions enabled, but not supported by architecture");
    warning (0, "generation of Branch Likely instructions enabled, but not supported by architecture");
 
 
  /* The effect of -mabicalls isn't defined for the EABI.  */
  /* The effect of -mabicalls isn't defined for the EABI.  */
  if (mips_abi == ABI_EABI && TARGET_ABICALLS)
  if (mips_abi == ABI_EABI && TARGET_ABICALLS)
    {
    {
      error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
      error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
      target_flags &= ~MASK_ABICALLS;
      target_flags &= ~MASK_ABICALLS;
    }
    }
 
 
  if (TARGET_ABICALLS)
  if (TARGET_ABICALLS)
    {
    {
      /* We need to set flag_pic for executables as well as DSOs
      /* We need to set flag_pic for executables as well as DSOs
         because we may reference symbols that are not defined in
         because we may reference symbols that are not defined in
         the final executable.  (MIPS does not use things like
         the final executable.  (MIPS does not use things like
         copy relocs, for example.)
         copy relocs, for example.)
 
 
         Also, there is a body of code that uses __PIC__ to distinguish
         Also, there is a body of code that uses __PIC__ to distinguish
         between -mabicalls and -mno-abicalls code.  */
         between -mabicalls and -mno-abicalls code.  */
      flag_pic = 1;
      flag_pic = 1;
      if (mips_section_threshold > 0)
      if (mips_section_threshold > 0)
        warning (0, "%<-G%> is incompatible with %<-mabicalls%>");
        warning (0, "%<-G%> is incompatible with %<-mabicalls%>");
    }
    }
 
 
  /* mips_split_addresses is a half-way house between explicit
  /* mips_split_addresses is a half-way house between explicit
     relocations and the traditional assembler macros.  It can
     relocations and the traditional assembler macros.  It can
     split absolute 32-bit symbolic constants into a high/lo_sum
     split absolute 32-bit symbolic constants into a high/lo_sum
     pair but uses macros for other sorts of access.
     pair but uses macros for other sorts of access.
 
 
     Like explicit relocation support for REL targets, it relies
     Like explicit relocation support for REL targets, it relies
     on GNU extensions in the assembler and the linker.
     on GNU extensions in the assembler and the linker.
 
 
     Although this code should work for -O0, it has traditionally
     Although this code should work for -O0, it has traditionally
     been treated as an optimization.  */
     been treated as an optimization.  */
  if (!TARGET_MIPS16 && TARGET_SPLIT_ADDRESSES
  if (!TARGET_MIPS16 && TARGET_SPLIT_ADDRESSES
      && optimize && !flag_pic
      && optimize && !flag_pic
      && !ABI_HAS_64BIT_SYMBOLS)
      && !ABI_HAS_64BIT_SYMBOLS)
    mips_split_addresses = 1;
    mips_split_addresses = 1;
  else
  else
    mips_split_addresses = 0;
    mips_split_addresses = 0;
 
 
  /* -mvr4130-align is a "speed over size" optimization: it usually produces
  /* -mvr4130-align is a "speed over size" optimization: it usually produces
     faster code, but at the expense of more nops.  Enable it at -O3 and
     faster code, but at the expense of more nops.  Enable it at -O3 and
     above.  */
     above.  */
  if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
  if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
    target_flags |= MASK_VR4130_ALIGN;
    target_flags |= MASK_VR4130_ALIGN;
 
 
  /* When compiling for the mips16, we cannot use floating point.  We
  /* When compiling for the mips16, we cannot use floating point.  We
     record the original hard float value in mips16_hard_float.  */
     record the original hard float value in mips16_hard_float.  */
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      if (TARGET_SOFT_FLOAT)
      if (TARGET_SOFT_FLOAT)
        mips16_hard_float = 0;
        mips16_hard_float = 0;
      else
      else
        mips16_hard_float = 1;
        mips16_hard_float = 1;
      target_flags |= MASK_SOFT_FLOAT;
      target_flags |= MASK_SOFT_FLOAT;
 
 
      /* Don't run the scheduler before reload, since it tends to
      /* Don't run the scheduler before reload, since it tends to
         increase register pressure.  */
         increase register pressure.  */
      flag_schedule_insns = 0;
      flag_schedule_insns = 0;
 
 
      /* Don't do hot/cold partitioning.  The constant layout code expects
      /* Don't do hot/cold partitioning.  The constant layout code expects
         the whole function to be in a single section.  */
         the whole function to be in a single section.  */
      flag_reorder_blocks_and_partition = 0;
      flag_reorder_blocks_and_partition = 0;
 
 
      /* Silently disable -mexplicit-relocs since it doesn't apply
      /* Silently disable -mexplicit-relocs since it doesn't apply
         to mips16 code.  Even so, it would overly pedantic to warn
         to mips16 code.  Even so, it would overly pedantic to warn
         about "-mips16 -mexplicit-relocs", especially given that
         about "-mips16 -mexplicit-relocs", especially given that
         we use a %gprel() operator.  */
         we use a %gprel() operator.  */
      target_flags &= ~MASK_EXPLICIT_RELOCS;
      target_flags &= ~MASK_EXPLICIT_RELOCS;
    }
    }
 
 
  /* When using explicit relocs, we call dbr_schedule from within
  /* When using explicit relocs, we call dbr_schedule from within
     mips_reorg.  */
     mips_reorg.  */
  if (TARGET_EXPLICIT_RELOCS)
  if (TARGET_EXPLICIT_RELOCS)
    {
    {
      mips_flag_delayed_branch = flag_delayed_branch;
      mips_flag_delayed_branch = flag_delayed_branch;
      flag_delayed_branch = 0;
      flag_delayed_branch = 0;
    }
    }
 
 
#ifdef MIPS_TFMODE_FORMAT
#ifdef MIPS_TFMODE_FORMAT
  REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
  REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
#endif
#endif
 
 
  /* Make sure that the user didn't turn off paired single support when
  /* Make sure that the user didn't turn off paired single support when
     MIPS-3D support is requested.  */
     MIPS-3D support is requested.  */
  if (TARGET_MIPS3D && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
  if (TARGET_MIPS3D && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
      && !TARGET_PAIRED_SINGLE_FLOAT)
      && !TARGET_PAIRED_SINGLE_FLOAT)
    error ("-mips3d requires -mpaired-single");
    error ("-mips3d requires -mpaired-single");
 
 
  /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT.  */
  /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT.  */
  if (TARGET_MIPS3D)
  if (TARGET_MIPS3D)
    target_flags |= MASK_PAIRED_SINGLE_FLOAT;
    target_flags |= MASK_PAIRED_SINGLE_FLOAT;
 
 
  /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
  /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
     and TARGET_HARD_FLOAT are both true.  */
     and TARGET_HARD_FLOAT are both true.  */
  if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT))
  if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT))
    error ("-mips3d/-mpaired-single must be used with -mfp64 -mhard-float");
    error ("-mips3d/-mpaired-single must be used with -mfp64 -mhard-float");
 
 
  /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
  /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
     enabled.  */
     enabled.  */
  if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_MIPS64)
  if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_MIPS64)
    error ("-mips3d/-mpaired-single must be used with -mips64");
    error ("-mips3d/-mpaired-single must be used with -mips64");
 
 
  if (TARGET_MIPS16 && TARGET_DSP)
  if (TARGET_MIPS16 && TARGET_DSP)
    error ("-mips16 and -mdsp cannot be used together");
    error ("-mips16 and -mdsp cannot be used together");
 
 
  mips_print_operand_punct['?'] = 1;
  mips_print_operand_punct['?'] = 1;
  mips_print_operand_punct['#'] = 1;
  mips_print_operand_punct['#'] = 1;
  mips_print_operand_punct['/'] = 1;
  mips_print_operand_punct['/'] = 1;
  mips_print_operand_punct['&'] = 1;
  mips_print_operand_punct['&'] = 1;
  mips_print_operand_punct['!'] = 1;
  mips_print_operand_punct['!'] = 1;
  mips_print_operand_punct['*'] = 1;
  mips_print_operand_punct['*'] = 1;
  mips_print_operand_punct['@'] = 1;
  mips_print_operand_punct['@'] = 1;
  mips_print_operand_punct['.'] = 1;
  mips_print_operand_punct['.'] = 1;
  mips_print_operand_punct['('] = 1;
  mips_print_operand_punct['('] = 1;
  mips_print_operand_punct[')'] = 1;
  mips_print_operand_punct[')'] = 1;
  mips_print_operand_punct['['] = 1;
  mips_print_operand_punct['['] = 1;
  mips_print_operand_punct[']'] = 1;
  mips_print_operand_punct[']'] = 1;
  mips_print_operand_punct['<'] = 1;
  mips_print_operand_punct['<'] = 1;
  mips_print_operand_punct['>'] = 1;
  mips_print_operand_punct['>'] = 1;
  mips_print_operand_punct['{'] = 1;
  mips_print_operand_punct['{'] = 1;
  mips_print_operand_punct['}'] = 1;
  mips_print_operand_punct['}'] = 1;
  mips_print_operand_punct['^'] = 1;
  mips_print_operand_punct['^'] = 1;
  mips_print_operand_punct['$'] = 1;
  mips_print_operand_punct['$'] = 1;
  mips_print_operand_punct['+'] = 1;
  mips_print_operand_punct['+'] = 1;
  mips_print_operand_punct['~'] = 1;
  mips_print_operand_punct['~'] = 1;
 
 
  /* Set up array to map GCC register number to debug register number.
  /* Set up array to map GCC register number to debug register number.
     Ignore the special purpose register numbers.  */
     Ignore the special purpose register numbers.  */
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    mips_dbx_regno[i] = -1;
    mips_dbx_regno[i] = -1;
 
 
  start = GP_DBX_FIRST - GP_REG_FIRST;
  start = GP_DBX_FIRST - GP_REG_FIRST;
  for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
  for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
    mips_dbx_regno[i] = i + start;
    mips_dbx_regno[i] = i + start;
 
 
  start = FP_DBX_FIRST - FP_REG_FIRST;
  start = FP_DBX_FIRST - FP_REG_FIRST;
  for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
  for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
    mips_dbx_regno[i] = i + start;
    mips_dbx_regno[i] = i + start;
 
 
  mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
  mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
  mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
  mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
 
 
  /* Set up array giving whether a given register can hold a given mode.  */
  /* Set up array giving whether a given register can hold a given mode.  */
 
 
  for (mode = VOIDmode;
  for (mode = VOIDmode;
       mode != MAX_MACHINE_MODE;
       mode != MAX_MACHINE_MODE;
       mode = (enum machine_mode) ((int)mode + 1))
       mode = (enum machine_mode) ((int)mode + 1))
    {
    {
      register int size              = GET_MODE_SIZE (mode);
      register int size              = GET_MODE_SIZE (mode);
      register enum mode_class class = GET_MODE_CLASS (mode);
      register enum mode_class class = GET_MODE_CLASS (mode);
 
 
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        {
        {
          register int temp;
          register int temp;
 
 
          if (mode == CCV2mode)
          if (mode == CCV2mode)
            temp = (ISA_HAS_8CC
            temp = (ISA_HAS_8CC
                    && ST_REG_P (regno)
                    && ST_REG_P (regno)
                    && (regno - ST_REG_FIRST) % 2 == 0);
                    && (regno - ST_REG_FIRST) % 2 == 0);
 
 
          else if (mode == CCV4mode)
          else if (mode == CCV4mode)
            temp = (ISA_HAS_8CC
            temp = (ISA_HAS_8CC
                    && ST_REG_P (regno)
                    && ST_REG_P (regno)
                    && (regno - ST_REG_FIRST) % 4 == 0);
                    && (regno - ST_REG_FIRST) % 4 == 0);
 
 
          else if (mode == CCmode)
          else if (mode == CCmode)
            {
            {
              if (! ISA_HAS_8CC)
              if (! ISA_HAS_8CC)
                temp = (regno == FPSW_REGNUM);
                temp = (regno == FPSW_REGNUM);
              else
              else
                temp = (ST_REG_P (regno) || GP_REG_P (regno)
                temp = (ST_REG_P (regno) || GP_REG_P (regno)
                        || FP_REG_P (regno));
                        || FP_REG_P (regno));
            }
            }
 
 
          else if (GP_REG_P (regno))
          else if (GP_REG_P (regno))
            temp = ((regno & 1) == 0 || size <= UNITS_PER_WORD);
            temp = ((regno & 1) == 0 || size <= UNITS_PER_WORD);
 
 
          else if (FP_REG_P (regno))
          else if (FP_REG_P (regno))
            temp = ((regno % FP_INC) == 0)
            temp = ((regno % FP_INC) == 0)
                    && (((class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT
                    && (((class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT
                          || class == MODE_VECTOR_FLOAT)
                          || class == MODE_VECTOR_FLOAT)
                         && size <= UNITS_PER_FPVALUE)
                         && size <= UNITS_PER_FPVALUE)
                        /* Allow integer modes that fit into a single
                        /* Allow integer modes that fit into a single
                           register.  We need to put integers into FPRs
                           register.  We need to put integers into FPRs
                           when using instructions like cvt and trunc.
                           when using instructions like cvt and trunc.
                           We can't allow sizes smaller than a word,
                           We can't allow sizes smaller than a word,
                           the FPU has no appropriate load/store
                           the FPU has no appropriate load/store
                           instructions for those.  */
                           instructions for those.  */
                        || (class == MODE_INT
                        || (class == MODE_INT
                            && size >= MIN_UNITS_PER_WORD
                            && size >= MIN_UNITS_PER_WORD
                            && size <= UNITS_PER_FPREG)
                            && size <= UNITS_PER_FPREG)
                        /* Allow TFmode for CCmode reloads.  */
                        /* Allow TFmode for CCmode reloads.  */
                        || (ISA_HAS_8CC && mode == TFmode));
                        || (ISA_HAS_8CC && mode == TFmode));
 
 
          else if (ACC_REG_P (regno))
          else if (ACC_REG_P (regno))
            temp = (INTEGRAL_MODE_P (mode)
            temp = (INTEGRAL_MODE_P (mode)
                    && (size <= UNITS_PER_WORD
                    && (size <= UNITS_PER_WORD
                        || (ACC_HI_REG_P (regno)
                        || (ACC_HI_REG_P (regno)
                            && size == 2 * UNITS_PER_WORD)));
                            && size == 2 * UNITS_PER_WORD)));
 
 
          else if (ALL_COP_REG_P (regno))
          else if (ALL_COP_REG_P (regno))
            temp = (class == MODE_INT && size <= UNITS_PER_WORD);
            temp = (class == MODE_INT && size <= UNITS_PER_WORD);
          else
          else
            temp = 0;
            temp = 0;
 
 
          mips_hard_regno_mode_ok[(int)mode][regno] = temp;
          mips_hard_regno_mode_ok[(int)mode][regno] = temp;
        }
        }
    }
    }
 
 
  /* Save GPR registers in word_mode sized hunks.  word_mode hasn't been
  /* Save GPR registers in word_mode sized hunks.  word_mode hasn't been
     initialized yet, so we can't use that here.  */
     initialized yet, so we can't use that here.  */
  gpr_mode = TARGET_64BIT ? DImode : SImode;
  gpr_mode = TARGET_64BIT ? DImode : SImode;
 
 
  /* Provide default values for align_* for 64-bit targets.  */
  /* Provide default values for align_* for 64-bit targets.  */
  if (TARGET_64BIT && !TARGET_MIPS16)
  if (TARGET_64BIT && !TARGET_MIPS16)
    {
    {
      if (align_loops == 0)
      if (align_loops == 0)
        align_loops = 8;
        align_loops = 8;
      if (align_jumps == 0)
      if (align_jumps == 0)
        align_jumps = 8;
        align_jumps = 8;
      if (align_functions == 0)
      if (align_functions == 0)
        align_functions = 8;
        align_functions = 8;
    }
    }
 
 
  /* Function to allocate machine-dependent function status.  */
  /* Function to allocate machine-dependent function status.  */
  init_machine_status = &mips_init_machine_status;
  init_machine_status = &mips_init_machine_status;
 
 
  if (ABI_HAS_64BIT_SYMBOLS)
  if (ABI_HAS_64BIT_SYMBOLS)
    {
    {
      if (TARGET_EXPLICIT_RELOCS)
      if (TARGET_EXPLICIT_RELOCS)
        {
        {
          mips_split_p[SYMBOL_64_HIGH] = true;
          mips_split_p[SYMBOL_64_HIGH] = true;
          mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
          mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
          mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
          mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
 
 
          mips_split_p[SYMBOL_64_MID] = true;
          mips_split_p[SYMBOL_64_MID] = true;
          mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
          mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
          mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
          mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
 
 
          mips_split_p[SYMBOL_64_LOW] = true;
          mips_split_p[SYMBOL_64_LOW] = true;
          mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
          mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
          mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
          mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
 
 
          mips_split_p[SYMBOL_GENERAL] = true;
          mips_split_p[SYMBOL_GENERAL] = true;
          mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
          mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
        }
        }
    }
    }
  else
  else
    {
    {
      if (TARGET_EXPLICIT_RELOCS || mips_split_addresses)
      if (TARGET_EXPLICIT_RELOCS || mips_split_addresses)
        {
        {
          mips_split_p[SYMBOL_GENERAL] = true;
          mips_split_p[SYMBOL_GENERAL] = true;
          mips_hi_relocs[SYMBOL_GENERAL] = "%hi(";
          mips_hi_relocs[SYMBOL_GENERAL] = "%hi(";
          mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
          mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
        }
        }
    }
    }
 
 
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      /* The high part is provided by a pseudo copy of $gp.  */
      /* The high part is provided by a pseudo copy of $gp.  */
      mips_split_p[SYMBOL_SMALL_DATA] = true;
      mips_split_p[SYMBOL_SMALL_DATA] = true;
      mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gprel(";
      mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gprel(";
    }
    }
 
 
  if (TARGET_EXPLICIT_RELOCS)
  if (TARGET_EXPLICIT_RELOCS)
    {
    {
      /* Small data constants are kept whole until after reload,
      /* Small data constants are kept whole until after reload,
         then lowered by mips_rewrite_small_data.  */
         then lowered by mips_rewrite_small_data.  */
      mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gp_rel(";
      mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gp_rel(";
 
 
      mips_split_p[SYMBOL_GOT_LOCAL] = true;
      mips_split_p[SYMBOL_GOT_LOCAL] = true;
      if (TARGET_NEWABI)
      if (TARGET_NEWABI)
        {
        {
          mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
          mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
          mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%got_ofst(";
          mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%got_ofst(";
        }
        }
      else
      else
        {
        {
          mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
          mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
          mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%lo(";
          mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%lo(";
        }
        }
 
 
      if (TARGET_XGOT)
      if (TARGET_XGOT)
        {
        {
          /* The HIGH and LO_SUM are matched by special .md patterns.  */
          /* The HIGH and LO_SUM are matched by special .md patterns.  */
          mips_split_p[SYMBOL_GOT_GLOBAL] = true;
          mips_split_p[SYMBOL_GOT_GLOBAL] = true;
 
 
          mips_split_p[SYMBOL_GOTOFF_GLOBAL] = true;
          mips_split_p[SYMBOL_GOTOFF_GLOBAL] = true;
          mips_hi_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_hi(";
          mips_hi_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_hi(";
          mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_lo(";
          mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_lo(";
 
 
          mips_split_p[SYMBOL_GOTOFF_CALL] = true;
          mips_split_p[SYMBOL_GOTOFF_CALL] = true;
          mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
          mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
          mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
          mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
        }
        }
      else
      else
        {
        {
          if (TARGET_NEWABI)
          if (TARGET_NEWABI)
            mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_disp(";
            mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_disp(";
          else
          else
            mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got(";
            mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got(";
          mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
          mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
        }
        }
    }
    }
 
 
  if (TARGET_NEWABI)
  if (TARGET_NEWABI)
    {
    {
      mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
      mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
      mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
      mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
      mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
      mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
    }
    }
 
 
  /* Thread-local relocation operators.  */
  /* Thread-local relocation operators.  */
  mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
  mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
  mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
  mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
  mips_split_p[SYMBOL_DTPREL] = 1;
  mips_split_p[SYMBOL_DTPREL] = 1;
  mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
  mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
  mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
  mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
  mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
  mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
  mips_split_p[SYMBOL_TPREL] = 1;
  mips_split_p[SYMBOL_TPREL] = 1;
  mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
  mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
  mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
  mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
 
 
  /* We don't have a thread pointer access instruction on MIPS16, or
  /* We don't have a thread pointer access instruction on MIPS16, or
     appropriate TLS relocations.  */
     appropriate TLS relocations.  */
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    targetm.have_tls = false;
    targetm.have_tls = false;
 
 
  /* Default to working around R4000 errata only if the processor
  /* Default to working around R4000 errata only if the processor
     was selected explicitly.  */
     was selected explicitly.  */
  if ((target_flags_explicit & MASK_FIX_R4000) == 0
  if ((target_flags_explicit & MASK_FIX_R4000) == 0
      && mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
      && mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
    target_flags |= MASK_FIX_R4000;
    target_flags |= MASK_FIX_R4000;
 
 
  /* Default to working around R4400 errata only if the processor
  /* Default to working around R4400 errata only if the processor
     was selected explicitly.  */
     was selected explicitly.  */
  if ((target_flags_explicit & MASK_FIX_R4400) == 0
  if ((target_flags_explicit & MASK_FIX_R4400) == 0
      && mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
      && mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
    target_flags |= MASK_FIX_R4400;
    target_flags |= MASK_FIX_R4400;
}
}
 
 
/* Implement CONDITIONAL_REGISTER_USAGE.  */
/* Implement CONDITIONAL_REGISTER_USAGE.  */
 
 
void
void
mips_conditional_register_usage (void)
mips_conditional_register_usage (void)
{
{
  if (!TARGET_DSP)
  if (!TARGET_DSP)
    {
    {
      int regno;
      int regno;
 
 
      for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
      for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
        fixed_regs[regno] = call_used_regs[regno] = 1;
        fixed_regs[regno] = call_used_regs[regno] = 1;
    }
    }
  if (!TARGET_HARD_FLOAT)
  if (!TARGET_HARD_FLOAT)
    {
    {
      int regno;
      int regno;
 
 
      for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
      for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
        fixed_regs[regno] = call_used_regs[regno] = 1;
        fixed_regs[regno] = call_used_regs[regno] = 1;
      for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
      for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
        fixed_regs[regno] = call_used_regs[regno] = 1;
        fixed_regs[regno] = call_used_regs[regno] = 1;
    }
    }
  else if (! ISA_HAS_8CC)
  else if (! ISA_HAS_8CC)
    {
    {
      int regno;
      int regno;
 
 
      /* We only have a single condition code register.  We
      /* We only have a single condition code register.  We
         implement this by hiding all the condition code registers,
         implement this by hiding all the condition code registers,
         and generating RTL that refers directly to ST_REG_FIRST.  */
         and generating RTL that refers directly to ST_REG_FIRST.  */
      for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
      for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
        fixed_regs[regno] = call_used_regs[regno] = 1;
        fixed_regs[regno] = call_used_regs[regno] = 1;
    }
    }
  /* In mips16 mode, we permit the $t temporary registers to be used
  /* In mips16 mode, we permit the $t temporary registers to be used
     for reload.  We prohibit the unused $s registers, since they
     for reload.  We prohibit the unused $s registers, since they
     are caller saved, and saving them via a mips16 register would
     are caller saved, and saving them via a mips16 register would
     probably waste more time than just reloading the value.  */
     probably waste more time than just reloading the value.  */
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      fixed_regs[18] = call_used_regs[18] = 1;
      fixed_regs[18] = call_used_regs[18] = 1;
      fixed_regs[19] = call_used_regs[19] = 1;
      fixed_regs[19] = call_used_regs[19] = 1;
      fixed_regs[20] = call_used_regs[20] = 1;
      fixed_regs[20] = call_used_regs[20] = 1;
      fixed_regs[21] = call_used_regs[21] = 1;
      fixed_regs[21] = call_used_regs[21] = 1;
      fixed_regs[22] = call_used_regs[22] = 1;
      fixed_regs[22] = call_used_regs[22] = 1;
      fixed_regs[23] = call_used_regs[23] = 1;
      fixed_regs[23] = call_used_regs[23] = 1;
      fixed_regs[26] = call_used_regs[26] = 1;
      fixed_regs[26] = call_used_regs[26] = 1;
      fixed_regs[27] = call_used_regs[27] = 1;
      fixed_regs[27] = call_used_regs[27] = 1;
      fixed_regs[30] = call_used_regs[30] = 1;
      fixed_regs[30] = call_used_regs[30] = 1;
    }
    }
  /* fp20-23 are now caller saved.  */
  /* fp20-23 are now caller saved.  */
  if (mips_abi == ABI_64)
  if (mips_abi == ABI_64)
    {
    {
      int regno;
      int regno;
      for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
      for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
        call_really_used_regs[regno] = call_used_regs[regno] = 1;
        call_really_used_regs[regno] = call_used_regs[regno] = 1;
    }
    }
  /* Odd registers from fp21 to fp31 are now caller saved.  */
  /* Odd registers from fp21 to fp31 are now caller saved.  */
  if (mips_abi == ABI_N32)
  if (mips_abi == ABI_N32)
    {
    {
      int regno;
      int regno;
      for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
      for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
        call_really_used_regs[regno] = call_used_regs[regno] = 1;
        call_really_used_regs[regno] = call_used_regs[regno] = 1;
    }
    }
}
}
 
 
/* Allocate a chunk of memory for per-function machine-dependent data.  */
/* Allocate a chunk of memory for per-function machine-dependent data.  */
static struct machine_function *
static struct machine_function *
mips_init_machine_status (void)
mips_init_machine_status (void)
{
{
  return ((struct machine_function *)
  return ((struct machine_function *)
          ggc_alloc_cleared (sizeof (struct machine_function)));
          ggc_alloc_cleared (sizeof (struct machine_function)));
}
}
 
 
/* On the mips16, we want to allocate $24 (T_REG) before other
/* On the mips16, we want to allocate $24 (T_REG) before other
   registers for instructions for which it is possible.  This helps
   registers for instructions for which it is possible.  This helps
   avoid shuffling registers around in order to set up for an xor,
   avoid shuffling registers around in order to set up for an xor,
   encouraging the compiler to use a cmp instead.  */
   encouraging the compiler to use a cmp instead.  */
 
 
void
void
mips_order_regs_for_local_alloc (void)
mips_order_regs_for_local_alloc (void)
{
{
  register int i;
  register int i;
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    reg_alloc_order[i] = i;
    reg_alloc_order[i] = i;
 
 
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      /* It really doesn't matter where we put register 0, since it is
      /* It really doesn't matter where we put register 0, since it is
         a fixed register anyhow.  */
         a fixed register anyhow.  */
      reg_alloc_order[0] = 24;
      reg_alloc_order[0] = 24;
      reg_alloc_order[24] = 0;
      reg_alloc_order[24] = 0;
    }
    }
}
}
 
 


/* The MIPS debug format wants all automatic variables and arguments
/* The MIPS debug format wants all automatic variables and arguments
   to be in terms of the virtual frame pointer (stack pointer before
   to be in terms of the virtual frame pointer (stack pointer before
   any adjustment in the function), while the MIPS 3.0 linker wants
   any adjustment in the function), while the MIPS 3.0 linker wants
   the frame pointer to be the stack pointer after the initial
   the frame pointer to be the stack pointer after the initial
   adjustment.  So, we do the adjustment here.  The arg pointer (which
   adjustment.  So, we do the adjustment here.  The arg pointer (which
   is eliminated) points to the virtual frame pointer, while the frame
   is eliminated) points to the virtual frame pointer, while the frame
   pointer (which may be eliminated) points to the stack pointer after
   pointer (which may be eliminated) points to the stack pointer after
   the initial adjustments.  */
   the initial adjustments.  */
 
 
HOST_WIDE_INT
HOST_WIDE_INT
mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
{
{
  rtx offset2 = const0_rtx;
  rtx offset2 = const0_rtx;
  rtx reg = eliminate_constant_term (addr, &offset2);
  rtx reg = eliminate_constant_term (addr, &offset2);
 
 
  if (offset == 0)
  if (offset == 0)
    offset = INTVAL (offset2);
    offset = INTVAL (offset2);
 
 
  if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
  if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
      || reg == hard_frame_pointer_rtx)
      || reg == hard_frame_pointer_rtx)
    {
    {
      HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
      HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
                                  ? compute_frame_size (get_frame_size ())
                                  ? compute_frame_size (get_frame_size ())
                                  : cfun->machine->frame.total_size;
                                  : cfun->machine->frame.total_size;
 
 
      /* MIPS16 frame is smaller */
      /* MIPS16 frame is smaller */
      if (frame_pointer_needed && TARGET_MIPS16)
      if (frame_pointer_needed && TARGET_MIPS16)
        frame_size -= cfun->machine->frame.args_size;
        frame_size -= cfun->machine->frame.args_size;
 
 
      offset = offset - frame_size;
      offset = offset - frame_size;
    }
    }
 
 
  /* sdbout_parms does not want this to crash for unrecognized cases.  */
  /* sdbout_parms does not want this to crash for unrecognized cases.  */
#if 0
#if 0
  else if (reg != arg_pointer_rtx)
  else if (reg != arg_pointer_rtx)
    fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
    fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
                addr);
                addr);
#endif
#endif
 
 
  return offset;
  return offset;
}
}


/* Implement the PRINT_OPERAND macro.  The MIPS-specific operand codes are:
/* Implement the PRINT_OPERAND macro.  The MIPS-specific operand codes are:
 
 
   'X'  OP is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
   'X'  OP is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
   'x'  OP is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
   'x'  OP is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
   'h'  OP is HIGH, prints %hi(X),
   'h'  OP is HIGH, prints %hi(X),
   'd'  output integer constant in decimal,
   'd'  output integer constant in decimal,
   'z'  if the operand is 0, use $0 instead of normal operand.
   'z'  if the operand is 0, use $0 instead of normal operand.
   'D'  print second part of double-word register or memory operand.
   'D'  print second part of double-word register or memory operand.
   'L'  print low-order register of double-word register operand.
   'L'  print low-order register of double-word register operand.
   'M'  print high-order register of double-word register operand.
   'M'  print high-order register of double-word register operand.
   'C'  print part of opcode for a branch condition.
   'C'  print part of opcode for a branch condition.
   'F'  print part of opcode for a floating-point branch condition.
   'F'  print part of opcode for a floating-point branch condition.
   'N'  print part of opcode for a branch condition, inverted.
   'N'  print part of opcode for a branch condition, inverted.
   'W'  print part of opcode for a floating-point branch condition, inverted.
   'W'  print part of opcode for a floating-point branch condition, inverted.
   'T'  print 'f' for (eq:CC ...), 't' for (ne:CC ...),
   'T'  print 'f' for (eq:CC ...), 't' for (ne:CC ...),
              'z' for (eq:?I ...), 'n' for (ne:?I ...).
              'z' for (eq:?I ...), 'n' for (ne:?I ...).
   't'  like 'T', but with the EQ/NE cases reversed
   't'  like 'T', but with the EQ/NE cases reversed
   'Y'  for a CONST_INT X, print mips_fp_conditions[X]
   'Y'  for a CONST_INT X, print mips_fp_conditions[X]
   'Z'  print the operand and a comma for ISA_HAS_8CC, otherwise print nothing
   'Z'  print the operand and a comma for ISA_HAS_8CC, otherwise print nothing
   'R'  print the reloc associated with LO_SUM
   'R'  print the reloc associated with LO_SUM
   'q'  print DSP accumulator registers
   'q'  print DSP accumulator registers
 
 
   The punctuation characters are:
   The punctuation characters are:
 
 
   '('  Turn on .set noreorder
   '('  Turn on .set noreorder
   ')'  Turn on .set reorder
   ')'  Turn on .set reorder
   '['  Turn on .set noat
   '['  Turn on .set noat
   ']'  Turn on .set at
   ']'  Turn on .set at
   '<'  Turn on .set nomacro
   '<'  Turn on .set nomacro
   '>'  Turn on .set macro
   '>'  Turn on .set macro
   '{'  Turn on .set volatile (not GAS)
   '{'  Turn on .set volatile (not GAS)
   '}'  Turn on .set novolatile (not GAS)
   '}'  Turn on .set novolatile (not GAS)
   '&'  Turn on .set noreorder if filling delay slots
   '&'  Turn on .set noreorder if filling delay slots
   '*'  Turn on both .set noreorder and .set nomacro if filling delay slots
   '*'  Turn on both .set noreorder and .set nomacro if filling delay slots
   '!'  Turn on .set nomacro if filling delay slots
   '!'  Turn on .set nomacro if filling delay slots
   '#'  Print nop if in a .set noreorder section.
   '#'  Print nop if in a .set noreorder section.
   '/'  Like '#', but does nothing within a delayed branch sequence
   '/'  Like '#', but does nothing within a delayed branch sequence
   '?'  Print 'l' if we are to use a branch likely instead of normal branch.
   '?'  Print 'l' if we are to use a branch likely instead of normal branch.
   '@'  Print the name of the assembler temporary register (at or $1).
   '@'  Print the name of the assembler temporary register (at or $1).
   '.'  Print the name of the register with a hard-wired zero (zero or $0).
   '.'  Print the name of the register with a hard-wired zero (zero or $0).
   '^'  Print the name of the pic call-through register (t9 or $25).
   '^'  Print the name of the pic call-through register (t9 or $25).
   '$'  Print the name of the stack pointer register (sp or $29).
   '$'  Print the name of the stack pointer register (sp or $29).
   '+'  Print the name of the gp register (usually gp or $28).
   '+'  Print the name of the gp register (usually gp or $28).
   '~'  Output a branch alignment to LABEL_ALIGN(NULL).  */
   '~'  Output a branch alignment to LABEL_ALIGN(NULL).  */
 
 
void
void
print_operand (FILE *file, rtx op, int letter)
print_operand (FILE *file, rtx op, int letter)
{
{
  register enum rtx_code code;
  register enum rtx_code code;
 
 
  if (PRINT_OPERAND_PUNCT_VALID_P (letter))
  if (PRINT_OPERAND_PUNCT_VALID_P (letter))
    {
    {
      switch (letter)
      switch (letter)
        {
        {
        case '?':
        case '?':
          if (mips_branch_likely)
          if (mips_branch_likely)
            putc ('l', file);
            putc ('l', file);
          break;
          break;
 
 
        case '@':
        case '@':
          fputs (reg_names [GP_REG_FIRST + 1], file);
          fputs (reg_names [GP_REG_FIRST + 1], file);
          break;
          break;
 
 
        case '^':
        case '^':
          fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
          fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
          break;
          break;
 
 
        case '.':
        case '.':
          fputs (reg_names [GP_REG_FIRST + 0], file);
          fputs (reg_names [GP_REG_FIRST + 0], file);
          break;
          break;
 
 
        case '$':
        case '$':
          fputs (reg_names[STACK_POINTER_REGNUM], file);
          fputs (reg_names[STACK_POINTER_REGNUM], file);
          break;
          break;
 
 
        case '+':
        case '+':
          fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
          fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
          break;
          break;
 
 
        case '&':
        case '&':
          if (final_sequence != 0 && set_noreorder++ == 0)
          if (final_sequence != 0 && set_noreorder++ == 0)
            fputs (".set\tnoreorder\n\t", file);
            fputs (".set\tnoreorder\n\t", file);
          break;
          break;
 
 
        case '*':
        case '*':
          if (final_sequence != 0)
          if (final_sequence != 0)
            {
            {
              if (set_noreorder++ == 0)
              if (set_noreorder++ == 0)
                fputs (".set\tnoreorder\n\t", file);
                fputs (".set\tnoreorder\n\t", file);
 
 
              if (set_nomacro++ == 0)
              if (set_nomacro++ == 0)
                fputs (".set\tnomacro\n\t", file);
                fputs (".set\tnomacro\n\t", file);
            }
            }
          break;
          break;
 
 
        case '!':
        case '!':
          if (final_sequence != 0 && set_nomacro++ == 0)
          if (final_sequence != 0 && set_nomacro++ == 0)
            fputs ("\n\t.set\tnomacro", file);
            fputs ("\n\t.set\tnomacro", file);
          break;
          break;
 
 
        case '#':
        case '#':
          if (set_noreorder != 0)
          if (set_noreorder != 0)
            fputs ("\n\tnop", file);
            fputs ("\n\tnop", file);
          break;
          break;
 
 
        case '/':
        case '/':
          /* Print an extra newline so that the delayed insn is separated
          /* Print an extra newline so that the delayed insn is separated
             from the following ones.  This looks neater and is consistent
             from the following ones.  This looks neater and is consistent
             with non-nop delayed sequences.  */
             with non-nop delayed sequences.  */
          if (set_noreorder != 0 && final_sequence == 0)
          if (set_noreorder != 0 && final_sequence == 0)
            fputs ("\n\tnop\n", file);
            fputs ("\n\tnop\n", file);
          break;
          break;
 
 
        case '(':
        case '(':
          if (set_noreorder++ == 0)
          if (set_noreorder++ == 0)
            fputs (".set\tnoreorder\n\t", file);
            fputs (".set\tnoreorder\n\t", file);
          break;
          break;
 
 
        case ')':
        case ')':
          if (set_noreorder == 0)
          if (set_noreorder == 0)
            error ("internal error: %%) found without a %%( in assembler pattern");
            error ("internal error: %%) found without a %%( in assembler pattern");
 
 
          else if (--set_noreorder == 0)
          else if (--set_noreorder == 0)
            fputs ("\n\t.set\treorder", file);
            fputs ("\n\t.set\treorder", file);
 
 
          break;
          break;
 
 
        case '[':
        case '[':
          if (set_noat++ == 0)
          if (set_noat++ == 0)
            fputs (".set\tnoat\n\t", file);
            fputs (".set\tnoat\n\t", file);
          break;
          break;
 
 
        case ']':
        case ']':
          if (set_noat == 0)
          if (set_noat == 0)
            error ("internal error: %%] found without a %%[ in assembler pattern");
            error ("internal error: %%] found without a %%[ in assembler pattern");
          else if (--set_noat == 0)
          else if (--set_noat == 0)
            fputs ("\n\t.set\tat", file);
            fputs ("\n\t.set\tat", file);
 
 
          break;
          break;
 
 
        case '<':
        case '<':
          if (set_nomacro++ == 0)
          if (set_nomacro++ == 0)
            fputs (".set\tnomacro\n\t", file);
            fputs (".set\tnomacro\n\t", file);
          break;
          break;
 
 
        case '>':
        case '>':
          if (set_nomacro == 0)
          if (set_nomacro == 0)
            error ("internal error: %%> found without a %%< in assembler pattern");
            error ("internal error: %%> found without a %%< in assembler pattern");
          else if (--set_nomacro == 0)
          else if (--set_nomacro == 0)
            fputs ("\n\t.set\tmacro", file);
            fputs ("\n\t.set\tmacro", file);
 
 
          break;
          break;
 
 
        case '{':
        case '{':
          if (set_volatile++ == 0)
          if (set_volatile++ == 0)
            fputs ("#.set\tvolatile\n\t", file);
            fputs ("#.set\tvolatile\n\t", file);
          break;
          break;
 
 
        case '}':
        case '}':
          if (set_volatile == 0)
          if (set_volatile == 0)
            error ("internal error: %%} found without a %%{ in assembler pattern");
            error ("internal error: %%} found without a %%{ in assembler pattern");
          else if (--set_volatile == 0)
          else if (--set_volatile == 0)
            fputs ("\n\t#.set\tnovolatile", file);
            fputs ("\n\t#.set\tnovolatile", file);
 
 
          break;
          break;
 
 
        case '~':
        case '~':
          {
          {
            if (align_labels_log > 0)
            if (align_labels_log > 0)
              ASM_OUTPUT_ALIGN (file, align_labels_log);
              ASM_OUTPUT_ALIGN (file, align_labels_log);
          }
          }
          break;
          break;
 
 
        default:
        default:
          error ("PRINT_OPERAND: unknown punctuation '%c'", letter);
          error ("PRINT_OPERAND: unknown punctuation '%c'", letter);
          break;
          break;
        }
        }
 
 
      return;
      return;
    }
    }
 
 
  if (! op)
  if (! op)
    {
    {
      error ("PRINT_OPERAND null pointer");
      error ("PRINT_OPERAND null pointer");
      return;
      return;
    }
    }
 
 
  code = GET_CODE (op);
  code = GET_CODE (op);
 
 
  if (letter == 'C')
  if (letter == 'C')
    switch (code)
    switch (code)
      {
      {
      case EQ:  fputs ("eq",  file); break;
      case EQ:  fputs ("eq",  file); break;
      case NE:  fputs ("ne",  file); break;
      case NE:  fputs ("ne",  file); break;
      case GT:  fputs ("gt",  file); break;
      case GT:  fputs ("gt",  file); break;
      case GE:  fputs ("ge",  file); break;
      case GE:  fputs ("ge",  file); break;
      case LT:  fputs ("lt",  file); break;
      case LT:  fputs ("lt",  file); break;
      case LE:  fputs ("le",  file); break;
      case LE:  fputs ("le",  file); break;
      case GTU: fputs ("gtu", file); break;
      case GTU: fputs ("gtu", file); break;
      case GEU: fputs ("geu", file); break;
      case GEU: fputs ("geu", file); break;
      case LTU: fputs ("ltu", file); break;
      case LTU: fputs ("ltu", file); break;
      case LEU: fputs ("leu", file); break;
      case LEU: fputs ("leu", file); break;
      default:
      default:
        fatal_insn ("PRINT_OPERAND, invalid insn for %%C", op);
        fatal_insn ("PRINT_OPERAND, invalid insn for %%C", op);
      }
      }
 
 
  else if (letter == 'N')
  else if (letter == 'N')
    switch (code)
    switch (code)
      {
      {
      case EQ:  fputs ("ne",  file); break;
      case EQ:  fputs ("ne",  file); break;
      case NE:  fputs ("eq",  file); break;
      case NE:  fputs ("eq",  file); break;
      case GT:  fputs ("le",  file); break;
      case GT:  fputs ("le",  file); break;
      case GE:  fputs ("lt",  file); break;
      case GE:  fputs ("lt",  file); break;
      case LT:  fputs ("ge",  file); break;
      case LT:  fputs ("ge",  file); break;
      case LE:  fputs ("gt",  file); break;
      case LE:  fputs ("gt",  file); break;
      case GTU: fputs ("leu", file); break;
      case GTU: fputs ("leu", file); break;
      case GEU: fputs ("ltu", file); break;
      case GEU: fputs ("ltu", file); break;
      case LTU: fputs ("geu", file); break;
      case LTU: fputs ("geu", file); break;
      case LEU: fputs ("gtu", file); break;
      case LEU: fputs ("gtu", file); break;
      default:
      default:
        fatal_insn ("PRINT_OPERAND, invalid insn for %%N", op);
        fatal_insn ("PRINT_OPERAND, invalid insn for %%N", op);
      }
      }
 
 
  else if (letter == 'F')
  else if (letter == 'F')
    switch (code)
    switch (code)
      {
      {
      case EQ: fputs ("c1f", file); break;
      case EQ: fputs ("c1f", file); break;
      case NE: fputs ("c1t", file); break;
      case NE: fputs ("c1t", file); break;
      default:
      default:
        fatal_insn ("PRINT_OPERAND, invalid insn for %%F", op);
        fatal_insn ("PRINT_OPERAND, invalid insn for %%F", op);
      }
      }
 
 
  else if (letter == 'W')
  else if (letter == 'W')
    switch (code)
    switch (code)
      {
      {
      case EQ: fputs ("c1t", file); break;
      case EQ: fputs ("c1t", file); break;
      case NE: fputs ("c1f", file); break;
      case NE: fputs ("c1f", file); break;
      default:
      default:
        fatal_insn ("PRINT_OPERAND, invalid insn for %%W", op);
        fatal_insn ("PRINT_OPERAND, invalid insn for %%W", op);
      }
      }
 
 
  else if (letter == 'h')
  else if (letter == 'h')
    {
    {
      if (GET_CODE (op) == HIGH)
      if (GET_CODE (op) == HIGH)
        op = XEXP (op, 0);
        op = XEXP (op, 0);
 
 
      print_operand_reloc (file, op, mips_hi_relocs);
      print_operand_reloc (file, op, mips_hi_relocs);
    }
    }
 
 
  else if (letter == 'R')
  else if (letter == 'R')
    print_operand_reloc (file, op, mips_lo_relocs);
    print_operand_reloc (file, op, mips_lo_relocs);
 
 
  else if (letter == 'Y')
  else if (letter == 'Y')
    {
    {
      if (GET_CODE (op) == CONST_INT
      if (GET_CODE (op) == CONST_INT
          && ((unsigned HOST_WIDE_INT) INTVAL (op)
          && ((unsigned HOST_WIDE_INT) INTVAL (op)
              < ARRAY_SIZE (mips_fp_conditions)))
              < ARRAY_SIZE (mips_fp_conditions)))
        fputs (mips_fp_conditions[INTVAL (op)], file);
        fputs (mips_fp_conditions[INTVAL (op)], file);
      else
      else
        output_operand_lossage ("invalid %%Y value");
        output_operand_lossage ("invalid %%Y value");
    }
    }
 
 
  else if (letter == 'Z')
  else if (letter == 'Z')
    {
    {
      if (ISA_HAS_8CC)
      if (ISA_HAS_8CC)
        {
        {
          print_operand (file, op, 0);
          print_operand (file, op, 0);
          fputc (',', file);
          fputc (',', file);
        }
        }
    }
    }
 
 
  else if (letter == 'q')
  else if (letter == 'q')
    {
    {
      int regnum;
      int regnum;
 
 
      if (code != REG)
      if (code != REG)
        fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
        fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
 
 
      regnum = REGNO (op);
      regnum = REGNO (op);
      if (MD_REG_P (regnum))
      if (MD_REG_P (regnum))
        fprintf (file, "$ac0");
        fprintf (file, "$ac0");
      else if (DSP_ACC_REG_P (regnum))
      else if (DSP_ACC_REG_P (regnum))
        fprintf (file, "$ac%c", reg_names[regnum][3]);
        fprintf (file, "$ac%c", reg_names[regnum][3]);
      else
      else
        fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
        fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
    }
    }
 
 
  else if (code == REG || code == SUBREG)
  else if (code == REG || code == SUBREG)
    {
    {
      register int regnum;
      register int regnum;
 
 
      if (code == REG)
      if (code == REG)
        regnum = REGNO (op);
        regnum = REGNO (op);
      else
      else
        regnum = true_regnum (op);
        regnum = true_regnum (op);
 
 
      if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
      if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
          || (letter == 'L' && WORDS_BIG_ENDIAN)
          || (letter == 'L' && WORDS_BIG_ENDIAN)
          || letter == 'D')
          || letter == 'D')
        regnum++;
        regnum++;
 
 
      fprintf (file, "%s", reg_names[regnum]);
      fprintf (file, "%s", reg_names[regnum]);
    }
    }
 
 
  else if (code == MEM)
  else if (code == MEM)
    {
    {
      if (letter == 'D')
      if (letter == 'D')
        output_address (plus_constant (XEXP (op, 0), 4));
        output_address (plus_constant (XEXP (op, 0), 4));
      else
      else
        output_address (XEXP (op, 0));
        output_address (XEXP (op, 0));
    }
    }
 
 
  else if (letter == 'x' && GET_CODE (op) == CONST_INT)
  else if (letter == 'x' && GET_CODE (op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
 
 
  else if (letter == 'X' && GET_CODE(op) == CONST_INT)
  else if (letter == 'X' && GET_CODE(op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
 
 
  else if (letter == 'd' && GET_CODE(op) == CONST_INT)
  else if (letter == 'd' && GET_CODE(op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
 
 
  else if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
  else if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
    fputs (reg_names[GP_REG_FIRST], file);
    fputs (reg_names[GP_REG_FIRST], file);
 
 
  else if (letter == 'd' || letter == 'x' || letter == 'X')
  else if (letter == 'd' || letter == 'x' || letter == 'X')
    output_operand_lossage ("invalid use of %%d, %%x, or %%X");
    output_operand_lossage ("invalid use of %%d, %%x, or %%X");
 
 
  else if (letter == 'T' || letter == 't')
  else if (letter == 'T' || letter == 't')
    {
    {
      int truth = (code == NE) == (letter == 'T');
      int truth = (code == NE) == (letter == 'T');
      fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
      fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
    }
    }
 
 
  else if (CONST_GP_P (op))
  else if (CONST_GP_P (op))
    fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
    fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
 
 
  else
  else
    output_addr_const (file, op);
    output_addr_const (file, op);
}
}
 
 
 
 
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM.
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM.
   RELOCS is the array of relocations to use.  */
   RELOCS is the array of relocations to use.  */
 
 
static void
static void
print_operand_reloc (FILE *file, rtx op, const char **relocs)
print_operand_reloc (FILE *file, rtx op, const char **relocs)
{
{
  enum mips_symbol_type symbol_type;
  enum mips_symbol_type symbol_type;
  const char *p;
  const char *p;
  rtx base;
  rtx base;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  symbol_type = mips_classify_symbolic_expression (op);
  symbol_type = mips_classify_symbolic_expression (op);
  if (relocs[symbol_type] == 0)
  if (relocs[symbol_type] == 0)
    fatal_insn ("PRINT_OPERAND, invalid operand for relocation", op);
    fatal_insn ("PRINT_OPERAND, invalid operand for relocation", op);
 
 
  /* If OP uses an UNSPEC address, we want to print the inner symbol.  */
  /* If OP uses an UNSPEC address, we want to print the inner symbol.  */
  mips_split_const (op, &base, &offset);
  mips_split_const (op, &base, &offset);
  if (UNSPEC_ADDRESS_P (base))
  if (UNSPEC_ADDRESS_P (base))
    op = plus_constant (UNSPEC_ADDRESS (base), offset);
    op = plus_constant (UNSPEC_ADDRESS (base), offset);
 
 
  fputs (relocs[symbol_type], file);
  fputs (relocs[symbol_type], file);
  output_addr_const (file, op);
  output_addr_const (file, op);
  for (p = relocs[symbol_type]; *p != 0; p++)
  for (p = relocs[symbol_type]; *p != 0; p++)
    if (*p == '(')
    if (*p == '(')
      fputc (')', file);
      fputc (')', file);
}
}


/* Output address operand X to FILE.  */
/* Output address operand X to FILE.  */
 
 
void
void
print_operand_address (FILE *file, rtx x)
print_operand_address (FILE *file, rtx x)
{
{
  struct mips_address_info addr;
  struct mips_address_info addr;
 
 
  if (mips_classify_address (&addr, x, word_mode, true))
  if (mips_classify_address (&addr, x, word_mode, true))
    switch (addr.type)
    switch (addr.type)
      {
      {
      case ADDRESS_REG:
      case ADDRESS_REG:
        print_operand (file, addr.offset, 0);
        print_operand (file, addr.offset, 0);
        fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
        fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
        return;
        return;
 
 
      case ADDRESS_LO_SUM:
      case ADDRESS_LO_SUM:
        print_operand (file, addr.offset, 'R');
        print_operand (file, addr.offset, 'R');
        fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
        fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
        return;
        return;
 
 
      case ADDRESS_CONST_INT:
      case ADDRESS_CONST_INT:
        output_addr_const (file, x);
        output_addr_const (file, x);
        fprintf (file, "(%s)", reg_names[0]);
        fprintf (file, "(%s)", reg_names[0]);
        return;
        return;
 
 
      case ADDRESS_SYMBOLIC:
      case ADDRESS_SYMBOLIC:
        output_addr_const (file, x);
        output_addr_const (file, x);
        return;
        return;
      }
      }
  gcc_unreachable ();
  gcc_unreachable ();
}
}


/* When using assembler macros, keep track of all of small-data externs
/* When using assembler macros, keep track of all of small-data externs
   so that mips_file_end can emit the appropriate declarations for them.
   so that mips_file_end can emit the appropriate declarations for them.
 
 
   In most cases it would be safe (though pointless) to emit .externs
   In most cases it would be safe (though pointless) to emit .externs
   for other symbols too.  One exception is when an object is within
   for other symbols too.  One exception is when an object is within
   the -G limit but declared by the user to be in a section other
   the -G limit but declared by the user to be in a section other
   than .sbss or .sdata.  */
   than .sbss or .sdata.  */
 
 
int
int
mips_output_external (FILE *file ATTRIBUTE_UNUSED, tree decl, const char *name)
mips_output_external (FILE *file ATTRIBUTE_UNUSED, tree decl, const char *name)
{
{
  register struct extern_list *p;
  register struct extern_list *p;
 
 
  if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
  if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
    {
    {
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p->next = extern_head;
      p->next = extern_head;
      p->name = name;
      p->name = name;
      p->size = int_size_in_bytes (TREE_TYPE (decl));
      p->size = int_size_in_bytes (TREE_TYPE (decl));
      extern_head = p;
      extern_head = p;
    }
    }
 
 
  if (TARGET_IRIX && mips_abi == ABI_32 && TREE_CODE (decl) == FUNCTION_DECL)
  if (TARGET_IRIX && mips_abi == ABI_32 && TREE_CODE (decl) == FUNCTION_DECL)
    {
    {
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p->next = extern_head;
      p->next = extern_head;
      p->name = name;
      p->name = name;
      p->size = -1;
      p->size = -1;
      extern_head = p;
      extern_head = p;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
#if TARGET_IRIX
#if TARGET_IRIX
static void
static void
irix_output_external_libcall (rtx fun)
irix_output_external_libcall (rtx fun)
{
{
  register struct extern_list *p;
  register struct extern_list *p;
 
 
  if (mips_abi == ABI_32)
  if (mips_abi == ABI_32)
    {
    {
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p->next = extern_head;
      p->next = extern_head;
      p->name = XSTR (fun, 0);
      p->name = XSTR (fun, 0);
      p->size = -1;
      p->size = -1;
      extern_head = p;
      extern_head = p;
    }
    }
}
}
#endif
#endif


/* Emit a new filename to a stream.  If we are smuggling stabs, try to
/* Emit a new filename to a stream.  If we are smuggling stabs, try to
   put out a MIPS ECOFF file and a stab.  */
   put out a MIPS ECOFF file and a stab.  */
 
 
void
void
mips_output_filename (FILE *stream, const char *name)
mips_output_filename (FILE *stream, const char *name)
{
{
 
 
  /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
  /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
     directives.  */
     directives.  */
  if (write_symbols == DWARF2_DEBUG)
  if (write_symbols == DWARF2_DEBUG)
    return;
    return;
  else if (mips_output_filename_first_time)
  else if (mips_output_filename_first_time)
    {
    {
      mips_output_filename_first_time = 0;
      mips_output_filename_first_time = 0;
      num_source_filenames += 1;
      num_source_filenames += 1;
      current_function_file = name;
      current_function_file = name;
      fprintf (stream, "\t.file\t%d ", num_source_filenames);
      fprintf (stream, "\t.file\t%d ", num_source_filenames);
      output_quoted_string (stream, name);
      output_quoted_string (stream, name);
      putc ('\n', stream);
      putc ('\n', stream);
    }
    }
 
 
  /* If we are emitting stabs, let dbxout.c handle this (except for
  /* If we are emitting stabs, let dbxout.c handle this (except for
     the mips_output_filename_first_time case).  */
     the mips_output_filename_first_time case).  */
  else if (write_symbols == DBX_DEBUG)
  else if (write_symbols == DBX_DEBUG)
    return;
    return;
 
 
  else if (name != current_function_file
  else if (name != current_function_file
           && strcmp (name, current_function_file) != 0)
           && strcmp (name, current_function_file) != 0)
    {
    {
      num_source_filenames += 1;
      num_source_filenames += 1;
      current_function_file = name;
      current_function_file = name;
      fprintf (stream, "\t.file\t%d ", num_source_filenames);
      fprintf (stream, "\t.file\t%d ", num_source_filenames);
      output_quoted_string (stream, name);
      output_quoted_string (stream, name);
      putc ('\n', stream);
      putc ('\n', stream);
    }
    }
}
}


/* Output an ASCII string, in a space-saving way.  PREFIX is the string
/* Output an ASCII string, in a space-saving way.  PREFIX is the string
   that should be written before the opening quote, such as "\t.ascii\t"
   that should be written before the opening quote, such as "\t.ascii\t"
   for real string data or "\t# " for a comment.  */
   for real string data or "\t# " for a comment.  */
 
 
void
void
mips_output_ascii (FILE *stream, const char *string_param, size_t len,
mips_output_ascii (FILE *stream, const char *string_param, size_t len,
                   const char *prefix)
                   const char *prefix)
{
{
  size_t i;
  size_t i;
  int cur_pos = 17;
  int cur_pos = 17;
  register const unsigned char *string =
  register const unsigned char *string =
    (const unsigned char *)string_param;
    (const unsigned char *)string_param;
 
 
  fprintf (stream, "%s\"", prefix);
  fprintf (stream, "%s\"", prefix);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      register int c = string[i];
      register int c = string[i];
 
 
      if (ISPRINT (c))
      if (ISPRINT (c))
        {
        {
          if (c == '\\' || c == '\"')
          if (c == '\\' || c == '\"')
            {
            {
              putc ('\\', stream);
              putc ('\\', stream);
              cur_pos++;
              cur_pos++;
            }
            }
          putc (c, stream);
          putc (c, stream);
          cur_pos++;
          cur_pos++;
        }
        }
      else
      else
        {
        {
          fprintf (stream, "\\%03o", c);
          fprintf (stream, "\\%03o", c);
          cur_pos += 4;
          cur_pos += 4;
        }
        }
 
 
      if (cur_pos > 72 && i+1 < len)
      if (cur_pos > 72 && i+1 < len)
        {
        {
          cur_pos = 17;
          cur_pos = 17;
          fprintf (stream, "\"\n%s\"", prefix);
          fprintf (stream, "\"\n%s\"", prefix);
        }
        }
    }
    }
  fprintf (stream, "\"\n");
  fprintf (stream, "\"\n");
}
}


/* Implement TARGET_ASM_FILE_START.  */
/* Implement TARGET_ASM_FILE_START.  */
 
 
static void
static void
mips_file_start (void)
mips_file_start (void)
{
{
  default_file_start ();
  default_file_start ();
 
 
  if (!TARGET_IRIX)
  if (!TARGET_IRIX)
    {
    {
      /* Generate a special section to describe the ABI switches used to
      /* Generate a special section to describe the ABI switches used to
         produce the resultant binary.  This used to be done by the assembler
         produce the resultant binary.  This used to be done by the assembler
         setting bits in the ELF header's flags field, but we have run out of
         setting bits in the ELF header's flags field, but we have run out of
         bits.  GDB needs this information in order to be able to correctly
         bits.  GDB needs this information in order to be able to correctly
         debug these binaries.  See the function mips_gdbarch_init() in
         debug these binaries.  See the function mips_gdbarch_init() in
         gdb/mips-tdep.c.  This is unnecessary for the IRIX 5/6 ABIs and
         gdb/mips-tdep.c.  This is unnecessary for the IRIX 5/6 ABIs and
         causes unnecessary IRIX 6 ld warnings.  */
         causes unnecessary IRIX 6 ld warnings.  */
      const char * abi_string = NULL;
      const char * abi_string = NULL;
 
 
      switch (mips_abi)
      switch (mips_abi)
        {
        {
        case ABI_32:   abi_string = "abi32"; break;
        case ABI_32:   abi_string = "abi32"; break;
        case ABI_N32:  abi_string = "abiN32"; break;
        case ABI_N32:  abi_string = "abiN32"; break;
        case ABI_64:   abi_string = "abi64"; break;
        case ABI_64:   abi_string = "abi64"; break;
        case ABI_O64:  abi_string = "abiO64"; break;
        case ABI_O64:  abi_string = "abiO64"; break;
        case ABI_EABI: abi_string = TARGET_64BIT ? "eabi64" : "eabi32"; break;
        case ABI_EABI: abi_string = TARGET_64BIT ? "eabi64" : "eabi32"; break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
      /* Note - we use fprintf directly rather than calling switch_to_section
      /* Note - we use fprintf directly rather than calling switch_to_section
         because in this way we can avoid creating an allocated section.  We
         because in this way we can avoid creating an allocated section.  We
         do not want this section to take up any space in the running
         do not want this section to take up any space in the running
         executable.  */
         executable.  */
      fprintf (asm_out_file, "\t.section .mdebug.%s\n", abi_string);
      fprintf (asm_out_file, "\t.section .mdebug.%s\n", abi_string);
 
 
      /* There is no ELF header flag to distinguish long32 forms of the
      /* There is no ELF header flag to distinguish long32 forms of the
         EABI from long64 forms.  Emit a special section to help tools
         EABI from long64 forms.  Emit a special section to help tools
         such as GDB.  Do the same for o64, which is sometimes used with
         such as GDB.  Do the same for o64, which is sometimes used with
         -mlong64.  */
         -mlong64.  */
      if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
      if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
        fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n",
        fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n",
                 TARGET_LONG64 ? 64 : 32);
                 TARGET_LONG64 ? 64 : 32);
 
 
      /* Restore the default section.  */
      /* Restore the default section.  */
      fprintf (asm_out_file, "\t.previous\n");
      fprintf (asm_out_file, "\t.previous\n");
    }
    }
 
 
  /* Generate the pseudo ops that System V.4 wants.  */
  /* Generate the pseudo ops that System V.4 wants.  */
  if (TARGET_ABICALLS)
  if (TARGET_ABICALLS)
    fprintf (asm_out_file, "\t.abicalls\n");
    fprintf (asm_out_file, "\t.abicalls\n");
 
 
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    fprintf (asm_out_file, "\t.set\tmips16\n");
    fprintf (asm_out_file, "\t.set\tmips16\n");
 
 
  if (flag_verbose_asm)
  if (flag_verbose_asm)
    fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
    fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
             ASM_COMMENT_START,
             ASM_COMMENT_START,
             mips_section_threshold, mips_arch_info->name, mips_isa);
             mips_section_threshold, mips_arch_info->name, mips_isa);
}
}
 
 
#ifdef BSS_SECTION_ASM_OP
#ifdef BSS_SECTION_ASM_OP
/* Implement ASM_OUTPUT_ALIGNED_BSS.  This differs from the default only
/* Implement ASM_OUTPUT_ALIGNED_BSS.  This differs from the default only
   in the use of sbss.  */
   in the use of sbss.  */
 
 
void
void
mips_output_aligned_bss (FILE *stream, tree decl, const char *name,
mips_output_aligned_bss (FILE *stream, tree decl, const char *name,
                         unsigned HOST_WIDE_INT size, int align)
                         unsigned HOST_WIDE_INT size, int align)
{
{
  extern tree last_assemble_variable_decl;
  extern tree last_assemble_variable_decl;
 
 
  if (mips_in_small_data_p (decl))
  if (mips_in_small_data_p (decl))
    switch_to_section (get_named_section (NULL, ".sbss", 0));
    switch_to_section (get_named_section (NULL, ".sbss", 0));
  else
  else
    switch_to_section (bss_section);
    switch_to_section (bss_section);
  ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
  ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
  last_assemble_variable_decl = decl;
  last_assemble_variable_decl = decl;
  ASM_DECLARE_OBJECT_NAME (stream, name, decl);
  ASM_DECLARE_OBJECT_NAME (stream, name, decl);
  ASM_OUTPUT_SKIP (stream, size != 0 ? size : 1);
  ASM_OUTPUT_SKIP (stream, size != 0 ? size : 1);
}
}
#endif
#endif


/* Implement TARGET_ASM_FILE_END.  When using assembler macros, emit
/* Implement TARGET_ASM_FILE_END.  When using assembler macros, emit
   .externs for any small-data variables that turned out to be external.  */
   .externs for any small-data variables that turned out to be external.  */
 
 
static void
static void
mips_file_end (void)
mips_file_end (void)
{
{
  tree name_tree;
  tree name_tree;
  struct extern_list *p;
  struct extern_list *p;
 
 
  if (extern_head)
  if (extern_head)
    {
    {
      fputs ("\n", asm_out_file);
      fputs ("\n", asm_out_file);
 
 
      for (p = extern_head; p != 0; p = p->next)
      for (p = extern_head; p != 0; p = p->next)
        {
        {
          name_tree = get_identifier (p->name);
          name_tree = get_identifier (p->name);
 
 
          /* Positively ensure only one .extern for any given symbol.  */
          /* Positively ensure only one .extern for any given symbol.  */
          if (!TREE_ASM_WRITTEN (name_tree)
          if (!TREE_ASM_WRITTEN (name_tree)
              && TREE_SYMBOL_REFERENCED (name_tree))
              && TREE_SYMBOL_REFERENCED (name_tree))
            {
            {
              TREE_ASM_WRITTEN (name_tree) = 1;
              TREE_ASM_WRITTEN (name_tree) = 1;
              /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
              /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
                 `.global name .text' directive for every used but
                 `.global name .text' directive for every used but
                 undefined function.  If we don't, the linker may perform
                 undefined function.  If we don't, the linker may perform
                 an optimization (skipping over the insns that set $gp)
                 an optimization (skipping over the insns that set $gp)
                 when it is unsafe.  */
                 when it is unsafe.  */
              if (TARGET_IRIX && mips_abi == ABI_32 && p->size == -1)
              if (TARGET_IRIX && mips_abi == ABI_32 && p->size == -1)
                {
                {
                  fputs ("\t.globl ", asm_out_file);
                  fputs ("\t.globl ", asm_out_file);
                  assemble_name (asm_out_file, p->name);
                  assemble_name (asm_out_file, p->name);
                  fputs (" .text\n", asm_out_file);
                  fputs (" .text\n", asm_out_file);
                }
                }
              else
              else
                {
                {
                  fputs ("\t.extern\t", asm_out_file);
                  fputs ("\t.extern\t", asm_out_file);
                  assemble_name (asm_out_file, p->name);
                  assemble_name (asm_out_file, p->name);
                  fprintf (asm_out_file, ", %d\n", p->size);
                  fprintf (asm_out_file, ", %d\n", p->size);
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON.  This is usually the same as the
/* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON.  This is usually the same as the
   elfos.h version, but we also need to handle -muninit-const-in-rodata.  */
   elfos.h version, but we also need to handle -muninit-const-in-rodata.  */
 
 
void
void
mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
                                 unsigned HOST_WIDE_INT size,
                                 unsigned HOST_WIDE_INT size,
                                 unsigned int align)
                                 unsigned int align)
{
{
  /* If the target wants uninitialized const declarations in
  /* If the target wants uninitialized const declarations in
     .rdata then don't put them in .comm.  */
     .rdata then don't put them in .comm.  */
  if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA
  if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA
      && TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl)
      && TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl)
      && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
      && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
    {
    {
      if (TREE_PUBLIC (decl) && DECL_NAME (decl))
      if (TREE_PUBLIC (decl) && DECL_NAME (decl))
        targetm.asm_out.globalize_label (stream, name);
        targetm.asm_out.globalize_label (stream, name);
 
 
      switch_to_section (readonly_data_section);
      switch_to_section (readonly_data_section);
      ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
      ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
      mips_declare_object (stream, name, "",
      mips_declare_object (stream, name, "",
                           ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
                           ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
                           size);
                           size);
    }
    }
  else
  else
    mips_declare_common_object (stream, name, "\n\t.comm\t",
    mips_declare_common_object (stream, name, "\n\t.comm\t",
                                size, align, true);
                                size, align, true);
}
}
 
 
/* Declare a common object of SIZE bytes using asm directive INIT_STRING.
/* Declare a common object of SIZE bytes using asm directive INIT_STRING.
   NAME is the name of the object and ALIGN is the required alignment
   NAME is the name of the object and ALIGN is the required alignment
   in bytes.  TAKES_ALIGNMENT_P is true if the directive takes a third
   in bytes.  TAKES_ALIGNMENT_P is true if the directive takes a third
   alignment argument.  */
   alignment argument.  */
 
 
void
void
mips_declare_common_object (FILE *stream, const char *name,
mips_declare_common_object (FILE *stream, const char *name,
                            const char *init_string,
                            const char *init_string,
                            unsigned HOST_WIDE_INT size,
                            unsigned HOST_WIDE_INT size,
                            unsigned int align, bool takes_alignment_p)
                            unsigned int align, bool takes_alignment_p)
{
{
  if (!takes_alignment_p)
  if (!takes_alignment_p)
    {
    {
      size += (align / BITS_PER_UNIT) - 1;
      size += (align / BITS_PER_UNIT) - 1;
      size -= size % (align / BITS_PER_UNIT);
      size -= size % (align / BITS_PER_UNIT);
      mips_declare_object (stream, name, init_string,
      mips_declare_object (stream, name, init_string,
                           "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
                           "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
    }
    }
  else
  else
    mips_declare_object (stream, name, init_string,
    mips_declare_object (stream, name, init_string,
                         "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
                         "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
                         size, align / BITS_PER_UNIT);
                         size, align / BITS_PER_UNIT);
}
}
 
 
/* Emit either a label, .comm, or .lcomm directive.  When using assembler
/* Emit either a label, .comm, or .lcomm directive.  When using assembler
   macros, mark the symbol as written so that mips_file_end won't emit an
   macros, mark the symbol as written so that mips_file_end won't emit an
   .extern for it.  STREAM is the output file, NAME is the name of the
   .extern for it.  STREAM is the output file, NAME is the name of the
   symbol, INIT_STRING is the string that should be written before the
   symbol, INIT_STRING is the string that should be written before the
   symbol and FINAL_STRING is the string that should be written after it.
   symbol and FINAL_STRING is the string that should be written after it.
   FINAL_STRING is a printf() format that consumes the remaining arguments.  */
   FINAL_STRING is a printf() format that consumes the remaining arguments.  */
 
 
void
void
mips_declare_object (FILE *stream, const char *name, const char *init_string,
mips_declare_object (FILE *stream, const char *name, const char *init_string,
                     const char *final_string, ...)
                     const char *final_string, ...)
{
{
  va_list ap;
  va_list ap;
 
 
  fputs (init_string, stream);
  fputs (init_string, stream);
  assemble_name (stream, name);
  assemble_name (stream, name);
  va_start (ap, final_string);
  va_start (ap, final_string);
  vfprintf (stream, final_string, ap);
  vfprintf (stream, final_string, ap);
  va_end (ap);
  va_end (ap);
 
 
  if (!TARGET_EXPLICIT_RELOCS)
  if (!TARGET_EXPLICIT_RELOCS)
    {
    {
      tree name_tree = get_identifier (name);
      tree name_tree = get_identifier (name);
      TREE_ASM_WRITTEN (name_tree) = 1;
      TREE_ASM_WRITTEN (name_tree) = 1;
    }
    }
}
}
 
 
#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
extern int size_directive_output;
extern int size_directive_output;
 
 
/* Implement ASM_DECLARE_OBJECT_NAME.  This is like most of the standard ELF
/* Implement ASM_DECLARE_OBJECT_NAME.  This is like most of the standard ELF
   definitions except that it uses mips_declare_object() to emit the label.  */
   definitions except that it uses mips_declare_object() to emit the label.  */
 
 
void
void
mips_declare_object_name (FILE *stream, const char *name,
mips_declare_object_name (FILE *stream, const char *name,
                          tree decl ATTRIBUTE_UNUSED)
                          tree decl ATTRIBUTE_UNUSED)
{
{
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
  ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
  ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
#endif
#endif
 
 
  size_directive_output = 0;
  size_directive_output = 0;
  if (!flag_inhibit_size_directive && DECL_SIZE (decl))
  if (!flag_inhibit_size_directive && DECL_SIZE (decl))
    {
    {
      HOST_WIDE_INT size;
      HOST_WIDE_INT size;
 
 
      size_directive_output = 1;
      size_directive_output = 1;
      size = int_size_in_bytes (TREE_TYPE (decl));
      size = int_size_in_bytes (TREE_TYPE (decl));
      ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
      ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
    }
    }
 
 
  mips_declare_object (stream, name, "", ":\n");
  mips_declare_object (stream, name, "", ":\n");
}
}
 
 
/* Implement ASM_FINISH_DECLARE_OBJECT.  This is generic ELF stuff.  */
/* Implement ASM_FINISH_DECLARE_OBJECT.  This is generic ELF stuff.  */
 
 
void
void
mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
{
{
  const char *name;
  const char *name;
 
 
  name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
  name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
  if (!flag_inhibit_size_directive
  if (!flag_inhibit_size_directive
      && DECL_SIZE (decl) != 0
      && DECL_SIZE (decl) != 0
      && !at_end && top_level
      && !at_end && top_level
      && DECL_INITIAL (decl) == error_mark_node
      && DECL_INITIAL (decl) == error_mark_node
      && !size_directive_output)
      && !size_directive_output)
    {
    {
      HOST_WIDE_INT size;
      HOST_WIDE_INT size;
 
 
      size_directive_output = 1;
      size_directive_output = 1;
      size = int_size_in_bytes (TREE_TYPE (decl));
      size = int_size_in_bytes (TREE_TYPE (decl));
      ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
      ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
    }
    }
}
}
#endif
#endif


/* Return true if X is a small data address that can be rewritten
/* Return true if X is a small data address that can be rewritten
   as a LO_SUM.  */
   as a LO_SUM.  */
 
 
static bool
static bool
mips_rewrite_small_data_p (rtx x)
mips_rewrite_small_data_p (rtx x)
{
{
  enum mips_symbol_type symbol_type;
  enum mips_symbol_type symbol_type;
 
 
  return (TARGET_EXPLICIT_RELOCS
  return (TARGET_EXPLICIT_RELOCS
          && mips_symbolic_constant_p (x, &symbol_type)
          && mips_symbolic_constant_p (x, &symbol_type)
          && symbol_type == SYMBOL_SMALL_DATA);
          && symbol_type == SYMBOL_SMALL_DATA);
}
}
 
 
 
 
/* A for_each_rtx callback for mips_small_data_pattern_p.  */
/* A for_each_rtx callback for mips_small_data_pattern_p.  */
 
 
static int
static int
mips_small_data_pattern_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
mips_small_data_pattern_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
{
  if (GET_CODE (*loc) == LO_SUM)
  if (GET_CODE (*loc) == LO_SUM)
    return -1;
    return -1;
 
 
  return mips_rewrite_small_data_p (*loc);
  return mips_rewrite_small_data_p (*loc);
}
}
 
 
/* Return true if OP refers to small data symbols directly, not through
/* Return true if OP refers to small data symbols directly, not through
   a LO_SUM.  */
   a LO_SUM.  */
 
 
bool
bool
mips_small_data_pattern_p (rtx op)
mips_small_data_pattern_p (rtx op)
{
{
  return for_each_rtx (&op, mips_small_data_pattern_1, 0);
  return for_each_rtx (&op, mips_small_data_pattern_1, 0);
}
}


/* A for_each_rtx callback, used by mips_rewrite_small_data.  */
/* A for_each_rtx callback, used by mips_rewrite_small_data.  */
 
 
static int
static int
mips_rewrite_small_data_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
mips_rewrite_small_data_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
{
  if (mips_rewrite_small_data_p (*loc))
  if (mips_rewrite_small_data_p (*loc))
    *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
    *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
 
 
  if (GET_CODE (*loc) == LO_SUM)
  if (GET_CODE (*loc) == LO_SUM)
    return -1;
    return -1;
 
 
  return 0;
  return 0;
}
}
 
 
/* If possible, rewrite OP so that it refers to small data using
/* If possible, rewrite OP so that it refers to small data using
   explicit relocations.  */
   explicit relocations.  */
 
 
rtx
rtx
mips_rewrite_small_data (rtx op)
mips_rewrite_small_data (rtx op)
{
{
  op = copy_insn (op);
  op = copy_insn (op);
  for_each_rtx (&op, mips_rewrite_small_data_1, 0);
  for_each_rtx (&op, mips_rewrite_small_data_1, 0);
  return op;
  return op;
}
}


/* Return true if the current function has an insn that implicitly
/* Return true if the current function has an insn that implicitly
   refers to $gp.  */
   refers to $gp.  */
 
 
static bool
static bool
mips_function_has_gp_insn (void)
mips_function_has_gp_insn (void)
{
{
  /* Don't bother rechecking if we found one last time.  */
  /* Don't bother rechecking if we found one last time.  */
  if (!cfun->machine->has_gp_insn_p)
  if (!cfun->machine->has_gp_insn_p)
    {
    {
      rtx insn;
      rtx insn;
 
 
      push_topmost_sequence ();
      push_topmost_sequence ();
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
        if (INSN_P (insn)
        if (INSN_P (insn)
            && GET_CODE (PATTERN (insn)) != USE
            && GET_CODE (PATTERN (insn)) != USE
            && GET_CODE (PATTERN (insn)) != CLOBBER
            && GET_CODE (PATTERN (insn)) != CLOBBER
            && (get_attr_got (insn) != GOT_UNSET
            && (get_attr_got (insn) != GOT_UNSET
                || small_data_pattern (PATTERN (insn), VOIDmode)))
                || small_data_pattern (PATTERN (insn), VOIDmode)))
          break;
          break;
      pop_topmost_sequence ();
      pop_topmost_sequence ();
 
 
      cfun->machine->has_gp_insn_p = (insn != 0);
      cfun->machine->has_gp_insn_p = (insn != 0);
    }
    }
  return cfun->machine->has_gp_insn_p;
  return cfun->machine->has_gp_insn_p;
}
}
 
 
 
 
/* Return the register that should be used as the global pointer
/* Return the register that should be used as the global pointer
   within this function.  Return 0 if the function doesn't need
   within this function.  Return 0 if the function doesn't need
   a global pointer.  */
   a global pointer.  */
 
 
static unsigned int
static unsigned int
mips_global_pointer (void)
mips_global_pointer (void)
{
{
  unsigned int regno;
  unsigned int regno;
 
 
  /* $gp is always available in non-abicalls code.  */
  /* $gp is always available in non-abicalls code.  */
  if (!TARGET_ABICALLS)
  if (!TARGET_ABICALLS)
    return GLOBAL_POINTER_REGNUM;
    return GLOBAL_POINTER_REGNUM;
 
 
  /* We must always provide $gp when it is used implicitly.  */
  /* We must always provide $gp when it is used implicitly.  */
  if (!TARGET_EXPLICIT_RELOCS)
  if (!TARGET_EXPLICIT_RELOCS)
    return GLOBAL_POINTER_REGNUM;
    return GLOBAL_POINTER_REGNUM;
 
 
  /* FUNCTION_PROFILER includes a jal macro, so we need to give it
  /* FUNCTION_PROFILER includes a jal macro, so we need to give it
     a valid gp.  */
     a valid gp.  */
  if (current_function_profile)
  if (current_function_profile)
    return GLOBAL_POINTER_REGNUM;
    return GLOBAL_POINTER_REGNUM;
 
 
  /* If the function has a nonlocal goto, $gp must hold the correct
  /* If the function has a nonlocal goto, $gp must hold the correct
     global pointer for the target function.  */
     global pointer for the target function.  */
  if (current_function_has_nonlocal_goto)
  if (current_function_has_nonlocal_goto)
    return GLOBAL_POINTER_REGNUM;
    return GLOBAL_POINTER_REGNUM;
 
 
  /* If the gp is never referenced, there's no need to initialize it.
  /* If the gp is never referenced, there's no need to initialize it.
     Note that reload can sometimes introduce constant pool references
     Note that reload can sometimes introduce constant pool references
     into a function that otherwise didn't need them.  For example,
     into a function that otherwise didn't need them.  For example,
     suppose we have an instruction like:
     suppose we have an instruction like:
 
 
          (set (reg:DF R1) (float:DF (reg:SI R2)))
          (set (reg:DF R1) (float:DF (reg:SI R2)))
 
 
     If R2 turns out to be constant such as 1, the instruction may have a
     If R2 turns out to be constant such as 1, the instruction may have a
     REG_EQUAL note saying that R1 == 1.0.  Reload then has the option of
     REG_EQUAL note saying that R1 == 1.0.  Reload then has the option of
     using this constant if R2 doesn't get allocated to a register.
     using this constant if R2 doesn't get allocated to a register.
 
 
     In cases like these, reload will have added the constant to the pool
     In cases like these, reload will have added the constant to the pool
     but no instruction will yet refer to it.  */
     but no instruction will yet refer to it.  */
  if (!regs_ever_live[GLOBAL_POINTER_REGNUM]
  if (!regs_ever_live[GLOBAL_POINTER_REGNUM]
      && !current_function_uses_const_pool
      && !current_function_uses_const_pool
      && !mips_function_has_gp_insn ())
      && !mips_function_has_gp_insn ())
    return 0;
    return 0;
 
 
  /* We need a global pointer, but perhaps we can use a call-clobbered
  /* We need a global pointer, but perhaps we can use a call-clobbered
     register instead of $gp.  */
     register instead of $gp.  */
  if (TARGET_NEWABI && current_function_is_leaf)
  if (TARGET_NEWABI && current_function_is_leaf)
    for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
      if (!regs_ever_live[regno]
      if (!regs_ever_live[regno]
          && call_used_regs[regno]
          && call_used_regs[regno]
          && !fixed_regs[regno]
          && !fixed_regs[regno]
          && regno != PIC_FUNCTION_ADDR_REGNUM)
          && regno != PIC_FUNCTION_ADDR_REGNUM)
        return regno;
        return regno;
 
 
  return GLOBAL_POINTER_REGNUM;
  return GLOBAL_POINTER_REGNUM;
}
}
 
 
 
 
/* Return true if the current function must save REGNO.  */
/* Return true if the current function must save REGNO.  */
 
 
static bool
static bool
mips_save_reg_p (unsigned int regno)
mips_save_reg_p (unsigned int regno)
{
{
  /* We only need to save $gp for NewABI PIC.  */
  /* We only need to save $gp for NewABI PIC.  */
  if (regno == GLOBAL_POINTER_REGNUM)
  if (regno == GLOBAL_POINTER_REGNUM)
    return (TARGET_ABICALLS && TARGET_NEWABI
    return (TARGET_ABICALLS && TARGET_NEWABI
            && cfun->machine->global_pointer == regno);
            && cfun->machine->global_pointer == regno);
 
 
  /* Check call-saved registers.  */
  /* Check call-saved registers.  */
  if (regs_ever_live[regno] && !call_used_regs[regno])
  if (regs_ever_live[regno] && !call_used_regs[regno])
    return true;
    return true;
 
 
  /* We need to save the old frame pointer before setting up a new one.  */
  /* We need to save the old frame pointer before setting up a new one.  */
  if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
  if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
    return true;
    return true;
 
 
  /* We need to save the incoming return address if it is ever clobbered
  /* We need to save the incoming return address if it is ever clobbered
     within the function.  */
     within the function.  */
  if (regno == GP_REG_FIRST + 31 && regs_ever_live[regno])
  if (regno == GP_REG_FIRST + 31 && regs_ever_live[regno])
    return true;
    return true;
 
 
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      tree return_type;
      tree return_type;
 
 
      return_type = DECL_RESULT (current_function_decl);
      return_type = DECL_RESULT (current_function_decl);
 
 
      /* $18 is a special case in mips16 code.  It may be used to call
      /* $18 is a special case in mips16 code.  It may be used to call
         a function which returns a floating point value, but it is
         a function which returns a floating point value, but it is
         marked in call_used_regs.  */
         marked in call_used_regs.  */
      if (regno == GP_REG_FIRST + 18 && regs_ever_live[regno])
      if (regno == GP_REG_FIRST + 18 && regs_ever_live[regno])
        return true;
        return true;
 
 
      /* $31 is also a special case.  It will be used to copy a return
      /* $31 is also a special case.  It will be used to copy a return
         value into the floating point registers if the return value is
         value into the floating point registers if the return value is
         floating point.  */
         floating point.  */
      if (regno == GP_REG_FIRST + 31
      if (regno == GP_REG_FIRST + 31
          && mips16_hard_float
          && mips16_hard_float
          && !aggregate_value_p (return_type, current_function_decl)
          && !aggregate_value_p (return_type, current_function_decl)
          && GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
          && GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
          && GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
          && GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
        return true;
        return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Return the bytes needed to compute the frame pointer from the current
/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.  SIZE is the size (in bytes) of the local variables.
   stack pointer.  SIZE is the size (in bytes) of the local variables.
 
 
   MIPS stack frames look like:
   MIPS stack frames look like:
 
 
             Before call                        After call
             Before call                        After call
        +-----------------------+       +-----------------------+
        +-----------------------+       +-----------------------+
   high |                       |       |                       |
   high |                       |       |                       |
   mem. |                       |       |                       |
   mem. |                       |       |                       |
        |  caller's temps.      |       |  caller's temps.      |
        |  caller's temps.      |       |  caller's temps.      |
        |                       |       |                       |
        |                       |       |                       |
        +-----------------------+       +-----------------------+
        +-----------------------+       +-----------------------+
        |                       |       |                       |
        |                       |       |                       |
        |  arguments on stack.  |       |  arguments on stack.  |
        |  arguments on stack.  |       |  arguments on stack.  |
        |                       |       |                       |
        |                       |       |                       |
        +-----------------------+       +-----------------------+
        +-----------------------+       +-----------------------+
        |  4 words to save      |       |  4 words to save      |
        |  4 words to save      |       |  4 words to save      |
        |  arguments passed     |       |  arguments passed     |
        |  arguments passed     |       |  arguments passed     |
        |  in registers, even   |       |  in registers, even   |
        |  in registers, even   |       |  in registers, even   |
    SP->|  if not passed.       |  VFP->|  if not passed.       |
    SP->|  if not passed.       |  VFP->|  if not passed.       |
        +-----------------------+       +-----------------------+
        +-----------------------+       +-----------------------+
                                        |                       |
                                        |                       |
                                        |  fp register save     |
                                        |  fp register save     |
                                        |                       |
                                        |                       |
                                        +-----------------------+
                                        +-----------------------+
                                        |                       |
                                        |                       |
                                        |  gp register save     |
                                        |  gp register save     |
                                        |                       |
                                        |                       |
                                        +-----------------------+
                                        +-----------------------+
                                        |                       |
                                        |                       |
                                        |  local variables      |
                                        |  local variables      |
                                        |                       |
                                        |                       |
                                        +-----------------------+
                                        +-----------------------+
                                        |                       |
                                        |                       |
                                        |  alloca allocations   |
                                        |  alloca allocations   |
                                        |                       |
                                        |                       |
                                        +-----------------------+
                                        +-----------------------+
                                        |                       |
                                        |                       |
                                        |  GP save for V.4 abi  |
                                        |  GP save for V.4 abi  |
                                        |                       |
                                        |                       |
                                        +-----------------------+
                                        +-----------------------+
                                        |                       |
                                        |                       |
                                        |  arguments on stack   |
                                        |  arguments on stack   |
                                        |                       |
                                        |                       |
                                        +-----------------------+
                                        +-----------------------+
                                        |  4 words to save      |
                                        |  4 words to save      |
                                        |  arguments passed     |
                                        |  arguments passed     |
                                        |  in registers, even   |
                                        |  in registers, even   |
   low                              SP->|  if not passed.       |
   low                              SP->|  if not passed.       |
   memory                               +-----------------------+
   memory                               +-----------------------+
 
 
*/
*/
 
 
HOST_WIDE_INT
HOST_WIDE_INT
compute_frame_size (HOST_WIDE_INT size)
compute_frame_size (HOST_WIDE_INT size)
{
{
  unsigned int regno;
  unsigned int regno;
  HOST_WIDE_INT total_size;     /* # bytes that the entire frame takes up */
  HOST_WIDE_INT total_size;     /* # bytes that the entire frame takes up */
  HOST_WIDE_INT var_size;       /* # bytes that variables take up */
  HOST_WIDE_INT var_size;       /* # bytes that variables take up */
  HOST_WIDE_INT args_size;      /* # bytes that outgoing arguments take up */
  HOST_WIDE_INT args_size;      /* # bytes that outgoing arguments take up */
  HOST_WIDE_INT cprestore_size; /* # bytes that the cprestore slot takes up */
  HOST_WIDE_INT cprestore_size; /* # bytes that the cprestore slot takes up */
  HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding */
  HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding */
  HOST_WIDE_INT gp_reg_size;    /* # bytes needed to store gp regs */
  HOST_WIDE_INT gp_reg_size;    /* # bytes needed to store gp regs */
  HOST_WIDE_INT fp_reg_size;    /* # bytes needed to store fp regs */
  HOST_WIDE_INT fp_reg_size;    /* # bytes needed to store fp regs */
  unsigned int mask;            /* mask of saved gp registers */
  unsigned int mask;            /* mask of saved gp registers */
  unsigned int fmask;           /* mask of saved fp registers */
  unsigned int fmask;           /* mask of saved fp registers */
 
 
  cfun->machine->global_pointer = mips_global_pointer ();
  cfun->machine->global_pointer = mips_global_pointer ();
 
 
  gp_reg_size = 0;
  gp_reg_size = 0;
  fp_reg_size = 0;
  fp_reg_size = 0;
  mask = 0;
  mask = 0;
  fmask = 0;
  fmask = 0;
  var_size = MIPS_STACK_ALIGN (size);
  var_size = MIPS_STACK_ALIGN (size);
  args_size = current_function_outgoing_args_size;
  args_size = current_function_outgoing_args_size;
  cprestore_size = MIPS_STACK_ALIGN (STARTING_FRAME_OFFSET) - args_size;
  cprestore_size = MIPS_STACK_ALIGN (STARTING_FRAME_OFFSET) - args_size;
 
 
  /* The space set aside by STARTING_FRAME_OFFSET isn't needed in leaf
  /* The space set aside by STARTING_FRAME_OFFSET isn't needed in leaf
     functions.  If the function has local variables, we're committed
     functions.  If the function has local variables, we're committed
     to allocating it anyway.  Otherwise reclaim it here.  */
     to allocating it anyway.  Otherwise reclaim it here.  */
  if (var_size == 0 && current_function_is_leaf)
  if (var_size == 0 && current_function_is_leaf)
    cprestore_size = args_size = 0;
    cprestore_size = args_size = 0;
 
 
  /* The MIPS 3.0 linker does not like functions that dynamically
  /* The MIPS 3.0 linker does not like functions that dynamically
     allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
     allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
     looks like we are trying to create a second frame pointer to the
     looks like we are trying to create a second frame pointer to the
     function, so allocate some stack space to make it happy.  */
     function, so allocate some stack space to make it happy.  */
 
 
  if (args_size == 0 && current_function_calls_alloca)
  if (args_size == 0 && current_function_calls_alloca)
    args_size = 4 * UNITS_PER_WORD;
    args_size = 4 * UNITS_PER_WORD;
 
 
  total_size = var_size + args_size + cprestore_size;
  total_size = var_size + args_size + cprestore_size;
 
 
  /* Calculate space needed for gp registers.  */
  /* Calculate space needed for gp registers.  */
  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    if (mips_save_reg_p (regno))
    if (mips_save_reg_p (regno))
      {
      {
        gp_reg_size += GET_MODE_SIZE (gpr_mode);
        gp_reg_size += GET_MODE_SIZE (gpr_mode);
        mask |= 1 << (regno - GP_REG_FIRST);
        mask |= 1 << (regno - GP_REG_FIRST);
      }
      }
 
 
  /* We need to restore these for the handler.  */
  /* We need to restore these for the handler.  */
  if (current_function_calls_eh_return)
  if (current_function_calls_eh_return)
    {
    {
      unsigned int i;
      unsigned int i;
      for (i = 0; ; ++i)
      for (i = 0; ; ++i)
        {
        {
          regno = EH_RETURN_DATA_REGNO (i);
          regno = EH_RETURN_DATA_REGNO (i);
          if (regno == INVALID_REGNUM)
          if (regno == INVALID_REGNUM)
            break;
            break;
          gp_reg_size += GET_MODE_SIZE (gpr_mode);
          gp_reg_size += GET_MODE_SIZE (gpr_mode);
          mask |= 1 << (regno - GP_REG_FIRST);
          mask |= 1 << (regno - GP_REG_FIRST);
        }
        }
    }
    }
 
 
  /* This loop must iterate over the same space as its companion in
  /* This loop must iterate over the same space as its companion in
     save_restore_insns.  */
     save_restore_insns.  */
  for (regno = (FP_REG_LAST - FP_INC + 1);
  for (regno = (FP_REG_LAST - FP_INC + 1);
       regno >= FP_REG_FIRST;
       regno >= FP_REG_FIRST;
       regno -= FP_INC)
       regno -= FP_INC)
    {
    {
      if (mips_save_reg_p (regno))
      if (mips_save_reg_p (regno))
        {
        {
          fp_reg_size += FP_INC * UNITS_PER_FPREG;
          fp_reg_size += FP_INC * UNITS_PER_FPREG;
          fmask |= ((1 << FP_INC) - 1) << (regno - FP_REG_FIRST);
          fmask |= ((1 << FP_INC) - 1) << (regno - FP_REG_FIRST);
        }
        }
    }
    }
 
 
  gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
  gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
  total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);
  total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);
 
 
  /* Add in the space required for saving incoming register arguments.  */
  /* Add in the space required for saving incoming register arguments.  */
  total_size += current_function_pretend_args_size;
  total_size += current_function_pretend_args_size;
  total_size += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
  total_size += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
 
 
  /* Save other computed information.  */
  /* Save other computed information.  */
  cfun->machine->frame.total_size = total_size;
  cfun->machine->frame.total_size = total_size;
  cfun->machine->frame.var_size = var_size;
  cfun->machine->frame.var_size = var_size;
  cfun->machine->frame.args_size = args_size;
  cfun->machine->frame.args_size = args_size;
  cfun->machine->frame.cprestore_size = cprestore_size;
  cfun->machine->frame.cprestore_size = cprestore_size;
  cfun->machine->frame.gp_reg_size = gp_reg_size;
  cfun->machine->frame.gp_reg_size = gp_reg_size;
  cfun->machine->frame.fp_reg_size = fp_reg_size;
  cfun->machine->frame.fp_reg_size = fp_reg_size;
  cfun->machine->frame.mask = mask;
  cfun->machine->frame.mask = mask;
  cfun->machine->frame.fmask = fmask;
  cfun->machine->frame.fmask = fmask;
  cfun->machine->frame.initialized = reload_completed;
  cfun->machine->frame.initialized = reload_completed;
  cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
  cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
  cfun->machine->frame.num_fp = fp_reg_size / (FP_INC * UNITS_PER_FPREG);
  cfun->machine->frame.num_fp = fp_reg_size / (FP_INC * UNITS_PER_FPREG);
 
 
  if (mask)
  if (mask)
    {
    {
      HOST_WIDE_INT offset;
      HOST_WIDE_INT offset;
 
 
      offset = (args_size + cprestore_size + var_size
      offset = (args_size + cprestore_size + var_size
                + gp_reg_size - GET_MODE_SIZE (gpr_mode));
                + gp_reg_size - GET_MODE_SIZE (gpr_mode));
      cfun->machine->frame.gp_sp_offset = offset;
      cfun->machine->frame.gp_sp_offset = offset;
      cfun->machine->frame.gp_save_offset = offset - total_size;
      cfun->machine->frame.gp_save_offset = offset - total_size;
    }
    }
  else
  else
    {
    {
      cfun->machine->frame.gp_sp_offset = 0;
      cfun->machine->frame.gp_sp_offset = 0;
      cfun->machine->frame.gp_save_offset = 0;
      cfun->machine->frame.gp_save_offset = 0;
    }
    }
 
 
  if (fmask)
  if (fmask)
    {
    {
      HOST_WIDE_INT offset;
      HOST_WIDE_INT offset;
 
 
      offset = (args_size + cprestore_size + var_size
      offset = (args_size + cprestore_size + var_size
                + gp_reg_rounded + fp_reg_size
                + gp_reg_rounded + fp_reg_size
                - FP_INC * UNITS_PER_FPREG);
                - FP_INC * UNITS_PER_FPREG);
      cfun->machine->frame.fp_sp_offset = offset;
      cfun->machine->frame.fp_sp_offset = offset;
      cfun->machine->frame.fp_save_offset = offset - total_size;
      cfun->machine->frame.fp_save_offset = offset - total_size;
    }
    }
  else
  else
    {
    {
      cfun->machine->frame.fp_sp_offset = 0;
      cfun->machine->frame.fp_sp_offset = 0;
      cfun->machine->frame.fp_save_offset = 0;
      cfun->machine->frame.fp_save_offset = 0;
    }
    }
 
 
  /* Ok, we're done.  */
  /* Ok, we're done.  */
  return total_size;
  return total_size;
}
}


/* Implement INITIAL_ELIMINATION_OFFSET.  FROM is either the frame
/* Implement INITIAL_ELIMINATION_OFFSET.  FROM is either the frame
   pointer or argument pointer.  TO is either the stack pointer or
   pointer or argument pointer.  TO is either the stack pointer or
   hard frame pointer.  */
   hard frame pointer.  */
 
 
HOST_WIDE_INT
HOST_WIDE_INT
mips_initial_elimination_offset (int from, int to)
mips_initial_elimination_offset (int from, int to)
{
{
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  compute_frame_size (get_frame_size ());
  compute_frame_size (get_frame_size ());
 
 
  /* Set OFFSET to the offset from the stack pointer.  */
  /* Set OFFSET to the offset from the stack pointer.  */
  switch (from)
  switch (from)
    {
    {
    case FRAME_POINTER_REGNUM:
    case FRAME_POINTER_REGNUM:
      offset = 0;
      offset = 0;
      break;
      break;
 
 
    case ARG_POINTER_REGNUM:
    case ARG_POINTER_REGNUM:
      offset = (cfun->machine->frame.total_size
      offset = (cfun->machine->frame.total_size
                - current_function_pretend_args_size);
                - current_function_pretend_args_size);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (TARGET_MIPS16 && to == HARD_FRAME_POINTER_REGNUM)
  if (TARGET_MIPS16 && to == HARD_FRAME_POINTER_REGNUM)
    offset -= cfun->machine->frame.args_size;
    offset -= cfun->machine->frame.args_size;
 
 
  return offset;
  return offset;
}
}


/* Implement RETURN_ADDR_RTX.  Note, we do not support moving
/* Implement RETURN_ADDR_RTX.  Note, we do not support moving
   back to a previous frame.  */
   back to a previous frame.  */
rtx
rtx
mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
{
  if (count != 0)
  if (count != 0)
    return const0_rtx;
    return const0_rtx;
 
 
  return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
  return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
}
}


/* Use FN to save or restore register REGNO.  MODE is the register's
/* Use FN to save or restore register REGNO.  MODE is the register's
   mode and OFFSET is the offset of its save slot from the current
   mode and OFFSET is the offset of its save slot from the current
   stack pointer.  */
   stack pointer.  */
 
 
static void
static void
mips_save_restore_reg (enum machine_mode mode, int regno,
mips_save_restore_reg (enum machine_mode mode, int regno,
                       HOST_WIDE_INT offset, mips_save_restore_fn fn)
                       HOST_WIDE_INT offset, mips_save_restore_fn fn)
{
{
  rtx mem;
  rtx mem;
 
 
  mem = gen_frame_mem (mode, plus_constant (stack_pointer_rtx, offset));
  mem = gen_frame_mem (mode, plus_constant (stack_pointer_rtx, offset));
 
 
  fn (gen_rtx_REG (mode, regno), mem);
  fn (gen_rtx_REG (mode, regno), mem);
}
}
 
 
 
 
/* Call FN for each register that is saved by the current function.
/* Call FN for each register that is saved by the current function.
   SP_OFFSET is the offset of the current stack pointer from the start
   SP_OFFSET is the offset of the current stack pointer from the start
   of the frame.  */
   of the frame.  */
 
 
static void
static void
mips_for_each_saved_reg (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
mips_for_each_saved_reg (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
{
{
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)
 
 
  enum machine_mode fpr_mode;
  enum machine_mode fpr_mode;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
  int regno;
  int regno;
 
 
  /* Save registers starting from high to low.  The debuggers prefer at least
  /* Save registers starting from high to low.  The debuggers prefer at least
     the return register be stored at func+4, and also it allows us not to
     the return register be stored at func+4, and also it allows us not to
     need a nop in the epilog if at least one register is reloaded in
     need a nop in the epilog if at least one register is reloaded in
     addition to return address.  */
     addition to return address.  */
  offset = cfun->machine->frame.gp_sp_offset - sp_offset;
  offset = cfun->machine->frame.gp_sp_offset - sp_offset;
  for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
  for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
    if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
    if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
      {
      {
        mips_save_restore_reg (gpr_mode, regno, offset, fn);
        mips_save_restore_reg (gpr_mode, regno, offset, fn);
        offset -= GET_MODE_SIZE (gpr_mode);
        offset -= GET_MODE_SIZE (gpr_mode);
      }
      }
 
 
  /* This loop must iterate over the same space as its companion in
  /* This loop must iterate over the same space as its companion in
     compute_frame_size.  */
     compute_frame_size.  */
  offset = cfun->machine->frame.fp_sp_offset - sp_offset;
  offset = cfun->machine->frame.fp_sp_offset - sp_offset;
  fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
  fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
  for (regno = (FP_REG_LAST - FP_INC + 1);
  for (regno = (FP_REG_LAST - FP_INC + 1);
       regno >= FP_REG_FIRST;
       regno >= FP_REG_FIRST;
       regno -= FP_INC)
       regno -= FP_INC)
    if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
    if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
      {
      {
        mips_save_restore_reg (fpr_mode, regno, offset, fn);
        mips_save_restore_reg (fpr_mode, regno, offset, fn);
        offset -= GET_MODE_SIZE (fpr_mode);
        offset -= GET_MODE_SIZE (fpr_mode);
      }
      }
#undef BITSET_P
#undef BITSET_P
}
}


/* If we're generating n32 or n64 abicalls, and the current function
/* If we're generating n32 or n64 abicalls, and the current function
   does not use $28 as its global pointer, emit a cplocal directive.
   does not use $28 as its global pointer, emit a cplocal directive.
   Use pic_offset_table_rtx as the argument to the directive.  */
   Use pic_offset_table_rtx as the argument to the directive.  */
 
 
static void
static void
mips_output_cplocal (void)
mips_output_cplocal (void)
{
{
  if (!TARGET_EXPLICIT_RELOCS
  if (!TARGET_EXPLICIT_RELOCS
      && cfun->machine->global_pointer > 0
      && cfun->machine->global_pointer > 0
      && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
      && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
    output_asm_insn (".cplocal %+", 0);
    output_asm_insn (".cplocal %+", 0);
}
}
 
 
/* Return the style of GP load sequence that is being used for the
/* Return the style of GP load sequence that is being used for the
   current function.  */
   current function.  */
 
 
enum mips_loadgp_style
enum mips_loadgp_style
mips_current_loadgp_style (void)
mips_current_loadgp_style (void)
{
{
  if (!TARGET_ABICALLS || cfun->machine->global_pointer == 0)
  if (!TARGET_ABICALLS || cfun->machine->global_pointer == 0)
    return LOADGP_NONE;
    return LOADGP_NONE;
 
 
  if (TARGET_ABSOLUTE_ABICALLS)
  if (TARGET_ABSOLUTE_ABICALLS)
    return LOADGP_ABSOLUTE;
    return LOADGP_ABSOLUTE;
 
 
  return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
  return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
}
}
 
 
/* The __gnu_local_gp symbol.  */
/* The __gnu_local_gp symbol.  */
 
 
static GTY(()) rtx mips_gnu_local_gp;
static GTY(()) rtx mips_gnu_local_gp;
 
 
/* If we're generating n32 or n64 abicalls, emit instructions
/* If we're generating n32 or n64 abicalls, emit instructions
   to set up the global pointer.  */
   to set up the global pointer.  */
 
 
static void
static void
mips_emit_loadgp (void)
mips_emit_loadgp (void)
{
{
  rtx addr, offset, incoming_address;
  rtx addr, offset, incoming_address;
 
 
  switch (mips_current_loadgp_style ())
  switch (mips_current_loadgp_style ())
    {
    {
    case LOADGP_ABSOLUTE:
    case LOADGP_ABSOLUTE:
      if (mips_gnu_local_gp == NULL)
      if (mips_gnu_local_gp == NULL)
        {
        {
          mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
          mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
          SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
          SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
        }
        }
      emit_insn (gen_loadgp_noshared (mips_gnu_local_gp));
      emit_insn (gen_loadgp_noshared (mips_gnu_local_gp));
      break;
      break;
 
 
    case LOADGP_NEWABI:
    case LOADGP_NEWABI:
      addr = XEXP (DECL_RTL (current_function_decl), 0);
      addr = XEXP (DECL_RTL (current_function_decl), 0);
      offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
      offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
      incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
      incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
      emit_insn (gen_loadgp (offset, incoming_address));
      emit_insn (gen_loadgp (offset, incoming_address));
      if (!TARGET_EXPLICIT_RELOCS)
      if (!TARGET_EXPLICIT_RELOCS)
        emit_insn (gen_loadgp_blockage ());
        emit_insn (gen_loadgp_blockage ());
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
/* Set up the stack and frame (if desired) for the function.  */
/* Set up the stack and frame (if desired) for the function.  */
 
 
static void
static void
mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
{
  const char *fnname;
  const char *fnname;
  HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
  HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
 
 
#ifdef SDB_DEBUGGING_INFO
#ifdef SDB_DEBUGGING_INFO
  if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
  if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
    SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
    SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
#endif
#endif
 
 
  /* In mips16 mode, we may need to generate a 32 bit to handle
  /* In mips16 mode, we may need to generate a 32 bit to handle
     floating point arguments.  The linker will arrange for any 32 bit
     floating point arguments.  The linker will arrange for any 32 bit
     functions to call this stub, which will then jump to the 16 bit
     functions to call this stub, which will then jump to the 16 bit
     function proper.  */
     function proper.  */
  if (TARGET_MIPS16 && !TARGET_SOFT_FLOAT
  if (TARGET_MIPS16 && !TARGET_SOFT_FLOAT
      && current_function_args_info.fp_code != 0)
      && current_function_args_info.fp_code != 0)
    build_mips16_function_stub (file);
    build_mips16_function_stub (file);
 
 
  if (!FUNCTION_NAME_ALREADY_DECLARED)
  if (!FUNCTION_NAME_ALREADY_DECLARED)
    {
    {
      /* Get the function name the same way that toplev.c does before calling
      /* Get the function name the same way that toplev.c does before calling
         assemble_start_function.  This is needed so that the name used here
         assemble_start_function.  This is needed so that the name used here
         exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
         exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
      fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
      fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
 
 
      if (!flag_inhibit_size_directive)
      if (!flag_inhibit_size_directive)
        {
        {
          fputs ("\t.ent\t", file);
          fputs ("\t.ent\t", file);
          assemble_name (file, fnname);
          assemble_name (file, fnname);
          fputs ("\n", file);
          fputs ("\n", file);
        }
        }
 
 
      assemble_name (file, fnname);
      assemble_name (file, fnname);
      fputs (":\n", file);
      fputs (":\n", file);
    }
    }
 
 
  /* Stop mips_file_end from treating this function as external.  */
  /* Stop mips_file_end from treating this function as external.  */
  if (TARGET_IRIX && mips_abi == ABI_32)
  if (TARGET_IRIX && mips_abi == ABI_32)
    TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;
    TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;
 
 
  if (!flag_inhibit_size_directive)
  if (!flag_inhibit_size_directive)
    {
    {
      /* .frame FRAMEREG, FRAMESIZE, RETREG */
      /* .frame FRAMEREG, FRAMESIZE, RETREG */
      fprintf (file,
      fprintf (file,
               "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
               "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
               "# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d/%d"
               "# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d/%d"
               ", args= " HOST_WIDE_INT_PRINT_DEC
               ", args= " HOST_WIDE_INT_PRINT_DEC
               ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
               ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
               (reg_names[(frame_pointer_needed)
               (reg_names[(frame_pointer_needed)
                          ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
                          ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
               ((frame_pointer_needed && TARGET_MIPS16)
               ((frame_pointer_needed && TARGET_MIPS16)
                ? tsize - cfun->machine->frame.args_size
                ? tsize - cfun->machine->frame.args_size
                : tsize),
                : tsize),
               reg_names[GP_REG_FIRST + 31],
               reg_names[GP_REG_FIRST + 31],
               cfun->machine->frame.var_size,
               cfun->machine->frame.var_size,
               cfun->machine->frame.num_gp,
               cfun->machine->frame.num_gp,
               cfun->machine->frame.num_fp,
               cfun->machine->frame.num_fp,
               cfun->machine->frame.args_size,
               cfun->machine->frame.args_size,
               cfun->machine->frame.cprestore_size);
               cfun->machine->frame.cprestore_size);
 
 
      /* .mask MASK, GPOFFSET; .fmask FPOFFSET */
      /* .mask MASK, GPOFFSET; .fmask FPOFFSET */
      fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
      fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
               cfun->machine->frame.mask,
               cfun->machine->frame.mask,
               cfun->machine->frame.gp_save_offset);
               cfun->machine->frame.gp_save_offset);
      fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
      fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
               cfun->machine->frame.fmask,
               cfun->machine->frame.fmask,
               cfun->machine->frame.fp_save_offset);
               cfun->machine->frame.fp_save_offset);
 
 
      /* Require:
      /* Require:
         OLD_SP == *FRAMEREG + FRAMESIZE => can find old_sp from nominated FP reg.
         OLD_SP == *FRAMEREG + FRAMESIZE => can find old_sp from nominated FP reg.
         HIGHEST_GP_SAVED == *FRAMEREG + FRAMESIZE + GPOFFSET => can find saved regs.  */
         HIGHEST_GP_SAVED == *FRAMEREG + FRAMESIZE + GPOFFSET => can find saved regs.  */
    }
    }
 
 
  if (mips_current_loadgp_style () == LOADGP_OLDABI)
  if (mips_current_loadgp_style () == LOADGP_OLDABI)
    {
    {
      /* Handle the initialization of $gp for SVR4 PIC.  */
      /* Handle the initialization of $gp for SVR4 PIC.  */
      if (!cfun->machine->all_noreorder_p)
      if (!cfun->machine->all_noreorder_p)
        output_asm_insn ("%(.cpload\t%^%)", 0);
        output_asm_insn ("%(.cpload\t%^%)", 0);
      else
      else
        output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
        output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
    }
    }
  else if (cfun->machine->all_noreorder_p)
  else if (cfun->machine->all_noreorder_p)
    output_asm_insn ("%(%<", 0);
    output_asm_insn ("%(%<", 0);
 
 
  /* Tell the assembler which register we're using as the global
  /* Tell the assembler which register we're using as the global
     pointer.  This is needed for thunks, since they can use either
     pointer.  This is needed for thunks, since they can use either
     explicit relocs or assembler macros.  */
     explicit relocs or assembler macros.  */
  mips_output_cplocal ();
  mips_output_cplocal ();
}
}


/* Make the last instruction frame related and note that it performs
/* Make the last instruction frame related and note that it performs
   the operation described by FRAME_PATTERN.  */
   the operation described by FRAME_PATTERN.  */
 
 
static void
static void
mips_set_frame_expr (rtx frame_pattern)
mips_set_frame_expr (rtx frame_pattern)
{
{
  rtx insn;
  rtx insn;
 
 
  insn = get_last_insn ();
  insn = get_last_insn ();
  RTX_FRAME_RELATED_P (insn) = 1;
  RTX_FRAME_RELATED_P (insn) = 1;
  REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
  REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
                                      frame_pattern,
                                      frame_pattern,
                                      REG_NOTES (insn));
                                      REG_NOTES (insn));
}
}
 
 
 
 
/* Return a frame-related rtx that stores REG at MEM.
/* Return a frame-related rtx that stores REG at MEM.
   REG must be a single register.  */
   REG must be a single register.  */
 
 
static rtx
static rtx
mips_frame_set (rtx mem, rtx reg)
mips_frame_set (rtx mem, rtx reg)
{
{
  rtx set;
  rtx set;
 
 
  /* If we're saving the return address register and the dwarf return
  /* If we're saving the return address register and the dwarf return
     address column differs from the hard register number, adjust the
     address column differs from the hard register number, adjust the
     note reg to refer to the former.  */
     note reg to refer to the former.  */
  if (REGNO (reg) == GP_REG_FIRST + 31
  if (REGNO (reg) == GP_REG_FIRST + 31
      && DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
      && DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
    reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);
    reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);
 
 
  set = gen_rtx_SET (VOIDmode, mem, reg);
  set = gen_rtx_SET (VOIDmode, mem, reg);
  RTX_FRAME_RELATED_P (set) = 1;
  RTX_FRAME_RELATED_P (set) = 1;
 
 
  return set;
  return set;
}
}
 
 
 
 
/* Save register REG to MEM.  Make the instruction frame-related.  */
/* Save register REG to MEM.  Make the instruction frame-related.  */
 
 
static void
static void
mips_save_reg (rtx reg, rtx mem)
mips_save_reg (rtx reg, rtx mem)
{
{
  if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
  if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
    {
    {
      rtx x1, x2;
      rtx x1, x2;
 
 
      if (mips_split_64bit_move_p (mem, reg))
      if (mips_split_64bit_move_p (mem, reg))
        mips_split_64bit_move (mem, reg);
        mips_split_64bit_move (mem, reg);
      else
      else
        emit_move_insn (mem, reg);
        emit_move_insn (mem, reg);
 
 
      x1 = mips_frame_set (mips_subword (mem, 0), mips_subword (reg, 0));
      x1 = mips_frame_set (mips_subword (mem, 0), mips_subword (reg, 0));
      x2 = mips_frame_set (mips_subword (mem, 1), mips_subword (reg, 1));
      x2 = mips_frame_set (mips_subword (mem, 1), mips_subword (reg, 1));
      mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
      mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
    }
    }
  else
  else
    {
    {
      if (TARGET_MIPS16
      if (TARGET_MIPS16
          && REGNO (reg) != GP_REG_FIRST + 31
          && REGNO (reg) != GP_REG_FIRST + 31
          && !M16_REG_P (REGNO (reg)))
          && !M16_REG_P (REGNO (reg)))
        {
        {
          /* Save a non-mips16 register by moving it through a temporary.
          /* Save a non-mips16 register by moving it through a temporary.
             We don't need to do this for $31 since there's a special
             We don't need to do this for $31 since there's a special
             instruction for it.  */
             instruction for it.  */
          emit_move_insn (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
          emit_move_insn (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
          emit_move_insn (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
          emit_move_insn (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
        }
        }
      else
      else
        emit_move_insn (mem, reg);
        emit_move_insn (mem, reg);
 
 
      mips_set_frame_expr (mips_frame_set (mem, reg));
      mips_set_frame_expr (mips_frame_set (mem, reg));
    }
    }
}
}
 
 
 
 
/* Expand the prologue into a bunch of separate insns.  */
/* Expand the prologue into a bunch of separate insns.  */
 
 
void
void
mips_expand_prologue (void)
mips_expand_prologue (void)
{
{
  HOST_WIDE_INT size;
  HOST_WIDE_INT size;
 
 
  if (cfun->machine->global_pointer > 0)
  if (cfun->machine->global_pointer > 0)
    REGNO (pic_offset_table_rtx) = cfun->machine->global_pointer;
    REGNO (pic_offset_table_rtx) = cfun->machine->global_pointer;
 
 
  size = compute_frame_size (get_frame_size ());
  size = compute_frame_size (get_frame_size ());
 
 
  /* Save the registers.  Allocate up to MIPS_MAX_FIRST_STACK_STEP
  /* Save the registers.  Allocate up to MIPS_MAX_FIRST_STACK_STEP
     bytes beforehand; this is enough to cover the register save area
     bytes beforehand; this is enough to cover the register save area
     without going out of range.  */
     without going out of range.  */
  if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
  if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
    {
    {
      HOST_WIDE_INT step1;
      HOST_WIDE_INT step1;
 
 
      step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
      step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
      RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
      RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
                                                     stack_pointer_rtx,
                                                     stack_pointer_rtx,
                                                     GEN_INT (-step1)))) = 1;
                                                     GEN_INT (-step1)))) = 1;
      size -= step1;
      size -= step1;
      mips_for_each_saved_reg (size, mips_save_reg);
      mips_for_each_saved_reg (size, mips_save_reg);
    }
    }
 
 
  /* Allocate the rest of the frame.  */
  /* Allocate the rest of the frame.  */
  if (size > 0)
  if (size > 0)
    {
    {
      if (SMALL_OPERAND (-size))
      if (SMALL_OPERAND (-size))
        RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
        RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
                                                       stack_pointer_rtx,
                                                       stack_pointer_rtx,
                                                       GEN_INT (-size)))) = 1;
                                                       GEN_INT (-size)))) = 1;
      else
      else
        {
        {
          emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
          emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
          if (TARGET_MIPS16)
          if (TARGET_MIPS16)
            {
            {
              /* There are no instructions to add or subtract registers
              /* There are no instructions to add or subtract registers
                 from the stack pointer, so use the frame pointer as a
                 from the stack pointer, so use the frame pointer as a
                 temporary.  We should always be using a frame pointer
                 temporary.  We should always be using a frame pointer
                 in this case anyway.  */
                 in this case anyway.  */
              gcc_assert (frame_pointer_needed);
              gcc_assert (frame_pointer_needed);
              emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
              emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
              emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
              emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
                                        hard_frame_pointer_rtx,
                                        hard_frame_pointer_rtx,
                                        MIPS_PROLOGUE_TEMP (Pmode)));
                                        MIPS_PROLOGUE_TEMP (Pmode)));
              emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
              emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
            }
            }
          else
          else
            emit_insn (gen_sub3_insn (stack_pointer_rtx,
            emit_insn (gen_sub3_insn (stack_pointer_rtx,
                                      stack_pointer_rtx,
                                      stack_pointer_rtx,
                                      MIPS_PROLOGUE_TEMP (Pmode)));
                                      MIPS_PROLOGUE_TEMP (Pmode)));
 
 
          /* Describe the combined effect of the previous instructions.  */
          /* Describe the combined effect of the previous instructions.  */
          mips_set_frame_expr
          mips_set_frame_expr
            (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
            (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
                          plus_constant (stack_pointer_rtx, -size)));
                          plus_constant (stack_pointer_rtx, -size)));
        }
        }
    }
    }
 
 
  /* Set up the frame pointer, if we're using one.  In mips16 code,
  /* Set up the frame pointer, if we're using one.  In mips16 code,
     we point the frame pointer ahead of the outgoing argument area.
     we point the frame pointer ahead of the outgoing argument area.
     This should allow more variables & incoming arguments to be
     This should allow more variables & incoming arguments to be
     accessed with unextended instructions.  */
     accessed with unextended instructions.  */
  if (frame_pointer_needed)
  if (frame_pointer_needed)
    {
    {
      if (TARGET_MIPS16 && cfun->machine->frame.args_size != 0)
      if (TARGET_MIPS16 && cfun->machine->frame.args_size != 0)
        {
        {
          rtx offset = GEN_INT (cfun->machine->frame.args_size);
          rtx offset = GEN_INT (cfun->machine->frame.args_size);
          if (SMALL_OPERAND (cfun->machine->frame.args_size))
          if (SMALL_OPERAND (cfun->machine->frame.args_size))
            RTX_FRAME_RELATED_P
            RTX_FRAME_RELATED_P
              (emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
              (emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
                                         stack_pointer_rtx,
                                         stack_pointer_rtx,
                                         offset))) = 1;
                                         offset))) = 1;
          else
          else
            {
            {
              emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), offset);
              emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), offset);
              emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
              emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
              emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
              emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
                                        hard_frame_pointer_rtx,
                                        hard_frame_pointer_rtx,
                                        MIPS_PROLOGUE_TEMP (Pmode)));
                                        MIPS_PROLOGUE_TEMP (Pmode)));
              mips_set_frame_expr
              mips_set_frame_expr
                (gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
                (gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
                              plus_constant (stack_pointer_rtx,
                              plus_constant (stack_pointer_rtx,
                                             cfun->machine->frame.args_size)));
                                             cfun->machine->frame.args_size)));
            }
            }
        }
        }
      else
      else
        RTX_FRAME_RELATED_P (emit_move_insn (hard_frame_pointer_rtx,
        RTX_FRAME_RELATED_P (emit_move_insn (hard_frame_pointer_rtx,
                                             stack_pointer_rtx)) = 1;
                                             stack_pointer_rtx)) = 1;
    }
    }
 
 
  mips_emit_loadgp ();
  mips_emit_loadgp ();
 
 
  /* If generating o32/o64 abicalls, save $gp on the stack.  */
  /* If generating o32/o64 abicalls, save $gp on the stack.  */
  if (TARGET_ABICALLS && !TARGET_NEWABI && !current_function_is_leaf)
  if (TARGET_ABICALLS && !TARGET_NEWABI && !current_function_is_leaf)
    emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size)));
    emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size)));
 
 
  /* If we are profiling, make sure no instructions are scheduled before
  /* If we are profiling, make sure no instructions are scheduled before
     the call to mcount.  */
     the call to mcount.  */
 
 
  if (current_function_profile)
  if (current_function_profile)
    emit_insn (gen_blockage ());
    emit_insn (gen_blockage ());
}
}


/* Do any necessary cleanup after a function to restore stack, frame,
/* Do any necessary cleanup after a function to restore stack, frame,
   and regs.  */
   and regs.  */
 
 
#define RA_MASK BITMASK_HIGH    /* 1 << 31 */
#define RA_MASK BITMASK_HIGH    /* 1 << 31 */
 
 
static void
static void
mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
                               HOST_WIDE_INT size ATTRIBUTE_UNUSED)
                               HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
{
  /* Reinstate the normal $gp.  */
  /* Reinstate the normal $gp.  */
  REGNO (pic_offset_table_rtx) = GLOBAL_POINTER_REGNUM;
  REGNO (pic_offset_table_rtx) = GLOBAL_POINTER_REGNUM;
  mips_output_cplocal ();
  mips_output_cplocal ();
 
 
  if (cfun->machine->all_noreorder_p)
  if (cfun->machine->all_noreorder_p)
    {
    {
      /* Avoid using %>%) since it adds excess whitespace.  */
      /* Avoid using %>%) since it adds excess whitespace.  */
      output_asm_insn (".set\tmacro", 0);
      output_asm_insn (".set\tmacro", 0);
      output_asm_insn (".set\treorder", 0);
      output_asm_insn (".set\treorder", 0);
      set_noreorder = set_nomacro = 0;
      set_noreorder = set_nomacro = 0;
    }
    }
 
 
  if (!FUNCTION_NAME_ALREADY_DECLARED && !flag_inhibit_size_directive)
  if (!FUNCTION_NAME_ALREADY_DECLARED && !flag_inhibit_size_directive)
    {
    {
      const char *fnname;
      const char *fnname;
 
 
      /* Get the function name the same way that toplev.c does before calling
      /* Get the function name the same way that toplev.c does before calling
         assemble_start_function.  This is needed so that the name used here
         assemble_start_function.  This is needed so that the name used here
         exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
         exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
      fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
      fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
      fputs ("\t.end\t", file);
      fputs ("\t.end\t", file);
      assemble_name (file, fnname);
      assemble_name (file, fnname);
      fputs ("\n", file);
      fputs ("\n", file);
    }
    }
}
}


/* Emit instructions to restore register REG from slot MEM.  */
/* Emit instructions to restore register REG from slot MEM.  */
 
 
static void
static void
mips_restore_reg (rtx reg, rtx mem)
mips_restore_reg (rtx reg, rtx mem)
{
{
  /* There's no mips16 instruction to load $31 directly.  Load into
  /* There's no mips16 instruction to load $31 directly.  Load into
     $7 instead and adjust the return insn appropriately.  */
     $7 instead and adjust the return insn appropriately.  */
  if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
  if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
    reg = gen_rtx_REG (GET_MODE (reg), 7);
    reg = gen_rtx_REG (GET_MODE (reg), 7);
 
 
  if (TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
  if (TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
    {
    {
      /* Can't restore directly; move through a temporary.  */
      /* Can't restore directly; move through a temporary.  */
      emit_move_insn (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
      emit_move_insn (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
      emit_move_insn (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
      emit_move_insn (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
    }
    }
  else
  else
    emit_move_insn (reg, mem);
    emit_move_insn (reg, mem);
}
}
 
 
 
 
/* Expand the epilogue into a bunch of separate insns.  SIBCALL_P is true
/* Expand the epilogue into a bunch of separate insns.  SIBCALL_P is true
   if this epilogue precedes a sibling call, false if it is for a normal
   if this epilogue precedes a sibling call, false if it is for a normal
   "epilogue" pattern.  */
   "epilogue" pattern.  */
 
 
void
void
mips_expand_epilogue (int sibcall_p)
mips_expand_epilogue (int sibcall_p)
{
{
  HOST_WIDE_INT step1, step2;
  HOST_WIDE_INT step1, step2;
  rtx base, target;
  rtx base, target;
 
 
  if (!sibcall_p && mips_can_use_return_insn ())
  if (!sibcall_p && mips_can_use_return_insn ())
    {
    {
      emit_jump_insn (gen_return ());
      emit_jump_insn (gen_return ());
      return;
      return;
    }
    }
 
 
  /* Split the frame into two.  STEP1 is the amount of stack we should
  /* Split the frame into two.  STEP1 is the amount of stack we should
     deallocate before restoring the registers.  STEP2 is the amount we
     deallocate before restoring the registers.  STEP2 is the amount we
     should deallocate afterwards.
     should deallocate afterwards.
 
 
     Start off by assuming that no registers need to be restored.  */
     Start off by assuming that no registers need to be restored.  */
  step1 = cfun->machine->frame.total_size;
  step1 = cfun->machine->frame.total_size;
  step2 = 0;
  step2 = 0;
 
 
  /* Work out which register holds the frame address.  Account for the
  /* Work out which register holds the frame address.  Account for the
     frame pointer offset used by mips16 code.  */
     frame pointer offset used by mips16 code.  */
  if (!frame_pointer_needed)
  if (!frame_pointer_needed)
    base = stack_pointer_rtx;
    base = stack_pointer_rtx;
  else
  else
    {
    {
      base = hard_frame_pointer_rtx;
      base = hard_frame_pointer_rtx;
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        step1 -= cfun->machine->frame.args_size;
        step1 -= cfun->machine->frame.args_size;
    }
    }
 
 
  /* If we need to restore registers, deallocate as much stack as
  /* If we need to restore registers, deallocate as much stack as
     possible in the second step without going out of range.  */
     possible in the second step without going out of range.  */
  if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
  if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
    {
    {
      step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
      step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
      step1 -= step2;
      step1 -= step2;
    }
    }
 
 
  /* Set TARGET to BASE + STEP1.  */
  /* Set TARGET to BASE + STEP1.  */
  target = base;
  target = base;
  if (step1 > 0)
  if (step1 > 0)
    {
    {
      rtx adjust;
      rtx adjust;
 
 
      /* Get an rtx for STEP1 that we can add to BASE.  */
      /* Get an rtx for STEP1 that we can add to BASE.  */
      adjust = GEN_INT (step1);
      adjust = GEN_INT (step1);
      if (!SMALL_OPERAND (step1))
      if (!SMALL_OPERAND (step1))
        {
        {
          emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), adjust);
          emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), adjust);
          adjust = MIPS_EPILOGUE_TEMP (Pmode);
          adjust = MIPS_EPILOGUE_TEMP (Pmode);
        }
        }
 
 
      /* Normal mode code can copy the result straight into $sp.  */
      /* Normal mode code can copy the result straight into $sp.  */
      if (!TARGET_MIPS16)
      if (!TARGET_MIPS16)
        target = stack_pointer_rtx;
        target = stack_pointer_rtx;
 
 
      emit_insn (gen_add3_insn (target, base, adjust));
      emit_insn (gen_add3_insn (target, base, adjust));
    }
    }
 
 
  /* Copy TARGET into the stack pointer.  */
  /* Copy TARGET into the stack pointer.  */
  if (target != stack_pointer_rtx)
  if (target != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, target);
    emit_move_insn (stack_pointer_rtx, target);
 
 
  /* If we're using addressing macros for n32/n64 abicalls, $gp is
  /* If we're using addressing macros for n32/n64 abicalls, $gp is
     implicitly used by all SYMBOL_REFs.  We must emit a blockage
     implicitly used by all SYMBOL_REFs.  We must emit a blockage
     insn before restoring it.  */
     insn before restoring it.  */
  if (TARGET_ABICALLS && TARGET_NEWABI && !TARGET_EXPLICIT_RELOCS)
  if (TARGET_ABICALLS && TARGET_NEWABI && !TARGET_EXPLICIT_RELOCS)
    emit_insn (gen_blockage ());
    emit_insn (gen_blockage ());
 
 
  /* Restore the registers.  */
  /* Restore the registers.  */
  mips_for_each_saved_reg (cfun->machine->frame.total_size - step2,
  mips_for_each_saved_reg (cfun->machine->frame.total_size - step2,
                           mips_restore_reg);
                           mips_restore_reg);
 
 
  /* Deallocate the final bit of the frame.  */
  /* Deallocate the final bit of the frame.  */
  if (step2 > 0)
  if (step2 > 0)
    emit_insn (gen_add3_insn (stack_pointer_rtx,
    emit_insn (gen_add3_insn (stack_pointer_rtx,
                              stack_pointer_rtx,
                              stack_pointer_rtx,
                              GEN_INT (step2)));
                              GEN_INT (step2)));
 
 
  /* Add in the __builtin_eh_return stack adjustment.  We need to
  /* Add in the __builtin_eh_return stack adjustment.  We need to
     use a temporary in mips16 code.  */
     use a temporary in mips16 code.  */
  if (current_function_calls_eh_return)
  if (current_function_calls_eh_return)
    {
    {
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        {
        {
          emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
          emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
          emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
          emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
                                    MIPS_EPILOGUE_TEMP (Pmode),
                                    MIPS_EPILOGUE_TEMP (Pmode),
                                    EH_RETURN_STACKADJ_RTX));
                                    EH_RETURN_STACKADJ_RTX));
          emit_move_insn (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
          emit_move_insn (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
        }
        }
      else
      else
        emit_insn (gen_add3_insn (stack_pointer_rtx,
        emit_insn (gen_add3_insn (stack_pointer_rtx,
                                  stack_pointer_rtx,
                                  stack_pointer_rtx,
                                  EH_RETURN_STACKADJ_RTX));
                                  EH_RETURN_STACKADJ_RTX));
    }
    }
 
 
  if (!sibcall_p)
  if (!sibcall_p)
    {
    {
      /* The mips16 loads the return address into $7, not $31.  */
      /* The mips16 loads the return address into $7, not $31.  */
      if (TARGET_MIPS16 && (cfun->machine->frame.mask & RA_MASK) != 0)
      if (TARGET_MIPS16 && (cfun->machine->frame.mask & RA_MASK) != 0)
        emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
        emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
                                                          GP_REG_FIRST + 7)));
                                                          GP_REG_FIRST + 7)));
      else
      else
        emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
        emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
                                                          GP_REG_FIRST + 31)));
                                                          GP_REG_FIRST + 31)));
    }
    }
}
}


/* Return nonzero if this function is known to have a null epilogue.
/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack
   This allows the optimizer to omit jumps to jumps if no stack
   was created.  */
   was created.  */
 
 
int
int
mips_can_use_return_insn (void)
mips_can_use_return_insn (void)
{
{
  tree return_type;
  tree return_type;
 
 
  if (! reload_completed)
  if (! reload_completed)
    return 0;
    return 0;
 
 
  if (regs_ever_live[31] || current_function_profile)
  if (regs_ever_live[31] || current_function_profile)
    return 0;
    return 0;
 
 
  return_type = DECL_RESULT (current_function_decl);
  return_type = DECL_RESULT (current_function_decl);
 
 
  /* In mips16 mode, a function which returns a floating point value
  /* In mips16 mode, a function which returns a floating point value
     needs to arrange to copy the return value into the floating point
     needs to arrange to copy the return value into the floating point
     registers.  */
     registers.  */
  if (TARGET_MIPS16
  if (TARGET_MIPS16
      && mips16_hard_float
      && mips16_hard_float
      && ! aggregate_value_p (return_type, current_function_decl)
      && ! aggregate_value_p (return_type, current_function_decl)
      && GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
      && GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
      && GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
      && GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
    return 0;
    return 0;
 
 
  if (cfun->machine->frame.initialized)
  if (cfun->machine->frame.initialized)
    return cfun->machine->frame.total_size == 0;
    return cfun->machine->frame.total_size == 0;
 
 
  return compute_frame_size (get_frame_size ()) == 0;
  return compute_frame_size (get_frame_size ()) == 0;
}
}


/* Implement TARGET_ASM_OUTPUT_MI_THUNK.  Generate rtl rather than asm text
/* Implement TARGET_ASM_OUTPUT_MI_THUNK.  Generate rtl rather than asm text
   in order to avoid duplicating too much logic from elsewhere.  */
   in order to avoid duplicating too much logic from elsewhere.  */
 
 
static void
static void
mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
                      HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
                      HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
                      tree function)
                      tree function)
{
{
  rtx this, temp1, temp2, insn, fnaddr;
  rtx this, temp1, temp2, insn, fnaddr;
 
 
  /* Pretend to be a post-reload pass while generating rtl.  */
  /* Pretend to be a post-reload pass while generating rtl.  */
  no_new_pseudos = 1;
  no_new_pseudos = 1;
  reload_completed = 1;
  reload_completed = 1;
  reset_block_changes ();
  reset_block_changes ();
 
 
  /* Pick a global pointer for -mabicalls.  Use $15 rather than $28
  /* Pick a global pointer for -mabicalls.  Use $15 rather than $28
     for TARGET_NEWABI since the latter is a call-saved register.  */
     for TARGET_NEWABI since the latter is a call-saved register.  */
  if (TARGET_ABICALLS)
  if (TARGET_ABICALLS)
    cfun->machine->global_pointer
    cfun->machine->global_pointer
      = REGNO (pic_offset_table_rtx)
      = REGNO (pic_offset_table_rtx)
      = TARGET_NEWABI ? 15 : GLOBAL_POINTER_REGNUM;
      = TARGET_NEWABI ? 15 : GLOBAL_POINTER_REGNUM;
 
 
  /* Set up the global pointer for n32 or n64 abicalls.  */
  /* Set up the global pointer for n32 or n64 abicalls.  */
  mips_emit_loadgp ();
  mips_emit_loadgp ();
 
 
  /* We need two temporary registers in some cases.  */
  /* We need two temporary registers in some cases.  */
  temp1 = gen_rtx_REG (Pmode, 2);
  temp1 = gen_rtx_REG (Pmode, 2);
  temp2 = gen_rtx_REG (Pmode, 3);
  temp2 = gen_rtx_REG (Pmode, 3);
 
 
  /* Find out which register contains the "this" pointer.  */
  /* Find out which register contains the "this" pointer.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
    this = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
  else
  else
    this = gen_rtx_REG (Pmode, GP_ARG_FIRST);
    this = gen_rtx_REG (Pmode, GP_ARG_FIRST);
 
 
  /* Add DELTA to THIS.  */
  /* Add DELTA to THIS.  */
  if (delta != 0)
  if (delta != 0)
    {
    {
      rtx offset = GEN_INT (delta);
      rtx offset = GEN_INT (delta);
      if (!SMALL_OPERAND (delta))
      if (!SMALL_OPERAND (delta))
        {
        {
          emit_move_insn (temp1, offset);
          emit_move_insn (temp1, offset);
          offset = temp1;
          offset = temp1;
        }
        }
      emit_insn (gen_add3_insn (this, this, offset));
      emit_insn (gen_add3_insn (this, this, offset));
    }
    }
 
 
  /* If needed, add *(*THIS + VCALL_OFFSET) to THIS.  */
  /* If needed, add *(*THIS + VCALL_OFFSET) to THIS.  */
  if (vcall_offset != 0)
  if (vcall_offset != 0)
    {
    {
      rtx addr;
      rtx addr;
 
 
      /* Set TEMP1 to *THIS.  */
      /* Set TEMP1 to *THIS.  */
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));
 
 
      /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET.  */
      /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET.  */
      addr = mips_add_offset (temp2, temp1, vcall_offset);
      addr = mips_add_offset (temp2, temp1, vcall_offset);
 
 
      /* Load the offset and add it to THIS.  */
      /* Load the offset and add it to THIS.  */
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
      emit_insn (gen_add3_insn (this, this, temp1));
      emit_insn (gen_add3_insn (this, this, temp1));
    }
    }
 
 
  /* Jump to the target function.  Use a sibcall if direct jumps are
  /* Jump to the target function.  Use a sibcall if direct jumps are
     allowed, otherwise load the address into a register first.  */
     allowed, otherwise load the address into a register first.  */
  fnaddr = XEXP (DECL_RTL (function), 0);
  fnaddr = XEXP (DECL_RTL (function), 0);
  if (TARGET_MIPS16 || TARGET_ABICALLS || TARGET_LONG_CALLS)
  if (TARGET_MIPS16 || TARGET_ABICALLS || TARGET_LONG_CALLS)
    {
    {
      /* This is messy.  gas treats "la $25,foo" as part of a call
      /* This is messy.  gas treats "la $25,foo" as part of a call
         sequence and may allow a global "foo" to be lazily bound.
         sequence and may allow a global "foo" to be lazily bound.
         The general move patterns therefore reject this combination.
         The general move patterns therefore reject this combination.
 
 
         In this context, lazy binding would actually be OK for o32 and o64,
         In this context, lazy binding would actually be OK for o32 and o64,
         but it's still wrong for n32 and n64; see mips_load_call_address.
         but it's still wrong for n32 and n64; see mips_load_call_address.
         We must therefore load the address via a temporary register if
         We must therefore load the address via a temporary register if
         mips_dangerous_for_la25_p.
         mips_dangerous_for_la25_p.
 
 
         If we jump to the temporary register rather than $25, the assembler
         If we jump to the temporary register rather than $25, the assembler
         can use the move insn to fill the jump's delay slot.  */
         can use the move insn to fill the jump's delay slot.  */
      if (TARGET_ABICALLS && !mips_dangerous_for_la25_p (fnaddr))
      if (TARGET_ABICALLS && !mips_dangerous_for_la25_p (fnaddr))
        temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
        temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
      mips_load_call_address (temp1, fnaddr, true);
      mips_load_call_address (temp1, fnaddr, true);
 
 
      if (TARGET_ABICALLS && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
      if (TARGET_ABICALLS && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
        emit_move_insn (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
        emit_move_insn (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
      emit_jump_insn (gen_indirect_jump (temp1));
      emit_jump_insn (gen_indirect_jump (temp1));
    }
    }
  else
  else
    {
    {
      insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
      insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
      SIBLING_CALL_P (insn) = 1;
      SIBLING_CALL_P (insn) = 1;
    }
    }
 
 
  /* Run just enough of rest_of_compilation.  This sequence was
  /* Run just enough of rest_of_compilation.  This sequence was
     "borrowed" from alpha.c.  */
     "borrowed" from alpha.c.  */
  insn = get_insns ();
  insn = get_insns ();
  insn_locators_initialize ();
  insn_locators_initialize ();
  split_all_insns_noflow ();
  split_all_insns_noflow ();
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    mips16_lay_out_constants ();
    mips16_lay_out_constants ();
  shorten_branches (insn);
  shorten_branches (insn);
  final_start_function (insn, file, 1);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();
  final_end_function ();
 
 
  /* Clean up the vars set above.  Note that final_end_function resets
  /* Clean up the vars set above.  Note that final_end_function resets
     the global pointer for us.  */
     the global pointer for us.  */
  reload_completed = 0;
  reload_completed = 0;
  no_new_pseudos = 0;
  no_new_pseudos = 0;
}
}


/* Returns nonzero if X contains a SYMBOL_REF.  */
/* Returns nonzero if X contains a SYMBOL_REF.  */
 
 
static int
static int
symbolic_expression_p (rtx x)
symbolic_expression_p (rtx x)
{
{
  if (GET_CODE (x) == SYMBOL_REF)
  if (GET_CODE (x) == SYMBOL_REF)
    return 1;
    return 1;
 
 
  if (GET_CODE (x) == CONST)
  if (GET_CODE (x) == CONST)
    return symbolic_expression_p (XEXP (x, 0));
    return symbolic_expression_p (XEXP (x, 0));
 
 
  if (UNARY_P (x))
  if (UNARY_P (x))
    return symbolic_expression_p (XEXP (x, 0));
    return symbolic_expression_p (XEXP (x, 0));
 
 
  if (ARITHMETIC_P (x))
  if (ARITHMETIC_P (x))
    return (symbolic_expression_p (XEXP (x, 0))
    return (symbolic_expression_p (XEXP (x, 0))
            || symbolic_expression_p (XEXP (x, 1)));
            || symbolic_expression_p (XEXP (x, 1)));
 
 
  return 0;
  return 0;
}
}
 
 
/* Choose the section to use for the constant rtx expression X that has
/* Choose the section to use for the constant rtx expression X that has
   mode MODE.  */
   mode MODE.  */
 
 
static section *
static section *
mips_select_rtx_section (enum machine_mode mode, rtx x,
mips_select_rtx_section (enum machine_mode mode, rtx x,
                         unsigned HOST_WIDE_INT align)
                         unsigned HOST_WIDE_INT align)
{
{
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      /* In mips16 mode, the constant table always goes in the same section
      /* In mips16 mode, the constant table always goes in the same section
         as the function, so that constants can be loaded using PC relative
         as the function, so that constants can be loaded using PC relative
         addressing.  */
         addressing.  */
      return function_section (current_function_decl);
      return function_section (current_function_decl);
    }
    }
  else if (TARGET_EMBEDDED_DATA)
  else if (TARGET_EMBEDDED_DATA)
    {
    {
      /* For embedded applications, always put constants in read-only data,
      /* For embedded applications, always put constants in read-only data,
         in order to reduce RAM usage.  */
         in order to reduce RAM usage.  */
      return mergeable_constant_section (mode, align, 0);
      return mergeable_constant_section (mode, align, 0);
    }
    }
  else
  else
    {
    {
      /* For hosted applications, always put constants in small data if
      /* For hosted applications, always put constants in small data if
         possible, as this gives the best performance.  */
         possible, as this gives the best performance.  */
      /* ??? Consider using mergeable small data sections.  */
      /* ??? Consider using mergeable small data sections.  */
 
 
      if (GET_MODE_SIZE (mode) <= (unsigned) mips_section_threshold
      if (GET_MODE_SIZE (mode) <= (unsigned) mips_section_threshold
          && mips_section_threshold > 0)
          && mips_section_threshold > 0)
        return get_named_section (NULL, ".sdata", 0);
        return get_named_section (NULL, ".sdata", 0);
      else if (flag_pic && symbolic_expression_p (x))
      else if (flag_pic && symbolic_expression_p (x))
        return get_named_section (NULL, ".data.rel.ro", 3);
        return get_named_section (NULL, ".data.rel.ro", 3);
      else
      else
        return mergeable_constant_section (mode, align, 0);
        return mergeable_constant_section (mode, align, 0);
    }
    }
}
}
 
 
/* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
/* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
 
 
   The complication here is that, with the combination TARGET_ABICALLS
   The complication here is that, with the combination TARGET_ABICALLS
   && !TARGET_GPWORD, jump tables will use absolute addresses, and should
   && !TARGET_GPWORD, jump tables will use absolute addresses, and should
   therefore not be included in the read-only part of a DSO.  Handle such
   therefore not be included in the read-only part of a DSO.  Handle such
   cases by selecting a normal data section instead of a read-only one.
   cases by selecting a normal data section instead of a read-only one.
   The logic apes that in default_function_rodata_section.  */
   The logic apes that in default_function_rodata_section.  */
 
 
static section *
static section *
mips_function_rodata_section (tree decl)
mips_function_rodata_section (tree decl)
{
{
  if (!TARGET_ABICALLS || TARGET_GPWORD)
  if (!TARGET_ABICALLS || TARGET_GPWORD)
    return default_function_rodata_section (decl);
    return default_function_rodata_section (decl);
 
 
  if (decl && DECL_SECTION_NAME (decl))
  if (decl && DECL_SECTION_NAME (decl))
    {
    {
      const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
      if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
        {
        {
          char *rname = ASTRDUP (name);
          char *rname = ASTRDUP (name);
          rname[14] = 'd';
          rname[14] = 'd';
          return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
          return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
        }
        }
      else if (flag_function_sections && flag_data_sections
      else if (flag_function_sections && flag_data_sections
               && strncmp (name, ".text.", 6) == 0)
               && strncmp (name, ".text.", 6) == 0)
        {
        {
          char *rname = ASTRDUP (name);
          char *rname = ASTRDUP (name);
          memcpy (rname + 1, "data", 4);
          memcpy (rname + 1, "data", 4);
          return get_section (rname, SECTION_WRITE, decl);
          return get_section (rname, SECTION_WRITE, decl);
        }
        }
    }
    }
  return data_section;
  return data_section;
}
}
 
 
/* Implement TARGET_IN_SMALL_DATA_P.  This function controls whether
/* Implement TARGET_IN_SMALL_DATA_P.  This function controls whether
   locally-defined objects go in a small data section.  It also controls
   locally-defined objects go in a small data section.  It also controls
   the setting of the SYMBOL_REF_SMALL_P flag, which in turn helps
   the setting of the SYMBOL_REF_SMALL_P flag, which in turn helps
   mips_classify_symbol decide when to use %gp_rel(...)($gp) accesses.  */
   mips_classify_symbol decide when to use %gp_rel(...)($gp) accesses.  */
 
 
static bool
static bool
mips_in_small_data_p (tree decl)
mips_in_small_data_p (tree decl)
{
{
  HOST_WIDE_INT size;
  HOST_WIDE_INT size;
 
 
  if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
  if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
    return false;
    return false;
 
 
  /* We don't yet generate small-data references for -mabicalls.  See related
  /* We don't yet generate small-data references for -mabicalls.  See related
     -G handling in override_options.  */
     -G handling in override_options.  */
  if (TARGET_ABICALLS)
  if (TARGET_ABICALLS)
    return false;
    return false;
 
 
  if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
  if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
    {
    {
      const char *name;
      const char *name;
 
 
      /* Reject anything that isn't in a known small-data section.  */
      /* Reject anything that isn't in a known small-data section.  */
      name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
      if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
        return false;
        return false;
 
 
      /* If a symbol is defined externally, the assembler will use the
      /* If a symbol is defined externally, the assembler will use the
         usual -G rules when deciding how to implement macros.  */
         usual -G rules when deciding how to implement macros.  */
      if (TARGET_EXPLICIT_RELOCS || !DECL_EXTERNAL (decl))
      if (TARGET_EXPLICIT_RELOCS || !DECL_EXTERNAL (decl))
        return true;
        return true;
    }
    }
  else if (TARGET_EMBEDDED_DATA)
  else if (TARGET_EMBEDDED_DATA)
    {
    {
      /* Don't put constants into the small data section: we want them
      /* Don't put constants into the small data section: we want them
         to be in ROM rather than RAM.  */
         to be in ROM rather than RAM.  */
      if (TREE_CODE (decl) != VAR_DECL)
      if (TREE_CODE (decl) != VAR_DECL)
        return false;
        return false;
 
 
      if (TREE_READONLY (decl)
      if (TREE_READONLY (decl)
          && !TREE_SIDE_EFFECTS (decl)
          && !TREE_SIDE_EFFECTS (decl)
          && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
          && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
        return false;
        return false;
    }
    }
 
 
  size = int_size_in_bytes (TREE_TYPE (decl));
  size = int_size_in_bytes (TREE_TYPE (decl));
  return (size > 0 && size <= mips_section_threshold);
  return (size > 0 && size <= mips_section_threshold);
}
}
 
 
/* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P.  We don't want to use
/* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P.  We don't want to use
   anchors for small data: the GP register acts as an anchor in that
   anchors for small data: the GP register acts as an anchor in that
   case.  We also don't want to use them for PC-relative accesses,
   case.  We also don't want to use them for PC-relative accesses,
   where the PC acts as an anchor.  */
   where the PC acts as an anchor.  */
 
 
static bool
static bool
mips_use_anchors_for_symbol_p (rtx symbol)
mips_use_anchors_for_symbol_p (rtx symbol)
{
{
  switch (mips_classify_symbol (symbol))
  switch (mips_classify_symbol (symbol))
    {
    {
    case SYMBOL_CONSTANT_POOL:
    case SYMBOL_CONSTANT_POOL:
    case SYMBOL_SMALL_DATA:
    case SYMBOL_SMALL_DATA:
      return false;
      return false;
 
 
    default:
    default:
      return true;
      return true;
    }
    }
}
}


/* See whether VALTYPE is a record whose fields should be returned in
/* See whether VALTYPE is a record whose fields should be returned in
   floating-point registers.  If so, return the number of fields and
   floating-point registers.  If so, return the number of fields and
   list them in FIELDS (which should have two elements).  Return 0
   list them in FIELDS (which should have two elements).  Return 0
   otherwise.
   otherwise.
 
 
   For n32 & n64, a structure with one or two fields is returned in
   For n32 & n64, a structure with one or two fields is returned in
   floating-point registers as long as every field has a floating-point
   floating-point registers as long as every field has a floating-point
   type.  */
   type.  */
 
 
static int
static int
mips_fpr_return_fields (tree valtype, tree *fields)
mips_fpr_return_fields (tree valtype, tree *fields)
{
{
  tree field;
  tree field;
  int i;
  int i;
 
 
  if (!TARGET_NEWABI)
  if (!TARGET_NEWABI)
    return 0;
    return 0;
 
 
  if (TREE_CODE (valtype) != RECORD_TYPE)
  if (TREE_CODE (valtype) != RECORD_TYPE)
    return 0;
    return 0;
 
 
  i = 0;
  i = 0;
  for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
  for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
    {
    {
      if (TREE_CODE (field) != FIELD_DECL)
      if (TREE_CODE (field) != FIELD_DECL)
        continue;
        continue;
 
 
      if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE)
      if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE)
        return 0;
        return 0;
 
 
      if (i == 2)
      if (i == 2)
        return 0;
        return 0;
 
 
      fields[i++] = field;
      fields[i++] = field;
    }
    }
  return i;
  return i;
}
}
 
 
 
 
/* Implement TARGET_RETURN_IN_MSB.  For n32 & n64, we should return
/* Implement TARGET_RETURN_IN_MSB.  For n32 & n64, we should return
   a value in the most significant part of $2/$3 if:
   a value in the most significant part of $2/$3 if:
 
 
      - the target is big-endian;
      - the target is big-endian;
 
 
      - the value has a structure or union type (we generalize this to
      - the value has a structure or union type (we generalize this to
        cover aggregates from other languages too); and
        cover aggregates from other languages too); and
 
 
      - the structure is not returned in floating-point registers.  */
      - the structure is not returned in floating-point registers.  */
 
 
static bool
static bool
mips_return_in_msb (tree valtype)
mips_return_in_msb (tree valtype)
{
{
  tree fields[2];
  tree fields[2];
 
 
  return (TARGET_NEWABI
  return (TARGET_NEWABI
          && TARGET_BIG_ENDIAN
          && TARGET_BIG_ENDIAN
          && AGGREGATE_TYPE_P (valtype)
          && AGGREGATE_TYPE_P (valtype)
          && mips_fpr_return_fields (valtype, fields) == 0);
          && mips_fpr_return_fields (valtype, fields) == 0);
}
}
 
 
 
 
/* Return a composite value in a pair of floating-point registers.
/* Return a composite value in a pair of floating-point registers.
   MODE1 and OFFSET1 are the mode and byte offset for the first value,
   MODE1 and OFFSET1 are the mode and byte offset for the first value,
   likewise MODE2 and OFFSET2 for the second.  MODE is the mode of the
   likewise MODE2 and OFFSET2 for the second.  MODE is the mode of the
   complete value.
   complete value.
 
 
   For n32 & n64, $f0 always holds the first value and $f2 the second.
   For n32 & n64, $f0 always holds the first value and $f2 the second.
   Otherwise the values are packed together as closely as possible.  */
   Otherwise the values are packed together as closely as possible.  */
 
 
static rtx
static rtx
mips_return_fpr_pair (enum machine_mode mode,
mips_return_fpr_pair (enum machine_mode mode,
                      enum machine_mode mode1, HOST_WIDE_INT offset1,
                      enum machine_mode mode1, HOST_WIDE_INT offset1,
                      enum machine_mode mode2, HOST_WIDE_INT offset2)
                      enum machine_mode mode2, HOST_WIDE_INT offset2)
{
{
  int inc;
  int inc;
 
 
  inc = (TARGET_NEWABI ? 2 : FP_INC);
  inc = (TARGET_NEWABI ? 2 : FP_INC);
  return gen_rtx_PARALLEL
  return gen_rtx_PARALLEL
    (mode,
    (mode,
     gen_rtvec (2,
     gen_rtvec (2,
                gen_rtx_EXPR_LIST (VOIDmode,
                gen_rtx_EXPR_LIST (VOIDmode,
                                   gen_rtx_REG (mode1, FP_RETURN),
                                   gen_rtx_REG (mode1, FP_RETURN),
                                   GEN_INT (offset1)),
                                   GEN_INT (offset1)),
                gen_rtx_EXPR_LIST (VOIDmode,
                gen_rtx_EXPR_LIST (VOIDmode,
                                   gen_rtx_REG (mode2, FP_RETURN + inc),
                                   gen_rtx_REG (mode2, FP_RETURN + inc),
                                   GEN_INT (offset2))));
                                   GEN_INT (offset2))));
 
 
}
}
 
 
 
 
/* Implement FUNCTION_VALUE and LIBCALL_VALUE.  For normal calls,
/* Implement FUNCTION_VALUE and LIBCALL_VALUE.  For normal calls,
   VALTYPE is the return type and MODE is VOIDmode.  For libcalls,
   VALTYPE is the return type and MODE is VOIDmode.  For libcalls,
   VALTYPE is null and MODE is the mode of the return value.  */
   VALTYPE is null and MODE is the mode of the return value.  */
 
 
rtx
rtx
mips_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
mips_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
                     enum machine_mode mode)
                     enum machine_mode mode)
{
{
  if (valtype)
  if (valtype)
    {
    {
      tree fields[2];
      tree fields[2];
      int unsignedp;
      int unsignedp;
 
 
      mode = TYPE_MODE (valtype);
      mode = TYPE_MODE (valtype);
      unsignedp = TYPE_UNSIGNED (valtype);
      unsignedp = TYPE_UNSIGNED (valtype);
 
 
      /* Since we define TARGET_PROMOTE_FUNCTION_RETURN that returns
      /* Since we define TARGET_PROMOTE_FUNCTION_RETURN that returns
         true, we must promote the mode just as PROMOTE_MODE does.  */
         true, we must promote the mode just as PROMOTE_MODE does.  */
      mode = promote_mode (valtype, mode, &unsignedp, 1);
      mode = promote_mode (valtype, mode, &unsignedp, 1);
 
 
      /* Handle structures whose fields are returned in $f0/$f2.  */
      /* Handle structures whose fields are returned in $f0/$f2.  */
      switch (mips_fpr_return_fields (valtype, fields))
      switch (mips_fpr_return_fields (valtype, fields))
        {
        {
        case 1:
        case 1:
          return gen_rtx_REG (mode, FP_RETURN);
          return gen_rtx_REG (mode, FP_RETURN);
 
 
        case 2:
        case 2:
          return mips_return_fpr_pair (mode,
          return mips_return_fpr_pair (mode,
                                       TYPE_MODE (TREE_TYPE (fields[0])),
                                       TYPE_MODE (TREE_TYPE (fields[0])),
                                       int_byte_position (fields[0]),
                                       int_byte_position (fields[0]),
                                       TYPE_MODE (TREE_TYPE (fields[1])),
                                       TYPE_MODE (TREE_TYPE (fields[1])),
                                       int_byte_position (fields[1]));
                                       int_byte_position (fields[1]));
        }
        }
 
 
      /* If a value is passed in the most significant part of a register, see
      /* If a value is passed in the most significant part of a register, see
         whether we have to round the mode up to a whole number of words.  */
         whether we have to round the mode up to a whole number of words.  */
      if (mips_return_in_msb (valtype))
      if (mips_return_in_msb (valtype))
        {
        {
          HOST_WIDE_INT size = int_size_in_bytes (valtype);
          HOST_WIDE_INT size = int_size_in_bytes (valtype);
          if (size % UNITS_PER_WORD != 0)
          if (size % UNITS_PER_WORD != 0)
            {
            {
              size += UNITS_PER_WORD - size % UNITS_PER_WORD;
              size += UNITS_PER_WORD - size % UNITS_PER_WORD;
              mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
              mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
            }
            }
        }
        }
 
 
      /* For EABI, the class of return register depends entirely on MODE.
      /* For EABI, the class of return register depends entirely on MODE.
         For example, "struct { some_type x; }" and "union { some_type x; }"
         For example, "struct { some_type x; }" and "union { some_type x; }"
         are returned in the same way as a bare "some_type" would be.
         are returned in the same way as a bare "some_type" would be.
         Other ABIs only use FPRs for scalar, complex or vector types.  */
         Other ABIs only use FPRs for scalar, complex or vector types.  */
      if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
      if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
        return gen_rtx_REG (mode, GP_RETURN);
        return gen_rtx_REG (mode, GP_RETURN);
    }
    }
 
 
  if ((GET_MODE_CLASS (mode) == MODE_FLOAT
  if ((GET_MODE_CLASS (mode) == MODE_FLOAT
       || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
       || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
      && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE)
      && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE)
    return gen_rtx_REG (mode, FP_RETURN);
    return gen_rtx_REG (mode, FP_RETURN);
 
 
  /* Handle long doubles for n32 & n64.  */
  /* Handle long doubles for n32 & n64.  */
  if (mode == TFmode)
  if (mode == TFmode)
    return mips_return_fpr_pair (mode,
    return mips_return_fpr_pair (mode,
                                 DImode, 0,
                                 DImode, 0,
                                 DImode, GET_MODE_SIZE (mode) / 2);
                                 DImode, GET_MODE_SIZE (mode) / 2);
 
 
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE * 2)
      && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE * 2)
    return mips_return_fpr_pair (mode,
    return mips_return_fpr_pair (mode,
                                 GET_MODE_INNER (mode), 0,
                                 GET_MODE_INNER (mode), 0,
                                 GET_MODE_INNER (mode),
                                 GET_MODE_INNER (mode),
                                 GET_MODE_SIZE (mode) / 2);
                                 GET_MODE_SIZE (mode) / 2);
 
 
  return gen_rtx_REG (mode, GP_RETURN);
  return gen_rtx_REG (mode, GP_RETURN);
}
}
 
 
/* Return nonzero when an argument must be passed by reference.  */
/* Return nonzero when an argument must be passed by reference.  */
 
 
static bool
static bool
mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
                        enum machine_mode mode, tree type,
                        enum machine_mode mode, tree type,
                        bool named ATTRIBUTE_UNUSED)
                        bool named ATTRIBUTE_UNUSED)
{
{
  if (mips_abi == ABI_EABI)
  if (mips_abi == ABI_EABI)
    {
    {
      int size;
      int size;
 
 
      /* ??? How should SCmode be handled?  */
      /* ??? How should SCmode be handled?  */
      if (mode == DImode || mode == DFmode)
      if (mode == DImode || mode == DFmode)
        return 0;
        return 0;
 
 
      size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
      size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
      return size == -1 || size > UNITS_PER_WORD;
      return size == -1 || size > UNITS_PER_WORD;
    }
    }
  else
  else
    {
    {
      /* If we have a variable-sized parameter, we have no choice.  */
      /* If we have a variable-sized parameter, we have no choice.  */
      return targetm.calls.must_pass_in_stack (mode, type);
      return targetm.calls.must_pass_in_stack (mode, type);
    }
    }
}
}
 
 
static bool
static bool
mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
                    enum machine_mode mode ATTRIBUTE_UNUSED,
                    enum machine_mode mode ATTRIBUTE_UNUSED,
                    tree type ATTRIBUTE_UNUSED, bool named)
                    tree type ATTRIBUTE_UNUSED, bool named)
{
{
  return mips_abi == ABI_EABI && named;
  return mips_abi == ABI_EABI && named;
}
}
 
 
/* Return true if registers of class CLASS cannot change from mode FROM
/* Return true if registers of class CLASS cannot change from mode FROM
   to mode TO.  */
   to mode TO.  */
 
 
bool
bool
mips_cannot_change_mode_class (enum machine_mode from,
mips_cannot_change_mode_class (enum machine_mode from,
                               enum machine_mode to, enum reg_class class)
                               enum machine_mode to, enum reg_class class)
{
{
  if (MIN (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) <= UNITS_PER_WORD
  if (MIN (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) <= UNITS_PER_WORD
      && MAX (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) > UNITS_PER_WORD)
      && MAX (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) > UNITS_PER_WORD)
    {
    {
      if (TARGET_BIG_ENDIAN)
      if (TARGET_BIG_ENDIAN)
        {
        {
          /* When a multi-word value is stored in paired floating-point
          /* When a multi-word value is stored in paired floating-point
             registers, the first register always holds the low word.
             registers, the first register always holds the low word.
             We therefore can't allow FPRs to change between single-word
             We therefore can't allow FPRs to change between single-word
             and multi-word modes.  */
             and multi-word modes.  */
          if (FP_INC > 1 && reg_classes_intersect_p (FP_REGS, class))
          if (FP_INC > 1 && reg_classes_intersect_p (FP_REGS, class))
            return true;
            return true;
        }
        }
      else
      else
        {
        {
          /* LO_REGNO == HI_REGNO + 1, so if a multi-word value is stored
          /* LO_REGNO == HI_REGNO + 1, so if a multi-word value is stored
             in LO and HI, the high word always comes first.  We therefore
             in LO and HI, the high word always comes first.  We therefore
             can't allow values stored in HI to change between single-word
             can't allow values stored in HI to change between single-word
             and multi-word modes.
             and multi-word modes.
             This rule applies to both the original HI/LO pair and the new
             This rule applies to both the original HI/LO pair and the new
             DSP accumulators.  */
             DSP accumulators.  */
          if (reg_classes_intersect_p (ACC_REGS, class))
          if (reg_classes_intersect_p (ACC_REGS, class))
            return true;
            return true;
        }
        }
    }
    }
  /* Loading a 32-bit value into a 64-bit floating-point register
  /* Loading a 32-bit value into a 64-bit floating-point register
     will not sign-extend the value, despite what LOAD_EXTEND_OP says.
     will not sign-extend the value, despite what LOAD_EXTEND_OP says.
     We can't allow 64-bit float registers to change from SImode to
     We can't allow 64-bit float registers to change from SImode to
     to a wider mode.  */
     to a wider mode.  */
  if (TARGET_FLOAT64
  if (TARGET_FLOAT64
      && from == SImode
      && from == SImode
      && GET_MODE_SIZE (to) >= UNITS_PER_WORD
      && GET_MODE_SIZE (to) >= UNITS_PER_WORD
      && reg_classes_intersect_p (FP_REGS, class))
      && reg_classes_intersect_p (FP_REGS, class))
    return true;
    return true;
  return false;
  return false;
}
}
 
 
/* Return true if X should not be moved directly into register $25.
/* Return true if X should not be moved directly into register $25.
   We need this because many versions of GAS will treat "la $25,foo" as
   We need this because many versions of GAS will treat "la $25,foo" as
   part of a call sequence and so allow a global "foo" to be lazily bound.  */
   part of a call sequence and so allow a global "foo" to be lazily bound.  */
 
 
bool
bool
mips_dangerous_for_la25_p (rtx x)
mips_dangerous_for_la25_p (rtx x)
{
{
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  if (TARGET_EXPLICIT_RELOCS)
  if (TARGET_EXPLICIT_RELOCS)
    return false;
    return false;
 
 
  mips_split_const (x, &x, &offset);
  mips_split_const (x, &x, &offset);
  return global_got_operand (x, VOIDmode);
  return global_got_operand (x, VOIDmode);
}
}
 
 
/* Implement PREFERRED_RELOAD_CLASS.  */
/* Implement PREFERRED_RELOAD_CLASS.  */
 
 
enum reg_class
enum reg_class
mips_preferred_reload_class (rtx x, enum reg_class class)
mips_preferred_reload_class (rtx x, enum reg_class class)
{
{
  if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, class))
  if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, class))
    return LEA_REGS;
    return LEA_REGS;
 
 
  if (TARGET_HARD_FLOAT
  if (TARGET_HARD_FLOAT
      && FLOAT_MODE_P (GET_MODE (x))
      && FLOAT_MODE_P (GET_MODE (x))
      && reg_class_subset_p (FP_REGS, class))
      && reg_class_subset_p (FP_REGS, class))
    return FP_REGS;
    return FP_REGS;
 
 
  if (reg_class_subset_p (GR_REGS, class))
  if (reg_class_subset_p (GR_REGS, class))
    class = GR_REGS;
    class = GR_REGS;
 
 
  if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, class))
  if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, class))
    class = M16_REGS;
    class = M16_REGS;
 
 
  return class;
  return class;
}
}
 
 
/* This function returns the register class required for a secondary
/* This function returns the register class required for a secondary
   register when copying between one of the registers in CLASS, and X,
   register when copying between one of the registers in CLASS, and X,
   using MODE.  If IN_P is nonzero, the copy is going from X to the
   using MODE.  If IN_P is nonzero, the copy is going from X to the
   register, otherwise the register is the source.  A return value of
   register, otherwise the register is the source.  A return value of
   NO_REGS means that no secondary register is required.  */
   NO_REGS means that no secondary register is required.  */
 
 
enum reg_class
enum reg_class
mips_secondary_reload_class (enum reg_class class,
mips_secondary_reload_class (enum reg_class class,
                             enum machine_mode mode, rtx x, int in_p)
                             enum machine_mode mode, rtx x, int in_p)
{
{
  enum reg_class gr_regs = TARGET_MIPS16 ? M16_REGS : GR_REGS;
  enum reg_class gr_regs = TARGET_MIPS16 ? M16_REGS : GR_REGS;
  int regno = -1;
  int regno = -1;
  int gp_reg_p;
  int gp_reg_p;
 
 
  if (REG_P (x)|| GET_CODE (x) == SUBREG)
  if (REG_P (x)|| GET_CODE (x) == SUBREG)
    regno = true_regnum (x);
    regno = true_regnum (x);
 
 
  gp_reg_p = TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
  gp_reg_p = TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
 
 
  if (mips_dangerous_for_la25_p (x))
  if (mips_dangerous_for_la25_p (x))
    {
    {
      gr_regs = LEA_REGS;
      gr_regs = LEA_REGS;
      if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], 25))
      if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], 25))
        return gr_regs;
        return gr_regs;
    }
    }
 
 
  /* Copying from HI or LO to anywhere other than a general register
  /* Copying from HI or LO to anywhere other than a general register
     requires a general register.
     requires a general register.
     This rule applies to both the original HI/LO pair and the new
     This rule applies to both the original HI/LO pair and the new
     DSP accumulators.  */
     DSP accumulators.  */
  if (reg_class_subset_p (class, ACC_REGS))
  if (reg_class_subset_p (class, ACC_REGS))
    {
    {
      if (TARGET_MIPS16 && in_p)
      if (TARGET_MIPS16 && in_p)
        {
        {
          /* We can't really copy to HI or LO at all in mips16 mode.  */
          /* We can't really copy to HI or LO at all in mips16 mode.  */
          return M16_REGS;
          return M16_REGS;
        }
        }
      return gp_reg_p ? NO_REGS : gr_regs;
      return gp_reg_p ? NO_REGS : gr_regs;
    }
    }
  if (ACC_REG_P (regno))
  if (ACC_REG_P (regno))
    {
    {
      if (TARGET_MIPS16 && ! in_p)
      if (TARGET_MIPS16 && ! in_p)
        {
        {
          /* We can't really copy to HI or LO at all in mips16 mode.  */
          /* We can't really copy to HI or LO at all in mips16 mode.  */
          return M16_REGS;
          return M16_REGS;
        }
        }
      return class == gr_regs ? NO_REGS : gr_regs;
      return class == gr_regs ? NO_REGS : gr_regs;
    }
    }
 
 
  /* We can only copy a value to a condition code register from a
  /* We can only copy a value to a condition code register from a
     floating point register, and even then we require a scratch
     floating point register, and even then we require a scratch
     floating point register.  We can only copy a value out of a
     floating point register.  We can only copy a value out of a
     condition code register into a general register.  */
     condition code register into a general register.  */
  if (class == ST_REGS)
  if (class == ST_REGS)
    {
    {
      if (in_p)
      if (in_p)
        return FP_REGS;
        return FP_REGS;
      return gp_reg_p ? NO_REGS : gr_regs;
      return gp_reg_p ? NO_REGS : gr_regs;
    }
    }
  if (ST_REG_P (regno))
  if (ST_REG_P (regno))
    {
    {
      if (! in_p)
      if (! in_p)
        return FP_REGS;
        return FP_REGS;
      return class == gr_regs ? NO_REGS : gr_regs;
      return class == gr_regs ? NO_REGS : gr_regs;
    }
    }
 
 
  if (class == FP_REGS)
  if (class == FP_REGS)
    {
    {
      if (MEM_P (x))
      if (MEM_P (x))
        {
        {
          /* In this case we can use lwc1, swc1, ldc1 or sdc1.  */
          /* In this case we can use lwc1, swc1, ldc1 or sdc1.  */
          return NO_REGS;
          return NO_REGS;
        }
        }
      else if (CONSTANT_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT)
      else if (CONSTANT_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT)
        {
        {
          /* We can use the l.s and l.d macros to load floating-point
          /* We can use the l.s and l.d macros to load floating-point
             constants.  ??? For l.s, we could probably get better
             constants.  ??? For l.s, we could probably get better
             code by returning GR_REGS here.  */
             code by returning GR_REGS here.  */
          return NO_REGS;
          return NO_REGS;
        }
        }
      else if (gp_reg_p || x == CONST0_RTX (mode))
      else if (gp_reg_p || x == CONST0_RTX (mode))
        {
        {
          /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1.  */
          /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1.  */
          return NO_REGS;
          return NO_REGS;
        }
        }
      else if (FP_REG_P (regno))
      else if (FP_REG_P (regno))
        {
        {
          /* In this case we can use mov.s or mov.d.  */
          /* In this case we can use mov.s or mov.d.  */
          return NO_REGS;
          return NO_REGS;
        }
        }
      else
      else
        {
        {
          /* Otherwise, we need to reload through an integer register.  */
          /* Otherwise, we need to reload through an integer register.  */
          return gr_regs;
          return gr_regs;
        }
        }
    }
    }
 
 
  /* In mips16 mode, going between memory and anything but M16_REGS
  /* In mips16 mode, going between memory and anything but M16_REGS
     requires an M16_REG.  */
     requires an M16_REG.  */
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    {
    {
      if (class != M16_REGS && class != M16_NA_REGS)
      if (class != M16_REGS && class != M16_NA_REGS)
        {
        {
          if (gp_reg_p)
          if (gp_reg_p)
            return NO_REGS;
            return NO_REGS;
          return M16_REGS;
          return M16_REGS;
        }
        }
      if (! gp_reg_p)
      if (! gp_reg_p)
        {
        {
          if (class == M16_REGS || class == M16_NA_REGS)
          if (class == M16_REGS || class == M16_NA_REGS)
            return NO_REGS;
            return NO_REGS;
          return M16_REGS;
          return M16_REGS;
        }
        }
    }
    }
 
 
  return NO_REGS;
  return NO_REGS;
}
}
 
 
/* Implement CLASS_MAX_NREGS.
/* Implement CLASS_MAX_NREGS.
 
 
   Usually all registers are word-sized.  The only supported exception
   Usually all registers are word-sized.  The only supported exception
   is -mgp64 -msingle-float, which has 64-bit words but 32-bit float
   is -mgp64 -msingle-float, which has 64-bit words but 32-bit float
   registers.  A word-based calculation is correct even in that case,
   registers.  A word-based calculation is correct even in that case,
   since -msingle-float disallows multi-FPR values.
   since -msingle-float disallows multi-FPR values.
 
 
   The FP status registers are an exception to this rule.  They are always
   The FP status registers are an exception to this rule.  They are always
   4 bytes wide as they only hold condition code modes, and CCmode is always
   4 bytes wide as they only hold condition code modes, and CCmode is always
   considered to be 4 bytes wide.  */
   considered to be 4 bytes wide.  */
 
 
int
int
mips_class_max_nregs (enum reg_class class ATTRIBUTE_UNUSED,
mips_class_max_nregs (enum reg_class class ATTRIBUTE_UNUSED,
                      enum machine_mode mode)
                      enum machine_mode mode)
{
{
  if (class == ST_REGS)
  if (class == ST_REGS)
    return (GET_MODE_SIZE (mode) + 3) / 4;
    return (GET_MODE_SIZE (mode) + 3) / 4;
  else
  else
    return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
    return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
}
 
 
static bool
static bool
mips_valid_pointer_mode (enum machine_mode mode)
mips_valid_pointer_mode (enum machine_mode mode)
{
{
  return (mode == SImode || (TARGET_64BIT && mode == DImode));
  return (mode == SImode || (TARGET_64BIT && mode == DImode));
}
}
 
 
/* Target hook for vector_mode_supported_p.  */
/* Target hook for vector_mode_supported_p.  */
 
 
static bool
static bool
mips_vector_mode_supported_p (enum machine_mode mode)
mips_vector_mode_supported_p (enum machine_mode mode)
{
{
  switch (mode)
  switch (mode)
    {
    {
    case V2SFmode:
    case V2SFmode:
      return TARGET_PAIRED_SINGLE_FLOAT;
      return TARGET_PAIRED_SINGLE_FLOAT;
 
 
    case V2HImode:
    case V2HImode:
    case V4QImode:
    case V4QImode:
      return TARGET_DSP;
      return TARGET_DSP;
 
 
    default:
    default:
      return false;
      return false;
    }
    }
}
}


/* If we can access small data directly (using gp-relative relocation
/* If we can access small data directly (using gp-relative relocation
   operators) return the small data pointer, otherwise return null.
   operators) return the small data pointer, otherwise return null.
 
 
   For each mips16 function which refers to GP relative symbols, we
   For each mips16 function which refers to GP relative symbols, we
   use a pseudo register, initialized at the start of the function, to
   use a pseudo register, initialized at the start of the function, to
   hold the $gp value.  */
   hold the $gp value.  */
 
 
static rtx
static rtx
mips16_gp_pseudo_reg (void)
mips16_gp_pseudo_reg (void)
{
{
  if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
  if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
    {
    {
      rtx unspec;
      rtx unspec;
      rtx insn, scan;
      rtx insn, scan;
 
 
      cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
      cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
 
 
      /* We want to initialize this to a value which gcc will believe
      /* We want to initialize this to a value which gcc will believe
         is constant.  */
         is constant.  */
      start_sequence ();
      start_sequence ();
      unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), UNSPEC_GP);
      unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), UNSPEC_GP);
      emit_move_insn (cfun->machine->mips16_gp_pseudo_rtx,
      emit_move_insn (cfun->machine->mips16_gp_pseudo_rtx,
                      gen_rtx_CONST (Pmode, unspec));
                      gen_rtx_CONST (Pmode, unspec));
      insn = get_insns ();
      insn = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      push_topmost_sequence ();
      push_topmost_sequence ();
      /* We need to emit the initialization after the FUNCTION_BEG
      /* We need to emit the initialization after the FUNCTION_BEG
         note, so that it will be integrated.  */
         note, so that it will be integrated.  */
      for (scan = get_insns (); scan != NULL_RTX; scan = NEXT_INSN (scan))
      for (scan = get_insns (); scan != NULL_RTX; scan = NEXT_INSN (scan))
        if (NOTE_P (scan)
        if (NOTE_P (scan)
            && NOTE_LINE_NUMBER (scan) == NOTE_INSN_FUNCTION_BEG)
            && NOTE_LINE_NUMBER (scan) == NOTE_INSN_FUNCTION_BEG)
          break;
          break;
      if (scan == NULL_RTX)
      if (scan == NULL_RTX)
        scan = get_insns ();
        scan = get_insns ();
      insn = emit_insn_after (insn, scan);
      insn = emit_insn_after (insn, scan);
      pop_topmost_sequence ();
      pop_topmost_sequence ();
    }
    }
 
 
  return cfun->machine->mips16_gp_pseudo_rtx;
  return cfun->machine->mips16_gp_pseudo_rtx;
}
}
 
 
/* Write out code to move floating point arguments in or out of
/* Write out code to move floating point arguments in or out of
   general registers.  Output the instructions to FILE.  FP_CODE is
   general registers.  Output the instructions to FILE.  FP_CODE is
   the code describing which arguments are present (see the comment at
   the code describing which arguments are present (see the comment at
   the definition of CUMULATIVE_ARGS in mips.h).  FROM_FP_P is nonzero if
   the definition of CUMULATIVE_ARGS in mips.h).  FROM_FP_P is nonzero if
   we are copying from the floating point registers.  */
   we are copying from the floating point registers.  */
 
 
static void
static void
mips16_fp_args (FILE *file, int fp_code, int from_fp_p)
mips16_fp_args (FILE *file, int fp_code, int from_fp_p)
{
{
  const char *s;
  const char *s;
  int gparg, fparg;
  int gparg, fparg;
  unsigned int f;
  unsigned int f;
 
 
  /* This code only works for the original 32 bit ABI and the O64 ABI.  */
  /* This code only works for the original 32 bit ABI and the O64 ABI.  */
  gcc_assert (TARGET_OLDABI);
  gcc_assert (TARGET_OLDABI);
 
 
  if (from_fp_p)
  if (from_fp_p)
    s = "mfc1";
    s = "mfc1";
  else
  else
    s = "mtc1";
    s = "mtc1";
  gparg = GP_ARG_FIRST;
  gparg = GP_ARG_FIRST;
  fparg = FP_ARG_FIRST;
  fparg = FP_ARG_FIRST;
  for (f = (unsigned int) fp_code; f != 0; f >>= 2)
  for (f = (unsigned int) fp_code; f != 0; f >>= 2)
    {
    {
      if ((f & 3) == 1)
      if ((f & 3) == 1)
        {
        {
          if ((fparg & 1) != 0)
          if ((fparg & 1) != 0)
            ++fparg;
            ++fparg;
          fprintf (file, "\t%s\t%s,%s\n", s,
          fprintf (file, "\t%s\t%s,%s\n", s,
                   reg_names[gparg], reg_names[fparg]);
                   reg_names[gparg], reg_names[fparg]);
        }
        }
      else if ((f & 3) == 2)
      else if ((f & 3) == 2)
        {
        {
          if (TARGET_64BIT)
          if (TARGET_64BIT)
            fprintf (file, "\td%s\t%s,%s\n", s,
            fprintf (file, "\td%s\t%s,%s\n", s,
                     reg_names[gparg], reg_names[fparg]);
                     reg_names[gparg], reg_names[fparg]);
          else
          else
            {
            {
              if ((fparg & 1) != 0)
              if ((fparg & 1) != 0)
                ++fparg;
                ++fparg;
              if (TARGET_BIG_ENDIAN)
              if (TARGET_BIG_ENDIAN)
                fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
                fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
                         reg_names[gparg], reg_names[fparg + 1], s,
                         reg_names[gparg], reg_names[fparg + 1], s,
                         reg_names[gparg + 1], reg_names[fparg]);
                         reg_names[gparg + 1], reg_names[fparg]);
              else
              else
                fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
                fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
                         reg_names[gparg], reg_names[fparg], s,
                         reg_names[gparg], reg_names[fparg], s,
                         reg_names[gparg + 1], reg_names[fparg + 1]);
                         reg_names[gparg + 1], reg_names[fparg + 1]);
              ++gparg;
              ++gparg;
              ++fparg;
              ++fparg;
            }
            }
        }
        }
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
 
 
      ++gparg;
      ++gparg;
      ++fparg;
      ++fparg;
    }
    }
}
}
 
 
/* Build a mips16 function stub.  This is used for functions which
/* Build a mips16 function stub.  This is used for functions which
   take arguments in the floating point registers.  It is 32 bit code
   take arguments in the floating point registers.  It is 32 bit code
   that moves the floating point args into the general registers, and
   that moves the floating point args into the general registers, and
   then jumps to the 16 bit code.  */
   then jumps to the 16 bit code.  */
 
 
static void
static void
build_mips16_function_stub (FILE *file)
build_mips16_function_stub (FILE *file)
{
{
  const char *fnname;
  const char *fnname;
  char *secname, *stubname;
  char *secname, *stubname;
  tree stubid, stubdecl;
  tree stubid, stubdecl;
  int need_comma;
  int need_comma;
  unsigned int f;
  unsigned int f;
 
 
  fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
  fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
  secname = (char *) alloca (strlen (fnname) + 20);
  secname = (char *) alloca (strlen (fnname) + 20);
  sprintf (secname, ".mips16.fn.%s", fnname);
  sprintf (secname, ".mips16.fn.%s", fnname);
  stubname = (char *) alloca (strlen (fnname) + 20);
  stubname = (char *) alloca (strlen (fnname) + 20);
  sprintf (stubname, "__fn_stub_%s", fnname);
  sprintf (stubname, "__fn_stub_%s", fnname);
  stubid = get_identifier (stubname);
  stubid = get_identifier (stubname);
  stubdecl = build_decl (FUNCTION_DECL, stubid,
  stubdecl = build_decl (FUNCTION_DECL, stubid,
                         build_function_type (void_type_node, NULL_TREE));
                         build_function_type (void_type_node, NULL_TREE));
  DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
  DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
 
 
  fprintf (file, "\t# Stub function for %s (", current_function_name ());
  fprintf (file, "\t# Stub function for %s (", current_function_name ());
  need_comma = 0;
  need_comma = 0;
  for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
  for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
    {
    {
      fprintf (file, "%s%s",
      fprintf (file, "%s%s",
               need_comma ? ", " : "",
               need_comma ? ", " : "",
               (f & 3) == 1 ? "float" : "double");
               (f & 3) == 1 ? "float" : "double");
      need_comma = 1;
      need_comma = 1;
    }
    }
  fprintf (file, ")\n");
  fprintf (file, ")\n");
 
 
  fprintf (file, "\t.set\tnomips16\n");
  fprintf (file, "\t.set\tnomips16\n");
  switch_to_section (function_section (stubdecl));
  switch_to_section (function_section (stubdecl));
  ASM_OUTPUT_ALIGN (file, floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));
  ASM_OUTPUT_ALIGN (file, floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));
 
 
  /* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
  /* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
     within a .ent, and we cannot emit another .ent.  */
     within a .ent, and we cannot emit another .ent.  */
  if (!FUNCTION_NAME_ALREADY_DECLARED)
  if (!FUNCTION_NAME_ALREADY_DECLARED)
    {
    {
      fputs ("\t.ent\t", file);
      fputs ("\t.ent\t", file);
      assemble_name (file, stubname);
      assemble_name (file, stubname);
      fputs ("\n", file);
      fputs ("\n", file);
    }
    }
 
 
  assemble_name (file, stubname);
  assemble_name (file, stubname);
  fputs (":\n", file);
  fputs (":\n", file);
 
 
  /* We don't want the assembler to insert any nops here.  */
  /* We don't want the assembler to insert any nops here.  */
  fprintf (file, "\t.set\tnoreorder\n");
  fprintf (file, "\t.set\tnoreorder\n");
 
 
  mips16_fp_args (file, current_function_args_info.fp_code, 1);
  mips16_fp_args (file, current_function_args_info.fp_code, 1);
 
 
  fprintf (asm_out_file, "\t.set\tnoat\n");
  fprintf (asm_out_file, "\t.set\tnoat\n");
  fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
  fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
  assemble_name (file, fnname);
  assemble_name (file, fnname);
  fprintf (file, "\n");
  fprintf (file, "\n");
  fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
  fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
  fprintf (asm_out_file, "\t.set\tat\n");
  fprintf (asm_out_file, "\t.set\tat\n");
 
 
  /* Unfortunately, we can't fill the jump delay slot.  We can't fill
  /* Unfortunately, we can't fill the jump delay slot.  We can't fill
     with one of the mfc1 instructions, because the result is not
     with one of the mfc1 instructions, because the result is not
     available for one instruction, so if the very first instruction
     available for one instruction, so if the very first instruction
     in the function refers to the register, it will see the wrong
     in the function refers to the register, it will see the wrong
     value.  */
     value.  */
  fprintf (file, "\tnop\n");
  fprintf (file, "\tnop\n");
 
 
  fprintf (file, "\t.set\treorder\n");
  fprintf (file, "\t.set\treorder\n");
 
 
  if (!FUNCTION_NAME_ALREADY_DECLARED)
  if (!FUNCTION_NAME_ALREADY_DECLARED)
    {
    {
      fputs ("\t.end\t", file);
      fputs ("\t.end\t", file);
      assemble_name (file, stubname);
      assemble_name (file, stubname);
      fputs ("\n", file);
      fputs ("\n", file);
    }
    }
 
 
  fprintf (file, "\t.set\tmips16\n");
  fprintf (file, "\t.set\tmips16\n");
 
 
  switch_to_section (function_section (current_function_decl));
  switch_to_section (function_section (current_function_decl));
}
}
 
 
/* We keep a list of functions for which we have already built stubs
/* We keep a list of functions for which we have already built stubs
   in build_mips16_call_stub.  */
   in build_mips16_call_stub.  */
 
 
struct mips16_stub
struct mips16_stub
{
{
  struct mips16_stub *next;
  struct mips16_stub *next;
  char *name;
  char *name;
  int fpret;
  int fpret;
};
};
 
 
static struct mips16_stub *mips16_stubs;
static struct mips16_stub *mips16_stubs;
 
 
/* Build a call stub for a mips16 call.  A stub is needed if we are
/* Build a call stub for a mips16 call.  A stub is needed if we are
   passing any floating point values which should go into the floating
   passing any floating point values which should go into the floating
   point registers.  If we are, and the call turns out to be to a 32
   point registers.  If we are, and the call turns out to be to a 32
   bit function, the stub will be used to move the values into the
   bit function, the stub will be used to move the values into the
   floating point registers before calling the 32 bit function.  The
   floating point registers before calling the 32 bit function.  The
   linker will magically adjust the function call to either the 16 bit
   linker will magically adjust the function call to either the 16 bit
   function or the 32 bit stub, depending upon where the function call
   function or the 32 bit stub, depending upon where the function call
   is actually defined.
   is actually defined.
 
 
   Similarly, we need a stub if the return value might come back in a
   Similarly, we need a stub if the return value might come back in a
   floating point register.
   floating point register.
 
 
   RETVAL is the location of the return value, or null if this is
   RETVAL is the location of the return value, or null if this is
   a call rather than a call_value.  FN is the address of the
   a call rather than a call_value.  FN is the address of the
   function and ARG_SIZE is the size of the arguments.  FP_CODE
   function and ARG_SIZE is the size of the arguments.  FP_CODE
   is the code built by function_arg.  This function returns a nonzero
   is the code built by function_arg.  This function returns a nonzero
   value if it builds the call instruction itself.  */
   value if it builds the call instruction itself.  */
 
 
int
int
build_mips16_call_stub (rtx retval, rtx fn, rtx arg_size, int fp_code)
build_mips16_call_stub (rtx retval, rtx fn, rtx arg_size, int fp_code)
{
{
  int fpret;
  int fpret;
  const char *fnname;
  const char *fnname;
  char *secname, *stubname;
  char *secname, *stubname;
  struct mips16_stub *l;
  struct mips16_stub *l;
  tree stubid, stubdecl;
  tree stubid, stubdecl;
  int need_comma;
  int need_comma;
  unsigned int f;
  unsigned int f;
 
 
  /* We don't need to do anything if we aren't in mips16 mode, or if
  /* We don't need to do anything if we aren't in mips16 mode, or if
     we were invoked with the -msoft-float option.  */
     we were invoked with the -msoft-float option.  */
  if (! TARGET_MIPS16 || ! mips16_hard_float)
  if (! TARGET_MIPS16 || ! mips16_hard_float)
    return 0;
    return 0;
 
 
  /* Figure out whether the value might come back in a floating point
  /* Figure out whether the value might come back in a floating point
     register.  */
     register.  */
  fpret = (retval != 0
  fpret = (retval != 0
           && GET_MODE_CLASS (GET_MODE (retval)) == MODE_FLOAT
           && GET_MODE_CLASS (GET_MODE (retval)) == MODE_FLOAT
           && GET_MODE_SIZE (GET_MODE (retval)) <= UNITS_PER_FPVALUE);
           && GET_MODE_SIZE (GET_MODE (retval)) <= UNITS_PER_FPVALUE);
 
 
  /* We don't need to do anything if there were no floating point
  /* We don't need to do anything if there were no floating point
     arguments and the value will not be returned in a floating point
     arguments and the value will not be returned in a floating point
     register.  */
     register.  */
  if (fp_code == 0 && ! fpret)
  if (fp_code == 0 && ! fpret)
    return 0;
    return 0;
 
 
  /* We don't need to do anything if this is a call to a special
  /* We don't need to do anything if this is a call to a special
     mips16 support function.  */
     mips16 support function.  */
  if (GET_CODE (fn) == SYMBOL_REF
  if (GET_CODE (fn) == SYMBOL_REF
      && strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
      && strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
    return 0;
    return 0;
 
 
  /* This code will only work for o32 and o64 abis.  The other ABI's
  /* This code will only work for o32 and o64 abis.  The other ABI's
     require more sophisticated support.  */
     require more sophisticated support.  */
  gcc_assert (TARGET_OLDABI);
  gcc_assert (TARGET_OLDABI);
 
 
  /* We can only handle SFmode and DFmode floating point return
  /* We can only handle SFmode and DFmode floating point return
     values.  */
     values.  */
  if (fpret)
  if (fpret)
    gcc_assert (GET_MODE (retval) == SFmode || GET_MODE (retval) == DFmode);
    gcc_assert (GET_MODE (retval) == SFmode || GET_MODE (retval) == DFmode);
 
 
  /* If we're calling via a function pointer, then we must always call
  /* If we're calling via a function pointer, then we must always call
     via a stub.  There are magic stubs provided in libgcc.a for each
     via a stub.  There are magic stubs provided in libgcc.a for each
     of the required cases.  Each of them expects the function address
     of the required cases.  Each of them expects the function address
     to arrive in register $2.  */
     to arrive in register $2.  */
 
 
  if (GET_CODE (fn) != SYMBOL_REF)
  if (GET_CODE (fn) != SYMBOL_REF)
    {
    {
      char buf[30];
      char buf[30];
      tree id;
      tree id;
      rtx stub_fn, insn;
      rtx stub_fn, insn;
 
 
      /* ??? If this code is modified to support other ABI's, we need
      /* ??? If this code is modified to support other ABI's, we need
         to handle PARALLEL return values here.  */
         to handle PARALLEL return values here.  */
 
 
      sprintf (buf, "__mips16_call_stub_%s%d",
      sprintf (buf, "__mips16_call_stub_%s%d",
               (fpret
               (fpret
                ? (GET_MODE (retval) == SFmode ? "sf_" : "df_")
                ? (GET_MODE (retval) == SFmode ? "sf_" : "df_")
                : ""),
                : ""),
               fp_code);
               fp_code);
      id = get_identifier (buf);
      id = get_identifier (buf);
      stub_fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
      stub_fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
 
 
      emit_move_insn (gen_rtx_REG (Pmode, 2), fn);
      emit_move_insn (gen_rtx_REG (Pmode, 2), fn);
 
 
      if (retval == NULL_RTX)
      if (retval == NULL_RTX)
        insn = gen_call_internal (stub_fn, arg_size);
        insn = gen_call_internal (stub_fn, arg_size);
      else
      else
        insn = gen_call_value_internal (retval, stub_fn, arg_size);
        insn = gen_call_value_internal (retval, stub_fn, arg_size);
      insn = emit_call_insn (insn);
      insn = emit_call_insn (insn);
 
 
      /* Put the register usage information on the CALL.  */
      /* Put the register usage information on the CALL.  */
      CALL_INSN_FUNCTION_USAGE (insn) =
      CALL_INSN_FUNCTION_USAGE (insn) =
        gen_rtx_EXPR_LIST (VOIDmode,
        gen_rtx_EXPR_LIST (VOIDmode,
                           gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 2)),
                           gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 2)),
                           CALL_INSN_FUNCTION_USAGE (insn));
                           CALL_INSN_FUNCTION_USAGE (insn));
 
 
      /* If we are handling a floating point return value, we need to
      /* If we are handling a floating point return value, we need to
         save $18 in the function prologue.  Putting a note on the
         save $18 in the function prologue.  Putting a note on the
         call will mean that regs_ever_live[$18] will be true if the
         call will mean that regs_ever_live[$18] will be true if the
         call is not eliminated, and we can check that in the prologue
         call is not eliminated, and we can check that in the prologue
         code.  */
         code.  */
      if (fpret)
      if (fpret)
        CALL_INSN_FUNCTION_USAGE (insn) =
        CALL_INSN_FUNCTION_USAGE (insn) =
          gen_rtx_EXPR_LIST (VOIDmode,
          gen_rtx_EXPR_LIST (VOIDmode,
                             gen_rtx_USE (VOIDmode,
                             gen_rtx_USE (VOIDmode,
                                          gen_rtx_REG (word_mode, 18)),
                                          gen_rtx_REG (word_mode, 18)),
                             CALL_INSN_FUNCTION_USAGE (insn));
                             CALL_INSN_FUNCTION_USAGE (insn));
 
 
      /* Return 1 to tell the caller that we've generated the call
      /* Return 1 to tell the caller that we've generated the call
         insn.  */
         insn.  */
      return 1;
      return 1;
    }
    }
 
 
  /* We know the function we are going to call.  If we have already
  /* We know the function we are going to call.  If we have already
     built a stub, we don't need to do anything further.  */
     built a stub, we don't need to do anything further.  */
 
 
  fnname = XSTR (fn, 0);
  fnname = XSTR (fn, 0);
  for (l = mips16_stubs; l != NULL; l = l->next)
  for (l = mips16_stubs; l != NULL; l = l->next)
    if (strcmp (l->name, fnname) == 0)
    if (strcmp (l->name, fnname) == 0)
      break;
      break;
 
 
  if (l == NULL)
  if (l == NULL)
    {
    {
      /* Build a special purpose stub.  When the linker sees a
      /* Build a special purpose stub.  When the linker sees a
         function call in mips16 code, it will check where the target
         function call in mips16 code, it will check where the target
         is defined.  If the target is a 32 bit call, the linker will
         is defined.  If the target is a 32 bit call, the linker will
         search for the section defined here.  It can tell which
         search for the section defined here.  It can tell which
         symbol this section is associated with by looking at the
         symbol this section is associated with by looking at the
         relocation information (the name is unreliable, since this
         relocation information (the name is unreliable, since this
         might be a static function).  If such a section is found, the
         might be a static function).  If such a section is found, the
         linker will redirect the call to the start of the magic
         linker will redirect the call to the start of the magic
         section.
         section.
 
 
         If the function does not return a floating point value, the
         If the function does not return a floating point value, the
         special stub section is named
         special stub section is named
             .mips16.call.FNNAME
             .mips16.call.FNNAME
 
 
         If the function does return a floating point value, the stub
         If the function does return a floating point value, the stub
         section is named
         section is named
             .mips16.call.fp.FNNAME
             .mips16.call.fp.FNNAME
         */
         */
 
 
      secname = (char *) alloca (strlen (fnname) + 40);
      secname = (char *) alloca (strlen (fnname) + 40);
      sprintf (secname, ".mips16.call.%s%s",
      sprintf (secname, ".mips16.call.%s%s",
               fpret ? "fp." : "",
               fpret ? "fp." : "",
               fnname);
               fnname);
      stubname = (char *) alloca (strlen (fnname) + 20);
      stubname = (char *) alloca (strlen (fnname) + 20);
      sprintf (stubname, "__call_stub_%s%s",
      sprintf (stubname, "__call_stub_%s%s",
               fpret ? "fp_" : "",
               fpret ? "fp_" : "",
               fnname);
               fnname);
      stubid = get_identifier (stubname);
      stubid = get_identifier (stubname);
      stubdecl = build_decl (FUNCTION_DECL, stubid,
      stubdecl = build_decl (FUNCTION_DECL, stubid,
                             build_function_type (void_type_node, NULL_TREE));
                             build_function_type (void_type_node, NULL_TREE));
      DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
      DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
 
 
      fprintf (asm_out_file, "\t# Stub function to call %s%s (",
      fprintf (asm_out_file, "\t# Stub function to call %s%s (",
               (fpret
               (fpret
                ? (GET_MODE (retval) == SFmode ? "float " : "double ")
                ? (GET_MODE (retval) == SFmode ? "float " : "double ")
                : ""),
                : ""),
               fnname);
               fnname);
      need_comma = 0;
      need_comma = 0;
      for (f = (unsigned int) fp_code; f != 0; f >>= 2)
      for (f = (unsigned int) fp_code; f != 0; f >>= 2)
        {
        {
          fprintf (asm_out_file, "%s%s",
          fprintf (asm_out_file, "%s%s",
                   need_comma ? ", " : "",
                   need_comma ? ", " : "",
                   (f & 3) == 1 ? "float" : "double");
                   (f & 3) == 1 ? "float" : "double");
          need_comma = 1;
          need_comma = 1;
        }
        }
      fprintf (asm_out_file, ")\n");
      fprintf (asm_out_file, ")\n");
 
 
      fprintf (asm_out_file, "\t.set\tnomips16\n");
      fprintf (asm_out_file, "\t.set\tnomips16\n");
      assemble_start_function (stubdecl, stubname);
      assemble_start_function (stubdecl, stubname);
 
 
      if (!FUNCTION_NAME_ALREADY_DECLARED)
      if (!FUNCTION_NAME_ALREADY_DECLARED)
        {
        {
          fputs ("\t.ent\t", asm_out_file);
          fputs ("\t.ent\t", asm_out_file);
          assemble_name (asm_out_file, stubname);
          assemble_name (asm_out_file, stubname);
          fputs ("\n", asm_out_file);
          fputs ("\n", asm_out_file);
 
 
          assemble_name (asm_out_file, stubname);
          assemble_name (asm_out_file, stubname);
          fputs (":\n", asm_out_file);
          fputs (":\n", asm_out_file);
        }
        }
 
 
      /* We build the stub code by hand.  That's the only way we can
      /* We build the stub code by hand.  That's the only way we can
         do it, since we can't generate 32 bit code during a 16 bit
         do it, since we can't generate 32 bit code during a 16 bit
         compilation.  */
         compilation.  */
 
 
      /* We don't want the assembler to insert any nops here.  */
      /* We don't want the assembler to insert any nops here.  */
      fprintf (asm_out_file, "\t.set\tnoreorder\n");
      fprintf (asm_out_file, "\t.set\tnoreorder\n");
 
 
      mips16_fp_args (asm_out_file, fp_code, 0);
      mips16_fp_args (asm_out_file, fp_code, 0);
 
 
      if (! fpret)
      if (! fpret)
        {
        {
          fprintf (asm_out_file, "\t.set\tnoat\n");
          fprintf (asm_out_file, "\t.set\tnoat\n");
          fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
          fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
                   fnname);
                   fnname);
          fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
          fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
          fprintf (asm_out_file, "\t.set\tat\n");
          fprintf (asm_out_file, "\t.set\tat\n");
          /* Unfortunately, we can't fill the jump delay slot.  We
          /* Unfortunately, we can't fill the jump delay slot.  We
             can't fill with one of the mtc1 instructions, because the
             can't fill with one of the mtc1 instructions, because the
             result is not available for one instruction, so if the
             result is not available for one instruction, so if the
             very first instruction in the function refers to the
             very first instruction in the function refers to the
             register, it will see the wrong value.  */
             register, it will see the wrong value.  */
          fprintf (asm_out_file, "\tnop\n");
          fprintf (asm_out_file, "\tnop\n");
        }
        }
      else
      else
        {
        {
          fprintf (asm_out_file, "\tmove\t%s,%s\n",
          fprintf (asm_out_file, "\tmove\t%s,%s\n",
                   reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
                   reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
          fprintf (asm_out_file, "\tjal\t%s\n", fnname);
          fprintf (asm_out_file, "\tjal\t%s\n", fnname);
          /* As above, we can't fill the delay slot.  */
          /* As above, we can't fill the delay slot.  */
          fprintf (asm_out_file, "\tnop\n");
          fprintf (asm_out_file, "\tnop\n");
          if (GET_MODE (retval) == SFmode)
          if (GET_MODE (retval) == SFmode)
            fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
            fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                     reg_names[GP_REG_FIRST + 2], reg_names[FP_REG_FIRST + 0]);
                     reg_names[GP_REG_FIRST + 2], reg_names[FP_REG_FIRST + 0]);
          else
          else
            {
            {
              if (TARGET_BIG_ENDIAN)
              if (TARGET_BIG_ENDIAN)
                {
                {
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                           reg_names[GP_REG_FIRST + 2],
                           reg_names[GP_REG_FIRST + 2],
                           reg_names[FP_REG_FIRST + 1]);
                           reg_names[FP_REG_FIRST + 1]);
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                           reg_names[GP_REG_FIRST + 3],
                           reg_names[GP_REG_FIRST + 3],
                           reg_names[FP_REG_FIRST + 0]);
                           reg_names[FP_REG_FIRST + 0]);
                }
                }
              else
              else
                {
                {
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                           reg_names[GP_REG_FIRST + 2],
                           reg_names[GP_REG_FIRST + 2],
                           reg_names[FP_REG_FIRST + 0]);
                           reg_names[FP_REG_FIRST + 0]);
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
                           reg_names[GP_REG_FIRST + 3],
                           reg_names[GP_REG_FIRST + 3],
                           reg_names[FP_REG_FIRST + 1]);
                           reg_names[FP_REG_FIRST + 1]);
                }
                }
            }
            }
          fprintf (asm_out_file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 18]);
          fprintf (asm_out_file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 18]);
          /* As above, we can't fill the delay slot.  */
          /* As above, we can't fill the delay slot.  */
          fprintf (asm_out_file, "\tnop\n");
          fprintf (asm_out_file, "\tnop\n");
        }
        }
 
 
      fprintf (asm_out_file, "\t.set\treorder\n");
      fprintf (asm_out_file, "\t.set\treorder\n");
 
 
#ifdef ASM_DECLARE_FUNCTION_SIZE
#ifdef ASM_DECLARE_FUNCTION_SIZE
      ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
      ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
#endif
#endif
 
 
      if (!FUNCTION_NAME_ALREADY_DECLARED)
      if (!FUNCTION_NAME_ALREADY_DECLARED)
        {
        {
          fputs ("\t.end\t", asm_out_file);
          fputs ("\t.end\t", asm_out_file);
          assemble_name (asm_out_file, stubname);
          assemble_name (asm_out_file, stubname);
          fputs ("\n", asm_out_file);
          fputs ("\n", asm_out_file);
        }
        }
 
 
      fprintf (asm_out_file, "\t.set\tmips16\n");
      fprintf (asm_out_file, "\t.set\tmips16\n");
 
 
      /* Record this stub.  */
      /* Record this stub.  */
      l = (struct mips16_stub *) xmalloc (sizeof *l);
      l = (struct mips16_stub *) xmalloc (sizeof *l);
      l->name = xstrdup (fnname);
      l->name = xstrdup (fnname);
      l->fpret = fpret;
      l->fpret = fpret;
      l->next = mips16_stubs;
      l->next = mips16_stubs;
      mips16_stubs = l;
      mips16_stubs = l;
    }
    }
 
 
  /* If we expect a floating point return value, but we've built a
  /* If we expect a floating point return value, but we've built a
     stub which does not expect one, then we're in trouble.  We can't
     stub which does not expect one, then we're in trouble.  We can't
     use the existing stub, because it won't handle the floating point
     use the existing stub, because it won't handle the floating point
     value.  We can't build a new stub, because the linker won't know
     value.  We can't build a new stub, because the linker won't know
     which stub to use for the various calls in this object file.
     which stub to use for the various calls in this object file.
     Fortunately, this case is illegal, since it means that a function
     Fortunately, this case is illegal, since it means that a function
     was declared in two different ways in a single compilation.  */
     was declared in two different ways in a single compilation.  */
  if (fpret && ! l->fpret)
  if (fpret && ! l->fpret)
    error ("cannot handle inconsistent calls to %qs", fnname);
    error ("cannot handle inconsistent calls to %qs", fnname);
 
 
  /* If we are calling a stub which handles a floating point return
  /* If we are calling a stub which handles a floating point return
     value, we need to arrange to save $18 in the prologue.  We do
     value, we need to arrange to save $18 in the prologue.  We do
     this by marking the function call as using the register.  The
     this by marking the function call as using the register.  The
     prologue will later see that it is used, and emit code to save
     prologue will later see that it is used, and emit code to save
     it.  */
     it.  */
 
 
  if (l->fpret)
  if (l->fpret)
    {
    {
      rtx insn;
      rtx insn;
 
 
      if (retval == NULL_RTX)
      if (retval == NULL_RTX)
        insn = gen_call_internal (fn, arg_size);
        insn = gen_call_internal (fn, arg_size);
      else
      else
        insn = gen_call_value_internal (retval, fn, arg_size);
        insn = gen_call_value_internal (retval, fn, arg_size);
      insn = emit_call_insn (insn);
      insn = emit_call_insn (insn);
 
 
      CALL_INSN_FUNCTION_USAGE (insn) =
      CALL_INSN_FUNCTION_USAGE (insn) =
        gen_rtx_EXPR_LIST (VOIDmode,
        gen_rtx_EXPR_LIST (VOIDmode,
                           gen_rtx_USE (VOIDmode, gen_rtx_REG (word_mode, 18)),
                           gen_rtx_USE (VOIDmode, gen_rtx_REG (word_mode, 18)),
                           CALL_INSN_FUNCTION_USAGE (insn));
                           CALL_INSN_FUNCTION_USAGE (insn));
 
 
      /* Return 1 to tell the caller that we've generated the call
      /* Return 1 to tell the caller that we've generated the call
         insn.  */
         insn.  */
      return 1;
      return 1;
    }
    }
 
 
  /* Return 0 to let the caller generate the call insn.  */
  /* Return 0 to let the caller generate the call insn.  */
  return 0;
  return 0;
}
}
 
 
/* An entry in the mips16 constant pool.  VALUE is the pool constant,
/* An entry in the mips16 constant pool.  VALUE is the pool constant,
   MODE is its mode, and LABEL is the CODE_LABEL associated with it.  */
   MODE is its mode, and LABEL is the CODE_LABEL associated with it.  */
 
 
struct mips16_constant {
struct mips16_constant {
  struct mips16_constant *next;
  struct mips16_constant *next;
  rtx value;
  rtx value;
  rtx label;
  rtx label;
  enum machine_mode mode;
  enum machine_mode mode;
};
};
 
 
/* Information about an incomplete mips16 constant pool.  FIRST is the
/* Information about an incomplete mips16 constant pool.  FIRST is the
   first constant, HIGHEST_ADDRESS is the highest address that the first
   first constant, HIGHEST_ADDRESS is the highest address that the first
   byte of the pool can have, and INSN_ADDRESS is the current instruction
   byte of the pool can have, and INSN_ADDRESS is the current instruction
   address.  */
   address.  */
 
 
struct mips16_constant_pool {
struct mips16_constant_pool {
  struct mips16_constant *first;
  struct mips16_constant *first;
  int highest_address;
  int highest_address;
  int insn_address;
  int insn_address;
};
};
 
 
/* Add constant VALUE to POOL and return its label.  MODE is the
/* Add constant VALUE to POOL and return its label.  MODE is the
   value's mode (used for CONST_INTs, etc.).  */
   value's mode (used for CONST_INTs, etc.).  */
 
 
static rtx
static rtx
add_constant (struct mips16_constant_pool *pool,
add_constant (struct mips16_constant_pool *pool,
              rtx value, enum machine_mode mode)
              rtx value, enum machine_mode mode)
{
{
  struct mips16_constant **p, *c;
  struct mips16_constant **p, *c;
  bool first_of_size_p;
  bool first_of_size_p;
 
 
  /* See whether the constant is already in the pool.  If so, return the
  /* See whether the constant is already in the pool.  If so, return the
     existing label, otherwise leave P pointing to the place where the
     existing label, otherwise leave P pointing to the place where the
     constant should be added.
     constant should be added.
 
 
     Keep the pool sorted in increasing order of mode size so that we can
     Keep the pool sorted in increasing order of mode size so that we can
     reduce the number of alignments needed.  */
     reduce the number of alignments needed.  */
  first_of_size_p = true;
  first_of_size_p = true;
  for (p = &pool->first; *p != 0; p = &(*p)->next)
  for (p = &pool->first; *p != 0; p = &(*p)->next)
    {
    {
      if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
      if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
        return (*p)->label;
        return (*p)->label;
      if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
      if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
        break;
        break;
      if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
      if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
        first_of_size_p = false;
        first_of_size_p = false;
    }
    }
 
 
  /* In the worst case, the constant needed by the earliest instruction
  /* In the worst case, the constant needed by the earliest instruction
     will end up at the end of the pool.  The entire pool must then be
     will end up at the end of the pool.  The entire pool must then be
     accessible from that instruction.
     accessible from that instruction.
 
 
     When adding the first constant, set the pool's highest address to
     When adding the first constant, set the pool's highest address to
     the address of the first out-of-range byte.  Adjust this address
     the address of the first out-of-range byte.  Adjust this address
     downwards each time a new constant is added.  */
     downwards each time a new constant is added.  */
  if (pool->first == 0)
  if (pool->first == 0)
    /* For pc-relative lw, addiu and daddiu instructions, the base PC value
    /* For pc-relative lw, addiu and daddiu instructions, the base PC value
       is the address of the instruction with the lowest two bits clear.
       is the address of the instruction with the lowest two bits clear.
       The base PC value for ld has the lowest three bits clear.  Assume
       The base PC value for ld has the lowest three bits clear.  Assume
       the worst case here.  */
       the worst case here.  */
    pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
    pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
  pool->highest_address -= GET_MODE_SIZE (mode);
  pool->highest_address -= GET_MODE_SIZE (mode);
  if (first_of_size_p)
  if (first_of_size_p)
    /* Take into account the worst possible padding due to alignment.  */
    /* Take into account the worst possible padding due to alignment.  */
    pool->highest_address -= GET_MODE_SIZE (mode) - 1;
    pool->highest_address -= GET_MODE_SIZE (mode) - 1;
 
 
  /* Create a new entry.  */
  /* Create a new entry.  */
  c = (struct mips16_constant *) xmalloc (sizeof *c);
  c = (struct mips16_constant *) xmalloc (sizeof *c);
  c->value = value;
  c->value = value;
  c->mode = mode;
  c->mode = mode;
  c->label = gen_label_rtx ();
  c->label = gen_label_rtx ();
  c->next = *p;
  c->next = *p;
  *p = c;
  *p = c;
 
 
  return c->label;
  return c->label;
}
}
 
 
/* Output constant VALUE after instruction INSN and return the last
/* Output constant VALUE after instruction INSN and return the last
   instruction emitted.  MODE is the mode of the constant.  */
   instruction emitted.  MODE is the mode of the constant.  */
 
 
static rtx
static rtx
dump_constants_1 (enum machine_mode mode, rtx value, rtx insn)
dump_constants_1 (enum machine_mode mode, rtx value, rtx insn)
{
{
  switch (GET_MODE_CLASS (mode))
  switch (GET_MODE_CLASS (mode))
    {
    {
    case MODE_INT:
    case MODE_INT:
      {
      {
        rtx size = GEN_INT (GET_MODE_SIZE (mode));
        rtx size = GEN_INT (GET_MODE_SIZE (mode));
        return emit_insn_after (gen_consttable_int (value, size), insn);
        return emit_insn_after (gen_consttable_int (value, size), insn);
      }
      }
 
 
    case MODE_FLOAT:
    case MODE_FLOAT:
      return emit_insn_after (gen_consttable_float (value), insn);
      return emit_insn_after (gen_consttable_float (value), insn);
 
 
    case MODE_VECTOR_FLOAT:
    case MODE_VECTOR_FLOAT:
    case MODE_VECTOR_INT:
    case MODE_VECTOR_INT:
      {
      {
        int i;
        int i;
        for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
        for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
          insn = dump_constants_1 (GET_MODE_INNER (mode),
          insn = dump_constants_1 (GET_MODE_INNER (mode),
                                   CONST_VECTOR_ELT (value, i), insn);
                                   CONST_VECTOR_ELT (value, i), insn);
        return insn;
        return insn;
      }
      }
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* Dump out the constants in CONSTANTS after INSN.  */
/* Dump out the constants in CONSTANTS after INSN.  */
 
 
static void
static void
dump_constants (struct mips16_constant *constants, rtx insn)
dump_constants (struct mips16_constant *constants, rtx insn)
{
{
  struct mips16_constant *c, *next;
  struct mips16_constant *c, *next;
  int align;
  int align;
 
 
  align = 0;
  align = 0;
  for (c = constants; c != NULL; c = next)
  for (c = constants; c != NULL; c = next)
    {
    {
      /* If necessary, increase the alignment of PC.  */
      /* If necessary, increase the alignment of PC.  */
      if (align < GET_MODE_SIZE (c->mode))
      if (align < GET_MODE_SIZE (c->mode))
        {
        {
          int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
          int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
          insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
          insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
        }
        }
      align = GET_MODE_SIZE (c->mode);
      align = GET_MODE_SIZE (c->mode);
 
 
      insn = emit_label_after (c->label, insn);
      insn = emit_label_after (c->label, insn);
      insn = dump_constants_1 (c->mode, c->value, insn);
      insn = dump_constants_1 (c->mode, c->value, insn);
 
 
      next = c->next;
      next = c->next;
      free (c);
      free (c);
    }
    }
 
 
  emit_barrier_after (insn);
  emit_barrier_after (insn);
}
}
 
 
/* Return the length of instruction INSN.  */
/* Return the length of instruction INSN.  */
 
 
static int
static int
mips16_insn_length (rtx insn)
mips16_insn_length (rtx insn)
{
{
  if (JUMP_P (insn))
  if (JUMP_P (insn))
    {
    {
      rtx body = PATTERN (insn);
      rtx body = PATTERN (insn);
      if (GET_CODE (body) == ADDR_VEC)
      if (GET_CODE (body) == ADDR_VEC)
        return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
        return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
      if (GET_CODE (body) == ADDR_DIFF_VEC)
      if (GET_CODE (body) == ADDR_DIFF_VEC)
        return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
        return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
    }
    }
  return get_attr_length (insn);
  return get_attr_length (insn);
}
}
 
 
/* Rewrite *X so that constant pool references refer to the constant's
/* Rewrite *X so that constant pool references refer to the constant's
   label instead.  DATA points to the constant pool structure.  */
   label instead.  DATA points to the constant pool structure.  */
 
 
static int
static int
mips16_rewrite_pool_refs (rtx *x, void *data)
mips16_rewrite_pool_refs (rtx *x, void *data)
{
{
  struct mips16_constant_pool *pool = data;
  struct mips16_constant_pool *pool = data;
  if (GET_CODE (*x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (*x))
  if (GET_CODE (*x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (*x))
    *x = gen_rtx_LABEL_REF (Pmode, add_constant (pool,
    *x = gen_rtx_LABEL_REF (Pmode, add_constant (pool,
                                                 get_pool_constant (*x),
                                                 get_pool_constant (*x),
                                                 get_pool_mode (*x)));
                                                 get_pool_mode (*x)));
  return 0;
  return 0;
}
}
 
 
/* Build MIPS16 constant pools.  */
/* Build MIPS16 constant pools.  */
 
 
static void
static void
mips16_lay_out_constants (void)
mips16_lay_out_constants (void)
{
{
  struct mips16_constant_pool pool;
  struct mips16_constant_pool pool;
  rtx insn, barrier;
  rtx insn, barrier;
 
 
  barrier = 0;
  barrier = 0;
  memset (&pool, 0, sizeof (pool));
  memset (&pool, 0, sizeof (pool));
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
    {
      /* Rewrite constant pool references in INSN.  */
      /* Rewrite constant pool references in INSN.  */
      if (INSN_P (insn))
      if (INSN_P (insn))
        for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &pool);
        for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &pool);
 
 
      pool.insn_address += mips16_insn_length (insn);
      pool.insn_address += mips16_insn_length (insn);
 
 
      if (pool.first != NULL)
      if (pool.first != NULL)
        {
        {
          /* If there are no natural barriers between the first user of
          /* If there are no natural barriers between the first user of
             the pool and the highest acceptable address, we'll need to
             the pool and the highest acceptable address, we'll need to
             create a new instruction to jump around the constant pool.
             create a new instruction to jump around the constant pool.
             In the worst case, this instruction will be 4 bytes long.
             In the worst case, this instruction will be 4 bytes long.
 
 
             If it's too late to do this transformation after INSN,
             If it's too late to do this transformation after INSN,
             do it immediately before INSN.  */
             do it immediately before INSN.  */
          if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
          if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
            {
            {
              rtx label, jump;
              rtx label, jump;
 
 
              label = gen_label_rtx ();
              label = gen_label_rtx ();
 
 
              jump = emit_jump_insn_before (gen_jump (label), insn);
              jump = emit_jump_insn_before (gen_jump (label), insn);
              JUMP_LABEL (jump) = label;
              JUMP_LABEL (jump) = label;
              LABEL_NUSES (label) = 1;
              LABEL_NUSES (label) = 1;
              barrier = emit_barrier_after (jump);
              barrier = emit_barrier_after (jump);
 
 
              emit_label_after (label, barrier);
              emit_label_after (label, barrier);
              pool.insn_address += 4;
              pool.insn_address += 4;
            }
            }
 
 
          /* See whether the constant pool is now out of range of the first
          /* See whether the constant pool is now out of range of the first
             user.  If so, output the constants after the previous barrier.
             user.  If so, output the constants after the previous barrier.
             Note that any instructions between BARRIER and INSN (inclusive)
             Note that any instructions between BARRIER and INSN (inclusive)
             will use negative offsets to refer to the pool.  */
             will use negative offsets to refer to the pool.  */
          if (pool.insn_address > pool.highest_address)
          if (pool.insn_address > pool.highest_address)
            {
            {
              dump_constants (pool.first, barrier);
              dump_constants (pool.first, barrier);
              pool.first = NULL;
              pool.first = NULL;
              barrier = 0;
              barrier = 0;
            }
            }
          else if (BARRIER_P (insn))
          else if (BARRIER_P (insn))
            barrier = insn;
            barrier = insn;
        }
        }
    }
    }
  dump_constants (pool.first, get_last_insn ());
  dump_constants (pool.first, get_last_insn ());
}
}


/* A temporary variable used by for_each_rtx callbacks, etc.  */
/* A temporary variable used by for_each_rtx callbacks, etc.  */
static rtx mips_sim_insn;
static rtx mips_sim_insn;
 
 
/* A structure representing the state of the processor pipeline.
/* A structure representing the state of the processor pipeline.
   Used by the mips_sim_* family of functions.  */
   Used by the mips_sim_* family of functions.  */
struct mips_sim {
struct mips_sim {
  /* The maximum number of instructions that can be issued in a cycle.
  /* The maximum number of instructions that can be issued in a cycle.
     (Caches mips_issue_rate.)  */
     (Caches mips_issue_rate.)  */
  unsigned int issue_rate;
  unsigned int issue_rate;
 
 
  /* The current simulation time.  */
  /* The current simulation time.  */
  unsigned int time;
  unsigned int time;
 
 
  /* How many more instructions can be issued in the current cycle.  */
  /* How many more instructions can be issued in the current cycle.  */
  unsigned int insns_left;
  unsigned int insns_left;
 
 
  /* LAST_SET[X].INSN is the last instruction to set register X.
  /* LAST_SET[X].INSN is the last instruction to set register X.
     LAST_SET[X].TIME is the time at which that instruction was issued.
     LAST_SET[X].TIME is the time at which that instruction was issued.
     INSN is null if no instruction has yet set register X.  */
     INSN is null if no instruction has yet set register X.  */
  struct {
  struct {
    rtx insn;
    rtx insn;
    unsigned int time;
    unsigned int time;
  } last_set[FIRST_PSEUDO_REGISTER];
  } last_set[FIRST_PSEUDO_REGISTER];
 
 
  /* The pipeline's current DFA state.  */
  /* The pipeline's current DFA state.  */
  state_t dfa_state;
  state_t dfa_state;
};
};
 
 
/* Reset STATE to the initial simulation state.  */
/* Reset STATE to the initial simulation state.  */
 
 
static void
static void
mips_sim_reset (struct mips_sim *state)
mips_sim_reset (struct mips_sim *state)
{
{
  state->time = 0;
  state->time = 0;
  state->insns_left = state->issue_rate;
  state->insns_left = state->issue_rate;
  memset (&state->last_set, 0, sizeof (state->last_set));
  memset (&state->last_set, 0, sizeof (state->last_set));
  state_reset (state->dfa_state);
  state_reset (state->dfa_state);
}
}
 
 
/* Initialize STATE before its first use.  DFA_STATE points to an
/* Initialize STATE before its first use.  DFA_STATE points to an
   allocated but uninitialized DFA state.  */
   allocated but uninitialized DFA state.  */
 
 
static void
static void
mips_sim_init (struct mips_sim *state, state_t dfa_state)
mips_sim_init (struct mips_sim *state, state_t dfa_state)
{
{
  state->issue_rate = mips_issue_rate ();
  state->issue_rate = mips_issue_rate ();
  state->dfa_state = dfa_state;
  state->dfa_state = dfa_state;
  mips_sim_reset (state);
  mips_sim_reset (state);
}
}
 
 
/* Advance STATE by one clock cycle.  */
/* Advance STATE by one clock cycle.  */
 
 
static void
static void
mips_sim_next_cycle (struct mips_sim *state)
mips_sim_next_cycle (struct mips_sim *state)
{
{
  state->time++;
  state->time++;
  state->insns_left = state->issue_rate;
  state->insns_left = state->issue_rate;
  state_transition (state->dfa_state, 0);
  state_transition (state->dfa_state, 0);
}
}
 
 
/* Advance simulation state STATE until instruction INSN can read
/* Advance simulation state STATE until instruction INSN can read
   register REG.  */
   register REG.  */
 
 
static void
static void
mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
{
{
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0; i < HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)); i++)
  for (i = 0; i < HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)); i++)
    if (state->last_set[REGNO (reg) + i].insn != 0)
    if (state->last_set[REGNO (reg) + i].insn != 0)
      {
      {
        unsigned int t;
        unsigned int t;
 
 
        t = state->last_set[REGNO (reg) + i].time;
        t = state->last_set[REGNO (reg) + i].time;
        t += insn_latency (state->last_set[REGNO (reg) + i].insn, insn);
        t += insn_latency (state->last_set[REGNO (reg) + i].insn, insn);
        while (state->time < t)
        while (state->time < t)
          mips_sim_next_cycle (state);
          mips_sim_next_cycle (state);
    }
    }
}
}
 
 
/* A for_each_rtx callback.  If *X is a register, advance simulation state
/* A for_each_rtx callback.  If *X is a register, advance simulation state
   DATA until mips_sim_insn can read the register's value.  */
   DATA until mips_sim_insn can read the register's value.  */
 
 
static int
static int
mips_sim_wait_regs_2 (rtx *x, void *data)
mips_sim_wait_regs_2 (rtx *x, void *data)
{
{
  if (REG_P (*x))
  if (REG_P (*x))
    mips_sim_wait_reg (data, mips_sim_insn, *x);
    mips_sim_wait_reg (data, mips_sim_insn, *x);
  return 0;
  return 0;
}
}
 
 
/* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X.  */
/* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X.  */
 
 
static void
static void
mips_sim_wait_regs_1 (rtx *x, void *data)
mips_sim_wait_regs_1 (rtx *x, void *data)
{
{
  for_each_rtx (x, mips_sim_wait_regs_2, data);
  for_each_rtx (x, mips_sim_wait_regs_2, data);
}
}
 
 
/* Advance simulation state STATE until all of INSN's register
/* Advance simulation state STATE until all of INSN's register
   dependencies are satisfied.  */
   dependencies are satisfied.  */
 
 
static void
static void
mips_sim_wait_regs (struct mips_sim *state, rtx insn)
mips_sim_wait_regs (struct mips_sim *state, rtx insn)
{
{
  mips_sim_insn = insn;
  mips_sim_insn = insn;
  note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
  note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
}
}
 
 
/* Advance simulation state STATE until the units required by
/* Advance simulation state STATE until the units required by
   instruction INSN are available.  */
   instruction INSN are available.  */
 
 
static void
static void
mips_sim_wait_units (struct mips_sim *state, rtx insn)
mips_sim_wait_units (struct mips_sim *state, rtx insn)
{
{
  state_t tmp_state;
  state_t tmp_state;
 
 
  tmp_state = alloca (state_size ());
  tmp_state = alloca (state_size ());
  while (state->insns_left == 0
  while (state->insns_left == 0
         || (memcpy (tmp_state, state->dfa_state, state_size ()),
         || (memcpy (tmp_state, state->dfa_state, state_size ()),
             state_transition (tmp_state, insn) >= 0))
             state_transition (tmp_state, insn) >= 0))
    mips_sim_next_cycle (state);
    mips_sim_next_cycle (state);
}
}
 
 
/* Advance simulation state STATE until INSN is ready to issue.  */
/* Advance simulation state STATE until INSN is ready to issue.  */
 
 
static void
static void
mips_sim_wait_insn (struct mips_sim *state, rtx insn)
mips_sim_wait_insn (struct mips_sim *state, rtx insn)
{
{
  mips_sim_wait_regs (state, insn);
  mips_sim_wait_regs (state, insn);
  mips_sim_wait_units (state, insn);
  mips_sim_wait_units (state, insn);
}
}
 
 
/* mips_sim_insn has just set X.  Update the LAST_SET array
/* mips_sim_insn has just set X.  Update the LAST_SET array
   in simulation state DATA.  */
   in simulation state DATA.  */
 
 
static void
static void
mips_sim_record_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
mips_sim_record_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
{
{
  struct mips_sim *state;
  struct mips_sim *state;
  unsigned int i;
  unsigned int i;
 
 
  state = data;
  state = data;
  if (REG_P (x))
  if (REG_P (x))
    for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
    for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
      {
      {
        state->last_set[REGNO (x) + i].insn = mips_sim_insn;
        state->last_set[REGNO (x) + i].insn = mips_sim_insn;
        state->last_set[REGNO (x) + i].time = state->time;
        state->last_set[REGNO (x) + i].time = state->time;
      }
      }
}
}
 
 
/* Issue instruction INSN in scheduler state STATE.  Assume that INSN
/* Issue instruction INSN in scheduler state STATE.  Assume that INSN
   can issue immediately (i.e., that mips_sim_wait_insn has already
   can issue immediately (i.e., that mips_sim_wait_insn has already
   been called).  */
   been called).  */
 
 
static void
static void
mips_sim_issue_insn (struct mips_sim *state, rtx insn)
mips_sim_issue_insn (struct mips_sim *state, rtx insn)
{
{
  state_transition (state->dfa_state, insn);
  state_transition (state->dfa_state, insn);
  state->insns_left--;
  state->insns_left--;
 
 
  mips_sim_insn = insn;
  mips_sim_insn = insn;
  note_stores (PATTERN (insn), mips_sim_record_set, state);
  note_stores (PATTERN (insn), mips_sim_record_set, state);
}
}
 
 
/* Simulate issuing a NOP in state STATE.  */
/* Simulate issuing a NOP in state STATE.  */
 
 
static void
static void
mips_sim_issue_nop (struct mips_sim *state)
mips_sim_issue_nop (struct mips_sim *state)
{
{
  if (state->insns_left == 0)
  if (state->insns_left == 0)
    mips_sim_next_cycle (state);
    mips_sim_next_cycle (state);
  state->insns_left--;
  state->insns_left--;
}
}
 
 
/* Update simulation state STATE so that it's ready to accept the instruction
/* Update simulation state STATE so that it's ready to accept the instruction
   after INSN.  INSN should be part of the main rtl chain, not a member of a
   after INSN.  INSN should be part of the main rtl chain, not a member of a
   SEQUENCE.  */
   SEQUENCE.  */
 
 
static void
static void
mips_sim_finish_insn (struct mips_sim *state, rtx insn)
mips_sim_finish_insn (struct mips_sim *state, rtx insn)
{
{
  /* If INSN is a jump with an implicit delay slot, simulate a nop.  */
  /* If INSN is a jump with an implicit delay slot, simulate a nop.  */
  if (JUMP_P (insn))
  if (JUMP_P (insn))
    mips_sim_issue_nop (state);
    mips_sim_issue_nop (state);
 
 
  switch (GET_CODE (SEQ_BEGIN (insn)))
  switch (GET_CODE (SEQ_BEGIN (insn)))
    {
    {
    case CODE_LABEL:
    case CODE_LABEL:
    case CALL_INSN:
    case CALL_INSN:
      /* We can't predict the processor state after a call or label.  */
      /* We can't predict the processor state after a call or label.  */
      mips_sim_reset (state);
      mips_sim_reset (state);
      break;
      break;
 
 
    case JUMP_INSN:
    case JUMP_INSN:
      /* The delay slots of branch likely instructions are only executed
      /* The delay slots of branch likely instructions are only executed
         when the branch is taken.  Therefore, if the caller has simulated
         when the branch is taken.  Therefore, if the caller has simulated
         the delay slot instruction, STATE does not really reflect the state
         the delay slot instruction, STATE does not really reflect the state
         of the pipeline for the instruction after the delay slot.  Also,
         of the pipeline for the instruction after the delay slot.  Also,
         branch likely instructions tend to incur a penalty when not taken,
         branch likely instructions tend to incur a penalty when not taken,
         so there will probably be an extra delay between the branch and
         so there will probably be an extra delay between the branch and
         the instruction after the delay slot.  */
         the instruction after the delay slot.  */
      if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
      if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
        mips_sim_reset (state);
        mips_sim_reset (state);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}


/* The VR4130 pipeline issues aligned pairs of instructions together,
/* The VR4130 pipeline issues aligned pairs of instructions together,
   but it stalls the second instruction if it depends on the first.
   but it stalls the second instruction if it depends on the first.
   In order to cut down the amount of logic required, this dependence
   In order to cut down the amount of logic required, this dependence
   check is not based on a full instruction decode.  Instead, any non-SPECIAL
   check is not based on a full instruction decode.  Instead, any non-SPECIAL
   instruction is assumed to modify the register specified by bits 20-16
   instruction is assumed to modify the register specified by bits 20-16
   (which is usually the "rt" field).
   (which is usually the "rt" field).
 
 
   In beq, beql, bne and bnel instructions, the rt field is actually an
   In beq, beql, bne and bnel instructions, the rt field is actually an
   input, so we can end up with a false dependence between the branch
   input, so we can end up with a false dependence between the branch
   and its delay slot.  If this situation occurs in instruction INSN,
   and its delay slot.  If this situation occurs in instruction INSN,
   try to avoid it by swapping rs and rt.  */
   try to avoid it by swapping rs and rt.  */
 
 
static void
static void
vr4130_avoid_branch_rt_conflict (rtx insn)
vr4130_avoid_branch_rt_conflict (rtx insn)
{
{
  rtx first, second;
  rtx first, second;
 
 
  first = SEQ_BEGIN (insn);
  first = SEQ_BEGIN (insn);
  second = SEQ_END (insn);
  second = SEQ_END (insn);
  if (JUMP_P (first)
  if (JUMP_P (first)
      && NONJUMP_INSN_P (second)
      && NONJUMP_INSN_P (second)
      && GET_CODE (PATTERN (first)) == SET
      && GET_CODE (PATTERN (first)) == SET
      && GET_CODE (SET_DEST (PATTERN (first))) == PC
      && GET_CODE (SET_DEST (PATTERN (first))) == PC
      && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
      && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
    {
    {
      /* Check for the right kind of condition.  */
      /* Check for the right kind of condition.  */
      rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
      rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
      if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
      if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
          && REG_P (XEXP (cond, 0))
          && REG_P (XEXP (cond, 0))
          && REG_P (XEXP (cond, 1))
          && REG_P (XEXP (cond, 1))
          && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
          && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
          && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
          && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
        {
        {
          /* SECOND mentions the rt register but not the rs register.  */
          /* SECOND mentions the rt register but not the rs register.  */
          rtx tmp = XEXP (cond, 0);
          rtx tmp = XEXP (cond, 0);
          XEXP (cond, 0) = XEXP (cond, 1);
          XEXP (cond, 0) = XEXP (cond, 1);
          XEXP (cond, 1) = tmp;
          XEXP (cond, 1) = tmp;
        }
        }
    }
    }
}
}
 
 
/* Implement -mvr4130-align.  Go through each basic block and simulate the
/* Implement -mvr4130-align.  Go through each basic block and simulate the
   processor pipeline.  If we find that a pair of instructions could execute
   processor pipeline.  If we find that a pair of instructions could execute
   in parallel, and the first of those instruction is not 8-byte aligned,
   in parallel, and the first of those instruction is not 8-byte aligned,
   insert a nop to make it aligned.  */
   insert a nop to make it aligned.  */
 
 
static void
static void
vr4130_align_insns (void)
vr4130_align_insns (void)
{
{
  struct mips_sim state;
  struct mips_sim state;
  rtx insn, subinsn, last, last2, next;
  rtx insn, subinsn, last, last2, next;
  bool aligned_p;
  bool aligned_p;
 
 
  dfa_start ();
  dfa_start ();
 
 
  /* LAST is the last instruction before INSN to have a nonzero length.
  /* LAST is the last instruction before INSN to have a nonzero length.
     LAST2 is the last such instruction before LAST.  */
     LAST2 is the last such instruction before LAST.  */
  last = 0;
  last = 0;
  last2 = 0;
  last2 = 0;
 
 
  /* ALIGNED_P is true if INSN is known to be at an aligned address.  */
  /* ALIGNED_P is true if INSN is known to be at an aligned address.  */
  aligned_p = true;
  aligned_p = true;
 
 
  mips_sim_init (&state, alloca (state_size ()));
  mips_sim_init (&state, alloca (state_size ()));
  for (insn = get_insns (); insn != 0; insn = next)
  for (insn = get_insns (); insn != 0; insn = next)
    {
    {
      unsigned int length;
      unsigned int length;
 
 
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
 
 
      /* See the comment above vr4130_avoid_branch_rt_conflict for details.
      /* See the comment above vr4130_avoid_branch_rt_conflict for details.
         This isn't really related to the alignment pass, but we do it on
         This isn't really related to the alignment pass, but we do it on
         the fly to avoid a separate instruction walk.  */
         the fly to avoid a separate instruction walk.  */
      vr4130_avoid_branch_rt_conflict (insn);
      vr4130_avoid_branch_rt_conflict (insn);
 
 
      if (USEFUL_INSN_P (insn))
      if (USEFUL_INSN_P (insn))
        FOR_EACH_SUBINSN (subinsn, insn)
        FOR_EACH_SUBINSN (subinsn, insn)
          {
          {
            mips_sim_wait_insn (&state, subinsn);
            mips_sim_wait_insn (&state, subinsn);
 
 
            /* If we want this instruction to issue in parallel with the
            /* If we want this instruction to issue in parallel with the
               previous one, make sure that the previous instruction is
               previous one, make sure that the previous instruction is
               aligned.  There are several reasons why this isn't worthwhile
               aligned.  There are several reasons why this isn't worthwhile
               when the second instruction is a call:
               when the second instruction is a call:
 
 
                  - Calls are less likely to be performance critical,
                  - Calls are less likely to be performance critical,
                  - There's a good chance that the delay slot can execute
                  - There's a good chance that the delay slot can execute
                    in parallel with the call.
                    in parallel with the call.
                  - The return address would then be unaligned.
                  - The return address would then be unaligned.
 
 
               In general, if we're going to insert a nop between instructions
               In general, if we're going to insert a nop between instructions
               X and Y, it's better to insert it immediately after X.  That
               X and Y, it's better to insert it immediately after X.  That
               way, if the nop makes Y aligned, it will also align any labels
               way, if the nop makes Y aligned, it will also align any labels
               between X and Y.  */
               between X and Y.  */
            if (state.insns_left != state.issue_rate
            if (state.insns_left != state.issue_rate
                && !CALL_P (subinsn))
                && !CALL_P (subinsn))
              {
              {
                if (subinsn == SEQ_BEGIN (insn) && aligned_p)
                if (subinsn == SEQ_BEGIN (insn) && aligned_p)
                  {
                  {
                    /* SUBINSN is the first instruction in INSN and INSN is
                    /* SUBINSN is the first instruction in INSN and INSN is
                       aligned.  We want to align the previous instruction
                       aligned.  We want to align the previous instruction
                       instead, so insert a nop between LAST2 and LAST.
                       instead, so insert a nop between LAST2 and LAST.
 
 
                       Note that LAST could be either a single instruction
                       Note that LAST could be either a single instruction
                       or a branch with a delay slot.  In the latter case,
                       or a branch with a delay slot.  In the latter case,
                       LAST, like INSN, is already aligned, but the delay
                       LAST, like INSN, is already aligned, but the delay
                       slot must have some extra delay that stops it from
                       slot must have some extra delay that stops it from
                       issuing at the same time as the branch.  We therefore
                       issuing at the same time as the branch.  We therefore
                       insert a nop before the branch in order to align its
                       insert a nop before the branch in order to align its
                       delay slot.  */
                       delay slot.  */
                    emit_insn_after (gen_nop (), last2);
                    emit_insn_after (gen_nop (), last2);
                    aligned_p = false;
                    aligned_p = false;
                  }
                  }
                else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
                else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
                  {
                  {
                    /* SUBINSN is the delay slot of INSN, but INSN is
                    /* SUBINSN is the delay slot of INSN, but INSN is
                       currently unaligned.  Insert a nop between
                       currently unaligned.  Insert a nop between
                       LAST and INSN to align it.  */
                       LAST and INSN to align it.  */
                    emit_insn_after (gen_nop (), last);
                    emit_insn_after (gen_nop (), last);
                    aligned_p = true;
                    aligned_p = true;
                  }
                  }
              }
              }
            mips_sim_issue_insn (&state, subinsn);
            mips_sim_issue_insn (&state, subinsn);
          }
          }
      mips_sim_finish_insn (&state, insn);
      mips_sim_finish_insn (&state, insn);
 
 
      /* Update LAST, LAST2 and ALIGNED_P for the next instruction.  */
      /* Update LAST, LAST2 and ALIGNED_P for the next instruction.  */
      length = get_attr_length (insn);
      length = get_attr_length (insn);
      if (length > 0)
      if (length > 0)
        {
        {
          /* If the instruction is an asm statement or multi-instruction
          /* If the instruction is an asm statement or multi-instruction
             mips.md patern, the length is only an estimate.  Insert an
             mips.md patern, the length is only an estimate.  Insert an
             8 byte alignment after it so that the following instructions
             8 byte alignment after it so that the following instructions
             can be handled correctly.  */
             can be handled correctly.  */
          if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
          if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
              && (recog_memoized (insn) < 0 || length >= 8))
              && (recog_memoized (insn) < 0 || length >= 8))
            {
            {
              next = emit_insn_after (gen_align (GEN_INT (3)), insn);
              next = emit_insn_after (gen_align (GEN_INT (3)), insn);
              next = NEXT_INSN (next);
              next = NEXT_INSN (next);
              mips_sim_next_cycle (&state);
              mips_sim_next_cycle (&state);
              aligned_p = true;
              aligned_p = true;
            }
            }
          else if (length & 4)
          else if (length & 4)
            aligned_p = !aligned_p;
            aligned_p = !aligned_p;
          last2 = last;
          last2 = last;
          last = insn;
          last = insn;
        }
        }
 
 
      /* See whether INSN is an aligned label.  */
      /* See whether INSN is an aligned label.  */
      if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
      if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
        aligned_p = true;
        aligned_p = true;
    }
    }
  dfa_finish ();
  dfa_finish ();
}
}


/* Subroutine of mips_reorg.  If there is a hazard between INSN
/* Subroutine of mips_reorg.  If there is a hazard between INSN
   and a previous instruction, avoid it by inserting nops after
   and a previous instruction, avoid it by inserting nops after
   instruction AFTER.
   instruction AFTER.
 
 
   *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
   *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
   this point.  If *DELAYED_REG is non-null, INSN must wait a cycle
   this point.  If *DELAYED_REG is non-null, INSN must wait a cycle
   before using the value of that register.  *HILO_DELAY counts the
   before using the value of that register.  *HILO_DELAY counts the
   number of instructions since the last hilo hazard (that is,
   number of instructions since the last hilo hazard (that is,
   the number of instructions since the last mflo or mfhi).
   the number of instructions since the last mflo or mfhi).
 
 
   After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
   After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
   for the next instruction.
   for the next instruction.
 
 
   LO_REG is an rtx for the LO register, used in dependence checking.  */
   LO_REG is an rtx for the LO register, used in dependence checking.  */
 
 
static void
static void
mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
                   rtx *delayed_reg, rtx lo_reg)
                   rtx *delayed_reg, rtx lo_reg)
{
{
  rtx pattern, set;
  rtx pattern, set;
  int nops, ninsns;
  int nops, ninsns;
 
 
  if (!INSN_P (insn))
  if (!INSN_P (insn))
    return;
    return;
 
 
  pattern = PATTERN (insn);
  pattern = PATTERN (insn);
 
 
  /* Do not put the whole function in .set noreorder if it contains
  /* Do not put the whole function in .set noreorder if it contains
     an asm statement.  We don't know whether there will be hazards
     an asm statement.  We don't know whether there will be hazards
     between the asm statement and the gcc-generated code.  */
     between the asm statement and the gcc-generated code.  */
  if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
  if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
    cfun->machine->all_noreorder_p = false;
    cfun->machine->all_noreorder_p = false;
 
 
  /* Ignore zero-length instructions (barriers and the like).  */
  /* Ignore zero-length instructions (barriers and the like).  */
  ninsns = get_attr_length (insn) / 4;
  ninsns = get_attr_length (insn) / 4;
  if (ninsns == 0)
  if (ninsns == 0)
    return;
    return;
 
 
  /* Work out how many nops are needed.  Note that we only care about
  /* Work out how many nops are needed.  Note that we only care about
     registers that are explicitly mentioned in the instruction's pattern.
     registers that are explicitly mentioned in the instruction's pattern.
     It doesn't matter that calls use the argument registers or that they
     It doesn't matter that calls use the argument registers or that they
     clobber hi and lo.  */
     clobber hi and lo.  */
  if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
  if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
    nops = 2 - *hilo_delay;
    nops = 2 - *hilo_delay;
  else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
  else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
    nops = 1;
    nops = 1;
  else
  else
    nops = 0;
    nops = 0;
 
 
  /* Insert the nops between this instruction and the previous one.
  /* Insert the nops between this instruction and the previous one.
     Each new nop takes us further from the last hilo hazard.  */
     Each new nop takes us further from the last hilo hazard.  */
  *hilo_delay += nops;
  *hilo_delay += nops;
  while (nops-- > 0)
  while (nops-- > 0)
    emit_insn_after (gen_hazard_nop (), after);
    emit_insn_after (gen_hazard_nop (), after);
 
 
  /* Set up the state for the next instruction.  */
  /* Set up the state for the next instruction.  */
  *hilo_delay += ninsns;
  *hilo_delay += ninsns;
  *delayed_reg = 0;
  *delayed_reg = 0;
  if (INSN_CODE (insn) >= 0)
  if (INSN_CODE (insn) >= 0)
    switch (get_attr_hazard (insn))
    switch (get_attr_hazard (insn))
      {
      {
      case HAZARD_NONE:
      case HAZARD_NONE:
        break;
        break;
 
 
      case HAZARD_HILO:
      case HAZARD_HILO:
        *hilo_delay = 0;
        *hilo_delay = 0;
        break;
        break;
 
 
      case HAZARD_DELAY:
      case HAZARD_DELAY:
        set = single_set (insn);
        set = single_set (insn);
        gcc_assert (set != 0);
        gcc_assert (set != 0);
        *delayed_reg = SET_DEST (set);
        *delayed_reg = SET_DEST (set);
        break;
        break;
      }
      }
}
}
 
 
 
 
/* Go through the instruction stream and insert nops where necessary.
/* Go through the instruction stream and insert nops where necessary.
   See if the whole function can then be put into .set noreorder &
   See if the whole function can then be put into .set noreorder &
   .set nomacro.  */
   .set nomacro.  */
 
 
static void
static void
mips_avoid_hazards (void)
mips_avoid_hazards (void)
{
{
  rtx insn, last_insn, lo_reg, delayed_reg;
  rtx insn, last_insn, lo_reg, delayed_reg;
  int hilo_delay, i;
  int hilo_delay, i;
 
 
  /* Force all instructions to be split into their final form.  */
  /* Force all instructions to be split into their final form.  */
  split_all_insns_noflow ();
  split_all_insns_noflow ();
 
 
  /* Recalculate instruction lengths without taking nops into account.  */
  /* Recalculate instruction lengths without taking nops into account.  */
  cfun->machine->ignore_hazard_length_p = true;
  cfun->machine->ignore_hazard_length_p = true;
  shorten_branches (get_insns ());
  shorten_branches (get_insns ());
 
 
  cfun->machine->all_noreorder_p = true;
  cfun->machine->all_noreorder_p = true;
 
 
  /* Profiled functions can't be all noreorder because the profiler
  /* Profiled functions can't be all noreorder because the profiler
     support uses assembler macros.  */
     support uses assembler macros.  */
  if (current_function_profile)
  if (current_function_profile)
    cfun->machine->all_noreorder_p = false;
    cfun->machine->all_noreorder_p = false;
 
 
  /* Code compiled with -mfix-vr4120 can't be all noreorder because
  /* Code compiled with -mfix-vr4120 can't be all noreorder because
     we rely on the assembler to work around some errata.  */
     we rely on the assembler to work around some errata.  */
  if (TARGET_FIX_VR4120)
  if (TARGET_FIX_VR4120)
    cfun->machine->all_noreorder_p = false;
    cfun->machine->all_noreorder_p = false;
 
 
  /* The same is true for -mfix-vr4130 if we might generate mflo or
  /* The same is true for -mfix-vr4130 if we might generate mflo or
     mfhi instructions.  Note that we avoid using mflo and mfhi if
     mfhi instructions.  Note that we avoid using mflo and mfhi if
     the VR4130 macc and dmacc instructions are available instead;
     the VR4130 macc and dmacc instructions are available instead;
     see the *mfhilo_{si,di}_macc patterns.  */
     see the *mfhilo_{si,di}_macc patterns.  */
  if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
  if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
    cfun->machine->all_noreorder_p = false;
    cfun->machine->all_noreorder_p = false;
 
 
  last_insn = 0;
  last_insn = 0;
  hilo_delay = 2;
  hilo_delay = 2;
  delayed_reg = 0;
  delayed_reg = 0;
  lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
  lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
 
 
  for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      {
      {
        if (GET_CODE (PATTERN (insn)) == SEQUENCE)
        if (GET_CODE (PATTERN (insn)) == SEQUENCE)
          for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
          for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
            mips_avoid_hazard (last_insn, XVECEXP (PATTERN (insn), 0, i),
            mips_avoid_hazard (last_insn, XVECEXP (PATTERN (insn), 0, i),
                               &hilo_delay, &delayed_reg, lo_reg);
                               &hilo_delay, &delayed_reg, lo_reg);
        else
        else
          mips_avoid_hazard (last_insn, insn, &hilo_delay,
          mips_avoid_hazard (last_insn, insn, &hilo_delay,
                             &delayed_reg, lo_reg);
                             &delayed_reg, lo_reg);
 
 
        last_insn = insn;
        last_insn = insn;
      }
      }
}
}
 
 
 
 
/* Implement TARGET_MACHINE_DEPENDENT_REORG.  */
/* Implement TARGET_MACHINE_DEPENDENT_REORG.  */
 
 
static void
static void
mips_reorg (void)
mips_reorg (void)
{
{
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    mips16_lay_out_constants ();
    mips16_lay_out_constants ();
  else if (TARGET_EXPLICIT_RELOCS)
  else if (TARGET_EXPLICIT_RELOCS)
    {
    {
      if (mips_flag_delayed_branch)
      if (mips_flag_delayed_branch)
        dbr_schedule (get_insns ());
        dbr_schedule (get_insns ());
      mips_avoid_hazards ();
      mips_avoid_hazards ();
      if (TUNE_MIPS4130 && TARGET_VR4130_ALIGN)
      if (TUNE_MIPS4130 && TARGET_VR4130_ALIGN)
        vr4130_align_insns ();
        vr4130_align_insns ();
    }
    }
}
}
 
 
/* This function does three things:
/* This function does three things:
 
 
   - Register the special divsi3 and modsi3 functions if -mfix-vr4120.
   - Register the special divsi3 and modsi3 functions if -mfix-vr4120.
   - Register the mips16 hardware floating point stubs.
   - Register the mips16 hardware floating point stubs.
   - Register the gofast functions if selected using --enable-gofast.  */
   - Register the gofast functions if selected using --enable-gofast.  */
 
 
#include "config/gofast.h"
#include "config/gofast.h"
 
 
static void
static void
mips_init_libfuncs (void)
mips_init_libfuncs (void)
{
{
  if (TARGET_FIX_VR4120)
  if (TARGET_FIX_VR4120)
    {
    {
      set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
      set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
      set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
      set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
    }
    }
 
 
  if (TARGET_MIPS16 && mips16_hard_float)
  if (TARGET_MIPS16 && mips16_hard_float)
    {
    {
      set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
      set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
      set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
      set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
      set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
      set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
      set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
      set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
 
 
      set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
      set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
      set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
      set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
      set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
      set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
      set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
      set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
      set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
      set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
      set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
      set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
 
 
      set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
      set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
      set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
      set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
 
 
      if (TARGET_DOUBLE_FLOAT)
      if (TARGET_DOUBLE_FLOAT)
        {
        {
          set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
          set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
          set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
          set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
          set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
          set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
          set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
          set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
 
 
          set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
          set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
          set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
          set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
          set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
          set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
          set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
          set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
          set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
          set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
          set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
          set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
 
 
          set_conv_libfunc (sext_optab, DFmode, SFmode, "__mips16_extendsfdf2");
          set_conv_libfunc (sext_optab, DFmode, SFmode, "__mips16_extendsfdf2");
          set_conv_libfunc (trunc_optab, SFmode, DFmode, "__mips16_truncdfsf2");
          set_conv_libfunc (trunc_optab, SFmode, DFmode, "__mips16_truncdfsf2");
 
 
          set_conv_libfunc (sfix_optab, SImode, DFmode, "__mips16_fix_truncdfsi");
          set_conv_libfunc (sfix_optab, SImode, DFmode, "__mips16_fix_truncdfsi");
          set_conv_libfunc (sfloat_optab, DFmode, SImode, "__mips16_floatsidf");
          set_conv_libfunc (sfloat_optab, DFmode, SImode, "__mips16_floatsidf");
        }
        }
    }
    }
  else
  else
    gofast_maybe_init_libfuncs ();
    gofast_maybe_init_libfuncs ();
}
}
 
 
/* Return a number assessing the cost of moving a register in class
/* Return a number assessing the cost of moving a register in class
   FROM to class TO.  The classes are expressed using the enumeration
   FROM to class TO.  The classes are expressed using the enumeration
   values such as `GENERAL_REGS'.  A value of 2 is the default; other
   values such as `GENERAL_REGS'.  A value of 2 is the default; other
   values are interpreted relative to that.
   values are interpreted relative to that.
 
 
   It is not required that the cost always equal 2 when FROM is the
   It is not required that the cost always equal 2 when FROM is the
   same as TO; on some machines it is expensive to move between
   same as TO; on some machines it is expensive to move between
   registers if they are not general registers.
   registers if they are not general registers.
 
 
   If reload sees an insn consisting of a single `set' between two
   If reload sees an insn consisting of a single `set' between two
   hard registers, and if `REGISTER_MOVE_COST' applied to their
   hard registers, and if `REGISTER_MOVE_COST' applied to their
   classes returns a value of 2, reload does not check to ensure that
   classes returns a value of 2, reload does not check to ensure that
   the constraints of the insn are met.  Setting a cost of other than
   the constraints of the insn are met.  Setting a cost of other than
   2 will allow reload to verify that the constraints are met.  You
   2 will allow reload to verify that the constraints are met.  You
   should do this if the `movM' pattern's constraints do not allow
   should do this if the `movM' pattern's constraints do not allow
   such copying.
   such copying.
 
 
   ??? We make the cost of moving from HI/LO into general
   ??? We make the cost of moving from HI/LO into general
   registers the same as for one of moving general registers to
   registers the same as for one of moving general registers to
   HI/LO for TARGET_MIPS16 in order to prevent allocating a
   HI/LO for TARGET_MIPS16 in order to prevent allocating a
   pseudo to HI/LO.  This might hurt optimizations though, it
   pseudo to HI/LO.  This might hurt optimizations though, it
   isn't clear if it is wise.  And it might not work in all cases.  We
   isn't clear if it is wise.  And it might not work in all cases.  We
   could solve the DImode LO reg problem by using a multiply, just
   could solve the DImode LO reg problem by using a multiply, just
   like reload_{in,out}si.  We could solve the SImode/HImode HI reg
   like reload_{in,out}si.  We could solve the SImode/HImode HI reg
   problem by using divide instructions.  divu puts the remainder in
   problem by using divide instructions.  divu puts the remainder in
   the HI reg, so doing a divide by -1 will move the value in the HI
   the HI reg, so doing a divide by -1 will move the value in the HI
   reg for all values except -1.  We could handle that case by using a
   reg for all values except -1.  We could handle that case by using a
   signed divide, e.g.  -1 / 2 (or maybe 1 / -2?).  We'd have to emit
   signed divide, e.g.  -1 / 2 (or maybe 1 / -2?).  We'd have to emit
   a compare/branch to test the input value to see which instruction
   a compare/branch to test the input value to see which instruction
   we need to use.  This gets pretty messy, but it is feasible.  */
   we need to use.  This gets pretty messy, but it is feasible.  */
 
 
int
int
mips_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
mips_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
                         enum reg_class to, enum reg_class from)
                         enum reg_class to, enum reg_class from)
{
{
  if (from == M16_REGS && GR_REG_CLASS_P (to))
  if (from == M16_REGS && GR_REG_CLASS_P (to))
    return 2;
    return 2;
  else if (from == M16_NA_REGS && GR_REG_CLASS_P (to))
  else if (from == M16_NA_REGS && GR_REG_CLASS_P (to))
    return 2;
    return 2;
  else if (GR_REG_CLASS_P (from))
  else if (GR_REG_CLASS_P (from))
    {
    {
      if (to == M16_REGS)
      if (to == M16_REGS)
        return 2;
        return 2;
      else if (to == M16_NA_REGS)
      else if (to == M16_NA_REGS)
        return 2;
        return 2;
      else if (GR_REG_CLASS_P (to))
      else if (GR_REG_CLASS_P (to))
        {
        {
          if (TARGET_MIPS16)
          if (TARGET_MIPS16)
            return 4;
            return 4;
          else
          else
            return 2;
            return 2;
        }
        }
      else if (to == FP_REGS)
      else if (to == FP_REGS)
        return 4;
        return 4;
      else if (reg_class_subset_p (to, ACC_REGS))
      else if (reg_class_subset_p (to, ACC_REGS))
        {
        {
          if (TARGET_MIPS16)
          if (TARGET_MIPS16)
            return 12;
            return 12;
          else
          else
            return 6;
            return 6;
        }
        }
      else if (COP_REG_CLASS_P (to))
      else if (COP_REG_CLASS_P (to))
        {
        {
          return 5;
          return 5;
        }
        }
    }
    }
  else if (from == FP_REGS)
  else if (from == FP_REGS)
    {
    {
      if (GR_REG_CLASS_P (to))
      if (GR_REG_CLASS_P (to))
        return 4;
        return 4;
      else if (to == FP_REGS)
      else if (to == FP_REGS)
        return 2;
        return 2;
      else if (to == ST_REGS)
      else if (to == ST_REGS)
        return 8;
        return 8;
    }
    }
  else if (reg_class_subset_p (from, ACC_REGS))
  else if (reg_class_subset_p (from, ACC_REGS))
    {
    {
      if (GR_REG_CLASS_P (to))
      if (GR_REG_CLASS_P (to))
        {
        {
          if (TARGET_MIPS16)
          if (TARGET_MIPS16)
            return 12;
            return 12;
          else
          else
            return 6;
            return 6;
        }
        }
    }
    }
  else if (from == ST_REGS && GR_REG_CLASS_P (to))
  else if (from == ST_REGS && GR_REG_CLASS_P (to))
    return 4;
    return 4;
  else if (COP_REG_CLASS_P (from))
  else if (COP_REG_CLASS_P (from))
    {
    {
      return 5;
      return 5;
    }
    }
 
 
  /* Fall through.
  /* Fall through.
     ??? What cases are these? Shouldn't we return 2 here?  */
     ??? What cases are these? Shouldn't we return 2 here?  */
 
 
  return 12;
  return 12;
}
}
 
 
/* Return the length of INSN.  LENGTH is the initial length computed by
/* Return the length of INSN.  LENGTH is the initial length computed by
   attributes in the machine-description file.  */
   attributes in the machine-description file.  */
 
 
int
int
mips_adjust_insn_length (rtx insn, int length)
mips_adjust_insn_length (rtx insn, int length)
{
{
  /* A unconditional jump has an unfilled delay slot if it is not part
  /* A unconditional jump has an unfilled delay slot if it is not part
     of a sequence.  A conditional jump normally has a delay slot, but
     of a sequence.  A conditional jump normally has a delay slot, but
     does not on MIPS16.  */
     does not on MIPS16.  */
  if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
  if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
    length += 4;
    length += 4;
 
 
  /* See how many nops might be needed to avoid hardware hazards.  */
  /* See how many nops might be needed to avoid hardware hazards.  */
  if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
  if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
    switch (get_attr_hazard (insn))
    switch (get_attr_hazard (insn))
      {
      {
      case HAZARD_NONE:
      case HAZARD_NONE:
        break;
        break;
 
 
      case HAZARD_DELAY:
      case HAZARD_DELAY:
        length += 4;
        length += 4;
        break;
        break;
 
 
      case HAZARD_HILO:
      case HAZARD_HILO:
        length += 8;
        length += 8;
        break;
        break;
      }
      }
 
 
  /* All MIPS16 instructions are a measly two bytes.  */
  /* All MIPS16 instructions are a measly two bytes.  */
  if (TARGET_MIPS16)
  if (TARGET_MIPS16)
    length /= 2;
    length /= 2;
 
 
  return length;
  return length;
}
}
 
 
 
 
/* Return an asm sequence to start a noat block and load the address
/* Return an asm sequence to start a noat block and load the address
   of a label into $1.  */
   of a label into $1.  */
 
 
const char *
const char *
mips_output_load_label (void)
mips_output_load_label (void)
{
{
  if (TARGET_EXPLICIT_RELOCS)
  if (TARGET_EXPLICIT_RELOCS)
    switch (mips_abi)
    switch (mips_abi)
      {
      {
      case ABI_N32:
      case ABI_N32:
        return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
        return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
 
 
      case ABI_64:
      case ABI_64:
        return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
        return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
 
 
      default:
      default:
        if (ISA_HAS_LOAD_DELAY)
        if (ISA_HAS_LOAD_DELAY)
          return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
          return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
        return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
        return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
      }
      }
  else
  else
    {
    {
      if (Pmode == DImode)
      if (Pmode == DImode)
        return "%[dla\t%@,%0";
        return "%[dla\t%@,%0";
      else
      else
        return "%[la\t%@,%0";
        return "%[la\t%@,%0";
    }
    }
}
}
 
 
/* Return the assembly code for INSN, which has the operands given by
/* Return the assembly code for INSN, which has the operands given by
   OPERANDS, and which branches to OPERANDS[1] if some condition is true.
   OPERANDS, and which branches to OPERANDS[1] if some condition is true.
   BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
   BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
   is in range of a direct branch.  BRANCH_IF_FALSE is an inverted
   is in range of a direct branch.  BRANCH_IF_FALSE is an inverted
   version of BRANCH_IF_TRUE.  */
   version of BRANCH_IF_TRUE.  */
 
 
const char *
const char *
mips_output_conditional_branch (rtx insn, rtx *operands,
mips_output_conditional_branch (rtx insn, rtx *operands,
                                const char *branch_if_true,
                                const char *branch_if_true,
                                const char *branch_if_false)
                                const char *branch_if_false)
{
{
  unsigned int length;
  unsigned int length;
  rtx taken, not_taken;
  rtx taken, not_taken;
 
 
  length = get_attr_length (insn);
  length = get_attr_length (insn);
  if (length <= 8)
  if (length <= 8)
    {
    {
      /* Just a simple conditional branch.  */
      /* Just a simple conditional branch.  */
      mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
      mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
      return branch_if_true;
      return branch_if_true;
    }
    }
 
 
  /* Generate a reversed branch around a direct jump.  This fallback does
  /* Generate a reversed branch around a direct jump.  This fallback does
     not use branch-likely instructions.  */
     not use branch-likely instructions.  */
  mips_branch_likely = false;
  mips_branch_likely = false;
  not_taken = gen_label_rtx ();
  not_taken = gen_label_rtx ();
  taken = operands[1];
  taken = operands[1];
 
 
  /* Generate the reversed branch to NOT_TAKEN.  */
  /* Generate the reversed branch to NOT_TAKEN.  */
  operands[1] = not_taken;
  operands[1] = not_taken;
  output_asm_insn (branch_if_false, operands);
  output_asm_insn (branch_if_false, operands);
 
 
  /* If INSN has a delay slot, we must provide delay slots for both the
  /* If INSN has a delay slot, we must provide delay slots for both the
     branch to NOT_TAKEN and the conditional jump.  We must also ensure
     branch to NOT_TAKEN and the conditional jump.  We must also ensure
     that INSN's delay slot is executed in the appropriate cases.  */
     that INSN's delay slot is executed in the appropriate cases.  */
  if (final_sequence)
  if (final_sequence)
    {
    {
      /* This first delay slot will always be executed, so use INSN's
      /* This first delay slot will always be executed, so use INSN's
         delay slot if is not annulled.  */
         delay slot if is not annulled.  */
      if (!INSN_ANNULLED_BRANCH_P (insn))
      if (!INSN_ANNULLED_BRANCH_P (insn))
        {
        {
          final_scan_insn (XVECEXP (final_sequence, 0, 1),
          final_scan_insn (XVECEXP (final_sequence, 0, 1),
                           asm_out_file, optimize, 1, NULL);
                           asm_out_file, optimize, 1, NULL);
          INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
          INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
        }
        }
      else
      else
        output_asm_insn ("nop", 0);
        output_asm_insn ("nop", 0);
      fprintf (asm_out_file, "\n");
      fprintf (asm_out_file, "\n");
    }
    }
 
 
  /* Output the unconditional branch to TAKEN.  */
  /* Output the unconditional branch to TAKEN.  */
  if (length <= 16)
  if (length <= 16)
    output_asm_insn ("j\t%0%/", &taken);
    output_asm_insn ("j\t%0%/", &taken);
  else
  else
    {
    {
      output_asm_insn (mips_output_load_label (), &taken);
      output_asm_insn (mips_output_load_label (), &taken);
      output_asm_insn ("jr\t%@%]%/", 0);
      output_asm_insn ("jr\t%@%]%/", 0);
    }
    }
 
 
  /* Now deal with its delay slot; see above.  */
  /* Now deal with its delay slot; see above.  */
  if (final_sequence)
  if (final_sequence)
    {
    {
      /* This delay slot will only be executed if the branch is taken.
      /* This delay slot will only be executed if the branch is taken.
         Use INSN's delay slot if is annulled.  */
         Use INSN's delay slot if is annulled.  */
      if (INSN_ANNULLED_BRANCH_P (insn))
      if (INSN_ANNULLED_BRANCH_P (insn))
        {
        {
          final_scan_insn (XVECEXP (final_sequence, 0, 1),
          final_scan_insn (XVECEXP (final_sequence, 0, 1),
                           asm_out_file, optimize, 1, NULL);
                           asm_out_file, optimize, 1, NULL);
          INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
          INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
        }
        }
      else
      else
        output_asm_insn ("nop", 0);
        output_asm_insn ("nop", 0);
      fprintf (asm_out_file, "\n");
      fprintf (asm_out_file, "\n");
    }
    }
 
 
  /* Output NOT_TAKEN.  */
  /* Output NOT_TAKEN.  */
  (*targetm.asm_out.internal_label) (asm_out_file, "L",
  (*targetm.asm_out.internal_label) (asm_out_file, "L",
                                     CODE_LABEL_NUMBER (not_taken));
                                     CODE_LABEL_NUMBER (not_taken));
  return "";
  return "";
}
}
 
 
/* Return the assembly code for INSN, which branches to OPERANDS[1]
/* Return the assembly code for INSN, which branches to OPERANDS[1]
   if some ordered condition is true.  The condition is given by
   if some ordered condition is true.  The condition is given by
   OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
   OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
   OPERANDS[0].  OPERANDS[2] is the comparison's first operand;
   OPERANDS[0].  OPERANDS[2] is the comparison's first operand;
   its second is always zero.  */
   its second is always zero.  */
 
 
const char *
const char *
mips_output_order_conditional_branch (rtx insn, rtx *operands, bool inverted_p)
mips_output_order_conditional_branch (rtx insn, rtx *operands, bool inverted_p)
{
{
  const char *branch[2];
  const char *branch[2];
 
 
  /* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
  /* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
     Make BRANCH[0] branch on the inverse condition.  */
     Make BRANCH[0] branch on the inverse condition.  */
  switch (GET_CODE (operands[0]))
  switch (GET_CODE (operands[0]))
    {
    {
      /* These cases are equivalent to comparisons against zero.  */
      /* These cases are equivalent to comparisons against zero.  */
    case LEU:
    case LEU:
      inverted_p = !inverted_p;
      inverted_p = !inverted_p;
      /* Fall through.  */
      /* Fall through.  */
    case GTU:
    case GTU:
      branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%1");
      branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%1");
      branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%1");
      branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%1");
      break;
      break;
 
 
      /* These cases are always true or always false.  */
      /* These cases are always true or always false.  */
    case LTU:
    case LTU:
      inverted_p = !inverted_p;
      inverted_p = !inverted_p;
      /* Fall through.  */
      /* Fall through.  */
    case GEU:
    case GEU:
      branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%1");
      branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%1");
      branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%1");
      branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%1");
      break;
      break;
 
 
    default:
    default:
      branch[!inverted_p] = MIPS_BRANCH ("b%C0z", "%2,%1");
      branch[!inverted_p] = MIPS_BRANCH ("b%C0z", "%2,%1");
      branch[inverted_p] = MIPS_BRANCH ("b%N0z", "%2,%1");
      branch[inverted_p] = MIPS_BRANCH ("b%N0z", "%2,%1");
      break;
      break;
    }
    }
  return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
  return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
}
}


/* Used to output div or ddiv instruction DIVISION, which has the operands
/* Used to output div or ddiv instruction DIVISION, which has the operands
   given by OPERANDS.  Add in a divide-by-zero check if needed.
   given by OPERANDS.  Add in a divide-by-zero check if needed.
 
 
   When working around R4000 and R4400 errata, we need to make sure that
   When working around R4000 and R4400 errata, we need to make sure that
   the division is not immediately followed by a shift[1][2].  We also
   the division is not immediately followed by a shift[1][2].  We also
   need to stop the division from being put into a branch delay slot[3].
   need to stop the division from being put into a branch delay slot[3].
   The easiest way to avoid both problems is to add a nop after the
   The easiest way to avoid both problems is to add a nop after the
   division.  When a divide-by-zero check is needed, this nop can be
   division.  When a divide-by-zero check is needed, this nop can be
   used to fill the branch delay slot.
   used to fill the branch delay slot.
 
 
   [1] If a double-word or a variable shift executes immediately
   [1] If a double-word or a variable shift executes immediately
       after starting an integer division, the shift may give an
       after starting an integer division, the shift may give an
       incorrect result.  See quotations of errata #16 and #28 from
       incorrect result.  See quotations of errata #16 and #28 from
       "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
       "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
       in mips.md for details.
       in mips.md for details.
 
 
   [2] A similar bug to [1] exists for all revisions of the
   [2] A similar bug to [1] exists for all revisions of the
       R4000 and the R4400 when run in an MC configuration.
       R4000 and the R4400 when run in an MC configuration.
       From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
       From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
 
 
       "19. In this following sequence:
       "19. In this following sequence:
 
 
                    ddiv                (or ddivu or div or divu)
                    ddiv                (or ddivu or div or divu)
                    dsll32              (or dsrl32, dsra32)
                    dsll32              (or dsrl32, dsra32)
 
 
            if an MPT stall occurs, while the divide is slipping the cpu
            if an MPT stall occurs, while the divide is slipping the cpu
            pipeline, then the following double shift would end up with an
            pipeline, then the following double shift would end up with an
            incorrect result.
            incorrect result.
 
 
            Workaround: The compiler needs to avoid generating any
            Workaround: The compiler needs to avoid generating any
            sequence with divide followed by extended double shift."
            sequence with divide followed by extended double shift."
 
 
       This erratum is also present in "MIPS R4400MC Errata, Processor
       This erratum is also present in "MIPS R4400MC Errata, Processor
       Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
       Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
       & 3.0" as errata #10 and #4, respectively.
       & 3.0" as errata #10 and #4, respectively.
 
 
   [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
   [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
       (also valid for MIPS R4000MC processors):
       (also valid for MIPS R4000MC processors):
 
 
       "52. R4000SC: This bug does not apply for the R4000PC.
       "52. R4000SC: This bug does not apply for the R4000PC.
 
 
            There are two flavors of this bug:
            There are two flavors of this bug:
 
 
            1) If the instruction just after divide takes an RF exception
            1) If the instruction just after divide takes an RF exception
               (tlb-refill, tlb-invalid) and gets an instruction cache
               (tlb-refill, tlb-invalid) and gets an instruction cache
               miss (both primary and secondary) and the line which is
               miss (both primary and secondary) and the line which is
               currently in secondary cache at this index had the first
               currently in secondary cache at this index had the first
               data word, where the bits 5..2 are set, then R4000 would
               data word, where the bits 5..2 are set, then R4000 would
               get a wrong result for the div.
               get a wrong result for the div.
 
 
            ##1
            ##1
                    nop
                    nop
                    div r8, r9
                    div r8, r9
                    -------------------         # end-of page. -tlb-refill
                    -------------------         # end-of page. -tlb-refill
                    nop
                    nop
            ##2
            ##2
                    nop
                    nop
                    div r8, r9
                    div r8, r9
                    -------------------         # end-of page. -tlb-invalid
                    -------------------         # end-of page. -tlb-invalid
                    nop
                    nop
 
 
            2) If the divide is in the taken branch delay slot, where the
            2) If the divide is in the taken branch delay slot, where the
               target takes RF exception and gets an I-cache miss for the
               target takes RF exception and gets an I-cache miss for the
               exception vector or where I-cache miss occurs for the
               exception vector or where I-cache miss occurs for the
               target address, under the above mentioned scenarios, the
               target address, under the above mentioned scenarios, the
               div would get wrong results.
               div would get wrong results.
 
 
            ##1
            ##1
                    j   r2              # to next page mapped or unmapped
                    j   r2              # to next page mapped or unmapped
                    div r8,r9           # this bug would be there as long
                    div r8,r9           # this bug would be there as long
                                        # as there is an ICache miss and
                                        # as there is an ICache miss and
                    nop                 # the "data pattern" is present
                    nop                 # the "data pattern" is present
 
 
            ##2
            ##2
                    beq r0, r0, NextPage        # to Next page
                    beq r0, r0, NextPage        # to Next page
                    div r8,r9
                    div r8,r9
                    nop
                    nop
 
 
            This bug is present for div, divu, ddiv, and ddivu
            This bug is present for div, divu, ddiv, and ddivu
            instructions.
            instructions.
 
 
            Workaround: For item 1), OS could make sure that the next page
            Workaround: For item 1), OS could make sure that the next page
            after the divide instruction is also mapped.  For item 2), the
            after the divide instruction is also mapped.  For item 2), the
            compiler could make sure that the divide instruction is not in
            compiler could make sure that the divide instruction is not in
            the branch delay slot."
            the branch delay slot."
 
 
       These processors have PRId values of 0x00004220 and 0x00004300 for
       These processors have PRId values of 0x00004220 and 0x00004300 for
       the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400.  */
       the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400.  */
 
 
const char *
const char *
mips_output_division (const char *division, rtx *operands)
mips_output_division (const char *division, rtx *operands)
{
{
  const char *s;
  const char *s;
 
 
  s = division;
  s = division;
  if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
  if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
    {
    {
      output_asm_insn (s, operands);
      output_asm_insn (s, operands);
      s = "nop";
      s = "nop";
    }
    }
  if (TARGET_CHECK_ZERO_DIV)
  if (TARGET_CHECK_ZERO_DIV)
    {
    {
      if (TARGET_MIPS16)
      if (TARGET_MIPS16)
        {
        {
          output_asm_insn (s, operands);
          output_asm_insn (s, operands);
          s = "bnez\t%2,1f\n\tbreak\t7\n1:";
          s = "bnez\t%2,1f\n\tbreak\t7\n1:";
        }
        }
      else if (GENERATE_DIVIDE_TRAPS)
      else if (GENERATE_DIVIDE_TRAPS)
        {
        {
          output_asm_insn (s, operands);
          output_asm_insn (s, operands);
          s = "teq\t%2,%.,7";
          s = "teq\t%2,%.,7";
        }
        }
      else
      else
        {
        {
          output_asm_insn ("%(bne\t%2,%.,1f", operands);
          output_asm_insn ("%(bne\t%2,%.,1f", operands);
          output_asm_insn (s, operands);
          output_asm_insn (s, operands);
          s = "break\t7%)\n1:";
          s = "break\t7%)\n1:";
        }
        }
    }
    }
  return s;
  return s;
}
}


/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
   with a final "000" replaced by "k".  Ignore case.
   with a final "000" replaced by "k".  Ignore case.
 
 
   Note: this function is shared between GCC and GAS.  */
   Note: this function is shared between GCC and GAS.  */
 
 
static bool
static bool
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
{
{
  while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
  while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
    given++, canonical++;
    given++, canonical++;
 
 
  return ((*given == 0 && *canonical == 0)
  return ((*given == 0 && *canonical == 0)
          || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
          || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
}
}
 
 
 
 
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
   CPU name.  We've traditionally allowed a lot of variation here.
   CPU name.  We've traditionally allowed a lot of variation here.
 
 
   Note: this function is shared between GCC and GAS.  */
   Note: this function is shared between GCC and GAS.  */
 
 
static bool
static bool
mips_matching_cpu_name_p (const char *canonical, const char *given)
mips_matching_cpu_name_p (const char *canonical, const char *given)
{
{
  /* First see if the name matches exactly, or with a final "000"
  /* First see if the name matches exactly, or with a final "000"
     turned into "k".  */
     turned into "k".  */
  if (mips_strict_matching_cpu_name_p (canonical, given))
  if (mips_strict_matching_cpu_name_p (canonical, given))
    return true;
    return true;
 
 
  /* If not, try comparing based on numerical designation alone.
  /* If not, try comparing based on numerical designation alone.
     See if GIVEN is an unadorned number, or 'r' followed by a number.  */
     See if GIVEN is an unadorned number, or 'r' followed by a number.  */
  if (TOLOWER (*given) == 'r')
  if (TOLOWER (*given) == 'r')
    given++;
    given++;
  if (!ISDIGIT (*given))
  if (!ISDIGIT (*given))
    return false;
    return false;
 
 
  /* Skip over some well-known prefixes in the canonical name,
  /* Skip over some well-known prefixes in the canonical name,
     hoping to find a number there too.  */
     hoping to find a number there too.  */
  if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
  if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
    canonical += 2;
    canonical += 2;
  else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
  else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
    canonical += 2;
    canonical += 2;
  else if (TOLOWER (canonical[0]) == 'r')
  else if (TOLOWER (canonical[0]) == 'r')
    canonical += 1;
    canonical += 1;
 
 
  return mips_strict_matching_cpu_name_p (canonical, given);
  return mips_strict_matching_cpu_name_p (canonical, given);
}
}
 
 
 
 
/* Return the mips_cpu_info entry for the processor or ISA given
/* Return the mips_cpu_info entry for the processor or ISA given
   by CPU_STRING.  Return null if the string isn't recognized.
   by CPU_STRING.  Return null if the string isn't recognized.
 
 
   A similar function exists in GAS.  */
   A similar function exists in GAS.  */
 
 
static const struct mips_cpu_info *
static const struct mips_cpu_info *
mips_parse_cpu (const char *cpu_string)
mips_parse_cpu (const char *cpu_string)
{
{
  const struct mips_cpu_info *p;
  const struct mips_cpu_info *p;
  const char *s;
  const char *s;
 
 
  /* In the past, we allowed upper-case CPU names, but it doesn't
  /* In the past, we allowed upper-case CPU names, but it doesn't
     work well with the multilib machinery.  */
     work well with the multilib machinery.  */
  for (s = cpu_string; *s != 0; s++)
  for (s = cpu_string; *s != 0; s++)
    if (ISUPPER (*s))
    if (ISUPPER (*s))
      {
      {
        warning (0, "the cpu name must be lower case");
        warning (0, "the cpu name must be lower case");
        break;
        break;
      }
      }
 
 
  /* 'from-abi' selects the most compatible architecture for the given
  /* 'from-abi' selects the most compatible architecture for the given
     ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs.  For the
     ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs.  For the
     EABIs, we have to decide whether we're using the 32-bit or 64-bit
     EABIs, we have to decide whether we're using the 32-bit or 64-bit
     version.  Look first at the -mgp options, if given, otherwise base
     version.  Look first at the -mgp options, if given, otherwise base
     the choice on MASK_64BIT in TARGET_DEFAULT.  */
     the choice on MASK_64BIT in TARGET_DEFAULT.  */
  if (strcasecmp (cpu_string, "from-abi") == 0)
  if (strcasecmp (cpu_string, "from-abi") == 0)
    return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
    return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
                                   : ABI_NEEDS_64BIT_REGS ? 3
                                   : ABI_NEEDS_64BIT_REGS ? 3
                                   : (TARGET_64BIT ? 3 : 1));
                                   : (TARGET_64BIT ? 3 : 1));
 
 
  /* 'default' has traditionally been a no-op.  Probably not very useful.  */
  /* 'default' has traditionally been a no-op.  Probably not very useful.  */
  if (strcasecmp (cpu_string, "default") == 0)
  if (strcasecmp (cpu_string, "default") == 0)
    return 0;
    return 0;
 
 
  for (p = mips_cpu_info_table; p->name != 0; p++)
  for (p = mips_cpu_info_table; p->name != 0; p++)
    if (mips_matching_cpu_name_p (p->name, cpu_string))
    if (mips_matching_cpu_name_p (p->name, cpu_string))
      return p;
      return p;
 
 
  return 0;
  return 0;
}
}
 
 
 
 
/* Return the processor associated with the given ISA level, or null
/* Return the processor associated with the given ISA level, or null
   if the ISA isn't valid.  */
   if the ISA isn't valid.  */
 
 
static const struct mips_cpu_info *
static const struct mips_cpu_info *
mips_cpu_info_from_isa (int isa)
mips_cpu_info_from_isa (int isa)
{
{
  const struct mips_cpu_info *p;
  const struct mips_cpu_info *p;
 
 
  for (p = mips_cpu_info_table; p->name != 0; p++)
  for (p = mips_cpu_info_table; p->name != 0; p++)
    if (p->isa == isa)
    if (p->isa == isa)
      return p;
      return p;
 
 
  return 0;
  return 0;
}
}


/* Implement HARD_REGNO_NREGS.  The size of FP registers is controlled
/* Implement HARD_REGNO_NREGS.  The size of FP registers is controlled
   by UNITS_PER_FPREG.  The size of FP status registers is always 4, because
   by UNITS_PER_FPREG.  The size of FP status registers is always 4, because
   they only hold condition code modes, and CCmode is always considered to
   they only hold condition code modes, and CCmode is always considered to
   be 4 bytes wide.  All other registers are word sized.  */
   be 4 bytes wide.  All other registers are word sized.  */
 
 
unsigned int
unsigned int
mips_hard_regno_nregs (int regno, enum machine_mode mode)
mips_hard_regno_nregs (int regno, enum machine_mode mode)
{
{
  if (ST_REG_P (regno))
  if (ST_REG_P (regno))
    return ((GET_MODE_SIZE (mode) + 3) / 4);
    return ((GET_MODE_SIZE (mode) + 3) / 4);
  else if (! FP_REG_P (regno))
  else if (! FP_REG_P (regno))
    return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
    return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
  else
  else
    return ((GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG);
    return ((GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG);
}
}
 
 
/* Implement TARGET_RETURN_IN_MEMORY.  Under the old (i.e., 32 and O64 ABIs)
/* Implement TARGET_RETURN_IN_MEMORY.  Under the old (i.e., 32 and O64 ABIs)
   all BLKmode objects are returned in memory.  Under the new (N32 and
   all BLKmode objects are returned in memory.  Under the new (N32 and
   64-bit MIPS ABIs) small structures are returned in a register.
   64-bit MIPS ABIs) small structures are returned in a register.
   Objects with varying size must still be returned in memory, of
   Objects with varying size must still be returned in memory, of
   course.  */
   course.  */
 
 
static bool
static bool
mips_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
mips_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
{
{
  if (TARGET_OLDABI)
  if (TARGET_OLDABI)
    return (TYPE_MODE (type) == BLKmode);
    return (TYPE_MODE (type) == BLKmode);
  else
  else
    return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
    return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
            || (int_size_in_bytes (type) == -1));
            || (int_size_in_bytes (type) == -1));
}
}
 
 
static bool
static bool
mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
{
{
  return !TARGET_OLDABI;
  return !TARGET_OLDABI;
}
}


/* Return true if INSN is a multiply-add or multiply-subtract
/* Return true if INSN is a multiply-add or multiply-subtract
   instruction and PREV assigns to the accumulator operand.  */
   instruction and PREV assigns to the accumulator operand.  */
 
 
bool
bool
mips_linked_madd_p (rtx prev, rtx insn)
mips_linked_madd_p (rtx prev, rtx insn)
{
{
  rtx x;
  rtx x;
 
 
  x = single_set (insn);
  x = single_set (insn);
  if (x == 0)
  if (x == 0)
    return false;
    return false;
 
 
  x = SET_SRC (x);
  x = SET_SRC (x);
 
 
  if (GET_CODE (x) == PLUS
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == MULT
      && GET_CODE (XEXP (x, 0)) == MULT
      && reg_set_p (XEXP (x, 1), prev))
      && reg_set_p (XEXP (x, 1), prev))
    return true;
    return true;
 
 
  if (GET_CODE (x) == MINUS
  if (GET_CODE (x) == MINUS
      && GET_CODE (XEXP (x, 1)) == MULT
      && GET_CODE (XEXP (x, 1)) == MULT
      && reg_set_p (XEXP (x, 0), prev))
      && reg_set_p (XEXP (x, 0), prev))
    return true;
    return true;
 
 
  return false;
  return false;
}
}


/* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
/* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
   that may clobber hi or lo.  */
   that may clobber hi or lo.  */
 
 
static rtx mips_macc_chains_last_hilo;
static rtx mips_macc_chains_last_hilo;
 
 
/* A TUNE_MACC_CHAINS helper function.  Record that instruction INSN has
/* A TUNE_MACC_CHAINS helper function.  Record that instruction INSN has
   been scheduled, updating mips_macc_chains_last_hilo appropriately.  */
   been scheduled, updating mips_macc_chains_last_hilo appropriately.  */
 
 
static void
static void
mips_macc_chains_record (rtx insn)
mips_macc_chains_record (rtx insn)
{
{
  if (get_attr_may_clobber_hilo (insn))
  if (get_attr_may_clobber_hilo (insn))
    mips_macc_chains_last_hilo = insn;
    mips_macc_chains_last_hilo = insn;
}
}
 
 
/* A TUNE_MACC_CHAINS helper function.  Search ready queue READY, which
/* A TUNE_MACC_CHAINS helper function.  Search ready queue READY, which
   has NREADY elements, looking for a multiply-add or multiply-subtract
   has NREADY elements, looking for a multiply-add or multiply-subtract
   instruction that is cumulative with mips_macc_chains_last_hilo.
   instruction that is cumulative with mips_macc_chains_last_hilo.
   If there is one, promote it ahead of anything else that might
   If there is one, promote it ahead of anything else that might
   clobber hi or lo.  */
   clobber hi or lo.  */
 
 
static void
static void
mips_macc_chains_reorder (rtx *ready, int nready)
mips_macc_chains_reorder (rtx *ready, int nready)
{
{
  int i, j;
  int i, j;
 
 
  if (mips_macc_chains_last_hilo != 0)
  if (mips_macc_chains_last_hilo != 0)
    for (i = nready - 1; i >= 0; i--)
    for (i = nready - 1; i >= 0; i--)
      if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
      if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
        {
        {
          for (j = nready - 1; j > i; j--)
          for (j = nready - 1; j > i; j--)
            if (recog_memoized (ready[j]) >= 0
            if (recog_memoized (ready[j]) >= 0
                && get_attr_may_clobber_hilo (ready[j]))
                && get_attr_may_clobber_hilo (ready[j]))
              {
              {
                mips_promote_ready (ready, i, j);
                mips_promote_ready (ready, i, j);
                break;
                break;
              }
              }
          break;
          break;
        }
        }
}
}


/* The last instruction to be scheduled.  */
/* The last instruction to be scheduled.  */
 
 
static rtx vr4130_last_insn;
static rtx vr4130_last_insn;
 
 
/* A note_stores callback used by vr4130_true_reg_dependence_p.  DATA
/* A note_stores callback used by vr4130_true_reg_dependence_p.  DATA
   points to an rtx that is initially an instruction.  Nullify the rtx
   points to an rtx that is initially an instruction.  Nullify the rtx
   if the instruction uses the value of register X.  */
   if the instruction uses the value of register X.  */
 
 
static void
static void
vr4130_true_reg_dependence_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
vr4130_true_reg_dependence_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
{
{
  rtx *insn_ptr = data;
  rtx *insn_ptr = data;
  if (REG_P (x)
  if (REG_P (x)
      && *insn_ptr != 0
      && *insn_ptr != 0
      && reg_referenced_p (x, PATTERN (*insn_ptr)))
      && reg_referenced_p (x, PATTERN (*insn_ptr)))
    *insn_ptr = 0;
    *insn_ptr = 0;
}
}
 
 
/* Return true if there is true register dependence between vr4130_last_insn
/* Return true if there is true register dependence between vr4130_last_insn
   and INSN.  */
   and INSN.  */
 
 
static bool
static bool
vr4130_true_reg_dependence_p (rtx insn)
vr4130_true_reg_dependence_p (rtx insn)
{
{
  note_stores (PATTERN (vr4130_last_insn),
  note_stores (PATTERN (vr4130_last_insn),
               vr4130_true_reg_dependence_p_1, &insn);
               vr4130_true_reg_dependence_p_1, &insn);
  return insn == 0;
  return insn == 0;
}
}
 
 
/* A TUNE_MIPS4130 helper function.  Given that INSN1 is at the head of
/* A TUNE_MIPS4130 helper function.  Given that INSN1 is at the head of
   the ready queue and that INSN2 is the instruction after it, return
   the ready queue and that INSN2 is the instruction after it, return
   true if it is worth promoting INSN2 ahead of INSN1.  Look for cases
   true if it is worth promoting INSN2 ahead of INSN1.  Look for cases
   in which INSN1 and INSN2 can probably issue in parallel, but for
   in which INSN1 and INSN2 can probably issue in parallel, but for
   which (INSN2, INSN1) should be less sensitive to instruction
   which (INSN2, INSN1) should be less sensitive to instruction
   alignment than (INSN1, INSN2).  See 4130.md for more details.  */
   alignment than (INSN1, INSN2).  See 4130.md for more details.  */
 
 
static bool
static bool
vr4130_swap_insns_p (rtx insn1, rtx insn2)
vr4130_swap_insns_p (rtx insn1, rtx insn2)
{
{
  rtx dep;
  rtx dep;
 
 
  /* Check for the following case:
  /* Check for the following case:
 
 
     1) there is some other instruction X with an anti dependence on INSN1;
     1) there is some other instruction X with an anti dependence on INSN1;
     2) X has a higher priority than INSN2; and
     2) X has a higher priority than INSN2; and
     3) X is an arithmetic instruction (and thus has no unit restrictions).
     3) X is an arithmetic instruction (and thus has no unit restrictions).
 
 
     If INSN1 is the last instruction blocking X, it would better to
     If INSN1 is the last instruction blocking X, it would better to
     choose (INSN1, X) over (INSN2, INSN1).  */
     choose (INSN1, X) over (INSN2, INSN1).  */
  for (dep = INSN_DEPEND (insn1); dep != 0; dep = XEXP (dep, 1))
  for (dep = INSN_DEPEND (insn1); dep != 0; dep = XEXP (dep, 1))
    if (REG_NOTE_KIND (dep) == REG_DEP_ANTI
    if (REG_NOTE_KIND (dep) == REG_DEP_ANTI
        && INSN_PRIORITY (XEXP (dep, 0)) > INSN_PRIORITY (insn2)
        && INSN_PRIORITY (XEXP (dep, 0)) > INSN_PRIORITY (insn2)
        && recog_memoized (XEXP (dep, 0)) >= 0
        && recog_memoized (XEXP (dep, 0)) >= 0
        && get_attr_vr4130_class (XEXP (dep, 0)) == VR4130_CLASS_ALU)
        && get_attr_vr4130_class (XEXP (dep, 0)) == VR4130_CLASS_ALU)
      return false;
      return false;
 
 
  if (vr4130_last_insn != 0
  if (vr4130_last_insn != 0
      && recog_memoized (insn1) >= 0
      && recog_memoized (insn1) >= 0
      && recog_memoized (insn2) >= 0)
      && recog_memoized (insn2) >= 0)
    {
    {
      /* See whether INSN1 and INSN2 use different execution units,
      /* See whether INSN1 and INSN2 use different execution units,
         or if they are both ALU-type instructions.  If so, they can
         or if they are both ALU-type instructions.  If so, they can
         probably execute in parallel.  */
         probably execute in parallel.  */
      enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
      enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
      enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
      enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
      if (class1 != class2 || class1 == VR4130_CLASS_ALU)
      if (class1 != class2 || class1 == VR4130_CLASS_ALU)
        {
        {
          /* If only one of the instructions has a dependence on
          /* If only one of the instructions has a dependence on
             vr4130_last_insn, prefer to schedule the other one first.  */
             vr4130_last_insn, prefer to schedule the other one first.  */
          bool dep1 = vr4130_true_reg_dependence_p (insn1);
          bool dep1 = vr4130_true_reg_dependence_p (insn1);
          bool dep2 = vr4130_true_reg_dependence_p (insn2);
          bool dep2 = vr4130_true_reg_dependence_p (insn2);
          if (dep1 != dep2)
          if (dep1 != dep2)
            return dep1;
            return dep1;
 
 
          /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
          /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
             is not an ALU-type instruction and if INSN1 uses the same
             is not an ALU-type instruction and if INSN1 uses the same
             execution unit.  (Note that if this condition holds, we already
             execution unit.  (Note that if this condition holds, we already
             know that INSN2 uses a different execution unit.)  */
             know that INSN2 uses a different execution unit.)  */
          if (class1 != VR4130_CLASS_ALU
          if (class1 != VR4130_CLASS_ALU
              && recog_memoized (vr4130_last_insn) >= 0
              && recog_memoized (vr4130_last_insn) >= 0
              && class1 == get_attr_vr4130_class (vr4130_last_insn))
              && class1 == get_attr_vr4130_class (vr4130_last_insn))
            return true;
            return true;
        }
        }
    }
    }
  return false;
  return false;
}
}
 
 
/* A TUNE_MIPS4130 helper function.  (READY, NREADY) describes a ready
/* A TUNE_MIPS4130 helper function.  (READY, NREADY) describes a ready
   queue with at least two instructions.  Swap the first two if
   queue with at least two instructions.  Swap the first two if
   vr4130_swap_insns_p says that it could be worthwhile.  */
   vr4130_swap_insns_p says that it could be worthwhile.  */
 
 
static void
static void
vr4130_reorder (rtx *ready, int nready)
vr4130_reorder (rtx *ready, int nready)
{
{
  if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
  if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
    mips_promote_ready (ready, nready - 2, nready - 1);
    mips_promote_ready (ready, nready - 2, nready - 1);
}
}


/* Remove the instruction at index LOWER from ready queue READY and
/* Remove the instruction at index LOWER from ready queue READY and
   reinsert it in front of the instruction at index HIGHER.  LOWER must
   reinsert it in front of the instruction at index HIGHER.  LOWER must
   be <= HIGHER.  */
   be <= HIGHER.  */
 
 
static void
static void
mips_promote_ready (rtx *ready, int lower, int higher)
mips_promote_ready (rtx *ready, int lower, int higher)
{
{
  rtx new_head;
  rtx new_head;
  int i;
  int i;
 
 
  new_head = ready[lower];
  new_head = ready[lower];
  for (i = lower; i < higher; i++)
  for (i = lower; i < higher; i++)
    ready[i] = ready[i + 1];
    ready[i] = ready[i + 1];
  ready[i] = new_head;
  ready[i] = new_head;
}
}
 
 
/* Implement TARGET_SCHED_REORDER.  */
/* Implement TARGET_SCHED_REORDER.  */
 
 
static int
static int
mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
                    rtx *ready, int *nreadyp, int cycle)
                    rtx *ready, int *nreadyp, int cycle)
{
{
  if (!reload_completed && TUNE_MACC_CHAINS)
  if (!reload_completed && TUNE_MACC_CHAINS)
    {
    {
      if (cycle == 0)
      if (cycle == 0)
        mips_macc_chains_last_hilo = 0;
        mips_macc_chains_last_hilo = 0;
      if (*nreadyp > 0)
      if (*nreadyp > 0)
        mips_macc_chains_reorder (ready, *nreadyp);
        mips_macc_chains_reorder (ready, *nreadyp);
    }
    }
  if (reload_completed && TUNE_MIPS4130 && !TARGET_VR4130_ALIGN)
  if (reload_completed && TUNE_MIPS4130 && !TARGET_VR4130_ALIGN)
    {
    {
      if (cycle == 0)
      if (cycle == 0)
        vr4130_last_insn = 0;
        vr4130_last_insn = 0;
      if (*nreadyp > 1)
      if (*nreadyp > 1)
        vr4130_reorder (ready, *nreadyp);
        vr4130_reorder (ready, *nreadyp);
    }
    }
  return mips_issue_rate ();
  return mips_issue_rate ();
}
}
 
 
/* Implement TARGET_SCHED_VARIABLE_ISSUE.  */
/* Implement TARGET_SCHED_VARIABLE_ISSUE.  */
 
 
static int
static int
mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
                     rtx insn, int more)
                     rtx insn, int more)
{
{
  switch (GET_CODE (PATTERN (insn)))
  switch (GET_CODE (PATTERN (insn)))
    {
    {
    case USE:
    case USE:
    case CLOBBER:
    case CLOBBER:
      /* Don't count USEs and CLOBBERs against the issue rate.  */
      /* Don't count USEs and CLOBBERs against the issue rate.  */
      break;
      break;
 
 
    default:
    default:
      more--;
      more--;
      if (!reload_completed && TUNE_MACC_CHAINS)
      if (!reload_completed && TUNE_MACC_CHAINS)
        mips_macc_chains_record (insn);
        mips_macc_chains_record (insn);
      vr4130_last_insn = insn;
      vr4130_last_insn = insn;
      break;
      break;
    }
    }
  return more;
  return more;
}
}


/* Implement TARGET_SCHED_ADJUST_COST.  We assume that anti and output
/* Implement TARGET_SCHED_ADJUST_COST.  We assume that anti and output
   dependencies have no cost.  */
   dependencies have no cost.  */
 
 
static int
static int
mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
                  rtx dep ATTRIBUTE_UNUSED, int cost)
                  rtx dep ATTRIBUTE_UNUSED, int cost)
{
{
  if (REG_NOTE_KIND (link) != 0)
  if (REG_NOTE_KIND (link) != 0)
    return 0;
    return 0;
  return cost;
  return cost;
}
}
 
 
/* Return the number of instructions that can be issued per cycle.  */
/* Return the number of instructions that can be issued per cycle.  */
 
 
static int
static int
mips_issue_rate (void)
mips_issue_rate (void)
{
{
  switch (mips_tune)
  switch (mips_tune)
    {
    {
    case PROCESSOR_R4130:
    case PROCESSOR_R4130:
    case PROCESSOR_R5400:
    case PROCESSOR_R5400:
    case PROCESSOR_R5500:
    case PROCESSOR_R5500:
    case PROCESSOR_R7000:
    case PROCESSOR_R7000:
    case PROCESSOR_R9000:
    case PROCESSOR_R9000:
      return 2;
      return 2;
 
 
    case PROCESSOR_SB1:
    case PROCESSOR_SB1:
    case PROCESSOR_SB1A:
    case PROCESSOR_SB1A:
      /* This is actually 4, but we get better performance if we claim 3.
      /* This is actually 4, but we get better performance if we claim 3.
         This is partly because of unwanted speculative code motion with the
         This is partly because of unwanted speculative code motion with the
         larger number, and partly because in most common cases we can't
         larger number, and partly because in most common cases we can't
         reach the theoretical max of 4.  */
         reach the theoretical max of 4.  */
      return 3;
      return 3;
 
 
    default:
    default:
      return 1;
      return 1;
    }
    }
}
}
 
 
/* Implements TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD.  This should
/* Implements TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD.  This should
   be as wide as the scheduling freedom in the DFA.  */
   be as wide as the scheduling freedom in the DFA.  */
 
 
static int
static int
mips_multipass_dfa_lookahead (void)
mips_multipass_dfa_lookahead (void)
{
{
  /* Can schedule up to 4 of the 6 function units in any one cycle.  */
  /* Can schedule up to 4 of the 6 function units in any one cycle.  */
  if (TUNE_SB1)
  if (TUNE_SB1)
    return 4;
    return 4;
 
 
  return 0;
  return 0;
}
}
 
 
/* Implements a store data bypass check.  We need this because the cprestore
/* Implements a store data bypass check.  We need this because the cprestore
   pattern is type store, but defined using an UNSPEC.  This UNSPEC causes the
   pattern is type store, but defined using an UNSPEC.  This UNSPEC causes the
   default routine to abort.  We just return false for that case.  */
   default routine to abort.  We just return false for that case.  */
/* ??? Should try to give a better result here than assuming false.  */
/* ??? Should try to give a better result here than assuming false.  */
 
 
int
int
mips_store_data_bypass_p (rtx out_insn, rtx in_insn)
mips_store_data_bypass_p (rtx out_insn, rtx in_insn)
{
{
  if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
  if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
    return false;
    return false;
 
 
  return ! store_data_bypass_p (out_insn, in_insn);
  return ! store_data_bypass_p (out_insn, in_insn);
}
}


/* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
/* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
   return the first operand of the associated "pref" or "prefx" insn.  */
   return the first operand of the associated "pref" or "prefx" insn.  */
 
 
rtx
rtx
mips_prefetch_cookie (rtx write, rtx locality)
mips_prefetch_cookie (rtx write, rtx locality)
{
{
  /* store_streamed / load_streamed.  */
  /* store_streamed / load_streamed.  */
  if (INTVAL (locality) <= 0)
  if (INTVAL (locality) <= 0)
    return GEN_INT (INTVAL (write) + 4);
    return GEN_INT (INTVAL (write) + 4);
 
 
  /* store / load.  */
  /* store / load.  */
  if (INTVAL (locality) <= 2)
  if (INTVAL (locality) <= 2)
    return write;
    return write;
 
 
  /* store_retained / load_retained.  */
  /* store_retained / load_retained.  */
  return GEN_INT (INTVAL (write) + 6);
  return GEN_INT (INTVAL (write) + 6);
}
}


/* MIPS builtin function support. */
/* MIPS builtin function support. */
 
 
struct builtin_description
struct builtin_description
{
{
  /* The code of the main .md file instruction.  See mips_builtin_type
  /* The code of the main .md file instruction.  See mips_builtin_type
     for more information.  */
     for more information.  */
  enum insn_code icode;
  enum insn_code icode;
 
 
  /* The floating-point comparison code to use with ICODE, if any.  */
  /* The floating-point comparison code to use with ICODE, if any.  */
  enum mips_fp_condition cond;
  enum mips_fp_condition cond;
 
 
  /* The name of the builtin function.  */
  /* The name of the builtin function.  */
  const char *name;
  const char *name;
 
 
  /* Specifies how the function should be expanded.  */
  /* Specifies how the function should be expanded.  */
  enum mips_builtin_type builtin_type;
  enum mips_builtin_type builtin_type;
 
 
  /* The function's prototype.  */
  /* The function's prototype.  */
  enum mips_function_type function_type;
  enum mips_function_type function_type;
 
 
  /* The target flags required for this function.  */
  /* The target flags required for this function.  */
  int target_flags;
  int target_flags;
};
};
 
 
/* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
/* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
   FUNCTION_TYPE and TARGET_FLAGS are builtin_description fields.  */
   FUNCTION_TYPE and TARGET_FLAGS are builtin_description fields.  */
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS)               \
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS)               \
  { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN,                 \
  { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN,                 \
    MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }
    MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }
 
 
/* Define __builtin_mips_<INSN>_<COND>_{s,d}, both of which require
/* Define __builtin_mips_<INSN>_<COND>_{s,d}, both of which require
   TARGET_FLAGS.  */
   TARGET_FLAGS.  */
#define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS)                   \
#define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS)                   \
  { CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND,           \
  { CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND,           \
    "__builtin_mips_" #INSN "_" #COND "_s",                             \
    "__builtin_mips_" #INSN "_" #COND "_s",                             \
    MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS },      \
    MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS },      \
  { CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND,           \
  { CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND,           \
    "__builtin_mips_" #INSN "_" #COND "_d",                             \
    "__builtin_mips_" #INSN "_" #COND "_d",                             \
    MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }
    MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }
 
 
/* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
/* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
   The lower and upper forms require TARGET_FLAGS while the any and all
   The lower and upper forms require TARGET_FLAGS while the any and all
   forms require MASK_MIPS3D.  */
   forms require MASK_MIPS3D.  */
#define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS)                       \
#define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS)                       \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_any_" #INSN "_" #COND "_ps",                        \
    "__builtin_mips_any_" #INSN "_" #COND "_ps",                        \
    MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D },      \
    MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D },      \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_all_" #INSN "_" #COND "_ps",                        \
    "__builtin_mips_all_" #INSN "_" #COND "_ps",                        \
    MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D },      \
    MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D },      \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_lower_" #INSN "_" #COND "_ps",                      \
    "__builtin_mips_lower_" #INSN "_" #COND "_ps",                      \
    MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS },   \
    MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS },   \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_upper_" #INSN "_" #COND "_ps",                      \
    "__builtin_mips_upper_" #INSN "_" #COND "_ps",                      \
    MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }
    MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }
 
 
/* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s.  The functions
/* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s.  The functions
   require MASK_MIPS3D.  */
   require MASK_MIPS3D.  */
#define CMP_4S_BUILTINS(INSN, COND)                                     \
#define CMP_4S_BUILTINS(INSN, COND)                                     \
  { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_any_" #INSN "_" #COND "_4s",                        \
    "__builtin_mips_any_" #INSN "_" #COND "_4s",                        \
    MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,           \
    MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,           \
    MASK_MIPS3D },                                                      \
    MASK_MIPS3D },                                                      \
  { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_all_" #INSN "_" #COND "_4s",                        \
    "__builtin_mips_all_" #INSN "_" #COND "_4s",                        \
    MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,           \
    MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,           \
    MASK_MIPS3D }
    MASK_MIPS3D }
 
 
/* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps.  The comparison
/* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps.  The comparison
   instruction requires TARGET_FLAGS.  */
   instruction requires TARGET_FLAGS.  */
#define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS)                        \
#define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS)                        \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_movt_" #INSN "_" #COND "_ps",                       \
    "__builtin_mips_movt_" #INSN "_" #COND "_ps",                       \
    MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,             \
    MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,             \
    TARGET_FLAGS },                                                     \
    TARGET_FLAGS },                                                     \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,          \
    "__builtin_mips_movf_" #INSN "_" #COND "_ps",                       \
    "__builtin_mips_movf_" #INSN "_" #COND "_ps",                       \
    MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,             \
    MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,             \
    TARGET_FLAGS }
    TARGET_FLAGS }
 
 
/* Define all the builtins related to c.cond.fmt condition COND.  */
/* Define all the builtins related to c.cond.fmt condition COND.  */
#define CMP_BUILTINS(COND)                                              \
#define CMP_BUILTINS(COND)                                              \
  MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT),                   \
  MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT),                   \
  MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D),                             \
  MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D),                             \
  CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D),                        \
  CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D),                        \
  CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT),                  \
  CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT),                  \
  CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D),                            \
  CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D),                            \
  CMP_4S_BUILTINS (c, COND),                                            \
  CMP_4S_BUILTINS (c, COND),                                            \
  CMP_4S_BUILTINS (cabs, COND)
  CMP_4S_BUILTINS (cabs, COND)
 
 
static const struct builtin_description mips_bdesc[] =
static const struct builtin_description mips_bdesc[] =
{
{
  DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
 
 
  DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
  DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
                  MASK_PAIRED_SINGLE_FLOAT),
                  MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
 
 
  DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
 
 
  DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
 
 
  MIPS_FP_CONDITIONS (CMP_BUILTINS)
  MIPS_FP_CONDITIONS (CMP_BUILTINS)
};
};
 
 
/* Builtin functions for the SB-1 processor.  */
/* Builtin functions for the SB-1 processor.  */
 
 
#define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
#define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
 
 
static const struct builtin_description sb1_bdesc[] =
static const struct builtin_description sb1_bdesc[] =
{
{
  DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT)
  DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT)
};
};
 
 
/* Builtin functions for DSP ASE.  */
/* Builtin functions for DSP ASE.  */
 
 
#define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
#define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
#define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
#define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
#define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
#define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
#define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
#define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
 
 
/* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
/* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
   CODE_FOR_mips_<INSN>.  FUNCTION_TYPE and TARGET_FLAGS are
   CODE_FOR_mips_<INSN>.  FUNCTION_TYPE and TARGET_FLAGS are
   builtin_description fields.  */
   builtin_description fields.  */
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS)     \
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS)     \
  { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN,                 \
  { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN,                 \
    MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }
    MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }
 
 
/* Define __builtin_mips_bposge<VALUE>.  <VALUE> is 32 for the MIPS32 DSP
/* Define __builtin_mips_bposge<VALUE>.  <VALUE> is 32 for the MIPS32 DSP
   branch instruction.  TARGET_FLAGS is a builtin_description field.  */
   branch instruction.  TARGET_FLAGS is a builtin_description field.  */
#define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS)                             \
#define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS)                             \
  { CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE,             \
  { CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE,             \
    MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }
    MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }
 
 
static const struct builtin_description dsp_bdesc[] =
static const struct builtin_description dsp_bdesc[] =
{
{
  DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
  DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  BPOSGE_BUILTIN (32, MASK_DSP)
  BPOSGE_BUILTIN (32, MASK_DSP)
};
};
 
 
/* This helps provide a mapping from builtin function codes to bdesc
/* This helps provide a mapping from builtin function codes to bdesc
   arrays.  */
   arrays.  */
 
 
struct bdesc_map
struct bdesc_map
{
{
  /* The builtin function table that this entry describes.  */
  /* The builtin function table that this entry describes.  */
  const struct builtin_description *bdesc;
  const struct builtin_description *bdesc;
 
 
  /* The number of entries in the builtin function table.  */
  /* The number of entries in the builtin function table.  */
  unsigned int size;
  unsigned int size;
 
 
  /* The target processor that supports these builtin functions.
  /* The target processor that supports these builtin functions.
     PROCESSOR_MAX means we enable them for all processors.  */
     PROCESSOR_MAX means we enable them for all processors.  */
  enum processor_type proc;
  enum processor_type proc;
};
};
 
 
static const struct bdesc_map bdesc_arrays[] =
static const struct bdesc_map bdesc_arrays[] =
{
{
  { mips_bdesc, ARRAY_SIZE (mips_bdesc), PROCESSOR_MAX },
  { mips_bdesc, ARRAY_SIZE (mips_bdesc), PROCESSOR_MAX },
  { sb1_bdesc, ARRAY_SIZE (sb1_bdesc), PROCESSOR_SB1 },
  { sb1_bdesc, ARRAY_SIZE (sb1_bdesc), PROCESSOR_SB1 },
  { dsp_bdesc, ARRAY_SIZE (dsp_bdesc), PROCESSOR_MAX }
  { dsp_bdesc, ARRAY_SIZE (dsp_bdesc), PROCESSOR_MAX }
};
};
 
 
/* Take the head of argument list *ARGLIST and convert it into a form
/* Take the head of argument list *ARGLIST and convert it into a form
   suitable for input operand OP of instruction ICODE.  Return the value
   suitable for input operand OP of instruction ICODE.  Return the value
   and point *ARGLIST at the next element of the list.  */
   and point *ARGLIST at the next element of the list.  */
 
 
static rtx
static rtx
mips_prepare_builtin_arg (enum insn_code icode,
mips_prepare_builtin_arg (enum insn_code icode,
                          unsigned int op, tree *arglist)
                          unsigned int op, tree *arglist)
{
{
  rtx value;
  rtx value;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  value = expand_normal (TREE_VALUE (*arglist));
  value = expand_normal (TREE_VALUE (*arglist));
  mode = insn_data[icode].operand[op].mode;
  mode = insn_data[icode].operand[op].mode;
  if (!insn_data[icode].operand[op].predicate (value, mode))
  if (!insn_data[icode].operand[op].predicate (value, mode))
    {
    {
      value = copy_to_mode_reg (mode, value);
      value = copy_to_mode_reg (mode, value);
      /* Check the predicate again.  */
      /* Check the predicate again.  */
      if (!insn_data[icode].operand[op].predicate (value, mode))
      if (!insn_data[icode].operand[op].predicate (value, mode))
        {
        {
          error ("invalid argument to builtin function");
          error ("invalid argument to builtin function");
          return const0_rtx;
          return const0_rtx;
        }
        }
    }
    }
 
 
  *arglist = TREE_CHAIN (*arglist);
  *arglist = TREE_CHAIN (*arglist);
  return value;
  return value;
}
}
 
 
/* Return an rtx suitable for output operand OP of instruction ICODE.
/* Return an rtx suitable for output operand OP of instruction ICODE.
   If TARGET is non-null, try to use it where possible.  */
   If TARGET is non-null, try to use it where possible.  */
 
 
static rtx
static rtx
mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  mode = insn_data[icode].operand[op].mode;
  mode = insn_data[icode].operand[op].mode;
  if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
  if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  return target;
  return target;
}
}
 
 
/* Expand builtin functions.  This is called from TARGET_EXPAND_BUILTIN.  */
/* Expand builtin functions.  This is called from TARGET_EXPAND_BUILTIN.  */
 
 
rtx
rtx
mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
                     enum machine_mode mode ATTRIBUTE_UNUSED,
                     enum machine_mode mode ATTRIBUTE_UNUSED,
                     int ignore ATTRIBUTE_UNUSED)
                     int ignore ATTRIBUTE_UNUSED)
{
{
  enum insn_code icode;
  enum insn_code icode;
  enum mips_builtin_type type;
  enum mips_builtin_type type;
  tree fndecl, arglist;
  tree fndecl, arglist;
  unsigned int fcode;
  unsigned int fcode;
  const struct builtin_description *bdesc;
  const struct builtin_description *bdesc;
  const struct bdesc_map *m;
  const struct bdesc_map *m;
 
 
  fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
  fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
  arglist = TREE_OPERAND (exp, 1);
  arglist = TREE_OPERAND (exp, 1);
  fcode = DECL_FUNCTION_CODE (fndecl);
  fcode = DECL_FUNCTION_CODE (fndecl);
 
 
  bdesc = NULL;
  bdesc = NULL;
  for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
  for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
    {
    {
      if (fcode < m->size)
      if (fcode < m->size)
        {
        {
          bdesc = m->bdesc;
          bdesc = m->bdesc;
          icode = bdesc[fcode].icode;
          icode = bdesc[fcode].icode;
          type = bdesc[fcode].builtin_type;
          type = bdesc[fcode].builtin_type;
          break;
          break;
        }
        }
      fcode -= m->size;
      fcode -= m->size;
    }
    }
  if (bdesc == NULL)
  if (bdesc == NULL)
    return 0;
    return 0;
 
 
  switch (type)
  switch (type)
    {
    {
    case MIPS_BUILTIN_DIRECT:
    case MIPS_BUILTIN_DIRECT:
      return mips_expand_builtin_direct (icode, target, arglist, true);
      return mips_expand_builtin_direct (icode, target, arglist, true);
 
 
    case MIPS_BUILTIN_DIRECT_NO_TARGET:
    case MIPS_BUILTIN_DIRECT_NO_TARGET:
      return mips_expand_builtin_direct (icode, target, arglist, false);
      return mips_expand_builtin_direct (icode, target, arglist, false);
 
 
    case MIPS_BUILTIN_MOVT:
    case MIPS_BUILTIN_MOVT:
    case MIPS_BUILTIN_MOVF:
    case MIPS_BUILTIN_MOVF:
      return mips_expand_builtin_movtf (type, icode, bdesc[fcode].cond,
      return mips_expand_builtin_movtf (type, icode, bdesc[fcode].cond,
                                        target, arglist);
                                        target, arglist);
 
 
    case MIPS_BUILTIN_CMP_ANY:
    case MIPS_BUILTIN_CMP_ANY:
    case MIPS_BUILTIN_CMP_ALL:
    case MIPS_BUILTIN_CMP_ALL:
    case MIPS_BUILTIN_CMP_UPPER:
    case MIPS_BUILTIN_CMP_UPPER:
    case MIPS_BUILTIN_CMP_LOWER:
    case MIPS_BUILTIN_CMP_LOWER:
    case MIPS_BUILTIN_CMP_SINGLE:
    case MIPS_BUILTIN_CMP_SINGLE:
      return mips_expand_builtin_compare (type, icode, bdesc[fcode].cond,
      return mips_expand_builtin_compare (type, icode, bdesc[fcode].cond,
                                          target, arglist);
                                          target, arglist);
 
 
    case MIPS_BUILTIN_BPOSGE32:
    case MIPS_BUILTIN_BPOSGE32:
      return mips_expand_builtin_bposge (type, target);
      return mips_expand_builtin_bposge (type, target);
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Init builtin functions.  This is called from TARGET_INIT_BUILTIN.  */
/* Init builtin functions.  This is called from TARGET_INIT_BUILTIN.  */
 
 
void
void
mips_init_builtins (void)
mips_init_builtins (void)
{
{
  const struct builtin_description *d;
  const struct builtin_description *d;
  const struct bdesc_map *m;
  const struct bdesc_map *m;
  tree types[(int) MIPS_MAX_FTYPE_MAX];
  tree types[(int) MIPS_MAX_FTYPE_MAX];
  tree V2SF_type_node;
  tree V2SF_type_node;
  tree V2HI_type_node;
  tree V2HI_type_node;
  tree V4QI_type_node;
  tree V4QI_type_node;
  unsigned int offset;
  unsigned int offset;
 
 
  /* We have only builtins for -mpaired-single, -mips3d and -mdsp.  */
  /* We have only builtins for -mpaired-single, -mips3d and -mdsp.  */
  if (!TARGET_PAIRED_SINGLE_FLOAT && !TARGET_DSP)
  if (!TARGET_PAIRED_SINGLE_FLOAT && !TARGET_DSP)
    return;
    return;
 
 
  if (TARGET_PAIRED_SINGLE_FLOAT)
  if (TARGET_PAIRED_SINGLE_FLOAT)
    {
    {
      V2SF_type_node = build_vector_type_for_mode (float_type_node, V2SFmode);
      V2SF_type_node = build_vector_type_for_mode (float_type_node, V2SFmode);
 
 
      types[MIPS_V2SF_FTYPE_V2SF]
      types[MIPS_V2SF_FTYPE_V2SF]
        = build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE);
        = build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE);
 
 
      types[MIPS_V2SF_FTYPE_V2SF_V2SF]
      types[MIPS_V2SF_FTYPE_V2SF_V2SF]
        = build_function_type_list (V2SF_type_node,
        = build_function_type_list (V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
 
 
      types[MIPS_V2SF_FTYPE_V2SF_V2SF_INT]
      types[MIPS_V2SF_FTYPE_V2SF_V2SF_INT]
        = build_function_type_list (V2SF_type_node,
        = build_function_type_list (V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node,
                                    integer_type_node, NULL_TREE);
                                    integer_type_node, NULL_TREE);
 
 
      types[MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF]
      types[MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF]
        = build_function_type_list (V2SF_type_node,
        = build_function_type_list (V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
 
 
      types[MIPS_V2SF_FTYPE_SF_SF]
      types[MIPS_V2SF_FTYPE_SF_SF]
        = build_function_type_list (V2SF_type_node,
        = build_function_type_list (V2SF_type_node,
                                    float_type_node, float_type_node, NULL_TREE);
                                    float_type_node, float_type_node, NULL_TREE);
 
 
      types[MIPS_INT_FTYPE_V2SF_V2SF]
      types[MIPS_INT_FTYPE_V2SF_V2SF]
        = build_function_type_list (integer_type_node,
        = build_function_type_list (integer_type_node,
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
 
 
      types[MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF]
      types[MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF]
        = build_function_type_list (integer_type_node,
        = build_function_type_list (integer_type_node,
                                    V2SF_type_node, V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node,
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
                                    V2SF_type_node, V2SF_type_node, NULL_TREE);
 
 
      types[MIPS_INT_FTYPE_SF_SF]
      types[MIPS_INT_FTYPE_SF_SF]
        = build_function_type_list (integer_type_node,
        = build_function_type_list (integer_type_node,
                                    float_type_node, float_type_node, NULL_TREE);
                                    float_type_node, float_type_node, NULL_TREE);
 
 
      types[MIPS_INT_FTYPE_DF_DF]
      types[MIPS_INT_FTYPE_DF_DF]
        = build_function_type_list (integer_type_node,
        = build_function_type_list (integer_type_node,
                                    double_type_node, double_type_node, NULL_TREE);
                                    double_type_node, double_type_node, NULL_TREE);
 
 
      types[MIPS_SF_FTYPE_V2SF]
      types[MIPS_SF_FTYPE_V2SF]
        = build_function_type_list (float_type_node, V2SF_type_node, NULL_TREE);
        = build_function_type_list (float_type_node, V2SF_type_node, NULL_TREE);
 
 
      types[MIPS_SF_FTYPE_SF]
      types[MIPS_SF_FTYPE_SF]
        = build_function_type_list (float_type_node,
        = build_function_type_list (float_type_node,
                                    float_type_node, NULL_TREE);
                                    float_type_node, NULL_TREE);
 
 
      types[MIPS_SF_FTYPE_SF_SF]
      types[MIPS_SF_FTYPE_SF_SF]
        = build_function_type_list (float_type_node,
        = build_function_type_list (float_type_node,
                                    float_type_node, float_type_node, NULL_TREE);
                                    float_type_node, float_type_node, NULL_TREE);
 
 
      types[MIPS_DF_FTYPE_DF]
      types[MIPS_DF_FTYPE_DF]
        = build_function_type_list (double_type_node,
        = build_function_type_list (double_type_node,
                                    double_type_node, NULL_TREE);
                                    double_type_node, NULL_TREE);
 
 
      types[MIPS_DF_FTYPE_DF_DF]
      types[MIPS_DF_FTYPE_DF_DF]
        = build_function_type_list (double_type_node,
        = build_function_type_list (double_type_node,
                                    double_type_node, double_type_node, NULL_TREE);
                                    double_type_node, double_type_node, NULL_TREE);
    }
    }
 
 
  if (TARGET_DSP)
  if (TARGET_DSP)
    {
    {
      V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
      V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
      V4QI_type_node = build_vector_type_for_mode (intQI_type_node, V4QImode);
      V4QI_type_node = build_vector_type_for_mode (intQI_type_node, V4QImode);
 
 
      types[MIPS_V2HI_FTYPE_V2HI_V2HI]
      types[MIPS_V2HI_FTYPE_V2HI_V2HI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_SI_SI]
      types[MIPS_SI_FTYPE_SI_SI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    intSI_type_node, intSI_type_node,
                                    intSI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V4QI_FTYPE_V4QI_V4QI]
      types[MIPS_V4QI_FTYPE_V4QI_V4QI]
        = build_function_type_list (V4QI_type_node,
        = build_function_type_list (V4QI_type_node,
                                    V4QI_type_node, V4QI_type_node,
                                    V4QI_type_node, V4QI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_V4QI]
      types[MIPS_SI_FTYPE_V4QI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    V4QI_type_node,
                                    V4QI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V2HI_FTYPE_V2HI]
      types[MIPS_V2HI_FTYPE_V2HI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    V2HI_type_node,
                                    V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_SI]
      types[MIPS_SI_FTYPE_SI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    intSI_type_node,
                                    intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V4QI_FTYPE_V2HI_V2HI]
      types[MIPS_V4QI_FTYPE_V2HI_V2HI]
        = build_function_type_list (V4QI_type_node,
        = build_function_type_list (V4QI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V2HI_FTYPE_SI_SI]
      types[MIPS_V2HI_FTYPE_SI_SI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    intSI_type_node, intSI_type_node,
                                    intSI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_V2HI]
      types[MIPS_SI_FTYPE_V2HI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    V2HI_type_node,
                                    V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V2HI_FTYPE_V4QI]
      types[MIPS_V2HI_FTYPE_V4QI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    V4QI_type_node,
                                    V4QI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V4QI_FTYPE_V4QI_SI]
      types[MIPS_V4QI_FTYPE_V4QI_SI]
        = build_function_type_list (V4QI_type_node,
        = build_function_type_list (V4QI_type_node,
                                    V4QI_type_node, intSI_type_node,
                                    V4QI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V2HI_FTYPE_V2HI_SI]
      types[MIPS_V2HI_FTYPE_V2HI_SI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    V2HI_type_node, intSI_type_node,
                                    V2HI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V2HI_FTYPE_V4QI_V2HI]
      types[MIPS_V2HI_FTYPE_V4QI_V2HI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    V4QI_type_node, V2HI_type_node,
                                    V4QI_type_node, V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_V2HI_V2HI]
      types[MIPS_SI_FTYPE_V2HI_V2HI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_DI_FTYPE_DI_V4QI_V4QI]
      types[MIPS_DI_FTYPE_DI_V4QI_V4QI]
        = build_function_type_list (intDI_type_node,
        = build_function_type_list (intDI_type_node,
                                    intDI_type_node, V4QI_type_node, V4QI_type_node,
                                    intDI_type_node, V4QI_type_node, V4QI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_DI_FTYPE_DI_V2HI_V2HI]
      types[MIPS_DI_FTYPE_DI_V2HI_V2HI]
        = build_function_type_list (intDI_type_node,
        = build_function_type_list (intDI_type_node,
                                    intDI_type_node, V2HI_type_node, V2HI_type_node,
                                    intDI_type_node, V2HI_type_node, V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_DI_FTYPE_DI_SI_SI]
      types[MIPS_DI_FTYPE_DI_SI_SI]
        = build_function_type_list (intDI_type_node,
        = build_function_type_list (intDI_type_node,
                                    intDI_type_node, intSI_type_node, intSI_type_node,
                                    intDI_type_node, intSI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V4QI_FTYPE_SI]
      types[MIPS_V4QI_FTYPE_SI]
        = build_function_type_list (V4QI_type_node,
        = build_function_type_list (V4QI_type_node,
                                    intSI_type_node,
                                    intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_V2HI_FTYPE_SI]
      types[MIPS_V2HI_FTYPE_SI]
        = build_function_type_list (V2HI_type_node,
        = build_function_type_list (V2HI_type_node,
                                    intSI_type_node,
                                    intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_VOID_FTYPE_V4QI_V4QI]
      types[MIPS_VOID_FTYPE_V4QI_V4QI]
        = build_function_type_list (void_type_node,
        = build_function_type_list (void_type_node,
                                    V4QI_type_node, V4QI_type_node,
                                    V4QI_type_node, V4QI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_V4QI_V4QI]
      types[MIPS_SI_FTYPE_V4QI_V4QI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    V4QI_type_node, V4QI_type_node,
                                    V4QI_type_node, V4QI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_VOID_FTYPE_V2HI_V2HI]
      types[MIPS_VOID_FTYPE_V2HI_V2HI]
        = build_function_type_list (void_type_node,
        = build_function_type_list (void_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    V2HI_type_node, V2HI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_DI_SI]
      types[MIPS_SI_FTYPE_DI_SI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    intDI_type_node, intSI_type_node,
                                    intDI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_DI_FTYPE_DI_SI]
      types[MIPS_DI_FTYPE_DI_SI]
        = build_function_type_list (intDI_type_node,
        = build_function_type_list (intDI_type_node,
                                    intDI_type_node, intSI_type_node,
                                    intDI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_VOID_FTYPE_SI_SI]
      types[MIPS_VOID_FTYPE_SI_SI]
        = build_function_type_list (void_type_node,
        = build_function_type_list (void_type_node,
                                    intSI_type_node, intSI_type_node,
                                    intSI_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_PTR_SI]
      types[MIPS_SI_FTYPE_PTR_SI]
        = build_function_type_list (intSI_type_node,
        = build_function_type_list (intSI_type_node,
                                    ptr_type_node, intSI_type_node,
                                    ptr_type_node, intSI_type_node,
                                    NULL_TREE);
                                    NULL_TREE);
 
 
      types[MIPS_SI_FTYPE_VOID]
      types[MIPS_SI_FTYPE_VOID]
        = build_function_type (intSI_type_node, void_list_node);
        = build_function_type (intSI_type_node, void_list_node);
    }
    }
 
 
  /* Iterate through all of the bdesc arrays, initializing all of the
  /* Iterate through all of the bdesc arrays, initializing all of the
     builtin functions.  */
     builtin functions.  */
 
 
  offset = 0;
  offset = 0;
  for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
  for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
    {
    {
      if (m->proc == PROCESSOR_MAX || (m->proc == mips_arch))
      if (m->proc == PROCESSOR_MAX || (m->proc == mips_arch))
        for (d = m->bdesc; d < &m->bdesc[m->size]; d++)
        for (d = m->bdesc; d < &m->bdesc[m->size]; d++)
          if ((d->target_flags & target_flags) == d->target_flags)
          if ((d->target_flags & target_flags) == d->target_flags)
            lang_hooks.builtin_function (d->name, types[d->function_type],
            lang_hooks.builtin_function (d->name, types[d->function_type],
                                         d - m->bdesc + offset,
                                         d - m->bdesc + offset,
                                         BUILT_IN_MD, NULL, NULL);
                                         BUILT_IN_MD, NULL, NULL);
      offset += m->size;
      offset += m->size;
    }
    }
}
}
 
 
/* Expand a MIPS_BUILTIN_DIRECT function.  ICODE is the code of the
/* Expand a MIPS_BUILTIN_DIRECT function.  ICODE is the code of the
   .md pattern and ARGLIST is the list of function arguments.  TARGET,
   .md pattern and ARGLIST is the list of function arguments.  TARGET,
   if nonnull, suggests a good place to put the result.
   if nonnull, suggests a good place to put the result.
   HAS_TARGET indicates the function must return something.  */
   HAS_TARGET indicates the function must return something.  */
 
 
static rtx
static rtx
mips_expand_builtin_direct (enum insn_code icode, rtx target, tree arglist,
mips_expand_builtin_direct (enum insn_code icode, rtx target, tree arglist,
                            bool has_target)
                            bool has_target)
{
{
  rtx ops[MAX_RECOG_OPERANDS];
  rtx ops[MAX_RECOG_OPERANDS];
  int i = 0;
  int i = 0;
 
 
  if (has_target)
  if (has_target)
    {
    {
      /* We save target to ops[0].  */
      /* We save target to ops[0].  */
      ops[0] = mips_prepare_builtin_target (icode, 0, target);
      ops[0] = mips_prepare_builtin_target (icode, 0, target);
      i = 1;
      i = 1;
    }
    }
 
 
  /* We need to test if arglist is not zero.  Some instructions have extra
  /* We need to test if arglist is not zero.  Some instructions have extra
     clobber registers.  */
     clobber registers.  */
  for (; i < insn_data[icode].n_operands && arglist != 0; i++)
  for (; i < insn_data[icode].n_operands && arglist != 0; i++)
    ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);
    ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);
 
 
  switch (i)
  switch (i)
    {
    {
    case 2:
    case 2:
      emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
      emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
      break;
      break;
 
 
    case 3:
    case 3:
      emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
      emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
      break;
      break;
 
 
    case 4:
    case 4:
      emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
      emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  return target;
  return target;
}
}
 
 
/* Expand a __builtin_mips_movt_*_ps() or __builtin_mips_movf_*_ps()
/* Expand a __builtin_mips_movt_*_ps() or __builtin_mips_movf_*_ps()
   function (TYPE says which).  ARGLIST is the list of arguments to the
   function (TYPE says which).  ARGLIST is the list of arguments to the
   function, ICODE is the instruction that should be used to compare
   function, ICODE is the instruction that should be used to compare
   the first two arguments, and COND is the condition it should test.
   the first two arguments, and COND is the condition it should test.
   TARGET, if nonnull, suggests a good place to put the result.  */
   TARGET, if nonnull, suggests a good place to put the result.  */
 
 
static rtx
static rtx
mips_expand_builtin_movtf (enum mips_builtin_type type,
mips_expand_builtin_movtf (enum mips_builtin_type type,
                           enum insn_code icode, enum mips_fp_condition cond,
                           enum insn_code icode, enum mips_fp_condition cond,
                           rtx target, tree arglist)
                           rtx target, tree arglist)
{
{
  rtx cmp_result, op0, op1;
  rtx cmp_result, op0, op1;
 
 
  cmp_result = mips_prepare_builtin_target (icode, 0, 0);
  cmp_result = mips_prepare_builtin_target (icode, 0, 0);
  op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
  op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
  op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
  op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
  emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));
  emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));
 
 
  icode = CODE_FOR_mips_cond_move_tf_ps;
  icode = CODE_FOR_mips_cond_move_tf_ps;
  target = mips_prepare_builtin_target (icode, 0, target);
  target = mips_prepare_builtin_target (icode, 0, target);
  if (type == MIPS_BUILTIN_MOVT)
  if (type == MIPS_BUILTIN_MOVT)
    {
    {
      op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
      op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
      op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
      op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
    }
    }
  else
  else
    {
    {
      op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
      op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
      op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
      op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
    }
    }
  emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
  emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
  return target;
  return target;
}
}
 
 
/* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
/* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
   into TARGET otherwise.  Return TARGET.  */
   into TARGET otherwise.  Return TARGET.  */
 
 
static rtx
static rtx
mips_builtin_branch_and_move (rtx condition, rtx target,
mips_builtin_branch_and_move (rtx condition, rtx target,
                              rtx value_if_true, rtx value_if_false)
                              rtx value_if_true, rtx value_if_false)
{
{
  rtx true_label, done_label;
  rtx true_label, done_label;
 
 
  true_label = gen_label_rtx ();
  true_label = gen_label_rtx ();
  done_label = gen_label_rtx ();
  done_label = gen_label_rtx ();
 
 
  /* First assume that CONDITION is false.  */
  /* First assume that CONDITION is false.  */
  emit_move_insn (target, value_if_false);
  emit_move_insn (target, value_if_false);
 
 
  /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise.  */
  /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise.  */
  emit_jump_insn (gen_condjump (condition, true_label));
  emit_jump_insn (gen_condjump (condition, true_label));
  emit_jump_insn (gen_jump (done_label));
  emit_jump_insn (gen_jump (done_label));
  emit_barrier ();
  emit_barrier ();
 
 
  /* Fix TARGET if CONDITION is true.  */
  /* Fix TARGET if CONDITION is true.  */
  emit_label (true_label);
  emit_label (true_label);
  emit_move_insn (target, value_if_true);
  emit_move_insn (target, value_if_true);
 
 
  emit_label (done_label);
  emit_label (done_label);
  return target;
  return target;
}
}
 
 
/* Expand a comparison builtin of type BUILTIN_TYPE.  ICODE is the code
/* Expand a comparison builtin of type BUILTIN_TYPE.  ICODE is the code
   of the comparison instruction and COND is the condition it should test.
   of the comparison instruction and COND is the condition it should test.
   ARGLIST is the list of function arguments and TARGET, if nonnull,
   ARGLIST is the list of function arguments and TARGET, if nonnull,
   suggests a good place to put the boolean result.  */
   suggests a good place to put the boolean result.  */
 
 
static rtx
static rtx
mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
                             enum insn_code icode, enum mips_fp_condition cond,
                             enum insn_code icode, enum mips_fp_condition cond,
                             rtx target, tree arglist)
                             rtx target, tree arglist)
{
{
  rtx offset, condition, cmp_result, ops[MAX_RECOG_OPERANDS];
  rtx offset, condition, cmp_result, ops[MAX_RECOG_OPERANDS];
  int i;
  int i;
 
 
  if (target == 0 || GET_MODE (target) != SImode)
  if (target == 0 || GET_MODE (target) != SImode)
    target = gen_reg_rtx (SImode);
    target = gen_reg_rtx (SImode);
 
 
  /* Prepare the operands to the comparison.  */
  /* Prepare the operands to the comparison.  */
  cmp_result = mips_prepare_builtin_target (icode, 0, 0);
  cmp_result = mips_prepare_builtin_target (icode, 0, 0);
  for (i = 1; i < insn_data[icode].n_operands - 1; i++)
  for (i = 1; i < insn_data[icode].n_operands - 1; i++)
    ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);
    ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);
 
 
  switch (insn_data[icode].n_operands)
  switch (insn_data[icode].n_operands)
    {
    {
    case 4:
    case 4:
      emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2], GEN_INT (cond)));
      emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2], GEN_INT (cond)));
      break;
      break;
 
 
    case 6:
    case 6:
      emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2],
      emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2],
                                  ops[3], ops[4], GEN_INT (cond)));
                                  ops[3], ops[4], GEN_INT (cond)));
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* If the comparison sets more than one register, we define the result
  /* If the comparison sets more than one register, we define the result
     to be 0 if all registers are false and -1 if all registers are true.
     to be 0 if all registers are false and -1 if all registers are true.
     The value of the complete result is indeterminate otherwise.  */
     The value of the complete result is indeterminate otherwise.  */
  switch (builtin_type)
  switch (builtin_type)
    {
    {
    case MIPS_BUILTIN_CMP_ALL:
    case MIPS_BUILTIN_CMP_ALL:
      condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
      condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
      return mips_builtin_branch_and_move (condition, target,
      return mips_builtin_branch_and_move (condition, target,
                                           const0_rtx, const1_rtx);
                                           const0_rtx, const1_rtx);
 
 
    case MIPS_BUILTIN_CMP_UPPER:
    case MIPS_BUILTIN_CMP_UPPER:
    case MIPS_BUILTIN_CMP_LOWER:
    case MIPS_BUILTIN_CMP_LOWER:
      offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
      offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
      condition = gen_single_cc (cmp_result, offset);
      condition = gen_single_cc (cmp_result, offset);
      return mips_builtin_branch_and_move (condition, target,
      return mips_builtin_branch_and_move (condition, target,
                                           const1_rtx, const0_rtx);
                                           const1_rtx, const0_rtx);
 
 
    default:
    default:
      condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
      condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
      return mips_builtin_branch_and_move (condition, target,
      return mips_builtin_branch_and_move (condition, target,
                                           const1_rtx, const0_rtx);
                                           const1_rtx, const0_rtx);
    }
    }
}
}
 
 
/* Expand a bposge builtin of type BUILTIN_TYPE.  TARGET, if nonnull,
/* Expand a bposge builtin of type BUILTIN_TYPE.  TARGET, if nonnull,
   suggests a good place to put the boolean result.  */
   suggests a good place to put the boolean result.  */
 
 
static rtx
static rtx
mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
{
{
  rtx condition, cmp_result;
  rtx condition, cmp_result;
  int cmp_value;
  int cmp_value;
 
 
  if (target == 0 || GET_MODE (target) != SImode)
  if (target == 0 || GET_MODE (target) != SImode)
    target = gen_reg_rtx (SImode);
    target = gen_reg_rtx (SImode);
 
 
  cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
  cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
 
 
  if (builtin_type == MIPS_BUILTIN_BPOSGE32)
  if (builtin_type == MIPS_BUILTIN_BPOSGE32)
    cmp_value = 32;
    cmp_value = 32;
  else
  else
    gcc_assert (0);
    gcc_assert (0);
 
 
  condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
  condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
  return mips_builtin_branch_and_move (condition, target,
  return mips_builtin_branch_and_move (condition, target,
                                       const1_rtx, const0_rtx);
                                       const1_rtx, const0_rtx);
}
}


/* Set SYMBOL_REF_FLAGS for the SYMBOL_REF inside RTL, which belongs to DECL.
/* Set SYMBOL_REF_FLAGS for the SYMBOL_REF inside RTL, which belongs to DECL.
   FIRST is true if this is the first time handling this decl.  */
   FIRST is true if this is the first time handling this decl.  */
 
 
static void
static void
mips_encode_section_info (tree decl, rtx rtl, int first)
mips_encode_section_info (tree decl, rtx rtl, int first)
{
{
  default_encode_section_info (decl, rtl, first);
  default_encode_section_info (decl, rtl, first);
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL
  if (TREE_CODE (decl) == FUNCTION_DECL
      && lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
      && lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
    {
    {
      rtx symbol = XEXP (rtl, 0);
      rtx symbol = XEXP (rtl, 0);
      SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
      SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
    }
    }
}
}
 
 
/* Implement TARGET_EXTRA_LIVE_ON_ENTRY.  PIC_FUNCTION_ADDR_REGNUM is live
/* Implement TARGET_EXTRA_LIVE_ON_ENTRY.  PIC_FUNCTION_ADDR_REGNUM is live
   on entry to a function when generating -mshared abicalls code.  */
   on entry to a function when generating -mshared abicalls code.  */
 
 
static void
static void
mips_extra_live_on_entry (bitmap regs)
mips_extra_live_on_entry (bitmap regs)
{
{
  if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
  if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
    bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
    bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
}
}
 
 
/* SImode values are represented as sign-extended to DImode.  */
/* SImode values are represented as sign-extended to DImode.  */
 
 
int
int
mips_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
mips_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
{
{
  if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
  if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
    return SIGN_EXTEND;
    return SIGN_EXTEND;
 
 
  return UNKNOWN;
  return UNKNOWN;
}
}


#include "gt-mips.h"
#include "gt-mips.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.