OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [cp/] [decl.c] - Diff between revs 283 and 378

Only display areas with differences | Details | Blame | View Log

Rev 283 Rev 378
/* Process declarations and variables for C++ compiler.
/* Process declarations and variables for C++ compiler.
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)
   Contributed by Michael Tiemann (tiemann@cygnus.com)
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* Process declarations and symbol lookup for C++ front end.
/* Process declarations and symbol lookup for C++ front end.
   Also constructs types; the standard scalar types at initialization,
   Also constructs types; the standard scalar types at initialization,
   and structure, union, array and enum types when they are declared.  */
   and structure, union, array and enum types when they are declared.  */
 
 
/* ??? not all decl nodes are given the most useful possible
/* ??? not all decl nodes are given the most useful possible
   line numbers.  For example, the CONST_DECLs for enum values.  */
   line numbers.  For example, the CONST_DECLs for enum values.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "expr.h"
#include "expr.h"
#include "flags.h"
#include "flags.h"
#include "cp-tree.h"
#include "cp-tree.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "decl.h"
#include "decl.h"
#include "intl.h"
#include "intl.h"
#include "output.h"
#include "output.h"
#include "except.h"
#include "except.h"
#include "toplev.h"
#include "toplev.h"
#include "hashtab.h"
#include "hashtab.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "c-common.h"
#include "c-common.h"
#include "c-pragma.h"
#include "c-pragma.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "intl.h"
#include "intl.h"
#include "debug.h"
#include "debug.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "pointer-set.h"
#include "pointer-set.h"
#include "plugin.h"
#include "plugin.h"
 
 
static tree grokparms (tree parmlist, tree *);
static tree grokparms (tree parmlist, tree *);
static const char *redeclaration_error_message (tree, tree);
static const char *redeclaration_error_message (tree, tree);
 
 
static int decl_jump_unsafe (tree);
static int decl_jump_unsafe (tree);
static void require_complete_types_for_parms (tree);
static void require_complete_types_for_parms (tree);
static int ambi_op_p (enum tree_code);
static int ambi_op_p (enum tree_code);
static int unary_op_p (enum tree_code);
static int unary_op_p (enum tree_code);
static void push_local_name (tree);
static void push_local_name (tree);
static tree grok_reference_init (tree, tree, tree, tree *);
static tree grok_reference_init (tree, tree, tree, tree *);
static tree grokvardecl (tree, tree, const cp_decl_specifier_seq *,
static tree grokvardecl (tree, tree, const cp_decl_specifier_seq *,
                         int, int, tree);
                         int, int, tree);
static void record_unknown_type (tree, const char *);
static void record_unknown_type (tree, const char *);
static tree builtin_function_1 (tree, tree, bool);
static tree builtin_function_1 (tree, tree, bool);
static tree build_library_fn_1 (tree, enum tree_code, tree);
static tree build_library_fn_1 (tree, enum tree_code, tree);
static int member_function_or_else (tree, tree, enum overload_flags);
static int member_function_or_else (tree, tree, enum overload_flags);
static void bad_specifiers (tree, const char *, int, int, int, int,
static void bad_specifiers (tree, const char *, int, int, int, int,
                            int);
                            int);
static void check_for_uninitialized_const_var (tree);
static void check_for_uninitialized_const_var (tree);
static hashval_t typename_hash (const void *);
static hashval_t typename_hash (const void *);
static int typename_compare (const void *, const void *);
static int typename_compare (const void *, const void *);
static tree local_variable_p_walkfn (tree *, int *, void *);
static tree local_variable_p_walkfn (tree *, int *, void *);
static tree record_builtin_java_type (const char *, int);
static tree record_builtin_java_type (const char *, int);
static const char *tag_name (enum tag_types);
static const char *tag_name (enum tag_types);
static tree lookup_and_check_tag (enum tag_types, tree, tag_scope, bool);
static tree lookup_and_check_tag (enum tag_types, tree, tag_scope, bool);
static int walk_namespaces_r (tree, walk_namespaces_fn, void *);
static int walk_namespaces_r (tree, walk_namespaces_fn, void *);
static void maybe_deduce_size_from_array_init (tree, tree);
static void maybe_deduce_size_from_array_init (tree, tree);
static void layout_var_decl (tree);
static void layout_var_decl (tree);
static tree check_initializer (tree, tree, int, tree *);
static tree check_initializer (tree, tree, int, tree *);
static void make_rtl_for_nonlocal_decl (tree, tree, const char *);
static void make_rtl_for_nonlocal_decl (tree, tree, const char *);
static void save_function_data (tree);
static void save_function_data (tree);
static void check_function_type (tree, tree);
static void check_function_type (tree, tree);
static void finish_constructor_body (void);
static void finish_constructor_body (void);
static void begin_destructor_body (void);
static void begin_destructor_body (void);
static void finish_destructor_body (void);
static void finish_destructor_body (void);
static tree create_array_type_for_decl (tree, tree, tree);
static tree create_array_type_for_decl (tree, tree, tree);
static tree get_atexit_node (void);
static tree get_atexit_node (void);
static tree get_dso_handle_node (void);
static tree get_dso_handle_node (void);
static tree start_cleanup_fn (void);
static tree start_cleanup_fn (void);
static void end_cleanup_fn (void);
static void end_cleanup_fn (void);
static tree cp_make_fname_decl (location_t, tree, int);
static tree cp_make_fname_decl (location_t, tree, int);
static void initialize_predefined_identifiers (void);
static void initialize_predefined_identifiers (void);
static tree check_special_function_return_type
static tree check_special_function_return_type
        (special_function_kind, tree, tree);
        (special_function_kind, tree, tree);
static tree push_cp_library_fn (enum tree_code, tree);
static tree push_cp_library_fn (enum tree_code, tree);
static tree build_cp_library_fn (tree, enum tree_code, tree);
static tree build_cp_library_fn (tree, enum tree_code, tree);
static void store_parm_decls (tree);
static void store_parm_decls (tree);
static void initialize_local_var (tree, tree);
static void initialize_local_var (tree, tree);
static void expand_static_init (tree, tree);
static void expand_static_init (tree, tree);
 
 
/* The following symbols are subsumed in the cp_global_trees array, and
/* The following symbols are subsumed in the cp_global_trees array, and
   listed here individually for documentation purposes.
   listed here individually for documentation purposes.
 
 
   C++ extensions
   C++ extensions
        tree wchar_decl_node;
        tree wchar_decl_node;
 
 
        tree vtable_entry_type;
        tree vtable_entry_type;
        tree delta_type_node;
        tree delta_type_node;
        tree __t_desc_type_node;
        tree __t_desc_type_node;
 
 
        tree class_type_node;
        tree class_type_node;
        tree unknown_type_node;
        tree unknown_type_node;
 
 
   Array type `vtable_entry_type[]'
   Array type `vtable_entry_type[]'
 
 
        tree vtbl_type_node;
        tree vtbl_type_node;
        tree vtbl_ptr_type_node;
        tree vtbl_ptr_type_node;
 
 
   Namespaces,
   Namespaces,
 
 
        tree std_node;
        tree std_node;
        tree abi_node;
        tree abi_node;
 
 
   A FUNCTION_DECL which can call `abort'.  Not necessarily the
   A FUNCTION_DECL which can call `abort'.  Not necessarily the
   one that the user will declare, but sufficient to be called
   one that the user will declare, but sufficient to be called
   by routines that want to abort the program.
   by routines that want to abort the program.
 
 
        tree abort_fndecl;
        tree abort_fndecl;
 
 
   The FUNCTION_DECL for the default `::operator delete'.
   The FUNCTION_DECL for the default `::operator delete'.
 
 
        tree global_delete_fndecl;
        tree global_delete_fndecl;
 
 
   Used by RTTI
   Used by RTTI
        tree type_info_type_node, tinfo_decl_id, tinfo_decl_type;
        tree type_info_type_node, tinfo_decl_id, tinfo_decl_type;
        tree tinfo_var_id;  */
        tree tinfo_var_id;  */
 
 
tree cp_global_trees[CPTI_MAX];
tree cp_global_trees[CPTI_MAX];
 
 
/* Indicates that there is a type value in some namespace, although
/* Indicates that there is a type value in some namespace, although
   that is not necessarily in scope at the moment.  */
   that is not necessarily in scope at the moment.  */
 
 
tree global_type_node;
tree global_type_node;
 
 
/* The node that holds the "name" of the global scope.  */
/* The node that holds the "name" of the global scope.  */
tree global_scope_name;
tree global_scope_name;
 
 
#define local_names cp_function_chain->x_local_names
#define local_names cp_function_chain->x_local_names
 
 
/* A list of objects which have constructors or destructors
/* A list of objects which have constructors or destructors
   which reside in the global scope.  The decl is stored in
   which reside in the global scope.  The decl is stored in
   the TREE_VALUE slot and the initializer is stored
   the TREE_VALUE slot and the initializer is stored
   in the TREE_PURPOSE slot.  */
   in the TREE_PURPOSE slot.  */
tree static_aggregates;
tree static_aggregates;
 
 
/* -- end of C++ */
/* -- end of C++ */
 
 
/* A node for the integer constants 2, and 3.  */
/* A node for the integer constants 2, and 3.  */
 
 
tree integer_two_node, integer_three_node;
tree integer_two_node, integer_three_node;
 
 
/* Used only for jumps to as-yet undefined labels, since jumps to
/* Used only for jumps to as-yet undefined labels, since jumps to
   defined labels can have their validity checked immediately.  */
   defined labels can have their validity checked immediately.  */
 
 
struct GTY(()) named_label_use_entry {
struct GTY(()) named_label_use_entry {
  struct named_label_use_entry *next;
  struct named_label_use_entry *next;
  /* The binding level to which this entry is *currently* attached.
  /* The binding level to which this entry is *currently* attached.
     This is initially the binding level in which the goto appeared,
     This is initially the binding level in which the goto appeared,
     but is modified as scopes are closed.  */
     but is modified as scopes are closed.  */
  struct cp_binding_level *binding_level;
  struct cp_binding_level *binding_level;
  /* The head of the names list that was current when the goto appeared,
  /* The head of the names list that was current when the goto appeared,
     or the inner scope popped.  These are the decls that will *not* be
     or the inner scope popped.  These are the decls that will *not* be
     skipped when jumping to the label.  */
     skipped when jumping to the label.  */
  tree names_in_scope;
  tree names_in_scope;
  /* The location of the goto, for error reporting.  */
  /* The location of the goto, for error reporting.  */
  location_t o_goto_locus;
  location_t o_goto_locus;
  /* True if an OpenMP structured block scope has been closed since
  /* True if an OpenMP structured block scope has been closed since
     the goto appeared.  This means that the branch from the label will
     the goto appeared.  This means that the branch from the label will
     illegally exit an OpenMP scope.  */
     illegally exit an OpenMP scope.  */
  bool in_omp_scope;
  bool in_omp_scope;
};
};
 
 
/* A list of all LABEL_DECLs in the function that have names.  Here so
/* A list of all LABEL_DECLs in the function that have names.  Here so
   we can clear out their names' definitions at the end of the
   we can clear out their names' definitions at the end of the
   function, and so we can check the validity of jumps to these labels.  */
   function, and so we can check the validity of jumps to these labels.  */
 
 
struct GTY(()) named_label_entry {
struct GTY(()) named_label_entry {
  /* The decl itself.  */
  /* The decl itself.  */
  tree label_decl;
  tree label_decl;
 
 
  /* The binding level to which the label is *currently* attached.
  /* The binding level to which the label is *currently* attached.
     This is initially set to the binding level in which the label
     This is initially set to the binding level in which the label
     is defined, but is modified as scopes are closed.  */
     is defined, but is modified as scopes are closed.  */
  struct cp_binding_level *binding_level;
  struct cp_binding_level *binding_level;
  /* The head of the names list that was current when the label was
  /* The head of the names list that was current when the label was
     defined, or the inner scope popped.  These are the decls that will
     defined, or the inner scope popped.  These are the decls that will
     be skipped when jumping to the label.  */
     be skipped when jumping to the label.  */
  tree names_in_scope;
  tree names_in_scope;
  /* A tree list of all decls from all binding levels that would be
  /* A tree list of all decls from all binding levels that would be
     crossed by a backward branch to the label.  */
     crossed by a backward branch to the label.  */
  tree bad_decls;
  tree bad_decls;
 
 
  /* A list of uses of the label, before the label is defined.  */
  /* A list of uses of the label, before the label is defined.  */
  struct named_label_use_entry *uses;
  struct named_label_use_entry *uses;
 
 
  /* The following bits are set after the label is defined, and are
  /* The following bits are set after the label is defined, and are
     updated as scopes are popped.  They indicate that a backward jump
     updated as scopes are popped.  They indicate that a backward jump
     to the label will illegally enter a scope of the given flavor.  */
     to the label will illegally enter a scope of the given flavor.  */
  bool in_try_scope;
  bool in_try_scope;
  bool in_catch_scope;
  bool in_catch_scope;
  bool in_omp_scope;
  bool in_omp_scope;
};
};
 
 
#define named_labels cp_function_chain->x_named_labels
#define named_labels cp_function_chain->x_named_labels


/* The number of function bodies which we are currently processing.
/* The number of function bodies which we are currently processing.
   (Zero if we are at namespace scope, one inside the body of a
   (Zero if we are at namespace scope, one inside the body of a
   function, two inside the body of a function in a local class, etc.)  */
   function, two inside the body of a function in a local class, etc.)  */
int function_depth;
int function_depth;
 
 
/* To avoid unwanted recursion, finish_function defers all mark_used calls
/* To avoid unwanted recursion, finish_function defers all mark_used calls
   encountered during its execution until it finishes.  */
   encountered during its execution until it finishes.  */
bool defer_mark_used_calls;
bool defer_mark_used_calls;
VEC(tree, gc) *deferred_mark_used_calls;
VEC(tree, gc) *deferred_mark_used_calls;
 
 
/* States indicating how grokdeclarator() should handle declspecs marked
/* States indicating how grokdeclarator() should handle declspecs marked
   with __attribute__((deprecated)).  An object declared as
   with __attribute__((deprecated)).  An object declared as
   __attribute__((deprecated)) suppresses warnings of uses of other
   __attribute__((deprecated)) suppresses warnings of uses of other
   deprecated items.  */
   deprecated items.  */
enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
 
 


/* A TREE_LIST of VAR_DECLs.  The TREE_PURPOSE is a RECORD_TYPE or
/* A TREE_LIST of VAR_DECLs.  The TREE_PURPOSE is a RECORD_TYPE or
   UNION_TYPE; the TREE_VALUE is a VAR_DECL with that type.  At the
   UNION_TYPE; the TREE_VALUE is a VAR_DECL with that type.  At the
   time the VAR_DECL was declared, the type was incomplete.  */
   time the VAR_DECL was declared, the type was incomplete.  */
 
 
static GTY(()) tree incomplete_vars;
static GTY(()) tree incomplete_vars;


/* Returns the kind of template specialization we are currently
/* Returns the kind of template specialization we are currently
   processing, given that it's declaration contained N_CLASS_SCOPES
   processing, given that it's declaration contained N_CLASS_SCOPES
   explicit scope qualifications.  */
   explicit scope qualifications.  */
 
 
tmpl_spec_kind
tmpl_spec_kind
current_tmpl_spec_kind (int n_class_scopes)
current_tmpl_spec_kind (int n_class_scopes)
{
{
  int n_template_parm_scopes = 0;
  int n_template_parm_scopes = 0;
  int seen_specialization_p = 0;
  int seen_specialization_p = 0;
  int innermost_specialization_p = 0;
  int innermost_specialization_p = 0;
  struct cp_binding_level *b;
  struct cp_binding_level *b;
 
 
  /* Scan through the template parameter scopes.  */
  /* Scan through the template parameter scopes.  */
  for (b = current_binding_level;
  for (b = current_binding_level;
       b->kind == sk_template_parms;
       b->kind == sk_template_parms;
       b = b->level_chain)
       b = b->level_chain)
    {
    {
      /* If we see a specialization scope inside a parameter scope,
      /* If we see a specialization scope inside a parameter scope,
         then something is wrong.  That corresponds to a declaration
         then something is wrong.  That corresponds to a declaration
         like:
         like:
 
 
            template <class T> template <> ...
            template <class T> template <> ...
 
 
         which is always invalid since [temp.expl.spec] forbids the
         which is always invalid since [temp.expl.spec] forbids the
         specialization of a class member template if the enclosing
         specialization of a class member template if the enclosing
         class templates are not explicitly specialized as well.  */
         class templates are not explicitly specialized as well.  */
      if (b->explicit_spec_p)
      if (b->explicit_spec_p)
        {
        {
          if (n_template_parm_scopes == 0)
          if (n_template_parm_scopes == 0)
            innermost_specialization_p = 1;
            innermost_specialization_p = 1;
          else
          else
            seen_specialization_p = 1;
            seen_specialization_p = 1;
        }
        }
      else if (seen_specialization_p == 1)
      else if (seen_specialization_p == 1)
        return tsk_invalid_member_spec;
        return tsk_invalid_member_spec;
 
 
      ++n_template_parm_scopes;
      ++n_template_parm_scopes;
    }
    }
 
 
  /* Handle explicit instantiations.  */
  /* Handle explicit instantiations.  */
  if (processing_explicit_instantiation)
  if (processing_explicit_instantiation)
    {
    {
      if (n_template_parm_scopes != 0)
      if (n_template_parm_scopes != 0)
        /* We've seen a template parameter list during an explicit
        /* We've seen a template parameter list during an explicit
           instantiation.  For example:
           instantiation.  For example:
 
 
             template <class T> template void f(int);
             template <class T> template void f(int);
 
 
           This is erroneous.  */
           This is erroneous.  */
        return tsk_invalid_expl_inst;
        return tsk_invalid_expl_inst;
      else
      else
        return tsk_expl_inst;
        return tsk_expl_inst;
    }
    }
 
 
  if (n_template_parm_scopes < n_class_scopes)
  if (n_template_parm_scopes < n_class_scopes)
    /* We've not seen enough template headers to match all the
    /* We've not seen enough template headers to match all the
       specialized classes present.  For example:
       specialized classes present.  For example:
 
 
         template <class T> void R<T>::S<T>::f(int);
         template <class T> void R<T>::S<T>::f(int);
 
 
       This is invalid; there needs to be one set of template
       This is invalid; there needs to be one set of template
       parameters for each class.  */
       parameters for each class.  */
    return tsk_insufficient_parms;
    return tsk_insufficient_parms;
  else if (n_template_parm_scopes == n_class_scopes)
  else if (n_template_parm_scopes == n_class_scopes)
    /* We're processing a non-template declaration (even though it may
    /* We're processing a non-template declaration (even though it may
       be a member of a template class.)  For example:
       be a member of a template class.)  For example:
 
 
         template <class T> void S<T>::f(int);
         template <class T> void S<T>::f(int);
 
 
       The `class T' matches the `S<T>', leaving no template headers
       The `class T' matches the `S<T>', leaving no template headers
       corresponding to the `f'.  */
       corresponding to the `f'.  */
    return tsk_none;
    return tsk_none;
  else if (n_template_parm_scopes > n_class_scopes + 1)
  else if (n_template_parm_scopes > n_class_scopes + 1)
    /* We've got too many template headers.  For example:
    /* We've got too many template headers.  For example:
 
 
         template <> template <class T> void f (T);
         template <> template <class T> void f (T);
 
 
       There need to be more enclosing classes.  */
       There need to be more enclosing classes.  */
    return tsk_excessive_parms;
    return tsk_excessive_parms;
  else
  else
    /* This must be a template.  It's of the form:
    /* This must be a template.  It's of the form:
 
 
         template <class T> template <class U> void S<T>::f(U);
         template <class T> template <class U> void S<T>::f(U);
 
 
       This is a specialization if the innermost level was a
       This is a specialization if the innermost level was a
       specialization; otherwise it's just a definition of the
       specialization; otherwise it's just a definition of the
       template.  */
       template.  */
    return innermost_specialization_p ? tsk_expl_spec : tsk_template;
    return innermost_specialization_p ? tsk_expl_spec : tsk_template;
}
}
 
 
/* Exit the current scope.  */
/* Exit the current scope.  */
 
 
void
void
finish_scope (void)
finish_scope (void)
{
{
  poplevel (0, 0, 0);
  poplevel (0, 0, 0);
}
}
 
 
/* When a label goes out of scope, check to see if that label was used
/* When a label goes out of scope, check to see if that label was used
   in a valid manner, and issue any appropriate warnings or errors.  */
   in a valid manner, and issue any appropriate warnings or errors.  */
 
 
static void
static void
pop_label (tree label, tree old_value)
pop_label (tree label, tree old_value)
{
{
  if (!processing_template_decl)
  if (!processing_template_decl)
    {
    {
      if (DECL_INITIAL (label) == NULL_TREE)
      if (DECL_INITIAL (label) == NULL_TREE)
        {
        {
          location_t location;
          location_t location;
 
 
          error ("label %q+D used but not defined", label);
          error ("label %q+D used but not defined", label);
          location = input_location; /* FIXME want (input_filename, (line)0) */
          location = input_location; /* FIXME want (input_filename, (line)0) */
          /* Avoid crashing later.  */
          /* Avoid crashing later.  */
          define_label (location, DECL_NAME (label));
          define_label (location, DECL_NAME (label));
        }
        }
      else
      else
        warn_for_unused_label (label);
        warn_for_unused_label (label);
    }
    }
 
 
  SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), old_value);
  SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), old_value);
}
}
 
 
/* At the end of a function, all labels declared within the function
/* At the end of a function, all labels declared within the function
   go out of scope.  BLOCK is the top-level block for the
   go out of scope.  BLOCK is the top-level block for the
   function.  */
   function.  */
 
 
static int
static int
pop_labels_1 (void **slot, void *data)
pop_labels_1 (void **slot, void *data)
{
{
  struct named_label_entry *ent = (struct named_label_entry *) *slot;
  struct named_label_entry *ent = (struct named_label_entry *) *slot;
  tree block = (tree) data;
  tree block = (tree) data;
 
 
  pop_label (ent->label_decl, NULL_TREE);
  pop_label (ent->label_decl, NULL_TREE);
 
 
  /* Put the labels into the "variables" of the top-level block,
  /* Put the labels into the "variables" of the top-level block,
     so debugger can see them.  */
     so debugger can see them.  */
  TREE_CHAIN (ent->label_decl) = BLOCK_VARS (block);
  TREE_CHAIN (ent->label_decl) = BLOCK_VARS (block);
  BLOCK_VARS (block) = ent->label_decl;
  BLOCK_VARS (block) = ent->label_decl;
 
 
  htab_clear_slot (named_labels, slot);
  htab_clear_slot (named_labels, slot);
 
 
  return 1;
  return 1;
}
}
 
 
static void
static void
pop_labels (tree block)
pop_labels (tree block)
{
{
  if (named_labels)
  if (named_labels)
    {
    {
      htab_traverse (named_labels, pop_labels_1, block);
      htab_traverse (named_labels, pop_labels_1, block);
      named_labels = NULL;
      named_labels = NULL;
    }
    }
}
}
 
 
/* At the end of a block with local labels, restore the outer definition.  */
/* At the end of a block with local labels, restore the outer definition.  */
 
 
static void
static void
pop_local_label (tree label, tree old_value)
pop_local_label (tree label, tree old_value)
{
{
  struct named_label_entry dummy;
  struct named_label_entry dummy;
  void **slot;
  void **slot;
 
 
  pop_label (label, old_value);
  pop_label (label, old_value);
 
 
  dummy.label_decl = label;
  dummy.label_decl = label;
  slot = htab_find_slot (named_labels, &dummy, NO_INSERT);
  slot = htab_find_slot (named_labels, &dummy, NO_INSERT);
  htab_clear_slot (named_labels, slot);
  htab_clear_slot (named_labels, slot);
}
}
 
 
/* The following two routines are used to interface to Objective-C++.
/* The following two routines are used to interface to Objective-C++.
   The binding level is purposely treated as an opaque type.  */
   The binding level is purposely treated as an opaque type.  */
 
 
void *
void *
objc_get_current_scope (void)
objc_get_current_scope (void)
{
{
  return current_binding_level;
  return current_binding_level;
}
}
 
 
/* The following routine is used by the NeXT-style SJLJ exceptions;
/* The following routine is used by the NeXT-style SJLJ exceptions;
   variables get marked 'volatile' so as to not be clobbered by
   variables get marked 'volatile' so as to not be clobbered by
   _setjmp()/_longjmp() calls.  All variables in the current scope,
   _setjmp()/_longjmp() calls.  All variables in the current scope,
   as well as parent scopes up to (but not including) ENCLOSING_BLK
   as well as parent scopes up to (but not including) ENCLOSING_BLK
   shall be thusly marked.  */
   shall be thusly marked.  */
 
 
void
void
objc_mark_locals_volatile (void *enclosing_blk)
objc_mark_locals_volatile (void *enclosing_blk)
{
{
  struct cp_binding_level *scope;
  struct cp_binding_level *scope;
 
 
  for (scope = current_binding_level;
  for (scope = current_binding_level;
       scope && scope != enclosing_blk;
       scope && scope != enclosing_blk;
       scope = scope->level_chain)
       scope = scope->level_chain)
    {
    {
      tree decl;
      tree decl;
 
 
      for (decl = scope->names; decl; decl = TREE_CHAIN (decl))
      for (decl = scope->names; decl; decl = TREE_CHAIN (decl))
        objc_volatilize_decl (decl);
        objc_volatilize_decl (decl);
 
 
      /* Do not climb up past the current function.  */
      /* Do not climb up past the current function.  */
      if (scope->kind == sk_function_parms)
      if (scope->kind == sk_function_parms)
        break;
        break;
    }
    }
}
}
 
 
/* Update data for defined and undefined labels when leaving a scope.  */
/* Update data for defined and undefined labels when leaving a scope.  */
 
 
static int
static int
poplevel_named_label_1 (void **slot, void *data)
poplevel_named_label_1 (void **slot, void *data)
{
{
  struct named_label_entry *ent = (struct named_label_entry *) *slot;
  struct named_label_entry *ent = (struct named_label_entry *) *slot;
  struct cp_binding_level *bl = (struct cp_binding_level *) data;
  struct cp_binding_level *bl = (struct cp_binding_level *) data;
  struct cp_binding_level *obl = bl->level_chain;
  struct cp_binding_level *obl = bl->level_chain;
 
 
  if (ent->binding_level == bl)
  if (ent->binding_level == bl)
    {
    {
      tree decl;
      tree decl;
 
 
      for (decl = ent->names_in_scope; decl; decl = TREE_CHAIN (decl))
      for (decl = ent->names_in_scope; decl; decl = TREE_CHAIN (decl))
        if (decl_jump_unsafe (decl))
        if (decl_jump_unsafe (decl))
          ent->bad_decls = tree_cons (NULL, decl, ent->bad_decls);
          ent->bad_decls = tree_cons (NULL, decl, ent->bad_decls);
 
 
      ent->binding_level = obl;
      ent->binding_level = obl;
      ent->names_in_scope = obl->names;
      ent->names_in_scope = obl->names;
      switch (bl->kind)
      switch (bl->kind)
        {
        {
        case sk_try:
        case sk_try:
          ent->in_try_scope = true;
          ent->in_try_scope = true;
          break;
          break;
        case sk_catch:
        case sk_catch:
          ent->in_catch_scope = true;
          ent->in_catch_scope = true;
          break;
          break;
        case sk_omp:
        case sk_omp:
          ent->in_omp_scope = true;
          ent->in_omp_scope = true;
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
    }
    }
  else if (ent->uses)
  else if (ent->uses)
    {
    {
      struct named_label_use_entry *use;
      struct named_label_use_entry *use;
 
 
      for (use = ent->uses; use ; use = use->next)
      for (use = ent->uses; use ; use = use->next)
        if (use->binding_level == bl)
        if (use->binding_level == bl)
          {
          {
            use->binding_level = obl;
            use->binding_level = obl;
            use->names_in_scope = obl->names;
            use->names_in_scope = obl->names;
            if (bl->kind == sk_omp)
            if (bl->kind == sk_omp)
              use->in_omp_scope = true;
              use->in_omp_scope = true;
          }
          }
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Exit a binding level.
/* Exit a binding level.
   Pop the level off, and restore the state of the identifier-decl mappings
   Pop the level off, and restore the state of the identifier-decl mappings
   that were in effect when this level was entered.
   that were in effect when this level was entered.
 
 
   If KEEP == 1, this level had explicit declarations, so
   If KEEP == 1, this level had explicit declarations, so
   and create a "block" (a BLOCK node) for the level
   and create a "block" (a BLOCK node) for the level
   to record its declarations and subblocks for symbol table output.
   to record its declarations and subblocks for symbol table output.
 
 
   If FUNCTIONBODY is nonzero, this level is the body of a function,
   If FUNCTIONBODY is nonzero, this level is the body of a function,
   so create a block as if KEEP were set and also clear out all
   so create a block as if KEEP were set and also clear out all
   label names.
   label names.
 
 
   If REVERSE is nonzero, reverse the order of decls before putting
   If REVERSE is nonzero, reverse the order of decls before putting
   them into the BLOCK.  */
   them into the BLOCK.  */
 
 
tree
tree
poplevel (int keep, int reverse, int functionbody)
poplevel (int keep, int reverse, int functionbody)
{
{
  tree link;
  tree link;
  /* The chain of decls was accumulated in reverse order.
  /* The chain of decls was accumulated in reverse order.
     Put it into forward order, just for cleanliness.  */
     Put it into forward order, just for cleanliness.  */
  tree decls;
  tree decls;
  tree subblocks;
  tree subblocks;
  tree block;
  tree block;
  tree decl;
  tree decl;
  int leaving_for_scope;
  int leaving_for_scope;
  scope_kind kind;
  scope_kind kind;
 
 
  timevar_push (TV_NAME_LOOKUP);
  timevar_push (TV_NAME_LOOKUP);
 restart:
 restart:
 
 
  block = NULL_TREE;
  block = NULL_TREE;
 
 
  gcc_assert (current_binding_level->kind != sk_class);
  gcc_assert (current_binding_level->kind != sk_class);
 
 
  if (current_binding_level->kind == sk_cleanup)
  if (current_binding_level->kind == sk_cleanup)
    functionbody = 0;
    functionbody = 0;
  subblocks = functionbody >= 0 ? current_binding_level->blocks : 0;
  subblocks = functionbody >= 0 ? current_binding_level->blocks : 0;
 
 
  gcc_assert (!VEC_length(cp_class_binding,
  gcc_assert (!VEC_length(cp_class_binding,
                          current_binding_level->class_shadowed));
                          current_binding_level->class_shadowed));
 
 
  /* We used to use KEEP == 2 to indicate that the new block should go
  /* We used to use KEEP == 2 to indicate that the new block should go
     at the beginning of the list of blocks at this binding level,
     at the beginning of the list of blocks at this binding level,
     rather than the end.  This hack is no longer used.  */
     rather than the end.  This hack is no longer used.  */
  gcc_assert (keep == 0 || keep == 1);
  gcc_assert (keep == 0 || keep == 1);
 
 
  if (current_binding_level->keep)
  if (current_binding_level->keep)
    keep = 1;
    keep = 1;
 
 
  /* Any uses of undefined labels, and any defined labels, now operate
  /* Any uses of undefined labels, and any defined labels, now operate
     under constraints of next binding contour.  */
     under constraints of next binding contour.  */
  if (cfun && !functionbody && named_labels)
  if (cfun && !functionbody && named_labels)
    htab_traverse (named_labels, poplevel_named_label_1,
    htab_traverse (named_labels, poplevel_named_label_1,
                   current_binding_level);
                   current_binding_level);
 
 
  /* Get the decls in the order they were written.
  /* Get the decls in the order they were written.
     Usually current_binding_level->names is in reverse order.
     Usually current_binding_level->names is in reverse order.
     But parameter decls were previously put in forward order.  */
     But parameter decls were previously put in forward order.  */
 
 
  if (reverse)
  if (reverse)
    current_binding_level->names
    current_binding_level->names
      = decls = nreverse (current_binding_level->names);
      = decls = nreverse (current_binding_level->names);
  else
  else
    decls = current_binding_level->names;
    decls = current_binding_level->names;
 
 
  /* If there were any declarations or structure tags in that level,
  /* If there were any declarations or structure tags in that level,
     or if this level is a function body,
     or if this level is a function body,
     create a BLOCK to record them for the life of this function.  */
     create a BLOCK to record them for the life of this function.  */
  block = NULL_TREE;
  block = NULL_TREE;
  if (keep == 1 || functionbody)
  if (keep == 1 || functionbody)
    block = make_node (BLOCK);
    block = make_node (BLOCK);
  if (block != NULL_TREE)
  if (block != NULL_TREE)
    {
    {
      BLOCK_VARS (block) = decls;
      BLOCK_VARS (block) = decls;
      BLOCK_SUBBLOCKS (block) = subblocks;
      BLOCK_SUBBLOCKS (block) = subblocks;
    }
    }
 
 
  /* In each subblock, record that this is its superior.  */
  /* In each subblock, record that this is its superior.  */
  if (keep >= 0)
  if (keep >= 0)
    for (link = subblocks; link; link = BLOCK_CHAIN (link))
    for (link = subblocks; link; link = BLOCK_CHAIN (link))
      BLOCK_SUPERCONTEXT (link) = block;
      BLOCK_SUPERCONTEXT (link) = block;
 
 
  /* We still support the old for-scope rules, whereby the variables
  /* We still support the old for-scope rules, whereby the variables
     in a for-init statement were in scope after the for-statement
     in a for-init statement were in scope after the for-statement
     ended.  We only use the new rules if flag_new_for_scope is
     ended.  We only use the new rules if flag_new_for_scope is
     nonzero.  */
     nonzero.  */
  leaving_for_scope
  leaving_for_scope
    = current_binding_level->kind == sk_for && flag_new_for_scope == 1;
    = current_binding_level->kind == sk_for && flag_new_for_scope == 1;
 
 
  /* Before we remove the declarations first check for unused variables.  */
  /* Before we remove the declarations first check for unused variables.  */
  if (warn_unused_variable
  if (warn_unused_variable
      && !processing_template_decl)
      && !processing_template_decl)
    for (decl = getdecls (); decl; decl = TREE_CHAIN (decl))
    for (decl = getdecls (); decl; decl = TREE_CHAIN (decl))
      if (TREE_CODE (decl) == VAR_DECL
      if (TREE_CODE (decl) == VAR_DECL
          && ! TREE_USED (decl)
          && ! TREE_USED (decl)
          && ! DECL_IN_SYSTEM_HEADER (decl)
          && ! DECL_IN_SYSTEM_HEADER (decl)
          && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
          && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
        warning (OPT_Wunused_variable, "unused variable %q+D", decl);
        warning (OPT_Wunused_variable, "unused variable %q+D", decl);
 
 
  /* Remove declarations for all the DECLs in this level.  */
  /* Remove declarations for all the DECLs in this level.  */
  for (link = decls; link; link = TREE_CHAIN (link))
  for (link = decls; link; link = TREE_CHAIN (link))
    {
    {
      if (leaving_for_scope && TREE_CODE (link) == VAR_DECL
      if (leaving_for_scope && TREE_CODE (link) == VAR_DECL
          && DECL_NAME (link))
          && DECL_NAME (link))
        {
        {
          tree name = DECL_NAME (link);
          tree name = DECL_NAME (link);
          cxx_binding *ob;
          cxx_binding *ob;
          tree ns_binding;
          tree ns_binding;
 
 
          ob = outer_binding (name,
          ob = outer_binding (name,
                              IDENTIFIER_BINDING (name),
                              IDENTIFIER_BINDING (name),
                              /*class_p=*/true);
                              /*class_p=*/true);
          if (!ob)
          if (!ob)
            ns_binding = IDENTIFIER_NAMESPACE_VALUE (name);
            ns_binding = IDENTIFIER_NAMESPACE_VALUE (name);
          else
          else
            ns_binding = NULL_TREE;
            ns_binding = NULL_TREE;
 
 
          if (ob && ob->scope == current_binding_level->level_chain)
          if (ob && ob->scope == current_binding_level->level_chain)
            /* We have something like:
            /* We have something like:
 
 
                 int i;
                 int i;
                 for (int i; ;);
                 for (int i; ;);
 
 
               and we are leaving the `for' scope.  There's no reason to
               and we are leaving the `for' scope.  There's no reason to
               keep the binding of the inner `i' in this case.  */
               keep the binding of the inner `i' in this case.  */
            pop_binding (name, link);
            pop_binding (name, link);
          else if ((ob && (TREE_CODE (ob->value) == TYPE_DECL))
          else if ((ob && (TREE_CODE (ob->value) == TYPE_DECL))
                   || (ns_binding && TREE_CODE (ns_binding) == TYPE_DECL))
                   || (ns_binding && TREE_CODE (ns_binding) == TYPE_DECL))
            /* Here, we have something like:
            /* Here, we have something like:
 
 
                 typedef int I;
                 typedef int I;
 
 
                 void f () {
                 void f () {
                   for (int I; ;);
                   for (int I; ;);
                 }
                 }
 
 
               We must pop the for-scope binding so we know what's a
               We must pop the for-scope binding so we know what's a
               type and what isn't.  */
               type and what isn't.  */
            pop_binding (name, link);
            pop_binding (name, link);
          else
          else
            {
            {
              /* Mark this VAR_DECL as dead so that we can tell we left it
              /* Mark this VAR_DECL as dead so that we can tell we left it
                 there only for backward compatibility.  */
                 there only for backward compatibility.  */
              DECL_DEAD_FOR_LOCAL (link) = 1;
              DECL_DEAD_FOR_LOCAL (link) = 1;
 
 
              /* Keep track of what should have happened when we
              /* Keep track of what should have happened when we
                 popped the binding.  */
                 popped the binding.  */
              if (ob && ob->value)
              if (ob && ob->value)
                {
                {
                  SET_DECL_SHADOWED_FOR_VAR (link, ob->value);
                  SET_DECL_SHADOWED_FOR_VAR (link, ob->value);
                  DECL_HAS_SHADOWED_FOR_VAR_P (link) = 1;
                  DECL_HAS_SHADOWED_FOR_VAR_P (link) = 1;
                }
                }
 
 
              /* Add it to the list of dead variables in the next
              /* Add it to the list of dead variables in the next
                 outermost binding to that we can remove these when we
                 outermost binding to that we can remove these when we
                 leave that binding.  */
                 leave that binding.  */
              current_binding_level->level_chain->dead_vars_from_for
              current_binding_level->level_chain->dead_vars_from_for
                = tree_cons (NULL_TREE, link,
                = tree_cons (NULL_TREE, link,
                             current_binding_level->level_chain->
                             current_binding_level->level_chain->
                             dead_vars_from_for);
                             dead_vars_from_for);
 
 
              /* Although we don't pop the cxx_binding, we do clear
              /* Although we don't pop the cxx_binding, we do clear
                 its SCOPE since the scope is going away now.  */
                 its SCOPE since the scope is going away now.  */
              IDENTIFIER_BINDING (name)->scope
              IDENTIFIER_BINDING (name)->scope
                = current_binding_level->level_chain;
                = current_binding_level->level_chain;
            }
            }
        }
        }
      else
      else
        {
        {
          tree name;
          tree name;
 
 
          /* Remove the binding.  */
          /* Remove the binding.  */
          decl = link;
          decl = link;
 
 
          if (TREE_CODE (decl) == TREE_LIST)
          if (TREE_CODE (decl) == TREE_LIST)
            decl = TREE_VALUE (decl);
            decl = TREE_VALUE (decl);
          name = decl;
          name = decl;
 
 
          if (TREE_CODE (name) == OVERLOAD)
          if (TREE_CODE (name) == OVERLOAD)
            name = OVL_FUNCTION (name);
            name = OVL_FUNCTION (name);
 
 
          gcc_assert (DECL_P (name));
          gcc_assert (DECL_P (name));
          pop_binding (DECL_NAME (name), decl);
          pop_binding (DECL_NAME (name), decl);
        }
        }
    }
    }
 
 
  /* Remove declarations for any `for' variables from inner scopes
  /* Remove declarations for any `for' variables from inner scopes
     that we kept around.  */
     that we kept around.  */
  for (link = current_binding_level->dead_vars_from_for;
  for (link = current_binding_level->dead_vars_from_for;
       link; link = TREE_CHAIN (link))
       link; link = TREE_CHAIN (link))
    pop_binding (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link));
    pop_binding (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link));
 
 
  /* Restore the IDENTIFIER_TYPE_VALUEs.  */
  /* Restore the IDENTIFIER_TYPE_VALUEs.  */
  for (link = current_binding_level->type_shadowed;
  for (link = current_binding_level->type_shadowed;
       link; link = TREE_CHAIN (link))
       link; link = TREE_CHAIN (link))
    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link), TREE_VALUE (link));
    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link), TREE_VALUE (link));
 
 
  /* Restore the IDENTIFIER_LABEL_VALUEs for local labels.  */
  /* Restore the IDENTIFIER_LABEL_VALUEs for local labels.  */
  for (link = current_binding_level->shadowed_labels;
  for (link = current_binding_level->shadowed_labels;
       link;
       link;
       link = TREE_CHAIN (link))
       link = TREE_CHAIN (link))
    pop_local_label (TREE_VALUE (link), TREE_PURPOSE (link));
    pop_local_label (TREE_VALUE (link), TREE_PURPOSE (link));
 
 
  /* There may be OVERLOADs (wrapped in TREE_LISTs) on the BLOCK_VARs
  /* There may be OVERLOADs (wrapped in TREE_LISTs) on the BLOCK_VARs
     list if a `using' declaration put them there.  The debugging
     list if a `using' declaration put them there.  The debugging
     back ends won't understand OVERLOAD, so we remove them here.
     back ends won't understand OVERLOAD, so we remove them here.
     Because the BLOCK_VARS are (temporarily) shared with
     Because the BLOCK_VARS are (temporarily) shared with
     CURRENT_BINDING_LEVEL->NAMES we must do this fixup after we have
     CURRENT_BINDING_LEVEL->NAMES we must do this fixup after we have
     popped all the bindings.  */
     popped all the bindings.  */
  if (block)
  if (block)
    {
    {
      tree* d;
      tree* d;
 
 
      for (d = &BLOCK_VARS (block); *d; )
      for (d = &BLOCK_VARS (block); *d; )
        {
        {
          if (TREE_CODE (*d) == TREE_LIST)
          if (TREE_CODE (*d) == TREE_LIST)
            *d = TREE_CHAIN (*d);
            *d = TREE_CHAIN (*d);
          else
          else
            d = &TREE_CHAIN (*d);
            d = &TREE_CHAIN (*d);
        }
        }
    }
    }
 
 
  /* If the level being exited is the top level of a function,
  /* If the level being exited is the top level of a function,
     check over all the labels.  */
     check over all the labels.  */
  if (functionbody)
  if (functionbody)
    {
    {
      /* Since this is the top level block of a function, the vars are
      /* Since this is the top level block of a function, the vars are
         the function's parameters.  Don't leave them in the BLOCK
         the function's parameters.  Don't leave them in the BLOCK
         because they are found in the FUNCTION_DECL instead.  */
         because they are found in the FUNCTION_DECL instead.  */
      BLOCK_VARS (block) = 0;
      BLOCK_VARS (block) = 0;
      pop_labels (block);
      pop_labels (block);
    }
    }
 
 
  kind = current_binding_level->kind;
  kind = current_binding_level->kind;
  if (kind == sk_cleanup)
  if (kind == sk_cleanup)
    {
    {
      tree stmt;
      tree stmt;
 
 
      /* If this is a temporary binding created for a cleanup, then we'll
      /* If this is a temporary binding created for a cleanup, then we'll
         have pushed a statement list level.  Pop that, create a new
         have pushed a statement list level.  Pop that, create a new
         BIND_EXPR for the block, and insert it into the stream.  */
         BIND_EXPR for the block, and insert it into the stream.  */
      stmt = pop_stmt_list (current_binding_level->statement_list);
      stmt = pop_stmt_list (current_binding_level->statement_list);
      stmt = c_build_bind_expr (input_location, block, stmt);
      stmt = c_build_bind_expr (input_location, block, stmt);
      add_stmt (stmt);
      add_stmt (stmt);
    }
    }
 
 
  leave_scope ();
  leave_scope ();
  if (functionbody)
  if (functionbody)
    {
    {
      /* The current function is being defined, so its DECL_INITIAL
      /* The current function is being defined, so its DECL_INITIAL
         should be error_mark_node.  */
         should be error_mark_node.  */
      gcc_assert (DECL_INITIAL (current_function_decl) == error_mark_node);
      gcc_assert (DECL_INITIAL (current_function_decl) == error_mark_node);
      DECL_INITIAL (current_function_decl) = block;
      DECL_INITIAL (current_function_decl) = block;
    }
    }
  else if (block)
  else if (block)
    current_binding_level->blocks
    current_binding_level->blocks
      = chainon (current_binding_level->blocks, block);
      = chainon (current_binding_level->blocks, block);
 
 
  /* If we did not make a block for the level just exited,
  /* If we did not make a block for the level just exited,
     any blocks made for inner levels
     any blocks made for inner levels
     (since they cannot be recorded as subblocks in that level)
     (since they cannot be recorded as subblocks in that level)
     must be carried forward so they will later become subblocks
     must be carried forward so they will later become subblocks
     of something else.  */
     of something else.  */
  else if (subblocks)
  else if (subblocks)
    current_binding_level->blocks
    current_binding_level->blocks
      = chainon (current_binding_level->blocks, subblocks);
      = chainon (current_binding_level->blocks, subblocks);
 
 
  /* Each and every BLOCK node created here in `poplevel' is important
  /* Each and every BLOCK node created here in `poplevel' is important
     (e.g. for proper debugging information) so if we created one
     (e.g. for proper debugging information) so if we created one
     earlier, mark it as "used".  */
     earlier, mark it as "used".  */
  if (block)
  if (block)
    TREE_USED (block) = 1;
    TREE_USED (block) = 1;
 
 
  /* All temporary bindings created for cleanups are popped silently.  */
  /* All temporary bindings created for cleanups are popped silently.  */
  if (kind == sk_cleanup)
  if (kind == sk_cleanup)
    goto restart;
    goto restart;
 
 
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, block);
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, block);
}
}
 
 
/* Walk all the namespaces contained NAMESPACE, including NAMESPACE
/* Walk all the namespaces contained NAMESPACE, including NAMESPACE
   itself, calling F for each.  The DATA is passed to F as well.  */
   itself, calling F for each.  The DATA is passed to F as well.  */
 
 
static int
static int
walk_namespaces_r (tree name_space, walk_namespaces_fn f, void* data)
walk_namespaces_r (tree name_space, walk_namespaces_fn f, void* data)
{
{
  int result = 0;
  int result = 0;
  tree current = NAMESPACE_LEVEL (name_space)->namespaces;
  tree current = NAMESPACE_LEVEL (name_space)->namespaces;
 
 
  result |= (*f) (name_space, data);
  result |= (*f) (name_space, data);
 
 
  for (; current; current = TREE_CHAIN (current))
  for (; current; current = TREE_CHAIN (current))
    result |= walk_namespaces_r (current, f, data);
    result |= walk_namespaces_r (current, f, data);
 
 
  return result;
  return result;
}
}
 
 
/* Walk all the namespaces, calling F for each.  The DATA is passed to
/* Walk all the namespaces, calling F for each.  The DATA is passed to
   F as well.  */
   F as well.  */
 
 
int
int
walk_namespaces (walk_namespaces_fn f, void* data)
walk_namespaces (walk_namespaces_fn f, void* data)
{
{
  return walk_namespaces_r (global_namespace, f, data);
  return walk_namespaces_r (global_namespace, f, data);
}
}
 
 
/* Call wrapup_globals_declarations for the globals in NAMESPACE.  If
/* Call wrapup_globals_declarations for the globals in NAMESPACE.  If
   DATA is non-NULL, this is the last time we will call
   DATA is non-NULL, this is the last time we will call
   wrapup_global_declarations for this NAMESPACE.  */
   wrapup_global_declarations for this NAMESPACE.  */
 
 
int
int
wrapup_globals_for_namespace (tree name_space, void* data)
wrapup_globals_for_namespace (tree name_space, void* data)
{
{
  struct cp_binding_level *level = NAMESPACE_LEVEL (name_space);
  struct cp_binding_level *level = NAMESPACE_LEVEL (name_space);
  VEC(tree,gc) *statics = level->static_decls;
  VEC(tree,gc) *statics = level->static_decls;
  tree *vec = VEC_address (tree, statics);
  tree *vec = VEC_address (tree, statics);
  int len = VEC_length (tree, statics);
  int len = VEC_length (tree, statics);
  int last_time = (data != 0);
  int last_time = (data != 0);
 
 
  if (last_time)
  if (last_time)
    {
    {
      check_global_declarations (vec, len);
      check_global_declarations (vec, len);
      emit_debug_global_declarations (vec, len);
      emit_debug_global_declarations (vec, len);
      return 0;
      return 0;
    }
    }
 
 
  /* Write out any globals that need to be output.  */
  /* Write out any globals that need to be output.  */
  return wrapup_global_declarations (vec, len);
  return wrapup_global_declarations (vec, len);
}
}
 
 


/* In C++, you don't have to write `struct S' to refer to `S'; you
/* In C++, you don't have to write `struct S' to refer to `S'; you
   can just use `S'.  We accomplish this by creating a TYPE_DECL as
   can just use `S'.  We accomplish this by creating a TYPE_DECL as
   if the user had written `typedef struct S S'.  Create and return
   if the user had written `typedef struct S S'.  Create and return
   the TYPE_DECL for TYPE.  */
   the TYPE_DECL for TYPE.  */
 
 
tree
tree
create_implicit_typedef (tree name, tree type)
create_implicit_typedef (tree name, tree type)
{
{
  tree decl;
  tree decl;
 
 
  decl = build_decl (input_location, TYPE_DECL, name, type);
  decl = build_decl (input_location, TYPE_DECL, name, type);
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  /* There are other implicit type declarations, like the one *within*
  /* There are other implicit type declarations, like the one *within*
     a class that allows you to write `S::S'.  We must distinguish
     a class that allows you to write `S::S'.  We must distinguish
     amongst these.  */
     amongst these.  */
  SET_DECL_IMPLICIT_TYPEDEF_P (decl);
  SET_DECL_IMPLICIT_TYPEDEF_P (decl);
  TYPE_NAME (type) = decl;
  TYPE_NAME (type) = decl;
  TYPE_STUB_DECL (type) = decl;
  TYPE_STUB_DECL (type) = decl;
 
 
  return decl;
  return decl;
}
}
 
 
/* Remember a local name for name-mangling purposes.  */
/* Remember a local name for name-mangling purposes.  */
 
 
static void
static void
push_local_name (tree decl)
push_local_name (tree decl)
{
{
  size_t i, nelts;
  size_t i, nelts;
  tree t, name;
  tree t, name;
 
 
  timevar_push (TV_NAME_LOOKUP);
  timevar_push (TV_NAME_LOOKUP);
 
 
  name = DECL_NAME (decl);
  name = DECL_NAME (decl);
 
 
  nelts = VEC_length (tree, local_names);
  nelts = VEC_length (tree, local_names);
  for (i = 0; i < nelts; i++)
  for (i = 0; i < nelts; i++)
    {
    {
      t = VEC_index (tree, local_names, i);
      t = VEC_index (tree, local_names, i);
      if (DECL_NAME (t) == name)
      if (DECL_NAME (t) == name)
        {
        {
          if (!DECL_LANG_SPECIFIC (decl))
          if (!DECL_LANG_SPECIFIC (decl))
            retrofit_lang_decl (decl);
            retrofit_lang_decl (decl);
          DECL_LANG_SPECIFIC (decl)->u.base.u2sel = 1;
          DECL_LANG_SPECIFIC (decl)->u.base.u2sel = 1;
          if (DECL_LANG_SPECIFIC (t))
          if (DECL_LANG_SPECIFIC (t))
            DECL_DISCRIMINATOR (decl) = DECL_DISCRIMINATOR (t) + 1;
            DECL_DISCRIMINATOR (decl) = DECL_DISCRIMINATOR (t) + 1;
          else
          else
            DECL_DISCRIMINATOR (decl) = 1;
            DECL_DISCRIMINATOR (decl) = 1;
 
 
          VEC_replace (tree, local_names, i, decl);
          VEC_replace (tree, local_names, i, decl);
          timevar_pop (TV_NAME_LOOKUP);
          timevar_pop (TV_NAME_LOOKUP);
          return;
          return;
        }
        }
    }
    }
 
 
  VEC_safe_push (tree, gc, local_names, decl);
  VEC_safe_push (tree, gc, local_names, decl);
  timevar_pop (TV_NAME_LOOKUP);
  timevar_pop (TV_NAME_LOOKUP);
}
}


/* Subroutine of duplicate_decls: return truthvalue of whether
/* Subroutine of duplicate_decls: return truthvalue of whether
   or not types of these decls match.
   or not types of these decls match.
 
 
   For C++, we must compare the parameter list so that `int' can match
   For C++, we must compare the parameter list so that `int' can match
   `int&' in a parameter position, but `int&' is not confused with
   `int&' in a parameter position, but `int&' is not confused with
   `const int&'.  */
   `const int&'.  */
 
 
int
int
decls_match (tree newdecl, tree olddecl)
decls_match (tree newdecl, tree olddecl)
{
{
  int types_match;
  int types_match;
 
 
  if (newdecl == olddecl)
  if (newdecl == olddecl)
    return 1;
    return 1;
 
 
  if (TREE_CODE (newdecl) != TREE_CODE (olddecl))
  if (TREE_CODE (newdecl) != TREE_CODE (olddecl))
    /* If the two DECLs are not even the same kind of thing, we're not
    /* If the two DECLs are not even the same kind of thing, we're not
       interested in their types.  */
       interested in their types.  */
    return 0;
    return 0;
 
 
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      tree f1 = TREE_TYPE (newdecl);
      tree f1 = TREE_TYPE (newdecl);
      tree f2 = TREE_TYPE (olddecl);
      tree f2 = TREE_TYPE (olddecl);
      tree p1 = TYPE_ARG_TYPES (f1);
      tree p1 = TYPE_ARG_TYPES (f1);
      tree p2 = TYPE_ARG_TYPES (f2);
      tree p2 = TYPE_ARG_TYPES (f2);
 
 
      /* Specializations of different templates are different functions
      /* Specializations of different templates are different functions
         even if they have the same type.  */
         even if they have the same type.  */
      tree t1 = (DECL_USE_TEMPLATE (newdecl)
      tree t1 = (DECL_USE_TEMPLATE (newdecl)
                 ? DECL_TI_TEMPLATE (newdecl)
                 ? DECL_TI_TEMPLATE (newdecl)
                 : NULL_TREE);
                 : NULL_TREE);
      tree t2 = (DECL_USE_TEMPLATE (olddecl)
      tree t2 = (DECL_USE_TEMPLATE (olddecl)
                 ? DECL_TI_TEMPLATE (olddecl)
                 ? DECL_TI_TEMPLATE (olddecl)
                 : NULL_TREE);
                 : NULL_TREE);
      if (t1 != t2)
      if (t1 != t2)
        return 0;
        return 0;
 
 
      if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)
      if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)
          && ! (DECL_EXTERN_C_P (newdecl)
          && ! (DECL_EXTERN_C_P (newdecl)
                && DECL_EXTERN_C_P (olddecl)))
                && DECL_EXTERN_C_P (olddecl)))
        return 0;
        return 0;
 
 
#ifdef NO_IMPLICIT_EXTERN_C
#ifdef NO_IMPLICIT_EXTERN_C
      /* A new declaration doesn't match a built-in one unless it
      /* A new declaration doesn't match a built-in one unless it
         is also extern "C".  */
         is also extern "C".  */
      if (DECL_IS_BUILTIN (olddecl)
      if (DECL_IS_BUILTIN (olddecl)
          && DECL_EXTERN_C_P (olddecl) && !DECL_EXTERN_C_P (newdecl))
          && DECL_EXTERN_C_P (olddecl) && !DECL_EXTERN_C_P (newdecl))
        return 0;
        return 0;
#endif
#endif
 
 
      if (TREE_CODE (f1) != TREE_CODE (f2))
      if (TREE_CODE (f1) != TREE_CODE (f2))
        return 0;
        return 0;
 
 
      if (same_type_p (TREE_TYPE (f1), TREE_TYPE (f2)))
      if (same_type_p (TREE_TYPE (f1), TREE_TYPE (f2)))
        {
        {
          if (p2 == NULL_TREE && DECL_EXTERN_C_P (olddecl)
          if (p2 == NULL_TREE && DECL_EXTERN_C_P (olddecl)
              && (DECL_BUILT_IN (olddecl)
              && (DECL_BUILT_IN (olddecl)
#ifndef NO_IMPLICIT_EXTERN_C
#ifndef NO_IMPLICIT_EXTERN_C
                  || (DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl))
                  || (DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl))
                  || (DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl))
                  || (DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl))
#endif
#endif
              ))
              ))
            {
            {
              types_match = self_promoting_args_p (p1);
              types_match = self_promoting_args_p (p1);
              if (p1 == void_list_node)
              if (p1 == void_list_node)
                TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
                TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
            }
            }
#ifndef NO_IMPLICIT_EXTERN_C
#ifndef NO_IMPLICIT_EXTERN_C
          else if (p1 == NULL_TREE
          else if (p1 == NULL_TREE
                   && (DECL_EXTERN_C_P (olddecl)
                   && (DECL_EXTERN_C_P (olddecl)
                       && DECL_IN_SYSTEM_HEADER (olddecl)
                       && DECL_IN_SYSTEM_HEADER (olddecl)
                       && !DECL_CLASS_SCOPE_P (olddecl))
                       && !DECL_CLASS_SCOPE_P (olddecl))
                   && (DECL_EXTERN_C_P (newdecl)
                   && (DECL_EXTERN_C_P (newdecl)
                       && DECL_IN_SYSTEM_HEADER (newdecl)
                       && DECL_IN_SYSTEM_HEADER (newdecl)
                       && !DECL_CLASS_SCOPE_P (newdecl)))
                       && !DECL_CLASS_SCOPE_P (newdecl)))
            {
            {
              types_match = self_promoting_args_p (p2);
              types_match = self_promoting_args_p (p2);
              TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
              TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
            }
            }
#endif
#endif
          else
          else
            types_match = compparms (p1, p2);
            types_match = compparms (p1, p2);
        }
        }
      else
      else
        types_match = 0;
        types_match = 0;
    }
    }
  else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
  else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
    {
    {
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl))
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl))
          != TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)))
          != TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)))
        return 0;
        return 0;
 
 
      if (!comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
      if (!comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
                                DECL_TEMPLATE_PARMS (olddecl)))
                                DECL_TEMPLATE_PARMS (olddecl)))
        return 0;
        return 0;
 
 
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
        types_match = same_type_p (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl)),
        types_match = same_type_p (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl)),
                                   TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl)));
                                   TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl)));
      else
      else
        types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl),
        types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl),
                                   DECL_TEMPLATE_RESULT (newdecl));
                                   DECL_TEMPLATE_RESULT (newdecl));
    }
    }
  else
  else
    {
    {
      /* Need to check scope for variable declaration (VAR_DECL).
      /* Need to check scope for variable declaration (VAR_DECL).
         For typedef (TYPE_DECL), scope is ignored.  */
         For typedef (TYPE_DECL), scope is ignored.  */
      if (TREE_CODE (newdecl) == VAR_DECL
      if (TREE_CODE (newdecl) == VAR_DECL
          && CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)
          && CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)
          /* [dcl.link]
          /* [dcl.link]
             Two declarations for an object with C language linkage
             Two declarations for an object with C language linkage
             with the same name (ignoring the namespace that qualify
             with the same name (ignoring the namespace that qualify
             it) that appear in different namespace scopes refer to
             it) that appear in different namespace scopes refer to
             the same object.  */
             the same object.  */
          && !(DECL_EXTERN_C_P (olddecl) && DECL_EXTERN_C_P (newdecl)))
          && !(DECL_EXTERN_C_P (olddecl) && DECL_EXTERN_C_P (newdecl)))
        return 0;
        return 0;
 
 
      if (TREE_TYPE (newdecl) == error_mark_node)
      if (TREE_TYPE (newdecl) == error_mark_node)
        types_match = TREE_TYPE (olddecl) == error_mark_node;
        types_match = TREE_TYPE (olddecl) == error_mark_node;
      else if (TREE_TYPE (olddecl) == NULL_TREE)
      else if (TREE_TYPE (olddecl) == NULL_TREE)
        types_match = TREE_TYPE (newdecl) == NULL_TREE;
        types_match = TREE_TYPE (newdecl) == NULL_TREE;
      else if (TREE_TYPE (newdecl) == NULL_TREE)
      else if (TREE_TYPE (newdecl) == NULL_TREE)
        types_match = 0;
        types_match = 0;
      else
      else
        types_match = comptypes (TREE_TYPE (newdecl),
        types_match = comptypes (TREE_TYPE (newdecl),
                                 TREE_TYPE (olddecl),
                                 TREE_TYPE (olddecl),
                                 COMPARE_REDECLARATION);
                                 COMPARE_REDECLARATION);
    }
    }
 
 
  return types_match;
  return types_match;
}
}
 
 
/* If NEWDECL is `static' and an `extern' was seen previously,
/* If NEWDECL is `static' and an `extern' was seen previously,
   warn about it.  OLDDECL is the previous declaration.
   warn about it.  OLDDECL is the previous declaration.
 
 
   Note that this does not apply to the C++ case of declaring
   Note that this does not apply to the C++ case of declaring
   a variable `extern const' and then later `const'.
   a variable `extern const' and then later `const'.
 
 
   Don't complain about built-in functions, since they are beyond
   Don't complain about built-in functions, since they are beyond
   the user's control.  */
   the user's control.  */
 
 
void
void
warn_extern_redeclared_static (tree newdecl, tree olddecl)
warn_extern_redeclared_static (tree newdecl, tree olddecl)
{
{
  if (TREE_CODE (newdecl) == TYPE_DECL
  if (TREE_CODE (newdecl) == TYPE_DECL
      || TREE_CODE (newdecl) == TEMPLATE_DECL
      || TREE_CODE (newdecl) == TEMPLATE_DECL
      || TREE_CODE (newdecl) == CONST_DECL
      || TREE_CODE (newdecl) == CONST_DECL
      || TREE_CODE (newdecl) == NAMESPACE_DECL)
      || TREE_CODE (newdecl) == NAMESPACE_DECL)
    return;
    return;
 
 
  /* Don't get confused by static member functions; that's a different
  /* Don't get confused by static member functions; that's a different
     use of `static'.  */
     use of `static'.  */
  if (TREE_CODE (newdecl) == FUNCTION_DECL
  if (TREE_CODE (newdecl) == FUNCTION_DECL
      && DECL_STATIC_FUNCTION_P (newdecl))
      && DECL_STATIC_FUNCTION_P (newdecl))
    return;
    return;
 
 
  /* If the old declaration was `static', or the new one isn't, then
  /* If the old declaration was `static', or the new one isn't, then
     then everything is OK.  */
     then everything is OK.  */
  if (DECL_THIS_STATIC (olddecl) || !DECL_THIS_STATIC (newdecl))
  if (DECL_THIS_STATIC (olddecl) || !DECL_THIS_STATIC (newdecl))
    return;
    return;
 
 
  /* It's OK to declare a builtin function as `static'.  */
  /* It's OK to declare a builtin function as `static'.  */
  if (TREE_CODE (olddecl) == FUNCTION_DECL
  if (TREE_CODE (olddecl) == FUNCTION_DECL
      && DECL_ARTIFICIAL (olddecl))
      && DECL_ARTIFICIAL (olddecl))
    return;
    return;
 
 
  permerror (input_location, "%qD was declared %<extern%> and later %<static%>", newdecl);
  permerror (input_location, "%qD was declared %<extern%> and later %<static%>", newdecl);
  permerror (input_location, "previous declaration of %q+D", olddecl);
  permerror (input_location, "previous declaration of %q+D", olddecl);
}
}
 
 
/* NEW_DECL is a redeclaration of OLD_DECL; both are functions or
/* NEW_DECL is a redeclaration of OLD_DECL; both are functions or
   function templates.  If their exception specifications do not
   function templates.  If their exception specifications do not
   match, issue a diagnostic.  */
   match, issue a diagnostic.  */
 
 
static void
static void
check_redeclaration_exception_specification (tree new_decl,
check_redeclaration_exception_specification (tree new_decl,
                                             tree old_decl)
                                             tree old_decl)
{
{
  tree new_type;
  tree new_type;
  tree old_type;
  tree old_type;
  tree new_exceptions;
  tree new_exceptions;
  tree old_exceptions;
  tree old_exceptions;
 
 
  new_type = TREE_TYPE (new_decl);
  new_type = TREE_TYPE (new_decl);
  new_exceptions = TYPE_RAISES_EXCEPTIONS (new_type);
  new_exceptions = TYPE_RAISES_EXCEPTIONS (new_type);
  old_type = TREE_TYPE (old_decl);
  old_type = TREE_TYPE (old_decl);
  old_exceptions = TYPE_RAISES_EXCEPTIONS (old_type);
  old_exceptions = TYPE_RAISES_EXCEPTIONS (old_type);
 
 
  /* [except.spec]
  /* [except.spec]
 
 
     If any declaration of a function has an exception-specification,
     If any declaration of a function has an exception-specification,
     all declarations, including the definition and an explicit
     all declarations, including the definition and an explicit
     specialization, of that function shall have an
     specialization, of that function shall have an
     exception-specification with the same set of type-ids.  */
     exception-specification with the same set of type-ids.  */
  if ((pedantic || ! DECL_IN_SYSTEM_HEADER (old_decl))
  if ((pedantic || ! DECL_IN_SYSTEM_HEADER (old_decl))
      && ! DECL_IS_BUILTIN (old_decl)
      && ! DECL_IS_BUILTIN (old_decl)
      && flag_exceptions
      && flag_exceptions
      && !comp_except_specs (new_exceptions, old_exceptions,
      && !comp_except_specs (new_exceptions, old_exceptions,
                             /*exact=*/true))
                             /*exact=*/true))
    {
    {
      error ("declaration of %qF throws different exceptions", new_decl);
      error ("declaration of %qF throws different exceptions", new_decl);
      error ("from previous declaration %q+F", old_decl);
      error ("from previous declaration %q+F", old_decl);
    }
    }
}
}
 
 
#define GNU_INLINE_P(fn) (DECL_DECLARED_INLINE_P (fn)                   \
#define GNU_INLINE_P(fn) (DECL_DECLARED_INLINE_P (fn)                   \
                          && lookup_attribute ("gnu_inline",            \
                          && lookup_attribute ("gnu_inline",            \
                                               DECL_ATTRIBUTES (fn)))
                                               DECL_ATTRIBUTES (fn)))
 
 
/* If NEWDECL is a redeclaration of OLDDECL, merge the declarations.
/* If NEWDECL is a redeclaration of OLDDECL, merge the declarations.
   If the redeclaration is invalid, a diagnostic is issued, and the
   If the redeclaration is invalid, a diagnostic is issued, and the
   error_mark_node is returned.  Otherwise, OLDDECL is returned.
   error_mark_node is returned.  Otherwise, OLDDECL is returned.
 
 
   If NEWDECL is not a redeclaration of OLDDECL, NULL_TREE is
   If NEWDECL is not a redeclaration of OLDDECL, NULL_TREE is
   returned.
   returned.
 
 
   NEWDECL_IS_FRIEND is true if NEWDECL was declared as a friend.  */
   NEWDECL_IS_FRIEND is true if NEWDECL was declared as a friend.  */
 
 
tree
tree
duplicate_decls (tree newdecl, tree olddecl, bool newdecl_is_friend)
duplicate_decls (tree newdecl, tree olddecl, bool newdecl_is_friend)
{
{
  unsigned olddecl_uid = DECL_UID (olddecl);
  unsigned olddecl_uid = DECL_UID (olddecl);
  int olddecl_friend = 0, types_match = 0, hidden_friend = 0;
  int olddecl_friend = 0, types_match = 0, hidden_friend = 0;
  int new_defines_function = 0;
  int new_defines_function = 0;
  tree new_template_info;
  tree new_template_info;
 
 
  if (newdecl == olddecl)
  if (newdecl == olddecl)
    return olddecl;
    return olddecl;
 
 
  types_match = decls_match (newdecl, olddecl);
  types_match = decls_match (newdecl, olddecl);
 
 
  /* If either the type of the new decl or the type of the old decl is an
  /* If either the type of the new decl or the type of the old decl is an
     error_mark_node, then that implies that we have already issued an
     error_mark_node, then that implies that we have already issued an
     error (earlier) for some bogus type specification, and in that case,
     error (earlier) for some bogus type specification, and in that case,
     it is rather pointless to harass the user with yet more error message
     it is rather pointless to harass the user with yet more error message
     about the same declaration, so just pretend the types match here.  */
     about the same declaration, so just pretend the types match here.  */
  if (TREE_TYPE (newdecl) == error_mark_node
  if (TREE_TYPE (newdecl) == error_mark_node
      || TREE_TYPE (olddecl) == error_mark_node)
      || TREE_TYPE (olddecl) == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  if (DECL_P (olddecl)
  if (DECL_P (olddecl)
      && TREE_CODE (newdecl) == FUNCTION_DECL
      && TREE_CODE (newdecl) == FUNCTION_DECL
      && TREE_CODE (olddecl) == FUNCTION_DECL
      && TREE_CODE (olddecl) == FUNCTION_DECL
      && (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl)))
      && (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl)))
    {
    {
      if (DECL_DECLARED_INLINE_P (newdecl)
      if (DECL_DECLARED_INLINE_P (newdecl)
          && DECL_UNINLINABLE (newdecl)
          && DECL_UNINLINABLE (newdecl)
          && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
          && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
        /* Already warned elsewhere.  */;
        /* Already warned elsewhere.  */;
      else if (DECL_DECLARED_INLINE_P (olddecl)
      else if (DECL_DECLARED_INLINE_P (olddecl)
               && DECL_UNINLINABLE (olddecl)
               && DECL_UNINLINABLE (olddecl)
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
        /* Already warned.  */;
        /* Already warned.  */;
      else if (DECL_DECLARED_INLINE_P (newdecl)
      else if (DECL_DECLARED_INLINE_P (newdecl)
               && DECL_UNINLINABLE (olddecl)
               && DECL_UNINLINABLE (olddecl)
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
        {
        {
          warning (OPT_Wattributes, "function %q+D redeclared as inline",
          warning (OPT_Wattributes, "function %q+D redeclared as inline",
                   newdecl);
                   newdecl);
          warning (OPT_Wattributes, "previous declaration of %q+D "
          warning (OPT_Wattributes, "previous declaration of %q+D "
                   "with attribute noinline", olddecl);
                   "with attribute noinline", olddecl);
        }
        }
      else if (DECL_DECLARED_INLINE_P (olddecl)
      else if (DECL_DECLARED_INLINE_P (olddecl)
               && DECL_UNINLINABLE (newdecl)
               && DECL_UNINLINABLE (newdecl)
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
        {
        {
          warning (OPT_Wattributes, "function %q+D redeclared with "
          warning (OPT_Wattributes, "function %q+D redeclared with "
                   "attribute noinline", newdecl);
                   "attribute noinline", newdecl);
          warning (OPT_Wattributes, "previous declaration of %q+D was inline",
          warning (OPT_Wattributes, "previous declaration of %q+D was inline",
                   olddecl);
                   olddecl);
        }
        }
    }
    }
 
 
  /* Check for redeclaration and other discrepancies.  */
  /* Check for redeclaration and other discrepancies.  */
  if (TREE_CODE (olddecl) == FUNCTION_DECL
  if (TREE_CODE (olddecl) == FUNCTION_DECL
      && DECL_ARTIFICIAL (olddecl))
      && DECL_ARTIFICIAL (olddecl))
    {
    {
      gcc_assert (!DECL_HIDDEN_FRIEND_P (olddecl));
      gcc_assert (!DECL_HIDDEN_FRIEND_P (olddecl));
      if (TREE_CODE (newdecl) != FUNCTION_DECL)
      if (TREE_CODE (newdecl) != FUNCTION_DECL)
        {
        {
          /* Avoid warnings redeclaring built-ins which have not been
          /* Avoid warnings redeclaring built-ins which have not been
             explicitly declared.  */
             explicitly declared.  */
          if (DECL_ANTICIPATED (olddecl))
          if (DECL_ANTICIPATED (olddecl))
            return NULL_TREE;
            return NULL_TREE;
 
 
          /* If you declare a built-in or predefined function name as static,
          /* If you declare a built-in or predefined function name as static,
             the old definition is overridden, but optionally warn this was a
             the old definition is overridden, but optionally warn this was a
             bad choice of name.  */
             bad choice of name.  */
          if (! TREE_PUBLIC (newdecl))
          if (! TREE_PUBLIC (newdecl))
            {
            {
              warning (OPT_Wshadow,
              warning (OPT_Wshadow,
                       DECL_BUILT_IN (olddecl)
                       DECL_BUILT_IN (olddecl)
                       ? G_("shadowing built-in function %q#D")
                       ? G_("shadowing built-in function %q#D")
                       : G_("shadowing library function %q#D"), olddecl);
                       : G_("shadowing library function %q#D"), olddecl);
              /* Discard the old built-in function.  */
              /* Discard the old built-in function.  */
              return NULL_TREE;
              return NULL_TREE;
            }
            }
          /* If the built-in is not ansi, then programs can override
          /* If the built-in is not ansi, then programs can override
             it even globally without an error.  */
             it even globally without an error.  */
          else if (! DECL_BUILT_IN (olddecl))
          else if (! DECL_BUILT_IN (olddecl))
            warning (0, "library function %q#D redeclared as non-function %q#D",
            warning (0, "library function %q#D redeclared as non-function %q#D",
                     olddecl, newdecl);
                     olddecl, newdecl);
          else
          else
            {
            {
              error ("declaration of %q#D", newdecl);
              error ("declaration of %q#D", newdecl);
              error ("conflicts with built-in declaration %q#D",
              error ("conflicts with built-in declaration %q#D",
                     olddecl);
                     olddecl);
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      else if (!types_match)
      else if (!types_match)
        {
        {
          /* Avoid warnings redeclaring built-ins which have not been
          /* Avoid warnings redeclaring built-ins which have not been
             explicitly declared.  */
             explicitly declared.  */
          if (DECL_ANTICIPATED (olddecl))
          if (DECL_ANTICIPATED (olddecl))
            {
            {
              /* Deal with fileptr_type_node.  FILE type is not known
              /* Deal with fileptr_type_node.  FILE type is not known
                 at the time we create the builtins.  */
                 at the time we create the builtins.  */
              tree t1, t2;
              tree t1, t2;
 
 
              for (t1 = TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
              for (t1 = TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
                   t2 = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
                   t2 = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
                   t1 || t2;
                   t1 || t2;
                   t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
                   t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
                if (!t1 || !t2)
                if (!t1 || !t2)
                  break;
                  break;
                else if (TREE_VALUE (t2) == fileptr_type_node)
                else if (TREE_VALUE (t2) == fileptr_type_node)
                  {
                  {
                    tree t = TREE_VALUE (t1);
                    tree t = TREE_VALUE (t1);
 
 
                    if (TREE_CODE (t) == POINTER_TYPE
                    if (TREE_CODE (t) == POINTER_TYPE
                        && TYPE_NAME (TREE_TYPE (t))
                        && TYPE_NAME (TREE_TYPE (t))
                        && DECL_NAME (TYPE_NAME (TREE_TYPE (t)))
                        && DECL_NAME (TYPE_NAME (TREE_TYPE (t)))
                           == get_identifier ("FILE")
                           == get_identifier ("FILE")
                        && compparms (TREE_CHAIN (t1), TREE_CHAIN (t2)))
                        && compparms (TREE_CHAIN (t1), TREE_CHAIN (t2)))
                      {
                      {
                        tree oldargs = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
                        tree oldargs = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
 
 
                        TYPE_ARG_TYPES (TREE_TYPE (olddecl))
                        TYPE_ARG_TYPES (TREE_TYPE (olddecl))
                          = TYPE_ARG_TYPES (TREE_TYPE (newdecl));
                          = TYPE_ARG_TYPES (TREE_TYPE (newdecl));
                        types_match = decls_match (newdecl, olddecl);
                        types_match = decls_match (newdecl, olddecl);
                        if (types_match)
                        if (types_match)
                          return duplicate_decls (newdecl, olddecl,
                          return duplicate_decls (newdecl, olddecl,
                                                  newdecl_is_friend);
                                                  newdecl_is_friend);
                        TYPE_ARG_TYPES (TREE_TYPE (olddecl)) = oldargs;
                        TYPE_ARG_TYPES (TREE_TYPE (olddecl)) = oldargs;
                      }
                      }
                  }
                  }
                else if (! same_type_p (TREE_VALUE (t1), TREE_VALUE (t2)))
                else if (! same_type_p (TREE_VALUE (t1), TREE_VALUE (t2)))
                  break;
                  break;
            }
            }
          else if ((DECL_EXTERN_C_P (newdecl)
          else if ((DECL_EXTERN_C_P (newdecl)
                    && DECL_EXTERN_C_P (olddecl))
                    && DECL_EXTERN_C_P (olddecl))
                   || compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
                   || compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
                                 TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
                                 TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
            {
            {
              /* A near match; override the builtin.  */
              /* A near match; override the builtin.  */
 
 
              if (TREE_PUBLIC (newdecl))
              if (TREE_PUBLIC (newdecl))
                {
                {
                  warning (0, "new declaration %q#D", newdecl);
                  warning (0, "new declaration %q#D", newdecl);
                  warning (0, "ambiguates built-in declaration %q#D",
                  warning (0, "ambiguates built-in declaration %q#D",
                           olddecl);
                           olddecl);
                }
                }
              else
              else
                warning (OPT_Wshadow,
                warning (OPT_Wshadow,
                         DECL_BUILT_IN (olddecl)
                         DECL_BUILT_IN (olddecl)
                         ? G_("shadowing built-in function %q#D")
                         ? G_("shadowing built-in function %q#D")
                         : G_("shadowing library function %q#D"), olddecl);
                         : G_("shadowing library function %q#D"), olddecl);
            }
            }
          else
          else
            /* Discard the old built-in function.  */
            /* Discard the old built-in function.  */
            return NULL_TREE;
            return NULL_TREE;
 
 
          /* Replace the old RTL to avoid problems with inlining.  */
          /* Replace the old RTL to avoid problems with inlining.  */
          COPY_DECL_RTL (newdecl, olddecl);
          COPY_DECL_RTL (newdecl, olddecl);
        }
        }
      /* Even if the types match, prefer the new declarations type for
      /* Even if the types match, prefer the new declarations type for
         built-ins which have not been explicitly declared, for
         built-ins which have not been explicitly declared, for
         exception lists, etc...  */
         exception lists, etc...  */
      else if (DECL_ANTICIPATED (olddecl))
      else if (DECL_ANTICIPATED (olddecl))
        {
        {
          tree type = TREE_TYPE (newdecl);
          tree type = TREE_TYPE (newdecl);
          tree attribs = (*targetm.merge_type_attributes)
          tree attribs = (*targetm.merge_type_attributes)
            (TREE_TYPE (olddecl), type);
            (TREE_TYPE (olddecl), type);
 
 
          type = cp_build_type_attribute_variant (type, attribs);
          type = cp_build_type_attribute_variant (type, attribs);
          TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = type;
          TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = type;
        }
        }
 
 
      /* If a function is explicitly declared "throw ()", propagate that to
      /* If a function is explicitly declared "throw ()", propagate that to
         the corresponding builtin.  */
         the corresponding builtin.  */
      if (DECL_BUILT_IN_CLASS (olddecl) == BUILT_IN_NORMAL
      if (DECL_BUILT_IN_CLASS (olddecl) == BUILT_IN_NORMAL
          && DECL_ANTICIPATED (olddecl)
          && DECL_ANTICIPATED (olddecl)
          && TREE_NOTHROW (newdecl)
          && TREE_NOTHROW (newdecl)
          && !TREE_NOTHROW (olddecl)
          && !TREE_NOTHROW (olddecl)
          && built_in_decls [DECL_FUNCTION_CODE (olddecl)] != NULL_TREE
          && built_in_decls [DECL_FUNCTION_CODE (olddecl)] != NULL_TREE
          && built_in_decls [DECL_FUNCTION_CODE (olddecl)] != olddecl
          && built_in_decls [DECL_FUNCTION_CODE (olddecl)] != olddecl
          && types_match)
          && types_match)
        TREE_NOTHROW (built_in_decls [DECL_FUNCTION_CODE (olddecl)]) = 1;
        TREE_NOTHROW (built_in_decls [DECL_FUNCTION_CODE (olddecl)]) = 1;
 
 
      /* Whether or not the builtin can throw exceptions has no
      /* Whether or not the builtin can throw exceptions has no
         bearing on this declarator.  */
         bearing on this declarator.  */
      TREE_NOTHROW (olddecl) = 0;
      TREE_NOTHROW (olddecl) = 0;
 
 
      if (DECL_THIS_STATIC (newdecl) && !DECL_THIS_STATIC (olddecl))
      if (DECL_THIS_STATIC (newdecl) && !DECL_THIS_STATIC (olddecl))
        {
        {
          /* If a builtin function is redeclared as `static', merge
          /* If a builtin function is redeclared as `static', merge
             the declarations, but make the original one static.  */
             the declarations, but make the original one static.  */
          DECL_THIS_STATIC (olddecl) = 1;
          DECL_THIS_STATIC (olddecl) = 1;
          TREE_PUBLIC (olddecl) = 0;
          TREE_PUBLIC (olddecl) = 0;
 
 
          /* Make the old declaration consistent with the new one so
          /* Make the old declaration consistent with the new one so
             that all remnants of the builtin-ness of this function
             that all remnants of the builtin-ness of this function
             will be banished.  */
             will be banished.  */
          SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
          SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
          COPY_DECL_RTL (newdecl, olddecl);
          COPY_DECL_RTL (newdecl, olddecl);
        }
        }
    }
    }
  else if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
  else if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
    {
    {
      /* C++ Standard, 3.3, clause 4:
      /* C++ Standard, 3.3, clause 4:
         "[Note: a namespace name or a class template name must be unique
         "[Note: a namespace name or a class template name must be unique
         in its declarative region (7.3.2, clause 14). ]"  */
         in its declarative region (7.3.2, clause 14). ]"  */
      if (TREE_CODE (olddecl) != NAMESPACE_DECL
      if (TREE_CODE (olddecl) != NAMESPACE_DECL
          && TREE_CODE (newdecl) != NAMESPACE_DECL
          && TREE_CODE (newdecl) != NAMESPACE_DECL
          && (TREE_CODE (olddecl) != TEMPLATE_DECL
          && (TREE_CODE (olddecl) != TEMPLATE_DECL
              || TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) != TYPE_DECL)
              || TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) != TYPE_DECL)
          && (TREE_CODE (newdecl) != TEMPLATE_DECL
          && (TREE_CODE (newdecl) != TEMPLATE_DECL
              || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != TYPE_DECL))
              || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != TYPE_DECL))
        {
        {
          if ((TREE_CODE (olddecl) == TYPE_DECL && DECL_ARTIFICIAL (olddecl)
          if ((TREE_CODE (olddecl) == TYPE_DECL && DECL_ARTIFICIAL (olddecl)
               && TREE_CODE (newdecl) != TYPE_DECL)
               && TREE_CODE (newdecl) != TYPE_DECL)
              || (TREE_CODE (newdecl) == TYPE_DECL && DECL_ARTIFICIAL (newdecl)
              || (TREE_CODE (newdecl) == TYPE_DECL && DECL_ARTIFICIAL (newdecl)
                  && TREE_CODE (olddecl) != TYPE_DECL))
                  && TREE_CODE (olddecl) != TYPE_DECL))
            {
            {
              /* We do nothing special here, because C++ does such nasty
              /* We do nothing special here, because C++ does such nasty
                 things with TYPE_DECLs.  Instead, just let the TYPE_DECL
                 things with TYPE_DECLs.  Instead, just let the TYPE_DECL
                 get shadowed, and know that if we need to find a TYPE_DECL
                 get shadowed, and know that if we need to find a TYPE_DECL
                 for a given name, we can look in the IDENTIFIER_TYPE_VALUE
                 for a given name, we can look in the IDENTIFIER_TYPE_VALUE
                 slot of the identifier.  */
                 slot of the identifier.  */
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
            if ((TREE_CODE (newdecl) == FUNCTION_DECL
            if ((TREE_CODE (newdecl) == FUNCTION_DECL
                 && DECL_FUNCTION_TEMPLATE_P (olddecl))
                 && DECL_FUNCTION_TEMPLATE_P (olddecl))
                || (TREE_CODE (olddecl) == FUNCTION_DECL
                || (TREE_CODE (olddecl) == FUNCTION_DECL
                    && DECL_FUNCTION_TEMPLATE_P (newdecl)))
                    && DECL_FUNCTION_TEMPLATE_P (newdecl)))
              return NULL_TREE;
              return NULL_TREE;
        }
        }
 
 
      error ("%q#D redeclared as different kind of symbol", newdecl);
      error ("%q#D redeclared as different kind of symbol", newdecl);
      if (TREE_CODE (olddecl) == TREE_LIST)
      if (TREE_CODE (olddecl) == TREE_LIST)
        olddecl = TREE_VALUE (olddecl);
        olddecl = TREE_VALUE (olddecl);
      error ("previous declaration of %q+#D", olddecl);
      error ("previous declaration of %q+#D", olddecl);
 
 
      return error_mark_node;
      return error_mark_node;
    }
    }
  else if (!types_match)
  else if (!types_match)
    {
    {
      if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl))
      if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl))
        /* These are certainly not duplicate declarations; they're
        /* These are certainly not duplicate declarations; they're
           from different scopes.  */
           from different scopes.  */
        return NULL_TREE;
        return NULL_TREE;
 
 
      if (TREE_CODE (newdecl) == TEMPLATE_DECL)
      if (TREE_CODE (newdecl) == TEMPLATE_DECL)
        {
        {
          /* The name of a class template may not be declared to refer to
          /* The name of a class template may not be declared to refer to
             any other template, class, function, object, namespace, value,
             any other template, class, function, object, namespace, value,
             or type in the same scope.  */
             or type in the same scope.  */
          if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL
          if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL
              || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
              || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
            {
            {
              error ("declaration of template %q#D", newdecl);
              error ("declaration of template %q#D", newdecl);
              error ("conflicts with previous declaration %q+#D", olddecl);
              error ("conflicts with previous declaration %q+#D", olddecl);
            }
            }
          else if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL
          else if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL
                   && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL
                   && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL
                   && compparms (TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl))),
                   && compparms (TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl))),
                                 TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl))))
                                 TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl))))
                   && comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
                   && comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
                                           DECL_TEMPLATE_PARMS (olddecl))
                                           DECL_TEMPLATE_PARMS (olddecl))
                   /* Template functions can be disambiguated by
                   /* Template functions can be disambiguated by
                      return type.  */
                      return type.  */
                   && same_type_p (TREE_TYPE (TREE_TYPE (newdecl)),
                   && same_type_p (TREE_TYPE (TREE_TYPE (newdecl)),
                                   TREE_TYPE (TREE_TYPE (olddecl))))
                                   TREE_TYPE (TREE_TYPE (olddecl))))
            {
            {
              error ("new declaration %q#D", newdecl);
              error ("new declaration %q#D", newdecl);
              error ("ambiguates old declaration %q+#D", olddecl);
              error ("ambiguates old declaration %q+#D", olddecl);
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
        {
        {
          if (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl))
          if (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl))
            {
            {
              error ("declaration of C function %q#D conflicts with",
              error ("declaration of C function %q#D conflicts with",
                     newdecl);
                     newdecl);
              error ("previous declaration %q+#D here", olddecl);
              error ("previous declaration %q+#D here", olddecl);
            }
            }
          else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
          else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
                              TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
                              TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
            {
            {
              error ("new declaration %q#D", newdecl);
              error ("new declaration %q#D", newdecl);
              error ("ambiguates old declaration %q+#D", olddecl);
              error ("ambiguates old declaration %q+#D", olddecl);
              return error_mark_node;
              return error_mark_node;
            }
            }
          else
          else
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      else
      else
        {
        {
          error ("conflicting declaration %q#D", newdecl);
          error ("conflicting declaration %q#D", newdecl);
          error ("%q+D has a previous declaration as %q#D", olddecl, olddecl);
          error ("%q+D has a previous declaration as %q#D", olddecl, olddecl);
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
  else if (TREE_CODE (newdecl) == FUNCTION_DECL
  else if (TREE_CODE (newdecl) == FUNCTION_DECL
            && ((DECL_TEMPLATE_SPECIALIZATION (olddecl)
            && ((DECL_TEMPLATE_SPECIALIZATION (olddecl)
                 && (!DECL_TEMPLATE_INFO (newdecl)
                 && (!DECL_TEMPLATE_INFO (newdecl)
                     || (DECL_TI_TEMPLATE (newdecl)
                     || (DECL_TI_TEMPLATE (newdecl)
                         != DECL_TI_TEMPLATE (olddecl))))
                         != DECL_TI_TEMPLATE (olddecl))))
                || (DECL_TEMPLATE_SPECIALIZATION (newdecl)
                || (DECL_TEMPLATE_SPECIALIZATION (newdecl)
                    && (!DECL_TEMPLATE_INFO (olddecl)
                    && (!DECL_TEMPLATE_INFO (olddecl)
                        || (DECL_TI_TEMPLATE (olddecl)
                        || (DECL_TI_TEMPLATE (olddecl)
                            != DECL_TI_TEMPLATE (newdecl))))))
                            != DECL_TI_TEMPLATE (newdecl))))))
    /* It's OK to have a template specialization and a non-template
    /* It's OK to have a template specialization and a non-template
       with the same type, or to have specializations of two
       with the same type, or to have specializations of two
       different templates with the same type.  Note that if one is a
       different templates with the same type.  Note that if one is a
       specialization, and the other is an instantiation of the same
       specialization, and the other is an instantiation of the same
       template, that we do not exit at this point.  That situation
       template, that we do not exit at this point.  That situation
       can occur if we instantiate a template class, and then
       can occur if we instantiate a template class, and then
       specialize one of its methods.  This situation is valid, but
       specialize one of its methods.  This situation is valid, but
       the declarations must be merged in the usual way.  */
       the declarations must be merged in the usual way.  */
    return NULL_TREE;
    return NULL_TREE;
  else if (TREE_CODE (newdecl) == FUNCTION_DECL
  else if (TREE_CODE (newdecl) == FUNCTION_DECL
           && ((DECL_TEMPLATE_INSTANTIATION (olddecl)
           && ((DECL_TEMPLATE_INSTANTIATION (olddecl)
                && !DECL_USE_TEMPLATE (newdecl))
                && !DECL_USE_TEMPLATE (newdecl))
               || (DECL_TEMPLATE_INSTANTIATION (newdecl)
               || (DECL_TEMPLATE_INSTANTIATION (newdecl)
                   && !DECL_USE_TEMPLATE (olddecl))))
                   && !DECL_USE_TEMPLATE (olddecl))))
    /* One of the declarations is a template instantiation, and the
    /* One of the declarations is a template instantiation, and the
       other is not a template at all.  That's OK.  */
       other is not a template at all.  That's OK.  */
    return NULL_TREE;
    return NULL_TREE;
  else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
  else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
    {
    {
      /* In [namespace.alias] we have:
      /* In [namespace.alias] we have:
 
 
           In a declarative region, a namespace-alias-definition can be
           In a declarative region, a namespace-alias-definition can be
           used to redefine a namespace-alias declared in that declarative
           used to redefine a namespace-alias declared in that declarative
           region to refer only to the namespace to which it already
           region to refer only to the namespace to which it already
           refers.
           refers.
 
 
         Therefore, if we encounter a second alias directive for the same
         Therefore, if we encounter a second alias directive for the same
         alias, we can just ignore the second directive.  */
         alias, we can just ignore the second directive.  */
      if (DECL_NAMESPACE_ALIAS (newdecl)
      if (DECL_NAMESPACE_ALIAS (newdecl)
          && (DECL_NAMESPACE_ALIAS (newdecl)
          && (DECL_NAMESPACE_ALIAS (newdecl)
              == DECL_NAMESPACE_ALIAS (olddecl)))
              == DECL_NAMESPACE_ALIAS (olddecl)))
        return olddecl;
        return olddecl;
      /* [namespace.alias]
      /* [namespace.alias]
 
 
         A namespace-name or namespace-alias shall not be declared as
         A namespace-name or namespace-alias shall not be declared as
         the name of any other entity in the same declarative region.
         the name of any other entity in the same declarative region.
         A namespace-name defined at global scope shall not be
         A namespace-name defined at global scope shall not be
         declared as the name of any other entity in any global scope
         declared as the name of any other entity in any global scope
         of the program.  */
         of the program.  */
      error ("declaration of namespace %qD conflicts with", newdecl);
      error ("declaration of namespace %qD conflicts with", newdecl);
      error ("previous declaration of namespace %q+D here", olddecl);
      error ("previous declaration of namespace %q+D here", olddecl);
      return error_mark_node;
      return error_mark_node;
    }
    }
  else
  else
    {
    {
      const char *errmsg = redeclaration_error_message (newdecl, olddecl);
      const char *errmsg = redeclaration_error_message (newdecl, olddecl);
      if (errmsg)
      if (errmsg)
        {
        {
          error_at (DECL_SOURCE_LOCATION (newdecl), errmsg, newdecl);
          error_at (DECL_SOURCE_LOCATION (newdecl), errmsg, newdecl);
          if (DECL_NAME (olddecl) != NULL_TREE)
          if (DECL_NAME (olddecl) != NULL_TREE)
            error ((DECL_INITIAL (olddecl) && namespace_bindings_p ())
            error ((DECL_INITIAL (olddecl) && namespace_bindings_p ())
                         ? "%q+#D previously defined here"
                         ? "%q+#D previously defined here"
                         : "%q+#D previously declared here", olddecl);
                         : "%q+#D previously declared here", olddecl);
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (TREE_CODE (olddecl) == FUNCTION_DECL
      else if (TREE_CODE (olddecl) == FUNCTION_DECL
               && DECL_INITIAL (olddecl) != NULL_TREE
               && DECL_INITIAL (olddecl) != NULL_TREE
               && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE
               && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE
               && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE)
               && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE)
        {
        {
          /* Prototype decl follows defn w/o prototype.  */
          /* Prototype decl follows defn w/o prototype.  */
          warning_at (input_location, 0, "prototype for %q+#D", newdecl);
          warning_at (input_location, 0, "prototype for %q+#D", newdecl);
          warning_at (DECL_SOURCE_LOCATION (olddecl), 0,
          warning_at (DECL_SOURCE_LOCATION (olddecl), 0,
                      "follows non-prototype definition here");
                      "follows non-prototype definition here");
        }
        }
      else if ((TREE_CODE (olddecl) == FUNCTION_DECL
      else if ((TREE_CODE (olddecl) == FUNCTION_DECL
                || TREE_CODE (olddecl) == VAR_DECL)
                || TREE_CODE (olddecl) == VAR_DECL)
               && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl))
               && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl))
        {
        {
          /* [dcl.link]
          /* [dcl.link]
             If two declarations of the same function or object
             If two declarations of the same function or object
             specify different linkage-specifications ..., the program
             specify different linkage-specifications ..., the program
             is ill-formed.... Except for functions with C++ linkage,
             is ill-formed.... Except for functions with C++ linkage,
             a function declaration without a linkage specification
             a function declaration without a linkage specification
             shall not precede the first linkage specification for
             shall not precede the first linkage specification for
             that function.  A function can be declared without a
             that function.  A function can be declared without a
             linkage specification after an explicit linkage
             linkage specification after an explicit linkage
             specification has been seen; the linkage explicitly
             specification has been seen; the linkage explicitly
             specified in the earlier declaration is not affected by
             specified in the earlier declaration is not affected by
             such a function declaration.
             such a function declaration.
 
 
             DR 563 raises the question why the restrictions on
             DR 563 raises the question why the restrictions on
             functions should not also apply to objects.  Older
             functions should not also apply to objects.  Older
             versions of G++ silently ignore the linkage-specification
             versions of G++ silently ignore the linkage-specification
             for this example:
             for this example:
 
 
               namespace N {
               namespace N {
                 extern int i;
                 extern int i;
                 extern "C" int i;
                 extern "C" int i;
               }
               }
 
 
             which is clearly wrong.  Therefore, we now treat objects
             which is clearly wrong.  Therefore, we now treat objects
             like functions.  */
             like functions.  */
          if (current_lang_depth () == 0)
          if (current_lang_depth () == 0)
            {
            {
              /* There is no explicit linkage-specification, so we use
              /* There is no explicit linkage-specification, so we use
                 the linkage from the previous declaration.  */
                 the linkage from the previous declaration.  */
              if (!DECL_LANG_SPECIFIC (newdecl))
              if (!DECL_LANG_SPECIFIC (newdecl))
                retrofit_lang_decl (newdecl);
                retrofit_lang_decl (newdecl);
              SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
              SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
            }
            }
          else
          else
            {
            {
              error ("previous declaration of %q+#D with %qL linkage",
              error ("previous declaration of %q+#D with %qL linkage",
                     olddecl, DECL_LANGUAGE (olddecl));
                     olddecl, DECL_LANGUAGE (olddecl));
              error ("conflicts with new declaration with %qL linkage",
              error ("conflicts with new declaration with %qL linkage",
                     DECL_LANGUAGE (newdecl));
                     DECL_LANGUAGE (newdecl));
            }
            }
        }
        }
 
 
      if (DECL_LANG_SPECIFIC (olddecl) && DECL_USE_TEMPLATE (olddecl))
      if (DECL_LANG_SPECIFIC (olddecl) && DECL_USE_TEMPLATE (olddecl))
        ;
        ;
      else if (TREE_CODE (olddecl) == FUNCTION_DECL)
      else if (TREE_CODE (olddecl) == FUNCTION_DECL)
        {
        {
          tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
          tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
          tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl));
          tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl));
          int i = 1;
          int i = 1;
 
 
          if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE)
          if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE)
            t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2);
            t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2);
 
 
          for (; t1 && t1 != void_list_node;
          for (; t1 && t1 != void_list_node;
               t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++)
               t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++)
            if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2))
            if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2))
              {
              {
                if (1 == simple_cst_equal (TREE_PURPOSE (t1),
                if (1 == simple_cst_equal (TREE_PURPOSE (t1),
                                           TREE_PURPOSE (t2)))
                                           TREE_PURPOSE (t2)))
                  {
                  {
                    permerror (input_location, "default argument given for parameter %d of %q#D",
                    permerror (input_location, "default argument given for parameter %d of %q#D",
                               i, newdecl);
                               i, newdecl);
                    permerror (input_location, "after previous specification in %q+#D", olddecl);
                    permerror (input_location, "after previous specification in %q+#D", olddecl);
                  }
                  }
                else
                else
                  {
                  {
                    error ("default argument given for parameter %d of %q#D",
                    error ("default argument given for parameter %d of %q#D",
                           i, newdecl);
                           i, newdecl);
                    error ("after previous specification in %q+#D",
                    error ("after previous specification in %q+#D",
                                 olddecl);
                                 olddecl);
                  }
                  }
              }
              }
        }
        }
    }
    }
 
 
  /* Do not merge an implicit typedef with an explicit one.  In:
  /* Do not merge an implicit typedef with an explicit one.  In:
 
 
       class A;
       class A;
       ...
       ...
       typedef class A A __attribute__ ((foo));
       typedef class A A __attribute__ ((foo));
 
 
     the attribute should apply only to the typedef.  */
     the attribute should apply only to the typedef.  */
  if (TREE_CODE (olddecl) == TYPE_DECL
  if (TREE_CODE (olddecl) == TYPE_DECL
      && (DECL_IMPLICIT_TYPEDEF_P (olddecl)
      && (DECL_IMPLICIT_TYPEDEF_P (olddecl)
          || DECL_IMPLICIT_TYPEDEF_P (newdecl)))
          || DECL_IMPLICIT_TYPEDEF_P (newdecl)))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If new decl is `static' and an `extern' was seen previously,
  /* If new decl is `static' and an `extern' was seen previously,
     warn about it.  */
     warn about it.  */
  warn_extern_redeclared_static (newdecl, olddecl);
  warn_extern_redeclared_static (newdecl, olddecl);
 
 
  /* We have committed to returning 1 at this point.  */
  /* We have committed to returning 1 at this point.  */
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      /* Now that functions must hold information normally held
      /* Now that functions must hold information normally held
         by field decls, there is extra work to do so that
         by field decls, there is extra work to do so that
         declaration information does not get destroyed during
         declaration information does not get destroyed during
         definition.  */
         definition.  */
      if (DECL_VINDEX (olddecl))
      if (DECL_VINDEX (olddecl))
        DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl);
        DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl);
      if (DECL_CONTEXT (olddecl))
      if (DECL_CONTEXT (olddecl))
        DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
        DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
      DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl);
      DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl);
      DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
      DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
      DECL_PURE_VIRTUAL_P (newdecl) |= DECL_PURE_VIRTUAL_P (olddecl);
      DECL_PURE_VIRTUAL_P (newdecl) |= DECL_PURE_VIRTUAL_P (olddecl);
      DECL_VIRTUAL_P (newdecl) |= DECL_VIRTUAL_P (olddecl);
      DECL_VIRTUAL_P (newdecl) |= DECL_VIRTUAL_P (olddecl);
      DECL_INVALID_OVERRIDER_P (newdecl) |= DECL_INVALID_OVERRIDER_P (olddecl);
      DECL_INVALID_OVERRIDER_P (newdecl) |= DECL_INVALID_OVERRIDER_P (olddecl);
      DECL_THIS_STATIC (newdecl) |= DECL_THIS_STATIC (olddecl);
      DECL_THIS_STATIC (newdecl) |= DECL_THIS_STATIC (olddecl);
      if (DECL_OVERLOADED_OPERATOR_P (olddecl) != ERROR_MARK)
      if (DECL_OVERLOADED_OPERATOR_P (olddecl) != ERROR_MARK)
        SET_OVERLOADED_OPERATOR_CODE
        SET_OVERLOADED_OPERATOR_CODE
          (newdecl, DECL_OVERLOADED_OPERATOR_P (olddecl));
          (newdecl, DECL_OVERLOADED_OPERATOR_P (olddecl));
      new_defines_function = DECL_INITIAL (newdecl) != NULL_TREE;
      new_defines_function = DECL_INITIAL (newdecl) != NULL_TREE;
 
 
      /* Optionally warn about more than one declaration for the same
      /* Optionally warn about more than one declaration for the same
         name, but don't warn about a function declaration followed by a
         name, but don't warn about a function declaration followed by a
         definition.  */
         definition.  */
      if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl)
      if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl)
          && !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE)
          && !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE)
          /* Don't warn about extern decl followed by definition.  */
          /* Don't warn about extern decl followed by definition.  */
          && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl))
          && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl))
          /* Don't warn about friends, let add_friend take care of it.  */
          /* Don't warn about friends, let add_friend take care of it.  */
          && ! (newdecl_is_friend || DECL_FRIEND_P (olddecl)))
          && ! (newdecl_is_friend || DECL_FRIEND_P (olddecl)))
        {
        {
          warning (OPT_Wredundant_decls, "redundant redeclaration of %qD in same scope", newdecl);
          warning (OPT_Wredundant_decls, "redundant redeclaration of %qD in same scope", newdecl);
          warning (OPT_Wredundant_decls, "previous declaration of %q+D", olddecl);
          warning (OPT_Wredundant_decls, "previous declaration of %q+D", olddecl);
        }
        }
 
 
      if (DECL_DELETED_FN (newdecl))
      if (DECL_DELETED_FN (newdecl))
        {
        {
          error ("deleted definition of %qD", newdecl);
          error ("deleted definition of %qD", newdecl);
          error ("after previous declaration %q+D", olddecl);
          error ("after previous declaration %q+D", olddecl);
        }
        }
    }
    }
 
 
  /* Deal with C++: must preserve virtual function table size.  */
  /* Deal with C++: must preserve virtual function table size.  */
  if (TREE_CODE (olddecl) == TYPE_DECL)
  if (TREE_CODE (olddecl) == TYPE_DECL)
    {
    {
      tree newtype = TREE_TYPE (newdecl);
      tree newtype = TREE_TYPE (newdecl);
      tree oldtype = TREE_TYPE (olddecl);
      tree oldtype = TREE_TYPE (olddecl);
 
 
      if (newtype != error_mark_node && oldtype != error_mark_node
      if (newtype != error_mark_node && oldtype != error_mark_node
          && TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype))
          && TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype))
        CLASSTYPE_FRIEND_CLASSES (newtype)
        CLASSTYPE_FRIEND_CLASSES (newtype)
          = CLASSTYPE_FRIEND_CLASSES (oldtype);
          = CLASSTYPE_FRIEND_CLASSES (oldtype);
 
 
      DECL_ORIGINAL_TYPE (newdecl) = DECL_ORIGINAL_TYPE (olddecl);
      DECL_ORIGINAL_TYPE (newdecl) = DECL_ORIGINAL_TYPE (olddecl);
    }
    }
 
 
  /* Copy all the DECL_... slots specified in the new decl
  /* Copy all the DECL_... slots specified in the new decl
     except for any that we copy here from the old type.  */
     except for any that we copy here from the old type.  */
  DECL_ATTRIBUTES (newdecl)
  DECL_ATTRIBUTES (newdecl)
    = (*targetm.merge_decl_attributes) (olddecl, newdecl);
    = (*targetm.merge_decl_attributes) (olddecl, newdecl);
 
 
  if (TREE_CODE (newdecl) == TEMPLATE_DECL)
  if (TREE_CODE (newdecl) == TEMPLATE_DECL)
    {
    {
      tree old_result;
      tree old_result;
      tree new_result;
      tree new_result;
      old_result = DECL_TEMPLATE_RESULT (olddecl);
      old_result = DECL_TEMPLATE_RESULT (olddecl);
      new_result = DECL_TEMPLATE_RESULT (newdecl);
      new_result = DECL_TEMPLATE_RESULT (newdecl);
      TREE_TYPE (olddecl) = TREE_TYPE (old_result);
      TREE_TYPE (olddecl) = TREE_TYPE (old_result);
      DECL_TEMPLATE_SPECIALIZATIONS (olddecl)
      DECL_TEMPLATE_SPECIALIZATIONS (olddecl)
        = chainon (DECL_TEMPLATE_SPECIALIZATIONS (olddecl),
        = chainon (DECL_TEMPLATE_SPECIALIZATIONS (olddecl),
                   DECL_TEMPLATE_SPECIALIZATIONS (newdecl));
                   DECL_TEMPLATE_SPECIALIZATIONS (newdecl));
 
 
      DECL_ATTRIBUTES (old_result)
      DECL_ATTRIBUTES (old_result)
        = (*targetm.merge_decl_attributes) (old_result, new_result);
        = (*targetm.merge_decl_attributes) (old_result, new_result);
 
 
      if (DECL_FUNCTION_TEMPLATE_P (newdecl))
      if (DECL_FUNCTION_TEMPLATE_P (newdecl))
        {
        {
          if (GNU_INLINE_P (old_result) != GNU_INLINE_P (new_result)
          if (GNU_INLINE_P (old_result) != GNU_INLINE_P (new_result)
              && DECL_INITIAL (new_result))
              && DECL_INITIAL (new_result))
            {
            {
              if (DECL_INITIAL (old_result))
              if (DECL_INITIAL (old_result))
                DECL_UNINLINABLE (old_result) = 1;
                DECL_UNINLINABLE (old_result) = 1;
              else
              else
                DECL_UNINLINABLE (old_result) = DECL_UNINLINABLE (new_result);
                DECL_UNINLINABLE (old_result) = DECL_UNINLINABLE (new_result);
              DECL_EXTERNAL (old_result) = DECL_EXTERNAL (new_result);
              DECL_EXTERNAL (old_result) = DECL_EXTERNAL (new_result);
              DECL_NOT_REALLY_EXTERN (old_result)
              DECL_NOT_REALLY_EXTERN (old_result)
                = DECL_NOT_REALLY_EXTERN (new_result);
                = DECL_NOT_REALLY_EXTERN (new_result);
              DECL_INTERFACE_KNOWN (old_result)
              DECL_INTERFACE_KNOWN (old_result)
                = DECL_INTERFACE_KNOWN (new_result);
                = DECL_INTERFACE_KNOWN (new_result);
              DECL_DECLARED_INLINE_P (old_result)
              DECL_DECLARED_INLINE_P (old_result)
                = DECL_DECLARED_INLINE_P (new_result);
                = DECL_DECLARED_INLINE_P (new_result);
              DECL_DISREGARD_INLINE_LIMITS (old_result)
              DECL_DISREGARD_INLINE_LIMITS (old_result)
                |= DECL_DISREGARD_INLINE_LIMITS (new_result);
                |= DECL_DISREGARD_INLINE_LIMITS (new_result);
 
 
            }
            }
          else
          else
            {
            {
              DECL_DECLARED_INLINE_P (old_result)
              DECL_DECLARED_INLINE_P (old_result)
                |= DECL_DECLARED_INLINE_P (new_result);
                |= DECL_DECLARED_INLINE_P (new_result);
              DECL_DISREGARD_INLINE_LIMITS (old_result)
              DECL_DISREGARD_INLINE_LIMITS (old_result)
                |= DECL_DISREGARD_INLINE_LIMITS (new_result);
                |= DECL_DISREGARD_INLINE_LIMITS (new_result);
              check_redeclaration_exception_specification (newdecl, olddecl);
              check_redeclaration_exception_specification (newdecl, olddecl);
            }
            }
        }
        }
 
 
      /* If the new declaration is a definition, update the file and
      /* If the new declaration is a definition, update the file and
         line information on the declaration, and also make
         line information on the declaration, and also make
         the old declaration the same definition.  */
         the old declaration the same definition.  */
      if (DECL_INITIAL (new_result) != NULL_TREE)
      if (DECL_INITIAL (new_result) != NULL_TREE)
        {
        {
          DECL_SOURCE_LOCATION (olddecl)
          DECL_SOURCE_LOCATION (olddecl)
            = DECL_SOURCE_LOCATION (old_result)
            = DECL_SOURCE_LOCATION (old_result)
            = DECL_SOURCE_LOCATION (newdecl);
            = DECL_SOURCE_LOCATION (newdecl);
          DECL_INITIAL (old_result) = DECL_INITIAL (new_result);
          DECL_INITIAL (old_result) = DECL_INITIAL (new_result);
          if (DECL_FUNCTION_TEMPLATE_P (newdecl))
          if (DECL_FUNCTION_TEMPLATE_P (newdecl))
            {
            {
              tree parm;
              tree parm;
              DECL_ARGUMENTS (old_result)
              DECL_ARGUMENTS (old_result)
                = DECL_ARGUMENTS (new_result);
                = DECL_ARGUMENTS (new_result);
              for (parm = DECL_ARGUMENTS (old_result); parm;
              for (parm = DECL_ARGUMENTS (old_result); parm;
                   parm = TREE_CHAIN (parm))
                   parm = TREE_CHAIN (parm))
                DECL_CONTEXT (parm) = old_result;
                DECL_CONTEXT (parm) = old_result;
            }
            }
        }
        }
 
 
      return olddecl;
      return olddecl;
    }
    }
 
 
  if (types_match)
  if (types_match)
    {
    {
      /* Automatically handles default parameters.  */
      /* Automatically handles default parameters.  */
      tree oldtype = TREE_TYPE (olddecl);
      tree oldtype = TREE_TYPE (olddecl);
      tree newtype;
      tree newtype;
 
 
      /* Merge the data types specified in the two decls.  */
      /* Merge the data types specified in the two decls.  */
      newtype = merge_types (TREE_TYPE (newdecl), TREE_TYPE (olddecl));
      newtype = merge_types (TREE_TYPE (newdecl), TREE_TYPE (olddecl));
 
 
      /* If merge_types produces a non-typedef type, just use the old type.  */
      /* If merge_types produces a non-typedef type, just use the old type.  */
      if (TREE_CODE (newdecl) == TYPE_DECL
      if (TREE_CODE (newdecl) == TYPE_DECL
          && newtype == DECL_ORIGINAL_TYPE (newdecl))
          && newtype == DECL_ORIGINAL_TYPE (newdecl))
        newtype = oldtype;
        newtype = oldtype;
 
 
      if (TREE_CODE (newdecl) == VAR_DECL)
      if (TREE_CODE (newdecl) == VAR_DECL)
        {
        {
          DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl);
          DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl);
          DECL_INITIALIZED_P (newdecl) |= DECL_INITIALIZED_P (olddecl);
          DECL_INITIALIZED_P (newdecl) |= DECL_INITIALIZED_P (olddecl);
          DECL_NONTRIVIALLY_INITIALIZED_P (newdecl)
          DECL_NONTRIVIALLY_INITIALIZED_P (newdecl)
            |= DECL_NONTRIVIALLY_INITIALIZED_P (olddecl);
            |= DECL_NONTRIVIALLY_INITIALIZED_P (olddecl);
          DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (newdecl)
          DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (newdecl)
            |= DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (olddecl);
            |= DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (olddecl);
 
 
          /* Merge the threadprivate attribute from OLDDECL into NEWDECL.  */
          /* Merge the threadprivate attribute from OLDDECL into NEWDECL.  */
          if (DECL_LANG_SPECIFIC (olddecl)
          if (DECL_LANG_SPECIFIC (olddecl)
              && CP_DECL_THREADPRIVATE_P (olddecl))
              && CP_DECL_THREADPRIVATE_P (olddecl))
            {
            {
              /* Allocate a LANG_SPECIFIC structure for NEWDECL, if needed.  */
              /* Allocate a LANG_SPECIFIC structure for NEWDECL, if needed.  */
              if (!DECL_LANG_SPECIFIC (newdecl))
              if (!DECL_LANG_SPECIFIC (newdecl))
                retrofit_lang_decl (newdecl);
                retrofit_lang_decl (newdecl);
 
 
              DECL_TLS_MODEL (newdecl) = DECL_TLS_MODEL (olddecl);
              DECL_TLS_MODEL (newdecl) = DECL_TLS_MODEL (olddecl);
              CP_DECL_THREADPRIVATE_P (newdecl) = 1;
              CP_DECL_THREADPRIVATE_P (newdecl) = 1;
            }
            }
        }
        }
 
 
      /* Do this after calling `merge_types' so that default
      /* Do this after calling `merge_types' so that default
         parameters don't confuse us.  */
         parameters don't confuse us.  */
      else if (TREE_CODE (newdecl) == FUNCTION_DECL)
      else if (TREE_CODE (newdecl) == FUNCTION_DECL)
        check_redeclaration_exception_specification (newdecl, olddecl);
        check_redeclaration_exception_specification (newdecl, olddecl);
      TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype;
      TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype;
 
 
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
        check_default_args (newdecl);
        check_default_args (newdecl);
 
 
      /* Lay the type out, unless already done.  */
      /* Lay the type out, unless already done.  */
      if (! same_type_p (newtype, oldtype)
      if (! same_type_p (newtype, oldtype)
          && TREE_TYPE (newdecl) != error_mark_node
          && TREE_TYPE (newdecl) != error_mark_node
          && !(processing_template_decl && uses_template_parms (newdecl)))
          && !(processing_template_decl && uses_template_parms (newdecl)))
        layout_type (TREE_TYPE (newdecl));
        layout_type (TREE_TYPE (newdecl));
 
 
      if ((TREE_CODE (newdecl) == VAR_DECL
      if ((TREE_CODE (newdecl) == VAR_DECL
           || TREE_CODE (newdecl) == PARM_DECL
           || TREE_CODE (newdecl) == PARM_DECL
           || TREE_CODE (newdecl) == RESULT_DECL
           || TREE_CODE (newdecl) == RESULT_DECL
           || TREE_CODE (newdecl) == FIELD_DECL
           || TREE_CODE (newdecl) == FIELD_DECL
           || TREE_CODE (newdecl) == TYPE_DECL)
           || TREE_CODE (newdecl) == TYPE_DECL)
          && !(processing_template_decl && uses_template_parms (newdecl)))
          && !(processing_template_decl && uses_template_parms (newdecl)))
        layout_decl (newdecl, 0);
        layout_decl (newdecl, 0);
 
 
      /* Merge the type qualifiers.  */
      /* Merge the type qualifiers.  */
      if (TREE_READONLY (newdecl))
      if (TREE_READONLY (newdecl))
        TREE_READONLY (olddecl) = 1;
        TREE_READONLY (olddecl) = 1;
      if (TREE_THIS_VOLATILE (newdecl))
      if (TREE_THIS_VOLATILE (newdecl))
        TREE_THIS_VOLATILE (olddecl) = 1;
        TREE_THIS_VOLATILE (olddecl) = 1;
      if (TREE_NOTHROW (newdecl))
      if (TREE_NOTHROW (newdecl))
        TREE_NOTHROW (olddecl) = 1;
        TREE_NOTHROW (olddecl) = 1;
 
 
      /* Merge deprecatedness.  */
      /* Merge deprecatedness.  */
      if (TREE_DEPRECATED (newdecl))
      if (TREE_DEPRECATED (newdecl))
        TREE_DEPRECATED (olddecl) = 1;
        TREE_DEPRECATED (olddecl) = 1;
 
 
      /* Preserve function specific target and optimization options */
      /* Preserve function specific target and optimization options */
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
        {
        {
          if (DECL_FUNCTION_SPECIFIC_TARGET (olddecl)
          if (DECL_FUNCTION_SPECIFIC_TARGET (olddecl)
              && !DECL_FUNCTION_SPECIFIC_TARGET (newdecl))
              && !DECL_FUNCTION_SPECIFIC_TARGET (newdecl))
            DECL_FUNCTION_SPECIFIC_TARGET (newdecl)
            DECL_FUNCTION_SPECIFIC_TARGET (newdecl)
              = DECL_FUNCTION_SPECIFIC_TARGET (olddecl);
              = DECL_FUNCTION_SPECIFIC_TARGET (olddecl);
 
 
          if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (olddecl)
          if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (olddecl)
              && !DECL_FUNCTION_SPECIFIC_OPTIMIZATION (newdecl))
              && !DECL_FUNCTION_SPECIFIC_OPTIMIZATION (newdecl))
            DECL_FUNCTION_SPECIFIC_OPTIMIZATION (newdecl)
            DECL_FUNCTION_SPECIFIC_OPTIMIZATION (newdecl)
              = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (olddecl);
              = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (olddecl);
        }
        }
 
 
      /* Merge the initialization information.  */
      /* Merge the initialization information.  */
      if (DECL_INITIAL (newdecl) == NULL_TREE
      if (DECL_INITIAL (newdecl) == NULL_TREE
          && DECL_INITIAL (olddecl) != NULL_TREE)
          && DECL_INITIAL (olddecl) != NULL_TREE)
        {
        {
          DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
          DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
          DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
          DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
          if (TREE_CODE (newdecl) == FUNCTION_DECL)
          if (TREE_CODE (newdecl) == FUNCTION_DECL)
            {
            {
              DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
              DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
              DECL_STRUCT_FUNCTION (newdecl) = DECL_STRUCT_FUNCTION (olddecl);
              DECL_STRUCT_FUNCTION (newdecl) = DECL_STRUCT_FUNCTION (olddecl);
            }
            }
        }
        }
 
 
      /* Merge the section attribute.
      /* Merge the section attribute.
         We want to issue an error if the sections conflict but that must be
         We want to issue an error if the sections conflict but that must be
         done later in decl_attributes since we are called before attributes
         done later in decl_attributes since we are called before attributes
         are assigned.  */
         are assigned.  */
      if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
      if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
        DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
        DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
 
 
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
        {
        {
          DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
          DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
            |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
            |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
          DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
          DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
          TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
          TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
          TREE_NOTHROW (newdecl) |= TREE_NOTHROW (olddecl);
          TREE_NOTHROW (newdecl) |= TREE_NOTHROW (olddecl);
          DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl);
          DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl);
          DECL_IS_OPERATOR_NEW (newdecl) |= DECL_IS_OPERATOR_NEW (olddecl);
          DECL_IS_OPERATOR_NEW (newdecl) |= DECL_IS_OPERATOR_NEW (olddecl);
          DECL_PURE_P (newdecl) |= DECL_PURE_P (olddecl);
          DECL_PURE_P (newdecl) |= DECL_PURE_P (olddecl);
          TREE_READONLY (newdecl) |= TREE_READONLY (olddecl);
          TREE_READONLY (newdecl) |= TREE_READONLY (olddecl);
          DECL_LOOPING_CONST_OR_PURE_P (newdecl)
          DECL_LOOPING_CONST_OR_PURE_P (newdecl)
            |= DECL_LOOPING_CONST_OR_PURE_P (olddecl);
            |= DECL_LOOPING_CONST_OR_PURE_P (olddecl);
          /* Keep the old RTL.  */
          /* Keep the old RTL.  */
          COPY_DECL_RTL (olddecl, newdecl);
          COPY_DECL_RTL (olddecl, newdecl);
        }
        }
      else if (TREE_CODE (newdecl) == VAR_DECL
      else if (TREE_CODE (newdecl) == VAR_DECL
               && (DECL_SIZE (olddecl) || !DECL_SIZE (newdecl)))
               && (DECL_SIZE (olddecl) || !DECL_SIZE (newdecl)))
        {
        {
          /* Keep the old RTL.  We cannot keep the old RTL if the old
          /* Keep the old RTL.  We cannot keep the old RTL if the old
             declaration was for an incomplete object and the new
             declaration was for an incomplete object and the new
             declaration is not since many attributes of the RTL will
             declaration is not since many attributes of the RTL will
             change.  */
             change.  */
          COPY_DECL_RTL (olddecl, newdecl);
          COPY_DECL_RTL (olddecl, newdecl);
        }
        }
    }
    }
  /* If cannot merge, then use the new type and qualifiers,
  /* If cannot merge, then use the new type and qualifiers,
     and don't preserve the old rtl.  */
     and don't preserve the old rtl.  */
  else
  else
    {
    {
      /* Clean out any memory we had of the old declaration.  */
      /* Clean out any memory we had of the old declaration.  */
      tree oldstatic = value_member (olddecl, static_aggregates);
      tree oldstatic = value_member (olddecl, static_aggregates);
      if (oldstatic)
      if (oldstatic)
        TREE_VALUE (oldstatic) = error_mark_node;
        TREE_VALUE (oldstatic) = error_mark_node;
 
 
      TREE_TYPE (olddecl) = TREE_TYPE (newdecl);
      TREE_TYPE (olddecl) = TREE_TYPE (newdecl);
      TREE_READONLY (olddecl) = TREE_READONLY (newdecl);
      TREE_READONLY (olddecl) = TREE_READONLY (newdecl);
      TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl);
      TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl);
      TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl);
      TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl);
    }
    }
 
 
  /* Merge the storage class information.  */
  /* Merge the storage class information.  */
  merge_weak (newdecl, olddecl);
  merge_weak (newdecl, olddecl);
 
 
  if (DECL_ONE_ONLY (olddecl))
  if (DECL_ONE_ONLY (olddecl))
    DECL_COMDAT_GROUP (newdecl) = DECL_COMDAT_GROUP (olddecl);
    DECL_COMDAT_GROUP (newdecl) = DECL_COMDAT_GROUP (olddecl);
 
 
  DECL_DEFER_OUTPUT (newdecl) |= DECL_DEFER_OUTPUT (olddecl);
  DECL_DEFER_OUTPUT (newdecl) |= DECL_DEFER_OUTPUT (olddecl);
  TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
  TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
  TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl);
  TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl);
  if (! DECL_EXTERNAL (olddecl))
  if (! DECL_EXTERNAL (olddecl))
    DECL_EXTERNAL (newdecl) = 0;
    DECL_EXTERNAL (newdecl) = 0;
 
 
  new_template_info = NULL_TREE;
  new_template_info = NULL_TREE;
  if (DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl))
  if (DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl))
    {
    {
      bool new_redefines_gnu_inline = false;
      bool new_redefines_gnu_inline = false;
 
 
      if (new_defines_function
      if (new_defines_function
          && ((DECL_INTERFACE_KNOWN (olddecl)
          && ((DECL_INTERFACE_KNOWN (olddecl)
               && TREE_CODE (olddecl) == FUNCTION_DECL)
               && TREE_CODE (olddecl) == FUNCTION_DECL)
              || (TREE_CODE (olddecl) == TEMPLATE_DECL
              || (TREE_CODE (olddecl) == TEMPLATE_DECL
                  && (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl))
                  && (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl))
                      == FUNCTION_DECL))))
                      == FUNCTION_DECL))))
        {
        {
          tree fn = olddecl;
          tree fn = olddecl;
 
 
          if (TREE_CODE (fn) == TEMPLATE_DECL)
          if (TREE_CODE (fn) == TEMPLATE_DECL)
            fn = DECL_TEMPLATE_RESULT (olddecl);
            fn = DECL_TEMPLATE_RESULT (olddecl);
 
 
          new_redefines_gnu_inline = GNU_INLINE_P (fn) && DECL_INITIAL (fn);
          new_redefines_gnu_inline = GNU_INLINE_P (fn) && DECL_INITIAL (fn);
        }
        }
 
 
      if (!new_redefines_gnu_inline)
      if (!new_redefines_gnu_inline)
        {
        {
          DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl);
          DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl);
          DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl);
          DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl);
          DECL_COMDAT (newdecl) |= DECL_COMDAT (olddecl);
          DECL_COMDAT (newdecl) |= DECL_COMDAT (olddecl);
        }
        }
      DECL_TEMPLATE_INSTANTIATED (newdecl)
      DECL_TEMPLATE_INSTANTIATED (newdecl)
        |= DECL_TEMPLATE_INSTANTIATED (olddecl);
        |= DECL_TEMPLATE_INSTANTIATED (olddecl);
      DECL_ODR_USED (newdecl) |= DECL_ODR_USED (olddecl);
      DECL_ODR_USED (newdecl) |= DECL_ODR_USED (olddecl);
 
 
      /* If the OLDDECL is an instantiation and/or specialization,
      /* If the OLDDECL is an instantiation and/or specialization,
         then the NEWDECL must be too.  But, it may not yet be marked
         then the NEWDECL must be too.  But, it may not yet be marked
         as such if the caller has created NEWDECL, but has not yet
         as such if the caller has created NEWDECL, but has not yet
         figured out that it is a redeclaration.  */
         figured out that it is a redeclaration.  */
      if (!DECL_USE_TEMPLATE (newdecl))
      if (!DECL_USE_TEMPLATE (newdecl))
        DECL_USE_TEMPLATE (newdecl) = DECL_USE_TEMPLATE (olddecl);
        DECL_USE_TEMPLATE (newdecl) = DECL_USE_TEMPLATE (olddecl);
 
 
      /* Don't really know how much of the language-specific
      /* Don't really know how much of the language-specific
         values we should copy from old to new.  */
         values we should copy from old to new.  */
      DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl);
      DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl);
      DECL_REPO_AVAILABLE_P (newdecl) = DECL_REPO_AVAILABLE_P (olddecl);
      DECL_REPO_AVAILABLE_P (newdecl) = DECL_REPO_AVAILABLE_P (olddecl);
      DECL_INITIALIZED_IN_CLASS_P (newdecl)
      DECL_INITIALIZED_IN_CLASS_P (newdecl)
        |= DECL_INITIALIZED_IN_CLASS_P (olddecl);
        |= DECL_INITIALIZED_IN_CLASS_P (olddecl);
 
 
      if (LANG_DECL_HAS_MIN (newdecl))
      if (LANG_DECL_HAS_MIN (newdecl))
        {
        {
          DECL_LANG_SPECIFIC (newdecl)->u.min.u2 =
          DECL_LANG_SPECIFIC (newdecl)->u.min.u2 =
            DECL_LANG_SPECIFIC (olddecl)->u.min.u2;
            DECL_LANG_SPECIFIC (olddecl)->u.min.u2;
          if (DECL_TEMPLATE_INFO (newdecl))
          if (DECL_TEMPLATE_INFO (newdecl))
            new_template_info = DECL_TEMPLATE_INFO (newdecl);
            new_template_info = DECL_TEMPLATE_INFO (newdecl);
          DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl);
          DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl);
        }
        }
      /* Only functions have these fields.  */
      /* Only functions have these fields.  */
      if (TREE_CODE (newdecl) == FUNCTION_DECL
      if (TREE_CODE (newdecl) == FUNCTION_DECL
          || DECL_FUNCTION_TEMPLATE_P (newdecl))
          || DECL_FUNCTION_TEMPLATE_P (newdecl))
        {
        {
          DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl);
          DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl);
          olddecl_friend = DECL_FRIEND_P (olddecl);
          olddecl_friend = DECL_FRIEND_P (olddecl);
          hidden_friend = (DECL_ANTICIPATED (olddecl)
          hidden_friend = (DECL_ANTICIPATED (olddecl)
                           && DECL_HIDDEN_FRIEND_P (olddecl)
                           && DECL_HIDDEN_FRIEND_P (olddecl)
                           && newdecl_is_friend);
                           && newdecl_is_friend);
          DECL_BEFRIENDING_CLASSES (newdecl)
          DECL_BEFRIENDING_CLASSES (newdecl)
            = chainon (DECL_BEFRIENDING_CLASSES (newdecl),
            = chainon (DECL_BEFRIENDING_CLASSES (newdecl),
                       DECL_BEFRIENDING_CLASSES (olddecl));
                       DECL_BEFRIENDING_CLASSES (olddecl));
          /* DECL_THUNKS is only valid for virtual functions,
          /* DECL_THUNKS is only valid for virtual functions,
             otherwise it is a DECL_FRIEND_CONTEXT.  */
             otherwise it is a DECL_FRIEND_CONTEXT.  */
          if (DECL_VIRTUAL_P (newdecl))
          if (DECL_VIRTUAL_P (newdecl))
            DECL_THUNKS (newdecl) = DECL_THUNKS (olddecl);
            DECL_THUNKS (newdecl) = DECL_THUNKS (olddecl);
        }
        }
    }
    }
 
 
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      tree parm;
      tree parm;
 
 
      /* Merge parameter attributes. */
      /* Merge parameter attributes. */
      tree oldarg, newarg;
      tree oldarg, newarg;
      for (oldarg = DECL_ARGUMENTS(olddecl),
      for (oldarg = DECL_ARGUMENTS(olddecl),
               newarg = DECL_ARGUMENTS(newdecl);
               newarg = DECL_ARGUMENTS(newdecl);
           oldarg && newarg;
           oldarg && newarg;
           oldarg = TREE_CHAIN(oldarg), newarg = TREE_CHAIN(newarg)) {
           oldarg = TREE_CHAIN(oldarg), newarg = TREE_CHAIN(newarg)) {
          DECL_ATTRIBUTES (newarg)
          DECL_ATTRIBUTES (newarg)
              = (*targetm.merge_decl_attributes) (oldarg, newarg);
              = (*targetm.merge_decl_attributes) (oldarg, newarg);
          DECL_ATTRIBUTES (oldarg) = DECL_ATTRIBUTES (newarg);
          DECL_ATTRIBUTES (oldarg) = DECL_ATTRIBUTES (newarg);
      }
      }
 
 
      if (DECL_TEMPLATE_INSTANTIATION (olddecl)
      if (DECL_TEMPLATE_INSTANTIATION (olddecl)
          && !DECL_TEMPLATE_INSTANTIATION (newdecl))
          && !DECL_TEMPLATE_INSTANTIATION (newdecl))
        {
        {
          /* If newdecl is not a specialization, then it is not a
          /* If newdecl is not a specialization, then it is not a
             template-related function at all.  And that means that we
             template-related function at all.  And that means that we
             should have exited above, returning 0.  */
             should have exited above, returning 0.  */
          gcc_assert (DECL_TEMPLATE_SPECIALIZATION (newdecl));
          gcc_assert (DECL_TEMPLATE_SPECIALIZATION (newdecl));
 
 
          if (DECL_ODR_USED (olddecl))
          if (DECL_ODR_USED (olddecl))
            /* From [temp.expl.spec]:
            /* From [temp.expl.spec]:
 
 
               If a template, a member template or the member of a class
               If a template, a member template or the member of a class
               template is explicitly specialized then that
               template is explicitly specialized then that
               specialization shall be declared before the first use of
               specialization shall be declared before the first use of
               that specialization that would cause an implicit
               that specialization that would cause an implicit
               instantiation to take place, in every translation unit in
               instantiation to take place, in every translation unit in
               which such a use occurs.  */
               which such a use occurs.  */
            error ("explicit specialization of %qD after first use",
            error ("explicit specialization of %qD after first use",
                      olddecl);
                      olddecl);
 
 
          SET_DECL_TEMPLATE_SPECIALIZATION (olddecl);
          SET_DECL_TEMPLATE_SPECIALIZATION (olddecl);
 
 
          /* Don't propagate visibility from the template to the
          /* Don't propagate visibility from the template to the
             specialization here.  We'll do that in determine_visibility if
             specialization here.  We'll do that in determine_visibility if
             appropriate.  */
             appropriate.  */
          DECL_VISIBILITY_SPECIFIED (olddecl) = 0;
          DECL_VISIBILITY_SPECIFIED (olddecl) = 0;
 
 
          /* [temp.expl.spec/14] We don't inline explicit specialization
          /* [temp.expl.spec/14] We don't inline explicit specialization
             just because the primary template says so.  */
             just because the primary template says so.  */
        }
        }
      else if (new_defines_function && DECL_INITIAL (olddecl))
      else if (new_defines_function && DECL_INITIAL (olddecl))
        {
        {
          /* Never inline re-defined extern inline functions.
          /* Never inline re-defined extern inline functions.
             FIXME: this could be better handled by keeping both
             FIXME: this could be better handled by keeping both
             function as separate declarations.  */
             function as separate declarations.  */
          DECL_UNINLINABLE (newdecl) = 1;
          DECL_UNINLINABLE (newdecl) = 1;
        }
        }
      else
      else
        {
        {
          if (DECL_PENDING_INLINE_INFO (newdecl) == 0)
          if (DECL_PENDING_INLINE_INFO (newdecl) == 0)
            DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl);
            DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl);
 
 
          DECL_DECLARED_INLINE_P (newdecl) |= DECL_DECLARED_INLINE_P (olddecl);
          DECL_DECLARED_INLINE_P (newdecl) |= DECL_DECLARED_INLINE_P (olddecl);
 
 
          DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
          DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
            = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
            = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
 
 
          DECL_DISREGARD_INLINE_LIMITS (newdecl)
          DECL_DISREGARD_INLINE_LIMITS (newdecl)
            = DECL_DISREGARD_INLINE_LIMITS (olddecl)
            = DECL_DISREGARD_INLINE_LIMITS (olddecl)
            = (DECL_DISREGARD_INLINE_LIMITS (newdecl)
            = (DECL_DISREGARD_INLINE_LIMITS (newdecl)
               || DECL_DISREGARD_INLINE_LIMITS (olddecl));
               || DECL_DISREGARD_INLINE_LIMITS (olddecl));
        }
        }
 
 
      /* Preserve abstractness on cloned [cd]tors.  */
      /* Preserve abstractness on cloned [cd]tors.  */
      DECL_ABSTRACT (newdecl) = DECL_ABSTRACT (olddecl);
      DECL_ABSTRACT (newdecl) = DECL_ABSTRACT (olddecl);
 
 
      /* Update newdecl's parms to point at olddecl.  */
      /* Update newdecl's parms to point at olddecl.  */
      for (parm = DECL_ARGUMENTS (newdecl); parm;
      for (parm = DECL_ARGUMENTS (newdecl); parm;
           parm = TREE_CHAIN (parm))
           parm = TREE_CHAIN (parm))
        DECL_CONTEXT (parm) = olddecl;
        DECL_CONTEXT (parm) = olddecl;
 
 
      if (! types_match)
      if (! types_match)
        {
        {
          SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
          SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
          COPY_DECL_ASSEMBLER_NAME (newdecl, olddecl);
          COPY_DECL_ASSEMBLER_NAME (newdecl, olddecl);
          COPY_DECL_RTL (newdecl, olddecl);
          COPY_DECL_RTL (newdecl, olddecl);
        }
        }
      if (! types_match || new_defines_function)
      if (! types_match || new_defines_function)
        {
        {
          /* These need to be copied so that the names are available.
          /* These need to be copied so that the names are available.
             Note that if the types do match, we'll preserve inline
             Note that if the types do match, we'll preserve inline
             info and other bits, but if not, we won't.  */
             info and other bits, but if not, we won't.  */
          DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl);
          DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl);
          DECL_RESULT (olddecl) = DECL_RESULT (newdecl);
          DECL_RESULT (olddecl) = DECL_RESULT (newdecl);
        }
        }
      if (new_defines_function)
      if (new_defines_function)
        /* If defining a function declared with other language
        /* If defining a function declared with other language
           linkage, use the previously declared language linkage.  */
           linkage, use the previously declared language linkage.  */
        SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
        SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
      else if (types_match)
      else if (types_match)
        {
        {
          /* If redeclaring a builtin function, and not a definition,
          /* If redeclaring a builtin function, and not a definition,
             it stays built in.  */
             it stays built in.  */
          if (DECL_BUILT_IN (olddecl))
          if (DECL_BUILT_IN (olddecl))
            {
            {
              DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
              DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
              DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
              DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
              /* If we're keeping the built-in definition, keep the rtl,
              /* If we're keeping the built-in definition, keep the rtl,
                 regardless of declaration matches.  */
                 regardless of declaration matches.  */
              COPY_DECL_RTL (olddecl, newdecl);
              COPY_DECL_RTL (olddecl, newdecl);
            }
            }
 
 
          DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
          DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
          /* Don't clear out the arguments if we're just redeclaring a
          /* Don't clear out the arguments if we're just redeclaring a
             function.  */
             function.  */
          if (DECL_ARGUMENTS (olddecl))
          if (DECL_ARGUMENTS (olddecl))
            DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
            DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
        }
        }
    }
    }
  else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
  else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
    NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl);
    NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl);
 
 
  /* Now preserve various other info from the definition.  */
  /* Now preserve various other info from the definition.  */
  TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl);
  TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl);
  TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl);
  TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl);
  DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
  DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
  COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
  COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
 
 
  /* Warn about conflicting visibility specifications.  */
  /* Warn about conflicting visibility specifications.  */
  if (DECL_VISIBILITY_SPECIFIED (olddecl)
  if (DECL_VISIBILITY_SPECIFIED (olddecl)
      && DECL_VISIBILITY_SPECIFIED (newdecl)
      && DECL_VISIBILITY_SPECIFIED (newdecl)
      && DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl))
      && DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl))
    {
    {
      warning_at (input_location, OPT_Wattributes,
      warning_at (input_location, OPT_Wattributes,
                  "%q+D: visibility attribute ignored because it", newdecl);
                  "%q+D: visibility attribute ignored because it", newdecl);
      warning_at (DECL_SOURCE_LOCATION (olddecl), OPT_Wattributes,
      warning_at (DECL_SOURCE_LOCATION (olddecl), OPT_Wattributes,
                  "conflicts with previous declaration here");
                  "conflicts with previous declaration here");
    }
    }
  /* Choose the declaration which specified visibility.  */
  /* Choose the declaration which specified visibility.  */
  if (DECL_VISIBILITY_SPECIFIED (olddecl))
  if (DECL_VISIBILITY_SPECIFIED (olddecl))
    {
    {
      DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl);
      DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl);
      DECL_VISIBILITY_SPECIFIED (newdecl) = 1;
      DECL_VISIBILITY_SPECIFIED (newdecl) = 1;
    }
    }
  /* Init priority used to be merged from newdecl to olddecl by the memcpy,
  /* Init priority used to be merged from newdecl to olddecl by the memcpy,
     so keep this behavior.  */
     so keep this behavior.  */
  if (TREE_CODE (newdecl) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (newdecl))
  if (TREE_CODE (newdecl) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (newdecl))
    {
    {
      SET_DECL_INIT_PRIORITY (olddecl, DECL_INIT_PRIORITY (newdecl));
      SET_DECL_INIT_PRIORITY (olddecl, DECL_INIT_PRIORITY (newdecl));
      DECL_HAS_INIT_PRIORITY_P (olddecl) = 1;
      DECL_HAS_INIT_PRIORITY_P (olddecl) = 1;
    }
    }
 
  /* Likewise for DECL_USER_ALIGN and DECL_PACKED.  */
 
  DECL_USER_ALIGN (olddecl) = DECL_USER_ALIGN (newdecl);
 
  if (TREE_CODE (newdecl) == FIELD_DECL)
 
    DECL_PACKED (olddecl) = DECL_PACKED (newdecl);
 
 
  /* The DECL_LANG_SPECIFIC information in OLDDECL will be replaced
  /* The DECL_LANG_SPECIFIC information in OLDDECL will be replaced
     with that from NEWDECL below.  */
     with that from NEWDECL below.  */
  if (DECL_LANG_SPECIFIC (olddecl))
  if (DECL_LANG_SPECIFIC (olddecl))
    {
    {
      gcc_assert (DECL_LANG_SPECIFIC (olddecl)
      gcc_assert (DECL_LANG_SPECIFIC (olddecl)
                  != DECL_LANG_SPECIFIC (newdecl));
                  != DECL_LANG_SPECIFIC (newdecl));
      ggc_free (DECL_LANG_SPECIFIC (olddecl));
      ggc_free (DECL_LANG_SPECIFIC (olddecl));
    }
    }
 
 
  /* Merge the USED information.  */
  /* Merge the USED information.  */
  if (TREE_USED (olddecl))
  if (TREE_USED (olddecl))
    TREE_USED (newdecl) = 1;
    TREE_USED (newdecl) = 1;
  else if (TREE_USED (newdecl))
  else if (TREE_USED (newdecl))
    TREE_USED (olddecl) = 1;
    TREE_USED (olddecl) = 1;
  if (DECL_PRESERVE_P (olddecl))
  if (DECL_PRESERVE_P (olddecl))
    DECL_PRESERVE_P (newdecl) = 1;
    DECL_PRESERVE_P (newdecl) = 1;
  else if (DECL_PRESERVE_P (newdecl))
  else if (DECL_PRESERVE_P (newdecl))
    DECL_PRESERVE_P (olddecl) = 1;
    DECL_PRESERVE_P (olddecl) = 1;
 
 
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      int function_size;
      int function_size;
 
 
      function_size = sizeof (struct tree_decl_common);
      function_size = sizeof (struct tree_decl_common);
 
 
      memcpy ((char *) olddecl + sizeof (struct tree_common),
      memcpy ((char *) olddecl + sizeof (struct tree_common),
              (char *) newdecl + sizeof (struct tree_common),
              (char *) newdecl + sizeof (struct tree_common),
              function_size - sizeof (struct tree_common));
              function_size - sizeof (struct tree_common));
 
 
      memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
      memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
              (char *) newdecl + sizeof (struct tree_decl_common),
              (char *) newdecl + sizeof (struct tree_decl_common),
              sizeof (struct tree_function_decl) - sizeof (struct tree_decl_common));
              sizeof (struct tree_function_decl) - sizeof (struct tree_decl_common));
      if (new_template_info)
      if (new_template_info)
        /* If newdecl is a template instantiation, it is possible that
        /* If newdecl is a template instantiation, it is possible that
           the following sequence of events has occurred:
           the following sequence of events has occurred:
 
 
           o A friend function was declared in a class template.  The
           o A friend function was declared in a class template.  The
           class template was instantiated.
           class template was instantiated.
 
 
           o The instantiation of the friend declaration was
           o The instantiation of the friend declaration was
           recorded on the instantiation list, and is newdecl.
           recorded on the instantiation list, and is newdecl.
 
 
           o Later, however, instantiate_class_template called pushdecl
           o Later, however, instantiate_class_template called pushdecl
           on the newdecl to perform name injection.  But, pushdecl in
           on the newdecl to perform name injection.  But, pushdecl in
           turn called duplicate_decls when it discovered that another
           turn called duplicate_decls when it discovered that another
           declaration of a global function with the same name already
           declaration of a global function with the same name already
           existed.
           existed.
 
 
           o Here, in duplicate_decls, we decided to clobber newdecl.
           o Here, in duplicate_decls, we decided to clobber newdecl.
 
 
           If we're going to do that, we'd better make sure that
           If we're going to do that, we'd better make sure that
           olddecl, and not newdecl, is on the list of
           olddecl, and not newdecl, is on the list of
           instantiations so that if we try to do the instantiation
           instantiations so that if we try to do the instantiation
           again we won't get the clobbered declaration.  */
           again we won't get the clobbered declaration.  */
        reregister_specialization (newdecl,
        reregister_specialization (newdecl,
                                   new_template_info,
                                   new_template_info,
                                   olddecl);
                                   olddecl);
    }
    }
  else
  else
    {
    {
      size_t size = tree_code_size (TREE_CODE (olddecl));
      size_t size = tree_code_size (TREE_CODE (olddecl));
      memcpy ((char *) olddecl + sizeof (struct tree_common),
      memcpy ((char *) olddecl + sizeof (struct tree_common),
              (char *) newdecl + sizeof (struct tree_common),
              (char *) newdecl + sizeof (struct tree_common),
              sizeof (struct tree_decl_common) - sizeof (struct tree_common));
              sizeof (struct tree_decl_common) - sizeof (struct tree_common));
      switch (TREE_CODE (olddecl))
      switch (TREE_CODE (olddecl))
        {
        {
        case LABEL_DECL:
        case LABEL_DECL:
        case VAR_DECL:
        case VAR_DECL:
        case RESULT_DECL:
        case RESULT_DECL:
        case PARM_DECL:
        case PARM_DECL:
        case FIELD_DECL:
        case FIELD_DECL:
        case TYPE_DECL:
        case TYPE_DECL:
        case CONST_DECL:
        case CONST_DECL:
          {
          {
            memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
            memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
                    (char *) newdecl + sizeof (struct tree_decl_common),
                    (char *) newdecl + sizeof (struct tree_decl_common),
                    size - sizeof (struct tree_decl_common)
                    size - sizeof (struct tree_decl_common)
                    + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *));
                    + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *));
          }
          }
          break;
          break;
        default:
        default:
          memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
          memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
                  (char *) newdecl + sizeof (struct tree_decl_common),
                  (char *) newdecl + sizeof (struct tree_decl_common),
                  sizeof (struct tree_decl_non_common) - sizeof (struct tree_decl_common)
                  sizeof (struct tree_decl_non_common) - sizeof (struct tree_decl_common)
                  + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *));
                  + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *));
          break;
          break;
        }
        }
    }
    }
  DECL_UID (olddecl) = olddecl_uid;
  DECL_UID (olddecl) = olddecl_uid;
  if (olddecl_friend)
  if (olddecl_friend)
    DECL_FRIEND_P (olddecl) = 1;
    DECL_FRIEND_P (olddecl) = 1;
  if (hidden_friend)
  if (hidden_friend)
    {
    {
      DECL_ANTICIPATED (olddecl) = 1;
      DECL_ANTICIPATED (olddecl) = 1;
      DECL_HIDDEN_FRIEND_P (olddecl) = 1;
      DECL_HIDDEN_FRIEND_P (olddecl) = 1;
    }
    }
 
 
  /* NEWDECL contains the merged attribute lists.
  /* NEWDECL contains the merged attribute lists.
     Update OLDDECL to be the same.  */
     Update OLDDECL to be the same.  */
  DECL_ATTRIBUTES (olddecl) = DECL_ATTRIBUTES (newdecl);
  DECL_ATTRIBUTES (olddecl) = DECL_ATTRIBUTES (newdecl);
 
 
  /* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl
  /* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl
    so that encode_section_info has a chance to look at the new decl
    so that encode_section_info has a chance to look at the new decl
    flags and attributes.  */
    flags and attributes.  */
  if (DECL_RTL_SET_P (olddecl)
  if (DECL_RTL_SET_P (olddecl)
      && (TREE_CODE (olddecl) == FUNCTION_DECL
      && (TREE_CODE (olddecl) == FUNCTION_DECL
          || (TREE_CODE (olddecl) == VAR_DECL
          || (TREE_CODE (olddecl) == VAR_DECL
              && TREE_STATIC (olddecl))))
              && TREE_STATIC (olddecl))))
    make_decl_rtl (olddecl);
    make_decl_rtl (olddecl);
 
 
  /* The NEWDECL will no longer be needed.  Because every out-of-class
  /* The NEWDECL will no longer be needed.  Because every out-of-class
     declaration of a member results in a call to duplicate_decls,
     declaration of a member results in a call to duplicate_decls,
     freeing these nodes represents in a significant savings.  */
     freeing these nodes represents in a significant savings.  */
  ggc_free (newdecl);
  ggc_free (newdecl);
 
 
  return olddecl;
  return olddecl;
}
}


/* Return zero if the declaration NEWDECL is valid
/* Return zero if the declaration NEWDECL is valid
   when the declaration OLDDECL (assumed to be for the same name)
   when the declaration OLDDECL (assumed to be for the same name)
   has already been seen.
   has already been seen.
   Otherwise return an error message format string with a %s
   Otherwise return an error message format string with a %s
   where the identifier should go.  */
   where the identifier should go.  */
 
 
static const char *
static const char *
redeclaration_error_message (tree newdecl, tree olddecl)
redeclaration_error_message (tree newdecl, tree olddecl)
{
{
  if (TREE_CODE (newdecl) == TYPE_DECL)
  if (TREE_CODE (newdecl) == TYPE_DECL)
    {
    {
      /* Because C++ can put things into name space for free,
      /* Because C++ can put things into name space for free,
         constructs like "typedef struct foo { ... } foo"
         constructs like "typedef struct foo { ... } foo"
         would look like an erroneous redeclaration.  */
         would look like an erroneous redeclaration.  */
      if (same_type_p (TREE_TYPE (newdecl), TREE_TYPE (olddecl)))
      if (same_type_p (TREE_TYPE (newdecl), TREE_TYPE (olddecl)))
        return NULL;
        return NULL;
      else
      else
        return G_("redefinition of %q#D");
        return G_("redefinition of %q#D");
    }
    }
  else if (TREE_CODE (newdecl) == FUNCTION_DECL)
  else if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      /* If this is a pure function, its olddecl will actually be
      /* If this is a pure function, its olddecl will actually be
         the original initialization to `0' (which we force to call
         the original initialization to `0' (which we force to call
         abort()).  Don't complain about redefinition in this case.  */
         abort()).  Don't complain about redefinition in this case.  */
      if (DECL_LANG_SPECIFIC (olddecl) && DECL_PURE_VIRTUAL_P (olddecl)
      if (DECL_LANG_SPECIFIC (olddecl) && DECL_PURE_VIRTUAL_P (olddecl)
          && DECL_INITIAL (olddecl) == NULL_TREE)
          && DECL_INITIAL (olddecl) == NULL_TREE)
        return NULL;
        return NULL;
 
 
      /* If both functions come from different namespaces, this is not
      /* If both functions come from different namespaces, this is not
         a redeclaration - this is a conflict with a used function.  */
         a redeclaration - this is a conflict with a used function.  */
      if (DECL_NAMESPACE_SCOPE_P (olddecl)
      if (DECL_NAMESPACE_SCOPE_P (olddecl)
          && DECL_CONTEXT (olddecl) != DECL_CONTEXT (newdecl)
          && DECL_CONTEXT (olddecl) != DECL_CONTEXT (newdecl)
          && ! decls_match (olddecl, newdecl))
          && ! decls_match (olddecl, newdecl))
        return G_("%qD conflicts with used function");
        return G_("%qD conflicts with used function");
 
 
      /* We'll complain about linkage mismatches in
      /* We'll complain about linkage mismatches in
         warn_extern_redeclared_static.  */
         warn_extern_redeclared_static.  */
 
 
      /* Defining the same name twice is no good.  */
      /* Defining the same name twice is no good.  */
      if (DECL_INITIAL (olddecl) != NULL_TREE
      if (DECL_INITIAL (olddecl) != NULL_TREE
          && DECL_INITIAL (newdecl) != NULL_TREE)
          && DECL_INITIAL (newdecl) != NULL_TREE)
        {
        {
          if (DECL_NAME (olddecl) == NULL_TREE)
          if (DECL_NAME (olddecl) == NULL_TREE)
            return G_("%q#D not declared in class");
            return G_("%q#D not declared in class");
          else if (!GNU_INLINE_P (olddecl)
          else if (!GNU_INLINE_P (olddecl)
                   || GNU_INLINE_P (newdecl))
                   || GNU_INLINE_P (newdecl))
            return G_("redefinition of %q#D");
            return G_("redefinition of %q#D");
        }
        }
 
 
      if (DECL_DECLARED_INLINE_P (olddecl) && DECL_DECLARED_INLINE_P (newdecl))
      if (DECL_DECLARED_INLINE_P (olddecl) && DECL_DECLARED_INLINE_P (newdecl))
        {
        {
          bool olda = GNU_INLINE_P (olddecl);
          bool olda = GNU_INLINE_P (olddecl);
          bool newa = GNU_INLINE_P (newdecl);
          bool newa = GNU_INLINE_P (newdecl);
 
 
          if (olda != newa)
          if (olda != newa)
            {
            {
              if (newa)
              if (newa)
                return G_("%q+D redeclared inline with "
                return G_("%q+D redeclared inline with "
                          "%<gnu_inline%> attribute");
                          "%<gnu_inline%> attribute");
              else
              else
                return G_("%q+D redeclared inline without "
                return G_("%q+D redeclared inline without "
                          "%<gnu_inline%> attribute");
                          "%<gnu_inline%> attribute");
            }
            }
        }
        }
 
 
      return NULL;
      return NULL;
    }
    }
  else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
  else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
    {
    {
      tree nt, ot;
      tree nt, ot;
 
 
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
        {
        {
          if (COMPLETE_TYPE_P (TREE_TYPE (newdecl))
          if (COMPLETE_TYPE_P (TREE_TYPE (newdecl))
              && COMPLETE_TYPE_P (TREE_TYPE (olddecl)))
              && COMPLETE_TYPE_P (TREE_TYPE (olddecl)))
            return G_("redefinition of %q#D");
            return G_("redefinition of %q#D");
          return NULL;
          return NULL;
        }
        }
 
 
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != FUNCTION_DECL
      if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != FUNCTION_DECL
          || (DECL_TEMPLATE_RESULT (newdecl)
          || (DECL_TEMPLATE_RESULT (newdecl)
              == DECL_TEMPLATE_RESULT (olddecl)))
              == DECL_TEMPLATE_RESULT (olddecl)))
        return NULL;
        return NULL;
 
 
      nt = DECL_TEMPLATE_RESULT (newdecl);
      nt = DECL_TEMPLATE_RESULT (newdecl);
      if (DECL_TEMPLATE_INFO (nt))
      if (DECL_TEMPLATE_INFO (nt))
        nt = DECL_TEMPLATE_RESULT (template_for_substitution (nt));
        nt = DECL_TEMPLATE_RESULT (template_for_substitution (nt));
      ot = DECL_TEMPLATE_RESULT (olddecl);
      ot = DECL_TEMPLATE_RESULT (olddecl);
      if (DECL_TEMPLATE_INFO (ot))
      if (DECL_TEMPLATE_INFO (ot))
        ot = DECL_TEMPLATE_RESULT (template_for_substitution (ot));
        ot = DECL_TEMPLATE_RESULT (template_for_substitution (ot));
      if (DECL_INITIAL (nt) && DECL_INITIAL (ot)
      if (DECL_INITIAL (nt) && DECL_INITIAL (ot)
          && (!GNU_INLINE_P (ot) || GNU_INLINE_P (nt)))
          && (!GNU_INLINE_P (ot) || GNU_INLINE_P (nt)))
        return G_("redefinition of %q#D");
        return G_("redefinition of %q#D");
 
 
      if (DECL_DECLARED_INLINE_P (ot) && DECL_DECLARED_INLINE_P (nt))
      if (DECL_DECLARED_INLINE_P (ot) && DECL_DECLARED_INLINE_P (nt))
        {
        {
          bool olda = GNU_INLINE_P (ot);
          bool olda = GNU_INLINE_P (ot);
          bool newa = GNU_INLINE_P (nt);
          bool newa = GNU_INLINE_P (nt);
 
 
          if (olda != newa)
          if (olda != newa)
            {
            {
              if (newa)
              if (newa)
                return G_("%q+D redeclared inline with "
                return G_("%q+D redeclared inline with "
                          "%<gnu_inline%> attribute");
                          "%<gnu_inline%> attribute");
              else
              else
                return G_("%q+D redeclared inline without "
                return G_("%q+D redeclared inline without "
                          "%<gnu_inline%> attribute");
                          "%<gnu_inline%> attribute");
            }
            }
        }
        }
 
 
      /* Core issue #226 (C++0x):
      /* Core issue #226 (C++0x):
 
 
           If a friend function template declaration specifies a
           If a friend function template declaration specifies a
           default template-argument, that declaration shall be a
           default template-argument, that declaration shall be a
           definition and shall be the only declaration of the
           definition and shall be the only declaration of the
           function template in the translation unit.  */
           function template in the translation unit.  */
      if ((cxx_dialect != cxx98)
      if ((cxx_dialect != cxx98)
          && TREE_CODE (ot) == FUNCTION_DECL && DECL_FRIEND_P (ot)
          && TREE_CODE (ot) == FUNCTION_DECL && DECL_FRIEND_P (ot)
          && !check_default_tmpl_args (nt, DECL_TEMPLATE_PARMS (newdecl),
          && !check_default_tmpl_args (nt, DECL_TEMPLATE_PARMS (newdecl),
                                       /*is_primary=*/1, /*is_partial=*/0,
                                       /*is_primary=*/1, /*is_partial=*/0,
                                       /*is_friend_decl=*/2))
                                       /*is_friend_decl=*/2))
        return G_("redeclaration of friend %q#D "
        return G_("redeclaration of friend %q#D "
                  "may not have default template arguments");
                  "may not have default template arguments");
 
 
      return NULL;
      return NULL;
    }
    }
  else if (TREE_CODE (newdecl) == VAR_DECL
  else if (TREE_CODE (newdecl) == VAR_DECL
           && DECL_THREAD_LOCAL_P (newdecl) != DECL_THREAD_LOCAL_P (olddecl)
           && DECL_THREAD_LOCAL_P (newdecl) != DECL_THREAD_LOCAL_P (olddecl)
           && (! DECL_LANG_SPECIFIC (olddecl)
           && (! DECL_LANG_SPECIFIC (olddecl)
               || ! CP_DECL_THREADPRIVATE_P (olddecl)
               || ! CP_DECL_THREADPRIVATE_P (olddecl)
               || DECL_THREAD_LOCAL_P (newdecl)))
               || DECL_THREAD_LOCAL_P (newdecl)))
    {
    {
      /* Only variables can be thread-local, and all declarations must
      /* Only variables can be thread-local, and all declarations must
         agree on this property.  */
         agree on this property.  */
      if (DECL_THREAD_LOCAL_P (newdecl))
      if (DECL_THREAD_LOCAL_P (newdecl))
        return G_("thread-local declaration of %q#D follows "
        return G_("thread-local declaration of %q#D follows "
                  "non-thread-local declaration");
                  "non-thread-local declaration");
      else
      else
        return G_("non-thread-local declaration of %q#D follows "
        return G_("non-thread-local declaration of %q#D follows "
                  "thread-local declaration");
                  "thread-local declaration");
    }
    }
  else if (toplevel_bindings_p () || DECL_NAMESPACE_SCOPE_P (newdecl))
  else if (toplevel_bindings_p () || DECL_NAMESPACE_SCOPE_P (newdecl))
    {
    {
      /* The objects have been declared at namespace scope.  If either
      /* The objects have been declared at namespace scope.  If either
         is a member of an anonymous union, then this is an invalid
         is a member of an anonymous union, then this is an invalid
         redeclaration.  For example:
         redeclaration.  For example:
 
 
           int i;
           int i;
           union { int i; };
           union { int i; };
 
 
           is invalid.  */
           is invalid.  */
      if ((TREE_CODE (newdecl) == VAR_DECL && DECL_ANON_UNION_VAR_P (newdecl))
      if ((TREE_CODE (newdecl) == VAR_DECL && DECL_ANON_UNION_VAR_P (newdecl))
          || (TREE_CODE (olddecl) == VAR_DECL && DECL_ANON_UNION_VAR_P (olddecl)))
          || (TREE_CODE (olddecl) == VAR_DECL && DECL_ANON_UNION_VAR_P (olddecl)))
        return G_("redeclaration of %q#D");
        return G_("redeclaration of %q#D");
      /* If at least one declaration is a reference, there is no
      /* If at least one declaration is a reference, there is no
         conflict.  For example:
         conflict.  For example:
 
 
           int i = 3;
           int i = 3;
           extern int i;
           extern int i;
 
 
         is valid.  */
         is valid.  */
      if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl))
      if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl))
        return NULL;
        return NULL;
      /* Reject two definitions.  */
      /* Reject two definitions.  */
      return G_("redefinition of %q#D");
      return G_("redefinition of %q#D");
    }
    }
  else
  else
    {
    {
      /* Objects declared with block scope:  */
      /* Objects declared with block scope:  */
      /* Reject two definitions, and reject a definition
      /* Reject two definitions, and reject a definition
         together with an external reference.  */
         together with an external reference.  */
      if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl)))
      if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl)))
        return G_("redeclaration of %q#D");
        return G_("redeclaration of %q#D");
      return NULL;
      return NULL;
    }
    }
}
}


/* Hash and equality functions for the named_label table.  */
/* Hash and equality functions for the named_label table.  */
 
 
static hashval_t
static hashval_t
named_label_entry_hash (const void *data)
named_label_entry_hash (const void *data)
{
{
  const struct named_label_entry *ent = (const struct named_label_entry *) data;
  const struct named_label_entry *ent = (const struct named_label_entry *) data;
  return DECL_UID (ent->label_decl);
  return DECL_UID (ent->label_decl);
}
}
 
 
static int
static int
named_label_entry_eq (const void *a, const void *b)
named_label_entry_eq (const void *a, const void *b)
{
{
  const struct named_label_entry *ent_a = (const struct named_label_entry *) a;
  const struct named_label_entry *ent_a = (const struct named_label_entry *) a;
  const struct named_label_entry *ent_b = (const struct named_label_entry *) b;
  const struct named_label_entry *ent_b = (const struct named_label_entry *) b;
  return ent_a->label_decl == ent_b->label_decl;
  return ent_a->label_decl == ent_b->label_decl;
}
}
 
 
/* Create a new label, named ID.  */
/* Create a new label, named ID.  */
 
 
static tree
static tree
make_label_decl (tree id, int local_p)
make_label_decl (tree id, int local_p)
{
{
  struct named_label_entry *ent;
  struct named_label_entry *ent;
  void **slot;
  void **slot;
  tree decl;
  tree decl;
 
 
  decl = build_decl (input_location, LABEL_DECL, id, void_type_node);
  decl = build_decl (input_location, LABEL_DECL, id, void_type_node);
 
 
  DECL_CONTEXT (decl) = current_function_decl;
  DECL_CONTEXT (decl) = current_function_decl;
  DECL_MODE (decl) = VOIDmode;
  DECL_MODE (decl) = VOIDmode;
  C_DECLARED_LABEL_FLAG (decl) = local_p;
  C_DECLARED_LABEL_FLAG (decl) = local_p;
 
 
  /* Say where one reference is to the label, for the sake of the
  /* Say where one reference is to the label, for the sake of the
     error if it is not defined.  */
     error if it is not defined.  */
  DECL_SOURCE_LOCATION (decl) = input_location;
  DECL_SOURCE_LOCATION (decl) = input_location;
 
 
  /* Record the fact that this identifier is bound to this label.  */
  /* Record the fact that this identifier is bound to this label.  */
  SET_IDENTIFIER_LABEL_VALUE (id, decl);
  SET_IDENTIFIER_LABEL_VALUE (id, decl);
 
 
  /* Create the label htab for the function on demand.  */
  /* Create the label htab for the function on demand.  */
  if (!named_labels)
  if (!named_labels)
    named_labels = htab_create_ggc (13, named_label_entry_hash,
    named_labels = htab_create_ggc (13, named_label_entry_hash,
                                    named_label_entry_eq, NULL);
                                    named_label_entry_eq, NULL);
 
 
  /* Record this label on the list of labels used in this function.
  /* Record this label on the list of labels used in this function.
     We do this before calling make_label_decl so that we get the
     We do this before calling make_label_decl so that we get the
     IDENTIFIER_LABEL_VALUE before the new label is declared.  */
     IDENTIFIER_LABEL_VALUE before the new label is declared.  */
  ent = GGC_CNEW (struct named_label_entry);
  ent = GGC_CNEW (struct named_label_entry);
  ent->label_decl = decl;
  ent->label_decl = decl;
 
 
  slot = htab_find_slot (named_labels, ent, INSERT);
  slot = htab_find_slot (named_labels, ent, INSERT);
  gcc_assert (*slot == NULL);
  gcc_assert (*slot == NULL);
  *slot = ent;
  *slot = ent;
 
 
  return decl;
  return decl;
}
}
 
 
/* Look for a label named ID in the current function.  If one cannot
/* Look for a label named ID in the current function.  If one cannot
   be found, create one.  (We keep track of used, but undefined,
   be found, create one.  (We keep track of used, but undefined,
   labels, and complain about them at the end of a function.)  */
   labels, and complain about them at the end of a function.)  */
 
 
tree
tree
lookup_label (tree id)
lookup_label (tree id)
{
{
  tree decl;
  tree decl;
 
 
  timevar_push (TV_NAME_LOOKUP);
  timevar_push (TV_NAME_LOOKUP);
  /* You can't use labels at global scope.  */
  /* You can't use labels at global scope.  */
  if (current_function_decl == NULL_TREE)
  if (current_function_decl == NULL_TREE)
    {
    {
      error ("label %qE referenced outside of any function", id);
      error ("label %qE referenced outside of any function", id);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
    }
    }
 
 
  /* See if we've already got this label.  */
  /* See if we've already got this label.  */
  decl = IDENTIFIER_LABEL_VALUE (id);
  decl = IDENTIFIER_LABEL_VALUE (id);
  if (decl != NULL_TREE && DECL_CONTEXT (decl) == current_function_decl)
  if (decl != NULL_TREE && DECL_CONTEXT (decl) == current_function_decl)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
 
 
  decl = make_label_decl (id, /*local_p=*/0);
  decl = make_label_decl (id, /*local_p=*/0);
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
}
}
 
 
/* Declare a local label named ID.  */
/* Declare a local label named ID.  */
 
 
tree
tree
declare_local_label (tree id)
declare_local_label (tree id)
{
{
  tree decl, shadow;
  tree decl, shadow;
 
 
  /* Add a new entry to the SHADOWED_LABELS list so that when we leave
  /* Add a new entry to the SHADOWED_LABELS list so that when we leave
     this scope we can restore the old value of IDENTIFIER_TYPE_VALUE.  */
     this scope we can restore the old value of IDENTIFIER_TYPE_VALUE.  */
  shadow = tree_cons (IDENTIFIER_LABEL_VALUE (id), NULL_TREE,
  shadow = tree_cons (IDENTIFIER_LABEL_VALUE (id), NULL_TREE,
                      current_binding_level->shadowed_labels);
                      current_binding_level->shadowed_labels);
  current_binding_level->shadowed_labels = shadow;
  current_binding_level->shadowed_labels = shadow;
 
 
  decl = make_label_decl (id, /*local_p=*/1);
  decl = make_label_decl (id, /*local_p=*/1);
  TREE_VALUE (shadow) = decl;
  TREE_VALUE (shadow) = decl;
 
 
  return decl;
  return decl;
}
}
 
 
/* Returns nonzero if it is ill-formed to jump past the declaration of
/* Returns nonzero if it is ill-formed to jump past the declaration of
   DECL.  Returns 2 if it's also a real problem.  */
   DECL.  Returns 2 if it's also a real problem.  */
 
 
static int
static int
decl_jump_unsafe (tree decl)
decl_jump_unsafe (tree decl)
{
{
  /* [stmt.dcl]/3: A program that jumps from a point where a local variable
  /* [stmt.dcl]/3: A program that jumps from a point where a local variable
     with automatic storage duration is not in scope to a point where it is
     with automatic storage duration is not in scope to a point where it is
     in scope is ill-formed unless the variable has scalar type, class type
     in scope is ill-formed unless the variable has scalar type, class type
     with a trivial default constructor and a trivial destructor, a
     with a trivial default constructor and a trivial destructor, a
     cv-qualified version of one of these types, or an array of one of the
     cv-qualified version of one of these types, or an array of one of the
     preceding types and is declared without an initializer (8.5).  */
     preceding types and is declared without an initializer (8.5).  */
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
 
 
  if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl)
  if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl)
      || type == error_mark_node)
      || type == error_mark_node)
    return 0;
    return 0;
 
 
  type = strip_array_types (type);
  type = strip_array_types (type);
 
 
  if (type_has_nontrivial_default_init (TREE_TYPE (decl))
  if (type_has_nontrivial_default_init (TREE_TYPE (decl))
      || DECL_NONTRIVIALLY_INITIALIZED_P (decl))
      || DECL_NONTRIVIALLY_INITIALIZED_P (decl))
    return 2;
    return 2;
 
 
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* A subroutine of check_previous_goto_1 to identify a branch to the user.  */
/* A subroutine of check_previous_goto_1 to identify a branch to the user.  */
 
 
static void
static void
identify_goto (tree decl, const location_t *locus)
identify_goto (tree decl, const location_t *locus)
{
{
  if (decl)
  if (decl)
    permerror (input_location, "jump to label %qD", decl);
    permerror (input_location, "jump to label %qD", decl);
  else
  else
    permerror (input_location, "jump to case label");
    permerror (input_location, "jump to case label");
  if (locus)
  if (locus)
    permerror (*locus, "  from here");
    permerror (*locus, "  from here");
}
}
 
 
/* Check that a single previously seen jump to a newly defined label
/* Check that a single previously seen jump to a newly defined label
   is OK.  DECL is the LABEL_DECL or 0; LEVEL is the binding_level for
   is OK.  DECL is the LABEL_DECL or 0; LEVEL is the binding_level for
   the jump context; NAMES are the names in scope in LEVEL at the jump
   the jump context; NAMES are the names in scope in LEVEL at the jump
   context; LOCUS is the source position of the jump or 0.  Returns
   context; LOCUS is the source position of the jump or 0.  Returns
   true if all is well.  */
   true if all is well.  */
 
 
static bool
static bool
check_previous_goto_1 (tree decl, struct cp_binding_level* level, tree names,
check_previous_goto_1 (tree decl, struct cp_binding_level* level, tree names,
                       bool exited_omp, const location_t *locus)
                       bool exited_omp, const location_t *locus)
{
{
  struct cp_binding_level *b;
  struct cp_binding_level *b;
  bool identified = false, saw_eh = false, saw_omp = false;
  bool identified = false, saw_eh = false, saw_omp = false;
 
 
  if (exited_omp)
  if (exited_omp)
    {
    {
      identify_goto (decl, locus);
      identify_goto (decl, locus);
      error ("  exits OpenMP structured block");
      error ("  exits OpenMP structured block");
      identified = saw_omp = true;
      identified = saw_omp = true;
    }
    }
 
 
  for (b = current_binding_level; b ; b = b->level_chain)
  for (b = current_binding_level; b ; b = b->level_chain)
    {
    {
      tree new_decls, old_decls = (b == level ? names : NULL_TREE);
      tree new_decls, old_decls = (b == level ? names : NULL_TREE);
 
 
      for (new_decls = b->names; new_decls != old_decls;
      for (new_decls = b->names; new_decls != old_decls;
           new_decls = TREE_CHAIN (new_decls))
           new_decls = TREE_CHAIN (new_decls))
        {
        {
          int problem = decl_jump_unsafe (new_decls);
          int problem = decl_jump_unsafe (new_decls);
          if (! problem)
          if (! problem)
            continue;
            continue;
 
 
          if (!identified)
          if (!identified)
            {
            {
              identify_goto (decl, locus);
              identify_goto (decl, locus);
              identified = true;
              identified = true;
            }
            }
          if (problem > 1)
          if (problem > 1)
            error ("  crosses initialization of %q+#D", new_decls);
            error ("  crosses initialization of %q+#D", new_decls);
          else
          else
            permerror (input_location, "  enters scope of %q+#D which has "
            permerror (input_location, "  enters scope of %q+#D which has "
                       "non-trivial destructor", new_decls);
                       "non-trivial destructor", new_decls);
        }
        }
 
 
      if (b == level)
      if (b == level)
        break;
        break;
      if ((b->kind == sk_try || b->kind == sk_catch) && !saw_eh)
      if ((b->kind == sk_try || b->kind == sk_catch) && !saw_eh)
        {
        {
          if (!identified)
          if (!identified)
            {
            {
              identify_goto (decl, locus);
              identify_goto (decl, locus);
              identified = true;
              identified = true;
            }
            }
          if (b->kind == sk_try)
          if (b->kind == sk_try)
            error ("  enters try block");
            error ("  enters try block");
          else
          else
            error ("  enters catch block");
            error ("  enters catch block");
          saw_eh = true;
          saw_eh = true;
        }
        }
      if (b->kind == sk_omp && !saw_omp)
      if (b->kind == sk_omp && !saw_omp)
        {
        {
          if (!identified)
          if (!identified)
            {
            {
              identify_goto (decl, locus);
              identify_goto (decl, locus);
              identified = true;
              identified = true;
            }
            }
          error ("  enters OpenMP structured block");
          error ("  enters OpenMP structured block");
          saw_omp = true;
          saw_omp = true;
        }
        }
    }
    }
 
 
  return !identified;
  return !identified;
}
}
 
 
static void
static void
check_previous_goto (tree decl, struct named_label_use_entry *use)
check_previous_goto (tree decl, struct named_label_use_entry *use)
{
{
  check_previous_goto_1 (decl, use->binding_level,
  check_previous_goto_1 (decl, use->binding_level,
                         use->names_in_scope, use->in_omp_scope,
                         use->names_in_scope, use->in_omp_scope,
                         &use->o_goto_locus);
                         &use->o_goto_locus);
}
}
 
 
static bool
static bool
check_switch_goto (struct cp_binding_level* level)
check_switch_goto (struct cp_binding_level* level)
{
{
  return check_previous_goto_1 (NULL_TREE, level, level->names, false, NULL);
  return check_previous_goto_1 (NULL_TREE, level, level->names, false, NULL);
}
}
 
 
/* Check that a new jump to a label DECL is OK.  Called by
/* Check that a new jump to a label DECL is OK.  Called by
   finish_goto_stmt.  */
   finish_goto_stmt.  */
 
 
void
void
check_goto (tree decl)
check_goto (tree decl)
{
{
  struct named_label_entry *ent, dummy;
  struct named_label_entry *ent, dummy;
  bool saw_catch = false, identified = false;
  bool saw_catch = false, identified = false;
  tree bad;
  tree bad;
 
 
  /* We can't know where a computed goto is jumping.
  /* We can't know where a computed goto is jumping.
     So we assume that it's OK.  */
     So we assume that it's OK.  */
  if (TREE_CODE (decl) != LABEL_DECL)
  if (TREE_CODE (decl) != LABEL_DECL)
    return;
    return;
 
 
  /* We didn't record any information about this label when we created it,
  /* We didn't record any information about this label when we created it,
     and there's not much point since it's trivial to analyze as a return.  */
     and there's not much point since it's trivial to analyze as a return.  */
  if (decl == cdtor_label)
  if (decl == cdtor_label)
    return;
    return;
 
 
  dummy.label_decl = decl;
  dummy.label_decl = decl;
  ent = (struct named_label_entry *) htab_find (named_labels, &dummy);
  ent = (struct named_label_entry *) htab_find (named_labels, &dummy);
  gcc_assert (ent != NULL);
  gcc_assert (ent != NULL);
 
 
  /* If the label hasn't been defined yet, defer checking.  */
  /* If the label hasn't been defined yet, defer checking.  */
  if (! DECL_INITIAL (decl))
  if (! DECL_INITIAL (decl))
    {
    {
      struct named_label_use_entry *new_use;
      struct named_label_use_entry *new_use;
 
 
      /* Don't bother creating another use if the last goto had the
      /* Don't bother creating another use if the last goto had the
         same data, and will therefore create the same set of errors.  */
         same data, and will therefore create the same set of errors.  */
      if (ent->uses
      if (ent->uses
          && ent->uses->names_in_scope == current_binding_level->names)
          && ent->uses->names_in_scope == current_binding_level->names)
        return;
        return;
 
 
      new_use = GGC_NEW (struct named_label_use_entry);
      new_use = GGC_NEW (struct named_label_use_entry);
      new_use->binding_level = current_binding_level;
      new_use->binding_level = current_binding_level;
      new_use->names_in_scope = current_binding_level->names;
      new_use->names_in_scope = current_binding_level->names;
      new_use->o_goto_locus = input_location;
      new_use->o_goto_locus = input_location;
      new_use->in_omp_scope = false;
      new_use->in_omp_scope = false;
 
 
      new_use->next = ent->uses;
      new_use->next = ent->uses;
      ent->uses = new_use;
      ent->uses = new_use;
      return;
      return;
    }
    }
 
 
  if (ent->in_try_scope || ent->in_catch_scope
  if (ent->in_try_scope || ent->in_catch_scope
      || ent->in_omp_scope || ent->bad_decls)
      || ent->in_omp_scope || ent->bad_decls)
    {
    {
      permerror (input_location, "jump to label %q+D", decl);
      permerror (input_location, "jump to label %q+D", decl);
      permerror (input_location, "  from here");
      permerror (input_location, "  from here");
      identified = true;
      identified = true;
    }
    }
 
 
  for (bad = ent->bad_decls; bad; bad = TREE_CHAIN (bad))
  for (bad = ent->bad_decls; bad; bad = TREE_CHAIN (bad))
    {
    {
      tree b = TREE_VALUE (bad);
      tree b = TREE_VALUE (bad);
      int u = decl_jump_unsafe (b);
      int u = decl_jump_unsafe (b);
 
 
      if (u > 1 && DECL_ARTIFICIAL (b))
      if (u > 1 && DECL_ARTIFICIAL (b))
        {
        {
          /* Can't skip init of __exception_info.  */
          /* Can't skip init of __exception_info.  */
          error_at (DECL_SOURCE_LOCATION (b), "  enters catch block");
          error_at (DECL_SOURCE_LOCATION (b), "  enters catch block");
          saw_catch = true;
          saw_catch = true;
        }
        }
      else if (u > 1)
      else if (u > 1)
        error ("  skips initialization of %q+#D", b);
        error ("  skips initialization of %q+#D", b);
      else
      else
        permerror (input_location, "  enters scope of %q+#D which has "
        permerror (input_location, "  enters scope of %q+#D which has "
                   "non-trivial destructor", b);
                   "non-trivial destructor", b);
    }
    }
 
 
  if (ent->in_try_scope)
  if (ent->in_try_scope)
    error ("  enters try block");
    error ("  enters try block");
  else if (ent->in_catch_scope && !saw_catch)
  else if (ent->in_catch_scope && !saw_catch)
    error ("  enters catch block");
    error ("  enters catch block");
 
 
  if (ent->in_omp_scope)
  if (ent->in_omp_scope)
    error ("  enters OpenMP structured block");
    error ("  enters OpenMP structured block");
  else if (flag_openmp)
  else if (flag_openmp)
    {
    {
      struct cp_binding_level *b;
      struct cp_binding_level *b;
      for (b = current_binding_level; b ; b = b->level_chain)
      for (b = current_binding_level; b ; b = b->level_chain)
        {
        {
          if (b == ent->binding_level)
          if (b == ent->binding_level)
            break;
            break;
          if (b->kind == sk_omp)
          if (b->kind == sk_omp)
            {
            {
              if (!identified)
              if (!identified)
                {
                {
                  permerror (input_location, "jump to label %q+D", decl);
                  permerror (input_location, "jump to label %q+D", decl);
                  permerror (input_location, "  from here");
                  permerror (input_location, "  from here");
                  identified = true;
                  identified = true;
                }
                }
              error ("  exits OpenMP structured block");
              error ("  exits OpenMP structured block");
              break;
              break;
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Check that a return is ok wrt OpenMP structured blocks.
/* Check that a return is ok wrt OpenMP structured blocks.
   Called by finish_return_stmt.  Returns true if all is well.  */
   Called by finish_return_stmt.  Returns true if all is well.  */
 
 
bool
bool
check_omp_return (void)
check_omp_return (void)
{
{
  struct cp_binding_level *b;
  struct cp_binding_level *b;
  for (b = current_binding_level; b ; b = b->level_chain)
  for (b = current_binding_level; b ; b = b->level_chain)
    if (b->kind == sk_omp)
    if (b->kind == sk_omp)
      {
      {
        error ("invalid exit from OpenMP structured block");
        error ("invalid exit from OpenMP structured block");
        return false;
        return false;
      }
      }
  return true;
  return true;
}
}
 
 
/* Define a label, specifying the location in the source file.
/* Define a label, specifying the location in the source file.
   Return the LABEL_DECL node for the label.  */
   Return the LABEL_DECL node for the label.  */
 
 
tree
tree
define_label (location_t location, tree name)
define_label (location_t location, tree name)
{
{
  struct named_label_entry *ent, dummy;
  struct named_label_entry *ent, dummy;
  struct cp_binding_level *p;
  struct cp_binding_level *p;
  tree decl;
  tree decl;
 
 
  timevar_push (TV_NAME_LOOKUP);
  timevar_push (TV_NAME_LOOKUP);
 
 
  decl = lookup_label (name);
  decl = lookup_label (name);
 
 
  dummy.label_decl = decl;
  dummy.label_decl = decl;
  ent = (struct named_label_entry *) htab_find (named_labels, &dummy);
  ent = (struct named_label_entry *) htab_find (named_labels, &dummy);
  gcc_assert (ent != NULL);
  gcc_assert (ent != NULL);
 
 
  /* After labels, make any new cleanups in the function go into their
  /* After labels, make any new cleanups in the function go into their
     own new (temporary) binding contour.  */
     own new (temporary) binding contour.  */
  for (p = current_binding_level;
  for (p = current_binding_level;
       p->kind != sk_function_parms;
       p->kind != sk_function_parms;
       p = p->level_chain)
       p = p->level_chain)
    p->more_cleanups_ok = 0;
    p->more_cleanups_ok = 0;
 
 
  if (name == get_identifier ("wchar_t"))
  if (name == get_identifier ("wchar_t"))
    permerror (input_location, "label named wchar_t");
    permerror (input_location, "label named wchar_t");
 
 
  if (DECL_INITIAL (decl) != NULL_TREE)
  if (DECL_INITIAL (decl) != NULL_TREE)
    {
    {
      error ("duplicate label %qD", decl);
      error ("duplicate label %qD", decl);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
      POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
    }
    }
  else
  else
    {
    {
      struct named_label_use_entry *use;
      struct named_label_use_entry *use;
 
 
      /* Mark label as having been defined.  */
      /* Mark label as having been defined.  */
      DECL_INITIAL (decl) = error_mark_node;
      DECL_INITIAL (decl) = error_mark_node;
      /* Say where in the source.  */
      /* Say where in the source.  */
      DECL_SOURCE_LOCATION (decl) = location;
      DECL_SOURCE_LOCATION (decl) = location;
 
 
      ent->binding_level = current_binding_level;
      ent->binding_level = current_binding_level;
      ent->names_in_scope = current_binding_level->names;
      ent->names_in_scope = current_binding_level->names;
 
 
      for (use = ent->uses; use ; use = use->next)
      for (use = ent->uses; use ; use = use->next)
        check_previous_goto (decl, use);
        check_previous_goto (decl, use);
      ent->uses = NULL;
      ent->uses = NULL;
    }
    }
 
 
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
}
}
 
 
struct cp_switch
struct cp_switch
{
{
  struct cp_binding_level *level;
  struct cp_binding_level *level;
  struct cp_switch *next;
  struct cp_switch *next;
  /* The SWITCH_STMT being built.  */
  /* The SWITCH_STMT being built.  */
  tree switch_stmt;
  tree switch_stmt;
  /* A splay-tree mapping the low element of a case range to the high
  /* A splay-tree mapping the low element of a case range to the high
     element, or NULL_TREE if there is no high element.  Used to
     element, or NULL_TREE if there is no high element.  Used to
     determine whether or not a new case label duplicates an old case
     determine whether or not a new case label duplicates an old case
     label.  We need a tree, rather than simply a hash table, because
     label.  We need a tree, rather than simply a hash table, because
     of the GNU case range extension.  */
     of the GNU case range extension.  */
  splay_tree cases;
  splay_tree cases;
};
};
 
 
/* A stack of the currently active switch statements.  The innermost
/* A stack of the currently active switch statements.  The innermost
   switch statement is on the top of the stack.  There is no need to
   switch statement is on the top of the stack.  There is no need to
   mark the stack for garbage collection because it is only active
   mark the stack for garbage collection because it is only active
   during the processing of the body of a function, and we never
   during the processing of the body of a function, and we never
   collect at that point.  */
   collect at that point.  */
 
 
static struct cp_switch *switch_stack;
static struct cp_switch *switch_stack;
 
 
/* Called right after a switch-statement condition is parsed.
/* Called right after a switch-statement condition is parsed.
   SWITCH_STMT is the switch statement being parsed.  */
   SWITCH_STMT is the switch statement being parsed.  */
 
 
void
void
push_switch (tree switch_stmt)
push_switch (tree switch_stmt)
{
{
  struct cp_switch *p = XNEW (struct cp_switch);
  struct cp_switch *p = XNEW (struct cp_switch);
  p->level = current_binding_level;
  p->level = current_binding_level;
  p->next = switch_stack;
  p->next = switch_stack;
  p->switch_stmt = switch_stmt;
  p->switch_stmt = switch_stmt;
  p->cases = splay_tree_new (case_compare, NULL, NULL);
  p->cases = splay_tree_new (case_compare, NULL, NULL);
  switch_stack = p;
  switch_stack = p;
}
}
 
 
void
void
pop_switch (void)
pop_switch (void)
{
{
  struct cp_switch *cs = switch_stack;
  struct cp_switch *cs = switch_stack;
  location_t switch_location;
  location_t switch_location;
 
 
  /* Emit warnings as needed.  */
  /* Emit warnings as needed.  */
  if (EXPR_HAS_LOCATION (cs->switch_stmt))
  if (EXPR_HAS_LOCATION (cs->switch_stmt))
    switch_location = EXPR_LOCATION (cs->switch_stmt);
    switch_location = EXPR_LOCATION (cs->switch_stmt);
  else
  else
    switch_location = input_location;
    switch_location = input_location;
  if (!processing_template_decl)
  if (!processing_template_decl)
    c_do_switch_warnings (cs->cases, switch_location,
    c_do_switch_warnings (cs->cases, switch_location,
                          SWITCH_STMT_TYPE (cs->switch_stmt),
                          SWITCH_STMT_TYPE (cs->switch_stmt),
                          SWITCH_STMT_COND (cs->switch_stmt));
                          SWITCH_STMT_COND (cs->switch_stmt));
 
 
  splay_tree_delete (cs->cases);
  splay_tree_delete (cs->cases);
  switch_stack = switch_stack->next;
  switch_stack = switch_stack->next;
  free (cs);
  free (cs);
}
}
 
 
/* Note that we've seen a definition of a case label, and complain if this
/* Note that we've seen a definition of a case label, and complain if this
   is a bad place for one.  */
   is a bad place for one.  */
 
 
tree
tree
finish_case_label (location_t loc, tree low_value, tree high_value)
finish_case_label (location_t loc, tree low_value, tree high_value)
{
{
  tree cond, r;
  tree cond, r;
  struct cp_binding_level *p;
  struct cp_binding_level *p;
 
 
  if (processing_template_decl)
  if (processing_template_decl)
    {
    {
      tree label;
      tree label;
 
 
      /* For templates, just add the case label; we'll do semantic
      /* For templates, just add the case label; we'll do semantic
         analysis at instantiation-time.  */
         analysis at instantiation-time.  */
      label = build_decl (loc, LABEL_DECL, NULL_TREE, NULL_TREE);
      label = build_decl (loc, LABEL_DECL, NULL_TREE, NULL_TREE);
      return add_stmt (build_case_label (loc, low_value, high_value, label));
      return add_stmt (build_case_label (loc, low_value, high_value, label));
    }
    }
 
 
  /* Find the condition on which this switch statement depends.  */
  /* Find the condition on which this switch statement depends.  */
  cond = SWITCH_STMT_COND (switch_stack->switch_stmt);
  cond = SWITCH_STMT_COND (switch_stack->switch_stmt);
  if (cond && TREE_CODE (cond) == TREE_LIST)
  if (cond && TREE_CODE (cond) == TREE_LIST)
    cond = TREE_VALUE (cond);
    cond = TREE_VALUE (cond);
 
 
  if (!check_switch_goto (switch_stack->level))
  if (!check_switch_goto (switch_stack->level))
    return error_mark_node;
    return error_mark_node;
 
 
  r = c_add_case_label (loc, switch_stack->cases, cond,
  r = c_add_case_label (loc, switch_stack->cases, cond,
                        SWITCH_STMT_TYPE (switch_stack->switch_stmt),
                        SWITCH_STMT_TYPE (switch_stack->switch_stmt),
                        low_value, high_value);
                        low_value, high_value);
 
 
  /* After labels, make any new cleanups in the function go into their
  /* After labels, make any new cleanups in the function go into their
     own new (temporary) binding contour.  */
     own new (temporary) binding contour.  */
  for (p = current_binding_level;
  for (p = current_binding_level;
       p->kind != sk_function_parms;
       p->kind != sk_function_parms;
       p = p->level_chain)
       p = p->level_chain)
    p->more_cleanups_ok = 0;
    p->more_cleanups_ok = 0;
 
 
  return r;
  return r;
}
}


/* Hash a TYPENAME_TYPE.  K is really of type `tree'.  */
/* Hash a TYPENAME_TYPE.  K is really of type `tree'.  */
 
 
static hashval_t
static hashval_t
typename_hash (const void* k)
typename_hash (const void* k)
{
{
  hashval_t hash;
  hashval_t hash;
  const_tree const t = (const_tree) k;
  const_tree const t = (const_tree) k;
 
 
  hash = (htab_hash_pointer (TYPE_CONTEXT (t))
  hash = (htab_hash_pointer (TYPE_CONTEXT (t))
          ^ htab_hash_pointer (DECL_NAME (TYPE_NAME (t))));
          ^ htab_hash_pointer (DECL_NAME (TYPE_NAME (t))));
 
 
  return hash;
  return hash;
}
}
 
 
typedef struct typename_info {
typedef struct typename_info {
  tree scope;
  tree scope;
  tree name;
  tree name;
  tree template_id;
  tree template_id;
  bool enum_p;
  bool enum_p;
  bool class_p;
  bool class_p;
} typename_info;
} typename_info;
 
 
/* Compare two TYPENAME_TYPEs.  K1 is really of type `tree', K2 is
/* Compare two TYPENAME_TYPEs.  K1 is really of type `tree', K2 is
   really of type `typename_info*'  */
   really of type `typename_info*'  */
 
 
static int
static int
typename_compare (const void * k1, const void * k2)
typename_compare (const void * k1, const void * k2)
{
{
  const_tree const t1 = (const_tree) k1;
  const_tree const t1 = (const_tree) k1;
  const typename_info *const t2 = (const typename_info *) k2;
  const typename_info *const t2 = (const typename_info *) k2;
 
 
  return (DECL_NAME (TYPE_NAME (t1)) == t2->name
  return (DECL_NAME (TYPE_NAME (t1)) == t2->name
          && TYPE_CONTEXT (t1) == t2->scope
          && TYPE_CONTEXT (t1) == t2->scope
          && TYPENAME_TYPE_FULLNAME (t1) == t2->template_id
          && TYPENAME_TYPE_FULLNAME (t1) == t2->template_id
          && TYPENAME_IS_ENUM_P (t1) == t2->enum_p
          && TYPENAME_IS_ENUM_P (t1) == t2->enum_p
          && TYPENAME_IS_CLASS_P (t1) == t2->class_p);
          && TYPENAME_IS_CLASS_P (t1) == t2->class_p);
}
}
 
 
/* Build a TYPENAME_TYPE.  If the type is `typename T::t', CONTEXT is
/* Build a TYPENAME_TYPE.  If the type is `typename T::t', CONTEXT is
   the type of `T', NAME is the IDENTIFIER_NODE for `t'.
   the type of `T', NAME is the IDENTIFIER_NODE for `t'.
 
 
   Returns the new TYPENAME_TYPE.  */
   Returns the new TYPENAME_TYPE.  */
 
 
static GTY ((param_is (union tree_node))) htab_t typename_htab;
static GTY ((param_is (union tree_node))) htab_t typename_htab;
 
 
static tree
static tree
build_typename_type (tree context, tree name, tree fullname,
build_typename_type (tree context, tree name, tree fullname,
                     enum tag_types tag_type)
                     enum tag_types tag_type)
{
{
  tree t;
  tree t;
  tree d;
  tree d;
  typename_info ti;
  typename_info ti;
  void **e;
  void **e;
  hashval_t hash;
  hashval_t hash;
 
 
  if (typename_htab == NULL)
  if (typename_htab == NULL)
    typename_htab = htab_create_ggc (61, &typename_hash,
    typename_htab = htab_create_ggc (61, &typename_hash,
                                     &typename_compare, NULL);
                                     &typename_compare, NULL);
 
 
  ti.scope = FROB_CONTEXT (context);
  ti.scope = FROB_CONTEXT (context);
  ti.name = name;
  ti.name = name;
  ti.template_id = fullname;
  ti.template_id = fullname;
  ti.enum_p = tag_type == enum_type;
  ti.enum_p = tag_type == enum_type;
  ti.class_p = (tag_type == class_type
  ti.class_p = (tag_type == class_type
                || tag_type == record_type
                || tag_type == record_type
                || tag_type == union_type);
                || tag_type == union_type);
  hash =  (htab_hash_pointer (ti.scope)
  hash =  (htab_hash_pointer (ti.scope)
           ^ htab_hash_pointer (ti.name));
           ^ htab_hash_pointer (ti.name));
 
 
  /* See if we already have this type.  */
  /* See if we already have this type.  */
  e = htab_find_slot_with_hash (typename_htab, &ti, hash, INSERT);
  e = htab_find_slot_with_hash (typename_htab, &ti, hash, INSERT);
  if (*e)
  if (*e)
    t = (tree) *e;
    t = (tree) *e;
  else
  else
    {
    {
      /* Build the TYPENAME_TYPE.  */
      /* Build the TYPENAME_TYPE.  */
      t = cxx_make_type (TYPENAME_TYPE);
      t = cxx_make_type (TYPENAME_TYPE);
      TYPE_CONTEXT (t) = ti.scope;
      TYPE_CONTEXT (t) = ti.scope;
      TYPENAME_TYPE_FULLNAME (t) = ti.template_id;
      TYPENAME_TYPE_FULLNAME (t) = ti.template_id;
      TYPENAME_IS_ENUM_P (t) = ti.enum_p;
      TYPENAME_IS_ENUM_P (t) = ti.enum_p;
      TYPENAME_IS_CLASS_P (t) = ti.class_p;
      TYPENAME_IS_CLASS_P (t) = ti.class_p;
 
 
      /* Build the corresponding TYPE_DECL.  */
      /* Build the corresponding TYPE_DECL.  */
      d = build_decl (input_location, TYPE_DECL, name, t);
      d = build_decl (input_location, TYPE_DECL, name, t);
      TYPE_NAME (TREE_TYPE (d)) = d;
      TYPE_NAME (TREE_TYPE (d)) = d;
      TYPE_STUB_DECL (TREE_TYPE (d)) = d;
      TYPE_STUB_DECL (TREE_TYPE (d)) = d;
      DECL_CONTEXT (d) = FROB_CONTEXT (context);
      DECL_CONTEXT (d) = FROB_CONTEXT (context);
      DECL_ARTIFICIAL (d) = 1;
      DECL_ARTIFICIAL (d) = 1;
 
 
      /* Store it in the hash table.  */
      /* Store it in the hash table.  */
      *e = t;
      *e = t;
 
 
      /* TYPENAME_TYPEs must always be compared structurally, because
      /* TYPENAME_TYPEs must always be compared structurally, because
         they may or may not resolve down to another type depending on
         they may or may not resolve down to another type depending on
         the currently open classes. */
         the currently open classes. */
      SET_TYPE_STRUCTURAL_EQUALITY (t);
      SET_TYPE_STRUCTURAL_EQUALITY (t);
    }
    }
 
 
  return t;
  return t;
}
}
 
 
/* Resolve `typename CONTEXT::NAME'.  TAG_TYPE indicates the tag
/* Resolve `typename CONTEXT::NAME'.  TAG_TYPE indicates the tag
   provided to name the type.  Returns an appropriate type, unless an
   provided to name the type.  Returns an appropriate type, unless an
   error occurs, in which case error_mark_node is returned.  If we
   error occurs, in which case error_mark_node is returned.  If we
   locate a non-artificial TYPE_DECL and TF_KEEP_TYPE_DECL is set, we
   locate a non-artificial TYPE_DECL and TF_KEEP_TYPE_DECL is set, we
   return that, rather than the _TYPE it corresponds to, in other
   return that, rather than the _TYPE it corresponds to, in other
   cases we look through the type decl.  If TF_ERROR is set, complain
   cases we look through the type decl.  If TF_ERROR is set, complain
   about errors, otherwise be quiet.  */
   about errors, otherwise be quiet.  */
 
 
tree
tree
make_typename_type (tree context, tree name, enum tag_types tag_type,
make_typename_type (tree context, tree name, enum tag_types tag_type,
                    tsubst_flags_t complain)
                    tsubst_flags_t complain)
{
{
  tree fullname;
  tree fullname;
  tree t;
  tree t;
  bool want_template;
  bool want_template;
 
 
  if (name == error_mark_node
  if (name == error_mark_node
      || context == NULL_TREE
      || context == NULL_TREE
      || context == error_mark_node)
      || context == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  if (TYPE_P (name))
  if (TYPE_P (name))
    {
    {
      if (!(TYPE_LANG_SPECIFIC (name)
      if (!(TYPE_LANG_SPECIFIC (name)
            && (CLASSTYPE_IS_TEMPLATE (name)
            && (CLASSTYPE_IS_TEMPLATE (name)
                || CLASSTYPE_USE_TEMPLATE (name))))
                || CLASSTYPE_USE_TEMPLATE (name))))
        name = TYPE_IDENTIFIER (name);
        name = TYPE_IDENTIFIER (name);
      else
      else
        /* Create a TEMPLATE_ID_EXPR for the type.  */
        /* Create a TEMPLATE_ID_EXPR for the type.  */
        name = build_nt (TEMPLATE_ID_EXPR,
        name = build_nt (TEMPLATE_ID_EXPR,
                         CLASSTYPE_TI_TEMPLATE (name),
                         CLASSTYPE_TI_TEMPLATE (name),
                         CLASSTYPE_TI_ARGS (name));
                         CLASSTYPE_TI_ARGS (name));
    }
    }
  else if (TREE_CODE (name) == TYPE_DECL)
  else if (TREE_CODE (name) == TYPE_DECL)
    name = DECL_NAME (name);
    name = DECL_NAME (name);
 
 
  fullname = name;
  fullname = name;
 
 
  if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
  if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
    {
    {
      name = TREE_OPERAND (name, 0);
      name = TREE_OPERAND (name, 0);
      if (TREE_CODE (name) == TEMPLATE_DECL)
      if (TREE_CODE (name) == TEMPLATE_DECL)
        name = TREE_OPERAND (fullname, 0) = DECL_NAME (name);
        name = TREE_OPERAND (fullname, 0) = DECL_NAME (name);
      else if (TREE_CODE (name) == OVERLOAD)
      else if (TREE_CODE (name) == OVERLOAD)
        {
        {
          error ("%qD is not a type", name);
          error ("%qD is not a type", name);
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
  if (TREE_CODE (name) == TEMPLATE_DECL)
  if (TREE_CODE (name) == TEMPLATE_DECL)
    {
    {
      error ("%qD used without template parameters", name);
      error ("%qD used without template parameters", name);
      return error_mark_node;
      return error_mark_node;
    }
    }
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
  gcc_assert (TYPE_P (context));
  gcc_assert (TYPE_P (context));
 
 
  if (!MAYBE_CLASS_TYPE_P (context))
  if (!MAYBE_CLASS_TYPE_P (context))
    {
    {
      if (complain & tf_error)
      if (complain & tf_error)
        error ("%q#T is not a class", context);
        error ("%q#T is not a class", context);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* When the CONTEXT is a dependent type,  NAME could refer to a
  /* When the CONTEXT is a dependent type,  NAME could refer to a
     dependent base class of CONTEXT.  But look inside it anyway
     dependent base class of CONTEXT.  But look inside it anyway
     if CONTEXT is a currently open scope, in case it refers to a
     if CONTEXT is a currently open scope, in case it refers to a
     member of the current instantiation or a non-dependent base;
     member of the current instantiation or a non-dependent base;
     lookup will stop when we hit a dependent base.  */
     lookup will stop when we hit a dependent base.  */
  if (!dependent_scope_p (context))
  if (!dependent_scope_p (context))
    /* We should only set WANT_TYPE when we're a nested typename type.
    /* We should only set WANT_TYPE when we're a nested typename type.
       Then we can give better diagnostics if we find a non-type.  */
       Then we can give better diagnostics if we find a non-type.  */
    t = lookup_field (context, name, 2, /*want_type=*/true);
    t = lookup_field (context, name, 2, /*want_type=*/true);
  else
  else
    t = NULL_TREE;
    t = NULL_TREE;
 
 
  if ((!t || TREE_CODE (t) == TREE_LIST) && dependent_type_p (context))
  if ((!t || TREE_CODE (t) == TREE_LIST) && dependent_type_p (context))
    return build_typename_type (context, name, fullname, tag_type);
    return build_typename_type (context, name, fullname, tag_type);
 
 
  want_template = TREE_CODE (fullname) == TEMPLATE_ID_EXPR;
  want_template = TREE_CODE (fullname) == TEMPLATE_ID_EXPR;
 
 
  if (!t)
  if (!t)
    {
    {
      if (complain & tf_error)
      if (complain & tf_error)
        error (want_template ? "no class template named %q#T in %q#T"
        error (want_template ? "no class template named %q#T in %q#T"
               : "no type named %q#T in %q#T", name, context);
               : "no type named %q#T in %q#T", name, context);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Pull out the template from an injected-class-name (or multiple).  */
  /* Pull out the template from an injected-class-name (or multiple).  */
  if (want_template)
  if (want_template)
    t = maybe_get_template_decl_from_type_decl (t);
    t = maybe_get_template_decl_from_type_decl (t);
 
 
  if (TREE_CODE (t) == TREE_LIST)
  if (TREE_CODE (t) == TREE_LIST)
    {
    {
      if (complain & tf_error)
      if (complain & tf_error)
        {
        {
          error ("lookup of %qT in %qT is ambiguous", name, context);
          error ("lookup of %qT in %qT is ambiguous", name, context);
          print_candidates (t);
          print_candidates (t);
        }
        }
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (want_template && !DECL_CLASS_TEMPLATE_P (t))
  if (want_template && !DECL_CLASS_TEMPLATE_P (t))
    {
    {
      if (complain & tf_error)
      if (complain & tf_error)
        error ("%<typename %T::%D%> names %q#T, which is not a class template",
        error ("%<typename %T::%D%> names %q#T, which is not a class template",
               context, name, t);
               context, name, t);
      return error_mark_node;
      return error_mark_node;
    }
    }
  if (!want_template && TREE_CODE (t) != TYPE_DECL)
  if (!want_template && TREE_CODE (t) != TYPE_DECL)
    {
    {
      if (complain & tf_error)
      if (complain & tf_error)
        error ("%<typename %T::%D%> names %q#T, which is not a type",
        error ("%<typename %T::%D%> names %q#T, which is not a type",
               context, name, t);
               context, name, t);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (complain & tf_error)
  if (complain & tf_error)
    perform_or_defer_access_check (TYPE_BINFO (context), t, t);
    perform_or_defer_access_check (TYPE_BINFO (context), t, t);
 
 
  /* If we are currently parsing a template and if T is a typedef accessed
  /* If we are currently parsing a template and if T is a typedef accessed
     through CONTEXT then we need to remember and check access of T at
     through CONTEXT then we need to remember and check access of T at
     template instantiation time.  */
     template instantiation time.  */
  add_typedef_to_current_template_for_access_check (t, context, input_location);
  add_typedef_to_current_template_for_access_check (t, context, input_location);
 
 
  if (want_template)
  if (want_template)
    return lookup_template_class (t, TREE_OPERAND (fullname, 1),
    return lookup_template_class (t, TREE_OPERAND (fullname, 1),
                                  NULL_TREE, context,
                                  NULL_TREE, context,
                                  /*entering_scope=*/0,
                                  /*entering_scope=*/0,
                                  tf_warning_or_error | tf_user);
                                  tf_warning_or_error | tf_user);
 
 
  if (DECL_ARTIFICIAL (t) || !(complain & tf_keep_type_decl))
  if (DECL_ARTIFICIAL (t) || !(complain & tf_keep_type_decl))
    t = TREE_TYPE (t);
    t = TREE_TYPE (t);
 
 
  return t;
  return t;
}
}
 
 
/* Resolve `CONTEXT::template NAME'.  Returns a TEMPLATE_DECL if the name
/* Resolve `CONTEXT::template NAME'.  Returns a TEMPLATE_DECL if the name
   can be resolved or an UNBOUND_CLASS_TEMPLATE, unless an error occurs,
   can be resolved or an UNBOUND_CLASS_TEMPLATE, unless an error occurs,
   in which case error_mark_node is returned.
   in which case error_mark_node is returned.
 
 
   If PARM_LIST is non-NULL, also make sure that the template parameter
   If PARM_LIST is non-NULL, also make sure that the template parameter
   list of TEMPLATE_DECL matches.
   list of TEMPLATE_DECL matches.
 
 
   If COMPLAIN zero, don't complain about any errors that occur.  */
   If COMPLAIN zero, don't complain about any errors that occur.  */
 
 
tree
tree
make_unbound_class_template (tree context, tree name, tree parm_list,
make_unbound_class_template (tree context, tree name, tree parm_list,
                             tsubst_flags_t complain)
                             tsubst_flags_t complain)
{
{
  tree t;
  tree t;
  tree d;
  tree d;
 
 
  if (TYPE_P (name))
  if (TYPE_P (name))
    name = TYPE_IDENTIFIER (name);
    name = TYPE_IDENTIFIER (name);
  else if (DECL_P (name))
  else if (DECL_P (name))
    name = DECL_NAME (name);
    name = DECL_NAME (name);
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
 
 
  if (!dependent_type_p (context)
  if (!dependent_type_p (context)
      || currently_open_class (context))
      || currently_open_class (context))
    {
    {
      tree tmpl = NULL_TREE;
      tree tmpl = NULL_TREE;
 
 
      if (MAYBE_CLASS_TYPE_P (context))
      if (MAYBE_CLASS_TYPE_P (context))
        tmpl = lookup_field (context, name, 0, false);
        tmpl = lookup_field (context, name, 0, false);
 
 
      if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
      if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
        {
        {
          if (complain & tf_error)
          if (complain & tf_error)
            error ("no class template named %q#T in %q#T", name, context);
            error ("no class template named %q#T in %q#T", name, context);
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      if (parm_list
      if (parm_list
          && !comp_template_parms (DECL_TEMPLATE_PARMS (tmpl), parm_list))
          && !comp_template_parms (DECL_TEMPLATE_PARMS (tmpl), parm_list))
        {
        {
          if (complain & tf_error)
          if (complain & tf_error)
            {
            {
              error ("template parameters do not match template");
              error ("template parameters do not match template");
              error ("%q+D declared here", tmpl);
              error ("%q+D declared here", tmpl);
            }
            }
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      if (complain & tf_error)
      if (complain & tf_error)
        perform_or_defer_access_check (TYPE_BINFO (context), tmpl, tmpl);
        perform_or_defer_access_check (TYPE_BINFO (context), tmpl, tmpl);
 
 
      return tmpl;
      return tmpl;
    }
    }
 
 
  /* Build the UNBOUND_CLASS_TEMPLATE.  */
  /* Build the UNBOUND_CLASS_TEMPLATE.  */
  t = cxx_make_type (UNBOUND_CLASS_TEMPLATE);
  t = cxx_make_type (UNBOUND_CLASS_TEMPLATE);
  TYPE_CONTEXT (t) = FROB_CONTEXT (context);
  TYPE_CONTEXT (t) = FROB_CONTEXT (context);
  TREE_TYPE (t) = NULL_TREE;
  TREE_TYPE (t) = NULL_TREE;
  SET_TYPE_STRUCTURAL_EQUALITY (t);
  SET_TYPE_STRUCTURAL_EQUALITY (t);
 
 
  /* Build the corresponding TEMPLATE_DECL.  */
  /* Build the corresponding TEMPLATE_DECL.  */
  d = build_decl (input_location, TEMPLATE_DECL, name, t);
  d = build_decl (input_location, TEMPLATE_DECL, name, t);
  TYPE_NAME (TREE_TYPE (d)) = d;
  TYPE_NAME (TREE_TYPE (d)) = d;
  TYPE_STUB_DECL (TREE_TYPE (d)) = d;
  TYPE_STUB_DECL (TREE_TYPE (d)) = d;
  DECL_CONTEXT (d) = FROB_CONTEXT (context);
  DECL_CONTEXT (d) = FROB_CONTEXT (context);
  DECL_ARTIFICIAL (d) = 1;
  DECL_ARTIFICIAL (d) = 1;
  DECL_TEMPLATE_PARMS (d) = parm_list;
  DECL_TEMPLATE_PARMS (d) = parm_list;
 
 
  return t;
  return t;
}
}
 
 


 
 
/* Push the declarations of builtin types into the namespace.
/* Push the declarations of builtin types into the namespace.
   RID_INDEX is the index of the builtin type in the array
   RID_INDEX is the index of the builtin type in the array
   RID_POINTERS.  NAME is the name used when looking up the builtin
   RID_POINTERS.  NAME is the name used when looking up the builtin
   type.  TYPE is the _TYPE node for the builtin type.  */
   type.  TYPE is the _TYPE node for the builtin type.  */
 
 
void
void
record_builtin_type (enum rid rid_index,
record_builtin_type (enum rid rid_index,
                     const char* name,
                     const char* name,
                     tree type)
                     tree type)
{
{
  tree rname = NULL_TREE, tname = NULL_TREE;
  tree rname = NULL_TREE, tname = NULL_TREE;
  tree tdecl = NULL_TREE;
  tree tdecl = NULL_TREE;
 
 
  if ((int) rid_index < (int) RID_MAX)
  if ((int) rid_index < (int) RID_MAX)
    rname = ridpointers[(int) rid_index];
    rname = ridpointers[(int) rid_index];
  if (name)
  if (name)
    tname = get_identifier (name);
    tname = get_identifier (name);
 
 
  /* The calls to SET_IDENTIFIER_GLOBAL_VALUE below should be
  /* The calls to SET_IDENTIFIER_GLOBAL_VALUE below should be
     eliminated.  Built-in types should not be looked up name; their
     eliminated.  Built-in types should not be looked up name; their
     names are keywords that the parser can recognize.  However, there
     names are keywords that the parser can recognize.  However, there
     is code in c-common.c that uses identifier_global_value to look
     is code in c-common.c that uses identifier_global_value to look
     up built-in types by name.  */
     up built-in types by name.  */
  if (tname)
  if (tname)
    {
    {
      tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL, tname, type);
      tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL, tname, type);
      DECL_ARTIFICIAL (tdecl) = 1;
      DECL_ARTIFICIAL (tdecl) = 1;
      SET_IDENTIFIER_GLOBAL_VALUE (tname, tdecl);
      SET_IDENTIFIER_GLOBAL_VALUE (tname, tdecl);
    }
    }
  if (rname)
  if (rname)
    {
    {
      if (!tdecl)
      if (!tdecl)
        {
        {
          tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL, rname, type);
          tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL, rname, type);
          DECL_ARTIFICIAL (tdecl) = 1;
          DECL_ARTIFICIAL (tdecl) = 1;
        }
        }
      SET_IDENTIFIER_GLOBAL_VALUE (rname, tdecl);
      SET_IDENTIFIER_GLOBAL_VALUE (rname, tdecl);
    }
    }
 
 
  if (!TYPE_NAME (type))
  if (!TYPE_NAME (type))
    TYPE_NAME (type) = tdecl;
    TYPE_NAME (type) = tdecl;
 
 
  if (tdecl)
  if (tdecl)
    debug_hooks->type_decl (tdecl, 0);
    debug_hooks->type_decl (tdecl, 0);
}
}
 
 
/* Record one of the standard Java types.
/* Record one of the standard Java types.
 * Declare it as having the given NAME.
 * Declare it as having the given NAME.
 * If SIZE > 0, it is the size of one of the integral types;
 * If SIZE > 0, it is the size of one of the integral types;
 * otherwise it is the negative of the size of one of the other types.  */
 * otherwise it is the negative of the size of one of the other types.  */
 
 
static tree
static tree
record_builtin_java_type (const char* name, int size)
record_builtin_java_type (const char* name, int size)
{
{
  tree type, decl;
  tree type, decl;
  if (size > 0)
  if (size > 0)
    type = build_nonstandard_integer_type (size, 0);
    type = build_nonstandard_integer_type (size, 0);
  else if (size > -32)
  else if (size > -32)
    {
    {
      tree stype;
      tree stype;
      /* "__java_char" or ""__java_boolean".  */
      /* "__java_char" or ""__java_boolean".  */
      type = build_nonstandard_integer_type (-size, 1);
      type = build_nonstandard_integer_type (-size, 1);
      /* Get the signed type cached and attached to the unsigned type,
      /* Get the signed type cached and attached to the unsigned type,
         so it doesn't get garbage-collected at "random" times,
         so it doesn't get garbage-collected at "random" times,
         causing potential codegen differences out of different UIDs
         causing potential codegen differences out of different UIDs
         and different alias set numbers.  */
         and different alias set numbers.  */
      stype = build_nonstandard_integer_type (-size, 0);
      stype = build_nonstandard_integer_type (-size, 0);
      TREE_CHAIN (type) = stype;
      TREE_CHAIN (type) = stype;
      /*if (size == -1) TREE_SET_CODE (type, BOOLEAN_TYPE);*/
      /*if (size == -1) TREE_SET_CODE (type, BOOLEAN_TYPE);*/
    }
    }
  else
  else
    { /* "__java_float" or ""__java_double".  */
    { /* "__java_float" or ""__java_double".  */
      type = make_node (REAL_TYPE);
      type = make_node (REAL_TYPE);
      TYPE_PRECISION (type) = - size;
      TYPE_PRECISION (type) = - size;
      layout_type (type);
      layout_type (type);
    }
    }
  record_builtin_type (RID_MAX, name, type);
  record_builtin_type (RID_MAX, name, type);
  decl = TYPE_NAME (type);
  decl = TYPE_NAME (type);
 
 
  /* Suppress generate debug symbol entries for these types,
  /* Suppress generate debug symbol entries for these types,
     since for normal C++ they are just clutter.
     since for normal C++ they are just clutter.
     However, push_lang_context undoes this if extern "Java" is seen.  */
     However, push_lang_context undoes this if extern "Java" is seen.  */
  DECL_IGNORED_P (decl) = 1;
  DECL_IGNORED_P (decl) = 1;
 
 
  TYPE_FOR_JAVA (type) = 1;
  TYPE_FOR_JAVA (type) = 1;
  return type;
  return type;
}
}
 
 
/* Push a type into the namespace so that the back ends ignore it.  */
/* Push a type into the namespace so that the back ends ignore it.  */
 
 
static void
static void
record_unknown_type (tree type, const char* name)
record_unknown_type (tree type, const char* name)
{
{
  tree decl = pushdecl (build_decl (UNKNOWN_LOCATION,
  tree decl = pushdecl (build_decl (UNKNOWN_LOCATION,
                                    TYPE_DECL, get_identifier (name), type));
                                    TYPE_DECL, get_identifier (name), type));
  /* Make sure the "unknown type" typedecl gets ignored for debug info.  */
  /* Make sure the "unknown type" typedecl gets ignored for debug info.  */
  DECL_IGNORED_P (decl) = 1;
  DECL_IGNORED_P (decl) = 1;
  TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
  TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
  TYPE_SIZE (type) = TYPE_SIZE (void_type_node);
  TYPE_SIZE (type) = TYPE_SIZE (void_type_node);
  TYPE_ALIGN (type) = 1;
  TYPE_ALIGN (type) = 1;
  TYPE_USER_ALIGN (type) = 0;
  TYPE_USER_ALIGN (type) = 0;
  SET_TYPE_MODE (type, TYPE_MODE (void_type_node));
  SET_TYPE_MODE (type, TYPE_MODE (void_type_node));
}
}
 
 
/* A string for which we should create an IDENTIFIER_NODE at
/* A string for which we should create an IDENTIFIER_NODE at
   startup.  */
   startup.  */
 
 
typedef struct predefined_identifier
typedef struct predefined_identifier
{
{
  /* The name of the identifier.  */
  /* The name of the identifier.  */
  const char *const name;
  const char *const name;
  /* The place where the IDENTIFIER_NODE should be stored.  */
  /* The place where the IDENTIFIER_NODE should be stored.  */
  tree *const node;
  tree *const node;
  /* Nonzero if this is the name of a constructor or destructor.  */
  /* Nonzero if this is the name of a constructor or destructor.  */
  const int ctor_or_dtor_p;
  const int ctor_or_dtor_p;
} predefined_identifier;
} predefined_identifier;
 
 
/* Create all the predefined identifiers.  */
/* Create all the predefined identifiers.  */
 
 
static void
static void
initialize_predefined_identifiers (void)
initialize_predefined_identifiers (void)
{
{
  const predefined_identifier *pid;
  const predefined_identifier *pid;
 
 
  /* A table of identifiers to create at startup.  */
  /* A table of identifiers to create at startup.  */
  static const predefined_identifier predefined_identifiers[] = {
  static const predefined_identifier predefined_identifiers[] = {
    { "C++", &lang_name_cplusplus, 0 },
    { "C++", &lang_name_cplusplus, 0 },
    { "C", &lang_name_c, 0 },
    { "C", &lang_name_c, 0 },
    { "Java", &lang_name_java, 0 },
    { "Java", &lang_name_java, 0 },
    /* Some of these names have a trailing space so that it is
    /* Some of these names have a trailing space so that it is
       impossible for them to conflict with names written by users.  */
       impossible for them to conflict with names written by users.  */
    { "__ct ", &ctor_identifier, 1 },
    { "__ct ", &ctor_identifier, 1 },
    { "__base_ctor ", &base_ctor_identifier, 1 },
    { "__base_ctor ", &base_ctor_identifier, 1 },
    { "__comp_ctor ", &complete_ctor_identifier, 1 },
    { "__comp_ctor ", &complete_ctor_identifier, 1 },
    { "__dt ", &dtor_identifier, 1 },
    { "__dt ", &dtor_identifier, 1 },
    { "__comp_dtor ", &complete_dtor_identifier, 1 },
    { "__comp_dtor ", &complete_dtor_identifier, 1 },
    { "__base_dtor ", &base_dtor_identifier, 1 },
    { "__base_dtor ", &base_dtor_identifier, 1 },
    { "__deleting_dtor ", &deleting_dtor_identifier, 1 },
    { "__deleting_dtor ", &deleting_dtor_identifier, 1 },
    { IN_CHARGE_NAME, &in_charge_identifier, 0 },
    { IN_CHARGE_NAME, &in_charge_identifier, 0 },
    { "nelts", &nelts_identifier, 0 },
    { "nelts", &nelts_identifier, 0 },
    { THIS_NAME, &this_identifier, 0 },
    { THIS_NAME, &this_identifier, 0 },
    { VTABLE_DELTA_NAME, &delta_identifier, 0 },
    { VTABLE_DELTA_NAME, &delta_identifier, 0 },
    { VTABLE_PFN_NAME, &pfn_identifier, 0 },
    { VTABLE_PFN_NAME, &pfn_identifier, 0 },
    { "_vptr", &vptr_identifier, 0 },
    { "_vptr", &vptr_identifier, 0 },
    { "__vtt_parm", &vtt_parm_identifier, 0 },
    { "__vtt_parm", &vtt_parm_identifier, 0 },
    { "::", &global_scope_name, 0 },
    { "::", &global_scope_name, 0 },
    { "std", &std_identifier, 0 },
    { "std", &std_identifier, 0 },
    { NULL, NULL, 0 }
    { NULL, NULL, 0 }
  };
  };
 
 
  for (pid = predefined_identifiers; pid->name; ++pid)
  for (pid = predefined_identifiers; pid->name; ++pid)
    {
    {
      *pid->node = get_identifier (pid->name);
      *pid->node = get_identifier (pid->name);
      if (pid->ctor_or_dtor_p)
      if (pid->ctor_or_dtor_p)
        IDENTIFIER_CTOR_OR_DTOR_P (*pid->node) = 1;
        IDENTIFIER_CTOR_OR_DTOR_P (*pid->node) = 1;
    }
    }
}
}
 
 
/* Create the predefined scalar types of C,
/* Create the predefined scalar types of C,
   and some nodes representing standard constants (0, 1, (void *)0).
   and some nodes representing standard constants (0, 1, (void *)0).
   Initialize the global binding level.
   Initialize the global binding level.
   Make definitions for built-in primitive functions.  */
   Make definitions for built-in primitive functions.  */
 
 
void
void
cxx_init_decl_processing (void)
cxx_init_decl_processing (void)
{
{
  tree void_ftype;
  tree void_ftype;
  tree void_ftype_ptr;
  tree void_ftype_ptr;
 
 
  build_common_tree_nodes (flag_signed_char, false);
  build_common_tree_nodes (flag_signed_char, false);
 
 
  /* Create all the identifiers we need.  */
  /* Create all the identifiers we need.  */
  initialize_predefined_identifiers ();
  initialize_predefined_identifiers ();
 
 
  /* Create the global variables.  */
  /* Create the global variables.  */
  push_to_top_level ();
  push_to_top_level ();
 
 
  current_function_decl = NULL_TREE;
  current_function_decl = NULL_TREE;
  current_binding_level = NULL;
  current_binding_level = NULL;
  /* Enter the global namespace.  */
  /* Enter the global namespace.  */
  gcc_assert (global_namespace == NULL_TREE);
  gcc_assert (global_namespace == NULL_TREE);
  global_namespace = build_lang_decl (NAMESPACE_DECL, global_scope_name,
  global_namespace = build_lang_decl (NAMESPACE_DECL, global_scope_name,
                                      void_type_node);
                                      void_type_node);
  TREE_PUBLIC (global_namespace) = 1;
  TREE_PUBLIC (global_namespace) = 1;
  begin_scope (sk_namespace, global_namespace);
  begin_scope (sk_namespace, global_namespace);
 
 
  current_lang_name = NULL_TREE;
  current_lang_name = NULL_TREE;
 
 
  if (flag_visibility_ms_compat)
  if (flag_visibility_ms_compat)
    default_visibility = VISIBILITY_HIDDEN;
    default_visibility = VISIBILITY_HIDDEN;
 
 
  /* Initially, C.  */
  /* Initially, C.  */
  current_lang_name = lang_name_c;
  current_lang_name = lang_name_c;
 
 
  /* Create the `std' namespace.  */
  /* Create the `std' namespace.  */
  push_namespace (std_identifier);
  push_namespace (std_identifier);
  std_node = current_namespace;
  std_node = current_namespace;
  pop_namespace ();
  pop_namespace ();
 
 
  c_common_nodes_and_builtins ();
  c_common_nodes_and_builtins ();
 
 
  java_byte_type_node = record_builtin_java_type ("__java_byte", 8);
  java_byte_type_node = record_builtin_java_type ("__java_byte", 8);
  java_short_type_node = record_builtin_java_type ("__java_short", 16);
  java_short_type_node = record_builtin_java_type ("__java_short", 16);
  java_int_type_node = record_builtin_java_type ("__java_int", 32);
  java_int_type_node = record_builtin_java_type ("__java_int", 32);
  java_long_type_node = record_builtin_java_type ("__java_long", 64);
  java_long_type_node = record_builtin_java_type ("__java_long", 64);
  java_float_type_node = record_builtin_java_type ("__java_float", -32);
  java_float_type_node = record_builtin_java_type ("__java_float", -32);
  java_double_type_node = record_builtin_java_type ("__java_double", -64);
  java_double_type_node = record_builtin_java_type ("__java_double", -64);
  java_char_type_node = record_builtin_java_type ("__java_char", -16);
  java_char_type_node = record_builtin_java_type ("__java_char", -16);
  java_boolean_type_node = record_builtin_java_type ("__java_boolean", -1);
  java_boolean_type_node = record_builtin_java_type ("__java_boolean", -1);
 
 
  integer_two_node = build_int_cst (NULL_TREE, 2);
  integer_two_node = build_int_cst (NULL_TREE, 2);
  integer_three_node = build_int_cst (NULL_TREE, 3);
  integer_three_node = build_int_cst (NULL_TREE, 3);
 
 
  record_builtin_type (RID_BOOL, "bool", boolean_type_node);
  record_builtin_type (RID_BOOL, "bool", boolean_type_node);
  truthvalue_type_node = boolean_type_node;
  truthvalue_type_node = boolean_type_node;
  truthvalue_false_node = boolean_false_node;
  truthvalue_false_node = boolean_false_node;
  truthvalue_true_node = boolean_true_node;
  truthvalue_true_node = boolean_true_node;
 
 
  empty_except_spec = build_tree_list (NULL_TREE, NULL_TREE);
  empty_except_spec = build_tree_list (NULL_TREE, NULL_TREE);
 
 
#if 0
#if 0
  record_builtin_type (RID_MAX, NULL, string_type_node);
  record_builtin_type (RID_MAX, NULL, string_type_node);
#endif
#endif
 
 
  delta_type_node = ptrdiff_type_node;
  delta_type_node = ptrdiff_type_node;
  vtable_index_type = ptrdiff_type_node;
  vtable_index_type = ptrdiff_type_node;
 
 
  vtt_parm_type = build_pointer_type (const_ptr_type_node);
  vtt_parm_type = build_pointer_type (const_ptr_type_node);
  void_ftype = build_function_type (void_type_node, void_list_node);
  void_ftype = build_function_type (void_type_node, void_list_node);
  void_ftype_ptr = build_function_type (void_type_node,
  void_ftype_ptr = build_function_type (void_type_node,
                                        tree_cons (NULL_TREE,
                                        tree_cons (NULL_TREE,
                                                   ptr_type_node,
                                                   ptr_type_node,
                                                   void_list_node));
                                                   void_list_node));
  void_ftype_ptr
  void_ftype_ptr
    = build_exception_variant (void_ftype_ptr, empty_except_spec);
    = build_exception_variant (void_ftype_ptr, empty_except_spec);
 
 
  /* C++ extensions */
  /* C++ extensions */
 
 
  unknown_type_node = make_node (UNKNOWN_TYPE);
  unknown_type_node = make_node (UNKNOWN_TYPE);
  record_unknown_type (unknown_type_node, "unknown type");
  record_unknown_type (unknown_type_node, "unknown type");
 
 
  /* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node.  */
  /* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node.  */
  TREE_TYPE (unknown_type_node) = unknown_type_node;
  TREE_TYPE (unknown_type_node) = unknown_type_node;
 
 
  /* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same
  /* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same
     result.  */
     result.  */
  TYPE_POINTER_TO (unknown_type_node) = unknown_type_node;
  TYPE_POINTER_TO (unknown_type_node) = unknown_type_node;
  TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node;
  TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node;
 
 
  init_list_type_node = make_node (UNKNOWN_TYPE);
  init_list_type_node = make_node (UNKNOWN_TYPE);
  record_unknown_type (init_list_type_node, "init list");
  record_unknown_type (init_list_type_node, "init list");
 
 
  {
  {
    /* Make sure we get a unique function type, so we can give
    /* Make sure we get a unique function type, so we can give
       its pointer type a name.  (This wins for gdb.) */
       its pointer type a name.  (This wins for gdb.) */
    tree vfunc_type = make_node (FUNCTION_TYPE);
    tree vfunc_type = make_node (FUNCTION_TYPE);
    TREE_TYPE (vfunc_type) = integer_type_node;
    TREE_TYPE (vfunc_type) = integer_type_node;
    TYPE_ARG_TYPES (vfunc_type) = NULL_TREE;
    TYPE_ARG_TYPES (vfunc_type) = NULL_TREE;
    layout_type (vfunc_type);
    layout_type (vfunc_type);
 
 
    vtable_entry_type = build_pointer_type (vfunc_type);
    vtable_entry_type = build_pointer_type (vfunc_type);
  }
  }
  record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type);
  record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type);
 
 
  vtbl_type_node
  vtbl_type_node
    = build_cplus_array_type (vtable_entry_type, NULL_TREE);
    = build_cplus_array_type (vtable_entry_type, NULL_TREE);
  layout_type (vtbl_type_node);
  layout_type (vtbl_type_node);
  vtbl_type_node = build_qualified_type (vtbl_type_node, TYPE_QUAL_CONST);
  vtbl_type_node = build_qualified_type (vtbl_type_node, TYPE_QUAL_CONST);
  record_builtin_type (RID_MAX, NULL, vtbl_type_node);
  record_builtin_type (RID_MAX, NULL, vtbl_type_node);
  vtbl_ptr_type_node = build_pointer_type (vtable_entry_type);
  vtbl_ptr_type_node = build_pointer_type (vtable_entry_type);
  layout_type (vtbl_ptr_type_node);
  layout_type (vtbl_ptr_type_node);
  record_builtin_type (RID_MAX, NULL, vtbl_ptr_type_node);
  record_builtin_type (RID_MAX, NULL, vtbl_ptr_type_node);
 
 
  push_namespace (get_identifier ("__cxxabiv1"));
  push_namespace (get_identifier ("__cxxabiv1"));
  abi_node = current_namespace;
  abi_node = current_namespace;
  pop_namespace ();
  pop_namespace ();
 
 
  global_type_node = make_node (LANG_TYPE);
  global_type_node = make_node (LANG_TYPE);
  record_unknown_type (global_type_node, "global type");
  record_unknown_type (global_type_node, "global type");
 
 
  /* Now, C++.  */
  /* Now, C++.  */
  current_lang_name = lang_name_cplusplus;
  current_lang_name = lang_name_cplusplus;
 
 
  {
  {
    tree bad_alloc_id;
    tree bad_alloc_id;
    tree bad_alloc_type_node;
    tree bad_alloc_type_node;
    tree bad_alloc_decl;
    tree bad_alloc_decl;
    tree newtype, deltype;
    tree newtype, deltype;
    tree ptr_ftype_sizetype;
    tree ptr_ftype_sizetype;
 
 
    push_namespace (std_identifier);
    push_namespace (std_identifier);
    bad_alloc_id = get_identifier ("bad_alloc");
    bad_alloc_id = get_identifier ("bad_alloc");
    bad_alloc_type_node = make_class_type (RECORD_TYPE);
    bad_alloc_type_node = make_class_type (RECORD_TYPE);
    TYPE_CONTEXT (bad_alloc_type_node) = current_namespace;
    TYPE_CONTEXT (bad_alloc_type_node) = current_namespace;
    bad_alloc_decl
    bad_alloc_decl
      = create_implicit_typedef (bad_alloc_id, bad_alloc_type_node);
      = create_implicit_typedef (bad_alloc_id, bad_alloc_type_node);
    DECL_CONTEXT (bad_alloc_decl) = current_namespace;
    DECL_CONTEXT (bad_alloc_decl) = current_namespace;
    pop_namespace ();
    pop_namespace ();
 
 
    ptr_ftype_sizetype
    ptr_ftype_sizetype
      = build_function_type (ptr_type_node,
      = build_function_type (ptr_type_node,
                             tree_cons (NULL_TREE,
                             tree_cons (NULL_TREE,
                                        size_type_node,
                                        size_type_node,
                                        void_list_node));
                                        void_list_node));
    newtype = build_exception_variant
    newtype = build_exception_variant
      (ptr_ftype_sizetype, add_exception_specifier
      (ptr_ftype_sizetype, add_exception_specifier
       (NULL_TREE, bad_alloc_type_node, -1));
       (NULL_TREE, bad_alloc_type_node, -1));
    deltype = build_exception_variant (void_ftype_ptr, empty_except_spec);
    deltype = build_exception_variant (void_ftype_ptr, empty_except_spec);
    push_cp_library_fn (NEW_EXPR, newtype);
    push_cp_library_fn (NEW_EXPR, newtype);
    push_cp_library_fn (VEC_NEW_EXPR, newtype);
    push_cp_library_fn (VEC_NEW_EXPR, newtype);
    global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype);
    global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype);
    push_cp_library_fn (VEC_DELETE_EXPR, deltype);
    push_cp_library_fn (VEC_DELETE_EXPR, deltype);
  }
  }
 
 
  abort_fndecl
  abort_fndecl
    = build_library_fn_ptr ("__cxa_pure_virtual", void_ftype);
    = build_library_fn_ptr ("__cxa_pure_virtual", void_ftype);
 
 
  /* Perform other language dependent initializations.  */
  /* Perform other language dependent initializations.  */
  init_class_processing ();
  init_class_processing ();
  init_rtti_processing ();
  init_rtti_processing ();
  init_template_processing ();
  init_template_processing ();
 
 
  if (flag_exceptions)
  if (flag_exceptions)
    init_exception_processing ();
    init_exception_processing ();
 
 
  if (! supports_one_only ())
  if (! supports_one_only ())
    flag_weak = 0;
    flag_weak = 0;
 
 
  make_fname_decl = cp_make_fname_decl;
  make_fname_decl = cp_make_fname_decl;
  start_fname_decls ();
  start_fname_decls ();
 
 
  /* Show we use EH for cleanups.  */
  /* Show we use EH for cleanups.  */
  if (flag_exceptions)
  if (flag_exceptions)
    using_eh_for_cleanups ();
    using_eh_for_cleanups ();
}
}
 
 
/* Generate an initializer for a function naming variable from
/* Generate an initializer for a function naming variable from
   NAME. NAME may be NULL, to indicate a dependent name.  TYPE_P is
   NAME. NAME may be NULL, to indicate a dependent name.  TYPE_P is
   filled in with the type of the init.  */
   filled in with the type of the init.  */
 
 
tree
tree
cp_fname_init (const char* name, tree *type_p)
cp_fname_init (const char* name, tree *type_p)
{
{
  tree domain = NULL_TREE;
  tree domain = NULL_TREE;
  tree type;
  tree type;
  tree init = NULL_TREE;
  tree init = NULL_TREE;
  size_t length = 0;
  size_t length = 0;
 
 
  if (name)
  if (name)
    {
    {
      length = strlen (name);
      length = strlen (name);
      domain = build_index_type (size_int (length));
      domain = build_index_type (size_int (length));
      init = build_string (length + 1, name);
      init = build_string (length + 1, name);
    }
    }
 
 
  type = build_qualified_type (char_type_node, TYPE_QUAL_CONST);
  type = build_qualified_type (char_type_node, TYPE_QUAL_CONST);
  type = build_cplus_array_type (type, domain);
  type = build_cplus_array_type (type, domain);
 
 
  *type_p = type;
  *type_p = type;
 
 
  if (init)
  if (init)
    TREE_TYPE (init) = type;
    TREE_TYPE (init) = type;
  else
  else
    init = error_mark_node;
    init = error_mark_node;
 
 
  return init;
  return init;
}
}
 
 
/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give
/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give
   the decl, LOC is the location to give the decl, NAME is the
   the decl, LOC is the location to give the decl, NAME is the
   initialization string and TYPE_DEP indicates whether NAME depended
   initialization string and TYPE_DEP indicates whether NAME depended
   on the type of the function. We make use of that to detect
   on the type of the function. We make use of that to detect
   __PRETTY_FUNCTION__ inside a template fn. This is being done lazily
   __PRETTY_FUNCTION__ inside a template fn. This is being done lazily
   at the point of first use, so we mustn't push the decl now.  */
   at the point of first use, so we mustn't push the decl now.  */
 
 
static tree
static tree
cp_make_fname_decl (location_t loc, tree id, int type_dep)
cp_make_fname_decl (location_t loc, tree id, int type_dep)
{
{
  const char *const name = (type_dep && processing_template_decl
  const char *const name = (type_dep && processing_template_decl
                            ? NULL : fname_as_string (type_dep));
                            ? NULL : fname_as_string (type_dep));
  tree type;
  tree type;
  tree init = cp_fname_init (name, &type);
  tree init = cp_fname_init (name, &type);
  tree decl = build_decl (loc, VAR_DECL, id, type);
  tree decl = build_decl (loc, VAR_DECL, id, type);
 
 
  if (name)
  if (name)
    free (CONST_CAST (char *, name));
    free (CONST_CAST (char *, name));
 
 
  /* As we're using pushdecl_with_scope, we must set the context.  */
  /* As we're using pushdecl_with_scope, we must set the context.  */
  DECL_CONTEXT (decl) = current_function_decl;
  DECL_CONTEXT (decl) = current_function_decl;
  DECL_PRETTY_FUNCTION_P (decl) = type_dep;
  DECL_PRETTY_FUNCTION_P (decl) = type_dep;
 
 
  TREE_STATIC (decl) = 1;
  TREE_STATIC (decl) = 1;
  TREE_READONLY (decl) = 1;
  TREE_READONLY (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
 
 
  TREE_USED (decl) = 1;
  TREE_USED (decl) = 1;
 
 
  if (current_function_decl)
  if (current_function_decl)
    {
    {
      struct cp_binding_level *b = current_binding_level;
      struct cp_binding_level *b = current_binding_level;
      while (b->level_chain->kind != sk_function_parms)
      while (b->level_chain->kind != sk_function_parms)
        b = b->level_chain;
        b = b->level_chain;
      pushdecl_with_scope (decl, b, /*is_friend=*/false);
      pushdecl_with_scope (decl, b, /*is_friend=*/false);
      cp_finish_decl (decl, init, /*init_const_expr_p=*/false, NULL_TREE,
      cp_finish_decl (decl, init, /*init_const_expr_p=*/false, NULL_TREE,
                      LOOKUP_ONLYCONVERTING);
                      LOOKUP_ONLYCONVERTING);
    }
    }
  else
  else
    pushdecl_top_level_and_finish (decl, init);
    pushdecl_top_level_and_finish (decl, init);
 
 
  return decl;
  return decl;
}
}
 
 
static tree
static tree
builtin_function_1 (tree decl, tree context, bool is_global)
builtin_function_1 (tree decl, tree context, bool is_global)
{
{
  tree          id = DECL_NAME (decl);
  tree          id = DECL_NAME (decl);
  const char *name = IDENTIFIER_POINTER (id);
  const char *name = IDENTIFIER_POINTER (id);
 
 
  retrofit_lang_decl (decl);
  retrofit_lang_decl (decl);
 
 
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  SET_OVERLOADED_OPERATOR_CODE (decl, ERROR_MARK);
  SET_OVERLOADED_OPERATOR_CODE (decl, ERROR_MARK);
  SET_DECL_LANGUAGE (decl, lang_c);
  SET_DECL_LANGUAGE (decl, lang_c);
  /* Runtime library routines are, by definition, available in an
  /* Runtime library routines are, by definition, available in an
     external shared object.  */
     external shared object.  */
  DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
 
 
  DECL_CONTEXT (decl) = context;
  DECL_CONTEXT (decl) = context;
 
 
  if (is_global)
  if (is_global)
    pushdecl_top_level (decl);
    pushdecl_top_level (decl);
  else
  else
    pushdecl (decl);
    pushdecl (decl);
 
 
  /* A function in the user's namespace should have an explicit
  /* A function in the user's namespace should have an explicit
     declaration before it is used.  Mark the built-in function as
     declaration before it is used.  Mark the built-in function as
     anticipated but not actually declared.  */
     anticipated but not actually declared.  */
  if (name[0] != '_' || name[1] != '_')
  if (name[0] != '_' || name[1] != '_')
    DECL_ANTICIPATED (decl) = 1;
    DECL_ANTICIPATED (decl) = 1;
  else if (strncmp (name + 2, "builtin_", strlen ("builtin_")) != 0)
  else if (strncmp (name + 2, "builtin_", strlen ("builtin_")) != 0)
    {
    {
      size_t len = strlen (name);
      size_t len = strlen (name);
 
 
      /* Treat __*_chk fortification functions as anticipated as well,
      /* Treat __*_chk fortification functions as anticipated as well,
         unless they are __builtin_*.  */
         unless they are __builtin_*.  */
      if (len > strlen ("___chk")
      if (len > strlen ("___chk")
          && memcmp (name + len - strlen ("_chk"),
          && memcmp (name + len - strlen ("_chk"),
                     "_chk", strlen ("_chk") + 1) == 0)
                     "_chk", strlen ("_chk") + 1) == 0)
        DECL_ANTICIPATED (decl) = 1;
        DECL_ANTICIPATED (decl) = 1;
    }
    }
 
 
  return decl;
  return decl;
}
}
 
 
tree
tree
cxx_builtin_function (tree decl)
cxx_builtin_function (tree decl)
{
{
  tree          id = DECL_NAME (decl);
  tree          id = DECL_NAME (decl);
  const char *name = IDENTIFIER_POINTER (id);
  const char *name = IDENTIFIER_POINTER (id);
  /* All builtins that don't begin with an '_' should additionally
  /* All builtins that don't begin with an '_' should additionally
     go in the 'std' namespace.  */
     go in the 'std' namespace.  */
  if (name[0] != '_')
  if (name[0] != '_')
    {
    {
      tree decl2 = copy_node(decl);
      tree decl2 = copy_node(decl);
      push_namespace (std_identifier);
      push_namespace (std_identifier);
      builtin_function_1 (decl2, std_node, false);
      builtin_function_1 (decl2, std_node, false);
      pop_namespace ();
      pop_namespace ();
    }
    }
 
 
  return builtin_function_1 (decl, NULL_TREE, false);
  return builtin_function_1 (decl, NULL_TREE, false);
}
}
 
 
/* Like cxx_builtin_function, but guarantee the function is added to the global
/* Like cxx_builtin_function, but guarantee the function is added to the global
   scope.  This is to allow function specific options to add new machine
   scope.  This is to allow function specific options to add new machine
   dependent builtins when the target ISA changes via attribute((target(...)))
   dependent builtins when the target ISA changes via attribute((target(...)))
   which saves space on program startup if the program does not use non-generic
   which saves space on program startup if the program does not use non-generic
   ISAs.  */
   ISAs.  */
 
 
tree
tree
cxx_builtin_function_ext_scope (tree decl)
cxx_builtin_function_ext_scope (tree decl)
{
{
 
 
  tree          id = DECL_NAME (decl);
  tree          id = DECL_NAME (decl);
  const char *name = IDENTIFIER_POINTER (id);
  const char *name = IDENTIFIER_POINTER (id);
  /* All builtins that don't begin with an '_' should additionally
  /* All builtins that don't begin with an '_' should additionally
     go in the 'std' namespace.  */
     go in the 'std' namespace.  */
  if (name[0] != '_')
  if (name[0] != '_')
    {
    {
      tree decl2 = copy_node(decl);
      tree decl2 = copy_node(decl);
      push_namespace (std_identifier);
      push_namespace (std_identifier);
      builtin_function_1 (decl2, std_node, true);
      builtin_function_1 (decl2, std_node, true);
      pop_namespace ();
      pop_namespace ();
    }
    }
 
 
  return builtin_function_1 (decl, NULL_TREE, true);
  return builtin_function_1 (decl, NULL_TREE, true);
}
}
 
 
/* Generate a FUNCTION_DECL with the typical flags for a runtime library
/* Generate a FUNCTION_DECL with the typical flags for a runtime library
   function.  Not called directly.  */
   function.  Not called directly.  */
 
 
static tree
static tree
build_library_fn_1 (tree name, enum tree_code operator_code, tree type)
build_library_fn_1 (tree name, enum tree_code operator_code, tree type)
{
{
  tree fn = build_lang_decl (FUNCTION_DECL, name, type);
  tree fn = build_lang_decl (FUNCTION_DECL, name, type);
  DECL_EXTERNAL (fn) = 1;
  DECL_EXTERNAL (fn) = 1;
  TREE_PUBLIC (fn) = 1;
  TREE_PUBLIC (fn) = 1;
  DECL_ARTIFICIAL (fn) = 1;
  DECL_ARTIFICIAL (fn) = 1;
  SET_OVERLOADED_OPERATOR_CODE (fn, operator_code);
  SET_OVERLOADED_OPERATOR_CODE (fn, operator_code);
  SET_DECL_LANGUAGE (fn, lang_c);
  SET_DECL_LANGUAGE (fn, lang_c);
  /* Runtime library routines are, by definition, available in an
  /* Runtime library routines are, by definition, available in an
     external shared object.  */
     external shared object.  */
  DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY_SPECIFIED (fn) = 1;
  DECL_VISIBILITY_SPECIFIED (fn) = 1;
  return fn;
  return fn;
}
}
 
 
/* Returns the _DECL for a library function with C linkage.
/* Returns the _DECL for a library function with C linkage.
   We assume that such functions never throw; if this is incorrect,
   We assume that such functions never throw; if this is incorrect,
   callers should unset TREE_NOTHROW.  */
   callers should unset TREE_NOTHROW.  */
 
 
static tree
static tree
build_library_fn (tree name, tree type)
build_library_fn (tree name, tree type)
{
{
  tree fn = build_library_fn_1 (name, ERROR_MARK, type);
  tree fn = build_library_fn_1 (name, ERROR_MARK, type);
  TREE_NOTHROW (fn) = 1;
  TREE_NOTHROW (fn) = 1;
  return fn;
  return fn;
}
}
 
 
/* Returns the _DECL for a library function with C++ linkage.  */
/* Returns the _DECL for a library function with C++ linkage.  */
 
 
static tree
static tree
build_cp_library_fn (tree name, enum tree_code operator_code, tree type)
build_cp_library_fn (tree name, enum tree_code operator_code, tree type)
{
{
  tree fn = build_library_fn_1 (name, operator_code, type);
  tree fn = build_library_fn_1 (name, operator_code, type);
  TREE_NOTHROW (fn) = TYPE_NOTHROW_P (type);
  TREE_NOTHROW (fn) = TYPE_NOTHROW_P (type);
  DECL_CONTEXT (fn) = FROB_CONTEXT (current_namespace);
  DECL_CONTEXT (fn) = FROB_CONTEXT (current_namespace);
  SET_DECL_LANGUAGE (fn, lang_cplusplus);
  SET_DECL_LANGUAGE (fn, lang_cplusplus);
  return fn;
  return fn;
}
}
 
 
/* Like build_library_fn, but takes a C string instead of an
/* Like build_library_fn, but takes a C string instead of an
   IDENTIFIER_NODE.  */
   IDENTIFIER_NODE.  */
 
 
tree
tree
build_library_fn_ptr (const char* name, tree type)
build_library_fn_ptr (const char* name, tree type)
{
{
  return build_library_fn (get_identifier (name), type);
  return build_library_fn (get_identifier (name), type);
}
}
 
 
/* Like build_cp_library_fn, but takes a C string instead of an
/* Like build_cp_library_fn, but takes a C string instead of an
   IDENTIFIER_NODE.  */
   IDENTIFIER_NODE.  */
 
 
tree
tree
build_cp_library_fn_ptr (const char* name, tree type)
build_cp_library_fn_ptr (const char* name, tree type)
{
{
  return build_cp_library_fn (get_identifier (name), ERROR_MARK, type);
  return build_cp_library_fn (get_identifier (name), ERROR_MARK, type);
}
}
 
 
/* Like build_library_fn, but also pushes the function so that we will
/* Like build_library_fn, but also pushes the function so that we will
   be able to find it via IDENTIFIER_GLOBAL_VALUE.  Also, the function
   be able to find it via IDENTIFIER_GLOBAL_VALUE.  Also, the function
   may throw exceptions listed in RAISES.  */
   may throw exceptions listed in RAISES.  */
 
 
tree
tree
push_library_fn (tree name, tree type, tree raises)
push_library_fn (tree name, tree type, tree raises)
{
{
  tree fn;
  tree fn;
 
 
  if (raises)
  if (raises)
    type = build_exception_variant (type, raises);
    type = build_exception_variant (type, raises);
 
 
  fn = build_library_fn (name, type);
  fn = build_library_fn (name, type);
  pushdecl_top_level (fn);
  pushdecl_top_level (fn);
  return fn;
  return fn;
}
}
 
 
/* Like build_cp_library_fn, but also pushes the function so that it
/* Like build_cp_library_fn, but also pushes the function so that it
   will be found by normal lookup.  */
   will be found by normal lookup.  */
 
 
static tree
static tree
push_cp_library_fn (enum tree_code operator_code, tree type)
push_cp_library_fn (enum tree_code operator_code, tree type)
{
{
  tree fn = build_cp_library_fn (ansi_opname (operator_code),
  tree fn = build_cp_library_fn (ansi_opname (operator_code),
                                 operator_code,
                                 operator_code,
                                 type);
                                 type);
  pushdecl (fn);
  pushdecl (fn);
  return fn;
  return fn;
}
}
 
 
/* Like push_library_fn, but takes a TREE_LIST of parm types rather than
/* Like push_library_fn, but takes a TREE_LIST of parm types rather than
   a FUNCTION_TYPE.  */
   a FUNCTION_TYPE.  */
 
 
tree
tree
push_void_library_fn (tree name, tree parmtypes)
push_void_library_fn (tree name, tree parmtypes)
{
{
  tree type = build_function_type (void_type_node, parmtypes);
  tree type = build_function_type (void_type_node, parmtypes);
  return push_library_fn (name, type, NULL_TREE);
  return push_library_fn (name, type, NULL_TREE);
}
}
 
 
/* Like push_library_fn, but also note that this function throws
/* Like push_library_fn, but also note that this function throws
   and does not return.  Used for __throw_foo and the like.  */
   and does not return.  Used for __throw_foo and the like.  */
 
 
tree
tree
push_throw_library_fn (tree name, tree type)
push_throw_library_fn (tree name, tree type)
{
{
  tree fn = push_library_fn (name, type, NULL_TREE);
  tree fn = push_library_fn (name, type, NULL_TREE);
  TREE_THIS_VOLATILE (fn) = 1;
  TREE_THIS_VOLATILE (fn) = 1;
  TREE_NOTHROW (fn) = 0;
  TREE_NOTHROW (fn) = 0;
  return fn;
  return fn;
}
}


/* When we call finish_struct for an anonymous union, we create
/* When we call finish_struct for an anonymous union, we create
   default copy constructors and such.  But, an anonymous union
   default copy constructors and such.  But, an anonymous union
   shouldn't have such things; this function undoes the damage to the
   shouldn't have such things; this function undoes the damage to the
   anonymous union type T.
   anonymous union type T.
 
 
   (The reason that we create the synthesized methods is that we don't
   (The reason that we create the synthesized methods is that we don't
   distinguish `union { int i; }' from `typedef union { int i; } U'.
   distinguish `union { int i; }' from `typedef union { int i; } U'.
   The first is an anonymous union; the second is just an ordinary
   The first is an anonymous union; the second is just an ordinary
   union type.)  */
   union type.)  */
 
 
void
void
fixup_anonymous_aggr (tree t)
fixup_anonymous_aggr (tree t)
{
{
  tree *q;
  tree *q;
 
 
  /* Wipe out memory of synthesized methods.  */
  /* Wipe out memory of synthesized methods.  */
  TYPE_HAS_USER_CONSTRUCTOR (t) = 0;
  TYPE_HAS_USER_CONSTRUCTOR (t) = 0;
  TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0;
  TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0;
  TYPE_HAS_INIT_REF (t) = 0;
  TYPE_HAS_INIT_REF (t) = 0;
  TYPE_HAS_CONST_INIT_REF (t) = 0;
  TYPE_HAS_CONST_INIT_REF (t) = 0;
  TYPE_HAS_ASSIGN_REF (t) = 0;
  TYPE_HAS_ASSIGN_REF (t) = 0;
  TYPE_HAS_CONST_ASSIGN_REF (t) = 0;
  TYPE_HAS_CONST_ASSIGN_REF (t) = 0;
 
 
  /* Splice the implicitly generated functions out of the TYPE_METHODS
  /* Splice the implicitly generated functions out of the TYPE_METHODS
     list.  */
     list.  */
  q = &TYPE_METHODS (t);
  q = &TYPE_METHODS (t);
  while (*q)
  while (*q)
    {
    {
      if (DECL_ARTIFICIAL (*q))
      if (DECL_ARTIFICIAL (*q))
        *q = TREE_CHAIN (*q);
        *q = TREE_CHAIN (*q);
      else
      else
        q = &TREE_CHAIN (*q);
        q = &TREE_CHAIN (*q);
    }
    }
 
 
  /* ISO C++ 9.5.3.  Anonymous unions may not have function members.  */
  /* ISO C++ 9.5.3.  Anonymous unions may not have function members.  */
  if (TYPE_METHODS (t))
  if (TYPE_METHODS (t))
    {
    {
      tree decl = TYPE_MAIN_DECL (t);
      tree decl = TYPE_MAIN_DECL (t);
 
 
      if (TREE_CODE (t) != UNION_TYPE)
      if (TREE_CODE (t) != UNION_TYPE)
        error_at (DECL_SOURCE_LOCATION (decl),
        error_at (DECL_SOURCE_LOCATION (decl),
                  "an anonymous struct cannot have function members");
                  "an anonymous struct cannot have function members");
      else
      else
        error_at (DECL_SOURCE_LOCATION (decl),
        error_at (DECL_SOURCE_LOCATION (decl),
                  "an anonymous union cannot have function members");
                  "an anonymous union cannot have function members");
    }
    }
 
 
  /* Anonymous aggregates cannot have fields with ctors, dtors or complex
  /* Anonymous aggregates cannot have fields with ctors, dtors or complex
     assignment operators (because they cannot have these methods themselves).
     assignment operators (because they cannot have these methods themselves).
     For anonymous unions this is already checked because they are not allowed
     For anonymous unions this is already checked because they are not allowed
     in any union, otherwise we have to check it.  */
     in any union, otherwise we have to check it.  */
  if (TREE_CODE (t) != UNION_TYPE)
  if (TREE_CODE (t) != UNION_TYPE)
    {
    {
      tree field, type;
      tree field, type;
 
 
      for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
      for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
        if (TREE_CODE (field) == FIELD_DECL)
        if (TREE_CODE (field) == FIELD_DECL)
          {
          {
            type = TREE_TYPE (field);
            type = TREE_TYPE (field);
            if (CLASS_TYPE_P (type))
            if (CLASS_TYPE_P (type))
              {
              {
                if (TYPE_NEEDS_CONSTRUCTING (type))
                if (TYPE_NEEDS_CONSTRUCTING (type))
                  error ("member %q+#D with constructor not allowed "
                  error ("member %q+#D with constructor not allowed "
                         "in anonymous aggregate", field);
                         "in anonymous aggregate", field);
                if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
                if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
                  error ("member %q+#D with destructor not allowed "
                  error ("member %q+#D with destructor not allowed "
                         "in anonymous aggregate", field);
                         "in anonymous aggregate", field);
                if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
                if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
                  error ("member %q+#D with copy assignment operator "
                  error ("member %q+#D with copy assignment operator "
                         "not allowed in anonymous aggregate", field);
                         "not allowed in anonymous aggregate", field);
              }
              }
          }
          }
    }
    }
}
}
 
 
/* Make sure that a declaration with no declarator is well-formed, i.e.
/* Make sure that a declaration with no declarator is well-formed, i.e.
   just declares a tagged type or anonymous union.
   just declares a tagged type or anonymous union.
 
 
   Returns the type declared; or NULL_TREE if none.  */
   Returns the type declared; or NULL_TREE if none.  */
 
 
tree
tree
check_tag_decl (cp_decl_specifier_seq *declspecs)
check_tag_decl (cp_decl_specifier_seq *declspecs)
{
{
  int saw_friend = declspecs->specs[(int)ds_friend] != 0;
  int saw_friend = declspecs->specs[(int)ds_friend] != 0;
  int saw_typedef = declspecs->specs[(int)ds_typedef] != 0;
  int saw_typedef = declspecs->specs[(int)ds_typedef] != 0;
  /* If a class, struct, or enum type is declared by the DECLSPECS
  /* If a class, struct, or enum type is declared by the DECLSPECS
     (i.e, if a class-specifier, enum-specifier, or non-typename
     (i.e, if a class-specifier, enum-specifier, or non-typename
     elaborated-type-specifier appears in the DECLSPECS),
     elaborated-type-specifier appears in the DECLSPECS),
     DECLARED_TYPE is set to the corresponding type.  */
     DECLARED_TYPE is set to the corresponding type.  */
  tree declared_type = NULL_TREE;
  tree declared_type = NULL_TREE;
  bool error_p = false;
  bool error_p = false;
 
 
  if (declspecs->multiple_types_p)
  if (declspecs->multiple_types_p)
    error ("multiple types in one declaration");
    error ("multiple types in one declaration");
  else if (declspecs->redefined_builtin_type)
  else if (declspecs->redefined_builtin_type)
    {
    {
      if (!in_system_header)
      if (!in_system_header)
        permerror (input_location, "redeclaration of C++ built-in type %qT",
        permerror (input_location, "redeclaration of C++ built-in type %qT",
                   declspecs->redefined_builtin_type);
                   declspecs->redefined_builtin_type);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (declspecs->type
  if (declspecs->type
      && TYPE_P (declspecs->type)
      && TYPE_P (declspecs->type)
      && ((TREE_CODE (declspecs->type) != TYPENAME_TYPE
      && ((TREE_CODE (declspecs->type) != TYPENAME_TYPE
           && MAYBE_CLASS_TYPE_P (declspecs->type))
           && MAYBE_CLASS_TYPE_P (declspecs->type))
          || TREE_CODE (declspecs->type) == ENUMERAL_TYPE))
          || TREE_CODE (declspecs->type) == ENUMERAL_TYPE))
    declared_type = declspecs->type;
    declared_type = declspecs->type;
  else if (declspecs->type == error_mark_node)
  else if (declspecs->type == error_mark_node)
    error_p = true;
    error_p = true;
  if (declared_type == NULL_TREE && ! saw_friend && !error_p)
  if (declared_type == NULL_TREE && ! saw_friend && !error_p)
    permerror (input_location, "declaration does not declare anything");
    permerror (input_location, "declaration does not declare anything");
  /* Check for an anonymous union.  */
  /* Check for an anonymous union.  */
  else if (declared_type && RECORD_OR_UNION_CODE_P (TREE_CODE (declared_type))
  else if (declared_type && RECORD_OR_UNION_CODE_P (TREE_CODE (declared_type))
           && TYPE_ANONYMOUS_P (declared_type))
           && TYPE_ANONYMOUS_P (declared_type))
    {
    {
      /* 7/3 In a simple-declaration, the optional init-declarator-list
      /* 7/3 In a simple-declaration, the optional init-declarator-list
         can be omitted only when declaring a class (clause 9) or
         can be omitted only when declaring a class (clause 9) or
         enumeration (7.2), that is, when the decl-specifier-seq contains
         enumeration (7.2), that is, when the decl-specifier-seq contains
         either a class-specifier, an elaborated-type-specifier with
         either a class-specifier, an elaborated-type-specifier with
         a class-key (9.1), or an enum-specifier.  In these cases and
         a class-key (9.1), or an enum-specifier.  In these cases and
         whenever a class-specifier or enum-specifier is present in the
         whenever a class-specifier or enum-specifier is present in the
         decl-specifier-seq, the identifiers in these specifiers are among
         decl-specifier-seq, the identifiers in these specifiers are among
         the names being declared by the declaration (as class-name,
         the names being declared by the declaration (as class-name,
         enum-names, or enumerators, depending on the syntax).  In such
         enum-names, or enumerators, depending on the syntax).  In such
         cases, and except for the declaration of an unnamed bit-field (9.6),
         cases, and except for the declaration of an unnamed bit-field (9.6),
         the decl-specifier-seq shall introduce one or more names into the
         the decl-specifier-seq shall introduce one or more names into the
         program, or shall redeclare a name introduced by a previous
         program, or shall redeclare a name introduced by a previous
         declaration.  [Example:
         declaration.  [Example:
             enum { };                  // ill-formed
             enum { };                  // ill-formed
             typedef class { };         // ill-formed
             typedef class { };         // ill-formed
         --end example]  */
         --end example]  */
      if (saw_typedef)
      if (saw_typedef)
        {
        {
          error ("missing type-name in typedef-declaration");
          error ("missing type-name in typedef-declaration");
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      /* Anonymous unions are objects, so they can have specifiers.  */;
      /* Anonymous unions are objects, so they can have specifiers.  */;
      SET_ANON_AGGR_TYPE_P (declared_type);
      SET_ANON_AGGR_TYPE_P (declared_type);
 
 
      if (TREE_CODE (declared_type) != UNION_TYPE && !in_system_header)
      if (TREE_CODE (declared_type) != UNION_TYPE && !in_system_header)
        pedwarn (input_location, OPT_pedantic, "ISO C++ prohibits anonymous structs");
        pedwarn (input_location, OPT_pedantic, "ISO C++ prohibits anonymous structs");
    }
    }
 
 
  else
  else
    {
    {
      if (declspecs->specs[(int)ds_inline]
      if (declspecs->specs[(int)ds_inline]
          || declspecs->specs[(int)ds_virtual])
          || declspecs->specs[(int)ds_virtual])
        error ("%qs can only be specified for functions",
        error ("%qs can only be specified for functions",
               declspecs->specs[(int)ds_inline]
               declspecs->specs[(int)ds_inline]
               ? "inline" : "virtual");
               ? "inline" : "virtual");
      else if (saw_friend
      else if (saw_friend
               && (!current_class_type
               && (!current_class_type
                   || current_scope () != current_class_type))
                   || current_scope () != current_class_type))
        error ("%<friend%> can only be specified inside a class");
        error ("%<friend%> can only be specified inside a class");
      else if (declspecs->specs[(int)ds_explicit])
      else if (declspecs->specs[(int)ds_explicit])
        error ("%<explicit%> can only be specified for constructors");
        error ("%<explicit%> can only be specified for constructors");
      else if (declspecs->storage_class)
      else if (declspecs->storage_class)
        error ("a storage class can only be specified for objects "
        error ("a storage class can only be specified for objects "
               "and functions");
               "and functions");
      else if (declspecs->specs[(int)ds_const]
      else if (declspecs->specs[(int)ds_const]
               || declspecs->specs[(int)ds_volatile]
               || declspecs->specs[(int)ds_volatile]
               || declspecs->specs[(int)ds_restrict]
               || declspecs->specs[(int)ds_restrict]
               || declspecs->specs[(int)ds_thread])
               || declspecs->specs[(int)ds_thread])
        error ("qualifiers can only be specified for objects "
        error ("qualifiers can only be specified for objects "
               "and functions");
               "and functions");
      else if (saw_typedef)
      else if (saw_typedef)
        warning (0, "%<typedef%> was ignored in this declaration");
        warning (0, "%<typedef%> was ignored in this declaration");
      else if (declspecs->specs[(int) ds_constexpr])
      else if (declspecs->specs[(int) ds_constexpr])
        error ("%<constexpr> cannot be used for type declarations");
        error ("%<constexpr> cannot be used for type declarations");
    }
    }
 
 
  return declared_type;
  return declared_type;
}
}
 
 
/* Called when a declaration is seen that contains no names to declare.
/* Called when a declaration is seen that contains no names to declare.
   If its type is a reference to a structure, union or enum inherited
   If its type is a reference to a structure, union or enum inherited
   from a containing scope, shadow that tag name for the current scope
   from a containing scope, shadow that tag name for the current scope
   with a forward reference.
   with a forward reference.
   If its type defines a new named structure or union
   If its type defines a new named structure or union
   or defines an enum, it is valid but we need not do anything here.
   or defines an enum, it is valid but we need not do anything here.
   Otherwise, it is an error.
   Otherwise, it is an error.
 
 
   C++: may have to grok the declspecs to learn about static,
   C++: may have to grok the declspecs to learn about static,
   complain for anonymous unions.
   complain for anonymous unions.
 
 
   Returns the TYPE declared -- or NULL_TREE if none.  */
   Returns the TYPE declared -- or NULL_TREE if none.  */
 
 
tree
tree
shadow_tag (cp_decl_specifier_seq *declspecs)
shadow_tag (cp_decl_specifier_seq *declspecs)
{
{
  tree t = check_tag_decl (declspecs);
  tree t = check_tag_decl (declspecs);
 
 
  if (!t)
  if (!t)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (declspecs->attributes)
  if (declspecs->attributes)
    {
    {
      warning (0, "attribute ignored in declaration of %q+#T", t);
      warning (0, "attribute ignored in declaration of %q+#T", t);
      warning (0, "attribute for %q+#T must follow the %qs keyword",
      warning (0, "attribute for %q+#T must follow the %qs keyword",
               t, class_key_or_enum_as_string (t));
               t, class_key_or_enum_as_string (t));
 
 
    }
    }
 
 
  if (maybe_process_partial_specialization (t) == error_mark_node)
  if (maybe_process_partial_specialization (t) == error_mark_node)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* This is where the variables in an anonymous union are
  /* This is where the variables in an anonymous union are
     declared.  An anonymous union declaration looks like:
     declared.  An anonymous union declaration looks like:
     union { ... } ;
     union { ... } ;
     because there is no declarator after the union, the parser
     because there is no declarator after the union, the parser
     sends that declaration here.  */
     sends that declaration here.  */
  if (ANON_AGGR_TYPE_P (t))
  if (ANON_AGGR_TYPE_P (t))
    {
    {
      fixup_anonymous_aggr (t);
      fixup_anonymous_aggr (t);
 
 
      if (TYPE_FIELDS (t))
      if (TYPE_FIELDS (t))
        {
        {
          tree decl = grokdeclarator (/*declarator=*/NULL,
          tree decl = grokdeclarator (/*declarator=*/NULL,
                                      declspecs, NORMAL, 0, NULL);
                                      declspecs, NORMAL, 0, NULL);
          finish_anon_union (decl);
          finish_anon_union (decl);
        }
        }
    }
    }
 
 
  return t;
  return t;
}
}


/* Decode a "typename", such as "int **", returning a ..._TYPE node.  */
/* Decode a "typename", such as "int **", returning a ..._TYPE node.  */
 
 
tree
tree
groktypename (cp_decl_specifier_seq *type_specifiers,
groktypename (cp_decl_specifier_seq *type_specifiers,
              const cp_declarator *declarator,
              const cp_declarator *declarator,
              bool is_template_arg)
              bool is_template_arg)
{
{
  tree attrs;
  tree attrs;
  tree type;
  tree type;
  enum decl_context context
  enum decl_context context
    = is_template_arg ? TEMPLATE_TYPE_ARG : TYPENAME;
    = is_template_arg ? TEMPLATE_TYPE_ARG : TYPENAME;
  attrs = type_specifiers->attributes;
  attrs = type_specifiers->attributes;
  type_specifiers->attributes = NULL_TREE;
  type_specifiers->attributes = NULL_TREE;
  type = grokdeclarator (declarator, type_specifiers, context, 0, &attrs);
  type = grokdeclarator (declarator, type_specifiers, context, 0, &attrs);
  if (attrs && type != error_mark_node)
  if (attrs && type != error_mark_node)
    {
    {
      if (CLASS_TYPE_P (type))
      if (CLASS_TYPE_P (type))
        warning (OPT_Wattributes, "ignoring attributes applied to class type %qT "
        warning (OPT_Wattributes, "ignoring attributes applied to class type %qT "
                 "outside of definition", type);
                 "outside of definition", type);
      else if (MAYBE_CLASS_TYPE_P (type))
      else if (MAYBE_CLASS_TYPE_P (type))
        /* A template type parameter or other dependent type.  */
        /* A template type parameter or other dependent type.  */
        warning (OPT_Wattributes, "ignoring attributes applied to dependent "
        warning (OPT_Wattributes, "ignoring attributes applied to dependent "
                 "type %qT without an associated declaration", type);
                 "type %qT without an associated declaration", type);
      else
      else
        cplus_decl_attributes (&type, attrs, 0);
        cplus_decl_attributes (&type, attrs, 0);
    }
    }
  return type;
  return type;
}
}
 
 
/* Process a DECLARATOR for a function-scope variable declaration,
/* Process a DECLARATOR for a function-scope variable declaration,
   namespace-scope variable declaration, or function declaration.
   namespace-scope variable declaration, or function declaration.
   (Function definitions go through start_function; class member
   (Function definitions go through start_function; class member
   declarations appearing in the body of the class go through
   declarations appearing in the body of the class go through
   grokfield.)  The DECL corresponding to the DECLARATOR is returned.
   grokfield.)  The DECL corresponding to the DECLARATOR is returned.
   If an error occurs, the error_mark_node is returned instead.
   If an error occurs, the error_mark_node is returned instead.
 
 
   DECLSPECS are the decl-specifiers for the declaration.  INITIALIZED is
   DECLSPECS are the decl-specifiers for the declaration.  INITIALIZED is
   SD_INITIALIZED if an explicit initializer is present, or SD_DEFAULTED
   SD_INITIALIZED if an explicit initializer is present, or SD_DEFAULTED
   for an explicitly defaulted function, or SD_DELETED for an explicitly
   for an explicitly defaulted function, or SD_DELETED for an explicitly
   deleted function, but 0 (SD_UNINITIALIZED) if this is a variable
   deleted function, but 0 (SD_UNINITIALIZED) if this is a variable
   implicitly initialized via a default constructor.  ATTRIBUTES and
   implicitly initialized via a default constructor.  ATTRIBUTES and
   PREFIX_ATTRIBUTES are GNU attributes associated with this declaration.
   PREFIX_ATTRIBUTES are GNU attributes associated with this declaration.
   *PUSHED_SCOPE_P is set to the scope entered in this function, if any; if
   *PUSHED_SCOPE_P is set to the scope entered in this function, if any; if
   set, the caller is responsible for calling pop_scope.  */
   set, the caller is responsible for calling pop_scope.  */
 
 
tree
tree
start_decl (const cp_declarator *declarator,
start_decl (const cp_declarator *declarator,
            cp_decl_specifier_seq *declspecs,
            cp_decl_specifier_seq *declspecs,
            int initialized,
            int initialized,
            tree attributes,
            tree attributes,
            tree prefix_attributes,
            tree prefix_attributes,
            tree *pushed_scope_p)
            tree *pushed_scope_p)
{
{
  tree decl;
  tree decl;
  tree context;
  tree context;
  bool was_public;
  bool was_public;
  int flags;
  int flags;
 
 
  *pushed_scope_p = NULL_TREE;
  *pushed_scope_p = NULL_TREE;
 
 
  /* An object declared as __attribute__((deprecated)) suppresses
  /* An object declared as __attribute__((deprecated)) suppresses
     warnings of uses of other deprecated items.  */
     warnings of uses of other deprecated items.  */
  if (lookup_attribute ("deprecated", attributes))
  if (lookup_attribute ("deprecated", attributes))
    deprecated_state = DEPRECATED_SUPPRESS;
    deprecated_state = DEPRECATED_SUPPRESS;
 
 
  attributes = chainon (attributes, prefix_attributes);
  attributes = chainon (attributes, prefix_attributes);
 
 
  decl = grokdeclarator (declarator, declspecs, NORMAL, initialized,
  decl = grokdeclarator (declarator, declspecs, NORMAL, initialized,
                         &attributes);
                         &attributes);
 
 
  deprecated_state = DEPRECATED_NORMAL;
  deprecated_state = DEPRECATED_NORMAL;
 
 
  if (decl == NULL_TREE || TREE_CODE (decl) == VOID_TYPE
  if (decl == NULL_TREE || TREE_CODE (decl) == VOID_TYPE
      || decl == error_mark_node)
      || decl == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  context = DECL_CONTEXT (decl);
  context = DECL_CONTEXT (decl);
 
 
  if (context)
  if (context)
    {
    {
      *pushed_scope_p = push_scope (context);
      *pushed_scope_p = push_scope (context);
 
 
      /* We are only interested in class contexts, later.  */
      /* We are only interested in class contexts, later.  */
      if (TREE_CODE (context) == NAMESPACE_DECL)
      if (TREE_CODE (context) == NAMESPACE_DECL)
        context = NULL_TREE;
        context = NULL_TREE;
    }
    }
 
 
  if (initialized)
  if (initialized)
    /* Is it valid for this decl to have an initializer at all?
    /* Is it valid for this decl to have an initializer at all?
       If not, set INITIALIZED to zero, which will indirectly
       If not, set INITIALIZED to zero, which will indirectly
       tell `cp_finish_decl' to ignore the initializer once it is parsed.  */
       tell `cp_finish_decl' to ignore the initializer once it is parsed.  */
    switch (TREE_CODE (decl))
    switch (TREE_CODE (decl))
      {
      {
      case TYPE_DECL:
      case TYPE_DECL:
        error ("typedef %qD is initialized (use decltype instead)", decl);
        error ("typedef %qD is initialized (use decltype instead)", decl);
        return error_mark_node;
        return error_mark_node;
 
 
      case FUNCTION_DECL:
      case FUNCTION_DECL:
        if (initialized == SD_DELETED)
        if (initialized == SD_DELETED)
          /* We'll handle the rest of the semantics later, but we need to
          /* We'll handle the rest of the semantics later, but we need to
             set this now so it's visible to duplicate_decls.  */
             set this now so it's visible to duplicate_decls.  */
          DECL_DELETED_FN (decl) = 1;
          DECL_DELETED_FN (decl) = 1;
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
 
 
  if (initialized)
  if (initialized)
    {
    {
      if (! toplevel_bindings_p ()
      if (! toplevel_bindings_p ()
          && DECL_EXTERNAL (decl))
          && DECL_EXTERNAL (decl))
        warning (0, "declaration of %q#D has %<extern%> and is initialized",
        warning (0, "declaration of %q#D has %<extern%> and is initialized",
                 decl);
                 decl);
      DECL_EXTERNAL (decl) = 0;
      DECL_EXTERNAL (decl) = 0;
      if (toplevel_bindings_p ())
      if (toplevel_bindings_p ())
        TREE_STATIC (decl) = 1;
        TREE_STATIC (decl) = 1;
    }
    }
 
 
  /* If this is a typedef that names the class for linkage purposes
  /* If this is a typedef that names the class for linkage purposes
     (7.1.3p8), apply any attributes directly to the type.  */
     (7.1.3p8), apply any attributes directly to the type.  */
  if (TREE_CODE (decl) == TYPE_DECL
  if (TREE_CODE (decl) == TYPE_DECL
      && TAGGED_TYPE_P (TREE_TYPE (decl))
      && TAGGED_TYPE_P (TREE_TYPE (decl))
      && decl == TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
      && decl == TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
    flags = ATTR_FLAG_TYPE_IN_PLACE;
    flags = ATTR_FLAG_TYPE_IN_PLACE;
  else
  else
    flags = 0;
    flags = 0;
 
 
  /* Set attributes here so if duplicate decl, will have proper attributes.  */
  /* Set attributes here so if duplicate decl, will have proper attributes.  */
  cplus_decl_attributes (&decl, attributes, flags);
  cplus_decl_attributes (&decl, attributes, flags);
 
 
  /* Dllimported symbols cannot be defined.  Static data members (which
  /* Dllimported symbols cannot be defined.  Static data members (which
     can be initialized in-class and dllimported) go through grokfield,
     can be initialized in-class and dllimported) go through grokfield,
     not here, so we don't need to exclude those decls when checking for
     not here, so we don't need to exclude those decls when checking for
     a definition.  */
     a definition.  */
  if (initialized && DECL_DLLIMPORT_P (decl))
  if (initialized && DECL_DLLIMPORT_P (decl))
    {
    {
      error ("definition of %q#D is marked %<dllimport%>", decl);
      error ("definition of %q#D is marked %<dllimport%>", decl);
      DECL_DLLIMPORT_P (decl) = 0;
      DECL_DLLIMPORT_P (decl) = 0;
    }
    }
 
 
  /* If #pragma weak was used, mark the decl weak now.  */
  /* If #pragma weak was used, mark the decl weak now.  */
  maybe_apply_pragma_weak (decl);
  maybe_apply_pragma_weak (decl);
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL
  if (TREE_CODE (decl) == FUNCTION_DECL
      && DECL_DECLARED_INLINE_P (decl)
      && DECL_DECLARED_INLINE_P (decl)
      && DECL_UNINLINABLE (decl)
      && DECL_UNINLINABLE (decl)
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
    warning (0, "inline function %q+D given attribute noinline", decl);
    warning (0, "inline function %q+D given attribute noinline", decl);
 
 
  if (context && COMPLETE_TYPE_P (complete_type (context)))
  if (context && COMPLETE_TYPE_P (complete_type (context)))
    {
    {
      if (TREE_CODE (decl) == VAR_DECL)
      if (TREE_CODE (decl) == VAR_DECL)
        {
        {
          tree field = lookup_field (context, DECL_NAME (decl), 0, false);
          tree field = lookup_field (context, DECL_NAME (decl), 0, false);
          if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL)
          if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL)
            error ("%q#D is not a static member of %q#T", decl, context);
            error ("%q#D is not a static member of %q#T", decl, context);
          else
          else
            {
            {
              if (DECL_CONTEXT (field) != context)
              if (DECL_CONTEXT (field) != context)
                {
                {
                  if (!same_type_p (DECL_CONTEXT (field), context))
                  if (!same_type_p (DECL_CONTEXT (field), context))
                    permerror (input_location, "ISO C++ does not permit %<%T::%D%> "
                    permerror (input_location, "ISO C++ does not permit %<%T::%D%> "
                               "to be defined as %<%T::%D%>",
                               "to be defined as %<%T::%D%>",
                               DECL_CONTEXT (field), DECL_NAME (decl),
                               DECL_CONTEXT (field), DECL_NAME (decl),
                               context, DECL_NAME (decl));
                               context, DECL_NAME (decl));
                  DECL_CONTEXT (decl) = DECL_CONTEXT (field);
                  DECL_CONTEXT (decl) = DECL_CONTEXT (field);
                }
                }
              if (processing_specialization
              if (processing_specialization
                  && template_class_depth (context) == 0
                  && template_class_depth (context) == 0
                  && CLASSTYPE_TEMPLATE_SPECIALIZATION (context))
                  && CLASSTYPE_TEMPLATE_SPECIALIZATION (context))
                error ("template header not allowed in member definition "
                error ("template header not allowed in member definition "
                       "of explicitly specialized class");
                       "of explicitly specialized class");
              /* Static data member are tricky; an in-class initialization
              /* Static data member are tricky; an in-class initialization
                 still doesn't provide a definition, so the in-class
                 still doesn't provide a definition, so the in-class
                 declaration will have DECL_EXTERNAL set, but will have an
                 declaration will have DECL_EXTERNAL set, but will have an
                 initialization.  Thus, duplicate_decls won't warn
                 initialization.  Thus, duplicate_decls won't warn
                 about this situation, and so we check here.  */
                 about this situation, and so we check here.  */
              if (initialized && DECL_INITIALIZED_IN_CLASS_P (field))
              if (initialized && DECL_INITIALIZED_IN_CLASS_P (field))
                error ("duplicate initialization of %qD", decl);
                error ("duplicate initialization of %qD", decl);
              if (duplicate_decls (decl, field, /*newdecl_is_friend=*/false))
              if (duplicate_decls (decl, field, /*newdecl_is_friend=*/false))
                decl = field;
                decl = field;
              if (declspecs->specs[(int) ds_constexpr]
              if (declspecs->specs[(int) ds_constexpr]
                  && !DECL_DECLARED_CONSTEXPR_P (field))
                  && !DECL_DECLARED_CONSTEXPR_P (field))
                error ("%qD declared %<constexpr%> outside its class", field);
                error ("%qD declared %<constexpr%> outside its class", field);
            }
            }
        }
        }
      else
      else
        {
        {
          tree field = check_classfn (context, decl,
          tree field = check_classfn (context, decl,
                                      (processing_template_decl
                                      (processing_template_decl
                                       > template_class_depth (context))
                                       > template_class_depth (context))
                                      ? current_template_parms
                                      ? current_template_parms
                                      : NULL_TREE);
                                      : NULL_TREE);
          if (field && field != error_mark_node
          if (field && field != error_mark_node
              && duplicate_decls (decl, field,
              && duplicate_decls (decl, field,
                                 /*newdecl_is_friend=*/false))
                                 /*newdecl_is_friend=*/false))
            decl = field;
            decl = field;
        }
        }
 
 
      /* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set.  */
      /* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set.  */
      DECL_IN_AGGR_P (decl) = 0;
      DECL_IN_AGGR_P (decl) = 0;
      /* Do not mark DECL as an explicit specialization if it was not
      /* Do not mark DECL as an explicit specialization if it was not
         already marked as an instantiation; a declaration should
         already marked as an instantiation; a declaration should
         never be marked as a specialization unless we know what
         never be marked as a specialization unless we know what
         template is being specialized.  */
         template is being specialized.  */
      if (DECL_LANG_SPECIFIC (decl) && DECL_USE_TEMPLATE (decl))
      if (DECL_LANG_SPECIFIC (decl) && DECL_USE_TEMPLATE (decl))
        {
        {
          SET_DECL_TEMPLATE_SPECIALIZATION (decl);
          SET_DECL_TEMPLATE_SPECIALIZATION (decl);
 
 
          /* [temp.expl.spec] An explicit specialization of a static data
          /* [temp.expl.spec] An explicit specialization of a static data
             member of a template is a definition if the declaration
             member of a template is a definition if the declaration
             includes an initializer; otherwise, it is a declaration.
             includes an initializer; otherwise, it is a declaration.
 
 
             We check for processing_specialization so this only applies
             We check for processing_specialization so this only applies
             to the new specialization syntax.  */
             to the new specialization syntax.  */
          if (!initialized && processing_specialization)
          if (!initialized && processing_specialization)
            DECL_EXTERNAL (decl) = 1;
            DECL_EXTERNAL (decl) = 1;
        }
        }
 
 
      if (DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl))
      if (DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl))
        permerror (input_location, "declaration of %q#D outside of class is not definition",
        permerror (input_location, "declaration of %q#D outside of class is not definition",
                   decl);
                   decl);
 
 
      if (!ensure_literal_type_for_constexpr_object (decl))
      if (!ensure_literal_type_for_constexpr_object (decl))
        return error_mark_node;
        return error_mark_node;
    }
    }
 
 
  was_public = TREE_PUBLIC (decl);
  was_public = TREE_PUBLIC (decl);
 
 
  /* Enter this declaration into the symbol table.  */
  /* Enter this declaration into the symbol table.  */
  decl = maybe_push_decl (decl);
  decl = maybe_push_decl (decl);
 
 
  if (processing_template_decl)
  if (processing_template_decl)
    decl = push_template_decl (decl);
    decl = push_template_decl (decl);
  if (decl == error_mark_node)
  if (decl == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  /* Tell the back end to use or not use .common as appropriate.  If we say
  /* Tell the back end to use or not use .common as appropriate.  If we say
     -fconserve-space, we want this to save .data space, at the expense of
     -fconserve-space, we want this to save .data space, at the expense of
     wrong semantics.  If we say -fno-conserve-space, we want this to
     wrong semantics.  If we say -fno-conserve-space, we want this to
     produce errors about redefs; to do this we force variables into the
     produce errors about redefs; to do this we force variables into the
     data segment.  */
     data segment.  */
  if (flag_conserve_space
  if (flag_conserve_space
      && TREE_CODE (decl) == VAR_DECL
      && TREE_CODE (decl) == VAR_DECL
      && TREE_PUBLIC (decl)
      && TREE_PUBLIC (decl)
      && !DECL_THREAD_LOCAL_P (decl)
      && !DECL_THREAD_LOCAL_P (decl)
      && !have_global_bss_p ())
      && !have_global_bss_p ())
    DECL_COMMON (decl) = 1;
    DECL_COMMON (decl) = 1;
 
 
  if (TREE_CODE (decl) == VAR_DECL
  if (TREE_CODE (decl) == VAR_DECL
      && DECL_NAMESPACE_SCOPE_P (decl) && !TREE_PUBLIC (decl) && !was_public
      && DECL_NAMESPACE_SCOPE_P (decl) && !TREE_PUBLIC (decl) && !was_public
      && !DECL_THIS_STATIC (decl) && !DECL_ARTIFICIAL (decl))
      && !DECL_THIS_STATIC (decl) && !DECL_ARTIFICIAL (decl))
    {
    {
      /* This is a const variable with implicit 'static'.  Set
      /* This is a const variable with implicit 'static'.  Set
         DECL_THIS_STATIC so we can tell it from variables that are
         DECL_THIS_STATIC so we can tell it from variables that are
         !TREE_PUBLIC because of the anonymous namespace.  */
         !TREE_PUBLIC because of the anonymous namespace.  */
      gcc_assert (cp_type_readonly (TREE_TYPE (decl)));
      gcc_assert (cp_type_readonly (TREE_TYPE (decl)));
      DECL_THIS_STATIC (decl) = 1;
      DECL_THIS_STATIC (decl) = 1;
    }
    }
 
 
  if (!processing_template_decl && TREE_CODE (decl) == VAR_DECL)
  if (!processing_template_decl && TREE_CODE (decl) == VAR_DECL)
    start_decl_1 (decl, initialized);
    start_decl_1 (decl, initialized);
 
 
  return decl;
  return decl;
}
}
 
 
/* Process the declaration of a variable DECL.  INITIALIZED is true
/* Process the declaration of a variable DECL.  INITIALIZED is true
   iff DECL is explicitly initialized.  (INITIALIZED is false if the
   iff DECL is explicitly initialized.  (INITIALIZED is false if the
   variable is initialized via an implicitly-called constructor.)
   variable is initialized via an implicitly-called constructor.)
   This function must be called for ordinary variables (including, for
   This function must be called for ordinary variables (including, for
   example, implicit instantiations of templates), but must not be
   example, implicit instantiations of templates), but must not be
   called for template declarations.  */
   called for template declarations.  */
 
 
void
void
start_decl_1 (tree decl, bool initialized)
start_decl_1 (tree decl, bool initialized)
{
{
  tree type;
  tree type;
  bool complete_p;
  bool complete_p;
  bool aggregate_definition_p;
  bool aggregate_definition_p;
 
 
  gcc_assert (!processing_template_decl);
  gcc_assert (!processing_template_decl);
 
 
  if (error_operand_p (decl))
  if (error_operand_p (decl))
    return;
    return;
 
 
  gcc_assert (TREE_CODE (decl) == VAR_DECL);
  gcc_assert (TREE_CODE (decl) == VAR_DECL);
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  complete_p = COMPLETE_TYPE_P (type);
  complete_p = COMPLETE_TYPE_P (type);
  aggregate_definition_p = MAYBE_CLASS_TYPE_P (type) && !DECL_EXTERNAL (decl);
  aggregate_definition_p = MAYBE_CLASS_TYPE_P (type) && !DECL_EXTERNAL (decl);
 
 
  /* If an explicit initializer is present, or if this is a definition
  /* If an explicit initializer is present, or if this is a definition
     of an aggregate, then we need a complete type at this point.
     of an aggregate, then we need a complete type at this point.
     (Scalars are always complete types, so there is nothing to
     (Scalars are always complete types, so there is nothing to
     check.)  This code just sets COMPLETE_P; errors (if necessary)
     check.)  This code just sets COMPLETE_P; errors (if necessary)
     are issued below.  */
     are issued below.  */
  if ((initialized || aggregate_definition_p)
  if ((initialized || aggregate_definition_p)
      && !complete_p
      && !complete_p
      && COMPLETE_TYPE_P (complete_type (type)))
      && COMPLETE_TYPE_P (complete_type (type)))
    {
    {
      complete_p = true;
      complete_p = true;
      /* We will not yet have set TREE_READONLY on DECL if the type
      /* We will not yet have set TREE_READONLY on DECL if the type
         was "const", but incomplete, before this point.  But, now, we
         was "const", but incomplete, before this point.  But, now, we
         have a complete type, so we can try again.  */
         have a complete type, so we can try again.  */
      cp_apply_type_quals_to_decl (cp_type_quals (type), decl);
      cp_apply_type_quals_to_decl (cp_type_quals (type), decl);
    }
    }
 
 
  if (initialized)
  if (initialized)
    /* Is it valid for this decl to have an initializer at all?  */
    /* Is it valid for this decl to have an initializer at all?  */
    {
    {
      /* Don't allow initializations for incomplete types except for
      /* Don't allow initializations for incomplete types except for
         arrays which might be completed by the initialization.  */
         arrays which might be completed by the initialization.  */
      if (complete_p)
      if (complete_p)
        ;                       /* A complete type is ok.  */
        ;                       /* A complete type is ok.  */
      else if (type_uses_auto (type))
      else if (type_uses_auto (type))
        ;                       /* An auto type is ok.  */
        ;                       /* An auto type is ok.  */
      else if (TREE_CODE (type) != ARRAY_TYPE)
      else if (TREE_CODE (type) != ARRAY_TYPE)
        {
        {
          error ("variable %q#D has initializer but incomplete type", decl);
          error ("variable %q#D has initializer but incomplete type", decl);
          type = TREE_TYPE (decl) = error_mark_node;
          type = TREE_TYPE (decl) = error_mark_node;
        }
        }
      else if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type))))
      else if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type))))
        {
        {
          if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl))
          if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl))
            error ("elements of array %q#D have incomplete type", decl);
            error ("elements of array %q#D have incomplete type", decl);
          /* else we already gave an error in start_decl.  */
          /* else we already gave an error in start_decl.  */
        }
        }
    }
    }
  else if (aggregate_definition_p && !complete_p)
  else if (aggregate_definition_p && !complete_p)
    {
    {
      if (type_uses_auto (type))
      if (type_uses_auto (type))
        error ("declaration of %q#D has no initializer", decl);
        error ("declaration of %q#D has no initializer", decl);
      else
      else
        error ("aggregate %q#D has incomplete type and cannot be defined",
        error ("aggregate %q#D has incomplete type and cannot be defined",
               decl);
               decl);
      /* Change the type so that assemble_variable will give
      /* Change the type so that assemble_variable will give
         DECL an rtl we can live with: (mem (const_int 0)).  */
         DECL an rtl we can live with: (mem (const_int 0)).  */
      type = TREE_TYPE (decl) = error_mark_node;
      type = TREE_TYPE (decl) = error_mark_node;
    }
    }
 
 
  /* Create a new scope to hold this declaration if necessary.
  /* Create a new scope to hold this declaration if necessary.
     Whether or not a new scope is necessary cannot be determined
     Whether or not a new scope is necessary cannot be determined
     until after the type has been completed; if the type is a
     until after the type has been completed; if the type is a
     specialization of a class template it is not until after
     specialization of a class template it is not until after
     instantiation has occurred that TYPE_HAS_NONTRIVIAL_DESTRUCTOR
     instantiation has occurred that TYPE_HAS_NONTRIVIAL_DESTRUCTOR
     will be set correctly.  */
     will be set correctly.  */
  maybe_push_cleanup_level (type);
  maybe_push_cleanup_level (type);
}
}
 
 
/* Handle initialization of references.  DECL, TYPE, and INIT have the
/* Handle initialization of references.  DECL, TYPE, and INIT have the
   same meaning as in cp_finish_decl.  *CLEANUP must be NULL on entry,
   same meaning as in cp_finish_decl.  *CLEANUP must be NULL on entry,
   but will be set to a new CLEANUP_STMT if a temporary is created
   but will be set to a new CLEANUP_STMT if a temporary is created
   that must be destroyed subsequently.
   that must be destroyed subsequently.
 
 
   Returns an initializer expression to use to initialize DECL, or
   Returns an initializer expression to use to initialize DECL, or
   NULL if the initialization can be performed statically.
   NULL if the initialization can be performed statically.
 
 
   Quotes on semantics can be found in ARM 8.4.3.  */
   Quotes on semantics can be found in ARM 8.4.3.  */
 
 
static tree
static tree
grok_reference_init (tree decl, tree type, tree init, tree *cleanup)
grok_reference_init (tree decl, tree type, tree init, tree *cleanup)
{
{
  tree tmp;
  tree tmp;
 
 
  if (init == NULL_TREE)
  if (init == NULL_TREE)
    {
    {
      if ((DECL_LANG_SPECIFIC (decl) == 0
      if ((DECL_LANG_SPECIFIC (decl) == 0
           || DECL_IN_AGGR_P (decl) == 0)
           || DECL_IN_AGGR_P (decl) == 0)
          && ! DECL_THIS_EXTERN (decl))
          && ! DECL_THIS_EXTERN (decl))
        error ("%qD declared as reference but not initialized", decl);
        error ("%qD declared as reference but not initialized", decl);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (TREE_CODE (init) == TREE_LIST)
  if (TREE_CODE (init) == TREE_LIST)
    init = build_x_compound_expr_from_list (init, "initializer");
    init = build_x_compound_expr_from_list (init, "initializer");
 
 
  if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE
  if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE)
      && TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE)
    /* Note: default conversion is only called in very special cases.  */
    /* Note: default conversion is only called in very special cases.  */
    init = decay_conversion (init);
    init = decay_conversion (init);
 
 
  /* Convert INIT to the reference type TYPE.  This may involve the
  /* Convert INIT to the reference type TYPE.  This may involve the
     creation of a temporary, whose lifetime must be the same as that
     creation of a temporary, whose lifetime must be the same as that
     of the reference.  If so, a DECL_EXPR for the temporary will be
     of the reference.  If so, a DECL_EXPR for the temporary will be
     added just after the DECL_EXPR for DECL.  That's why we don't set
     added just after the DECL_EXPR for DECL.  That's why we don't set
     DECL_INITIAL for local references (instead assigning to them
     DECL_INITIAL for local references (instead assigning to them
     explicitly); we need to allow the temporary to be initialized
     explicitly); we need to allow the temporary to be initialized
     first.  */
     first.  */
  tmp = initialize_reference (type, init, decl, cleanup, tf_warning_or_error);
  tmp = initialize_reference (type, init, decl, cleanup, tf_warning_or_error);
 
 
  if (tmp == error_mark_node)
  if (tmp == error_mark_node)
    return NULL_TREE;
    return NULL_TREE;
  else if (tmp == NULL_TREE)
  else if (tmp == NULL_TREE)
    {
    {
      error ("cannot initialize %qT from %qT", type, TREE_TYPE (init));
      error ("cannot initialize %qT from %qT", type, TREE_TYPE (init));
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (TREE_STATIC (decl) && !TREE_CONSTANT (tmp))
  if (TREE_STATIC (decl) && !TREE_CONSTANT (tmp))
    return tmp;
    return tmp;
 
 
  DECL_INITIAL (decl) = tmp;
  DECL_INITIAL (decl) = tmp;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Subroutine of check_initializer.  We're initializing a DECL of
/* Subroutine of check_initializer.  We're initializing a DECL of
   std::initializer_list<T> TYPE from a braced-init-list INIT, and need to
   std::initializer_list<T> TYPE from a braced-init-list INIT, and need to
   extend the lifetime of the underlying array to match that of the decl,
   extend the lifetime of the underlying array to match that of the decl,
   just like for reference initialization.  CLEANUP is as for
   just like for reference initialization.  CLEANUP is as for
   grok_reference_init.  */
   grok_reference_init.  */
 
 
static tree
static tree
build_init_list_var_init (tree decl, tree type, tree init, tree *cleanup)
build_init_list_var_init (tree decl, tree type, tree init, tree *cleanup)
{
{
  tree aggr_init, array, arrtype;
  tree aggr_init, array, arrtype;
  init = perform_implicit_conversion (type, init, tf_warning_or_error);
  init = perform_implicit_conversion (type, init, tf_warning_or_error);
  if (error_operand_p (init))
  if (error_operand_p (init))
    return error_mark_node;
    return error_mark_node;
 
 
  aggr_init = TARGET_EXPR_INITIAL (init);
  aggr_init = TARGET_EXPR_INITIAL (init);
  init = build2 (INIT_EXPR, type, decl, init);
  init = build2 (INIT_EXPR, type, decl, init);
 
 
  array = AGGR_INIT_EXPR_ARG (aggr_init, 1);
  array = AGGR_INIT_EXPR_ARG (aggr_init, 1);
  arrtype = TREE_TYPE (array);
  arrtype = TREE_TYPE (array);
  STRIP_NOPS (array);
  STRIP_NOPS (array);
  gcc_assert (TREE_CODE (array) == ADDR_EXPR);
  gcc_assert (TREE_CODE (array) == ADDR_EXPR);
  array = TREE_OPERAND (array, 0);
  array = TREE_OPERAND (array, 0);
  /* If the array is constant, finish_compound_literal already made it a
  /* If the array is constant, finish_compound_literal already made it a
     static variable and we don't need to do anything here.  */
     static variable and we don't need to do anything here.  */
  if (decl && TREE_CODE (array) == TARGET_EXPR)
  if (decl && TREE_CODE (array) == TARGET_EXPR)
    {
    {
      tree subinit;
      tree subinit;
      tree var = set_up_extended_ref_temp (decl, array, cleanup, &subinit);
      tree var = set_up_extended_ref_temp (decl, array, cleanup, &subinit);
      var = build_address (var);
      var = build_address (var);
      var = convert (arrtype, var);
      var = convert (arrtype, var);
      AGGR_INIT_EXPR_ARG (aggr_init, 1) = var;
      AGGR_INIT_EXPR_ARG (aggr_init, 1) = var;
      init = build2 (COMPOUND_EXPR, TREE_TYPE (init), subinit, init);
      init = build2 (COMPOUND_EXPR, TREE_TYPE (init), subinit, init);
    }
    }
  return init;
  return init;
}
}
 
 
/* Designated initializers in arrays are not supported in GNU C++.
/* Designated initializers in arrays are not supported in GNU C++.
   The parser cannot detect this error since it does not know whether
   The parser cannot detect this error since it does not know whether
   a given brace-enclosed initializer is for a class type or for an
   a given brace-enclosed initializer is for a class type or for an
   array.  This function checks that CE does not use a designated
   array.  This function checks that CE does not use a designated
   initializer.  If it does, an error is issued.  Returns true if CE
   initializer.  If it does, an error is issued.  Returns true if CE
   is valid, i.e., does not have a designated initializer.  */
   is valid, i.e., does not have a designated initializer.  */
 
 
static bool
static bool
check_array_designated_initializer (const constructor_elt *ce)
check_array_designated_initializer (const constructor_elt *ce)
{
{
  /* Designated initializers for array elements are not supported.  */
  /* Designated initializers for array elements are not supported.  */
  if (ce->index)
  if (ce->index)
    {
    {
      /* The parser only allows identifiers as designated
      /* The parser only allows identifiers as designated
         initializers.  */
         initializers.  */
      if (ce->index == error_mark_node)
      if (ce->index == error_mark_node)
        error ("name used in a GNU-style designated "
        error ("name used in a GNU-style designated "
               "initializer for an array");
               "initializer for an array");
      else
      else
        {
        {
          gcc_assert (TREE_CODE (ce->index) == IDENTIFIER_NODE);
          gcc_assert (TREE_CODE (ce->index) == IDENTIFIER_NODE);
          error ("name %qD used in a GNU-style designated "
          error ("name %qD used in a GNU-style designated "
                 "initializer for an array", ce->index);
                 "initializer for an array", ce->index);
        }
        }
      return false;
      return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* When parsing `int a[] = {1, 2};' we don't know the size of the
/* When parsing `int a[] = {1, 2};' we don't know the size of the
   array until we finish parsing the initializer.  If that's the
   array until we finish parsing the initializer.  If that's the
   situation we're in, update DECL accordingly.  */
   situation we're in, update DECL accordingly.  */
 
 
static void
static void
maybe_deduce_size_from_array_init (tree decl, tree init)
maybe_deduce_size_from_array_init (tree decl, tree init)
{
{
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
 
 
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_DOMAIN (type) == NULL_TREE
      && TYPE_DOMAIN (type) == NULL_TREE
      && TREE_CODE (decl) != TYPE_DECL)
      && TREE_CODE (decl) != TYPE_DECL)
    {
    {
      /* do_default is really a C-ism to deal with tentative definitions.
      /* do_default is really a C-ism to deal with tentative definitions.
         But let's leave it here to ease the eventual merge.  */
         But let's leave it here to ease the eventual merge.  */
      int do_default = !DECL_EXTERNAL (decl);
      int do_default = !DECL_EXTERNAL (decl);
      tree initializer = init ? init : DECL_INITIAL (decl);
      tree initializer = init ? init : DECL_INITIAL (decl);
      int failure = 0;
      int failure = 0;
 
 
      /* Check that there are no designated initializers in INIT, as
      /* Check that there are no designated initializers in INIT, as
         those are not supported in GNU C++, and as the middle-end
         those are not supported in GNU C++, and as the middle-end
         will crash if presented with a non-numeric designated
         will crash if presented with a non-numeric designated
         initializer.  */
         initializer.  */
      if (initializer && TREE_CODE (initializer) == CONSTRUCTOR)
      if (initializer && TREE_CODE (initializer) == CONSTRUCTOR)
        {
        {
          VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initializer);
          VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initializer);
          constructor_elt *ce;
          constructor_elt *ce;
          HOST_WIDE_INT i;
          HOST_WIDE_INT i;
          for (i = 0;
          for (i = 0;
               VEC_iterate (constructor_elt, v, i, ce);
               VEC_iterate (constructor_elt, v, i, ce);
               ++i)
               ++i)
            if (!check_array_designated_initializer (ce))
            if (!check_array_designated_initializer (ce))
              failure = 1;
              failure = 1;
        }
        }
 
 
      if (!failure)
      if (!failure)
        {
        {
          failure = cp_complete_array_type (&TREE_TYPE (decl), initializer,
          failure = cp_complete_array_type (&TREE_TYPE (decl), initializer,
                                            do_default);
                                            do_default);
          if (failure == 1)
          if (failure == 1)
            {
            {
              error ("initializer fails to determine size of %qD", decl);
              error ("initializer fails to determine size of %qD", decl);
              TREE_TYPE (decl) = error_mark_node;
              TREE_TYPE (decl) = error_mark_node;
            }
            }
          else if (failure == 2)
          else if (failure == 2)
            {
            {
              if (do_default)
              if (do_default)
                {
                {
                  error ("array size missing in %qD", decl);
                  error ("array size missing in %qD", decl);
                  TREE_TYPE (decl) = error_mark_node;
                  TREE_TYPE (decl) = error_mark_node;
                }
                }
              /* If a `static' var's size isn't known, make it extern as
              /* If a `static' var's size isn't known, make it extern as
                 well as static, so it does not get allocated.  If it's not
                 well as static, so it does not get allocated.  If it's not
                 `static', then don't mark it extern; finish_incomplete_decl
                 `static', then don't mark it extern; finish_incomplete_decl
                 will give it a default size and it will get allocated.  */
                 will give it a default size and it will get allocated.  */
              else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
              else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
                DECL_EXTERNAL (decl) = 1;
                DECL_EXTERNAL (decl) = 1;
            }
            }
          else if (failure == 3)
          else if (failure == 3)
            {
            {
              error ("zero-size array %qD", decl);
              error ("zero-size array %qD", decl);
              TREE_TYPE (decl) = error_mark_node;
              TREE_TYPE (decl) = error_mark_node;
            }
            }
        }
        }
 
 
      cp_apply_type_quals_to_decl (cp_type_quals (TREE_TYPE (decl)), decl);
      cp_apply_type_quals_to_decl (cp_type_quals (TREE_TYPE (decl)), decl);
 
 
      relayout_decl (decl);
      relayout_decl (decl);
    }
    }
}
}
 
 
/* Set DECL_SIZE, DECL_ALIGN, etc. for DECL (a VAR_DECL), and issue
/* Set DECL_SIZE, DECL_ALIGN, etc. for DECL (a VAR_DECL), and issue
   any appropriate error messages regarding the layout.  */
   any appropriate error messages regarding the layout.  */
 
 
static void
static void
layout_var_decl (tree decl)
layout_var_decl (tree decl)
{
{
  tree type;
  tree type;
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  if (type == error_mark_node)
  if (type == error_mark_node)
    return;
    return;
 
 
  /* If we haven't already layed out this declaration, do so now.
  /* If we haven't already layed out this declaration, do so now.
     Note that we must not call complete type for an external object
     Note that we must not call complete type for an external object
     because it's type might involve templates that we are not
     because it's type might involve templates that we are not
     supposed to instantiate yet.  (And it's perfectly valid to say
     supposed to instantiate yet.  (And it's perfectly valid to say
     `extern X x' for some incomplete type `X'.)  */
     `extern X x' for some incomplete type `X'.)  */
  if (!DECL_EXTERNAL (decl))
  if (!DECL_EXTERNAL (decl))
    complete_type (type);
    complete_type (type);
  if (!DECL_SIZE (decl)
  if (!DECL_SIZE (decl)
      && TREE_TYPE (decl) != error_mark_node
      && TREE_TYPE (decl) != error_mark_node
      && (COMPLETE_TYPE_P (type)
      && (COMPLETE_TYPE_P (type)
          || (TREE_CODE (type) == ARRAY_TYPE
          || (TREE_CODE (type) == ARRAY_TYPE
              && !TYPE_DOMAIN (type)
              && !TYPE_DOMAIN (type)
              && COMPLETE_TYPE_P (TREE_TYPE (type)))))
              && COMPLETE_TYPE_P (TREE_TYPE (type)))))
    layout_decl (decl, 0);
    layout_decl (decl, 0);
 
 
  if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE)
  if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE)
    {
    {
      /* An automatic variable with an incomplete type: that is an error.
      /* An automatic variable with an incomplete type: that is an error.
         Don't talk about array types here, since we took care of that
         Don't talk about array types here, since we took care of that
         message in grokdeclarator.  */
         message in grokdeclarator.  */
      error ("storage size of %qD isn't known", decl);
      error ("storage size of %qD isn't known", decl);
      TREE_TYPE (decl) = error_mark_node;
      TREE_TYPE (decl) = error_mark_node;
    }
    }
#if 0
#if 0
  /* Keep this code around in case we later want to control debug info
  /* Keep this code around in case we later want to control debug info
     based on whether a type is "used".  (jason 1999-11-11) */
     based on whether a type is "used".  (jason 1999-11-11) */
 
 
  else if (!DECL_EXTERNAL (decl) && MAYBE_CLASS_TYPE_P (ttype))
  else if (!DECL_EXTERNAL (decl) && MAYBE_CLASS_TYPE_P (ttype))
    /* Let debugger know it should output info for this type.  */
    /* Let debugger know it should output info for this type.  */
    note_debug_info_needed (ttype);
    note_debug_info_needed (ttype);
 
 
  if (TREE_STATIC (decl) && DECL_CLASS_SCOPE_P (decl))
  if (TREE_STATIC (decl) && DECL_CLASS_SCOPE_P (decl))
    note_debug_info_needed (DECL_CONTEXT (decl));
    note_debug_info_needed (DECL_CONTEXT (decl));
#endif
#endif
 
 
  if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
  if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
      && DECL_SIZE (decl) != NULL_TREE
      && DECL_SIZE (decl) != NULL_TREE
      && ! TREE_CONSTANT (DECL_SIZE (decl)))
      && ! TREE_CONSTANT (DECL_SIZE (decl)))
    {
    {
      if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
      if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
        constant_expression_warning (DECL_SIZE (decl));
        constant_expression_warning (DECL_SIZE (decl));
      else
      else
        {
        {
          error ("storage size of %qD isn't constant", decl);
          error ("storage size of %qD isn't constant", decl);
          TREE_TYPE (decl) = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
        }
        }
    }
    }
}
}
 
 
/* If a local static variable is declared in an inline function, or if
/* If a local static variable is declared in an inline function, or if
   we have a weak definition, we must endeavor to create only one
   we have a weak definition, we must endeavor to create only one
   instance of the variable at link-time.  */
   instance of the variable at link-time.  */
 
 
void
void
maybe_commonize_var (tree decl)
maybe_commonize_var (tree decl)
{
{
  /* Static data in a function with comdat linkage also has comdat
  /* Static data in a function with comdat linkage also has comdat
     linkage.  */
     linkage.  */
  if (TREE_STATIC (decl)
  if (TREE_STATIC (decl)
      /* Don't mess with __FUNCTION__.  */
      /* Don't mess with __FUNCTION__.  */
      && ! DECL_ARTIFICIAL (decl)
      && ! DECL_ARTIFICIAL (decl)
      && DECL_FUNCTION_SCOPE_P (decl)
      && DECL_FUNCTION_SCOPE_P (decl)
      && vague_linkage_p (DECL_CONTEXT (decl)))
      && vague_linkage_p (DECL_CONTEXT (decl)))
    {
    {
      if (flag_weak)
      if (flag_weak)
        {
        {
          /* With weak symbols, we simply make the variable COMDAT;
          /* With weak symbols, we simply make the variable COMDAT;
             that will cause copies in multiple translations units to
             that will cause copies in multiple translations units to
             be merged.  */
             be merged.  */
          comdat_linkage (decl);
          comdat_linkage (decl);
        }
        }
      else
      else
        {
        {
          if (DECL_INITIAL (decl) == NULL_TREE
          if (DECL_INITIAL (decl) == NULL_TREE
              || DECL_INITIAL (decl) == error_mark_node)
              || DECL_INITIAL (decl) == error_mark_node)
            {
            {
              /* Without weak symbols, we can use COMMON to merge
              /* Without weak symbols, we can use COMMON to merge
                 uninitialized variables.  */
                 uninitialized variables.  */
              TREE_PUBLIC (decl) = 1;
              TREE_PUBLIC (decl) = 1;
              DECL_COMMON (decl) = 1;
              DECL_COMMON (decl) = 1;
            }
            }
          else
          else
            {
            {
              /* While for initialized variables, we must use internal
              /* While for initialized variables, we must use internal
                 linkage -- which means that multiple copies will not
                 linkage -- which means that multiple copies will not
                 be merged.  */
                 be merged.  */
              TREE_PUBLIC (decl) = 0;
              TREE_PUBLIC (decl) = 0;
              DECL_COMMON (decl) = 0;
              DECL_COMMON (decl) = 0;
              warning_at (input_location, 0,
              warning_at (input_location, 0,
                          "sorry: semantics of inline function static "
                          "sorry: semantics of inline function static "
                          "data %q+#D are wrong (you'll wind up "
                          "data %q+#D are wrong (you'll wind up "
                          "with multiple copies)", decl);
                          "with multiple copies)", decl);
              warning_at (DECL_SOURCE_LOCATION (decl), 0,
              warning_at (DECL_SOURCE_LOCATION (decl), 0,
                          "  you can work around this by removing "
                          "  you can work around this by removing "
                          "the initializer");
                          "the initializer");
            }
            }
        }
        }
    }
    }
  else if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
  else if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
    /* Set it up again; we might have set DECL_INITIAL since the last
    /* Set it up again; we might have set DECL_INITIAL since the last
       time.  */
       time.  */
    comdat_linkage (decl);
    comdat_linkage (decl);
}
}
 
 
/* Issue an error message if DECL is an uninitialized const variable.  */
/* Issue an error message if DECL is an uninitialized const variable.  */
 
 
static void
static void
check_for_uninitialized_const_var (tree decl)
check_for_uninitialized_const_var (tree decl)
{
{
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
 
 
  if (TREE_CODE (decl) == VAR_DECL && DECL_DECLARED_CONSTEXPR_P (decl)
  if (TREE_CODE (decl) == VAR_DECL && DECL_DECLARED_CONSTEXPR_P (decl)
      && DECL_INITIAL (decl) == NULL)
      && DECL_INITIAL (decl) == NULL)
    error ("missing initializer for constexpr %qD", decl);
    error ("missing initializer for constexpr %qD", decl);
 
 
  /* ``Unless explicitly declared extern, a const object does not have
  /* ``Unless explicitly declared extern, a const object does not have
     external linkage and must be initialized. ($8.4; $12.1)'' ARM
     external linkage and must be initialized. ($8.4; $12.1)'' ARM
     7.1.6 */
     7.1.6 */
  else if (TREE_CODE (decl) == VAR_DECL
  else if (TREE_CODE (decl) == VAR_DECL
      && TREE_CODE (type) != REFERENCE_TYPE
      && TREE_CODE (type) != REFERENCE_TYPE
      && CP_TYPE_CONST_P (type)
      && CP_TYPE_CONST_P (type)
      && !TYPE_NEEDS_CONSTRUCTING (type)
      && !TYPE_NEEDS_CONSTRUCTING (type)
      && !DECL_INITIAL (decl))
      && !DECL_INITIAL (decl))
    error ("uninitialized const %qD", decl);
    error ("uninitialized const %qD", decl);
}
}
 
 


/* Structure holding the current initializer being processed by reshape_init.
/* Structure holding the current initializer being processed by reshape_init.
   CUR is a pointer to the current element being processed, END is a pointer
   CUR is a pointer to the current element being processed, END is a pointer
   after the last element present in the initializer.  */
   after the last element present in the initializer.  */
typedef struct reshape_iterator_t
typedef struct reshape_iterator_t
{
{
  constructor_elt *cur;
  constructor_elt *cur;
  constructor_elt *end;
  constructor_elt *end;
} reshape_iter;
} reshape_iter;
 
 
static tree reshape_init_r (tree, reshape_iter *, bool);
static tree reshape_init_r (tree, reshape_iter *, bool);
 
 
/* FIELD is a FIELD_DECL or NULL.  In the former case, the value
/* FIELD is a FIELD_DECL or NULL.  In the former case, the value
   returned is the next FIELD_DECL (possibly FIELD itself) that can be
   returned is the next FIELD_DECL (possibly FIELD itself) that can be
   initialized.  If there are no more such fields, the return value
   initialized.  If there are no more such fields, the return value
   will be NULL.  */
   will be NULL.  */
 
 
tree
tree
next_initializable_field (tree field)
next_initializable_field (tree field)
{
{
  while (field
  while (field
         && (TREE_CODE (field) != FIELD_DECL
         && (TREE_CODE (field) != FIELD_DECL
             || (DECL_C_BIT_FIELD (field) && !DECL_NAME (field))
             || (DECL_C_BIT_FIELD (field) && !DECL_NAME (field))
             || DECL_ARTIFICIAL (field)))
             || DECL_ARTIFICIAL (field)))
    field = TREE_CHAIN (field);
    field = TREE_CHAIN (field);
 
 
  return field;
  return field;
}
}
 
 
/* Subroutine of reshape_init_array and reshape_init_vector, which does
/* Subroutine of reshape_init_array and reshape_init_vector, which does
   the actual work. ELT_TYPE is the element type of the array. MAX_INDEX is an
   the actual work. ELT_TYPE is the element type of the array. MAX_INDEX is an
   INTEGER_CST representing the size of the array minus one (the maximum index),
   INTEGER_CST representing the size of the array minus one (the maximum index),
   or NULL_TREE if the array was declared without specifying the size. D is
   or NULL_TREE if the array was declared without specifying the size. D is
   the iterator within the constructor.  */
   the iterator within the constructor.  */
 
 
static tree
static tree
reshape_init_array_1 (tree elt_type, tree max_index, reshape_iter *d)
reshape_init_array_1 (tree elt_type, tree max_index, reshape_iter *d)
{
{
  tree new_init;
  tree new_init;
  bool sized_array_p = (max_index != NULL_TREE);
  bool sized_array_p = (max_index != NULL_TREE);
  unsigned HOST_WIDE_INT max_index_cst = 0;
  unsigned HOST_WIDE_INT max_index_cst = 0;
  unsigned HOST_WIDE_INT index;
  unsigned HOST_WIDE_INT index;
 
 
  /* The initializer for an array is always a CONSTRUCTOR.  */
  /* The initializer for an array is always a CONSTRUCTOR.  */
  new_init = build_constructor (init_list_type_node, NULL);
  new_init = build_constructor (init_list_type_node, NULL);
 
 
  if (sized_array_p)
  if (sized_array_p)
    {
    {
      /* Minus 1 is used for zero sized arrays.  */
      /* Minus 1 is used for zero sized arrays.  */
      if (integer_all_onesp (max_index))
      if (integer_all_onesp (max_index))
        return new_init;
        return new_init;
 
 
      if (host_integerp (max_index, 1))
      if (host_integerp (max_index, 1))
        max_index_cst = tree_low_cst (max_index, 1);
        max_index_cst = tree_low_cst (max_index, 1);
      /* sizetype is sign extended, not zero extended.  */
      /* sizetype is sign extended, not zero extended.  */
      else
      else
        max_index_cst = tree_low_cst (fold_convert (size_type_node, max_index),
        max_index_cst = tree_low_cst (fold_convert (size_type_node, max_index),
                                      1);
                                      1);
    }
    }
 
 
  /* Loop until there are no more initializers.  */
  /* Loop until there are no more initializers.  */
  for (index = 0;
  for (index = 0;
       d->cur != d->end && (!sized_array_p || index <= max_index_cst);
       d->cur != d->end && (!sized_array_p || index <= max_index_cst);
       ++index)
       ++index)
    {
    {
      tree elt_init;
      tree elt_init;
 
 
      check_array_designated_initializer (d->cur);
      check_array_designated_initializer (d->cur);
      elt_init = reshape_init_r (elt_type, d, /*first_initializer_p=*/false);
      elt_init = reshape_init_r (elt_type, d, /*first_initializer_p=*/false);
      if (elt_init == error_mark_node)
      if (elt_init == error_mark_node)
        return error_mark_node;
        return error_mark_node;
      CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_init), NULL_TREE, elt_init);
      CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_init), NULL_TREE, elt_init);
    }
    }
 
 
  return new_init;
  return new_init;
}
}
 
 
/* Subroutine of reshape_init_r, processes the initializers for arrays.
/* Subroutine of reshape_init_r, processes the initializers for arrays.
   Parameters are the same of reshape_init_r.  */
   Parameters are the same of reshape_init_r.  */
 
 
static tree
static tree
reshape_init_array (tree type, reshape_iter *d)
reshape_init_array (tree type, reshape_iter *d)
{
{
  tree max_index = NULL_TREE;
  tree max_index = NULL_TREE;
 
 
  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
 
 
  if (TYPE_DOMAIN (type))
  if (TYPE_DOMAIN (type))
    max_index = array_type_nelts (type);
    max_index = array_type_nelts (type);
 
 
  return reshape_init_array_1 (TREE_TYPE (type), max_index, d);
  return reshape_init_array_1 (TREE_TYPE (type), max_index, d);
}
}
 
 
/* Subroutine of reshape_init_r, processes the initializers for vectors.
/* Subroutine of reshape_init_r, processes the initializers for vectors.
   Parameters are the same of reshape_init_r.  */
   Parameters are the same of reshape_init_r.  */
 
 
static tree
static tree
reshape_init_vector (tree type, reshape_iter *d)
reshape_init_vector (tree type, reshape_iter *d)
{
{
  tree max_index = NULL_TREE;
  tree max_index = NULL_TREE;
  tree rtype;
  tree rtype;
 
 
  gcc_assert (TREE_CODE (type) == VECTOR_TYPE);
  gcc_assert (TREE_CODE (type) == VECTOR_TYPE);
 
 
  if (COMPOUND_LITERAL_P (d->cur->value))
  if (COMPOUND_LITERAL_P (d->cur->value))
    {
    {
      tree value = d->cur->value;
      tree value = d->cur->value;
      if (!same_type_p (TREE_TYPE (value), type))
      if (!same_type_p (TREE_TYPE (value), type))
        {
        {
          error ("invalid type %qT as initializer for a vector of type %qT",
          error ("invalid type %qT as initializer for a vector of type %qT",
                TREE_TYPE (d->cur->value), type);
                TREE_TYPE (d->cur->value), type);
          value = error_mark_node;
          value = error_mark_node;
        }
        }
      ++d->cur;
      ++d->cur;
      return value;
      return value;
    }
    }
 
 
  /* For a vector, the representation type is a struct
  /* For a vector, the representation type is a struct
      containing a single member which is an array of the
      containing a single member which is an array of the
      appropriate size.  */
      appropriate size.  */
  rtype = TYPE_DEBUG_REPRESENTATION_TYPE (type);
  rtype = TYPE_DEBUG_REPRESENTATION_TYPE (type);
  if (rtype && TYPE_DOMAIN (TREE_TYPE (TYPE_FIELDS (rtype))))
  if (rtype && TYPE_DOMAIN (TREE_TYPE (TYPE_FIELDS (rtype))))
    max_index = array_type_nelts (TREE_TYPE (TYPE_FIELDS (rtype)));
    max_index = array_type_nelts (TREE_TYPE (TYPE_FIELDS (rtype)));
 
 
  return reshape_init_array_1 (TREE_TYPE (type), max_index, d);
  return reshape_init_array_1 (TREE_TYPE (type), max_index, d);
}
}
 
 
/* Subroutine of reshape_init_r, processes the initializers for classes
/* Subroutine of reshape_init_r, processes the initializers for classes
   or union. Parameters are the same of reshape_init_r.  */
   or union. Parameters are the same of reshape_init_r.  */
 
 
static tree
static tree
reshape_init_class (tree type, reshape_iter *d, bool first_initializer_p)
reshape_init_class (tree type, reshape_iter *d, bool first_initializer_p)
{
{
  tree field;
  tree field;
  tree new_init;
  tree new_init;
 
 
  gcc_assert (CLASS_TYPE_P (type));
  gcc_assert (CLASS_TYPE_P (type));
 
 
  /* The initializer for a class is always a CONSTRUCTOR.  */
  /* The initializer for a class is always a CONSTRUCTOR.  */
  new_init = build_constructor (init_list_type_node, NULL);
  new_init = build_constructor (init_list_type_node, NULL);
  field = next_initializable_field (TYPE_FIELDS (type));
  field = next_initializable_field (TYPE_FIELDS (type));
 
 
  if (!field)
  if (!field)
    {
    {
      /* [dcl.init.aggr]
      /* [dcl.init.aggr]
 
 
        An initializer for an aggregate member that is an
        An initializer for an aggregate member that is an
        empty class shall have the form of an empty
        empty class shall have the form of an empty
        initializer-list {}.  */
        initializer-list {}.  */
      if (!first_initializer_p)
      if (!first_initializer_p)
        {
        {
          error ("initializer for %qT must be brace-enclosed", type);
          error ("initializer for %qT must be brace-enclosed", type);
          return error_mark_node;
          return error_mark_node;
        }
        }
      return new_init;
      return new_init;
    }
    }
 
 
  /* Loop through the initializable fields, gathering initializers.  */
  /* Loop through the initializable fields, gathering initializers.  */
  while (d->cur != d->end)
  while (d->cur != d->end)
    {
    {
      tree field_init;
      tree field_init;
 
 
      /* Handle designated initializers, as an extension.  */
      /* Handle designated initializers, as an extension.  */
      if (d->cur->index)
      if (d->cur->index)
        {
        {
          field = lookup_field_1 (type, d->cur->index, /*want_type=*/false);
          field = lookup_field_1 (type, d->cur->index, /*want_type=*/false);
 
 
          if (!field || TREE_CODE (field) != FIELD_DECL)
          if (!field || TREE_CODE (field) != FIELD_DECL)
            {
            {
              error ("%qT has no non-static data member named %qD", type,
              error ("%qT has no non-static data member named %qD", type,
                    d->cur->index);
                    d->cur->index);
              return error_mark_node;
              return error_mark_node;
            }
            }
        }
        }
 
 
      /* If we processed all the member of the class, we are done.  */
      /* If we processed all the member of the class, we are done.  */
      if (!field)
      if (!field)
        break;
        break;
 
 
      field_init = reshape_init_r (TREE_TYPE (field), d,
      field_init = reshape_init_r (TREE_TYPE (field), d,
                                   /*first_initializer_p=*/false);
                                   /*first_initializer_p=*/false);
      if (field_init == error_mark_node)
      if (field_init == error_mark_node)
        return error_mark_node;
        return error_mark_node;
 
 
      CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_init), field, field_init);
      CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_init), field, field_init);
 
 
      /* [dcl.init.aggr]
      /* [dcl.init.aggr]
 
 
        When a union  is  initialized with a brace-enclosed
        When a union  is  initialized with a brace-enclosed
        initializer, the braces shall only contain an
        initializer, the braces shall only contain an
        initializer for the first member of the union.  */
        initializer for the first member of the union.  */
      if (TREE_CODE (type) == UNION_TYPE)
      if (TREE_CODE (type) == UNION_TYPE)
        break;
        break;
 
 
      field = next_initializable_field (TREE_CHAIN (field));
      field = next_initializable_field (TREE_CHAIN (field));
    }
    }
 
 
  return new_init;
  return new_init;
}
}
 
 
/* Subroutine of reshape_init, which processes a single initializer (part of
/* Subroutine of reshape_init, which processes a single initializer (part of
   a CONSTRUCTOR). TYPE is the type of the variable being initialized, D is the
   a CONSTRUCTOR). TYPE is the type of the variable being initialized, D is the
   iterator within the CONSTRUCTOR which points to the initializer to process.
   iterator within the CONSTRUCTOR which points to the initializer to process.
   FIRST_INITIALIZER_P is true if this is the first initializer of the
   FIRST_INITIALIZER_P is true if this is the first initializer of the
   outermost CONSTRUCTOR node.  */
   outermost CONSTRUCTOR node.  */
 
 
static tree
static tree
reshape_init_r (tree type, reshape_iter *d, bool first_initializer_p)
reshape_init_r (tree type, reshape_iter *d, bool first_initializer_p)
{
{
  tree init = d->cur->value;
  tree init = d->cur->value;
 
 
  if (error_operand_p (init))
  if (error_operand_p (init))
    return error_mark_node;
    return error_mark_node;
 
 
  /* A non-aggregate type is always initialized with a single
  /* A non-aggregate type is always initialized with a single
     initializer.  */
     initializer.  */
  if (!CP_AGGREGATE_TYPE_P (type))
  if (!CP_AGGREGATE_TYPE_P (type))
    {
    {
      /* It is invalid to initialize a non-aggregate type with a
      /* It is invalid to initialize a non-aggregate type with a
         brace-enclosed initializer before C++0x.
         brace-enclosed initializer before C++0x.
         We need to check for BRACE_ENCLOSED_INITIALIZER_P here because
         We need to check for BRACE_ENCLOSED_INITIALIZER_P here because
         of g++.old-deja/g++.mike/p7626.C: a pointer-to-member constant is
         of g++.old-deja/g++.mike/p7626.C: a pointer-to-member constant is
         a CONSTRUCTOR (with a record type).  */
         a CONSTRUCTOR (with a record type).  */
      if (TREE_CODE (init) == CONSTRUCTOR
      if (TREE_CODE (init) == CONSTRUCTOR
          && BRACE_ENCLOSED_INITIALIZER_P (init))  /* p7626.C */
          && BRACE_ENCLOSED_INITIALIZER_P (init))  /* p7626.C */
        {
        {
          if (SCALAR_TYPE_P (type))
          if (SCALAR_TYPE_P (type))
            {
            {
              error ("braces around scalar initializer for type %qT", type);
              error ("braces around scalar initializer for type %qT", type);
              init = error_mark_node;
              init = error_mark_node;
            }
            }
          else
          else
            maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
            maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
        }
        }
 
 
      d->cur++;
      d->cur++;
      return init;
      return init;
    }
    }
 
 
  /* [dcl.init.aggr]
  /* [dcl.init.aggr]
 
 
     All implicit type conversions (clause _conv_) are considered when
     All implicit type conversions (clause _conv_) are considered when
     initializing the aggregate member with an initializer from an
     initializing the aggregate member with an initializer from an
     initializer-list.  If the initializer can initialize a member,
     initializer-list.  If the initializer can initialize a member,
     the member is initialized.  Otherwise, if the member is itself a
     the member is initialized.  Otherwise, if the member is itself a
     non-empty subaggregate, brace elision is assumed and the
     non-empty subaggregate, brace elision is assumed and the
     initializer is considered for the initialization of the first
     initializer is considered for the initialization of the first
     member of the subaggregate.  */
     member of the subaggregate.  */
  if (TREE_CODE (init) != CONSTRUCTOR
  if (TREE_CODE (init) != CONSTRUCTOR
      /* But don't try this for the first initializer, since that would be
      /* But don't try this for the first initializer, since that would be
         looking through the outermost braces; A a2 = { a1 }; is not a
         looking through the outermost braces; A a2 = { a1 }; is not a
         valid aggregate initialization.  */
         valid aggregate initialization.  */
      && !first_initializer_p
      && !first_initializer_p
      && (same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (init))
      && (same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (init))
          || can_convert_arg (type, TREE_TYPE (init), init, LOOKUP_NORMAL)))
          || can_convert_arg (type, TREE_TYPE (init), init, LOOKUP_NORMAL)))
    {
    {
      d->cur++;
      d->cur++;
      return init;
      return init;
    }
    }
 
 
  /* [dcl.init.string]
  /* [dcl.init.string]
 
 
      A char array (whether plain char, signed char, or unsigned char)
      A char array (whether plain char, signed char, or unsigned char)
      can be initialized by a string-literal (optionally enclosed in
      can be initialized by a string-literal (optionally enclosed in
      braces); a wchar_t array can be initialized by a wide
      braces); a wchar_t array can be initialized by a wide
      string-literal (optionally enclosed in braces).  */
      string-literal (optionally enclosed in braces).  */
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type))))
      && char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type))))
    {
    {
      tree str_init = init;
      tree str_init = init;
 
 
      /* Strip one level of braces if and only if they enclose a single
      /* Strip one level of braces if and only if they enclose a single
         element (as allowed by [dcl.init.string]).  */
         element (as allowed by [dcl.init.string]).  */
      if (!first_initializer_p
      if (!first_initializer_p
          && TREE_CODE (str_init) == CONSTRUCTOR
          && TREE_CODE (str_init) == CONSTRUCTOR
          && VEC_length (constructor_elt, CONSTRUCTOR_ELTS (str_init)) == 1)
          && VEC_length (constructor_elt, CONSTRUCTOR_ELTS (str_init)) == 1)
        {
        {
          str_init = VEC_index (constructor_elt,
          str_init = VEC_index (constructor_elt,
                                CONSTRUCTOR_ELTS (str_init), 0)->value;
                                CONSTRUCTOR_ELTS (str_init), 0)->value;
        }
        }
 
 
      /* If it's a string literal, then it's the initializer for the array
      /* If it's a string literal, then it's the initializer for the array
         as a whole. Otherwise, continue with normal initialization for
         as a whole. Otherwise, continue with normal initialization for
         array types (one value per array element).  */
         array types (one value per array element).  */
      if (TREE_CODE (str_init) == STRING_CST)
      if (TREE_CODE (str_init) == STRING_CST)
        {
        {
          d->cur++;
          d->cur++;
          return str_init;
          return str_init;
        }
        }
    }
    }
 
 
  /* The following cases are about aggregates. If we are not within a full
  /* The following cases are about aggregates. If we are not within a full
     initializer already, and there is not a CONSTRUCTOR, it means that there
     initializer already, and there is not a CONSTRUCTOR, it means that there
     is a missing set of braces (that is, we are processing the case for
     is a missing set of braces (that is, we are processing the case for
     which reshape_init exists).  */
     which reshape_init exists).  */
  if (!first_initializer_p)
  if (!first_initializer_p)
    {
    {
      if (TREE_CODE (init) == CONSTRUCTOR)
      if (TREE_CODE (init) == CONSTRUCTOR)
        {
        {
          if (TREE_TYPE (init) && TYPE_PTRMEMFUNC_P (TREE_TYPE (init)))
          if (TREE_TYPE (init) && TYPE_PTRMEMFUNC_P (TREE_TYPE (init)))
            /* There is no need to reshape pointer-to-member function
            /* There is no need to reshape pointer-to-member function
               initializers, as they are always constructed correctly
               initializers, as they are always constructed correctly
               by the front end.  */
               by the front end.  */
           ;
           ;
          else if (COMPOUND_LITERAL_P (init))
          else if (COMPOUND_LITERAL_P (init))
          /* For a nested compound literal, there is no need to reshape since
          /* For a nested compound literal, there is no need to reshape since
             brace elision is not allowed. Even if we decided to allow it,
             brace elision is not allowed. Even if we decided to allow it,
             we should add a call to reshape_init in finish_compound_literal,
             we should add a call to reshape_init in finish_compound_literal,
             before calling digest_init, so changing this code would still
             before calling digest_init, so changing this code would still
             not be necessary.  */
             not be necessary.  */
            gcc_assert (!BRACE_ENCLOSED_INITIALIZER_P (init));
            gcc_assert (!BRACE_ENCLOSED_INITIALIZER_P (init));
          else
          else
            {
            {
              ++d->cur;
              ++d->cur;
              gcc_assert (BRACE_ENCLOSED_INITIALIZER_P (init));
              gcc_assert (BRACE_ENCLOSED_INITIALIZER_P (init));
              return reshape_init (type, init);
              return reshape_init (type, init);
            }
            }
        }
        }
 
 
      warning (OPT_Wmissing_braces, "missing braces around initializer for %qT",
      warning (OPT_Wmissing_braces, "missing braces around initializer for %qT",
               type);
               type);
    }
    }
 
 
  /* Dispatch to specialized routines.  */
  /* Dispatch to specialized routines.  */
  if (CLASS_TYPE_P (type))
  if (CLASS_TYPE_P (type))
    return reshape_init_class (type, d, first_initializer_p);
    return reshape_init_class (type, d, first_initializer_p);
  else if (TREE_CODE (type) == ARRAY_TYPE)
  else if (TREE_CODE (type) == ARRAY_TYPE)
    return reshape_init_array (type, d);
    return reshape_init_array (type, d);
  else if (TREE_CODE (type) == VECTOR_TYPE)
  else if (TREE_CODE (type) == VECTOR_TYPE)
    return reshape_init_vector (type, d);
    return reshape_init_vector (type, d);
  else
  else
    gcc_unreachable();
    gcc_unreachable();
}
}
 
 
/* Undo the brace-elision allowed by [dcl.init.aggr] in a
/* Undo the brace-elision allowed by [dcl.init.aggr] in a
   brace-enclosed aggregate initializer.
   brace-enclosed aggregate initializer.
 
 
   INIT is the CONSTRUCTOR containing the list of initializers describing
   INIT is the CONSTRUCTOR containing the list of initializers describing
   a brace-enclosed initializer for an entity of the indicated aggregate TYPE.
   a brace-enclosed initializer for an entity of the indicated aggregate TYPE.
   It may not presently match the shape of the TYPE; for example:
   It may not presently match the shape of the TYPE; for example:
 
 
     struct S { int a; int b; };
     struct S { int a; int b; };
     struct S a[] = { 1, 2, 3, 4 };
     struct S a[] = { 1, 2, 3, 4 };
 
 
   Here INIT will hold a VEC of four elements, rather than a
   Here INIT will hold a VEC of four elements, rather than a
   VEC of two elements, each itself a VEC of two elements.  This
   VEC of two elements, each itself a VEC of two elements.  This
   routine transforms INIT from the former form into the latter.  The
   routine transforms INIT from the former form into the latter.  The
   revised CONSTRUCTOR node is returned.  */
   revised CONSTRUCTOR node is returned.  */
 
 
tree
tree
reshape_init (tree type, tree init)
reshape_init (tree type, tree init)
{
{
  VEC(constructor_elt, gc) *v;
  VEC(constructor_elt, gc) *v;
  reshape_iter d;
  reshape_iter d;
  tree new_init;
  tree new_init;
 
 
  gcc_assert (BRACE_ENCLOSED_INITIALIZER_P (init));
  gcc_assert (BRACE_ENCLOSED_INITIALIZER_P (init));
 
 
  v = CONSTRUCTOR_ELTS (init);
  v = CONSTRUCTOR_ELTS (init);
 
 
  /* An empty constructor does not need reshaping, and it is always a valid
  /* An empty constructor does not need reshaping, and it is always a valid
     initializer.  */
     initializer.  */
  if (VEC_empty (constructor_elt, v))
  if (VEC_empty (constructor_elt, v))
    return init;
    return init;
 
 
  /* Recurse on this CONSTRUCTOR.  */
  /* Recurse on this CONSTRUCTOR.  */
  d.cur = VEC_index (constructor_elt, v, 0);
  d.cur = VEC_index (constructor_elt, v, 0);
  d.end = d.cur + VEC_length (constructor_elt, v);
  d.end = d.cur + VEC_length (constructor_elt, v);
 
 
  new_init = reshape_init_r (type, &d, true);
  new_init = reshape_init_r (type, &d, true);
  if (new_init == error_mark_node)
  if (new_init == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  /* Make sure all the element of the constructor were used. Otherwise,
  /* Make sure all the element of the constructor were used. Otherwise,
     issue an error about exceeding initializers.  */
     issue an error about exceeding initializers.  */
  if (d.cur != d.end)
  if (d.cur != d.end)
    error ("too many initializers for %qT", type);
    error ("too many initializers for %qT", type);
 
 
  return new_init;
  return new_init;
}
}
 
 
/* Verify array initializer.  Returns true if errors have been reported.  */
/* Verify array initializer.  Returns true if errors have been reported.  */
 
 
bool
bool
check_array_initializer (tree decl, tree type, tree init)
check_array_initializer (tree decl, tree type, tree init)
{
{
  tree element_type = TREE_TYPE (type);
  tree element_type = TREE_TYPE (type);
 
 
  /* The array type itself need not be complete, because the
  /* The array type itself need not be complete, because the
     initializer may tell us how many elements are in the array.
     initializer may tell us how many elements are in the array.
     But, the elements of the array must be complete.  */
     But, the elements of the array must be complete.  */
  if (!COMPLETE_TYPE_P (complete_type (element_type)))
  if (!COMPLETE_TYPE_P (complete_type (element_type)))
    {
    {
      if (decl)
      if (decl)
        error ("elements of array %q#D have incomplete type", decl);
        error ("elements of array %q#D have incomplete type", decl);
      else
      else
        error ("elements of array %q#T have incomplete type", type);
        error ("elements of array %q#T have incomplete type", type);
      return true;
      return true;
    }
    }
  /* It is not valid to initialize a VLA.  */
  /* It is not valid to initialize a VLA.  */
  if (init
  if (init
      && ((COMPLETE_TYPE_P (type) && !TREE_CONSTANT (TYPE_SIZE (type)))
      && ((COMPLETE_TYPE_P (type) && !TREE_CONSTANT (TYPE_SIZE (type)))
          || !TREE_CONSTANT (TYPE_SIZE (element_type))))
          || !TREE_CONSTANT (TYPE_SIZE (element_type))))
    {
    {
      if (decl)
      if (decl)
        error ("variable-sized object %qD may not be initialized", decl);
        error ("variable-sized object %qD may not be initialized", decl);
      else
      else
        error ("variable-sized compound literal");
        error ("variable-sized compound literal");
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}
 
 
/* Subroutine of check_initializer; args are passed down from that function.
/* Subroutine of check_initializer; args are passed down from that function.
   Set stmts_are_full_exprs_p to 1 across a call to build_aggr_init.  */
   Set stmts_are_full_exprs_p to 1 across a call to build_aggr_init.  */
 
 
static tree
static tree
build_aggr_init_full_exprs (tree decl, tree init, int flags)
build_aggr_init_full_exprs (tree decl, tree init, int flags)
 
 
{
{
  int saved_stmts_are_full_exprs_p = 0;
  int saved_stmts_are_full_exprs_p = 0;
  if (building_stmt_tree ())
  if (building_stmt_tree ())
    {
    {
      saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
      saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
      current_stmt_tree ()->stmts_are_full_exprs_p = 1;
      current_stmt_tree ()->stmts_are_full_exprs_p = 1;
    }
    }
  init = build_aggr_init (decl, init, flags, tf_warning_or_error);
  init = build_aggr_init (decl, init, flags, tf_warning_or_error);
  if (building_stmt_tree ())
  if (building_stmt_tree ())
    current_stmt_tree ()->stmts_are_full_exprs_p =
    current_stmt_tree ()->stmts_are_full_exprs_p =
      saved_stmts_are_full_exprs_p;
      saved_stmts_are_full_exprs_p;
  return init;
  return init;
}
}
 
 
/* Verify INIT (the initializer for DECL), and record the
/* Verify INIT (the initializer for DECL), and record the
   initialization in DECL_INITIAL, if appropriate.  CLEANUP is as for
   initialization in DECL_INITIAL, if appropriate.  CLEANUP is as for
   grok_reference_init.
   grok_reference_init.
 
 
   If the return value is non-NULL, it is an expression that must be
   If the return value is non-NULL, it is an expression that must be
   evaluated dynamically to initialize DECL.  */
   evaluated dynamically to initialize DECL.  */
 
 
static tree
static tree
check_initializer (tree decl, tree init, int flags, tree *cleanup)
check_initializer (tree decl, tree init, int flags, tree *cleanup)
{
{
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
  tree init_code = NULL;
  tree init_code = NULL;
 
 
  /* Things that are going to be initialized need to have complete
  /* Things that are going to be initialized need to have complete
     type.  */
     type.  */
  TREE_TYPE (decl) = type = complete_type (TREE_TYPE (decl));
  TREE_TYPE (decl) = type = complete_type (TREE_TYPE (decl));
 
 
  if (type == error_mark_node)
  if (type == error_mark_node)
    /* We will have already complained.  */
    /* We will have already complained.  */
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (TREE_CODE (type) == ARRAY_TYPE)
  if (TREE_CODE (type) == ARRAY_TYPE)
    {
    {
      if (check_array_initializer (decl, type, init))
      if (check_array_initializer (decl, type, init))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
  else if (!COMPLETE_TYPE_P (type))
  else if (!COMPLETE_TYPE_P (type))
    {
    {
      error ("%qD has incomplete type", decl);
      error ("%qD has incomplete type", decl);
      TREE_TYPE (decl) = error_mark_node;
      TREE_TYPE (decl) = error_mark_node;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
  else
  else
    /* There is no way to make a variable-sized class type in GNU C++.  */
    /* There is no way to make a variable-sized class type in GNU C++.  */
    gcc_assert (TREE_CONSTANT (TYPE_SIZE (type)));
    gcc_assert (TREE_CONSTANT (TYPE_SIZE (type)));
 
 
  if (init && BRACE_ENCLOSED_INITIALIZER_P (init))
  if (init && BRACE_ENCLOSED_INITIALIZER_P (init))
    {
    {
      int init_len = VEC_length (constructor_elt, CONSTRUCTOR_ELTS (init));
      int init_len = VEC_length (constructor_elt, CONSTRUCTOR_ELTS (init));
      if (SCALAR_TYPE_P (type))
      if (SCALAR_TYPE_P (type))
        {
        {
          if (init_len == 0)
          if (init_len == 0)
            {
            {
              maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
              maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
              init = build_zero_init (type, NULL_TREE, false);
              init = build_zero_init (type, NULL_TREE, false);
            }
            }
          else if (init_len != 1)
          else if (init_len != 1)
            {
            {
              error ("scalar object %qD requires one element in initializer",
              error ("scalar object %qD requires one element in initializer",
                     decl);
                     decl);
              TREE_TYPE (decl) = error_mark_node;
              TREE_TYPE (decl) = error_mark_node;
              return NULL_TREE;
              return NULL_TREE;
            }
            }
        }
        }
    }
    }
 
 
  if (TREE_CODE (decl) == CONST_DECL)
  if (TREE_CODE (decl) == CONST_DECL)
    {
    {
      gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
      gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
 
 
      DECL_INITIAL (decl) = init;
      DECL_INITIAL (decl) = init;
 
 
      gcc_assert (init != NULL_TREE);
      gcc_assert (init != NULL_TREE);
      init = NULL_TREE;
      init = NULL_TREE;
    }
    }
  else if (!DECL_EXTERNAL (decl) && TREE_CODE (type) == REFERENCE_TYPE)
  else if (!DECL_EXTERNAL (decl) && TREE_CODE (type) == REFERENCE_TYPE)
    init = grok_reference_init (decl, type, init, cleanup);
    init = grok_reference_init (decl, type, init, cleanup);
  else if (init)
  else if (init)
    {
    {
      /* Do not reshape constructors of vectors (they don't need to be
      /* Do not reshape constructors of vectors (they don't need to be
         reshaped.  */
         reshaped.  */
      if (BRACE_ENCLOSED_INITIALIZER_P (init))
      if (BRACE_ENCLOSED_INITIALIZER_P (init))
        {
        {
          if (is_std_init_list (type))
          if (is_std_init_list (type))
            return build_init_list_var_init (decl, type, init, cleanup);
            return build_init_list_var_init (decl, type, init, cleanup);
          else if (TYPE_NON_AGGREGATE_CLASS (type))
          else if (TYPE_NON_AGGREGATE_CLASS (type))
            {
            {
              /* Don't reshape if the class has constructors.  */
              /* Don't reshape if the class has constructors.  */
              if (cxx_dialect == cxx98)
              if (cxx_dialect == cxx98)
                error ("in C++98 %qD must be initialized by constructor, "
                error ("in C++98 %qD must be initialized by constructor, "
                       "not by %<{...}%>",
                       "not by %<{...}%>",
                       decl);
                       decl);
            }
            }
          else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_VECTOR_OPAQUE (type))
          else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_VECTOR_OPAQUE (type))
            {
            {
              error ("opaque vector types cannot be initialized");
              error ("opaque vector types cannot be initialized");
              init = error_mark_node;
              init = error_mark_node;
            }
            }
          else
          else
            init = reshape_init (type, init);
            init = reshape_init (type, init);
        }
        }
 
 
      /* If DECL has an array type without a specific bound, deduce the
      /* If DECL has an array type without a specific bound, deduce the
         array size from the initializer.  */
         array size from the initializer.  */
      maybe_deduce_size_from_array_init (decl, init);
      maybe_deduce_size_from_array_init (decl, init);
      type = TREE_TYPE (decl);
      type = TREE_TYPE (decl);
      if (type == error_mark_node)
      if (type == error_mark_node)
        return NULL_TREE;
        return NULL_TREE;
 
 
      if (TYPE_NEEDS_CONSTRUCTING (type)
      if (TYPE_NEEDS_CONSTRUCTING (type)
          || (CLASS_TYPE_P (type)
          || (CLASS_TYPE_P (type)
              && !BRACE_ENCLOSED_INITIALIZER_P (init)))
              && !BRACE_ENCLOSED_INITIALIZER_P (init)))
        return build_aggr_init_full_exprs (decl, init, flags);
        return build_aggr_init_full_exprs (decl, init, flags);
      else if (TREE_CODE (init) != TREE_VEC)
      else if (TREE_CODE (init) != TREE_VEC)
        {
        {
          init_code = store_init_value (decl, init, flags);
          init_code = store_init_value (decl, init, flags);
          if (pedantic && TREE_CODE (type) == ARRAY_TYPE
          if (pedantic && TREE_CODE (type) == ARRAY_TYPE
              && DECL_INITIAL (decl)
              && DECL_INITIAL (decl)
              && TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
              && TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
              && PAREN_STRING_LITERAL_P (DECL_INITIAL (decl)))
              && PAREN_STRING_LITERAL_P (DECL_INITIAL (decl)))
            warning (0, "array %qD initialized by parenthesized string literal %qE",
            warning (0, "array %qD initialized by parenthesized string literal %qE",
                     decl, DECL_INITIAL (decl));
                     decl, DECL_INITIAL (decl));
          init = NULL;
          init = NULL;
        }
        }
    }
    }
  else if (DECL_EXTERNAL (decl))
  else if (DECL_EXTERNAL (decl))
    ;
    ;
  else if (TYPE_P (type) && TYPE_NEEDS_CONSTRUCTING (type))
  else if (TYPE_P (type) && TYPE_NEEDS_CONSTRUCTING (type))
    return build_aggr_init_full_exprs (decl, init, flags);
    return build_aggr_init_full_exprs (decl, init, flags);
  else if (MAYBE_CLASS_TYPE_P (type))
  else if (MAYBE_CLASS_TYPE_P (type))
    {
    {
      tree core_type = strip_array_types (type);
      tree core_type = strip_array_types (type);
 
 
      if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type))
      if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type))
        error ("structure %qD with uninitialized const members", decl);
        error ("structure %qD with uninitialized const members", decl);
      if (CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))
      if (CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))
        error ("structure %qD with uninitialized reference members", decl);
        error ("structure %qD with uninitialized reference members", decl);
 
 
      check_for_uninitialized_const_var (decl);
      check_for_uninitialized_const_var (decl);
    }
    }
  else
  else
    check_for_uninitialized_const_var (decl);
    check_for_uninitialized_const_var (decl);
 
 
  if (init && init != error_mark_node)
  if (init && init != error_mark_node)
    init_code = build2 (INIT_EXPR, type, decl, init);
    init_code = build2 (INIT_EXPR, type, decl, init);
 
 
  return init_code;
  return init_code;
}
}
 
 
/* If DECL is not a local variable, give it RTL.  */
/* If DECL is not a local variable, give it RTL.  */
 
 
static void
static void
make_rtl_for_nonlocal_decl (tree decl, tree init, const char* asmspec)
make_rtl_for_nonlocal_decl (tree decl, tree init, const char* asmspec)
{
{
  int toplev = toplevel_bindings_p ();
  int toplev = toplevel_bindings_p ();
  int defer_p;
  int defer_p;
  const char *filename;
  const char *filename;
 
 
  /* Set the DECL_ASSEMBLER_NAME for the object.  */
  /* Set the DECL_ASSEMBLER_NAME for the object.  */
  if (asmspec)
  if (asmspec)
    {
    {
      /* The `register' keyword, when used together with an
      /* The `register' keyword, when used together with an
         asm-specification, indicates that the variable should be
         asm-specification, indicates that the variable should be
         placed in a particular register.  */
         placed in a particular register.  */
      if (TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
      if (TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
        {
        {
          set_user_assembler_name (decl, asmspec);
          set_user_assembler_name (decl, asmspec);
          DECL_HARD_REGISTER (decl) = 1;
          DECL_HARD_REGISTER (decl) = 1;
        }
        }
      else
      else
        {
        {
          if (TREE_CODE (decl) == FUNCTION_DECL
          if (TREE_CODE (decl) == FUNCTION_DECL
              && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
              && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
            set_builtin_user_assembler_name (decl, asmspec);
            set_builtin_user_assembler_name (decl, asmspec);
          set_user_assembler_name (decl, asmspec);
          set_user_assembler_name (decl, asmspec);
        }
        }
    }
    }
 
 
  /* Handle non-variables up front.  */
  /* Handle non-variables up front.  */
  if (TREE_CODE (decl) != VAR_DECL)
  if (TREE_CODE (decl) != VAR_DECL)
    {
    {
      rest_of_decl_compilation (decl, toplev, at_eof);
      rest_of_decl_compilation (decl, toplev, at_eof);
      return;
      return;
    }
    }
 
 
  /* If we see a class member here, it should be a static data
  /* If we see a class member here, it should be a static data
     member.  */
     member.  */
  if (DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl))
  if (DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl))
    {
    {
      gcc_assert (TREE_STATIC (decl));
      gcc_assert (TREE_STATIC (decl));
      /* An in-class declaration of a static data member should be
      /* An in-class declaration of a static data member should be
         external; it is only a declaration, and not a definition.  */
         external; it is only a declaration, and not a definition.  */
      if (init == NULL_TREE)
      if (init == NULL_TREE)
        gcc_assert (DECL_EXTERNAL (decl) || !TREE_PUBLIC (decl));
        gcc_assert (DECL_EXTERNAL (decl) || !TREE_PUBLIC (decl));
    }
    }
 
 
  /* We don't create any RTL for local variables.  */
  /* We don't create any RTL for local variables.  */
  if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl))
  if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl))
    return;
    return;
 
 
  /* We defer emission of local statics until the corresponding
  /* We defer emission of local statics until the corresponding
     DECL_EXPR is expanded.  */
     DECL_EXPR is expanded.  */
  defer_p = DECL_FUNCTION_SCOPE_P (decl) || DECL_VIRTUAL_P (decl);
  defer_p = DECL_FUNCTION_SCOPE_P (decl) || DECL_VIRTUAL_P (decl);
 
 
  /* We try to defer namespace-scope static constants so that they are
  /* We try to defer namespace-scope static constants so that they are
     not emitted into the object file unnecessarily.  */
     not emitted into the object file unnecessarily.  */
  filename = input_filename;
  filename = input_filename;
  if (!DECL_VIRTUAL_P (decl)
  if (!DECL_VIRTUAL_P (decl)
      && TREE_READONLY (decl)
      && TREE_READONLY (decl)
      && DECL_INITIAL (decl) != NULL_TREE
      && DECL_INITIAL (decl) != NULL_TREE
      && DECL_INITIAL (decl) != error_mark_node
      && DECL_INITIAL (decl) != error_mark_node
      && filename != NULL
      && filename != NULL
      && ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))
      && ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))
      && toplev
      && toplev
      && !TREE_PUBLIC (decl))
      && !TREE_PUBLIC (decl))
    {
    {
      /* Fool with the linkage of static consts according to #pragma
      /* Fool with the linkage of static consts according to #pragma
         interface.  */
         interface.  */
      struct c_fileinfo *finfo = get_fileinfo (filename);
      struct c_fileinfo *finfo = get_fileinfo (filename);
      if (!finfo->interface_unknown && !TREE_PUBLIC (decl))
      if (!finfo->interface_unknown && !TREE_PUBLIC (decl))
        {
        {
          TREE_PUBLIC (decl) = 1;
          TREE_PUBLIC (decl) = 1;
          DECL_EXTERNAL (decl) = finfo->interface_only;
          DECL_EXTERNAL (decl) = finfo->interface_only;
        }
        }
 
 
      defer_p = 1;
      defer_p = 1;
    }
    }
  /* Likewise for template instantiations.  */
  /* Likewise for template instantiations.  */
  else if (DECL_LANG_SPECIFIC (decl)
  else if (DECL_LANG_SPECIFIC (decl)
           && DECL_IMPLICIT_INSTANTIATION (decl))
           && DECL_IMPLICIT_INSTANTIATION (decl))
    defer_p = 1;
    defer_p = 1;
 
 
  /* If we're not deferring, go ahead and assemble the variable.  */
  /* If we're not deferring, go ahead and assemble the variable.  */
  if (!defer_p)
  if (!defer_p)
    rest_of_decl_compilation (decl, toplev, at_eof);
    rest_of_decl_compilation (decl, toplev, at_eof);
}
}
 
 
/* walk_tree helper for wrap_temporary_cleanups, below.  */
/* walk_tree helper for wrap_temporary_cleanups, below.  */
 
 
static tree
static tree
wrap_cleanups_r (tree *stmt_p, int *walk_subtrees, void *data)
wrap_cleanups_r (tree *stmt_p, int *walk_subtrees, void *data)
{
{
  if (TYPE_P (*stmt_p))
  if (TYPE_P (*stmt_p))
    {
    {
      *walk_subtrees = 0;
      *walk_subtrees = 0;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (TREE_CODE (*stmt_p) == TARGET_EXPR)
  if (TREE_CODE (*stmt_p) == TARGET_EXPR)
    {
    {
      tree guard = (tree)data;
      tree guard = (tree)data;
      tree tcleanup = TARGET_EXPR_CLEANUP (*stmt_p);
      tree tcleanup = TARGET_EXPR_CLEANUP (*stmt_p);
 
 
      tcleanup = build2 (TRY_CATCH_EXPR, void_type_node, tcleanup, guard);
      tcleanup = build2 (TRY_CATCH_EXPR, void_type_node, tcleanup, guard);
      /* Tell honor_protect_cleanup_actions to handle this as a separate
      /* Tell honor_protect_cleanup_actions to handle this as a separate
         cleanup.  */
         cleanup.  */
      TRY_CATCH_IS_CLEANUP (tcleanup) = 1;
      TRY_CATCH_IS_CLEANUP (tcleanup) = 1;
 
 
      TARGET_EXPR_CLEANUP (*stmt_p) = tcleanup;
      TARGET_EXPR_CLEANUP (*stmt_p) = tcleanup;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* We're initializing a local variable which has a cleanup GUARD.  If there
/* We're initializing a local variable which has a cleanup GUARD.  If there
   are any temporaries used in the initializer INIT of this variable, we
   are any temporaries used in the initializer INIT of this variable, we
   need to wrap their cleanups with TRY_CATCH_EXPR (, GUARD) so that the
   need to wrap their cleanups with TRY_CATCH_EXPR (, GUARD) so that the
   variable will be cleaned up properly if one of them throws.
   variable will be cleaned up properly if one of them throws.
 
 
   Unfortunately, there's no way to express this properly in terms of
   Unfortunately, there's no way to express this properly in terms of
   nesting, as the regions for the temporaries overlap the region for the
   nesting, as the regions for the temporaries overlap the region for the
   variable itself; if there are two temporaries, the variable needs to be
   variable itself; if there are two temporaries, the variable needs to be
   the first thing destroyed if either of them throws.  However, we only
   the first thing destroyed if either of them throws.  However, we only
   want to run the variable's cleanup if it actually got constructed.  So
   want to run the variable's cleanup if it actually got constructed.  So
   we need to guard the temporary cleanups with the variable's cleanup if
   we need to guard the temporary cleanups with the variable's cleanup if
   they are run on the normal path, but not if they are run on the
   they are run on the normal path, but not if they are run on the
   exceptional path.  We implement this by telling
   exceptional path.  We implement this by telling
   honor_protect_cleanup_actions to strip the variable cleanup from the
   honor_protect_cleanup_actions to strip the variable cleanup from the
   exceptional path.  */
   exceptional path.  */
 
 
static void
static void
wrap_temporary_cleanups (tree init, tree guard)
wrap_temporary_cleanups (tree init, tree guard)
{
{
  cp_walk_tree_without_duplicates (&init, wrap_cleanups_r, (void *)guard);
  cp_walk_tree_without_duplicates (&init, wrap_cleanups_r, (void *)guard);
}
}
 
 
/* Generate code to initialize DECL (a local variable).  */
/* Generate code to initialize DECL (a local variable).  */
 
 
static void
static void
initialize_local_var (tree decl, tree init)
initialize_local_var (tree decl, tree init)
{
{
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
  tree cleanup;
  tree cleanup;
  int already_used;
  int already_used;
 
 
  gcc_assert (TREE_CODE (decl) == VAR_DECL
  gcc_assert (TREE_CODE (decl) == VAR_DECL
              || TREE_CODE (decl) == RESULT_DECL);
              || TREE_CODE (decl) == RESULT_DECL);
  gcc_assert (!TREE_STATIC (decl));
  gcc_assert (!TREE_STATIC (decl));
 
 
  if (DECL_SIZE (decl) == NULL_TREE)
  if (DECL_SIZE (decl) == NULL_TREE)
    {
    {
      /* If we used it already as memory, it must stay in memory.  */
      /* If we used it already as memory, it must stay in memory.  */
      DECL_INITIAL (decl) = NULL_TREE;
      DECL_INITIAL (decl) = NULL_TREE;
      TREE_ADDRESSABLE (decl) = TREE_USED (decl);
      TREE_ADDRESSABLE (decl) = TREE_USED (decl);
      return;
      return;
    }
    }
 
 
  if (type == error_mark_node)
  if (type == error_mark_node)
    return;
    return;
 
 
  /* Compute and store the initial value.  */
  /* Compute and store the initial value.  */
  already_used = TREE_USED (decl) || TREE_USED (type);
  already_used = TREE_USED (decl) || TREE_USED (type);
 
 
  /* Generate a cleanup, if necessary.  */
  /* Generate a cleanup, if necessary.  */
  cleanup = cxx_maybe_build_cleanup (decl);
  cleanup = cxx_maybe_build_cleanup (decl);
 
 
  /* Perform the initialization.  */
  /* Perform the initialization.  */
  if (init)
  if (init)
    {
    {
      int saved_stmts_are_full_exprs_p;
      int saved_stmts_are_full_exprs_p;
 
 
      /* If we're only initializing a single object, guard the destructors
      /* If we're only initializing a single object, guard the destructors
         of any temporaries used in its initializer with its destructor.
         of any temporaries used in its initializer with its destructor.
         This isn't right for arrays because each element initialization is
         This isn't right for arrays because each element initialization is
         a full-expression.  */
         a full-expression.  */
      if (cleanup && TREE_CODE (type) != ARRAY_TYPE)
      if (cleanup && TREE_CODE (type) != ARRAY_TYPE)
        wrap_temporary_cleanups (init, cleanup);
        wrap_temporary_cleanups (init, cleanup);
 
 
      gcc_assert (building_stmt_tree ());
      gcc_assert (building_stmt_tree ());
      saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
      saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
      current_stmt_tree ()->stmts_are_full_exprs_p = 1;
      current_stmt_tree ()->stmts_are_full_exprs_p = 1;
      finish_expr_stmt (init);
      finish_expr_stmt (init);
      current_stmt_tree ()->stmts_are_full_exprs_p =
      current_stmt_tree ()->stmts_are_full_exprs_p =
        saved_stmts_are_full_exprs_p;
        saved_stmts_are_full_exprs_p;
    }
    }
 
 
  /* Set this to 0 so we can tell whether an aggregate which was
  /* Set this to 0 so we can tell whether an aggregate which was
     initialized was ever used.  Don't do this if it has a
     initialized was ever used.  Don't do this if it has a
     destructor, so we don't complain about the 'resource
     destructor, so we don't complain about the 'resource
     allocation is initialization' idiom.  Now set
     allocation is initialization' idiom.  Now set
     attribute((unused)) on types so decls of that type will be
     attribute((unused)) on types so decls of that type will be
     marked used. (see TREE_USED, above.)  */
     marked used. (see TREE_USED, above.)  */
  if (TYPE_NEEDS_CONSTRUCTING (type)
  if (TYPE_NEEDS_CONSTRUCTING (type)
      && ! already_used
      && ! already_used
      && TYPE_HAS_TRIVIAL_DESTRUCTOR (type)
      && TYPE_HAS_TRIVIAL_DESTRUCTOR (type)
      && DECL_NAME (decl))
      && DECL_NAME (decl))
    TREE_USED (decl) = 0;
    TREE_USED (decl) = 0;
  else if (already_used)
  else if (already_used)
    TREE_USED (decl) = 1;
    TREE_USED (decl) = 1;
 
 
  if (cleanup)
  if (cleanup)
    finish_decl_cleanup (decl, cleanup);
    finish_decl_cleanup (decl, cleanup);
}
}
 
 
/* DECL is a VAR_DECL for a compiler-generated variable with static
/* DECL is a VAR_DECL for a compiler-generated variable with static
   storage duration (like a virtual table) whose initializer is a
   storage duration (like a virtual table) whose initializer is a
   compile-time constant.  INIT must be either a TREE_LIST of values,
   compile-time constant.  INIT must be either a TREE_LIST of values,
   or a CONSTRUCTOR.  Initialize the variable and provide it to the
   or a CONSTRUCTOR.  Initialize the variable and provide it to the
   back end.  */
   back end.  */
 
 
void
void
initialize_artificial_var (tree decl, tree init)
initialize_artificial_var (tree decl, tree init)
{
{
  gcc_assert (DECL_ARTIFICIAL (decl));
  gcc_assert (DECL_ARTIFICIAL (decl));
  if (TREE_CODE (init) == TREE_LIST)
  if (TREE_CODE (init) == TREE_LIST)
    init = build_constructor_from_list (TREE_TYPE (decl), init);
    init = build_constructor_from_list (TREE_TYPE (decl), init);
  gcc_assert (TREE_CODE (init) == CONSTRUCTOR);
  gcc_assert (TREE_CODE (init) == CONSTRUCTOR);
  DECL_INITIAL (decl) = init;
  DECL_INITIAL (decl) = init;
  DECL_INITIALIZED_P (decl) = 1;
  DECL_INITIALIZED_P (decl) = 1;
  determine_visibility (decl);
  determine_visibility (decl);
  layout_var_decl (decl);
  layout_var_decl (decl);
  maybe_commonize_var (decl);
  maybe_commonize_var (decl);
  make_rtl_for_nonlocal_decl (decl, init, /*asmspec=*/NULL);
  make_rtl_for_nonlocal_decl (decl, init, /*asmspec=*/NULL);
}
}
 
 
/* INIT is the initializer for a variable, as represented by the
/* INIT is the initializer for a variable, as represented by the
   parser.  Returns true iff INIT is value-dependent.  */
   parser.  Returns true iff INIT is value-dependent.  */
 
 
static bool
static bool
value_dependent_init_p (tree init)
value_dependent_init_p (tree init)
{
{
  if (TREE_CODE (init) == TREE_LIST)
  if (TREE_CODE (init) == TREE_LIST)
    /* A parenthesized initializer, e.g.: int i (3, 2); ? */
    /* A parenthesized initializer, e.g.: int i (3, 2); ? */
    return any_value_dependent_elements_p (init);
    return any_value_dependent_elements_p (init);
  else if (TREE_CODE (init) == CONSTRUCTOR)
  else if (TREE_CODE (init) == CONSTRUCTOR)
  /* A brace-enclosed initializer, e.g.: int i = { 3 }; ? */
  /* A brace-enclosed initializer, e.g.: int i = { 3 }; ? */
    {
    {
      VEC(constructor_elt, gc) *elts;
      VEC(constructor_elt, gc) *elts;
      size_t nelts;
      size_t nelts;
      size_t i;
      size_t i;
 
 
      elts = CONSTRUCTOR_ELTS (init);
      elts = CONSTRUCTOR_ELTS (init);
      nelts = VEC_length (constructor_elt, elts);
      nelts = VEC_length (constructor_elt, elts);
      for (i = 0; i < nelts; ++i)
      for (i = 0; i < nelts; ++i)
        if (value_dependent_init_p (VEC_index (constructor_elt,
        if (value_dependent_init_p (VEC_index (constructor_elt,
                                               elts, i)->value))
                                               elts, i)->value))
          return true;
          return true;
    }
    }
  else
  else
    /* It must be a simple expression, e.g., int i = 3;  */
    /* It must be a simple expression, e.g., int i = 3;  */
    return value_dependent_expression_p (init);
    return value_dependent_expression_p (init);
 
 
  return false;
  return false;
}
}
 
 
/* Finish processing of a declaration;
/* Finish processing of a declaration;
   install its line number and initial value.
   install its line number and initial value.
   If the length of an array type is not known before,
   If the length of an array type is not known before,
   it must be determined now, from the initial value, or it is an error.
   it must be determined now, from the initial value, or it is an error.
 
 
   INIT is the initializer (if any) for DECL.  If INIT_CONST_EXPR_P is
   INIT is the initializer (if any) for DECL.  If INIT_CONST_EXPR_P is
   true, then INIT is an integral constant expression.
   true, then INIT is an integral constant expression.
 
 
   FLAGS is LOOKUP_ONLYCONVERTING if the = init syntax was used, else 0
   FLAGS is LOOKUP_ONLYCONVERTING if the = init syntax was used, else 0
   if the (init) syntax was used.  */
   if the (init) syntax was used.  */
 
 
void
void
cp_finish_decl (tree decl, tree init, bool init_const_expr_p,
cp_finish_decl (tree decl, tree init, bool init_const_expr_p,
                tree asmspec_tree, int flags)
                tree asmspec_tree, int flags)
{
{
  tree type;
  tree type;
  tree cleanup;
  tree cleanup;
  const char *asmspec = NULL;
  const char *asmspec = NULL;
  int was_readonly = 0;
  int was_readonly = 0;
  bool var_definition_p = false;
  bool var_definition_p = false;
  int saved_processing_template_decl;
  int saved_processing_template_decl;
  tree auto_node;
  tree auto_node;
 
 
  if (decl == error_mark_node)
  if (decl == error_mark_node)
    return;
    return;
  else if (! decl)
  else if (! decl)
    {
    {
      if (init)
      if (init)
        error ("assignment (not initialization) in declaration");
        error ("assignment (not initialization) in declaration");
      return;
      return;
    }
    }
 
 
  gcc_assert (TREE_CODE (decl) != RESULT_DECL);
  gcc_assert (TREE_CODE (decl) != RESULT_DECL);
  /* Parameters are handled by store_parm_decls, not cp_finish_decl.  */
  /* Parameters are handled by store_parm_decls, not cp_finish_decl.  */
  gcc_assert (TREE_CODE (decl) != PARM_DECL);
  gcc_assert (TREE_CODE (decl) != PARM_DECL);
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  if (type == error_mark_node)
  if (type == error_mark_node)
    return;
    return;
 
 
  /* Assume no cleanup is required.  */
  /* Assume no cleanup is required.  */
  cleanup = NULL_TREE;
  cleanup = NULL_TREE;
  saved_processing_template_decl = processing_template_decl;
  saved_processing_template_decl = processing_template_decl;
 
 
  /* If a name was specified, get the string.  */
  /* If a name was specified, get the string.  */
  if (global_scope_p (current_binding_level))
  if (global_scope_p (current_binding_level))
    asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
    asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
  if (asmspec_tree && asmspec_tree != error_mark_node)
  if (asmspec_tree && asmspec_tree != error_mark_node)
    asmspec = TREE_STRING_POINTER (asmspec_tree);
    asmspec = TREE_STRING_POINTER (asmspec_tree);
 
 
  if (current_class_type
  if (current_class_type
      && CP_DECL_CONTEXT (decl) == current_class_type
      && CP_DECL_CONTEXT (decl) == current_class_type
      && TYPE_BEING_DEFINED (current_class_type)
      && TYPE_BEING_DEFINED (current_class_type)
      && (DECL_INITIAL (decl) || init))
      && (DECL_INITIAL (decl) || init))
    DECL_INITIALIZED_IN_CLASS_P (decl) = 1;
    DECL_INITIALIZED_IN_CLASS_P (decl) = 1;
 
 
  auto_node = type_uses_auto (type);
  auto_node = type_uses_auto (type);
  if (auto_node)
  if (auto_node)
    {
    {
      if (init == NULL_TREE)
      if (init == NULL_TREE)
        {
        {
          error ("declaration of %q#D has no initializer", decl);
          error ("declaration of %q#D has no initializer", decl);
          TREE_TYPE (decl) = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
          return;
          return;
        }
        }
      if (TREE_CODE (init) == TREE_LIST)
      if (TREE_CODE (init) == TREE_LIST)
        init = build_x_compound_expr_from_list (init, "initializer");
        init = build_x_compound_expr_from_list (init, "initializer");
      if (describable_type (init))
      if (describable_type (init))
        {
        {
          type = TREE_TYPE (decl) = do_auto_deduction (type, init, auto_node);
          type = TREE_TYPE (decl) = do_auto_deduction (type, init, auto_node);
          if (type == error_mark_node)
          if (type == error_mark_node)
            return;
            return;
        }
        }
    }
    }
 
 
  if (init && TREE_CODE (decl) == FUNCTION_DECL)
  if (init && TREE_CODE (decl) == FUNCTION_DECL)
    {
    {
      tree clone;
      tree clone;
      if (init == ridpointers[(int)RID_DELETE])
      if (init == ridpointers[(int)RID_DELETE])
        {
        {
          /* FIXME check this is 1st decl.  */
          /* FIXME check this is 1st decl.  */
          DECL_DELETED_FN (decl) = 1;
          DECL_DELETED_FN (decl) = 1;
          DECL_DECLARED_INLINE_P (decl) = 1;
          DECL_DECLARED_INLINE_P (decl) = 1;
          DECL_INITIAL (decl) = error_mark_node;
          DECL_INITIAL (decl) = error_mark_node;
          FOR_EACH_CLONE (clone, decl)
          FOR_EACH_CLONE (clone, decl)
            {
            {
              DECL_DELETED_FN (clone) = 1;
              DECL_DELETED_FN (clone) = 1;
              DECL_DECLARED_INLINE_P (clone) = 1;
              DECL_DECLARED_INLINE_P (clone) = 1;
              DECL_INITIAL (clone) = error_mark_node;
              DECL_INITIAL (clone) = error_mark_node;
            }
            }
          init = NULL_TREE;
          init = NULL_TREE;
        }
        }
      else if (init == ridpointers[(int)RID_DEFAULT])
      else if (init == ridpointers[(int)RID_DEFAULT])
        {
        {
          if (defaultable_fn_check (decl))
          if (defaultable_fn_check (decl))
            DECL_DEFAULTED_FN (decl) = 1;
            DECL_DEFAULTED_FN (decl) = 1;
          else
          else
            DECL_INITIAL (decl) = NULL_TREE;
            DECL_INITIAL (decl) = NULL_TREE;
        }
        }
    }
    }
 
 
  if (processing_template_decl)
  if (processing_template_decl)
    {
    {
      bool type_dependent_p;
      bool type_dependent_p;
 
 
      /* Add this declaration to the statement-tree.  */
      /* Add this declaration to the statement-tree.  */
      if (at_function_scope_p ())
      if (at_function_scope_p ())
        add_decl_expr (decl);
        add_decl_expr (decl);
 
 
      type_dependent_p = dependent_type_p (type);
      type_dependent_p = dependent_type_p (type);
 
 
      if (check_for_bare_parameter_packs (init))
      if (check_for_bare_parameter_packs (init))
        {
        {
          init = NULL_TREE;
          init = NULL_TREE;
          DECL_INITIAL (decl) = NULL_TREE;
          DECL_INITIAL (decl) = NULL_TREE;
        }
        }
 
 
      if (init && init_const_expr_p && TREE_CODE (decl) == VAR_DECL)
      if (init && init_const_expr_p && TREE_CODE (decl) == VAR_DECL)
        {
        {
          DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
          DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
          if (DECL_INTEGRAL_CONSTANT_VAR_P (decl))
          if (DECL_INTEGRAL_CONSTANT_VAR_P (decl))
            TREE_CONSTANT (decl) = 1;
            TREE_CONSTANT (decl) = 1;
        }
        }
 
 
      /* Generally, initializers in templates are expanded when the
      /* Generally, initializers in templates are expanded when the
         template is instantiated.  But, if DECL is an integral
         template is instantiated.  But, if DECL is an integral
         constant static data member, then it can be used in future
         constant static data member, then it can be used in future
         integral constant expressions, and its value must be
         integral constant expressions, and its value must be
         available. */
         available. */
      if (!(init
      if (!(init
            && DECL_CLASS_SCOPE_P (decl)
            && DECL_CLASS_SCOPE_P (decl)
            && DECL_INTEGRAL_CONSTANT_VAR_P (decl)
            && DECL_INTEGRAL_CONSTANT_VAR_P (decl)
            && !type_dependent_p
            && !type_dependent_p
            && !value_dependent_init_p (init)))
            && !value_dependent_init_p (init)))
        {
        {
          if (init)
          if (init)
            DECL_INITIAL (decl) = init;
            DECL_INITIAL (decl) = init;
          if (TREE_CODE (decl) == VAR_DECL
          if (TREE_CODE (decl) == VAR_DECL
              && !DECL_PRETTY_FUNCTION_P (decl)
              && !DECL_PRETTY_FUNCTION_P (decl)
              && !type_dependent_p)
              && !type_dependent_p)
            maybe_deduce_size_from_array_init (decl, init);
            maybe_deduce_size_from_array_init (decl, init);
          goto finish_end;
          goto finish_end;
        }
        }
 
 
      if (TREE_CODE (init) == TREE_LIST)
      if (TREE_CODE (init) == TREE_LIST)
        {
        {
          /* If the parenthesized-initializer form was used (e.g.,
          /* If the parenthesized-initializer form was used (e.g.,
             "int A<N>::i(X)"), then INIT will be a TREE_LIST of initializer
             "int A<N>::i(X)"), then INIT will be a TREE_LIST of initializer
             arguments.  (There is generally only one.)  We convert them
             arguments.  (There is generally only one.)  We convert them
             individually.  */
             individually.  */
          tree list = init;
          tree list = init;
          for (; list; list = TREE_CHAIN (list))
          for (; list; list = TREE_CHAIN (list))
            {
            {
              tree elt = TREE_VALUE (list);
              tree elt = TREE_VALUE (list);
              TREE_VALUE (list) = fold_non_dependent_expr (elt);
              TREE_VALUE (list) = fold_non_dependent_expr (elt);
            }
            }
        }
        }
      else
      else
        init = fold_non_dependent_expr (init);
        init = fold_non_dependent_expr (init);
      processing_template_decl = 0;
      processing_template_decl = 0;
    }
    }
 
 
  /* Take care of TYPE_DECLs up front.  */
  /* Take care of TYPE_DECLs up front.  */
  if (TREE_CODE (decl) == TYPE_DECL)
  if (TREE_CODE (decl) == TYPE_DECL)
    {
    {
      if (type != error_mark_node
      if (type != error_mark_node
          && MAYBE_CLASS_TYPE_P (type) && DECL_NAME (decl))
          && MAYBE_CLASS_TYPE_P (type) && DECL_NAME (decl))
        {
        {
          if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type)
          if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type)
            warning (0, "shadowing previous type declaration of %q#D", decl);
            warning (0, "shadowing previous type declaration of %q#D", decl);
          set_identifier_type_value (DECL_NAME (decl), decl);
          set_identifier_type_value (DECL_NAME (decl), decl);
        }
        }
 
 
      /* If we have installed this as the canonical typedef for this
      /* If we have installed this as the canonical typedef for this
         type, and that type has not been defined yet, delay emitting
         type, and that type has not been defined yet, delay emitting
         the debug information for it, as we will emit it later.  */
         the debug information for it, as we will emit it later.  */
      if (TYPE_MAIN_DECL (TREE_TYPE (decl)) == decl
      if (TYPE_MAIN_DECL (TREE_TYPE (decl)) == decl
          && !COMPLETE_TYPE_P (TREE_TYPE (decl)))
          && !COMPLETE_TYPE_P (TREE_TYPE (decl)))
        TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
        TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
 
 
      rest_of_decl_compilation (decl, DECL_CONTEXT (decl) == NULL_TREE,
      rest_of_decl_compilation (decl, DECL_CONTEXT (decl) == NULL_TREE,
                                at_eof);
                                at_eof);
      goto finish_end;
      goto finish_end;
    }
    }
 
 
  /* A reference will be modified here, as it is initialized.  */
  /* A reference will be modified here, as it is initialized.  */
  if (! DECL_EXTERNAL (decl)
  if (! DECL_EXTERNAL (decl)
      && TREE_READONLY (decl)
      && TREE_READONLY (decl)
      && TREE_CODE (type) == REFERENCE_TYPE)
      && TREE_CODE (type) == REFERENCE_TYPE)
    {
    {
      was_readonly = 1;
      was_readonly = 1;
      TREE_READONLY (decl) = 0;
      TREE_READONLY (decl) = 0;
    }
    }
 
 
  if (TREE_CODE (decl) == VAR_DECL)
  if (TREE_CODE (decl) == VAR_DECL)
    {
    {
      /* Only variables with trivial initialization and destruction can
      /* Only variables with trivial initialization and destruction can
         have thread-local storage.  */
         have thread-local storage.  */
      if (DECL_THREAD_LOCAL_P (decl)
      if (DECL_THREAD_LOCAL_P (decl)
          && (type_has_nontrivial_default_init (TREE_TYPE (decl))
          && (type_has_nontrivial_default_init (TREE_TYPE (decl))
              || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl))))
              || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl))))
        error ("%qD cannot be thread-local because it has non-trivial "
        error ("%qD cannot be thread-local because it has non-trivial "
               "type %qT", decl, TREE_TYPE (decl));
               "type %qT", decl, TREE_TYPE (decl));
      /* If this is a local variable that will need a mangled name,
      /* If this is a local variable that will need a mangled name,
         register it now.  We must do this before processing the
         register it now.  We must do this before processing the
         initializer for the variable, since the initialization might
         initializer for the variable, since the initialization might
         require a guard variable, and since the mangled name of the
         require a guard variable, and since the mangled name of the
         guard variable will depend on the mangled name of this
         guard variable will depend on the mangled name of this
         variable.  */
         variable.  */
      if (DECL_FUNCTION_SCOPE_P (decl)
      if (DECL_FUNCTION_SCOPE_P (decl)
          && TREE_STATIC (decl)
          && TREE_STATIC (decl)
          && !DECL_ARTIFICIAL (decl))
          && !DECL_ARTIFICIAL (decl))
        {
        {
          push_local_name (decl);
          push_local_name (decl);
          if (DECL_CONSTRUCTOR_P (current_function_decl)
          if (DECL_CONSTRUCTOR_P (current_function_decl)
              || DECL_DESTRUCTOR_P (current_function_decl))
              || DECL_DESTRUCTOR_P (current_function_decl))
            /* Normally local_decls is populated during GIMPLE lowering,
            /* Normally local_decls is populated during GIMPLE lowering,
               but [cd]tors are never actually compiled directly.  We need
               but [cd]tors are never actually compiled directly.  We need
               to put statics on the list so we can deal with the label
               to put statics on the list so we can deal with the label
               address extension.  */
               address extension.  */
            cfun->local_decls = tree_cons (NULL_TREE, decl,
            cfun->local_decls = tree_cons (NULL_TREE, decl,
                                           cfun->local_decls);
                                           cfun->local_decls);
        }
        }
 
 
      /* Convert the initializer to the type of DECL, if we have not
      /* Convert the initializer to the type of DECL, if we have not
         already initialized DECL.  */
         already initialized DECL.  */
      if (!DECL_INITIALIZED_P (decl)
      if (!DECL_INITIALIZED_P (decl)
          /* If !DECL_EXTERNAL then DECL is being defined.  In the
          /* If !DECL_EXTERNAL then DECL is being defined.  In the
             case of a static data member initialized inside the
             case of a static data member initialized inside the
             class-specifier, there can be an initializer even if DECL
             class-specifier, there can be an initializer even if DECL
             is *not* defined.  */
             is *not* defined.  */
          && (!DECL_EXTERNAL (decl) || init))
          && (!DECL_EXTERNAL (decl) || init))
        {
        {
          if (TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type))
          if (TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type))
            {
            {
              tree jclass
              tree jclass
                = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
                = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
              /* Allow libjava/prims.cc define primitive classes.  */
              /* Allow libjava/prims.cc define primitive classes.  */
              if (init != NULL_TREE
              if (init != NULL_TREE
                  || jclass == NULL_TREE
                  || jclass == NULL_TREE
                  || TREE_CODE (jclass) != TYPE_DECL
                  || TREE_CODE (jclass) != TYPE_DECL
                  || !POINTER_TYPE_P (TREE_TYPE (jclass))
                  || !POINTER_TYPE_P (TREE_TYPE (jclass))
                  || !same_type_ignoring_top_level_qualifiers_p
                  || !same_type_ignoring_top_level_qualifiers_p
                                        (type, TREE_TYPE (TREE_TYPE (jclass))))
                                        (type, TREE_TYPE (TREE_TYPE (jclass))))
                error ("Java object %qD not allocated with %<new%>", decl);
                error ("Java object %qD not allocated with %<new%>", decl);
              init = NULL_TREE;
              init = NULL_TREE;
            }
            }
          if (init)
          if (init)
            {
            {
              DECL_NONTRIVIALLY_INITIALIZED_P (decl) = 1;
              DECL_NONTRIVIALLY_INITIALIZED_P (decl) = 1;
              if (init_const_expr_p)
              if (init_const_expr_p)
                {
                {
                  DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
                  DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
                  if (DECL_INTEGRAL_CONSTANT_VAR_P (decl))
                  if (DECL_INTEGRAL_CONSTANT_VAR_P (decl))
                    TREE_CONSTANT (decl) = 1;
                    TREE_CONSTANT (decl) = 1;
                }
                }
            }
            }
          init = check_initializer (decl, init, flags, &cleanup);
          init = check_initializer (decl, init, flags, &cleanup);
          /* Thread-local storage cannot be dynamically initialized.  */
          /* Thread-local storage cannot be dynamically initialized.  */
          if (DECL_THREAD_LOCAL_P (decl) && init)
          if (DECL_THREAD_LOCAL_P (decl) && init)
            {
            {
              error ("%qD is thread-local and so cannot be dynamically "
              error ("%qD is thread-local and so cannot be dynamically "
                     "initialized", decl);
                     "initialized", decl);
              init = NULL_TREE;
              init = NULL_TREE;
            }
            }
 
 
          /* Check that the initializer for a static data member was a
          /* Check that the initializer for a static data member was a
             constant.  Although we check in the parser that the
             constant.  Although we check in the parser that the
             initializer is an integral constant expression, we do not
             initializer is an integral constant expression, we do not
             simplify division-by-zero at the point at which it
             simplify division-by-zero at the point at which it
             occurs.  Therefore, in:
             occurs.  Therefore, in:
 
 
               struct S { static const int i = 7 / 0; };
               struct S { static const int i = 7 / 0; };
 
 
             we issue an error at this point.  It would
             we issue an error at this point.  It would
             probably be better to forbid division by zero in
             probably be better to forbid division by zero in
             integral constant expressions.  */
             integral constant expressions.  */
          if (DECL_EXTERNAL (decl) && init)
          if (DECL_EXTERNAL (decl) && init)
            {
            {
              error ("%qD cannot be initialized by a non-constant expression"
              error ("%qD cannot be initialized by a non-constant expression"
                     " when being declared", decl);
                     " when being declared", decl);
              DECL_INITIALIZED_IN_CLASS_P (decl) = 0;
              DECL_INITIALIZED_IN_CLASS_P (decl) = 0;
              init = NULL_TREE;
              init = NULL_TREE;
            }
            }
 
 
          /* Handle:
          /* Handle:
 
 
             [dcl.init]
             [dcl.init]
 
 
             The memory occupied by any object of static storage
             The memory occupied by any object of static storage
             duration is zero-initialized at program startup before
             duration is zero-initialized at program startup before
             any other initialization takes place.
             any other initialization takes place.
 
 
             We cannot create an appropriate initializer until after
             We cannot create an appropriate initializer until after
             the type of DECL is finalized.  If DECL_INITIAL is set,
             the type of DECL is finalized.  If DECL_INITIAL is set,
             then the DECL is statically initialized, and any
             then the DECL is statically initialized, and any
             necessary zero-initialization has already been performed.  */
             necessary zero-initialization has already been performed.  */
          if (TREE_STATIC (decl) && !DECL_INITIAL (decl))
          if (TREE_STATIC (decl) && !DECL_INITIAL (decl))
            DECL_INITIAL (decl) = build_zero_init (TREE_TYPE (decl),
            DECL_INITIAL (decl) = build_zero_init (TREE_TYPE (decl),
                                                   /*nelts=*/NULL_TREE,
                                                   /*nelts=*/NULL_TREE,
                                                   /*static_storage_p=*/true);
                                                   /*static_storage_p=*/true);
          /* Remember that the initialization for this variable has
          /* Remember that the initialization for this variable has
             taken place.  */
             taken place.  */
          DECL_INITIALIZED_P (decl) = 1;
          DECL_INITIALIZED_P (decl) = 1;
          /* This declaration is the definition of this variable,
          /* This declaration is the definition of this variable,
             unless we are initializing a static data member within
             unless we are initializing a static data member within
             the class specifier.  */
             the class specifier.  */
          if (!DECL_EXTERNAL (decl))
          if (!DECL_EXTERNAL (decl))
            var_definition_p = true;
            var_definition_p = true;
        }
        }
      /* If the variable has an array type, lay out the type, even if
      /* If the variable has an array type, lay out the type, even if
         there is no initializer.  It is valid to index through the
         there is no initializer.  It is valid to index through the
         array, and we must get TYPE_ALIGN set correctly on the array
         array, and we must get TYPE_ALIGN set correctly on the array
         type.  */
         type.  */
      else if (TREE_CODE (type) == ARRAY_TYPE)
      else if (TREE_CODE (type) == ARRAY_TYPE)
        layout_type (type);
        layout_type (type);
 
 
      if (!processing_template_decl
      if (!processing_template_decl
          && TREE_STATIC (decl)
          && TREE_STATIC (decl)
          && !at_function_scope_p ()
          && !at_function_scope_p ()
          && current_function_decl == NULL)
          && current_function_decl == NULL)
        /* So decl is a global variable or a static member of a
        /* So decl is a global variable or a static member of a
           non local class. Record the types it uses
           non local class. Record the types it uses
           so that we can decide later to emit debug info for them.  */
           so that we can decide later to emit debug info for them.  */
        record_types_used_by_current_var_decl (decl);
        record_types_used_by_current_var_decl (decl);
    }
    }
  else if (TREE_CODE (decl) == FIELD_DECL
  else if (TREE_CODE (decl) == FIELD_DECL
           && TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type))
           && TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type))
    error ("non-static data member %qD has Java class type", decl);
    error ("non-static data member %qD has Java class type", decl);
 
 
  /* Add this declaration to the statement-tree.  This needs to happen
  /* Add this declaration to the statement-tree.  This needs to happen
     after the call to check_initializer so that the DECL_EXPR for a
     after the call to check_initializer so that the DECL_EXPR for a
     reference temp is added before the DECL_EXPR for the reference itself.  */
     reference temp is added before the DECL_EXPR for the reference itself.  */
  if (at_function_scope_p ())
  if (at_function_scope_p ())
    add_decl_expr (decl);
    add_decl_expr (decl);
 
 
  /* Let the middle end know about variables and functions -- but not
  /* Let the middle end know about variables and functions -- but not
     static data members in uninstantiated class templates.  */
     static data members in uninstantiated class templates.  */
  if (!saved_processing_template_decl
  if (!saved_processing_template_decl
      && (TREE_CODE (decl) == VAR_DECL
      && (TREE_CODE (decl) == VAR_DECL
          || TREE_CODE (decl) == FUNCTION_DECL))
          || TREE_CODE (decl) == FUNCTION_DECL))
    {
    {
      if (TREE_CODE (decl) == VAR_DECL)
      if (TREE_CODE (decl) == VAR_DECL)
        {
        {
          layout_var_decl (decl);
          layout_var_decl (decl);
          maybe_commonize_var (decl);
          maybe_commonize_var (decl);
        }
        }
 
 
      /* This needs to happen after the linkage is set. */
      /* This needs to happen after the linkage is set. */
      determine_visibility (decl);
      determine_visibility (decl);
 
 
      if (var_definition_p && TREE_STATIC (decl))
      if (var_definition_p && TREE_STATIC (decl))
        {
        {
          /* If a TREE_READONLY variable needs initialization
          /* If a TREE_READONLY variable needs initialization
             at runtime, it is no longer readonly and we need to
             at runtime, it is no longer readonly and we need to
             avoid MEM_READONLY_P being set on RTL created for it.  */
             avoid MEM_READONLY_P being set on RTL created for it.  */
          if (init)
          if (init)
            {
            {
              if (TREE_READONLY (decl))
              if (TREE_READONLY (decl))
                TREE_READONLY (decl) = 0;
                TREE_READONLY (decl) = 0;
              was_readonly = 0;
              was_readonly = 0;
            }
            }
          else if (was_readonly)
          else if (was_readonly)
            TREE_READONLY (decl) = 1;
            TREE_READONLY (decl) = 1;
        }
        }
 
 
      make_rtl_for_nonlocal_decl (decl, init, asmspec);
      make_rtl_for_nonlocal_decl (decl, init, asmspec);
 
 
      /* Check for abstractness of the type. Notice that there is no
      /* Check for abstractness of the type. Notice that there is no
         need to strip array types here since the check for those types
         need to strip array types here since the check for those types
         is already done within create_array_type_for_decl.  */
         is already done within create_array_type_for_decl.  */
      if (TREE_CODE (type) == FUNCTION_TYPE
      if (TREE_CODE (type) == FUNCTION_TYPE
          || TREE_CODE (type) == METHOD_TYPE)
          || TREE_CODE (type) == METHOD_TYPE)
        abstract_virtuals_error (decl, TREE_TYPE (type));
        abstract_virtuals_error (decl, TREE_TYPE (type));
      else
      else
        abstract_virtuals_error (decl, type);
        abstract_virtuals_error (decl, type);
 
 
      if (TREE_TYPE (decl) == error_mark_node)
      if (TREE_TYPE (decl) == error_mark_node)
        /* No initialization required.  */
        /* No initialization required.  */
        ;
        ;
      else if (TREE_CODE (decl) == FUNCTION_DECL)
      else if (TREE_CODE (decl) == FUNCTION_DECL)
        {
        {
          if (init)
          if (init)
            {
            {
              if (init == ridpointers[(int)RID_DEFAULT])
              if (init == ridpointers[(int)RID_DEFAULT])
                {
                {
                  /* An out-of-class default definition is defined at
                  /* An out-of-class default definition is defined at
                     the point where it is explicitly defaulted.  */
                     the point where it is explicitly defaulted.  */
                  if (DECL_INITIAL (decl) == error_mark_node)
                  if (DECL_INITIAL (decl) == error_mark_node)
                    synthesize_method (decl);
                    synthesize_method (decl);
                }
                }
              else
              else
                error ("function %q#D is initialized like a variable", decl);
                error ("function %q#D is initialized like a variable", decl);
            }
            }
          /* else no initialization required.  */
          /* else no initialization required.  */
        }
        }
      else if (DECL_EXTERNAL (decl)
      else if (DECL_EXTERNAL (decl)
               && ! (DECL_LANG_SPECIFIC (decl)
               && ! (DECL_LANG_SPECIFIC (decl)
                     && DECL_NOT_REALLY_EXTERN (decl)))
                     && DECL_NOT_REALLY_EXTERN (decl)))
        {
        {
          if (init)
          if (init)
            DECL_INITIAL (decl) = init;
            DECL_INITIAL (decl) = init;
        }
        }
      /* A variable definition.  */
      /* A variable definition.  */
      else if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl))
      else if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl))
        /* Initialize the local variable.  */
        /* Initialize the local variable.  */
        initialize_local_var (decl, init);
        initialize_local_var (decl, init);
 
 
      /* If a variable is defined, and then a subsequent
      /* If a variable is defined, and then a subsequent
         definition with external linkage is encountered, we will
         definition with external linkage is encountered, we will
         get here twice for the same variable.  We want to avoid
         get here twice for the same variable.  We want to avoid
         calling expand_static_init more than once.  For variables
         calling expand_static_init more than once.  For variables
         that are not static data members, we can call
         that are not static data members, we can call
         expand_static_init only when we actually process the
         expand_static_init only when we actually process the
         initializer.  It is not legal to redeclare a static data
         initializer.  It is not legal to redeclare a static data
         member, so this issue does not arise in that case.  */
         member, so this issue does not arise in that case.  */
      else if (var_definition_p && TREE_STATIC (decl))
      else if (var_definition_p && TREE_STATIC (decl))
        expand_static_init (decl, init);
        expand_static_init (decl, init);
    }
    }
 
 
  /* If a CLEANUP_STMT was created to destroy a temporary bound to a
  /* If a CLEANUP_STMT was created to destroy a temporary bound to a
     reference, insert it in the statement-tree now.  */
     reference, insert it in the statement-tree now.  */
  if (cleanup)
  if (cleanup)
    push_cleanup (decl, cleanup, false);
    push_cleanup (decl, cleanup, false);
 
 
 finish_end:
 finish_end:
  processing_template_decl = saved_processing_template_decl;
  processing_template_decl = saved_processing_template_decl;
 
 
  if (was_readonly)
  if (was_readonly)
    TREE_READONLY (decl) = 1;
    TREE_READONLY (decl) = 1;
 
 
  /* If this was marked 'used', be sure it will be output.  */
  /* If this was marked 'used', be sure it will be output.  */
  if (lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
  if (lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
    mark_decl_referenced (decl);
    mark_decl_referenced (decl);
}
}
 
 
/* Returns a declaration for a VAR_DECL as if:
/* Returns a declaration for a VAR_DECL as if:
 
 
     extern "C" TYPE NAME;
     extern "C" TYPE NAME;
 
 
   had been seen.  Used to create compiler-generated global
   had been seen.  Used to create compiler-generated global
   variables.  */
   variables.  */
 
 
static tree
static tree
declare_global_var (tree name, tree type)
declare_global_var (tree name, tree type)
{
{
  tree decl;
  tree decl;
 
 
  push_to_top_level ();
  push_to_top_level ();
  decl = build_decl (input_location, VAR_DECL, name, type);
  decl = build_decl (input_location, VAR_DECL, name, type);
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  /* If the user has explicitly declared this variable (perhaps
  /* If the user has explicitly declared this variable (perhaps
     because the code we are compiling is part of a low-level runtime
     because the code we are compiling is part of a low-level runtime
     library), then it is possible that our declaration will be merged
     library), then it is possible that our declaration will be merged
     with theirs by pushdecl.  */
     with theirs by pushdecl.  */
  decl = pushdecl (decl);
  decl = pushdecl (decl);
  cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
  cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
  pop_from_top_level ();
  pop_from_top_level ();
 
 
  return decl;
  return decl;
}
}
 
 
/* Returns the type for the argument to "__cxa_atexit" (or "atexit",
/* Returns the type for the argument to "__cxa_atexit" (or "atexit",
   if "__cxa_atexit" is not being used) corresponding to the function
   if "__cxa_atexit" is not being used) corresponding to the function
   to be called when the program exits.  */
   to be called when the program exits.  */
 
 
static tree
static tree
get_atexit_fn_ptr_type (void)
get_atexit_fn_ptr_type (void)
{
{
  tree arg_types;
  tree arg_types;
  tree fn_type;
  tree fn_type;
 
 
  if (!atexit_fn_ptr_type_node)
  if (!atexit_fn_ptr_type_node)
    {
    {
      if (flag_use_cxa_atexit
      if (flag_use_cxa_atexit
          && !targetm.cxx.use_atexit_for_cxa_atexit ())
          && !targetm.cxx.use_atexit_for_cxa_atexit ())
        /* The parameter to "__cxa_atexit" is "void (*)(void *)".  */
        /* The parameter to "__cxa_atexit" is "void (*)(void *)".  */
        arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
        arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
      else
      else
        /* The parameter to "atexit" is "void (*)(void)".  */
        /* The parameter to "atexit" is "void (*)(void)".  */
        arg_types = void_list_node;
        arg_types = void_list_node;
 
 
      fn_type = build_function_type (void_type_node, arg_types);
      fn_type = build_function_type (void_type_node, arg_types);
      atexit_fn_ptr_type_node = build_pointer_type (fn_type);
      atexit_fn_ptr_type_node = build_pointer_type (fn_type);
    }
    }
 
 
  return atexit_fn_ptr_type_node;
  return atexit_fn_ptr_type_node;
}
}
 
 
/* Returns a pointer to the `atexit' function.  Note that if
/* Returns a pointer to the `atexit' function.  Note that if
   FLAG_USE_CXA_ATEXIT is nonzero, then this will actually be the new
   FLAG_USE_CXA_ATEXIT is nonzero, then this will actually be the new
   `__cxa_atexit' function specified in the IA64 C++ ABI.  */
   `__cxa_atexit' function specified in the IA64 C++ ABI.  */
 
 
static tree
static tree
get_atexit_node (void)
get_atexit_node (void)
{
{
  tree atexit_fndecl;
  tree atexit_fndecl;
  tree arg_types;
  tree arg_types;
  tree fn_type;
  tree fn_type;
  tree fn_ptr_type;
  tree fn_ptr_type;
  const char *name;
  const char *name;
  bool use_aeabi_atexit;
  bool use_aeabi_atexit;
 
 
  if (atexit_node)
  if (atexit_node)
    return atexit_node;
    return atexit_node;
 
 
  if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ())
  if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ())
    {
    {
      /* The declaration for `__cxa_atexit' is:
      /* The declaration for `__cxa_atexit' is:
 
 
           int __cxa_atexit (void (*)(void *), void *, void *)
           int __cxa_atexit (void (*)(void *), void *, void *)
 
 
         We build up the argument types and then then function type
         We build up the argument types and then then function type
         itself.  */
         itself.  */
 
 
      use_aeabi_atexit = targetm.cxx.use_aeabi_atexit ();
      use_aeabi_atexit = targetm.cxx.use_aeabi_atexit ();
      /* First, build the pointer-to-function type for the first
      /* First, build the pointer-to-function type for the first
         argument.  */
         argument.  */
      fn_ptr_type = get_atexit_fn_ptr_type ();
      fn_ptr_type = get_atexit_fn_ptr_type ();
      /* Then, build the rest of the argument types.  */
      /* Then, build the rest of the argument types.  */
      arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
      arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
      if (use_aeabi_atexit)
      if (use_aeabi_atexit)
        {
        {
          arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types);
          arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types);
          arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types);
          arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types);
        }
        }
      else
      else
        {
        {
          arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types);
          arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types);
          arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types);
          arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types);
        }
        }
      /* And the final __cxa_atexit type.  */
      /* And the final __cxa_atexit type.  */
      fn_type = build_function_type (integer_type_node, arg_types);
      fn_type = build_function_type (integer_type_node, arg_types);
      fn_ptr_type = build_pointer_type (fn_type);
      fn_ptr_type = build_pointer_type (fn_type);
      if (use_aeabi_atexit)
      if (use_aeabi_atexit)
        name = "__aeabi_atexit";
        name = "__aeabi_atexit";
      else
      else
        name = "__cxa_atexit";
        name = "__cxa_atexit";
    }
    }
  else
  else
    {
    {
      /* The declaration for `atexit' is:
      /* The declaration for `atexit' is:
 
 
           int atexit (void (*)());
           int atexit (void (*)());
 
 
         We build up the argument types and then then function type
         We build up the argument types and then then function type
         itself.  */
         itself.  */
      fn_ptr_type = get_atexit_fn_ptr_type ();
      fn_ptr_type = get_atexit_fn_ptr_type ();
      arg_types = tree_cons (NULL_TREE, fn_ptr_type, void_list_node);
      arg_types = tree_cons (NULL_TREE, fn_ptr_type, void_list_node);
      /* Build the final atexit type.  */
      /* Build the final atexit type.  */
      fn_type = build_function_type (integer_type_node, arg_types);
      fn_type = build_function_type (integer_type_node, arg_types);
      name = "atexit";
      name = "atexit";
    }
    }
 
 
  /* Now, build the function declaration.  */
  /* Now, build the function declaration.  */
  push_lang_context (lang_name_c);
  push_lang_context (lang_name_c);
  atexit_fndecl = build_library_fn_ptr (name, fn_type);
  atexit_fndecl = build_library_fn_ptr (name, fn_type);
  mark_used (atexit_fndecl);
  mark_used (atexit_fndecl);
  pop_lang_context ();
  pop_lang_context ();
  atexit_node = decay_conversion (atexit_fndecl);
  atexit_node = decay_conversion (atexit_fndecl);
 
 
  return atexit_node;
  return atexit_node;
}
}
 
 
/* Returns the __dso_handle VAR_DECL.  */
/* Returns the __dso_handle VAR_DECL.  */
 
 
static tree
static tree
get_dso_handle_node (void)
get_dso_handle_node (void)
{
{
  if (dso_handle_node)
  if (dso_handle_node)
    return dso_handle_node;
    return dso_handle_node;
 
 
  /* Declare the variable.  */
  /* Declare the variable.  */
  dso_handle_node = declare_global_var (get_identifier ("__dso_handle"),
  dso_handle_node = declare_global_var (get_identifier ("__dso_handle"),
                                        ptr_type_node);
                                        ptr_type_node);
 
 
  return dso_handle_node;
  return dso_handle_node;
}
}
 
 
/* Begin a new function with internal linkage whose job will be simply
/* Begin a new function with internal linkage whose job will be simply
   to destroy some particular variable.  */
   to destroy some particular variable.  */
 
 
static GTY(()) int start_cleanup_cnt;
static GTY(()) int start_cleanup_cnt;
 
 
static tree
static tree
start_cleanup_fn (void)
start_cleanup_fn (void)
{
{
  char name[32];
  char name[32];
  tree fntype;
  tree fntype;
  tree fndecl;
  tree fndecl;
  bool use_cxa_atexit = flag_use_cxa_atexit
  bool use_cxa_atexit = flag_use_cxa_atexit
                        && !targetm.cxx.use_atexit_for_cxa_atexit ();
                        && !targetm.cxx.use_atexit_for_cxa_atexit ();
 
 
  push_to_top_level ();
  push_to_top_level ();
 
 
  /* No need to mangle this.  */
  /* No need to mangle this.  */
  push_lang_context (lang_name_c);
  push_lang_context (lang_name_c);
 
 
  /* Build the name of the function.  */
  /* Build the name of the function.  */
  sprintf (name, "__tcf_%d", start_cleanup_cnt++);
  sprintf (name, "__tcf_%d", start_cleanup_cnt++);
  /* Build the function declaration.  */
  /* Build the function declaration.  */
  fntype = TREE_TYPE (get_atexit_fn_ptr_type ());
  fntype = TREE_TYPE (get_atexit_fn_ptr_type ());
  fndecl = build_lang_decl (FUNCTION_DECL, get_identifier (name), fntype);
  fndecl = build_lang_decl (FUNCTION_DECL, get_identifier (name), fntype);
  /* It's a function with internal linkage, generated by the
  /* It's a function with internal linkage, generated by the
     compiler.  */
     compiler.  */
  TREE_PUBLIC (fndecl) = 0;
  TREE_PUBLIC (fndecl) = 0;
  DECL_ARTIFICIAL (fndecl) = 1;
  DECL_ARTIFICIAL (fndecl) = 1;
  /* Make the function `inline' so that it is only emitted if it is
  /* Make the function `inline' so that it is only emitted if it is
     actually needed.  It is unlikely that it will be inlined, since
     actually needed.  It is unlikely that it will be inlined, since
     it is only called via a function pointer, but we avoid unnecessary
     it is only called via a function pointer, but we avoid unnecessary
     emissions this way.  */
     emissions this way.  */
  DECL_DECLARED_INLINE_P (fndecl) = 1;
  DECL_DECLARED_INLINE_P (fndecl) = 1;
  DECL_INTERFACE_KNOWN (fndecl) = 1;
  DECL_INTERFACE_KNOWN (fndecl) = 1;
  /* Build the parameter.  */
  /* Build the parameter.  */
  if (use_cxa_atexit)
  if (use_cxa_atexit)
    {
    {
      tree parmdecl;
      tree parmdecl;
 
 
      parmdecl = cp_build_parm_decl (NULL_TREE, ptr_type_node);
      parmdecl = cp_build_parm_decl (NULL_TREE, ptr_type_node);
      DECL_CONTEXT (parmdecl) = fndecl;
      DECL_CONTEXT (parmdecl) = fndecl;
      TREE_USED (parmdecl) = 1;
      TREE_USED (parmdecl) = 1;
      DECL_ARGUMENTS (fndecl) = parmdecl;
      DECL_ARGUMENTS (fndecl) = parmdecl;
    }
    }
 
 
  pushdecl (fndecl);
  pushdecl (fndecl);
  start_preparsed_function (fndecl, NULL_TREE, SF_PRE_PARSED);
  start_preparsed_function (fndecl, NULL_TREE, SF_PRE_PARSED);
 
 
  pop_lang_context ();
  pop_lang_context ();
 
 
  return current_function_decl;
  return current_function_decl;
}
}
 
 
/* Finish the cleanup function begun by start_cleanup_fn.  */
/* Finish the cleanup function begun by start_cleanup_fn.  */
 
 
static void
static void
end_cleanup_fn (void)
end_cleanup_fn (void)
{
{
  expand_or_defer_fn (finish_function (0));
  expand_or_defer_fn (finish_function (0));
 
 
  pop_from_top_level ();
  pop_from_top_level ();
}
}
 
 
/* Generate code to handle the destruction of DECL, an object with
/* Generate code to handle the destruction of DECL, an object with
   static storage duration.  */
   static storage duration.  */
 
 
tree
tree
register_dtor_fn (tree decl)
register_dtor_fn (tree decl)
{
{
  tree cleanup;
  tree cleanup;
  tree compound_stmt;
  tree compound_stmt;
  tree args;
  tree args;
  tree fcall;
  tree fcall;
  tree type;
  tree type;
  bool use_dtor;
  bool use_dtor;
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
  if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
    return void_zero_node;
    return void_zero_node;
 
 
  /* If we're using "__cxa_atexit" (or "__aeabi_atexit"), and DECL is
  /* If we're using "__cxa_atexit" (or "__aeabi_atexit"), and DECL is
     a class object, we can just pass the destructor to
     a class object, we can just pass the destructor to
     "__cxa_atexit"; we don't have to build a temporary function to do
     "__cxa_atexit"; we don't have to build a temporary function to do
     the cleanup.  */
     the cleanup.  */
  use_dtor = (flag_use_cxa_atexit
  use_dtor = (flag_use_cxa_atexit
              && !targetm.cxx.use_atexit_for_cxa_atexit ()
              && !targetm.cxx.use_atexit_for_cxa_atexit ()
              && CLASS_TYPE_P (type));
              && CLASS_TYPE_P (type));
  if (use_dtor)
  if (use_dtor)
    {
    {
      int idx;
      int idx;
 
 
      /* Find the destructor.  */
      /* Find the destructor.  */
      idx = lookup_fnfields_1 (type, complete_dtor_identifier);
      idx = lookup_fnfields_1 (type, complete_dtor_identifier);
      gcc_assert (idx >= 0);
      gcc_assert (idx >= 0);
      cleanup = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
      cleanup = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
      /* Make sure it is accessible.  */
      /* Make sure it is accessible.  */
      perform_or_defer_access_check (TYPE_BINFO (type), cleanup, cleanup);
      perform_or_defer_access_check (TYPE_BINFO (type), cleanup, cleanup);
    }
    }
  else
  else
    {
    {
      /* Call build_cleanup before we enter the anonymous function so
      /* Call build_cleanup before we enter the anonymous function so
         that any access checks will be done relative to the current
         that any access checks will be done relative to the current
         scope, rather than the scope of the anonymous function.  */
         scope, rather than the scope of the anonymous function.  */
      build_cleanup (decl);
      build_cleanup (decl);
 
 
      /* Now start the function.  */
      /* Now start the function.  */
      cleanup = start_cleanup_fn ();
      cleanup = start_cleanup_fn ();
 
 
      /* Now, recompute the cleanup.  It may contain SAVE_EXPRs that refer
      /* Now, recompute the cleanup.  It may contain SAVE_EXPRs that refer
         to the original function, rather than the anonymous one.  That
         to the original function, rather than the anonymous one.  That
         will make the back end think that nested functions are in use,
         will make the back end think that nested functions are in use,
         which causes confusion.  */
         which causes confusion.  */
      push_deferring_access_checks (dk_no_check);
      push_deferring_access_checks (dk_no_check);
      fcall = build_cleanup (decl);
      fcall = build_cleanup (decl);
      pop_deferring_access_checks ();
      pop_deferring_access_checks ();
 
 
      /* Create the body of the anonymous function.  */
      /* Create the body of the anonymous function.  */
      compound_stmt = begin_compound_stmt (BCS_FN_BODY);
      compound_stmt = begin_compound_stmt (BCS_FN_BODY);
      finish_expr_stmt (fcall);
      finish_expr_stmt (fcall);
      finish_compound_stmt (compound_stmt);
      finish_compound_stmt (compound_stmt);
      end_cleanup_fn ();
      end_cleanup_fn ();
    }
    }
 
 
  /* Call atexit with the cleanup function.  */
  /* Call atexit with the cleanup function.  */
  mark_used (cleanup);
  mark_used (cleanup);
  cleanup = build_address (cleanup);
  cleanup = build_address (cleanup);
  if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ())
  if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ())
    {
    {
      tree addr;
      tree addr;
 
 
      if (use_dtor)
      if (use_dtor)
        {
        {
          /* We must convert CLEANUP to the type that "__cxa_atexit"
          /* We must convert CLEANUP to the type that "__cxa_atexit"
             expects.  */
             expects.  */
          cleanup = build_nop (get_atexit_fn_ptr_type (), cleanup);
          cleanup = build_nop (get_atexit_fn_ptr_type (), cleanup);
          /* "__cxa_atexit" will pass the address of DECL to the
          /* "__cxa_atexit" will pass the address of DECL to the
             cleanup function.  */
             cleanup function.  */
          mark_used (decl);
          mark_used (decl);
          addr = build_address (decl);
          addr = build_address (decl);
          /* The declared type of the parameter to "__cxa_atexit" is
          /* The declared type of the parameter to "__cxa_atexit" is
             "void *".  For plain "T*", we could just let the
             "void *".  For plain "T*", we could just let the
             machinery in cp_build_function_call convert it -- but if the
             machinery in cp_build_function_call convert it -- but if the
             type is "cv-qualified T *", then we need to convert it
             type is "cv-qualified T *", then we need to convert it
             before passing it in, to avoid spurious errors.  */
             before passing it in, to avoid spurious errors.  */
          addr = build_nop (ptr_type_node, addr);
          addr = build_nop (ptr_type_node, addr);
        }
        }
      else
      else
        /* Since the cleanup functions we build ignore the address
        /* Since the cleanup functions we build ignore the address
           they're given, there's no reason to pass the actual address
           they're given, there's no reason to pass the actual address
           in, and, in general, it's cheaper to pass NULL than any
           in, and, in general, it's cheaper to pass NULL than any
           other value.  */
           other value.  */
        addr = null_pointer_node;
        addr = null_pointer_node;
      args = tree_cons (NULL_TREE,
      args = tree_cons (NULL_TREE,
                        cp_build_unary_op (ADDR_EXPR, get_dso_handle_node (), 0,
                        cp_build_unary_op (ADDR_EXPR, get_dso_handle_node (), 0,
                                        tf_warning_or_error),
                                        tf_warning_or_error),
                        NULL_TREE);
                        NULL_TREE);
      if (targetm.cxx.use_aeabi_atexit ())
      if (targetm.cxx.use_aeabi_atexit ())
        {
        {
          args = tree_cons (NULL_TREE, cleanup, args);
          args = tree_cons (NULL_TREE, cleanup, args);
          args = tree_cons (NULL_TREE, addr, args);
          args = tree_cons (NULL_TREE, addr, args);
        }
        }
      else
      else
        {
        {
          args = tree_cons (NULL_TREE, addr, args);
          args = tree_cons (NULL_TREE, addr, args);
          args = tree_cons (NULL_TREE, cleanup, args);
          args = tree_cons (NULL_TREE, cleanup, args);
        }
        }
    }
    }
  else
  else
    args = tree_cons (NULL_TREE, cleanup, NULL_TREE);
    args = tree_cons (NULL_TREE, cleanup, NULL_TREE);
  return cp_build_function_call (get_atexit_node (), args,
  return cp_build_function_call (get_atexit_node (), args,
                                 tf_warning_or_error);
                                 tf_warning_or_error);
}
}
 
 
/* DECL is a VAR_DECL with static storage duration.  INIT, if present,
/* DECL is a VAR_DECL with static storage duration.  INIT, if present,
   is its initializer.  Generate code to handle the construction
   is its initializer.  Generate code to handle the construction
   and destruction of DECL.  */
   and destruction of DECL.  */
 
 
static void
static void
expand_static_init (tree decl, tree init)
expand_static_init (tree decl, tree init)
{
{
  gcc_assert (TREE_CODE (decl) == VAR_DECL);
  gcc_assert (TREE_CODE (decl) == VAR_DECL);
  gcc_assert (TREE_STATIC (decl));
  gcc_assert (TREE_STATIC (decl));
 
 
  /* Some variables require no initialization.  */
  /* Some variables require no initialization.  */
  if (!init
  if (!init
      && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))
      && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))
      && TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
      && TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
    return;
    return;
 
 
  if (DECL_FUNCTION_SCOPE_P (decl))
  if (DECL_FUNCTION_SCOPE_P (decl))
    {
    {
      /* Emit code to perform this initialization but once.  */
      /* Emit code to perform this initialization but once.  */
      tree if_stmt = NULL_TREE, inner_if_stmt = NULL_TREE;
      tree if_stmt = NULL_TREE, inner_if_stmt = NULL_TREE;
      tree then_clause = NULL_TREE, inner_then_clause = NULL_TREE;
      tree then_clause = NULL_TREE, inner_then_clause = NULL_TREE;
      tree guard, guard_addr;
      tree guard, guard_addr;
      tree acquire_fn, release_fn, abort_fn;
      tree acquire_fn, release_fn, abort_fn;
      tree flag, begin;
      tree flag, begin;
 
 
      /* Emit code to perform this initialization but once.  This code
      /* Emit code to perform this initialization but once.  This code
         looks like:
         looks like:
 
 
           static <type> guard;
           static <type> guard;
           if (!guard.first_byte) {
           if (!guard.first_byte) {
             if (__cxa_guard_acquire (&guard)) {
             if (__cxa_guard_acquire (&guard)) {
               bool flag = false;
               bool flag = false;
               try {
               try {
                 // Do initialization.
                 // Do initialization.
                 flag = true; __cxa_guard_release (&guard);
                 flag = true; __cxa_guard_release (&guard);
                 // Register variable for destruction at end of program.
                 // Register variable for destruction at end of program.
               } catch {
               } catch {
                 if (!flag) __cxa_guard_abort (&guard);
                 if (!flag) __cxa_guard_abort (&guard);
               }
               }
           }
           }
 
 
         Note that the `flag' variable is only set to 1 *after* the
         Note that the `flag' variable is only set to 1 *after* the
         initialization is complete.  This ensures that an exception,
         initialization is complete.  This ensures that an exception,
         thrown during the construction, will cause the variable to
         thrown during the construction, will cause the variable to
         reinitialized when we pass through this code again, as per:
         reinitialized when we pass through this code again, as per:
 
 
           [stmt.dcl]
           [stmt.dcl]
 
 
           If the initialization exits by throwing an exception, the
           If the initialization exits by throwing an exception, the
           initialization is not complete, so it will be tried again
           initialization is not complete, so it will be tried again
           the next time control enters the declaration.
           the next time control enters the declaration.
 
 
         This process should be thread-safe, too; multiple threads
         This process should be thread-safe, too; multiple threads
         should not be able to initialize the variable more than
         should not be able to initialize the variable more than
         once.  */
         once.  */
 
 
      /* Create the guard variable.  */
      /* Create the guard variable.  */
      guard = get_guard (decl);
      guard = get_guard (decl);
 
 
      /* This optimization isn't safe on targets with relaxed memory
      /* This optimization isn't safe on targets with relaxed memory
         consistency.  On such targets we force synchronization in
         consistency.  On such targets we force synchronization in
         __cxa_guard_acquire.  */
         __cxa_guard_acquire.  */
      if (!targetm.relaxed_ordering || !flag_threadsafe_statics)
      if (!targetm.relaxed_ordering || !flag_threadsafe_statics)
        {
        {
          /* Begin the conditional initialization.  */
          /* Begin the conditional initialization.  */
          if_stmt = begin_if_stmt ();
          if_stmt = begin_if_stmt ();
          finish_if_stmt_cond (get_guard_cond (guard), if_stmt);
          finish_if_stmt_cond (get_guard_cond (guard), if_stmt);
          then_clause = begin_compound_stmt (BCS_NO_SCOPE);
          then_clause = begin_compound_stmt (BCS_NO_SCOPE);
        }
        }
 
 
      if (flag_threadsafe_statics)
      if (flag_threadsafe_statics)
        {
        {
          guard_addr = build_address (guard);
          guard_addr = build_address (guard);
 
 
          acquire_fn = get_identifier ("__cxa_guard_acquire");
          acquire_fn = get_identifier ("__cxa_guard_acquire");
          release_fn = get_identifier ("__cxa_guard_release");
          release_fn = get_identifier ("__cxa_guard_release");
          abort_fn = get_identifier ("__cxa_guard_abort");
          abort_fn = get_identifier ("__cxa_guard_abort");
          if (!get_global_value_if_present (acquire_fn, &acquire_fn))
          if (!get_global_value_if_present (acquire_fn, &acquire_fn))
            {
            {
              tree argtypes = tree_cons (NULL_TREE, TREE_TYPE (guard_addr),
              tree argtypes = tree_cons (NULL_TREE, TREE_TYPE (guard_addr),
                                         void_list_node);
                                         void_list_node);
              tree vfntype = build_function_type (void_type_node, argtypes);
              tree vfntype = build_function_type (void_type_node, argtypes);
              acquire_fn = push_library_fn
              acquire_fn = push_library_fn
                (acquire_fn, build_function_type (integer_type_node, argtypes),
                (acquire_fn, build_function_type (integer_type_node, argtypes),
                 NULL_TREE);
                 NULL_TREE);
              release_fn = push_library_fn (release_fn, vfntype, NULL_TREE);
              release_fn = push_library_fn (release_fn, vfntype, NULL_TREE);
              abort_fn = push_library_fn (abort_fn, vfntype, NULL_TREE);
              abort_fn = push_library_fn (abort_fn, vfntype, NULL_TREE);
            }
            }
          else
          else
            {
            {
              release_fn = identifier_global_value (release_fn);
              release_fn = identifier_global_value (release_fn);
              abort_fn = identifier_global_value (abort_fn);
              abort_fn = identifier_global_value (abort_fn);
            }
            }
 
 
          inner_if_stmt = begin_if_stmt ();
          inner_if_stmt = begin_if_stmt ();
          finish_if_stmt_cond (build_call_n (acquire_fn, 1, guard_addr),
          finish_if_stmt_cond (build_call_n (acquire_fn, 1, guard_addr),
                               inner_if_stmt);
                               inner_if_stmt);
 
 
          inner_then_clause = begin_compound_stmt (BCS_NO_SCOPE);
          inner_then_clause = begin_compound_stmt (BCS_NO_SCOPE);
          begin = get_target_expr (boolean_false_node);
          begin = get_target_expr (boolean_false_node);
          flag = TARGET_EXPR_SLOT (begin);
          flag = TARGET_EXPR_SLOT (begin);
 
 
          TARGET_EXPR_CLEANUP (begin)
          TARGET_EXPR_CLEANUP (begin)
            = build3 (COND_EXPR, void_type_node, flag,
            = build3 (COND_EXPR, void_type_node, flag,
                      void_zero_node,
                      void_zero_node,
                      build_call_n (abort_fn, 1, guard_addr));
                      build_call_n (abort_fn, 1, guard_addr));
          CLEANUP_EH_ONLY (begin) = 1;
          CLEANUP_EH_ONLY (begin) = 1;
 
 
          /* Do the initialization itself.  */
          /* Do the initialization itself.  */
          init = add_stmt_to_compound (begin, init);
          init = add_stmt_to_compound (begin, init);
          init = add_stmt_to_compound
          init = add_stmt_to_compound
            (init, build2 (MODIFY_EXPR, void_type_node, flag, boolean_true_node));
            (init, build2 (MODIFY_EXPR, void_type_node, flag, boolean_true_node));
          init = add_stmt_to_compound
          init = add_stmt_to_compound
            (init, build_call_n (release_fn, 1, guard_addr));
            (init, build_call_n (release_fn, 1, guard_addr));
        }
        }
      else
      else
        init = add_stmt_to_compound (init, set_guard (guard));
        init = add_stmt_to_compound (init, set_guard (guard));
 
 
      /* Use atexit to register a function for destroying this static
      /* Use atexit to register a function for destroying this static
         variable.  */
         variable.  */
      init = add_stmt_to_compound (init, register_dtor_fn (decl));
      init = add_stmt_to_compound (init, register_dtor_fn (decl));
 
 
      finish_expr_stmt (init);
      finish_expr_stmt (init);
 
 
      if (flag_threadsafe_statics)
      if (flag_threadsafe_statics)
        {
        {
          finish_compound_stmt (inner_then_clause);
          finish_compound_stmt (inner_then_clause);
          finish_then_clause (inner_if_stmt);
          finish_then_clause (inner_if_stmt);
          finish_if_stmt (inner_if_stmt);
          finish_if_stmt (inner_if_stmt);
        }
        }
 
 
      if (!targetm.relaxed_ordering || !flag_threadsafe_statics)
      if (!targetm.relaxed_ordering || !flag_threadsafe_statics)
        {
        {
          finish_compound_stmt (then_clause);
          finish_compound_stmt (then_clause);
          finish_then_clause (if_stmt);
          finish_then_clause (if_stmt);
          finish_if_stmt (if_stmt);
          finish_if_stmt (if_stmt);
        }
        }
    }
    }
  else
  else
    static_aggregates = tree_cons (init, decl, static_aggregates);
    static_aggregates = tree_cons (init, decl, static_aggregates);
}
}
 
 


/* Make TYPE a complete type based on INITIAL_VALUE.
/* Make TYPE a complete type based on INITIAL_VALUE.
   Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
   Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
   2 if there was no information (in which case assume 0 if DO_DEFAULT),
   2 if there was no information (in which case assume 0 if DO_DEFAULT),
   3 if the initializer list is empty (in pedantic mode). */
   3 if the initializer list is empty (in pedantic mode). */
 
 
int
int
cp_complete_array_type (tree *ptype, tree initial_value, bool do_default)
cp_complete_array_type (tree *ptype, tree initial_value, bool do_default)
{
{
  int failure;
  int failure;
  tree type, elt_type;
  tree type, elt_type;
 
 
  if (initial_value)
  if (initial_value)
    {
    {
      unsigned HOST_WIDE_INT i;
      unsigned HOST_WIDE_INT i;
      tree value;
      tree value;
 
 
      /* An array of character type can be initialized from a
      /* An array of character type can be initialized from a
         brace-enclosed string constant.
         brace-enclosed string constant.
 
 
         FIXME: this code is duplicated from reshape_init. Probably
         FIXME: this code is duplicated from reshape_init. Probably
         we should just call reshape_init here?  */
         we should just call reshape_init here?  */
      if (char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (*ptype)))
      if (char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (*ptype)))
          && TREE_CODE (initial_value) == CONSTRUCTOR
          && TREE_CODE (initial_value) == CONSTRUCTOR
          && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (initial_value)))
          && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (initial_value)))
        {
        {
          VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initial_value);
          VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initial_value);
          tree value = VEC_index (constructor_elt, v, 0)->value;
          tree value = VEC_index (constructor_elt, v, 0)->value;
 
 
          if (TREE_CODE (value) == STRING_CST
          if (TREE_CODE (value) == STRING_CST
              && VEC_length (constructor_elt, v) == 1)
              && VEC_length (constructor_elt, v) == 1)
            initial_value = value;
            initial_value = value;
        }
        }
 
 
      /* If any of the elements are parameter packs, we can't actually
      /* If any of the elements are parameter packs, we can't actually
         complete this type now because the array size is dependent.  */
         complete this type now because the array size is dependent.  */
      if (TREE_CODE (initial_value) == CONSTRUCTOR)
      if (TREE_CODE (initial_value) == CONSTRUCTOR)
        {
        {
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (initial_value),
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (initial_value),
                                      i, value)
                                      i, value)
            {
            {
              if (PACK_EXPANSION_P (value))
              if (PACK_EXPANSION_P (value))
                return 0;
                return 0;
            }
            }
        }
        }
    }
    }
 
 
  failure = complete_array_type (ptype, initial_value, do_default);
  failure = complete_array_type (ptype, initial_value, do_default);
 
 
  /* We can create the array before the element type is complete, which
  /* We can create the array before the element type is complete, which
     means that we didn't have these two bits set in the original type
     means that we didn't have these two bits set in the original type
     either.  In completing the type, we are expected to propagate these
     either.  In completing the type, we are expected to propagate these
     bits.  See also complete_type which does the same thing for arrays
     bits.  See also complete_type which does the same thing for arrays
     of fixed size.  */
     of fixed size.  */
  type = *ptype;
  type = *ptype;
  if (TYPE_DOMAIN (type))
  if (TYPE_DOMAIN (type))
    {
    {
      elt_type = TREE_TYPE (type);
      elt_type = TREE_TYPE (type);
      TYPE_NEEDS_CONSTRUCTING (type) = TYPE_NEEDS_CONSTRUCTING (elt_type);
      TYPE_NEEDS_CONSTRUCTING (type) = TYPE_NEEDS_CONSTRUCTING (elt_type);
      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
        = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type);
        = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type);
    }
    }
 
 
  return failure;
  return failure;
}
}


/* Return zero if something is declared to be a member of type
/* Return zero if something is declared to be a member of type
   CTYPE when in the context of CUR_TYPE.  STRING is the error
   CTYPE when in the context of CUR_TYPE.  STRING is the error
   message to print in that case.  Otherwise, quietly return 1.  */
   message to print in that case.  Otherwise, quietly return 1.  */
 
 
static int
static int
member_function_or_else (tree ctype, tree cur_type, enum overload_flags flags)
member_function_or_else (tree ctype, tree cur_type, enum overload_flags flags)
{
{
  if (ctype && ctype != cur_type)
  if (ctype && ctype != cur_type)
    {
    {
      if (flags == DTOR_FLAG)
      if (flags == DTOR_FLAG)
        error ("destructor for alien class %qT cannot be a member", ctype);
        error ("destructor for alien class %qT cannot be a member", ctype);
      else
      else
        error ("constructor for alien class %qT cannot be a member", ctype);
        error ("constructor for alien class %qT cannot be a member", ctype);
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}


/* Subroutine of `grokdeclarator'.  */
/* Subroutine of `grokdeclarator'.  */
 
 
/* Generate errors possibly applicable for a given set of specifiers.
/* Generate errors possibly applicable for a given set of specifiers.
   This is for ARM $7.1.2.  */
   This is for ARM $7.1.2.  */
 
 
static void
static void
bad_specifiers (tree object,
bad_specifiers (tree object,
                const char* type,
                const char* type,
                int virtualp,
                int virtualp,
                int quals,
                int quals,
                int inlinep,
                int inlinep,
                int friendp,
                int friendp,
                int raises)
                int raises)
{
{
  if (virtualp)
  if (virtualp)
    error ("%qD declared as a %<virtual%> %s", object, type);
    error ("%qD declared as a %<virtual%> %s", object, type);
  if (inlinep)
  if (inlinep)
    error ("%qD declared as an %<inline%> %s", object, type);
    error ("%qD declared as an %<inline%> %s", object, type);
  if (quals)
  if (quals)
    error ("%<const%> and %<volatile%> function specifiers on "
    error ("%<const%> and %<volatile%> function specifiers on "
           "%qD invalid in %s declaration",
           "%qD invalid in %s declaration",
           object, type);
           object, type);
  if (friendp)
  if (friendp)
    error ("%q+D declared as a friend", object);
    error ("%q+D declared as a friend", object);
  if (raises
  if (raises
      && (TREE_CODE (object) == TYPE_DECL
      && (TREE_CODE (object) == TYPE_DECL
          || (!TYPE_PTRFN_P (TREE_TYPE (object))
          || (!TYPE_PTRFN_P (TREE_TYPE (object))
              && !TYPE_REFFN_P (TREE_TYPE (object))
              && !TYPE_REFFN_P (TREE_TYPE (object))
              && !TYPE_PTRMEMFUNC_P (TREE_TYPE (object)))))
              && !TYPE_PTRMEMFUNC_P (TREE_TYPE (object)))))
    error ("%q+D declared with an exception specification", object);
    error ("%q+D declared with an exception specification", object);
}
}
 
 
/* DECL is a member function or static data member and is presently
/* DECL is a member function or static data member and is presently
   being defined.  Check that the definition is taking place in a
   being defined.  Check that the definition is taking place in a
   valid namespace.  */
   valid namespace.  */
 
 
static void
static void
check_class_member_definition_namespace (tree decl)
check_class_member_definition_namespace (tree decl)
{
{
  /* These checks only apply to member functions and static data
  /* These checks only apply to member functions and static data
     members.  */
     members.  */
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
              || TREE_CODE (decl) == VAR_DECL);
              || TREE_CODE (decl) == VAR_DECL);
  /* We check for problems with specializations in pt.c in
  /* We check for problems with specializations in pt.c in
     check_specialization_namespace, where we can issue better
     check_specialization_namespace, where we can issue better
     diagnostics.  */
     diagnostics.  */
  if (processing_specialization)
  if (processing_specialization)
    return;
    return;
  /* There are no restrictions on the placement of
  /* There are no restrictions on the placement of
     explicit instantiations.  */
     explicit instantiations.  */
  if (processing_explicit_instantiation)
  if (processing_explicit_instantiation)
    return;
    return;
  /* [class.mfct]
  /* [class.mfct]
 
 
     A member function definition that appears outside of the
     A member function definition that appears outside of the
     class definition shall appear in a namespace scope enclosing
     class definition shall appear in a namespace scope enclosing
     the class definition.
     the class definition.
 
 
     [class.static.data]
     [class.static.data]
 
 
     The definition for a static data member shall appear in a
     The definition for a static data member shall appear in a
     namespace scope enclosing the member's class definition.  */
     namespace scope enclosing the member's class definition.  */
  if (!is_ancestor (current_namespace, DECL_CONTEXT (decl)))
  if (!is_ancestor (current_namespace, DECL_CONTEXT (decl)))
    permerror (input_location, "definition of %qD is not in namespace enclosing %qT",
    permerror (input_location, "definition of %qD is not in namespace enclosing %qT",
               decl, DECL_CONTEXT (decl));
               decl, DECL_CONTEXT (decl));
}
}
 
 
/* Build a PARM_DECL for the "this" parameter.  TYPE is the
/* Build a PARM_DECL for the "this" parameter.  TYPE is the
   METHOD_TYPE for a non-static member function; QUALS are the
   METHOD_TYPE for a non-static member function; QUALS are the
   cv-qualifiers that apply to the function.  */
   cv-qualifiers that apply to the function.  */
 
 
tree
tree
build_this_parm (tree type, cp_cv_quals quals)
build_this_parm (tree type, cp_cv_quals quals)
{
{
  tree this_type;
  tree this_type;
  tree qual_type;
  tree qual_type;
  tree parm;
  tree parm;
  cp_cv_quals this_quals;
  cp_cv_quals this_quals;
 
 
  this_type = TREE_VALUE (TYPE_ARG_TYPES (type));
  this_type = TREE_VALUE (TYPE_ARG_TYPES (type));
  /* The `this' parameter is implicitly `const'; it cannot be
  /* The `this' parameter is implicitly `const'; it cannot be
     assigned to.  */
     assigned to.  */
  this_quals = (quals & TYPE_QUAL_RESTRICT) | TYPE_QUAL_CONST;
  this_quals = (quals & TYPE_QUAL_RESTRICT) | TYPE_QUAL_CONST;
  qual_type = cp_build_qualified_type (this_type, this_quals);
  qual_type = cp_build_qualified_type (this_type, this_quals);
  parm = build_artificial_parm (this_identifier, qual_type);
  parm = build_artificial_parm (this_identifier, qual_type);
  cp_apply_type_quals_to_decl (this_quals, parm);
  cp_apply_type_quals_to_decl (this_quals, parm);
  return parm;
  return parm;
}
}
 
 
/* CTYPE is class type, or null if non-class.
/* CTYPE is class type, or null if non-class.
   TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE
   TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE
   or METHOD_TYPE.
   or METHOD_TYPE.
   DECLARATOR is the function's name.
   DECLARATOR is the function's name.
   PARMS is a chain of PARM_DECLs for the function.
   PARMS is a chain of PARM_DECLs for the function.
   VIRTUALP is truthvalue of whether the function is virtual or not.
   VIRTUALP is truthvalue of whether the function is virtual or not.
   FLAGS are to be passed through to `grokclassfn'.
   FLAGS are to be passed through to `grokclassfn'.
   QUALS are qualifiers indicating whether the function is `const'
   QUALS are qualifiers indicating whether the function is `const'
   or `volatile'.
   or `volatile'.
   RAISES is a list of exceptions that this function can raise.
   RAISES is a list of exceptions that this function can raise.
   CHECK is 1 if we must find this method in CTYPE, 0 if we should
   CHECK is 1 if we must find this method in CTYPE, 0 if we should
   not look, and -1 if we should not call `grokclassfn' at all.
   not look, and -1 if we should not call `grokclassfn' at all.
 
 
   SFK is the kind of special function (if any) for the new function.
   SFK is the kind of special function (if any) for the new function.
 
 
   Returns `NULL_TREE' if something goes wrong, after issuing
   Returns `NULL_TREE' if something goes wrong, after issuing
   applicable error messages.  */
   applicable error messages.  */
 
 
static tree
static tree
grokfndecl (tree ctype,
grokfndecl (tree ctype,
            tree type,
            tree type,
            tree declarator,
            tree declarator,
            tree parms,
            tree parms,
            tree orig_declarator,
            tree orig_declarator,
            int virtualp,
            int virtualp,
            enum overload_flags flags,
            enum overload_flags flags,
            cp_cv_quals quals,
            cp_cv_quals quals,
            tree raises,
            tree raises,
            int check,
            int check,
            int friendp,
            int friendp,
            int publicp,
            int publicp,
            int inlinep,
            int inlinep,
            special_function_kind sfk,
            special_function_kind sfk,
            bool funcdef_flag,
            bool funcdef_flag,
            int template_count,
            int template_count,
            tree in_namespace,
            tree in_namespace,
            tree* attrlist,
            tree* attrlist,
            location_t location)
            location_t location)
{
{
  tree decl;
  tree decl;
  int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE;
  int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE;
  tree t;
  tree t;
 
 
  if (raises)
  if (raises)
    type = build_exception_variant (type, raises);
    type = build_exception_variant (type, raises);
 
 
  decl = build_lang_decl (FUNCTION_DECL, declarator, type);
  decl = build_lang_decl (FUNCTION_DECL, declarator, type);
 
 
  /* If we have an explicit location, use it, otherwise use whatever
  /* If we have an explicit location, use it, otherwise use whatever
     build_lang_decl used (probably input_location).  */
     build_lang_decl used (probably input_location).  */
  if (location != UNKNOWN_LOCATION)
  if (location != UNKNOWN_LOCATION)
    DECL_SOURCE_LOCATION (decl) = location;
    DECL_SOURCE_LOCATION (decl) = location;
 
 
  if (TREE_CODE (type) == METHOD_TYPE)
  if (TREE_CODE (type) == METHOD_TYPE)
    {
    {
      tree parm;
      tree parm;
      parm = build_this_parm (type, quals);
      parm = build_this_parm (type, quals);
      TREE_CHAIN (parm) = parms;
      TREE_CHAIN (parm) = parms;
      parms = parm;
      parms = parm;
    }
    }
  DECL_ARGUMENTS (decl) = parms;
  DECL_ARGUMENTS (decl) = parms;
  for (t = parms; t; t = TREE_CHAIN (t))
  for (t = parms; t; t = TREE_CHAIN (t))
    DECL_CONTEXT (t) = decl;
    DECL_CONTEXT (t) = decl;
  /* Propagate volatile out from type to decl.  */
  /* Propagate volatile out from type to decl.  */
  if (TYPE_VOLATILE (type))
  if (TYPE_VOLATILE (type))
    TREE_THIS_VOLATILE (decl) = 1;
    TREE_THIS_VOLATILE (decl) = 1;
 
 
  /* Setup decl according to sfk.  */
  /* Setup decl according to sfk.  */
  switch (sfk)
  switch (sfk)
    {
    {
    case sfk_constructor:
    case sfk_constructor:
    case sfk_copy_constructor:
    case sfk_copy_constructor:
    case sfk_move_constructor:
    case sfk_move_constructor:
      DECL_CONSTRUCTOR_P (decl) = 1;
      DECL_CONSTRUCTOR_P (decl) = 1;
      break;
      break;
    case sfk_destructor:
    case sfk_destructor:
      DECL_DESTRUCTOR_P (decl) = 1;
      DECL_DESTRUCTOR_P (decl) = 1;
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* If pointers to member functions use the least significant bit to
  /* If pointers to member functions use the least significant bit to
     indicate whether a function is virtual, ensure a pointer
     indicate whether a function is virtual, ensure a pointer
     to this function will have that bit clear.  */
     to this function will have that bit clear.  */
  if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn
  if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn
      && TREE_CODE (type) == METHOD_TYPE
      && TREE_CODE (type) == METHOD_TYPE
      && DECL_ALIGN (decl) < 2 * BITS_PER_UNIT)
      && DECL_ALIGN (decl) < 2 * BITS_PER_UNIT)
    DECL_ALIGN (decl) = 2 * BITS_PER_UNIT;
    DECL_ALIGN (decl) = 2 * BITS_PER_UNIT;
 
 
  if (friendp
  if (friendp
      && TREE_CODE (orig_declarator) == TEMPLATE_ID_EXPR)
      && TREE_CODE (orig_declarator) == TEMPLATE_ID_EXPR)
    {
    {
      if (funcdef_flag)
      if (funcdef_flag)
        error
        error
          ("defining explicit specialization %qD in friend declaration",
          ("defining explicit specialization %qD in friend declaration",
           orig_declarator);
           orig_declarator);
      else
      else
        {
        {
          tree fns = TREE_OPERAND (orig_declarator, 0);
          tree fns = TREE_OPERAND (orig_declarator, 0);
          tree args = TREE_OPERAND (orig_declarator, 1);
          tree args = TREE_OPERAND (orig_declarator, 1);
 
 
          if (PROCESSING_REAL_TEMPLATE_DECL_P ())
          if (PROCESSING_REAL_TEMPLATE_DECL_P ())
            {
            {
              /* Something like `template <class T> friend void f<T>()'.  */
              /* Something like `template <class T> friend void f<T>()'.  */
              error ("invalid use of template-id %qD in declaration "
              error ("invalid use of template-id %qD in declaration "
                     "of primary template",
                     "of primary template",
                     orig_declarator);
                     orig_declarator);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
 
 
          /* A friend declaration of the form friend void f<>().  Record
          /* A friend declaration of the form friend void f<>().  Record
             the information in the TEMPLATE_ID_EXPR.  */
             the information in the TEMPLATE_ID_EXPR.  */
          SET_DECL_IMPLICIT_INSTANTIATION (decl);
          SET_DECL_IMPLICIT_INSTANTIATION (decl);
 
 
          if (TREE_CODE (fns) == COMPONENT_REF)
          if (TREE_CODE (fns) == COMPONENT_REF)
            {
            {
              /* Due to bison parser ickiness, we will have already looked
              /* Due to bison parser ickiness, we will have already looked
                 up an operator_name or PFUNCNAME within the current class
                 up an operator_name or PFUNCNAME within the current class
                 (see template_id in parse.y). If the current class contains
                 (see template_id in parse.y). If the current class contains
                 such a name, we'll get a COMPONENT_REF here. Undo that.  */
                 such a name, we'll get a COMPONENT_REF here. Undo that.  */
 
 
              gcc_assert (TREE_TYPE (TREE_OPERAND (fns, 0))
              gcc_assert (TREE_TYPE (TREE_OPERAND (fns, 0))
                          == current_class_type);
                          == current_class_type);
              fns = TREE_OPERAND (fns, 1);
              fns = TREE_OPERAND (fns, 1);
            }
            }
          gcc_assert (TREE_CODE (fns) == IDENTIFIER_NODE
          gcc_assert (TREE_CODE (fns) == IDENTIFIER_NODE
                      || TREE_CODE (fns) == OVERLOAD);
                      || TREE_CODE (fns) == OVERLOAD);
          DECL_TEMPLATE_INFO (decl) = build_template_info (fns, args);
          DECL_TEMPLATE_INFO (decl) = build_template_info (fns, args);
 
 
          for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
          for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
            if (TREE_PURPOSE (t)
            if (TREE_PURPOSE (t)
                && TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG)
                && TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG)
            {
            {
              error ("default arguments are not allowed in declaration "
              error ("default arguments are not allowed in declaration "
                     "of friend template specialization %qD",
                     "of friend template specialization %qD",
                     decl);
                     decl);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
          if (inlinep)
          if (inlinep)
            {
            {
              error ("%<inline%> is not allowed in declaration of friend "
              error ("%<inline%> is not allowed in declaration of friend "
                     "template specialization %qD",
                     "template specialization %qD",
                     decl);
                     decl);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
        }
        }
    }
    }
 
 
  /* If this decl has namespace scope, set that up.  */
  /* If this decl has namespace scope, set that up.  */
  if (in_namespace)
  if (in_namespace)
    set_decl_namespace (decl, in_namespace, friendp);
    set_decl_namespace (decl, in_namespace, friendp);
  else if (!ctype)
  else if (!ctype)
    DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
    DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
 
 
  /* `main' and builtins have implicit 'C' linkage.  */
  /* `main' and builtins have implicit 'C' linkage.  */
  if ((MAIN_NAME_P (declarator)
  if ((MAIN_NAME_P (declarator)
       || (IDENTIFIER_LENGTH (declarator) > 10
       || (IDENTIFIER_LENGTH (declarator) > 10
           && IDENTIFIER_POINTER (declarator)[0] == '_'
           && IDENTIFIER_POINTER (declarator)[0] == '_'
           && IDENTIFIER_POINTER (declarator)[1] == '_'
           && IDENTIFIER_POINTER (declarator)[1] == '_'
           && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0))
           && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0))
      && current_lang_name == lang_name_cplusplus
      && current_lang_name == lang_name_cplusplus
      && ctype == NULL_TREE
      && ctype == NULL_TREE
      /* NULL_TREE means global namespace.  */
      /* NULL_TREE means global namespace.  */
      && DECL_CONTEXT (decl) == NULL_TREE)
      && DECL_CONTEXT (decl) == NULL_TREE)
    SET_DECL_LANGUAGE (decl, lang_c);
    SET_DECL_LANGUAGE (decl, lang_c);
 
 
  /* Should probably propagate const out from type to decl I bet (mrs).  */
  /* Should probably propagate const out from type to decl I bet (mrs).  */
  if (staticp)
  if (staticp)
    {
    {
      DECL_STATIC_FUNCTION_P (decl) = 1;
      DECL_STATIC_FUNCTION_P (decl) = 1;
      DECL_CONTEXT (decl) = ctype;
      DECL_CONTEXT (decl) = ctype;
    }
    }
 
 
  if (ctype)
  if (ctype)
    {
    {
      DECL_CONTEXT (decl) = ctype;
      DECL_CONTEXT (decl) = ctype;
      if (funcdef_flag)
      if (funcdef_flag)
        check_class_member_definition_namespace (decl);
        check_class_member_definition_namespace (decl);
    }
    }
 
 
  if (ctype == NULL_TREE && DECL_MAIN_P (decl))
  if (ctype == NULL_TREE && DECL_MAIN_P (decl))
    {
    {
      if (processing_template_decl)
      if (processing_template_decl)
        error ("cannot declare %<::main%> to be a template");
        error ("cannot declare %<::main%> to be a template");
      if (inlinep)
      if (inlinep)
        error ("cannot declare %<::main%> to be inline");
        error ("cannot declare %<::main%> to be inline");
      if (!publicp)
      if (!publicp)
        error ("cannot declare %<::main%> to be static");
        error ("cannot declare %<::main%> to be static");
      inlinep = 0;
      inlinep = 0;
      publicp = 1;
      publicp = 1;
    }
    }
 
 
  /* Members of anonymous types and local classes have no linkage; make
  /* Members of anonymous types and local classes have no linkage; make
     them internal.  If a typedef is made later, this will be changed.  */
     them internal.  If a typedef is made later, this will be changed.  */
  if (ctype && (TYPE_ANONYMOUS_P (ctype)
  if (ctype && (TYPE_ANONYMOUS_P (ctype)
                || decl_function_context (TYPE_MAIN_DECL (ctype))))
                || decl_function_context (TYPE_MAIN_DECL (ctype))))
    publicp = 0;
    publicp = 0;
 
 
  if (publicp && cxx_dialect == cxx98)
  if (publicp && cxx_dialect == cxx98)
    {
    {
      /* [basic.link]: A name with no linkage (notably, the name of a class
      /* [basic.link]: A name with no linkage (notably, the name of a class
         or enumeration declared in a local scope) shall not be used to
         or enumeration declared in a local scope) shall not be used to
         declare an entity with linkage.
         declare an entity with linkage.
 
 
         DR 757 relaxes this restriction for C++0x.  */
         DR 757 relaxes this restriction for C++0x.  */
      t = no_linkage_check (TREE_TYPE (decl),
      t = no_linkage_check (TREE_TYPE (decl),
                            /*relaxed_p=*/false);
                            /*relaxed_p=*/false);
      if (t)
      if (t)
        {
        {
          if (TYPE_ANONYMOUS_P (t))
          if (TYPE_ANONYMOUS_P (t))
            {
            {
              if (DECL_EXTERN_C_P (decl))
              if (DECL_EXTERN_C_P (decl))
                /* Allow this; it's pretty common in C.  */;
                /* Allow this; it's pretty common in C.  */;
              else
              else
                {
                {
                  permerror (input_location, "non-local function %q#D uses anonymous type",
                  permerror (input_location, "non-local function %q#D uses anonymous type",
                              decl);
                              decl);
                  if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
                  if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
                    permerror (input_location, "%q+#D does not refer to the unqualified "
                    permerror (input_location, "%q+#D does not refer to the unqualified "
                               "type, so it is not used for linkage",
                               "type, so it is not used for linkage",
                               TYPE_NAME (t));
                               TYPE_NAME (t));
                }
                }
            }
            }
          else
          else
            permerror (input_location, "non-local function %q#D uses local type %qT", decl, t);
            permerror (input_location, "non-local function %q#D uses local type %qT", decl, t);
        }
        }
    }
    }
 
 
  TREE_PUBLIC (decl) = publicp;
  TREE_PUBLIC (decl) = publicp;
  if (! publicp)
  if (! publicp)
    {
    {
      DECL_INTERFACE_KNOWN (decl) = 1;
      DECL_INTERFACE_KNOWN (decl) = 1;
      DECL_NOT_REALLY_EXTERN (decl) = 1;
      DECL_NOT_REALLY_EXTERN (decl) = 1;
    }
    }
 
 
  /* If the declaration was declared inline, mark it as such.  */
  /* If the declaration was declared inline, mark it as such.  */
  if (inlinep)
  if (inlinep)
    DECL_DECLARED_INLINE_P (decl) = 1;
    DECL_DECLARED_INLINE_P (decl) = 1;
 
 
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  if (quals && TREE_CODE (type) == FUNCTION_TYPE)
  if (quals && TREE_CODE (type) == FUNCTION_TYPE)
    {
    {
      error (ctype
      error (ctype
             ? G_("static member function %qD cannot have cv-qualifier")
             ? G_("static member function %qD cannot have cv-qualifier")
             : G_("non-member function %qD cannot have cv-qualifier"),
             : G_("non-member function %qD cannot have cv-qualifier"),
             decl);
             decl);
      quals = TYPE_UNQUALIFIED;
      quals = TYPE_UNQUALIFIED;
    }
    }
 
 
  if (IDENTIFIER_OPNAME_P (DECL_NAME (decl))
  if (IDENTIFIER_OPNAME_P (DECL_NAME (decl))
      && !grok_op_properties (decl, /*complain=*/true))
      && !grok_op_properties (decl, /*complain=*/true))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (funcdef_flag)
  if (funcdef_flag)
    /* Make the init_value nonzero so pushdecl knows this is not
    /* Make the init_value nonzero so pushdecl knows this is not
       tentative.  error_mark_node is replaced later with the BLOCK.  */
       tentative.  error_mark_node is replaced later with the BLOCK.  */
    DECL_INITIAL (decl) = error_mark_node;
    DECL_INITIAL (decl) = error_mark_node;
 
 
  if (TYPE_NOTHROW_P (type) || nothrow_libfn_p (decl))
  if (TYPE_NOTHROW_P (type) || nothrow_libfn_p (decl))
    TREE_NOTHROW (decl) = 1;
    TREE_NOTHROW (decl) = 1;
 
 
  /* Caller will do the rest of this.  */
  /* Caller will do the rest of this.  */
  if (check < 0)
  if (check < 0)
    return decl;
    return decl;
 
 
  if (ctype != NULL_TREE)
  if (ctype != NULL_TREE)
    grokclassfn (ctype, decl, flags);
    grokclassfn (ctype, decl, flags);
 
 
  decl = check_explicit_specialization (orig_declarator, decl,
  decl = check_explicit_specialization (orig_declarator, decl,
                                        template_count,
                                        template_count,
                                        2 * funcdef_flag +
                                        2 * funcdef_flag +
                                        4 * (friendp != 0));
                                        4 * (friendp != 0));
  if (decl == error_mark_node)
  if (decl == error_mark_node)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (attrlist)
  if (attrlist)
    {
    {
      cplus_decl_attributes (&decl, *attrlist, 0);
      cplus_decl_attributes (&decl, *attrlist, 0);
      *attrlist = NULL_TREE;
      *attrlist = NULL_TREE;
    }
    }
 
 
  /* Check main's type after attributes have been applied.  */
  /* Check main's type after attributes have been applied.  */
  if (ctype == NULL_TREE && DECL_MAIN_P (decl))
  if (ctype == NULL_TREE && DECL_MAIN_P (decl))
    {
    {
      if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)),
      if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)),
                        integer_type_node))
                        integer_type_node))
        {
        {
          tree oldtypeargs = TYPE_ARG_TYPES (TREE_TYPE (decl));
          tree oldtypeargs = TYPE_ARG_TYPES (TREE_TYPE (decl));
          tree newtype;
          tree newtype;
          error ("%<::main%> must return %<int%>");
          error ("%<::main%> must return %<int%>");
          newtype = build_function_type (integer_type_node, oldtypeargs);
          newtype = build_function_type (integer_type_node, oldtypeargs);
          TREE_TYPE (decl) = newtype;
          TREE_TYPE (decl) = newtype;
        }
        }
      if (warn_main)
      if (warn_main)
        check_main_parameter_types (decl);
        check_main_parameter_types (decl);
    }
    }
 
 
  if (ctype != NULL_TREE
  if (ctype != NULL_TREE
      && (! TYPE_FOR_JAVA (ctype) || check_java_method (decl))
      && (! TYPE_FOR_JAVA (ctype) || check_java_method (decl))
      && check)
      && check)
    {
    {
      tree old_decl = check_classfn (ctype, decl,
      tree old_decl = check_classfn (ctype, decl,
                                     (processing_template_decl
                                     (processing_template_decl
                                      > template_class_depth (ctype))
                                      > template_class_depth (ctype))
                                     ? current_template_parms
                                     ? current_template_parms
                                     : NULL_TREE);
                                     : NULL_TREE);
 
 
      if (old_decl == error_mark_node)
      if (old_decl == error_mark_node)
        return NULL_TREE;
        return NULL_TREE;
 
 
      if (old_decl)
      if (old_decl)
        {
        {
          tree ok;
          tree ok;
          tree pushed_scope;
          tree pushed_scope;
 
 
          if (TREE_CODE (old_decl) == TEMPLATE_DECL)
          if (TREE_CODE (old_decl) == TEMPLATE_DECL)
            /* Because grokfndecl is always supposed to return a
            /* Because grokfndecl is always supposed to return a
               FUNCTION_DECL, we pull out the DECL_TEMPLATE_RESULT
               FUNCTION_DECL, we pull out the DECL_TEMPLATE_RESULT
               here.  We depend on our callers to figure out that its
               here.  We depend on our callers to figure out that its
               really a template that's being returned.  */
               really a template that's being returned.  */
            old_decl = DECL_TEMPLATE_RESULT (old_decl);
            old_decl = DECL_TEMPLATE_RESULT (old_decl);
 
 
          if (DECL_STATIC_FUNCTION_P (old_decl)
          if (DECL_STATIC_FUNCTION_P (old_decl)
              && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
              && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
            /* Remove the `this' parm added by grokclassfn.
            /* Remove the `this' parm added by grokclassfn.
               XXX Isn't this done in start_function, too?  */
               XXX Isn't this done in start_function, too?  */
            revert_static_member_fn (decl);
            revert_static_member_fn (decl);
          if (DECL_ARTIFICIAL (old_decl))
          if (DECL_ARTIFICIAL (old_decl))
            {
            {
              error ("definition of implicitly-declared %qD", old_decl);
              error ("definition of implicitly-declared %qD", old_decl);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
          /* Since we've smashed OLD_DECL to its
          /* Since we've smashed OLD_DECL to its
             DECL_TEMPLATE_RESULT, we must do the same to DECL.  */
             DECL_TEMPLATE_RESULT, we must do the same to DECL.  */
          if (TREE_CODE (decl) == TEMPLATE_DECL)
          if (TREE_CODE (decl) == TEMPLATE_DECL)
            decl = DECL_TEMPLATE_RESULT (decl);
            decl = DECL_TEMPLATE_RESULT (decl);
 
 
          /* Attempt to merge the declarations.  This can fail, in
          /* Attempt to merge the declarations.  This can fail, in
             the case of some invalid specialization declarations.  */
             the case of some invalid specialization declarations.  */
          pushed_scope = push_scope (ctype);
          pushed_scope = push_scope (ctype);
          ok = duplicate_decls (decl, old_decl, friendp);
          ok = duplicate_decls (decl, old_decl, friendp);
          if (pushed_scope)
          if (pushed_scope)
            pop_scope (pushed_scope);
            pop_scope (pushed_scope);
          if (!ok)
          if (!ok)
            {
            {
              error ("no %q#D member function declared in class %qT",
              error ("no %q#D member function declared in class %qT",
                     decl, ctype);
                     decl, ctype);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
          return old_decl;
          return old_decl;
        }
        }
    }
    }
 
 
  if (DECL_CONSTRUCTOR_P (decl) && !grok_ctor_properties (ctype, decl))
  if (DECL_CONSTRUCTOR_P (decl) && !grok_ctor_properties (ctype, decl))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (ctype == NULL_TREE || check)
  if (ctype == NULL_TREE || check)
    return decl;
    return decl;
 
 
  if (virtualp)
  if (virtualp)
    DECL_VIRTUAL_P (decl) = 1;
    DECL_VIRTUAL_P (decl) = 1;
 
 
  return decl;
  return decl;
}
}
 
 
/* DECL is a VAR_DECL for a static data member.  Set flags to reflect
/* DECL is a VAR_DECL for a static data member.  Set flags to reflect
   the linkage that DECL will receive in the object file.  */
   the linkage that DECL will receive in the object file.  */
 
 
static void
static void
set_linkage_for_static_data_member (tree decl)
set_linkage_for_static_data_member (tree decl)
{
{
  /* A static data member always has static storage duration and
  /* A static data member always has static storage duration and
     external linkage.  Note that static data members are forbidden in
     external linkage.  Note that static data members are forbidden in
     local classes -- the only situation in which a class has
     local classes -- the only situation in which a class has
     non-external linkage.  */
     non-external linkage.  */
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  TREE_STATIC (decl) = 1;
  TREE_STATIC (decl) = 1;
  /* For non-template classes, static data members are always put
  /* For non-template classes, static data members are always put
     out in exactly those files where they are defined, just as
     out in exactly those files where they are defined, just as
     with ordinary namespace-scope variables.  */
     with ordinary namespace-scope variables.  */
  if (!processing_template_decl)
  if (!processing_template_decl)
    DECL_INTERFACE_KNOWN (decl) = 1;
    DECL_INTERFACE_KNOWN (decl) = 1;
}
}
 
 
/* Create a VAR_DECL named NAME with the indicated TYPE.
/* Create a VAR_DECL named NAME with the indicated TYPE.
 
 
   If SCOPE is non-NULL, it is the class type or namespace containing
   If SCOPE is non-NULL, it is the class type or namespace containing
   the variable.  If SCOPE is NULL, the variable should is created in
   the variable.  If SCOPE is NULL, the variable should is created in
   the innermost enclosings scope.  */
   the innermost enclosings scope.  */
 
 
static tree
static tree
grokvardecl (tree type,
grokvardecl (tree type,
             tree name,
             tree name,
             const cp_decl_specifier_seq *declspecs,
             const cp_decl_specifier_seq *declspecs,
             int initialized,
             int initialized,
             int constp,
             int constp,
             tree scope)
             tree scope)
{
{
  tree decl;
  tree decl;
  tree explicit_scope;
  tree explicit_scope;
 
 
  gcc_assert (!name || TREE_CODE (name) == IDENTIFIER_NODE);
  gcc_assert (!name || TREE_CODE (name) == IDENTIFIER_NODE);
 
 
  /* Compute the scope in which to place the variable, but remember
  /* Compute the scope in which to place the variable, but remember
     whether or not that scope was explicitly specified by the user.   */
     whether or not that scope was explicitly specified by the user.   */
  explicit_scope = scope;
  explicit_scope = scope;
  if (!scope)
  if (!scope)
    {
    {
      /* An explicit "extern" specifier indicates a namespace-scope
      /* An explicit "extern" specifier indicates a namespace-scope
         variable.  */
         variable.  */
      if (declspecs->storage_class == sc_extern)
      if (declspecs->storage_class == sc_extern)
        scope = current_namespace;
        scope = current_namespace;
      else if (!at_function_scope_p ())
      else if (!at_function_scope_p ())
        scope = current_scope ();
        scope = current_scope ();
    }
    }
 
 
  if (scope
  if (scope
      && (/* If the variable is a namespace-scope variable declared in a
      && (/* If the variable is a namespace-scope variable declared in a
             template, we need DECL_LANG_SPECIFIC.  */
             template, we need DECL_LANG_SPECIFIC.  */
          (TREE_CODE (scope) == NAMESPACE_DECL && processing_template_decl)
          (TREE_CODE (scope) == NAMESPACE_DECL && processing_template_decl)
          /* Similarly for namespace-scope variables with language linkage
          /* Similarly for namespace-scope variables with language linkage
             other than C++.  */
             other than C++.  */
          || (TREE_CODE (scope) == NAMESPACE_DECL
          || (TREE_CODE (scope) == NAMESPACE_DECL
              && current_lang_name != lang_name_cplusplus)
              && current_lang_name != lang_name_cplusplus)
          /* Similarly for static data members.  */
          /* Similarly for static data members.  */
          || TYPE_P (scope)))
          || TYPE_P (scope)))
    decl = build_lang_decl (VAR_DECL, name, type);
    decl = build_lang_decl (VAR_DECL, name, type);
  else
  else
    decl = build_decl (input_location, VAR_DECL, name, type);
    decl = build_decl (input_location, VAR_DECL, name, type);
 
 
  if (explicit_scope && TREE_CODE (explicit_scope) == NAMESPACE_DECL)
  if (explicit_scope && TREE_CODE (explicit_scope) == NAMESPACE_DECL)
    set_decl_namespace (decl, explicit_scope, 0);
    set_decl_namespace (decl, explicit_scope, 0);
  else
  else
    DECL_CONTEXT (decl) = FROB_CONTEXT (scope);
    DECL_CONTEXT (decl) = FROB_CONTEXT (scope);
 
 
  if (declspecs->storage_class == sc_extern)
  if (declspecs->storage_class == sc_extern)
    {
    {
      DECL_THIS_EXTERN (decl) = 1;
      DECL_THIS_EXTERN (decl) = 1;
      DECL_EXTERNAL (decl) = !initialized;
      DECL_EXTERNAL (decl) = !initialized;
    }
    }
 
 
  if (DECL_CLASS_SCOPE_P (decl))
  if (DECL_CLASS_SCOPE_P (decl))
    {
    {
      set_linkage_for_static_data_member (decl);
      set_linkage_for_static_data_member (decl);
      /* This function is only called with out-of-class definitions.  */
      /* This function is only called with out-of-class definitions.  */
      DECL_EXTERNAL (decl) = 0;
      DECL_EXTERNAL (decl) = 0;
      check_class_member_definition_namespace (decl);
      check_class_member_definition_namespace (decl);
    }
    }
  /* At top level, either `static' or no s.c. makes a definition
  /* At top level, either `static' or no s.c. makes a definition
     (perhaps tentative), and absence of `static' makes it public.  */
     (perhaps tentative), and absence of `static' makes it public.  */
  else if (toplevel_bindings_p ())
  else if (toplevel_bindings_p ())
    {
    {
      TREE_PUBLIC (decl) = (declspecs->storage_class != sc_static
      TREE_PUBLIC (decl) = (declspecs->storage_class != sc_static
                            && (DECL_THIS_EXTERN (decl) || ! constp));
                            && (DECL_THIS_EXTERN (decl) || ! constp));
      TREE_STATIC (decl) = ! DECL_EXTERNAL (decl);
      TREE_STATIC (decl) = ! DECL_EXTERNAL (decl);
    }
    }
  /* Not at top level, only `static' makes a static definition.  */
  /* Not at top level, only `static' makes a static definition.  */
  else
  else
    {
    {
      TREE_STATIC (decl) = declspecs->storage_class == sc_static;
      TREE_STATIC (decl) = declspecs->storage_class == sc_static;
      TREE_PUBLIC (decl) = DECL_EXTERNAL (decl);
      TREE_PUBLIC (decl) = DECL_EXTERNAL (decl);
    }
    }
 
 
  if (declspecs->specs[(int)ds_thread])
  if (declspecs->specs[(int)ds_thread])
    DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
    DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
 
 
  /* If the type of the decl has no linkage, make sure that we'll
  /* If the type of the decl has no linkage, make sure that we'll
     notice that in mark_used.  */
     notice that in mark_used.  */
  if (cxx_dialect > cxx98
  if (cxx_dialect > cxx98
      && decl_linkage (decl) != lk_none
      && decl_linkage (decl) != lk_none
      && DECL_LANG_SPECIFIC (decl) == NULL
      && DECL_LANG_SPECIFIC (decl) == NULL
      && !DECL_EXTERN_C_P (decl)
      && !DECL_EXTERN_C_P (decl)
      && no_linkage_check (TREE_TYPE (decl), /*relaxed_p=*/false))
      && no_linkage_check (TREE_TYPE (decl), /*relaxed_p=*/false))
    retrofit_lang_decl (decl);
    retrofit_lang_decl (decl);
 
 
  if (TREE_PUBLIC (decl))
  if (TREE_PUBLIC (decl))
    {
    {
      /* [basic.link]: A name with no linkage (notably, the name of a class
      /* [basic.link]: A name with no linkage (notably, the name of a class
         or enumeration declared in a local scope) shall not be used to
         or enumeration declared in a local scope) shall not be used to
         declare an entity with linkage.
         declare an entity with linkage.
 
 
         DR 757 relaxes this restriction for C++0x.  */
         DR 757 relaxes this restriction for C++0x.  */
      tree t = (cxx_dialect > cxx98 ? NULL_TREE
      tree t = (cxx_dialect > cxx98 ? NULL_TREE
                : no_linkage_check (TREE_TYPE (decl), /*relaxed_p=*/false));
                : no_linkage_check (TREE_TYPE (decl), /*relaxed_p=*/false));
      if (t)
      if (t)
        {
        {
          if (TYPE_ANONYMOUS_P (t))
          if (TYPE_ANONYMOUS_P (t))
            {
            {
              if (DECL_EXTERN_C_P (decl))
              if (DECL_EXTERN_C_P (decl))
                /* Allow this; it's pretty common in C.  */
                /* Allow this; it's pretty common in C.  */
                ;
                ;
              else
              else
                {
                {
                  /* DRs 132, 319 and 389 seem to indicate types with
                  /* DRs 132, 319 and 389 seem to indicate types with
                     no linkage can only be used to declare extern "C"
                     no linkage can only be used to declare extern "C"
                     entities.  Since it's not always an error in the
                     entities.  Since it's not always an error in the
                     ISO C++ 90 Standard, we only issue a warning.  */
                     ISO C++ 90 Standard, we only issue a warning.  */
                  warning (0, "non-local variable %q#D uses anonymous type",
                  warning (0, "non-local variable %q#D uses anonymous type",
                           decl);
                           decl);
                  if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
                  if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
                    warning (0, "%q+#D does not refer to the unqualified "
                    warning (0, "%q+#D does not refer to the unqualified "
                             "type, so it is not used for linkage",
                             "type, so it is not used for linkage",
                             TYPE_NAME (t));
                             TYPE_NAME (t));
                }
                }
            }
            }
          else
          else
            warning (0, "non-local variable %q#D uses local type %qT", decl, t);
            warning (0, "non-local variable %q#D uses local type %qT", decl, t);
        }
        }
    }
    }
  else
  else
    DECL_INTERFACE_KNOWN (decl) = 1;
    DECL_INTERFACE_KNOWN (decl) = 1;
 
 
  return decl;
  return decl;
}
}
 
 
/* Create and return a canonical pointer to member function type, for
/* Create and return a canonical pointer to member function type, for
   TYPE, which is a POINTER_TYPE to a METHOD_TYPE.  */
   TYPE, which is a POINTER_TYPE to a METHOD_TYPE.  */
 
 
tree
tree
build_ptrmemfunc_type (tree type)
build_ptrmemfunc_type (tree type)
{
{
  tree field, fields;
  tree field, fields;
  tree t;
  tree t;
  tree unqualified_variant = NULL_TREE;
  tree unqualified_variant = NULL_TREE;
 
 
  if (type == error_mark_node)
  if (type == error_mark_node)
    return type;
    return type;
 
 
  /* If a canonical type already exists for this type, use it.  We use
  /* If a canonical type already exists for this type, use it.  We use
     this method instead of type_hash_canon, because it only does a
     this method instead of type_hash_canon, because it only does a
     simple equality check on the list of field members.  */
     simple equality check on the list of field members.  */
 
 
  if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type)))
  if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type)))
    return t;
    return t;
 
 
  /* Make sure that we always have the unqualified pointer-to-member
  /* Make sure that we always have the unqualified pointer-to-member
     type first.  */
     type first.  */
  if (cp_type_quals (type) != TYPE_UNQUALIFIED)
  if (cp_type_quals (type) != TYPE_UNQUALIFIED)
    unqualified_variant
    unqualified_variant
      = build_ptrmemfunc_type (TYPE_MAIN_VARIANT (type));
      = build_ptrmemfunc_type (TYPE_MAIN_VARIANT (type));
 
 
  t = make_class_type (RECORD_TYPE);
  t = make_class_type (RECORD_TYPE);
  xref_basetypes (t, NULL_TREE);
  xref_basetypes (t, NULL_TREE);
 
 
  /* Let the front end know this is a pointer to member function...  */
  /* Let the front end know this is a pointer to member function...  */
  TYPE_PTRMEMFUNC_FLAG (t) = 1;
  TYPE_PTRMEMFUNC_FLAG (t) = 1;
  /* ... and not really a class type.  */
  /* ... and not really a class type.  */
  SET_CLASS_TYPE_P (t, 0);
  SET_CLASS_TYPE_P (t, 0);
 
 
  field = build_decl (input_location, FIELD_DECL, pfn_identifier, type);
  field = build_decl (input_location, FIELD_DECL, pfn_identifier, type);
  fields = field;
  fields = field;
 
 
  field = build_decl (input_location, FIELD_DECL, delta_identifier,
  field = build_decl (input_location, FIELD_DECL, delta_identifier,
                      delta_type_node);
                      delta_type_node);
  TREE_CHAIN (field) = fields;
  TREE_CHAIN (field) = fields;
  fields = field;
  fields = field;
 
 
  finish_builtin_struct (t, "__ptrmemfunc_type", fields, ptr_type_node);
  finish_builtin_struct (t, "__ptrmemfunc_type", fields, ptr_type_node);
 
 
  /* Zap out the name so that the back end will give us the debugging
  /* Zap out the name so that the back end will give us the debugging
     information for this anonymous RECORD_TYPE.  */
     information for this anonymous RECORD_TYPE.  */
  TYPE_NAME (t) = NULL_TREE;
  TYPE_NAME (t) = NULL_TREE;
 
 
  /* If this is not the unqualified form of this pointer-to-member
  /* If this is not the unqualified form of this pointer-to-member
     type, set the TYPE_MAIN_VARIANT for this type to be the
     type, set the TYPE_MAIN_VARIANT for this type to be the
     unqualified type.  Since they are actually RECORD_TYPEs that are
     unqualified type.  Since they are actually RECORD_TYPEs that are
     not variants of each other, we must do this manually.
     not variants of each other, we must do this manually.
     As we just built a new type there is no need to do yet another copy.  */
     As we just built a new type there is no need to do yet another copy.  */
  if (cp_type_quals (type) != TYPE_UNQUALIFIED)
  if (cp_type_quals (type) != TYPE_UNQUALIFIED)
    {
    {
      int type_quals = cp_type_quals (type);
      int type_quals = cp_type_quals (type);
      TYPE_READONLY (t) = (type_quals & TYPE_QUAL_CONST) != 0;
      TYPE_READONLY (t) = (type_quals & TYPE_QUAL_CONST) != 0;
      TYPE_VOLATILE (t) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
      TYPE_VOLATILE (t) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
      TYPE_RESTRICT (t) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
      TYPE_RESTRICT (t) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
      TYPE_MAIN_VARIANT (t) = unqualified_variant;
      TYPE_MAIN_VARIANT (t) = unqualified_variant;
      TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (unqualified_variant);
      TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (unqualified_variant);
      TYPE_NEXT_VARIANT (unqualified_variant) = t;
      TYPE_NEXT_VARIANT (unqualified_variant) = t;
      TREE_TYPE (TYPE_BINFO (t)) = t;
      TREE_TYPE (TYPE_BINFO (t)) = t;
    }
    }
 
 
  /* Cache this pointer-to-member type so that we can find it again
  /* Cache this pointer-to-member type so that we can find it again
     later.  */
     later.  */
  TYPE_SET_PTRMEMFUNC_TYPE (type, t);
  TYPE_SET_PTRMEMFUNC_TYPE (type, t);
 
 
  if (TYPE_STRUCTURAL_EQUALITY_P (type))
  if (TYPE_STRUCTURAL_EQUALITY_P (type))
    SET_TYPE_STRUCTURAL_EQUALITY (t);
    SET_TYPE_STRUCTURAL_EQUALITY (t);
  else if (TYPE_CANONICAL (type) != type)
  else if (TYPE_CANONICAL (type) != type)
    TYPE_CANONICAL (t) = build_ptrmemfunc_type (TYPE_CANONICAL (type));
    TYPE_CANONICAL (t) = build_ptrmemfunc_type (TYPE_CANONICAL (type));
 
 
  return t;
  return t;
}
}
 
 
/* Create and return a pointer to data member type.  */
/* Create and return a pointer to data member type.  */
 
 
tree
tree
build_ptrmem_type (tree class_type, tree member_type)
build_ptrmem_type (tree class_type, tree member_type)
{
{
  if (TREE_CODE (member_type) == METHOD_TYPE)
  if (TREE_CODE (member_type) == METHOD_TYPE)
    {
    {
      tree arg_types = TYPE_ARG_TYPES (member_type);
      tree arg_types = TYPE_ARG_TYPES (member_type);
      cp_cv_quals quals = cp_type_quals (TREE_TYPE (TREE_VALUE (arg_types)));
      cp_cv_quals quals = cp_type_quals (TREE_TYPE (TREE_VALUE (arg_types)));
      member_type = build_memfn_type (member_type, class_type, quals);
      member_type = build_memfn_type (member_type, class_type, quals);
      return build_ptrmemfunc_type (build_pointer_type (member_type));
      return build_ptrmemfunc_type (build_pointer_type (member_type));
    }
    }
  else
  else
    {
    {
      gcc_assert (TREE_CODE (member_type) != FUNCTION_TYPE);
      gcc_assert (TREE_CODE (member_type) != FUNCTION_TYPE);
      return build_offset_type (class_type, member_type);
      return build_offset_type (class_type, member_type);
    }
    }
}
}
 
 
/* DECL is a VAR_DECL defined in-class, whose TYPE is also given.
/* DECL is a VAR_DECL defined in-class, whose TYPE is also given.
   Check to see that the definition is valid.  Issue appropriate error
   Check to see that the definition is valid.  Issue appropriate error
   messages.  Return 1 if the definition is particularly bad, or 0
   messages.  Return 1 if the definition is particularly bad, or 0
   otherwise.  */
   otherwise.  */
 
 
int
int
check_static_variable_definition (tree decl, tree type)
check_static_variable_definition (tree decl, tree type)
{
{
  /* Motion 10 at San Diego: If a static const integral data member is
  /* Motion 10 at San Diego: If a static const integral data member is
     initialized with an integral constant expression, the initializer
     initialized with an integral constant expression, the initializer
     may appear either in the declaration (within the class), or in
     may appear either in the declaration (within the class), or in
     the definition, but not both.  If it appears in the class, the
     the definition, but not both.  If it appears in the class, the
     member is a member constant.  The file-scope definition is always
     member is a member constant.  The file-scope definition is always
     required.  */
     required.  */
  if (!ARITHMETIC_TYPE_P (type) && TREE_CODE (type) != ENUMERAL_TYPE)
  if (!ARITHMETIC_TYPE_P (type) && TREE_CODE (type) != ENUMERAL_TYPE)
    {
    {
      error ("invalid in-class initialization of static data member "
      error ("invalid in-class initialization of static data member "
             "of non-integral type %qT",
             "of non-integral type %qT",
             type);
             type);
      /* If we just return the declaration, crashes will sometimes
      /* If we just return the declaration, crashes will sometimes
         occur.  We therefore return void_type_node, as if this were a
         occur.  We therefore return void_type_node, as if this were a
         friend declaration, to cause callers to completely ignore
         friend declaration, to cause callers to completely ignore
         this declaration.  */
         this declaration.  */
      return 1;
      return 1;
    }
    }
  else if (!CP_TYPE_CONST_P (type))
  else if (!CP_TYPE_CONST_P (type))
    error ("ISO C++ forbids in-class initialization of non-const "
    error ("ISO C++ forbids in-class initialization of non-const "
           "static member %qD",
           "static member %qD",
           decl);
           decl);
  else if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
  else if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
    pedwarn (input_location, OPT_pedantic, "ISO C++ forbids initialization of member constant "
    pedwarn (input_location, OPT_pedantic, "ISO C++ forbids initialization of member constant "
             "%qD of non-integral type %qT", decl, type);
             "%qD of non-integral type %qT", decl, type);
 
 
  return 0;
  return 0;
}
}
 
 
/* Given the SIZE (i.e., number of elements) in an array, compute an
/* Given the SIZE (i.e., number of elements) in an array, compute an
   appropriate index type for the array.  If non-NULL, NAME is the
   appropriate index type for the array.  If non-NULL, NAME is the
   name of the thing being declared.  */
   name of the thing being declared.  */
 
 
tree
tree
compute_array_index_type (tree name, tree size)
compute_array_index_type (tree name, tree size)
{
{
  tree type;
  tree type;
  tree itype;
  tree itype;
  tree abi_1_itype = NULL_TREE;
  tree abi_1_itype = NULL_TREE;
 
 
  if (error_operand_p (size))
  if (error_operand_p (size))
    return error_mark_node;
    return error_mark_node;
 
 
  type = TREE_TYPE (size);
  type = TREE_TYPE (size);
  /* The array bound must be an integer type.  */
  /* The array bound must be an integer type.  */
  if (!dependent_type_p (type) && !INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type))
  if (!dependent_type_p (type) && !INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type))
    {
    {
      if (name)
      if (name)
        error ("size of array %qD has non-integral type %qT", name, type);
        error ("size of array %qD has non-integral type %qT", name, type);
      else
      else
        error ("size of array has non-integral type %qT", type);
        error ("size of array has non-integral type %qT", type);
      size = integer_one_node;
      size = integer_one_node;
      type = TREE_TYPE (size);
      type = TREE_TYPE (size);
    }
    }
 
 
  /* We can only call value_dependent_expression_p on integral constant
  /* We can only call value_dependent_expression_p on integral constant
     expressions; the parser adds a dummy NOP_EXPR with TREE_SIDE_EFFECTS
     expressions; the parser adds a dummy NOP_EXPR with TREE_SIDE_EFFECTS
     set if this isn't one.  */
     set if this isn't one.  */
  if (processing_template_decl
  if (processing_template_decl
      && (TREE_SIDE_EFFECTS (size) || value_dependent_expression_p (size)))
      && (TREE_SIDE_EFFECTS (size) || value_dependent_expression_p (size)))
    {
    {
      /* We cannot do any checking for a SIZE that isn't known to be
      /* We cannot do any checking for a SIZE that isn't known to be
         constant. Just build the index type and mark that it requires
         constant. Just build the index type and mark that it requires
         structural equality checks.  */
         structural equality checks.  */
      itype = build_index_type (build_min (MINUS_EXPR, sizetype,
      itype = build_index_type (build_min (MINUS_EXPR, sizetype,
                                           size, integer_one_node));
                                           size, integer_one_node));
      TYPE_DEPENDENT_P (itype) = 1;
      TYPE_DEPENDENT_P (itype) = 1;
      TYPE_DEPENDENT_P_VALID (itype) = 1;
      TYPE_DEPENDENT_P_VALID (itype) = 1;
      SET_TYPE_STRUCTURAL_EQUALITY (itype);
      SET_TYPE_STRUCTURAL_EQUALITY (itype);
      return itype;
      return itype;
    }
    }
 
 
  if (!abi_version_at_least (2) && processing_template_decl)
  if (!abi_version_at_least (2) && processing_template_decl)
    /* For abi-1, we handled all instances in templates the same way,
    /* For abi-1, we handled all instances in templates the same way,
       even when they were non-dependent. This affects the manglings
       even when they were non-dependent. This affects the manglings
       produced.  So, we do the normal checking for non-dependent
       produced.  So, we do the normal checking for non-dependent
       sizes, but at the end we'll return the same type that abi-1
       sizes, but at the end we'll return the same type that abi-1
       would have, but with TYPE_CANONICAL set to the "right"
       would have, but with TYPE_CANONICAL set to the "right"
       value that the current ABI would provide. */
       value that the current ABI would provide. */
    abi_1_itype = build_index_type (build_min (MINUS_EXPR, sizetype,
    abi_1_itype = build_index_type (build_min (MINUS_EXPR, sizetype,
                                               size, integer_one_node));
                                               size, integer_one_node));
 
 
  /* The size might be the result of a cast.  */
  /* The size might be the result of a cast.  */
  STRIP_TYPE_NOPS (size);
  STRIP_TYPE_NOPS (size);
 
 
  /* It might be a const variable or enumeration constant.  */
  /* It might be a const variable or enumeration constant.  */
  size = integral_constant_value (size);
  size = integral_constant_value (size);
 
 
  /* Normally, the array-bound will be a constant.  */
  /* Normally, the array-bound will be a constant.  */
  if (TREE_CODE (size) == INTEGER_CST)
  if (TREE_CODE (size) == INTEGER_CST)
    {
    {
      /* Check to see if the array bound overflowed.  Make that an
      /* Check to see if the array bound overflowed.  Make that an
         error, no matter how generous we're being.  */
         error, no matter how generous we're being.  */
      constant_expression_error (size);
      constant_expression_error (size);
 
 
      /* An array must have a positive number of elements.  */
      /* An array must have a positive number of elements.  */
      if (INT_CST_LT (size, integer_zero_node))
      if (INT_CST_LT (size, integer_zero_node))
        {
        {
          if (name)
          if (name)
            error ("size of array %qD is negative", name);
            error ("size of array %qD is negative", name);
          else
          else
            error ("size of array is negative");
            error ("size of array is negative");
          size = integer_one_node;
          size = integer_one_node;
        }
        }
      /* As an extension we allow zero-sized arrays.  We always allow
      /* As an extension we allow zero-sized arrays.  We always allow
         them in system headers because glibc uses them.  */
         them in system headers because glibc uses them.  */
      else if (integer_zerop (size) && !in_system_header)
      else if (integer_zerop (size) && !in_system_header)
        {
        {
          if (name)
          if (name)
            pedwarn (input_location, OPT_pedantic, "ISO C++ forbids zero-size array %qD", name);
            pedwarn (input_location, OPT_pedantic, "ISO C++ forbids zero-size array %qD", name);
          else
          else
            pedwarn (input_location, OPT_pedantic, "ISO C++ forbids zero-size array");
            pedwarn (input_location, OPT_pedantic, "ISO C++ forbids zero-size array");
        }
        }
    }
    }
  else if (TREE_CONSTANT (size))
  else if (TREE_CONSTANT (size))
    {
    {
      /* `(int) &fn' is not a valid array bound.  */
      /* `(int) &fn' is not a valid array bound.  */
      if (name)
      if (name)
        error ("size of array %qD is not an integral constant-expression",
        error ("size of array %qD is not an integral constant-expression",
               name);
               name);
      else
      else
        error ("size of array is not an integral constant-expression");
        error ("size of array is not an integral constant-expression");
      size = integer_one_node;
      size = integer_one_node;
    }
    }
  else if (pedantic && warn_vla != 0)
  else if (pedantic && warn_vla != 0)
    {
    {
      if (name)
      if (name)
        pedwarn (input_location, OPT_Wvla, "ISO C++ forbids variable length array %qD", name);
        pedwarn (input_location, OPT_Wvla, "ISO C++ forbids variable length array %qD", name);
      else
      else
        pedwarn (input_location, OPT_Wvla, "ISO C++ forbids variable length array");
        pedwarn (input_location, OPT_Wvla, "ISO C++ forbids variable length array");
    }
    }
  else if (warn_vla > 0)
  else if (warn_vla > 0)
    {
    {
      if (name)
      if (name)
        warning (OPT_Wvla,
        warning (OPT_Wvla,
                 "variable length array %qD is used", name);
                 "variable length array %qD is used", name);
      else
      else
        warning (OPT_Wvla,
        warning (OPT_Wvla,
                 "variable length array is used");
                 "variable length array is used");
    }
    }
 
 
  if (processing_template_decl && !TREE_CONSTANT (size))
  if (processing_template_decl && !TREE_CONSTANT (size))
    /* A variable sized array.  */
    /* A variable sized array.  */
    itype = build_min (MINUS_EXPR, sizetype, size, integer_one_node);
    itype = build_min (MINUS_EXPR, sizetype, size, integer_one_node);
  else
  else
    {
    {
      HOST_WIDE_INT saved_processing_template_decl;
      HOST_WIDE_INT saved_processing_template_decl;
 
 
      /* Compute the index of the largest element in the array.  It is
      /* Compute the index of the largest element in the array.  It is
         one less than the number of elements in the array.  We save
         one less than the number of elements in the array.  We save
         and restore PROCESSING_TEMPLATE_DECL so that computations in
         and restore PROCESSING_TEMPLATE_DECL so that computations in
         cp_build_binary_op will be appropriately folded.  */
         cp_build_binary_op will be appropriately folded.  */
      saved_processing_template_decl = processing_template_decl;
      saved_processing_template_decl = processing_template_decl;
      processing_template_decl = 0;
      processing_template_decl = 0;
      itype = cp_build_binary_op (input_location,
      itype = cp_build_binary_op (input_location,
                                  MINUS_EXPR,
                                  MINUS_EXPR,
                                  cp_convert (ssizetype, size),
                                  cp_convert (ssizetype, size),
                                  cp_convert (ssizetype, integer_one_node),
                                  cp_convert (ssizetype, integer_one_node),
                                  tf_warning_or_error);
                                  tf_warning_or_error);
      itype = fold (itype);
      itype = fold (itype);
      processing_template_decl = saved_processing_template_decl;
      processing_template_decl = saved_processing_template_decl;
 
 
      if (!TREE_CONSTANT (itype))
      if (!TREE_CONSTANT (itype))
        /* A variable sized array.  */
        /* A variable sized array.  */
        itype = variable_size (itype);
        itype = variable_size (itype);
      /* Make sure that there was no overflow when creating to a signed
      /* Make sure that there was no overflow when creating to a signed
         index type.  (For example, on a 32-bit machine, an array with
         index type.  (For example, on a 32-bit machine, an array with
         size 2^32 - 1 is too big.)  */
         size 2^32 - 1 is too big.)  */
      else if (TREE_CODE (itype) == INTEGER_CST
      else if (TREE_CODE (itype) == INTEGER_CST
               && TREE_OVERFLOW (itype))
               && TREE_OVERFLOW (itype))
        {
        {
          error ("overflow in array dimension");
          error ("overflow in array dimension");
          TREE_OVERFLOW (itype) = 0;
          TREE_OVERFLOW (itype) = 0;
        }
        }
    }
    }
 
 
  /* Create and return the appropriate index type.  */
  /* Create and return the appropriate index type.  */
  if (abi_1_itype)
  if (abi_1_itype)
    {
    {
      tree t = build_index_type (itype);
      tree t = build_index_type (itype);
      TYPE_CANONICAL (abi_1_itype) = TYPE_CANONICAL (t);
      TYPE_CANONICAL (abi_1_itype) = TYPE_CANONICAL (t);
      return abi_1_itype;
      return abi_1_itype;
    }
    }
  else
  else
    return build_index_type (itype);
    return build_index_type (itype);
}
}
 
 
/* Returns the scope (if any) in which the entity declared by
/* Returns the scope (if any) in which the entity declared by
   DECLARATOR will be located.  If the entity was declared with an
   DECLARATOR will be located.  If the entity was declared with an
   unqualified name, NULL_TREE is returned.  */
   unqualified name, NULL_TREE is returned.  */
 
 
tree
tree
get_scope_of_declarator (const cp_declarator *declarator)
get_scope_of_declarator (const cp_declarator *declarator)
{
{
  while (declarator && declarator->kind != cdk_id)
  while (declarator && declarator->kind != cdk_id)
    declarator = declarator->declarator;
    declarator = declarator->declarator;
 
 
  /* If the declarator-id is a SCOPE_REF, the scope in which the
  /* If the declarator-id is a SCOPE_REF, the scope in which the
     declaration occurs is the first operand.  */
     declaration occurs is the first operand.  */
  if (declarator
  if (declarator
      && declarator->u.id.qualifying_scope)
      && declarator->u.id.qualifying_scope)
    return declarator->u.id.qualifying_scope;
    return declarator->u.id.qualifying_scope;
 
 
  /* Otherwise, the declarator is not a qualified name; the entity will
  /* Otherwise, the declarator is not a qualified name; the entity will
     be declared in the current scope.  */
     be declared in the current scope.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Returns an ARRAY_TYPE for an array with SIZE elements of the
/* Returns an ARRAY_TYPE for an array with SIZE elements of the
   indicated TYPE.  If non-NULL, NAME is the NAME of the declaration
   indicated TYPE.  If non-NULL, NAME is the NAME of the declaration
   with this type.  */
   with this type.  */
 
 
static tree
static tree
create_array_type_for_decl (tree name, tree type, tree size)
create_array_type_for_decl (tree name, tree type, tree size)
{
{
  tree itype = NULL_TREE;
  tree itype = NULL_TREE;
 
 
  /* If things have already gone awry, bail now.  */
  /* If things have already gone awry, bail now.  */
  if (type == error_mark_node || size == error_mark_node)
  if (type == error_mark_node || size == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  /* If there are some types which cannot be array elements,
  /* If there are some types which cannot be array elements,
     issue an error-message and return.  */
     issue an error-message and return.  */
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case VOID_TYPE:
    case VOID_TYPE:
      if (name)
      if (name)
        error ("declaration of %qD as array of void", name);
        error ("declaration of %qD as array of void", name);
      else
      else
        error ("creating array of void");
        error ("creating array of void");
      return error_mark_node;
      return error_mark_node;
 
 
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
      if (name)
      if (name)
        error ("declaration of %qD as array of functions", name);
        error ("declaration of %qD as array of functions", name);
      else
      else
        error ("creating array of functions");
        error ("creating array of functions");
      return error_mark_node;
      return error_mark_node;
 
 
    case REFERENCE_TYPE:
    case REFERENCE_TYPE:
      if (name)
      if (name)
        error ("declaration of %qD as array of references", name);
        error ("declaration of %qD as array of references", name);
      else
      else
        error ("creating array of references");
        error ("creating array of references");
      return error_mark_node;
      return error_mark_node;
 
 
    case METHOD_TYPE:
    case METHOD_TYPE:
      if (name)
      if (name)
        error ("declaration of %qD as array of function members", name);
        error ("declaration of %qD as array of function members", name);
      else
      else
        error ("creating array of function members");
        error ("creating array of function members");
      return error_mark_node;
      return error_mark_node;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* [dcl.array]
  /* [dcl.array]
 
 
     The constant expressions that specify the bounds of the arrays
     The constant expressions that specify the bounds of the arrays
     can be omitted only for the first member of the sequence.  */
     can be omitted only for the first member of the sequence.  */
  if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type))
  if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type))
    {
    {
      if (name)
      if (name)
        error ("declaration of %qD as multidimensional array must "
        error ("declaration of %qD as multidimensional array must "
               "have bounds for all dimensions except the first",
               "have bounds for all dimensions except the first",
               name);
               name);
      else
      else
        error ("multidimensional array must have bounds for all "
        error ("multidimensional array must have bounds for all "
               "dimensions except the first");
               "dimensions except the first");
 
 
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Figure out the index type for the array.  */
  /* Figure out the index type for the array.  */
  if (size)
  if (size)
    itype = compute_array_index_type (name, size);
    itype = compute_array_index_type (name, size);
 
 
  /* [dcl.array]
  /* [dcl.array]
     T is called the array element type; this type shall not be [...] an
     T is called the array element type; this type shall not be [...] an
     abstract class type.  */
     abstract class type.  */
  abstract_virtuals_error (name, type);
  abstract_virtuals_error (name, type);
 
 
  return build_cplus_array_type (type, itype);
  return build_cplus_array_type (type, itype);
}
}
 
 
/* Check that it's OK to declare a function with the indicated TYPE.
/* Check that it's OK to declare a function with the indicated TYPE.
   SFK indicates the kind of special function (if any) that this
   SFK indicates the kind of special function (if any) that this
   function is.  OPTYPE is the type given in a conversion operator
   function is.  OPTYPE is the type given in a conversion operator
   declaration, or the class type for a constructor/destructor.
   declaration, or the class type for a constructor/destructor.
   Returns the actual return type of the function; that
   Returns the actual return type of the function; that
   may be different than TYPE if an error occurs, or for certain
   may be different than TYPE if an error occurs, or for certain
   special functions.  */
   special functions.  */
 
 
static tree
static tree
check_special_function_return_type (special_function_kind sfk,
check_special_function_return_type (special_function_kind sfk,
                                    tree type,
                                    tree type,
                                    tree optype)
                                    tree optype)
{
{
  switch (sfk)
  switch (sfk)
    {
    {
    case sfk_constructor:
    case sfk_constructor:
      if (type)
      if (type)
        error ("return type specification for constructor invalid");
        error ("return type specification for constructor invalid");
 
 
      if (targetm.cxx.cdtor_returns_this () && !TYPE_FOR_JAVA (optype))
      if (targetm.cxx.cdtor_returns_this () && !TYPE_FOR_JAVA (optype))
        type = build_pointer_type (optype);
        type = build_pointer_type (optype);
      else
      else
        type = void_type_node;
        type = void_type_node;
      break;
      break;
 
 
    case sfk_destructor:
    case sfk_destructor:
      if (type)
      if (type)
        error ("return type specification for destructor invalid");
        error ("return type specification for destructor invalid");
      /* We can't use the proper return type here because we run into
      /* We can't use the proper return type here because we run into
         problems with ambiguous bases and covariant returns.
         problems with ambiguous bases and covariant returns.
         Java classes are left unchanged because (void *) isn't a valid
         Java classes are left unchanged because (void *) isn't a valid
         Java type, and we don't want to change the Java ABI.  */
         Java type, and we don't want to change the Java ABI.  */
      if (targetm.cxx.cdtor_returns_this () && !TYPE_FOR_JAVA (optype))
      if (targetm.cxx.cdtor_returns_this () && !TYPE_FOR_JAVA (optype))
        type = build_pointer_type (void_type_node);
        type = build_pointer_type (void_type_node);
      else
      else
        type = void_type_node;
        type = void_type_node;
      break;
      break;
 
 
    case sfk_conversion:
    case sfk_conversion:
      if (type)
      if (type)
        error ("return type specified for %<operator %T%>",  optype);
        error ("return type specified for %<operator %T%>",  optype);
      type = optype;
      type = optype;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return type;
  return type;
}
}
 
 
/* A variable or data member (whose unqualified name is IDENTIFIER)
/* A variable or data member (whose unqualified name is IDENTIFIER)
   has been declared with the indicated TYPE.  If the TYPE is not
   has been declared with the indicated TYPE.  If the TYPE is not
   acceptable, issue an error message and return a type to use for
   acceptable, issue an error message and return a type to use for
   error-recovery purposes.  */
   error-recovery purposes.  */
 
 
tree
tree
check_var_type (tree identifier, tree type)
check_var_type (tree identifier, tree type)
{
{
  if (VOID_TYPE_P (type))
  if (VOID_TYPE_P (type))
    {
    {
      if (!identifier)
      if (!identifier)
        error ("unnamed variable or field declared void");
        error ("unnamed variable or field declared void");
      else if (TREE_CODE (identifier) == IDENTIFIER_NODE)
      else if (TREE_CODE (identifier) == IDENTIFIER_NODE)
        {
        {
          gcc_assert (!IDENTIFIER_OPNAME_P (identifier));
          gcc_assert (!IDENTIFIER_OPNAME_P (identifier));
          error ("variable or field %qE declared void", identifier);
          error ("variable or field %qE declared void", identifier);
        }
        }
      else
      else
        error ("variable or field declared void");
        error ("variable or field declared void");
      type = error_mark_node;
      type = error_mark_node;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
/* Given declspecs and a declarator (abstract or otherwise), determine
/* Given declspecs and a declarator (abstract or otherwise), determine
   the name and type of the object declared and construct a DECL node
   the name and type of the object declared and construct a DECL node
   for it.
   for it.
 
 
   DECLSPECS points to the representation of declaration-specifier
   DECLSPECS points to the representation of declaration-specifier
   sequence that precedes declarator.
   sequence that precedes declarator.
 
 
   DECL_CONTEXT says which syntactic context this declaration is in:
   DECL_CONTEXT says which syntactic context this declaration is in:
     NORMAL for most contexts.  Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
     NORMAL for most contexts.  Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
     FUNCDEF for a function definition.  Like NORMAL but a few different
     FUNCDEF for a function definition.  Like NORMAL but a few different
      error messages in each case.  Return value may be zero meaning
      error messages in each case.  Return value may be zero meaning
      this definition is too screwy to try to parse.
      this definition is too screwy to try to parse.
     MEMFUNCDEF for a function definition.  Like FUNCDEF but prepares to
     MEMFUNCDEF for a function definition.  Like FUNCDEF but prepares to
      handle member functions (which have FIELD context).
      handle member functions (which have FIELD context).
      Return value may be zero meaning this definition is too screwy to
      Return value may be zero meaning this definition is too screwy to
      try to parse.
      try to parse.
     PARM for a parameter declaration (either within a function prototype
     PARM for a parameter declaration (either within a function prototype
      or before a function body).  Make a PARM_DECL, or return void_type_node.
      or before a function body).  Make a PARM_DECL, or return void_type_node.
     TPARM for a template parameter declaration.
     TPARM for a template parameter declaration.
     CATCHPARM for a parameter declaration before a catch clause.
     CATCHPARM for a parameter declaration before a catch clause.
     TYPENAME if for a typename (in a cast or sizeof).
     TYPENAME if for a typename (in a cast or sizeof).
      Don't make a DECL node; just return the ..._TYPE node.
      Don't make a DECL node; just return the ..._TYPE node.
     FIELD for a struct or union field; make a FIELD_DECL.
     FIELD for a struct or union field; make a FIELD_DECL.
     BITFIELD for a field with specified width.
     BITFIELD for a field with specified width.
 
 
   INITIALIZED is as for start_decl.
   INITIALIZED is as for start_decl.
 
 
   ATTRLIST is a pointer to the list of attributes, which may be NULL
   ATTRLIST is a pointer to the list of attributes, which may be NULL
   if there are none; *ATTRLIST may be modified if attributes from inside
   if there are none; *ATTRLIST may be modified if attributes from inside
   the declarator should be applied to the declaration.
   the declarator should be applied to the declaration.
 
 
   When this function is called, scoping variables (such as
   When this function is called, scoping variables (such as
   CURRENT_CLASS_TYPE) should reflect the scope in which the
   CURRENT_CLASS_TYPE) should reflect the scope in which the
   declaration occurs, not the scope in which the new declaration will
   declaration occurs, not the scope in which the new declaration will
   be placed.  For example, on:
   be placed.  For example, on:
 
 
     void S::f() { ... }
     void S::f() { ... }
 
 
   when grokdeclarator is called for `S::f', the CURRENT_CLASS_TYPE
   when grokdeclarator is called for `S::f', the CURRENT_CLASS_TYPE
   should not be `S'.
   should not be `S'.
 
 
   Returns a DECL (if a declarator is present), a TYPE (if there is no
   Returns a DECL (if a declarator is present), a TYPE (if there is no
   declarator, in cases like "struct S;"), or the ERROR_MARK_NODE if an
   declarator, in cases like "struct S;"), or the ERROR_MARK_NODE if an
   error occurs. */
   error occurs. */
 
 
tree
tree
grokdeclarator (const cp_declarator *declarator,
grokdeclarator (const cp_declarator *declarator,
                const cp_decl_specifier_seq *declspecs,
                const cp_decl_specifier_seq *declspecs,
                enum decl_context decl_context,
                enum decl_context decl_context,
                int initialized,
                int initialized,
                tree* attrlist)
                tree* attrlist)
{
{
  tree type = NULL_TREE;
  tree type = NULL_TREE;
  int longlong = 0;
  int longlong = 0;
  int virtualp, explicitp, friendp, inlinep, staticp;
  int virtualp, explicitp, friendp, inlinep, staticp;
  int explicit_int = 0;
  int explicit_int = 0;
  int explicit_char = 0;
  int explicit_char = 0;
  int defaulted_int = 0;
  int defaulted_int = 0;
  tree dependent_name = NULL_TREE;
  tree dependent_name = NULL_TREE;
 
 
  tree typedef_decl = NULL_TREE;
  tree typedef_decl = NULL_TREE;
  const char *name = NULL;
  const char *name = NULL;
  tree typedef_type = NULL_TREE;
  tree typedef_type = NULL_TREE;
  /* True if this declarator is a function definition.  */
  /* True if this declarator is a function definition.  */
  bool funcdef_flag = false;
  bool funcdef_flag = false;
  cp_declarator_kind innermost_code = cdk_error;
  cp_declarator_kind innermost_code = cdk_error;
  int bitfield = 0;
  int bitfield = 0;
#if 0
#if 0
  /* See the code below that used this.  */
  /* See the code below that used this.  */
  tree decl_attr = NULL_TREE;
  tree decl_attr = NULL_TREE;
#endif
#endif
 
 
  /* Keep track of what sort of function is being processed
  /* Keep track of what sort of function is being processed
     so that we can warn about default return values, or explicit
     so that we can warn about default return values, or explicit
     return values which do not match prescribed defaults.  */
     return values which do not match prescribed defaults.  */
  special_function_kind sfk = sfk_none;
  special_function_kind sfk = sfk_none;
 
 
  tree dname = NULL_TREE;
  tree dname = NULL_TREE;
  tree ctor_return_type = NULL_TREE;
  tree ctor_return_type = NULL_TREE;
  enum overload_flags flags = NO_SPECIAL;
  enum overload_flags flags = NO_SPECIAL;
  /* cv-qualifiers that apply to the declarator, for a declaration of
  /* cv-qualifiers that apply to the declarator, for a declaration of
     a member function.  */
     a member function.  */
  cp_cv_quals memfn_quals = TYPE_UNQUALIFIED;
  cp_cv_quals memfn_quals = TYPE_UNQUALIFIED;
  /* cv-qualifiers that apply to the type specified by the DECLSPECS.  */
  /* cv-qualifiers that apply to the type specified by the DECLSPECS.  */
  int type_quals;
  int type_quals;
  tree raises = NULL_TREE;
  tree raises = NULL_TREE;
  int template_count = 0;
  int template_count = 0;
  tree returned_attrs = NULL_TREE;
  tree returned_attrs = NULL_TREE;
  tree parms = NULL_TREE;
  tree parms = NULL_TREE;
  const cp_declarator *id_declarator;
  const cp_declarator *id_declarator;
  /* The unqualified name of the declarator; either an
  /* The unqualified name of the declarator; either an
     IDENTIFIER_NODE, BIT_NOT_EXPR, or TEMPLATE_ID_EXPR.  */
     IDENTIFIER_NODE, BIT_NOT_EXPR, or TEMPLATE_ID_EXPR.  */
  tree unqualified_id;
  tree unqualified_id;
  /* The class type, if any, in which this entity is located,
  /* The class type, if any, in which this entity is located,
     or NULL_TREE if none.  Note that this value may be different from
     or NULL_TREE if none.  Note that this value may be different from
     the current class type; for example if an attempt is made to declare
     the current class type; for example if an attempt is made to declare
     "A::f" inside "B", this value will be "A".  */
     "A::f" inside "B", this value will be "A".  */
  tree ctype = current_class_type;
  tree ctype = current_class_type;
  /* The NAMESPACE_DECL for the namespace in which this entity is
  /* The NAMESPACE_DECL for the namespace in which this entity is
     located.  If an unqualified name is used to declare the entity,
     located.  If an unqualified name is used to declare the entity,
     this value will be NULL_TREE, even if the entity is located at
     this value will be NULL_TREE, even if the entity is located at
     namespace scope.  */
     namespace scope.  */
  tree in_namespace = NULL_TREE;
  tree in_namespace = NULL_TREE;
  cp_storage_class storage_class;
  cp_storage_class storage_class;
  bool unsigned_p, signed_p, short_p, long_p, thread_p;
  bool unsigned_p, signed_p, short_p, long_p, thread_p;
  bool type_was_error_mark_node = false;
  bool type_was_error_mark_node = false;
  bool parameter_pack_p = declarator? declarator->parameter_pack_p : false;
  bool parameter_pack_p = declarator? declarator->parameter_pack_p : false;
  bool template_type_arg = false;
  bool template_type_arg = false;
  bool template_parm_flag = false;
  bool template_parm_flag = false;
  bool constexpr_p = declspecs->specs[(int) ds_constexpr];
  bool constexpr_p = declspecs->specs[(int) ds_constexpr];
  const char *errmsg;
  const char *errmsg;
 
 
  signed_p = declspecs->specs[(int)ds_signed];
  signed_p = declspecs->specs[(int)ds_signed];
  unsigned_p = declspecs->specs[(int)ds_unsigned];
  unsigned_p = declspecs->specs[(int)ds_unsigned];
  short_p = declspecs->specs[(int)ds_short];
  short_p = declspecs->specs[(int)ds_short];
  long_p = declspecs->specs[(int)ds_long];
  long_p = declspecs->specs[(int)ds_long];
  longlong = declspecs->specs[(int)ds_long] >= 2;
  longlong = declspecs->specs[(int)ds_long] >= 2;
  thread_p = declspecs->specs[(int)ds_thread];
  thread_p = declspecs->specs[(int)ds_thread];
 
 
  if (decl_context == FUNCDEF)
  if (decl_context == FUNCDEF)
    funcdef_flag = true, decl_context = NORMAL;
    funcdef_flag = true, decl_context = NORMAL;
  else if (decl_context == MEMFUNCDEF)
  else if (decl_context == MEMFUNCDEF)
    funcdef_flag = true, decl_context = FIELD;
    funcdef_flag = true, decl_context = FIELD;
  else if (decl_context == BITFIELD)
  else if (decl_context == BITFIELD)
    bitfield = 1, decl_context = FIELD;
    bitfield = 1, decl_context = FIELD;
  else if (decl_context == TEMPLATE_TYPE_ARG)
  else if (decl_context == TEMPLATE_TYPE_ARG)
    template_type_arg = true, decl_context = TYPENAME;
    template_type_arg = true, decl_context = TYPENAME;
  else if (decl_context == TPARM)
  else if (decl_context == TPARM)
    template_parm_flag = true, decl_context = PARM;
    template_parm_flag = true, decl_context = PARM;
 
 
  if (initialized > 1)
  if (initialized > 1)
    funcdef_flag = true;
    funcdef_flag = true;
 
 
  /* Look inside a declarator for the name being declared
  /* Look inside a declarator for the name being declared
     and get it as a string, for an error message.  */
     and get it as a string, for an error message.  */
  for (id_declarator = declarator;
  for (id_declarator = declarator;
       id_declarator;
       id_declarator;
       id_declarator = id_declarator->declarator)
       id_declarator = id_declarator->declarator)
    {
    {
      if (id_declarator->kind != cdk_id)
      if (id_declarator->kind != cdk_id)
        innermost_code = id_declarator->kind;
        innermost_code = id_declarator->kind;
 
 
      switch (id_declarator->kind)
      switch (id_declarator->kind)
        {
        {
        case cdk_function:
        case cdk_function:
          if (id_declarator->declarator
          if (id_declarator->declarator
              && id_declarator->declarator->kind == cdk_id)
              && id_declarator->declarator->kind == cdk_id)
            {
            {
              sfk = id_declarator->declarator->u.id.sfk;
              sfk = id_declarator->declarator->u.id.sfk;
              if (sfk == sfk_destructor)
              if (sfk == sfk_destructor)
                flags = DTOR_FLAG;
                flags = DTOR_FLAG;
            }
            }
          break;
          break;
 
 
        case cdk_id:
        case cdk_id:
          {
          {
            tree qualifying_scope = id_declarator->u.id.qualifying_scope;
            tree qualifying_scope = id_declarator->u.id.qualifying_scope;
            tree decl = id_declarator->u.id.unqualified_name;
            tree decl = id_declarator->u.id.unqualified_name;
            if (!decl)
            if (!decl)
              break;
              break;
            if (qualifying_scope)
            if (qualifying_scope)
              {
              {
                if (at_function_scope_p ())
                if (at_function_scope_p ())
                  {
                  {
                    /* [dcl.meaning]
                    /* [dcl.meaning]
 
 
                       A declarator-id shall not be qualified except
                       A declarator-id shall not be qualified except
                       for ...
                       for ...
 
 
                       None of the cases are permitted in block
                       None of the cases are permitted in block
                       scope.  */
                       scope.  */
                    if (qualifying_scope == global_namespace)
                    if (qualifying_scope == global_namespace)
                      error ("invalid use of qualified-name %<::%D%>",
                      error ("invalid use of qualified-name %<::%D%>",
                             decl);
                             decl);
                    else if (TYPE_P (qualifying_scope))
                    else if (TYPE_P (qualifying_scope))
                      error ("invalid use of qualified-name %<%T::%D%>",
                      error ("invalid use of qualified-name %<%T::%D%>",
                             qualifying_scope, decl);
                             qualifying_scope, decl);
                    else
                    else
                      error ("invalid use of qualified-name %<%D::%D%>",
                      error ("invalid use of qualified-name %<%D::%D%>",
                             qualifying_scope, decl);
                             qualifying_scope, decl);
                    return error_mark_node;
                    return error_mark_node;
                  }
                  }
                else if (TYPE_P (qualifying_scope))
                else if (TYPE_P (qualifying_scope))
                  {
                  {
                    ctype = qualifying_scope;
                    ctype = qualifying_scope;
                    if (innermost_code != cdk_function
                    if (innermost_code != cdk_function
                        && current_class_type
                        && current_class_type
                        && !UNIQUELY_DERIVED_FROM_P (ctype,
                        && !UNIQUELY_DERIVED_FROM_P (ctype,
                                                     current_class_type))
                                                     current_class_type))
                      {
                      {
                        error ("type %qT is not derived from type %qT",
                        error ("type %qT is not derived from type %qT",
                               ctype, current_class_type);
                               ctype, current_class_type);
                        return error_mark_node;
                        return error_mark_node;
                      }
                      }
                  }
                  }
                else if (TREE_CODE (qualifying_scope) == NAMESPACE_DECL)
                else if (TREE_CODE (qualifying_scope) == NAMESPACE_DECL)
                  in_namespace = qualifying_scope;
                  in_namespace = qualifying_scope;
              }
              }
            switch (TREE_CODE (decl))
            switch (TREE_CODE (decl))
              {
              {
              case BIT_NOT_EXPR:
              case BIT_NOT_EXPR:
                {
                {
                  tree type;
                  tree type;
 
 
                  if (innermost_code != cdk_function)
                  if (innermost_code != cdk_function)
                    {
                    {
                      error ("declaration of %qD as non-function", decl);
                      error ("declaration of %qD as non-function", decl);
                      return error_mark_node;
                      return error_mark_node;
                    }
                    }
                  else if (!qualifying_scope
                  else if (!qualifying_scope
                           && !(current_class_type && at_class_scope_p ()))
                           && !(current_class_type && at_class_scope_p ()))
                    {
                    {
                      error ("declaration of %qD as non-member", decl);
                      error ("declaration of %qD as non-member", decl);
                      return error_mark_node;
                      return error_mark_node;
                    }
                    }
 
 
                  type = TREE_OPERAND (decl, 0);
                  type = TREE_OPERAND (decl, 0);
                  if (TYPE_P (type))
                  if (TYPE_P (type))
                    type = constructor_name (type);
                    type = constructor_name (type);
                  name = identifier_to_locale (IDENTIFIER_POINTER (type));
                  name = identifier_to_locale (IDENTIFIER_POINTER (type));
                  dname = decl;
                  dname = decl;
                }
                }
                break;
                break;
 
 
              case TEMPLATE_ID_EXPR:
              case TEMPLATE_ID_EXPR:
                {
                {
                  tree fns = TREE_OPERAND (decl, 0);
                  tree fns = TREE_OPERAND (decl, 0);
 
 
                  dname = fns;
                  dname = fns;
                  if (TREE_CODE (dname) != IDENTIFIER_NODE)
                  if (TREE_CODE (dname) != IDENTIFIER_NODE)
                    {
                    {
                      gcc_assert (is_overloaded_fn (dname));
                      gcc_assert (is_overloaded_fn (dname));
                      dname = DECL_NAME (get_first_fn (dname));
                      dname = DECL_NAME (get_first_fn (dname));
                    }
                    }
                }
                }
                /* Fall through.  */
                /* Fall through.  */
 
 
              case IDENTIFIER_NODE:
              case IDENTIFIER_NODE:
                if (TREE_CODE (decl) == IDENTIFIER_NODE)
                if (TREE_CODE (decl) == IDENTIFIER_NODE)
                  dname = decl;
                  dname = decl;
 
 
                if (C_IS_RESERVED_WORD (dname))
                if (C_IS_RESERVED_WORD (dname))
                  {
                  {
                    error ("declarator-id missing; using reserved word %qD",
                    error ("declarator-id missing; using reserved word %qD",
                           dname);
                           dname);
                    name = identifier_to_locale (IDENTIFIER_POINTER (dname));
                    name = identifier_to_locale (IDENTIFIER_POINTER (dname));
                  }
                  }
                else if (!IDENTIFIER_TYPENAME_P (dname))
                else if (!IDENTIFIER_TYPENAME_P (dname))
                  name = identifier_to_locale (IDENTIFIER_POINTER (dname));
                  name = identifier_to_locale (IDENTIFIER_POINTER (dname));
                else
                else
                  {
                  {
                    gcc_assert (flags == NO_SPECIAL);
                    gcc_assert (flags == NO_SPECIAL);
                    flags = TYPENAME_FLAG;
                    flags = TYPENAME_FLAG;
                    ctor_return_type = TREE_TYPE (dname);
                    ctor_return_type = TREE_TYPE (dname);
                    sfk = sfk_conversion;
                    sfk = sfk_conversion;
                    if (is_typename_at_global_scope (dname))
                    if (is_typename_at_global_scope (dname))
                      name = identifier_to_locale (IDENTIFIER_POINTER (dname));
                      name = identifier_to_locale (IDENTIFIER_POINTER (dname));
                    else
                    else
                      name = "<invalid operator>";
                      name = "<invalid operator>";
                  }
                  }
                break;
                break;
 
 
              default:
              default:
                gcc_unreachable ();
                gcc_unreachable ();
              }
              }
            break;
            break;
          }
          }
 
 
        case cdk_array:
        case cdk_array:
        case cdk_pointer:
        case cdk_pointer:
        case cdk_reference:
        case cdk_reference:
        case cdk_ptrmem:
        case cdk_ptrmem:
          break;
          break;
 
 
        case cdk_error:
        case cdk_error:
          return error_mark_node;
          return error_mark_node;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
      if (id_declarator->kind == cdk_id)
      if (id_declarator->kind == cdk_id)
        break;
        break;
    }
    }
 
 
  /* [dcl.fct.edf]
  /* [dcl.fct.edf]
 
 
     The declarator in a function-definition shall have the form
     The declarator in a function-definition shall have the form
     D1 ( parameter-declaration-clause) ...  */
     D1 ( parameter-declaration-clause) ...  */
  if (funcdef_flag && innermost_code != cdk_function)
  if (funcdef_flag && innermost_code != cdk_function)
    {
    {
      error ("function definition does not declare parameters");
      error ("function definition does not declare parameters");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG)
  if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG)
      && innermost_code != cdk_function
      && innermost_code != cdk_function
      && ! (ctype && !declspecs->any_specifiers_p))
      && ! (ctype && !declspecs->any_specifiers_p))
    {
    {
      error ("declaration of %qD as non-function", dname);
      error ("declaration of %qD as non-function", dname);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Anything declared one level down from the top level
  /* Anything declared one level down from the top level
     must be one of the parameters of a function
     must be one of the parameters of a function
     (because the body is at least two levels down).  */
     (because the body is at least two levels down).  */
 
 
  /* This heuristic cannot be applied to C++ nodes! Fixed, however,
  /* This heuristic cannot be applied to C++ nodes! Fixed, however,
     by not allowing C++ class definitions to specify their parameters
     by not allowing C++ class definitions to specify their parameters
     with xdecls (must be spec.d in the parmlist).
     with xdecls (must be spec.d in the parmlist).
 
 
     Since we now wait to push a class scope until we are sure that
     Since we now wait to push a class scope until we are sure that
     we are in a legitimate method context, we must set oldcname
     we are in a legitimate method context, we must set oldcname
     explicitly (since current_class_name is not yet alive).
     explicitly (since current_class_name is not yet alive).
 
 
     We also want to avoid calling this a PARM if it is in a namespace.  */
     We also want to avoid calling this a PARM if it is in a namespace.  */
 
 
  if (decl_context == NORMAL && !toplevel_bindings_p ())
  if (decl_context == NORMAL && !toplevel_bindings_p ())
    {
    {
      struct cp_binding_level *b = current_binding_level;
      struct cp_binding_level *b = current_binding_level;
      current_binding_level = b->level_chain;
      current_binding_level = b->level_chain;
      if (current_binding_level != 0 && toplevel_bindings_p ())
      if (current_binding_level != 0 && toplevel_bindings_p ())
        decl_context = PARM;
        decl_context = PARM;
      current_binding_level = b;
      current_binding_level = b;
    }
    }
 
 
  if (name == NULL)
  if (name == NULL)
    name = decl_context == PARM ? "parameter" : "type name";
    name = decl_context == PARM ? "parameter" : "type name";
 
 
  /* If there were multiple types specified in the decl-specifier-seq,
  /* If there were multiple types specified in the decl-specifier-seq,
     issue an error message.  */
     issue an error message.  */
  if (declspecs->multiple_types_p)
  if (declspecs->multiple_types_p)
    {
    {
      error ("two or more data types in declaration of %qs", name);
      error ("two or more data types in declaration of %qs", name);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (declspecs->conflicting_specifiers_p)
  if (declspecs->conflicting_specifiers_p)
    {
    {
      error ("conflicting specifiers in declaration of %qs", name);
      error ("conflicting specifiers in declaration of %qs", name);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Extract the basic type from the decl-specifier-seq.  */
  /* Extract the basic type from the decl-specifier-seq.  */
  type = declspecs->type;
  type = declspecs->type;
  if (type == error_mark_node)
  if (type == error_mark_node)
    {
    {
      type = NULL_TREE;
      type = NULL_TREE;
      type_was_error_mark_node = true;
      type_was_error_mark_node = true;
    }
    }
  /* If the entire declaration is itself tagged as deprecated then
  /* If the entire declaration is itself tagged as deprecated then
     suppress reports of deprecated items.  */
     suppress reports of deprecated items.  */
  if (type && TREE_DEPRECATED (type)
  if (type && TREE_DEPRECATED (type)
      && deprecated_state != DEPRECATED_SUPPRESS)
      && deprecated_state != DEPRECATED_SUPPRESS)
    warn_deprecated_use (type, NULL_TREE);
    warn_deprecated_use (type, NULL_TREE);
  if (type && TREE_CODE (type) == TYPE_DECL)
  if (type && TREE_CODE (type) == TYPE_DECL)
    {
    {
      typedef_decl = type;
      typedef_decl = type;
      type = TREE_TYPE (typedef_decl);
      type = TREE_TYPE (typedef_decl);
      if (TREE_DEPRECATED (type)
      if (TREE_DEPRECATED (type)
          && DECL_ARTIFICIAL (typedef_decl)
          && DECL_ARTIFICIAL (typedef_decl)
          && deprecated_state != DEPRECATED_SUPPRESS)
          && deprecated_state != DEPRECATED_SUPPRESS)
        warn_deprecated_use (type, NULL_TREE);
        warn_deprecated_use (type, NULL_TREE);
    }
    }
  /* No type at all: default to `int', and set DEFAULTED_INT
  /* No type at all: default to `int', and set DEFAULTED_INT
     because it was not a user-defined typedef.  */
     because it was not a user-defined typedef.  */
  if (type == NULL_TREE && (signed_p || unsigned_p || long_p || short_p))
  if (type == NULL_TREE && (signed_p || unsigned_p || long_p || short_p))
    {
    {
      /* These imply 'int'.  */
      /* These imply 'int'.  */
      type = integer_type_node;
      type = integer_type_node;
      defaulted_int = 1;
      defaulted_int = 1;
    }
    }
  /* Gather flags.  */
  /* Gather flags.  */
  explicit_int = declspecs->explicit_int_p;
  explicit_int = declspecs->explicit_int_p;
  explicit_char = declspecs->explicit_char_p;
  explicit_char = declspecs->explicit_char_p;
 
 
#if 0
#if 0
  /* See the code below that used this.  */
  /* See the code below that used this.  */
  if (typedef_decl)
  if (typedef_decl)
    decl_attr = DECL_ATTRIBUTES (typedef_decl);
    decl_attr = DECL_ATTRIBUTES (typedef_decl);
#endif
#endif
  typedef_type = type;
  typedef_type = type;
 
 
 
 
  if (sfk != sfk_conversion)
  if (sfk != sfk_conversion)
    ctor_return_type = ctype;
    ctor_return_type = ctype;
 
 
  if (sfk != sfk_none)
  if (sfk != sfk_none)
    type = check_special_function_return_type (sfk, type,
    type = check_special_function_return_type (sfk, type,
                                               ctor_return_type);
                                               ctor_return_type);
  else if (type == NULL_TREE)
  else if (type == NULL_TREE)
    {
    {
      int is_main;
      int is_main;
 
 
      explicit_int = -1;
      explicit_int = -1;
 
 
      /* We handle `main' specially here, because 'main () { }' is so
      /* We handle `main' specially here, because 'main () { }' is so
         common.  With no options, it is allowed.  With -Wreturn-type,
         common.  With no options, it is allowed.  With -Wreturn-type,
         it is a warning.  It is only an error with -pedantic-errors.  */
         it is a warning.  It is only an error with -pedantic-errors.  */
      is_main = (funcdef_flag
      is_main = (funcdef_flag
                 && dname && MAIN_NAME_P (dname)
                 && dname && MAIN_NAME_P (dname)
                 && ctype == NULL_TREE
                 && ctype == NULL_TREE
                 && in_namespace == NULL_TREE
                 && in_namespace == NULL_TREE
                 && current_namespace == global_namespace);
                 && current_namespace == global_namespace);
 
 
      if (type_was_error_mark_node)
      if (type_was_error_mark_node)
        /* We've already issued an error, don't complain more.  */;
        /* We've already issued an error, don't complain more.  */;
      else if (in_system_header || flag_ms_extensions)
      else if (in_system_header || flag_ms_extensions)
        /* Allow it, sigh.  */;
        /* Allow it, sigh.  */;
      else if (! is_main)
      else if (! is_main)
        permerror (input_location, "ISO C++ forbids declaration of %qs with no type", name);
        permerror (input_location, "ISO C++ forbids declaration of %qs with no type", name);
      else if (pedantic)
      else if (pedantic)
        pedwarn (input_location, OPT_pedantic,
        pedwarn (input_location, OPT_pedantic,
                 "ISO C++ forbids declaration of %qs with no type", name);
                 "ISO C++ forbids declaration of %qs with no type", name);
      else
      else
        warning (OPT_Wreturn_type,
        warning (OPT_Wreturn_type,
                 "ISO C++ forbids declaration of %qs with no type", name);
                 "ISO C++ forbids declaration of %qs with no type", name);
 
 
      type = integer_type_node;
      type = integer_type_node;
    }
    }
 
 
  ctype = NULL_TREE;
  ctype = NULL_TREE;
 
 
  /* Now process the modifiers that were specified
  /* Now process the modifiers that were specified
     and check for invalid combinations.  */
     and check for invalid combinations.  */
 
 
  /* Long double is a special combination.  */
  /* Long double is a special combination.  */
  if (long_p && !longlong && TYPE_MAIN_VARIANT (type) == double_type_node)
  if (long_p && !longlong && TYPE_MAIN_VARIANT (type) == double_type_node)
    {
    {
      long_p = false;
      long_p = false;
      type = build_qualified_type (long_double_type_node,
      type = build_qualified_type (long_double_type_node,
                                   cp_type_quals (type));
                                   cp_type_quals (type));
    }
    }
 
 
  /* Check all other uses of type modifiers.  */
  /* Check all other uses of type modifiers.  */
 
 
  if (unsigned_p || signed_p || long_p || short_p)
  if (unsigned_p || signed_p || long_p || short_p)
    {
    {
      int ok = 0;
      int ok = 0;
 
 
      if ((signed_p || unsigned_p) && TREE_CODE (type) != INTEGER_TYPE)
      if ((signed_p || unsigned_p) && TREE_CODE (type) != INTEGER_TYPE)
        error ("%<signed%> or %<unsigned%> invalid for %qs", name);
        error ("%<signed%> or %<unsigned%> invalid for %qs", name);
      else if (signed_p && unsigned_p)
      else if (signed_p && unsigned_p)
        error ("%<signed%> and %<unsigned%> specified together for %qs", name);
        error ("%<signed%> and %<unsigned%> specified together for %qs", name);
      else if (longlong && TREE_CODE (type) != INTEGER_TYPE)
      else if (longlong && TREE_CODE (type) != INTEGER_TYPE)
        error ("%<long long%> invalid for %qs", name);
        error ("%<long long%> invalid for %qs", name);
      else if (long_p && TREE_CODE (type) == REAL_TYPE)
      else if (long_p && TREE_CODE (type) == REAL_TYPE)
        error ("%<long%> invalid for %qs", name);
        error ("%<long%> invalid for %qs", name);
      else if (short_p && TREE_CODE (type) == REAL_TYPE)
      else if (short_p && TREE_CODE (type) == REAL_TYPE)
        error ("%<short%> invalid for %qs", name);
        error ("%<short%> invalid for %qs", name);
      else if ((long_p || short_p) && TREE_CODE (type) != INTEGER_TYPE)
      else if ((long_p || short_p) && TREE_CODE (type) != INTEGER_TYPE)
        error ("%<long%> or %<short%> invalid for %qs", name);
        error ("%<long%> or %<short%> invalid for %qs", name);
      else if ((long_p || short_p) && explicit_char)
      else if ((long_p || short_p) && explicit_char)
        error ("%<long%> or %<short%> specified with char for %qs", name);
        error ("%<long%> or %<short%> specified with char for %qs", name);
      else if (long_p && short_p)
      else if (long_p && short_p)
        error ("%<long%> and %<short%> specified together for %qs", name);
        error ("%<long%> and %<short%> specified together for %qs", name);
      else if (type == char16_type_node || type == char32_type_node)
      else if (type == char16_type_node || type == char32_type_node)
        {
        {
          if (signed_p || unsigned_p)
          if (signed_p || unsigned_p)
            error ("%<signed%> or %<unsigned%> invalid for %qs", name);
            error ("%<signed%> or %<unsigned%> invalid for %qs", name);
          else if (short_p || long_p)
          else if (short_p || long_p)
            error ("%<short%> or %<long%> invalid for %qs", name);
            error ("%<short%> or %<long%> invalid for %qs", name);
        }
        }
      else
      else
        {
        {
          ok = 1;
          ok = 1;
          if (!explicit_int && !defaulted_int && !explicit_char && pedantic)
          if (!explicit_int && !defaulted_int && !explicit_char && pedantic)
            {
            {
              pedwarn (input_location, OPT_pedantic,
              pedwarn (input_location, OPT_pedantic,
                       "long, short, signed or unsigned used invalidly for %qs",
                       "long, short, signed or unsigned used invalidly for %qs",
                       name);
                       name);
              if (flag_pedantic_errors)
              if (flag_pedantic_errors)
                ok = 0;
                ok = 0;
            }
            }
        }
        }
 
 
      /* Discard the type modifiers if they are invalid.  */
      /* Discard the type modifiers if they are invalid.  */
      if (! ok)
      if (! ok)
        {
        {
          unsigned_p = false;
          unsigned_p = false;
          signed_p = false;
          signed_p = false;
          long_p = false;
          long_p = false;
          short_p = false;
          short_p = false;
          longlong = 0;
          longlong = 0;
        }
        }
    }
    }
 
 
  /* Decide whether an integer type is signed or not.
  /* Decide whether an integer type is signed or not.
     Optionally treat bitfields as signed by default.  */
     Optionally treat bitfields as signed by default.  */
  if (unsigned_p
  if (unsigned_p
      /* [class.bit]
      /* [class.bit]
 
 
         It is implementation-defined whether a plain (neither
         It is implementation-defined whether a plain (neither
         explicitly signed or unsigned) char, short, int, or long
         explicitly signed or unsigned) char, short, int, or long
         bit-field is signed or unsigned.
         bit-field is signed or unsigned.
 
 
         Naturally, we extend this to long long as well.  Note that
         Naturally, we extend this to long long as well.  Note that
         this does not include wchar_t.  */
         this does not include wchar_t.  */
      || (bitfield && !flag_signed_bitfields
      || (bitfield && !flag_signed_bitfields
          && !signed_p
          && !signed_p
          /* A typedef for plain `int' without `signed' can be
          /* A typedef for plain `int' without `signed' can be
             controlled just like plain `int', but a typedef for
             controlled just like plain `int', but a typedef for
             `signed int' cannot be so controlled.  */
             `signed int' cannot be so controlled.  */
          && !(typedef_decl
          && !(typedef_decl
               && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))
               && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))
          && TREE_CODE (type) == INTEGER_TYPE
          && TREE_CODE (type) == INTEGER_TYPE
          && !same_type_p (TYPE_MAIN_VARIANT (type), wchar_type_node)))
          && !same_type_p (TYPE_MAIN_VARIANT (type), wchar_type_node)))
    {
    {
      if (longlong)
      if (longlong)
        type = long_long_unsigned_type_node;
        type = long_long_unsigned_type_node;
      else if (long_p)
      else if (long_p)
        type = long_unsigned_type_node;
        type = long_unsigned_type_node;
      else if (short_p)
      else if (short_p)
        type = short_unsigned_type_node;
        type = short_unsigned_type_node;
      else if (type == char_type_node)
      else if (type == char_type_node)
        type = unsigned_char_type_node;
        type = unsigned_char_type_node;
      else if (typedef_decl)
      else if (typedef_decl)
        type = unsigned_type_for (type);
        type = unsigned_type_for (type);
      else
      else
        type = unsigned_type_node;
        type = unsigned_type_node;
    }
    }
  else if (signed_p && type == char_type_node)
  else if (signed_p && type == char_type_node)
    type = signed_char_type_node;
    type = signed_char_type_node;
  else if (longlong)
  else if (longlong)
    type = long_long_integer_type_node;
    type = long_long_integer_type_node;
  else if (long_p)
  else if (long_p)
    type = long_integer_type_node;
    type = long_integer_type_node;
  else if (short_p)
  else if (short_p)
    type = short_integer_type_node;
    type = short_integer_type_node;
 
 
  if (declspecs->specs[(int)ds_complex])
  if (declspecs->specs[(int)ds_complex])
    {
    {
      if (TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
      if (TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
        error ("complex invalid for %qs", name);
        error ("complex invalid for %qs", name);
      /* If we just have "complex", it is equivalent to
      /* If we just have "complex", it is equivalent to
         "complex double", but if any modifiers at all are specified it is
         "complex double", but if any modifiers at all are specified it is
         the complex form of TYPE.  E.g, "complex short" is
         the complex form of TYPE.  E.g, "complex short" is
         "complex short int".  */
         "complex short int".  */
 
 
      else if (defaulted_int && ! longlong
      else if (defaulted_int && ! longlong
               && ! (long_p || short_p || signed_p || unsigned_p))
               && ! (long_p || short_p || signed_p || unsigned_p))
        type = complex_double_type_node;
        type = complex_double_type_node;
      else if (type == integer_type_node)
      else if (type == integer_type_node)
        type = complex_integer_type_node;
        type = complex_integer_type_node;
      else if (type == float_type_node)
      else if (type == float_type_node)
        type = complex_float_type_node;
        type = complex_float_type_node;
      else if (type == double_type_node)
      else if (type == double_type_node)
        type = complex_double_type_node;
        type = complex_double_type_node;
      else if (type == long_double_type_node)
      else if (type == long_double_type_node)
        type = complex_long_double_type_node;
        type = complex_long_double_type_node;
      else
      else
        type = build_complex_type (type);
        type = build_complex_type (type);
    }
    }
 
 
  type_quals = TYPE_UNQUALIFIED;
  type_quals = TYPE_UNQUALIFIED;
  if (declspecs->specs[(int)ds_const])
  if (declspecs->specs[(int)ds_const])
    type_quals |= TYPE_QUAL_CONST;
    type_quals |= TYPE_QUAL_CONST;
  /* A `constexpr' specifier used in an object declaration declares
  /* A `constexpr' specifier used in an object declaration declares
     the object as `const'.  */
     the object as `const'.  */
  if (constexpr_p)
  if (constexpr_p)
    {
    {
      if (innermost_code == cdk_function)
      if (innermost_code == cdk_function)
        ;
        ;
      else if (declspecs->specs[(int)ds_const] != 0)
      else if (declspecs->specs[(int)ds_const] != 0)
        error ("both %<const%> and %<constexpr%> cannot be used here");
        error ("both %<const%> and %<constexpr%> cannot be used here");
      else
      else
        type_quals |= TYPE_QUAL_CONST;
        type_quals |= TYPE_QUAL_CONST;
    }
    }
  if (declspecs->specs[(int)ds_volatile])
  if (declspecs->specs[(int)ds_volatile])
    type_quals |= TYPE_QUAL_VOLATILE;
    type_quals |= TYPE_QUAL_VOLATILE;
  if (declspecs->specs[(int)ds_restrict])
  if (declspecs->specs[(int)ds_restrict])
    type_quals |= TYPE_QUAL_RESTRICT;
    type_quals |= TYPE_QUAL_RESTRICT;
  if (sfk == sfk_conversion && type_quals != TYPE_UNQUALIFIED)
  if (sfk == sfk_conversion && type_quals != TYPE_UNQUALIFIED)
    error ("qualifiers are not allowed on declaration of %<operator %T%>",
    error ("qualifiers are not allowed on declaration of %<operator %T%>",
           ctor_return_type);
           ctor_return_type);
 
 
  if (TREE_CODE (type) == FUNCTION_TYPE
  if (TREE_CODE (type) == FUNCTION_TYPE
      && type_quals != TYPE_UNQUALIFIED)
      && type_quals != TYPE_UNQUALIFIED)
    {
    {
      /* This was an error in C++98 (cv-qualifiers cannot be added to
      /* This was an error in C++98 (cv-qualifiers cannot be added to
         a function type), but DR 295 makes the code well-formed by
         a function type), but DR 295 makes the code well-formed by
         dropping the extra qualifiers. */
         dropping the extra qualifiers. */
      if (pedantic && cxx_dialect == cxx98)
      if (pedantic && cxx_dialect == cxx98)
        {
        {
          tree bad_type = build_qualified_type (type, type_quals);
          tree bad_type = build_qualified_type (type, type_quals);
          pedwarn (input_location, OPT_pedantic,
          pedwarn (input_location, OPT_pedantic,
                   "ignoring %qV qualifiers added to function type %qT",
                   "ignoring %qV qualifiers added to function type %qT",
                   bad_type, type);
                   bad_type, type);
        }
        }
      type_quals = TYPE_UNQUALIFIED;
      type_quals = TYPE_UNQUALIFIED;
    }
    }
  type_quals |= cp_type_quals (type);
  type_quals |= cp_type_quals (type);
  type = cp_build_qualified_type_real
  type = cp_build_qualified_type_real
    (type, type_quals, ((typedef_decl && !DECL_ARTIFICIAL (typedef_decl)
    (type, type_quals, ((typedef_decl && !DECL_ARTIFICIAL (typedef_decl)
                         ? tf_ignore_bad_quals : 0) | tf_warning_or_error));
                         ? tf_ignore_bad_quals : 0) | tf_warning_or_error));
  /* We might have ignored or rejected some of the qualifiers.  */
  /* We might have ignored or rejected some of the qualifiers.  */
  type_quals = cp_type_quals (type);
  type_quals = cp_type_quals (type);
 
 
  staticp = 0;
  staticp = 0;
  inlinep = !! declspecs->specs[(int)ds_inline];
  inlinep = !! declspecs->specs[(int)ds_inline];
  virtualp = !! declspecs->specs[(int)ds_virtual];
  virtualp = !! declspecs->specs[(int)ds_virtual];
  explicitp = !! declspecs->specs[(int)ds_explicit];
  explicitp = !! declspecs->specs[(int)ds_explicit];
 
 
  storage_class = declspecs->storage_class;
  storage_class = declspecs->storage_class;
  if (storage_class == sc_static)
  if (storage_class == sc_static)
    staticp = 1 + (decl_context == FIELD);
    staticp = 1 + (decl_context == FIELD);
 
 
  if (virtualp && staticp == 2)
  if (virtualp && staticp == 2)
    {
    {
      error ("member %qD cannot be declared both virtual and static", dname);
      error ("member %qD cannot be declared both virtual and static", dname);
      storage_class = sc_none;
      storage_class = sc_none;
      staticp = 0;
      staticp = 0;
    }
    }
  friendp = !! declspecs->specs[(int)ds_friend];
  friendp = !! declspecs->specs[(int)ds_friend];
 
 
  if (dependent_name && !friendp)
  if (dependent_name && !friendp)
    {
    {
      error ("%<%T::%D%> is not a valid declarator", ctype, dependent_name);
      error ("%<%T::%D%> is not a valid declarator", ctype, dependent_name);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Issue errors about use of storage classes for parameters.  */
  /* Issue errors about use of storage classes for parameters.  */
  if (decl_context == PARM)
  if (decl_context == PARM)
    {
    {
      if (declspecs->specs[(int)ds_typedef])
      if (declspecs->specs[(int)ds_typedef])
        {
        {
          error ("typedef declaration invalid in parameter declaration");
          error ("typedef declaration invalid in parameter declaration");
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (template_parm_flag && storage_class != sc_none)
      else if (template_parm_flag && storage_class != sc_none)
        {
        {
          error ("storage class specified for template parameter %qs", name);
          error ("storage class specified for template parameter %qs", name);
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (storage_class == sc_static
      else if (storage_class == sc_static
               || storage_class == sc_extern
               || storage_class == sc_extern
               || thread_p)
               || thread_p)
        error ("storage class specifiers invalid in parameter declarations");
        error ("storage class specifiers invalid in parameter declarations");
 
 
      if (type_uses_auto (type))
      if (type_uses_auto (type))
        {
        {
          error ("parameter declared %<auto%>");
          error ("parameter declared %<auto%>");
          type = error_mark_node;
          type = error_mark_node;
        }
        }
 
 
      /* Function parameters cannot be constexpr.  If we saw one, moan
      /* Function parameters cannot be constexpr.  If we saw one, moan
         and pretend it wasn't there.  */
         and pretend it wasn't there.  */
      if (constexpr_p)
      if (constexpr_p)
        {
        {
          error ("a parameter cannot be declared %<constexpr%>");
          error ("a parameter cannot be declared %<constexpr%>");
          constexpr_p = 0;
          constexpr_p = 0;
        }
        }
    }
    }
 
 
  /* Give error if `virtual' is used outside of class declaration.  */
  /* Give error if `virtual' is used outside of class declaration.  */
  if (virtualp
  if (virtualp
      && (current_class_name == NULL_TREE || decl_context != FIELD))
      && (current_class_name == NULL_TREE || decl_context != FIELD))
    {
    {
      error ("%<virtual%> outside class declaration");
      error ("%<virtual%> outside class declaration");
      virtualp = 0;
      virtualp = 0;
    }
    }
 
 
  /* Static anonymous unions are dealt with here.  */
  /* Static anonymous unions are dealt with here.  */
  if (staticp && decl_context == TYPENAME
  if (staticp && decl_context == TYPENAME
      && declspecs->type
      && declspecs->type
      && ANON_AGGR_TYPE_P (declspecs->type))
      && ANON_AGGR_TYPE_P (declspecs->type))
    decl_context = FIELD;
    decl_context = FIELD;
 
 
  /* Warn about storage classes that are invalid for certain
  /* Warn about storage classes that are invalid for certain
     kinds of declarations (parameters, typenames, etc.).  */
     kinds of declarations (parameters, typenames, etc.).  */
  if (thread_p
  if (thread_p
      && ((storage_class
      && ((storage_class
           && storage_class != sc_extern
           && storage_class != sc_extern
           && storage_class != sc_static)
           && storage_class != sc_static)
          || declspecs->specs[(int)ds_typedef]))
          || declspecs->specs[(int)ds_typedef]))
    {
    {
      error ("multiple storage classes in declaration of %qs", name);
      error ("multiple storage classes in declaration of %qs", name);
      thread_p = false;
      thread_p = false;
    }
    }
  if (decl_context != NORMAL
  if (decl_context != NORMAL
      && ((storage_class != sc_none
      && ((storage_class != sc_none
           && storage_class != sc_mutable)
           && storage_class != sc_mutable)
          || thread_p))
          || thread_p))
    {
    {
      if ((decl_context == PARM || decl_context == CATCHPARM)
      if ((decl_context == PARM || decl_context == CATCHPARM)
          && (storage_class == sc_register
          && (storage_class == sc_register
              || storage_class == sc_auto))
              || storage_class == sc_auto))
        ;
        ;
      else if (declspecs->specs[(int)ds_typedef])
      else if (declspecs->specs[(int)ds_typedef])
        ;
        ;
      else if (decl_context == FIELD
      else if (decl_context == FIELD
               /* C++ allows static class elements.  */
               /* C++ allows static class elements.  */
               && storage_class == sc_static)
               && storage_class == sc_static)
        /* C++ also allows inlines and signed and unsigned elements,
        /* C++ also allows inlines and signed and unsigned elements,
           but in those cases we don't come in here.  */
           but in those cases we don't come in here.  */
        ;
        ;
      else
      else
        {
        {
          if (decl_context == FIELD)
          if (decl_context == FIELD)
            error ("storage class specified for %qs", name);
            error ("storage class specified for %qs", name);
          else
          else
            {
            {
              if (decl_context == PARM || decl_context == CATCHPARM)
              if (decl_context == PARM || decl_context == CATCHPARM)
                error ("storage class specified for parameter %qs", name);
                error ("storage class specified for parameter %qs", name);
              else
              else
                error ("storage class specified for typename");
                error ("storage class specified for typename");
            }
            }
          if (storage_class == sc_register
          if (storage_class == sc_register
              || storage_class == sc_auto
              || storage_class == sc_auto
              || storage_class == sc_extern
              || storage_class == sc_extern
              || thread_p)
              || thread_p)
            storage_class = sc_none;
            storage_class = sc_none;
        }
        }
    }
    }
  else if (storage_class == sc_extern && funcdef_flag
  else if (storage_class == sc_extern && funcdef_flag
           && ! toplevel_bindings_p ())
           && ! toplevel_bindings_p ())
    error ("nested function %qs declared %<extern%>", name);
    error ("nested function %qs declared %<extern%>", name);
  else if (toplevel_bindings_p ())
  else if (toplevel_bindings_p ())
    {
    {
      if (storage_class == sc_auto)
      if (storage_class == sc_auto)
        error ("top-level declaration of %qs specifies %<auto%>", name);
        error ("top-level declaration of %qs specifies %<auto%>", name);
    }
    }
  else if (thread_p
  else if (thread_p
           && storage_class != sc_extern
           && storage_class != sc_extern
           && storage_class != sc_static)
           && storage_class != sc_static)
    {
    {
      error ("function-scope %qs implicitly auto and declared %<__thread%>",
      error ("function-scope %qs implicitly auto and declared %<__thread%>",
             name);
             name);
      thread_p = false;
      thread_p = false;
    }
    }
 
 
  if (storage_class && friendp)
  if (storage_class && friendp)
    {
    {
      error ("storage class specifiers invalid in friend function declarations");
      error ("storage class specifiers invalid in friend function declarations");
      storage_class = sc_none;
      storage_class = sc_none;
      staticp = 0;
      staticp = 0;
    }
    }
 
 
  if (!id_declarator)
  if (!id_declarator)
    unqualified_id = NULL_TREE;
    unqualified_id = NULL_TREE;
  else
  else
    {
    {
      unqualified_id = id_declarator->u.id.unqualified_name;
      unqualified_id = id_declarator->u.id.unqualified_name;
      switch (TREE_CODE (unqualified_id))
      switch (TREE_CODE (unqualified_id))
        {
        {
        case BIT_NOT_EXPR:
        case BIT_NOT_EXPR:
          unqualified_id = TREE_OPERAND (unqualified_id, 0);
          unqualified_id = TREE_OPERAND (unqualified_id, 0);
          if (TYPE_P (unqualified_id))
          if (TYPE_P (unqualified_id))
            unqualified_id = constructor_name (unqualified_id);
            unqualified_id = constructor_name (unqualified_id);
          break;
          break;
 
 
        case IDENTIFIER_NODE:
        case IDENTIFIER_NODE:
        case TEMPLATE_ID_EXPR:
        case TEMPLATE_ID_EXPR:
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  /* Determine the type of the entity declared by recurring on the
  /* Determine the type of the entity declared by recurring on the
     declarator.  */
     declarator.  */
  for (; declarator; declarator = declarator->declarator)
  for (; declarator; declarator = declarator->declarator)
    {
    {
      const cp_declarator *inner_declarator;
      const cp_declarator *inner_declarator;
      tree attrs;
      tree attrs;
 
 
      if (type == error_mark_node)
      if (type == error_mark_node)
        return error_mark_node;
        return error_mark_node;
 
 
      attrs = declarator->attributes;
      attrs = declarator->attributes;
      if (attrs)
      if (attrs)
        {
        {
          int attr_flags;
          int attr_flags;
 
 
          attr_flags = 0;
          attr_flags = 0;
          if (declarator == NULL || declarator->kind == cdk_id)
          if (declarator == NULL || declarator->kind == cdk_id)
            attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
            attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
          if (declarator->kind == cdk_function)
          if (declarator->kind == cdk_function)
            attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
            attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
          if (declarator->kind == cdk_array)
          if (declarator->kind == cdk_array)
            attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
            attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
          returned_attrs = decl_attributes (&type,
          returned_attrs = decl_attributes (&type,
                                            chainon (returned_attrs, attrs),
                                            chainon (returned_attrs, attrs),
                                            attr_flags);
                                            attr_flags);
        }
        }
 
 
      if (declarator->kind == cdk_id)
      if (declarator->kind == cdk_id)
        break;
        break;
 
 
      inner_declarator = declarator->declarator;
      inner_declarator = declarator->declarator;
 
 
      switch (declarator->kind)
      switch (declarator->kind)
        {
        {
        case cdk_array:
        case cdk_array:
          type = create_array_type_for_decl (dname, type,
          type = create_array_type_for_decl (dname, type,
                                             declarator->u.array.bounds);
                                             declarator->u.array.bounds);
          break;
          break;
 
 
        case cdk_function:
        case cdk_function:
          {
          {
            tree arg_types;
            tree arg_types;
            int funcdecl_p;
            int funcdecl_p;
 
 
            /* Declaring a function type.
            /* Declaring a function type.
               Make sure we have a valid type for the function to return.  */
               Make sure we have a valid type for the function to return.  */
 
 
            if (type_quals != TYPE_UNQUALIFIED)
            if (type_quals != TYPE_UNQUALIFIED)
              {
              {
                if (SCALAR_TYPE_P (type) || VOID_TYPE_P (type))
                if (SCALAR_TYPE_P (type) || VOID_TYPE_P (type))
                  warning (OPT_Wignored_qualifiers,
                  warning (OPT_Wignored_qualifiers,
                           "type qualifiers ignored on function return type");
                           "type qualifiers ignored on function return type");
                /* We now know that the TYPE_QUALS don't apply to the
                /* We now know that the TYPE_QUALS don't apply to the
                   decl, but to its return type.  */
                   decl, but to its return type.  */
                type_quals = TYPE_UNQUALIFIED;
                type_quals = TYPE_UNQUALIFIED;
              }
              }
            errmsg = targetm.invalid_return_type (type);
            errmsg = targetm.invalid_return_type (type);
            if (errmsg)
            if (errmsg)
              {
              {
                error (errmsg);
                error (errmsg);
                type = integer_type_node;
                type = integer_type_node;
              }
              }
 
 
            /* Error about some types functions can't return.  */
            /* Error about some types functions can't return.  */
 
 
            if (TREE_CODE (type) == FUNCTION_TYPE)
            if (TREE_CODE (type) == FUNCTION_TYPE)
              {
              {
                error ("%qs declared as function returning a function", name);
                error ("%qs declared as function returning a function", name);
                return error_mark_node;
                return error_mark_node;
              }
              }
            if (TREE_CODE (type) == ARRAY_TYPE)
            if (TREE_CODE (type) == ARRAY_TYPE)
              {
              {
                error ("%qs declared as function returning an array", name);
                error ("%qs declared as function returning an array", name);
                return error_mark_node;
                return error_mark_node;
              }
              }
 
 
            /* Pick up type qualifiers which should be applied to `this'.  */
            /* Pick up type qualifiers which should be applied to `this'.  */
            memfn_quals = declarator->u.function.qualifiers;
            memfn_quals = declarator->u.function.qualifiers;
 
 
            /* Pick up the exception specifications.  */
            /* Pick up the exception specifications.  */
            raises = declarator->u.function.exception_specification;
            raises = declarator->u.function.exception_specification;
 
 
            /* Say it's a definition only for the CALL_EXPR
            /* Say it's a definition only for the CALL_EXPR
               closest to the identifier.  */
               closest to the identifier.  */
            funcdecl_p = inner_declarator && inner_declarator->kind == cdk_id;
            funcdecl_p = inner_declarator && inner_declarator->kind == cdk_id;
 
 
            /* Handle a late-specified return type.  */
            /* Handle a late-specified return type.  */
            if (funcdecl_p)
            if (funcdecl_p)
              {
              {
                if (type_uses_auto (type))
                if (type_uses_auto (type))
                  {
                  {
                    if (!declarator->u.function.late_return_type)
                    if (!declarator->u.function.late_return_type)
                      {
                      {
                        error ("%qs function uses %<auto%> type specifier without"
                        error ("%qs function uses %<auto%> type specifier without"
                               " late return type", name);
                               " late return type", name);
                        return error_mark_node;
                        return error_mark_node;
                      }
                      }
                    else if (!is_auto (type))
                    else if (!is_auto (type))
                      {
                      {
                        error ("%qs function with late return type has"
                        error ("%qs function with late return type has"
                               " %qT as its type rather than plain %<auto%>",
                               " %qT as its type rather than plain %<auto%>",
                               name, type);
                               name, type);
                        return error_mark_node;
                        return error_mark_node;
                      }
                      }
                  }
                  }
                else if (declarator->u.function.late_return_type)
                else if (declarator->u.function.late_return_type)
                  {
                  {
                    error ("%qs function with late return type not declared"
                    error ("%qs function with late return type not declared"
                           " with %<auto%> type specifier", name);
                           " with %<auto%> type specifier", name);
                    return error_mark_node;
                    return error_mark_node;
                  }
                  }
              }
              }
            type = splice_late_return_type
            type = splice_late_return_type
              (type, declarator->u.function.late_return_type);
              (type, declarator->u.function.late_return_type);
            if (type == error_mark_node)
            if (type == error_mark_node)
              return error_mark_node;
              return error_mark_node;
 
 
            if (ctype == NULL_TREE
            if (ctype == NULL_TREE
                && decl_context == FIELD
                && decl_context == FIELD
                && funcdecl_p
                && funcdecl_p
                && (friendp == 0 || dname == current_class_name))
                && (friendp == 0 || dname == current_class_name))
              ctype = current_class_type;
              ctype = current_class_type;
 
 
            if (ctype && (sfk == sfk_constructor
            if (ctype && (sfk == sfk_constructor
                          || sfk == sfk_destructor))
                          || sfk == sfk_destructor))
              {
              {
                /* We are within a class's scope. If our declarator name
                /* We are within a class's scope. If our declarator name
                   is the same as the class name, and we are defining
                   is the same as the class name, and we are defining
                   a function, then it is a constructor/destructor, and
                   a function, then it is a constructor/destructor, and
                   therefore returns a void type.  */
                   therefore returns a void type.  */
 
 
                /* ISO C++ 12.4/2.  A destructor may not be declared
                /* ISO C++ 12.4/2.  A destructor may not be declared
                   const or volatile.  A destructor may not be
                   const or volatile.  A destructor may not be
                   static.
                   static.
 
 
                   ISO C++ 12.1.  A constructor may not be declared
                   ISO C++ 12.1.  A constructor may not be declared
                   const or volatile.  A constructor may not be
                   const or volatile.  A constructor may not be
                   virtual.  A constructor may not be static.  */
                   virtual.  A constructor may not be static.  */
                if (staticp == 2)
                if (staticp == 2)
                  error ((flags == DTOR_FLAG)
                  error ((flags == DTOR_FLAG)
                         ? "destructor cannot be static member function"
                         ? "destructor cannot be static member function"
                         : "constructor cannot be static member function");
                         : "constructor cannot be static member function");
                if (memfn_quals)
                if (memfn_quals)
                  {
                  {
                    error ((flags == DTOR_FLAG)
                    error ((flags == DTOR_FLAG)
                           ? "destructors may not be cv-qualified"
                           ? "destructors may not be cv-qualified"
                           : "constructors may not be cv-qualified");
                           : "constructors may not be cv-qualified");
                    memfn_quals = TYPE_UNQUALIFIED;
                    memfn_quals = TYPE_UNQUALIFIED;
                  }
                  }
 
 
                if (decl_context == FIELD
                if (decl_context == FIELD
                    && !member_function_or_else (ctype,
                    && !member_function_or_else (ctype,
                                                 current_class_type,
                                                 current_class_type,
                                                 flags))
                                                 flags))
                  return error_mark_node;
                  return error_mark_node;
 
 
                if (flags != DTOR_FLAG)
                if (flags != DTOR_FLAG)
                  {
                  {
                    /* It's a constructor.  */
                    /* It's a constructor.  */
                    if (explicitp == 1)
                    if (explicitp == 1)
                      explicitp = 2;
                      explicitp = 2;
                    if (virtualp)
                    if (virtualp)
                      {
                      {
                        permerror (input_location, "constructors cannot be declared virtual");
                        permerror (input_location, "constructors cannot be declared virtual");
                        virtualp = 0;
                        virtualp = 0;
                      }
                      }
                    if (decl_context == FIELD
                    if (decl_context == FIELD
                        && sfk != sfk_constructor)
                        && sfk != sfk_constructor)
                      return error_mark_node;
                      return error_mark_node;
                  }
                  }
                if (decl_context == FIELD)
                if (decl_context == FIELD)
                  staticp = 0;
                  staticp = 0;
              }
              }
            else if (friendp)
            else if (friendp)
              {
              {
                if (initialized)
                if (initialized)
                  error ("can't initialize friend function %qs", name);
                  error ("can't initialize friend function %qs", name);
                if (virtualp)
                if (virtualp)
                  {
                  {
                    /* Cannot be both friend and virtual.  */
                    /* Cannot be both friend and virtual.  */
                    error ("virtual functions cannot be friends");
                    error ("virtual functions cannot be friends");
                    friendp = 0;
                    friendp = 0;
                  }
                  }
                if (decl_context == NORMAL)
                if (decl_context == NORMAL)
                  error ("friend declaration not in class definition");
                  error ("friend declaration not in class definition");
                if (current_function_decl && funcdef_flag)
                if (current_function_decl && funcdef_flag)
                  error ("can't define friend function %qs in a local "
                  error ("can't define friend function %qs in a local "
                         "class definition",
                         "class definition",
                         name);
                         name);
              }
              }
            else if (ctype && sfk == sfk_conversion)
            else if (ctype && sfk == sfk_conversion)
              {
              {
                if (explicitp == 1)
                if (explicitp == 1)
                  {
                  {
                    maybe_warn_cpp0x (CPP0X_EXPLICIT_CONVERSION);
                    maybe_warn_cpp0x (CPP0X_EXPLICIT_CONVERSION);
                    explicitp = 2;
                    explicitp = 2;
                  }
                  }
              }
              }
 
 
            /* It is not allowed to use `constexpr' in a function
            /* It is not allowed to use `constexpr' in a function
               declaration that is not a definition.
               declaration that is not a definition.
               That is too strict, though.  */
               That is too strict, though.  */
            if (constexpr_p && !funcdef_flag)
            if (constexpr_p && !funcdef_flag)
              {
              {
                error ("the %<constexpr%> specifier cannot be used in "
                error ("the %<constexpr%> specifier cannot be used in "
                       "a function declaration that is not a definition");
                       "a function declaration that is not a definition");
                constexpr_p = false;
                constexpr_p = false;
              }
              }
 
 
            /* A constexpr non-static member function is implicitly const.  */
            /* A constexpr non-static member function is implicitly const.  */
            if (constexpr_p && decl_context == FIELD && staticp == 0
            if (constexpr_p && decl_context == FIELD && staticp == 0
                && sfk != sfk_constructor && sfk != sfk_destructor)
                && sfk != sfk_constructor && sfk != sfk_destructor)
              memfn_quals |= TYPE_QUAL_CONST;
              memfn_quals |= TYPE_QUAL_CONST;
 
 
            arg_types = grokparms (declarator->u.function.parameters,
            arg_types = grokparms (declarator->u.function.parameters,
                                   &parms);
                                   &parms);
 
 
            if (inner_declarator
            if (inner_declarator
                && inner_declarator->kind == cdk_id
                && inner_declarator->kind == cdk_id
                && inner_declarator->u.id.sfk == sfk_destructor
                && inner_declarator->u.id.sfk == sfk_destructor
                && arg_types != void_list_node)
                && arg_types != void_list_node)
              {
              {
                error ("destructors may not have parameters");
                error ("destructors may not have parameters");
                arg_types = void_list_node;
                arg_types = void_list_node;
                parms = NULL_TREE;
                parms = NULL_TREE;
              }
              }
 
 
            type = build_function_type (type, arg_types);
            type = build_function_type (type, arg_types);
          }
          }
          break;
          break;
 
 
        case cdk_pointer:
        case cdk_pointer:
        case cdk_reference:
        case cdk_reference:
        case cdk_ptrmem:
        case cdk_ptrmem:
          /* Filter out pointers-to-references and references-to-references.
          /* Filter out pointers-to-references and references-to-references.
             We can get these if a TYPE_DECL is used.  */
             We can get these if a TYPE_DECL is used.  */
 
 
          if (TREE_CODE (type) == REFERENCE_TYPE)
          if (TREE_CODE (type) == REFERENCE_TYPE)
            {
            {
              if (declarator->kind != cdk_reference)
              if (declarator->kind != cdk_reference)
                {
                {
                  error ("cannot declare pointer to %q#T", type);
                  error ("cannot declare pointer to %q#T", type);
                  type = TREE_TYPE (type);
                  type = TREE_TYPE (type);
                }
                }
 
 
              /* In C++0x, we allow reference to reference declarations
              /* In C++0x, we allow reference to reference declarations
                 that occur indirectly through typedefs [7.1.3/8 dcl.typedef]
                 that occur indirectly through typedefs [7.1.3/8 dcl.typedef]
                 and template type arguments [14.3.1/4 temp.arg.type]. The
                 and template type arguments [14.3.1/4 temp.arg.type]. The
                 check for direct reference to reference declarations, which
                 check for direct reference to reference declarations, which
                 are still forbidden, occurs below. Reasoning behind the change
                 are still forbidden, occurs below. Reasoning behind the change
                 can be found in DR106, DR540, and the rvalue reference
                 can be found in DR106, DR540, and the rvalue reference
                 proposals. */
                 proposals. */
              else if (cxx_dialect == cxx98)
              else if (cxx_dialect == cxx98)
                {
                {
                  error ("cannot declare reference to %q#T", type);
                  error ("cannot declare reference to %q#T", type);
                  type = TREE_TYPE (type);
                  type = TREE_TYPE (type);
                }
                }
            }
            }
          else if (VOID_TYPE_P (type))
          else if (VOID_TYPE_P (type))
            {
            {
              if (declarator->kind == cdk_reference)
              if (declarator->kind == cdk_reference)
                error ("cannot declare reference to %q#T", type);
                error ("cannot declare reference to %q#T", type);
              else if (declarator->kind == cdk_ptrmem)
              else if (declarator->kind == cdk_ptrmem)
                error ("cannot declare pointer to %q#T member", type);
                error ("cannot declare pointer to %q#T member", type);
            }
            }
 
 
          /* We now know that the TYPE_QUALS don't apply to the decl,
          /* We now know that the TYPE_QUALS don't apply to the decl,
             but to the target of the pointer.  */
             but to the target of the pointer.  */
          type_quals = TYPE_UNQUALIFIED;
          type_quals = TYPE_UNQUALIFIED;
 
 
          if (declarator->kind == cdk_ptrmem
          if (declarator->kind == cdk_ptrmem
              && (TREE_CODE (type) == FUNCTION_TYPE
              && (TREE_CODE (type) == FUNCTION_TYPE
                  || (memfn_quals && TREE_CODE (type) == METHOD_TYPE)))
                  || (memfn_quals && TREE_CODE (type) == METHOD_TYPE)))
            {
            {
              memfn_quals |= cp_type_quals (type);
              memfn_quals |= cp_type_quals (type);
              type = build_memfn_type (type,
              type = build_memfn_type (type,
                                       declarator->u.pointer.class_type,
                                       declarator->u.pointer.class_type,
                                       memfn_quals);
                                       memfn_quals);
              memfn_quals = TYPE_UNQUALIFIED;
              memfn_quals = TYPE_UNQUALIFIED;
            }
            }
 
 
          if (TREE_CODE (type) == FUNCTION_TYPE
          if (TREE_CODE (type) == FUNCTION_TYPE
              && cp_type_quals (type) != TYPE_UNQUALIFIED)
              && cp_type_quals (type) != TYPE_UNQUALIFIED)
            error (declarator->kind == cdk_reference
            error (declarator->kind == cdk_reference
                   ? G_("cannot declare reference to qualified function type %qT")
                   ? G_("cannot declare reference to qualified function type %qT")
                   : G_("cannot declare pointer to qualified function type %qT"),
                   : G_("cannot declare pointer to qualified function type %qT"),
                   type);
                   type);
 
 
          /* When the pointed-to type involves components of variable size,
          /* When the pointed-to type involves components of variable size,
             care must be taken to ensure that the size evaluation code is
             care must be taken to ensure that the size evaluation code is
             emitted early enough to dominate all the possible later uses
             emitted early enough to dominate all the possible later uses
             and late enough for the variables on which it depends to have
             and late enough for the variables on which it depends to have
             been assigned.
             been assigned.
 
 
             This is expected to happen automatically when the pointed-to
             This is expected to happen automatically when the pointed-to
             type has a name/declaration of it's own, but special attention
             type has a name/declaration of it's own, but special attention
             is required if the type is anonymous.
             is required if the type is anonymous.
 
 
             We handle the NORMAL and FIELD contexts here by inserting a
             We handle the NORMAL and FIELD contexts here by inserting a
             dummy statement that just evaluates the size at a safe point
             dummy statement that just evaluates the size at a safe point
             and ensures it is not deferred until e.g. within a deeper
             and ensures it is not deferred until e.g. within a deeper
             conditional context (c++/43555).
             conditional context (c++/43555).
 
 
             We expect nothing to be needed here for PARM or TYPENAME.
             We expect nothing to be needed here for PARM or TYPENAME.
             Evaluating the size at this point for TYPENAME would
             Evaluating the size at this point for TYPENAME would
             actually be incorrect, as we might be in the middle of an
             actually be incorrect, as we might be in the middle of an
             expression with side effects on the pointed-to type size
             expression with side effects on the pointed-to type size
             "arguments" prior to the pointer declaration point and the
             "arguments" prior to the pointer declaration point and the
             size evaluation could end up prior to the side effects.  */
             size evaluation could end up prior to the side effects.  */
 
 
          if (!TYPE_NAME (type)
          if (!TYPE_NAME (type)
              && (decl_context == NORMAL || decl_context == FIELD)
              && (decl_context == NORMAL || decl_context == FIELD)
              && at_function_scope_p ()
              && at_function_scope_p ()
              && variably_modified_type_p (type, NULL_TREE))
              && variably_modified_type_p (type, NULL_TREE))
            finish_expr_stmt (TYPE_SIZE (type));
            finish_expr_stmt (TYPE_SIZE (type));
 
 
          if (declarator->kind == cdk_reference)
          if (declarator->kind == cdk_reference)
            {
            {
              /* In C++0x, the type we are creating a reference to might be
              /* In C++0x, the type we are creating a reference to might be
                 a typedef which is itself a reference type. In that case,
                 a typedef which is itself a reference type. In that case,
                 we follow the reference collapsing rules in
                 we follow the reference collapsing rules in
                 [7.1.3/8 dcl.typedef] to create the final reference type:
                 [7.1.3/8 dcl.typedef] to create the final reference type:
 
 
                 "If a typedef TD names a type that is a reference to a type
                 "If a typedef TD names a type that is a reference to a type
                 T, an attempt to create the type 'lvalue reference to cv TD'
                 T, an attempt to create the type 'lvalue reference to cv TD'
                 creates the type 'lvalue reference to T,' while an attempt
                 creates the type 'lvalue reference to T,' while an attempt
                 to create the type "rvalue reference to cv TD' creates the
                 to create the type "rvalue reference to cv TD' creates the
                 type TD."
                 type TD."
              */
              */
              if (!VOID_TYPE_P (type))
              if (!VOID_TYPE_P (type))
                type = cp_build_reference_type
                type = cp_build_reference_type
                       ((TREE_CODE (type) == REFERENCE_TYPE
                       ((TREE_CODE (type) == REFERENCE_TYPE
                         ? TREE_TYPE (type) : type),
                         ? TREE_TYPE (type) : type),
                        (declarator->u.reference.rvalue_ref
                        (declarator->u.reference.rvalue_ref
                         && (TREE_CODE(type) != REFERENCE_TYPE
                         && (TREE_CODE(type) != REFERENCE_TYPE
                             || TYPE_REF_IS_RVALUE (type))));
                             || TYPE_REF_IS_RVALUE (type))));
 
 
              /* In C++0x, we need this check for direct reference to
              /* In C++0x, we need this check for direct reference to
                 reference declarations, which are forbidden by
                 reference declarations, which are forbidden by
                 [8.3.2/5 dcl.ref]. Reference to reference declarations
                 [8.3.2/5 dcl.ref]. Reference to reference declarations
                 are only allowed indirectly through typedefs and template
                 are only allowed indirectly through typedefs and template
                 type arguments. Example:
                 type arguments. Example:
 
 
                   void foo(int & &);      // invalid ref-to-ref decl
                   void foo(int & &);      // invalid ref-to-ref decl
 
 
                   typedef int & int_ref;
                   typedef int & int_ref;
                   void foo(int_ref &);    // valid ref-to-ref decl
                   void foo(int_ref &);    // valid ref-to-ref decl
              */
              */
              if (inner_declarator && inner_declarator->kind == cdk_reference)
              if (inner_declarator && inner_declarator->kind == cdk_reference)
                error ("cannot declare reference to %q#T, which is not "
                error ("cannot declare reference to %q#T, which is not "
                       "a typedef or a template type argument", type);
                       "a typedef or a template type argument", type);
            }
            }
          else if (TREE_CODE (type) == METHOD_TYPE)
          else if (TREE_CODE (type) == METHOD_TYPE)
            type = build_ptrmemfunc_type (build_pointer_type (type));
            type = build_ptrmemfunc_type (build_pointer_type (type));
          else if (declarator->kind == cdk_ptrmem)
          else if (declarator->kind == cdk_ptrmem)
            {
            {
              gcc_assert (TREE_CODE (declarator->u.pointer.class_type)
              gcc_assert (TREE_CODE (declarator->u.pointer.class_type)
                          != NAMESPACE_DECL);
                          != NAMESPACE_DECL);
              if (declarator->u.pointer.class_type == error_mark_node)
              if (declarator->u.pointer.class_type == error_mark_node)
                /* We will already have complained.  */
                /* We will already have complained.  */
                type = error_mark_node;
                type = error_mark_node;
              else
              else
                type = build_ptrmem_type (declarator->u.pointer.class_type,
                type = build_ptrmem_type (declarator->u.pointer.class_type,
                                          type);
                                          type);
            }
            }
          else
          else
            type = build_pointer_type (type);
            type = build_pointer_type (type);
 
 
          /* Process a list of type modifier keywords (such as
          /* Process a list of type modifier keywords (such as
             const or volatile) that were given inside the `*' or `&'.  */
             const or volatile) that were given inside the `*' or `&'.  */
 
 
          if (declarator->u.pointer.qualifiers)
          if (declarator->u.pointer.qualifiers)
            {
            {
              type
              type
                = cp_build_qualified_type (type,
                = cp_build_qualified_type (type,
                                           declarator->u.pointer.qualifiers);
                                           declarator->u.pointer.qualifiers);
              type_quals = cp_type_quals (type);
              type_quals = cp_type_quals (type);
            }
            }
          ctype = NULL_TREE;
          ctype = NULL_TREE;
          break;
          break;
 
 
        case cdk_error:
        case cdk_error:
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  if (unqualified_id && TREE_CODE (unqualified_id) == TEMPLATE_ID_EXPR
  if (unqualified_id && TREE_CODE (unqualified_id) == TEMPLATE_ID_EXPR
      && TREE_CODE (type) != FUNCTION_TYPE
      && TREE_CODE (type) != FUNCTION_TYPE
      && TREE_CODE (type) != METHOD_TYPE)
      && TREE_CODE (type) != METHOD_TYPE)
    {
    {
      error ("template-id %qD used as a declarator",
      error ("template-id %qD used as a declarator",
             unqualified_id);
             unqualified_id);
      unqualified_id = dname;
      unqualified_id = dname;
    }
    }
 
 
  /* If TYPE is a FUNCTION_TYPE, but the function name was explicitly
  /* If TYPE is a FUNCTION_TYPE, but the function name was explicitly
     qualified with a class-name, turn it into a METHOD_TYPE, unless
     qualified with a class-name, turn it into a METHOD_TYPE, unless
     we know that the function is static.  We take advantage of this
     we know that the function is static.  We take advantage of this
     opportunity to do other processing that pertains to entities
     opportunity to do other processing that pertains to entities
     explicitly declared to be class members.  Note that if DECLARATOR
     explicitly declared to be class members.  Note that if DECLARATOR
     is non-NULL, we know it is a cdk_id declarator; otherwise, we
     is non-NULL, we know it is a cdk_id declarator; otherwise, we
     would not have exited the loop above.  */
     would not have exited the loop above.  */
  if (declarator
  if (declarator
      && declarator->u.id.qualifying_scope
      && declarator->u.id.qualifying_scope
      && TYPE_P (declarator->u.id.qualifying_scope))
      && TYPE_P (declarator->u.id.qualifying_scope))
    {
    {
      tree t;
      tree t;
 
 
      ctype = declarator->u.id.qualifying_scope;
      ctype = declarator->u.id.qualifying_scope;
      ctype = TYPE_MAIN_VARIANT (ctype);
      ctype = TYPE_MAIN_VARIANT (ctype);
      t = ctype;
      t = ctype;
      while (t != NULL_TREE && CLASS_TYPE_P (t))
      while (t != NULL_TREE && CLASS_TYPE_P (t))
        {
        {
          /* You're supposed to have one `template <...>' for every
          /* You're supposed to have one `template <...>' for every
             template class, but you don't need one for a full
             template class, but you don't need one for a full
             specialization.  For example:
             specialization.  For example:
 
 
               template <class T> struct S{};
               template <class T> struct S{};
               template <> struct S<int> { void f(); };
               template <> struct S<int> { void f(); };
               void S<int>::f () {}
               void S<int>::f () {}
 
 
             is correct; there shouldn't be a `template <>' for the
             is correct; there shouldn't be a `template <>' for the
             definition of `S<int>::f'.  */
             definition of `S<int>::f'.  */
          if (CLASSTYPE_TEMPLATE_SPECIALIZATION (t)
          if (CLASSTYPE_TEMPLATE_SPECIALIZATION (t)
              && !any_dependent_template_arguments_p (CLASSTYPE_TI_ARGS (t)))
              && !any_dependent_template_arguments_p (CLASSTYPE_TI_ARGS (t)))
            /* T is an explicit (not partial) specialization.  All
            /* T is an explicit (not partial) specialization.  All
               containing classes must therefore also be explicitly
               containing classes must therefore also be explicitly
               specialized.  */
               specialized.  */
            break;
            break;
          if ((CLASSTYPE_USE_TEMPLATE (t) || CLASSTYPE_IS_TEMPLATE (t))
          if ((CLASSTYPE_USE_TEMPLATE (t) || CLASSTYPE_IS_TEMPLATE (t))
              && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (t)))
              && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (t)))
            template_count += 1;
            template_count += 1;
 
 
          t = TYPE_MAIN_DECL (t);
          t = TYPE_MAIN_DECL (t);
          t = DECL_CONTEXT (t);
          t = DECL_CONTEXT (t);
        }
        }
 
 
      if (ctype == current_class_type)
      if (ctype == current_class_type)
        {
        {
          if (friendp)
          if (friendp)
            {
            {
              permerror (input_location, "member functions are implicitly friends of their class");
              permerror (input_location, "member functions are implicitly friends of their class");
              friendp = 0;
              friendp = 0;
            }
            }
          else
          else
            permerror (declarator->id_loc,
            permerror (declarator->id_loc,
                          "extra qualification %<%T::%> on member %qs",
                          "extra qualification %<%T::%> on member %qs",
                          ctype, name);
                          ctype, name);
        }
        }
      else if (/* If the qualifying type is already complete, then we
      else if (/* If the qualifying type is already complete, then we
                  can skip the following checks.  */
                  can skip the following checks.  */
               !COMPLETE_TYPE_P (ctype)
               !COMPLETE_TYPE_P (ctype)
               && (/* If the function is being defined, then
               && (/* If the function is being defined, then
                      qualifying type must certainly be complete.  */
                      qualifying type must certainly be complete.  */
                   funcdef_flag
                   funcdef_flag
                   /* A friend declaration of "T::f" is OK, even if
                   /* A friend declaration of "T::f" is OK, even if
                      "T" is a template parameter.  But, if this
                      "T" is a template parameter.  But, if this
                      function is not a friend, the qualifying type
                      function is not a friend, the qualifying type
                      must be a class.  */
                      must be a class.  */
                   || (!friendp && !CLASS_TYPE_P (ctype))
                   || (!friendp && !CLASS_TYPE_P (ctype))
                   /* For a declaration, the type need not be
                   /* For a declaration, the type need not be
                      complete, if either it is dependent (since there
                      complete, if either it is dependent (since there
                      is no meaningful definition of complete in that
                      is no meaningful definition of complete in that
                      case) or the qualifying class is currently being
                      case) or the qualifying class is currently being
                      defined.  */
                      defined.  */
                   || !(dependent_type_p (ctype)
                   || !(dependent_type_p (ctype)
                        || currently_open_class (ctype)))
                        || currently_open_class (ctype)))
               /* Check that the qualifying type is complete.  */
               /* Check that the qualifying type is complete.  */
               && !complete_type_or_else (ctype, NULL_TREE))
               && !complete_type_or_else (ctype, NULL_TREE))
        return error_mark_node;
        return error_mark_node;
      else if (TREE_CODE (type) == FUNCTION_TYPE)
      else if (TREE_CODE (type) == FUNCTION_TYPE)
        {
        {
          tree sname = declarator->u.id.unqualified_name;
          tree sname = declarator->u.id.unqualified_name;
 
 
          if (current_class_type
          if (current_class_type
              && (!friendp || funcdef_flag))
              && (!friendp || funcdef_flag))
            {
            {
              error (funcdef_flag
              error (funcdef_flag
                     ? "cannot define member function %<%T::%s%> within %<%T%>"
                     ? "cannot define member function %<%T::%s%> within %<%T%>"
                     : "cannot declare member function %<%T::%s%> within %<%T%>",
                     : "cannot declare member function %<%T::%s%> within %<%T%>",
                     ctype, name, current_class_type);
                     ctype, name, current_class_type);
              return error_mark_node;
              return error_mark_node;
            }
            }
 
 
          /* It is not permitted to define a member function outside ist
          /* It is not permitted to define a member function outside ist
             membership class as `constexpr'.  */
             membership class as `constexpr'.  */
          if (constexpr_p)
          if (constexpr_p)
            error ("a constexpr function cannot be defined "
            error ("a constexpr function cannot be defined "
                   "outside of its class");
                   "outside of its class");
 
 
          if (TREE_CODE (sname) == IDENTIFIER_NODE
          if (TREE_CODE (sname) == IDENTIFIER_NODE
              && NEW_DELETE_OPNAME_P (sname))
              && NEW_DELETE_OPNAME_P (sname))
            /* Overloaded operator new and operator delete
            /* Overloaded operator new and operator delete
               are always static functions.  */
               are always static functions.  */
            ;
            ;
          else
          else
            type = build_memfn_type (type, ctype, memfn_quals);
            type = build_memfn_type (type, ctype, memfn_quals);
        }
        }
      else if (declspecs->specs[(int)ds_typedef]
      else if (declspecs->specs[(int)ds_typedef]
               && current_class_type)
               && current_class_type)
        {
        {
          error ("cannot declare member %<%T::%s%> within %qT",
          error ("cannot declare member %<%T::%s%> within %qT",
                 ctype, name, current_class_type);
                 ctype, name, current_class_type);
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
 
 
  /* Now TYPE has the actual type.  */
  /* Now TYPE has the actual type.  */
 
 
  if (returned_attrs)
  if (returned_attrs)
    {
    {
      if (attrlist)
      if (attrlist)
        *attrlist = chainon (returned_attrs, *attrlist);
        *attrlist = chainon (returned_attrs, *attrlist);
      else
      else
        attrlist = &returned_attrs;
        attrlist = &returned_attrs;
    }
    }
 
 
  /* Handle parameter packs. */
  /* Handle parameter packs. */
  if (parameter_pack_p)
  if (parameter_pack_p)
    {
    {
      if (decl_context == PARM)
      if (decl_context == PARM)
        /* Turn the type into a pack expansion.*/
        /* Turn the type into a pack expansion.*/
        type = make_pack_expansion (type);
        type = make_pack_expansion (type);
      else
      else
        error ("non-parameter %qs cannot be a parameter pack", name);
        error ("non-parameter %qs cannot be a parameter pack", name);
    }
    }
 
 
  /* Did array size calculations overflow?  */
  /* Did array size calculations overflow?  */
 
 
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && COMPLETE_TYPE_P (type)
      && COMPLETE_TYPE_P (type)
      && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
      && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
      && TREE_OVERFLOW (TYPE_SIZE_UNIT (type)))
      && TREE_OVERFLOW (TYPE_SIZE_UNIT (type)))
    {
    {
      error ("size of array %qs is too large", name);
      error ("size of array %qs is too large", name);
      /* If we proceed with the array type as it is, we'll eventually
      /* If we proceed with the array type as it is, we'll eventually
         crash in tree_low_cst().  */
         crash in tree_low_cst().  */
      type = error_mark_node;
      type = error_mark_node;
    }
    }
 
 
  if ((decl_context == FIELD || decl_context == PARM)
  if ((decl_context == FIELD || decl_context == PARM)
      && !processing_template_decl
      && !processing_template_decl
      && variably_modified_type_p (type, NULL_TREE))
      && variably_modified_type_p (type, NULL_TREE))
    {
    {
      if (decl_context == FIELD)
      if (decl_context == FIELD)
        error ("data member may not have variably modified type %qT", type);
        error ("data member may not have variably modified type %qT", type);
      else
      else
        error ("parameter may not have variably modified type %qT", type);
        error ("parameter may not have variably modified type %qT", type);
      type = error_mark_node;
      type = error_mark_node;
    }
    }
 
 
  if (explicitp == 1 || (explicitp && friendp))
  if (explicitp == 1 || (explicitp && friendp))
    {
    {
      /* [dcl.fct.spec] The explicit specifier shall only be used in
      /* [dcl.fct.spec] The explicit specifier shall only be used in
         declarations of constructors within a class definition.  */
         declarations of constructors within a class definition.  */
      error ("only declarations of constructors can be %<explicit%>");
      error ("only declarations of constructors can be %<explicit%>");
      explicitp = 0;
      explicitp = 0;
    }
    }
 
 
  if (storage_class == sc_mutable)
  if (storage_class == sc_mutable)
    {
    {
      if (decl_context != FIELD || friendp)
      if (decl_context != FIELD || friendp)
        {
        {
          error ("non-member %qs cannot be declared %<mutable%>", name);
          error ("non-member %qs cannot be declared %<mutable%>", name);
          storage_class = sc_none;
          storage_class = sc_none;
        }
        }
      else if (decl_context == TYPENAME || declspecs->specs[(int)ds_typedef])
      else if (decl_context == TYPENAME || declspecs->specs[(int)ds_typedef])
        {
        {
          error ("non-object member %qs cannot be declared %<mutable%>", name);
          error ("non-object member %qs cannot be declared %<mutable%>", name);
          storage_class = sc_none;
          storage_class = sc_none;
        }
        }
      else if (TREE_CODE (type) == FUNCTION_TYPE
      else if (TREE_CODE (type) == FUNCTION_TYPE
               || TREE_CODE (type) == METHOD_TYPE)
               || TREE_CODE (type) == METHOD_TYPE)
        {
        {
          error ("function %qs cannot be declared %<mutable%>", name);
          error ("function %qs cannot be declared %<mutable%>", name);
          storage_class = sc_none;
          storage_class = sc_none;
        }
        }
      else if (staticp)
      else if (staticp)
        {
        {
          error ("static %qs cannot be declared %<mutable%>", name);
          error ("static %qs cannot be declared %<mutable%>", name);
          storage_class = sc_none;
          storage_class = sc_none;
        }
        }
      else if (type_quals & TYPE_QUAL_CONST)
      else if (type_quals & TYPE_QUAL_CONST)
        {
        {
          error ("const %qs cannot be declared %<mutable%>", name);
          error ("const %qs cannot be declared %<mutable%>", name);
          storage_class = sc_none;
          storage_class = sc_none;
        }
        }
    }
    }
 
 
  /* If this is declaring a typedef name, return a TYPE_DECL.  */
  /* If this is declaring a typedef name, return a TYPE_DECL.  */
  if (declspecs->specs[(int)ds_typedef] && decl_context != TYPENAME)
  if (declspecs->specs[(int)ds_typedef] && decl_context != TYPENAME)
    {
    {
      tree decl;
      tree decl;
 
 
      /* Note that the grammar rejects storage classes
      /* Note that the grammar rejects storage classes
         in typenames, fields or parameters.  */
         in typenames, fields or parameters.  */
      if (current_lang_name == lang_name_java)
      if (current_lang_name == lang_name_java)
        TYPE_FOR_JAVA (type) = 1;
        TYPE_FOR_JAVA (type) = 1;
 
 
      /* This declaration:
      /* This declaration:
 
 
           typedef void f(int) const;
           typedef void f(int) const;
 
 
         declares a function type which is not a member of any
         declares a function type which is not a member of any
         particular class, but which is cv-qualified; for
         particular class, but which is cv-qualified; for
         example "f S::*" declares a pointer to a const-qualified
         example "f S::*" declares a pointer to a const-qualified
         member function of S.  We record the cv-qualification in the
         member function of S.  We record the cv-qualification in the
         function type.  */
         function type.  */
      if (memfn_quals && TREE_CODE (type) == FUNCTION_TYPE)
      if (memfn_quals && TREE_CODE (type) == FUNCTION_TYPE)
        {
        {
          type = cp_build_qualified_type (type, memfn_quals);
          type = cp_build_qualified_type (type, memfn_quals);
 
 
          /* We have now dealt with these qualifiers.  */
          /* We have now dealt with these qualifiers.  */
          memfn_quals = TYPE_UNQUALIFIED;
          memfn_quals = TYPE_UNQUALIFIED;
        }
        }
 
 
      if (decl_context == FIELD)
      if (decl_context == FIELD)
        decl = build_lang_decl (TYPE_DECL, unqualified_id, type);
        decl = build_lang_decl (TYPE_DECL, unqualified_id, type);
      else
      else
        decl = build_decl (input_location, TYPE_DECL, unqualified_id, type);
        decl = build_decl (input_location, TYPE_DECL, unqualified_id, type);
      if (id_declarator && declarator->u.id.qualifying_scope) {
      if (id_declarator && declarator->u.id.qualifying_scope) {
        error_at (DECL_SOURCE_LOCATION (decl),
        error_at (DECL_SOURCE_LOCATION (decl),
                  "typedef name may not be a nested-name-specifier");
                  "typedef name may not be a nested-name-specifier");
        TREE_TYPE (decl) = error_mark_node;
        TREE_TYPE (decl) = error_mark_node;
      }
      }
 
 
      if (decl_context != FIELD)
      if (decl_context != FIELD)
        {
        {
          if (!current_function_decl)
          if (!current_function_decl)
            DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
            DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
          else if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (current_function_decl)
          else if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (current_function_decl)
                   || (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P
                   || (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P
                       (current_function_decl)))
                       (current_function_decl)))
            /* The TYPE_DECL is "abstract" because there will be
            /* The TYPE_DECL is "abstract" because there will be
               clones of this constructor/destructor, and there will
               clones of this constructor/destructor, and there will
               be copies of this TYPE_DECL generated in those
               be copies of this TYPE_DECL generated in those
               clones.  */
               clones.  */
            DECL_ABSTRACT (decl) = 1;
            DECL_ABSTRACT (decl) = 1;
        }
        }
      else if (constructor_name_p (unqualified_id, current_class_type))
      else if (constructor_name_p (unqualified_id, current_class_type))
        permerror (input_location, "ISO C++ forbids nested type %qD with same name "
        permerror (input_location, "ISO C++ forbids nested type %qD with same name "
                   "as enclosing class",
                   "as enclosing class",
                   unqualified_id);
                   unqualified_id);
 
 
      /* If the user declares "typedef struct {...} foo" then the
      /* If the user declares "typedef struct {...} foo" then the
         struct will have an anonymous name.  Fill that name in now.
         struct will have an anonymous name.  Fill that name in now.
         Nothing can refer to it, so nothing needs know about the name
         Nothing can refer to it, so nothing needs know about the name
         change.  */
         change.  */
      if (type != error_mark_node
      if (type != error_mark_node
          && unqualified_id
          && unqualified_id
          && TYPE_NAME (type)
          && TYPE_NAME (type)
          && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
          && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
          && TYPE_ANONYMOUS_P (type)
          && TYPE_ANONYMOUS_P (type)
          && cp_type_quals (type) == TYPE_UNQUALIFIED)
          && cp_type_quals (type) == TYPE_UNQUALIFIED)
        {
        {
          tree t;
          tree t;
 
 
          /* Replace the anonymous name with the real name everywhere.  */
          /* Replace the anonymous name with the real name everywhere.  */
          for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
          for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
            {
            {
              if (ANON_AGGRNAME_P (TYPE_IDENTIFIER (t)))
              if (ANON_AGGRNAME_P (TYPE_IDENTIFIER (t)))
                {
                {
                  debug_hooks->set_name (t, decl);
                  debug_hooks->set_name (t, decl);
                  TYPE_NAME (t) = decl;
                  TYPE_NAME (t) = decl;
                }
                }
            }
            }
 
 
          if (TYPE_LANG_SPECIFIC (type))
          if (TYPE_LANG_SPECIFIC (type))
            TYPE_WAS_ANONYMOUS (type) = 1;
            TYPE_WAS_ANONYMOUS (type) = 1;
 
 
          /* If this is a typedef within a template class, the nested
          /* If this is a typedef within a template class, the nested
             type is a (non-primary) template.  The name for the
             type is a (non-primary) template.  The name for the
             template needs updating as well.  */
             template needs updating as well.  */
          if (TYPE_LANG_SPECIFIC (type) && CLASSTYPE_TEMPLATE_INFO (type))
          if (TYPE_LANG_SPECIFIC (type) && CLASSTYPE_TEMPLATE_INFO (type))
            DECL_NAME (CLASSTYPE_TI_TEMPLATE (type))
            DECL_NAME (CLASSTYPE_TI_TEMPLATE (type))
              = TYPE_IDENTIFIER (type);
              = TYPE_IDENTIFIER (type);
 
 
          /* Adjust linkage now that we aren't anonymous anymore.  */
          /* Adjust linkage now that we aren't anonymous anymore.  */
          set_linkage_according_to_type (type, TYPE_MAIN_DECL (type));
          set_linkage_according_to_type (type, TYPE_MAIN_DECL (type));
          determine_visibility (TYPE_MAIN_DECL (type));
          determine_visibility (TYPE_MAIN_DECL (type));
 
 
          /* FIXME remangle member functions; member functions of a
          /* FIXME remangle member functions; member functions of a
             type with external linkage have external linkage.  */
             type with external linkage have external linkage.  */
        }
        }
 
 
      if (signed_p
      if (signed_p
          || (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)))
          || (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)))
        C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;
        C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;
 
 
      bad_specifiers (decl, "type", virtualp,
      bad_specifiers (decl, "type", virtualp,
                      memfn_quals != TYPE_UNQUALIFIED,
                      memfn_quals != TYPE_UNQUALIFIED,
                      inlinep, friendp, raises != NULL_TREE);
                      inlinep, friendp, raises != NULL_TREE);
 
 
      return decl;
      return decl;
    }
    }
 
 
  /* Detect the case of an array type of unspecified size
  /* Detect the case of an array type of unspecified size
     which came, as such, direct from a typedef name.
     which came, as such, direct from a typedef name.
     We must copy the type, so that the array's domain can be
     We must copy the type, so that the array's domain can be
     individually set by the object's initializer.  */
     individually set by the object's initializer.  */
 
 
  if (type && typedef_type
  if (type && typedef_type
      && TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)
      && TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)
      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (typedef_type))
      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (typedef_type))
    type = build_cplus_array_type (TREE_TYPE (type), NULL_TREE);
    type = build_cplus_array_type (TREE_TYPE (type), NULL_TREE);
 
 
  /* Detect where we're using a typedef of function type to declare a
  /* Detect where we're using a typedef of function type to declare a
     function. PARMS will not be set, so we must create it now.  */
     function. PARMS will not be set, so we must create it now.  */
 
 
  if (type == typedef_type && TREE_CODE (type) == FUNCTION_TYPE)
  if (type == typedef_type && TREE_CODE (type) == FUNCTION_TYPE)
    {
    {
      tree decls = NULL_TREE;
      tree decls = NULL_TREE;
      tree args;
      tree args;
 
 
      for (args = TYPE_ARG_TYPES (type);
      for (args = TYPE_ARG_TYPES (type);
           args && args != void_list_node;
           args && args != void_list_node;
           args = TREE_CHAIN (args))
           args = TREE_CHAIN (args))
        {
        {
          tree decl = cp_build_parm_decl (NULL_TREE, TREE_VALUE (args));
          tree decl = cp_build_parm_decl (NULL_TREE, TREE_VALUE (args));
 
 
          TREE_CHAIN (decl) = decls;
          TREE_CHAIN (decl) = decls;
          decls = decl;
          decls = decl;
        }
        }
 
 
      parms = nreverse (decls);
      parms = nreverse (decls);
 
 
      if (decl_context != TYPENAME)
      if (decl_context != TYPENAME)
        {
        {
          /* A cv-qualifier-seq shall only be part of the function type
          /* A cv-qualifier-seq shall only be part of the function type
             for a non-static member function. [8.3.5/4 dcl.fct] */
             for a non-static member function. [8.3.5/4 dcl.fct] */
          if (cp_type_quals (type) != TYPE_UNQUALIFIED
          if (cp_type_quals (type) != TYPE_UNQUALIFIED
              && (current_class_type == NULL_TREE || staticp) )
              && (current_class_type == NULL_TREE || staticp) )
            {
            {
              error (staticp
              error (staticp
                     ? G_("qualified function types cannot be used to "
                     ? G_("qualified function types cannot be used to "
                          "declare static member functions")
                          "declare static member functions")
                     : G_("qualified function types cannot be used to "
                     : G_("qualified function types cannot be used to "
                          "declare free functions"));
                          "declare free functions"));
              type = TYPE_MAIN_VARIANT (type);
              type = TYPE_MAIN_VARIANT (type);
            }
            }
 
 
          /* The qualifiers on the function type become the qualifiers on
          /* The qualifiers on the function type become the qualifiers on
             the non-static member function. */
             the non-static member function. */
          memfn_quals |= cp_type_quals (type);
          memfn_quals |= cp_type_quals (type);
          type_quals = TYPE_UNQUALIFIED;
          type_quals = TYPE_UNQUALIFIED;
        }
        }
    }
    }
 
 
  /* If this is a type name (such as, in a cast or sizeof),
  /* If this is a type name (such as, in a cast or sizeof),
     compute the type and return it now.  */
     compute the type and return it now.  */
 
 
  if (decl_context == TYPENAME)
  if (decl_context == TYPENAME)
    {
    {
      /* Note that the grammar rejects storage classes
      /* Note that the grammar rejects storage classes
         in typenames, fields or parameters.  */
         in typenames, fields or parameters.  */
      if (type_quals != TYPE_UNQUALIFIED)
      if (type_quals != TYPE_UNQUALIFIED)
        type_quals = TYPE_UNQUALIFIED;
        type_quals = TYPE_UNQUALIFIED;
 
 
      /* Special case: "friend class foo" looks like a TYPENAME context.  */
      /* Special case: "friend class foo" looks like a TYPENAME context.  */
      if (friendp)
      if (friendp)
        {
        {
          if (type_quals != TYPE_UNQUALIFIED)
          if (type_quals != TYPE_UNQUALIFIED)
            {
            {
              error ("type qualifiers specified for friend class declaration");
              error ("type qualifiers specified for friend class declaration");
              type_quals = TYPE_UNQUALIFIED;
              type_quals = TYPE_UNQUALIFIED;
            }
            }
          if (inlinep)
          if (inlinep)
            {
            {
              error ("%<inline%> specified for friend class declaration");
              error ("%<inline%> specified for friend class declaration");
              inlinep = 0;
              inlinep = 0;
            }
            }
 
 
          if (!current_aggr)
          if (!current_aggr)
            {
            {
              /* Don't allow friend declaration without a class-key.  */
              /* Don't allow friend declaration without a class-key.  */
              if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
              if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
                permerror (input_location, "template parameters cannot be friends");
                permerror (input_location, "template parameters cannot be friends");
              else if (TREE_CODE (type) == TYPENAME_TYPE)
              else if (TREE_CODE (type) == TYPENAME_TYPE)
                permerror (input_location, "friend declaration requires class-key, "
                permerror (input_location, "friend declaration requires class-key, "
                           "i.e. %<friend class %T::%D%>",
                           "i.e. %<friend class %T::%D%>",
                           TYPE_CONTEXT (type), TYPENAME_TYPE_FULLNAME (type));
                           TYPE_CONTEXT (type), TYPENAME_TYPE_FULLNAME (type));
              else
              else
                permerror (input_location, "friend declaration requires class-key, "
                permerror (input_location, "friend declaration requires class-key, "
                           "i.e. %<friend %#T%>",
                           "i.e. %<friend %#T%>",
                           type);
                           type);
            }
            }
 
 
          /* Only try to do this stuff if we didn't already give up.  */
          /* Only try to do this stuff if we didn't already give up.  */
          if (type != integer_type_node)
          if (type != integer_type_node)
            {
            {
              /* A friendly class?  */
              /* A friendly class?  */
              if (current_class_type)
              if (current_class_type)
                make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type),
                make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type),
                                   /*complain=*/true);
                                   /*complain=*/true);
              else
              else
                error ("trying to make class %qT a friend of global scope",
                error ("trying to make class %qT a friend of global scope",
                       type);
                       type);
 
 
              type = void_type_node;
              type = void_type_node;
            }
            }
        }
        }
      else if (memfn_quals)
      else if (memfn_quals)
        {
        {
          if (ctype == NULL_TREE
          if (ctype == NULL_TREE
              && TREE_CODE (type) == METHOD_TYPE)
              && TREE_CODE (type) == METHOD_TYPE)
            ctype = TYPE_METHOD_BASETYPE (type);
            ctype = TYPE_METHOD_BASETYPE (type);
 
 
          if (ctype)
          if (ctype)
            type = build_memfn_type (type, ctype, memfn_quals);
            type = build_memfn_type (type, ctype, memfn_quals);
          /* Core issue #547: need to allow this in template type args.  */
          /* Core issue #547: need to allow this in template type args.  */
          else if (template_type_arg && TREE_CODE (type) == FUNCTION_TYPE)
          else if (template_type_arg && TREE_CODE (type) == FUNCTION_TYPE)
            type = cp_build_qualified_type (type, memfn_quals);
            type = cp_build_qualified_type (type, memfn_quals);
          else
          else
            error ("invalid qualifiers on non-member function type");
            error ("invalid qualifiers on non-member function type");
        }
        }
 
 
      return type;
      return type;
    }
    }
  else if (unqualified_id == NULL_TREE && decl_context != PARM
  else if (unqualified_id == NULL_TREE && decl_context != PARM
           && decl_context != CATCHPARM
           && decl_context != CATCHPARM
           && TREE_CODE (type) != UNION_TYPE
           && TREE_CODE (type) != UNION_TYPE
           && ! bitfield)
           && ! bitfield)
    {
    {
      error ("abstract declarator %qT used as declaration", type);
      error ("abstract declarator %qT used as declaration", type);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Only functions may be declared using an operator-function-id.  */
  /* Only functions may be declared using an operator-function-id.  */
  if (unqualified_id
  if (unqualified_id
      && IDENTIFIER_OPNAME_P (unqualified_id)
      && IDENTIFIER_OPNAME_P (unqualified_id)
      && TREE_CODE (type) != FUNCTION_TYPE
      && TREE_CODE (type) != FUNCTION_TYPE
      && TREE_CODE (type) != METHOD_TYPE)
      && TREE_CODE (type) != METHOD_TYPE)
    {
    {
      error ("declaration of %qD as non-function", unqualified_id);
      error ("declaration of %qD as non-function", unqualified_id);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* We don't check parameter types here because we can emit a better
  /* We don't check parameter types here because we can emit a better
     error message later.  */
     error message later.  */
  if (decl_context != PARM)
  if (decl_context != PARM)
    {
    {
      type = check_var_type (unqualified_id, type);
      type = check_var_type (unqualified_id, type);
      if (type == error_mark_node)
      if (type == error_mark_node)
        return error_mark_node;
        return error_mark_node;
    }
    }
 
 
  /* Now create the decl, which may be a VAR_DECL, a PARM_DECL
  /* Now create the decl, which may be a VAR_DECL, a PARM_DECL
     or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE.  */
     or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE.  */
 
 
  if (decl_context == PARM || decl_context == CATCHPARM)
  if (decl_context == PARM || decl_context == CATCHPARM)
    {
    {
      if (ctype || in_namespace)
      if (ctype || in_namespace)
        error ("cannot use %<::%> in parameter declaration");
        error ("cannot use %<::%> in parameter declaration");
 
 
      /* A parameter declared as an array of T is really a pointer to T.
      /* A parameter declared as an array of T is really a pointer to T.
         One declared as a function is really a pointer to a function.
         One declared as a function is really a pointer to a function.
         One declared as a member is really a pointer to member.  */
         One declared as a member is really a pointer to member.  */
 
 
      if (TREE_CODE (type) == ARRAY_TYPE)
      if (TREE_CODE (type) == ARRAY_TYPE)
        {
        {
          /* Transfer const-ness of array into that of type pointed to.  */
          /* Transfer const-ness of array into that of type pointed to.  */
          type = build_pointer_type (TREE_TYPE (type));
          type = build_pointer_type (TREE_TYPE (type));
          type_quals = TYPE_UNQUALIFIED;
          type_quals = TYPE_UNQUALIFIED;
        }
        }
      else if (TREE_CODE (type) == FUNCTION_TYPE)
      else if (TREE_CODE (type) == FUNCTION_TYPE)
        type = build_pointer_type (type);
        type = build_pointer_type (type);
    }
    }
 
 
  {
  {
    tree decl;
    tree decl;
 
 
    if (decl_context == PARM)
    if (decl_context == PARM)
      {
      {
        decl = cp_build_parm_decl (unqualified_id, type);
        decl = cp_build_parm_decl (unqualified_id, type);
 
 
        bad_specifiers (decl, "parameter", virtualp,
        bad_specifiers (decl, "parameter", virtualp,
                        memfn_quals != TYPE_UNQUALIFIED,
                        memfn_quals != TYPE_UNQUALIFIED,
                        inlinep, friendp, raises != NULL_TREE);
                        inlinep, friendp, raises != NULL_TREE);
      }
      }
    else if (decl_context == FIELD)
    else if (decl_context == FIELD)
      {
      {
        /* The C99 flexible array extension.  */
        /* The C99 flexible array extension.  */
        if (!staticp && TREE_CODE (type) == ARRAY_TYPE
        if (!staticp && TREE_CODE (type) == ARRAY_TYPE
            && TYPE_DOMAIN (type) == NULL_TREE)
            && TYPE_DOMAIN (type) == NULL_TREE)
          {
          {
            tree itype = compute_array_index_type (dname, integer_zero_node);
            tree itype = compute_array_index_type (dname, integer_zero_node);
            type = build_cplus_array_type (TREE_TYPE (type), itype);
            type = build_cplus_array_type (TREE_TYPE (type), itype);
          }
          }
 
 
        if (type == error_mark_node)
        if (type == error_mark_node)
          {
          {
            /* Happens when declaring arrays of sizes which
            /* Happens when declaring arrays of sizes which
               are error_mark_node, for example.  */
               are error_mark_node, for example.  */
            decl = NULL_TREE;
            decl = NULL_TREE;
          }
          }
        else if (in_namespace && !friendp)
        else if (in_namespace && !friendp)
          {
          {
            /* Something like struct S { int N::j; };  */
            /* Something like struct S { int N::j; };  */
            error ("invalid use of %<::%>");
            error ("invalid use of %<::%>");
            return error_mark_node;
            return error_mark_node;
          }
          }
        else if (TREE_CODE (type) == FUNCTION_TYPE)
        else if (TREE_CODE (type) == FUNCTION_TYPE)
          {
          {
            int publicp = 0;
            int publicp = 0;
            tree function_context;
            tree function_context;
 
 
            if (friendp == 0)
            if (friendp == 0)
              {
              {
                if (ctype == NULL_TREE)
                if (ctype == NULL_TREE)
                  ctype = current_class_type;
                  ctype = current_class_type;
 
 
                if (ctype == NULL_TREE)
                if (ctype == NULL_TREE)
                  {
                  {
                    error ("can't make %qD into a method -- not in a class",
                    error ("can't make %qD into a method -- not in a class",
                           unqualified_id);
                           unqualified_id);
                    return error_mark_node;
                    return error_mark_node;
                  }
                  }
 
 
                /* ``A union may [ ... ] not [ have ] virtual functions.''
                /* ``A union may [ ... ] not [ have ] virtual functions.''
                   ARM 9.5 */
                   ARM 9.5 */
                if (virtualp && TREE_CODE (ctype) == UNION_TYPE)
                if (virtualp && TREE_CODE (ctype) == UNION_TYPE)
                  {
                  {
                    error ("function %qD declared virtual inside a union",
                    error ("function %qD declared virtual inside a union",
                           unqualified_id);
                           unqualified_id);
                    return error_mark_node;
                    return error_mark_node;
                  }
                  }
 
 
                if (NEW_DELETE_OPNAME_P (unqualified_id))
                if (NEW_DELETE_OPNAME_P (unqualified_id))
                  {
                  {
                    if (virtualp)
                    if (virtualp)
                      {
                      {
                        error ("%qD cannot be declared virtual, since it "
                        error ("%qD cannot be declared virtual, since it "
                               "is always static",
                               "is always static",
                               unqualified_id);
                               unqualified_id);
                        virtualp = 0;
                        virtualp = 0;
                      }
                      }
                  }
                  }
                else if (staticp < 2)
                else if (staticp < 2)
                  type = build_memfn_type (type, ctype, memfn_quals);
                  type = build_memfn_type (type, ctype, memfn_quals);
              }
              }
 
 
            /* Check that the name used for a destructor makes sense.  */
            /* Check that the name used for a destructor makes sense.  */
            if (sfk == sfk_destructor)
            if (sfk == sfk_destructor)
              {
              {
                tree uqname = id_declarator->u.id.unqualified_name;
                tree uqname = id_declarator->u.id.unqualified_name;
 
 
                if (!ctype)
                if (!ctype)
                  {
                  {
                    gcc_assert (friendp);
                    gcc_assert (friendp);
                    error ("expected qualified name in friend declaration "
                    error ("expected qualified name in friend declaration "
                           "for destructor %qD", uqname);
                           "for destructor %qD", uqname);
                    return error_mark_node;
                    return error_mark_node;
                  }
                  }
 
 
                if (!check_dtor_name (ctype, TREE_OPERAND (uqname, 0)))
                if (!check_dtor_name (ctype, TREE_OPERAND (uqname, 0)))
                  {
                  {
                    error ("declaration of %qD as member of %qT",
                    error ("declaration of %qD as member of %qT",
                           uqname, ctype);
                           uqname, ctype);
                    return error_mark_node;
                    return error_mark_node;
                  }
                  }
                if (constexpr_p)
                if (constexpr_p)
                  error ("a destructor cannot be %<constexpr%>");
                  error ("a destructor cannot be %<constexpr%>");
              }
              }
            else if (sfk == sfk_constructor && friendp)
            else if (sfk == sfk_constructor && friendp)
              {
              {
                error ("expected qualified name in friend declaration "
                error ("expected qualified name in friend declaration "
                       "for constructor %qD",
                       "for constructor %qD",
                       id_declarator->u.id.unqualified_name);
                       id_declarator->u.id.unqualified_name);
                return error_mark_node;
                return error_mark_node;
              }
              }
 
 
            /* Tell grokfndecl if it needs to set TREE_PUBLIC on the node.  */
            /* Tell grokfndecl if it needs to set TREE_PUBLIC on the node.  */
            function_context = (ctype != NULL_TREE) ?
            function_context = (ctype != NULL_TREE) ?
              decl_function_context (TYPE_MAIN_DECL (ctype)) : NULL_TREE;
              decl_function_context (TYPE_MAIN_DECL (ctype)) : NULL_TREE;
            publicp = (! friendp || ! staticp)
            publicp = (! friendp || ! staticp)
              && function_context == NULL_TREE;
              && function_context == NULL_TREE;
            decl = grokfndecl (ctype, type,
            decl = grokfndecl (ctype, type,
                               TREE_CODE (unqualified_id) != TEMPLATE_ID_EXPR
                               TREE_CODE (unqualified_id) != TEMPLATE_ID_EXPR
                               ? unqualified_id : dname,
                               ? unqualified_id : dname,
                               parms,
                               parms,
                               unqualified_id,
                               unqualified_id,
                               virtualp, flags, memfn_quals, raises,
                               virtualp, flags, memfn_quals, raises,
                               friendp ? -1 : 0, friendp, publicp,
                               friendp ? -1 : 0, friendp, publicp,
                               inlinep || constexpr_p,
                               inlinep || constexpr_p,
                               sfk,
                               sfk,
                               funcdef_flag, template_count, in_namespace,
                               funcdef_flag, template_count, in_namespace,
                               attrlist, declarator->id_loc);
                               attrlist, declarator->id_loc);
            if (decl == NULL_TREE)
            if (decl == NULL_TREE)
              return error_mark_node;
              return error_mark_node;
#if 0
#if 0
            /* This clobbers the attrs stored in `decl' from `attrlist'.  */
            /* This clobbers the attrs stored in `decl' from `attrlist'.  */
            /* The decl and setting of decl_attr is also turned off.  */
            /* The decl and setting of decl_attr is also turned off.  */
            decl = build_decl_attribute_variant (decl, decl_attr);
            decl = build_decl_attribute_variant (decl, decl_attr);
#endif
#endif
 
 
            /* [class.conv.ctor]
            /* [class.conv.ctor]
 
 
               A constructor declared without the function-specifier
               A constructor declared without the function-specifier
               explicit that can be called with a single parameter
               explicit that can be called with a single parameter
               specifies a conversion from the type of its first
               specifies a conversion from the type of its first
               parameter to the type of its class.  Such a constructor
               parameter to the type of its class.  Such a constructor
               is called a converting constructor.  */
               is called a converting constructor.  */
            if (explicitp == 2)
            if (explicitp == 2)
              DECL_NONCONVERTING_P (decl) = 1;
              DECL_NONCONVERTING_P (decl) = 1;
          }
          }
        else if (TREE_CODE (type) == METHOD_TYPE)
        else if (TREE_CODE (type) == METHOD_TYPE)
          {
          {
            /* We only get here for friend declarations of
            /* We only get here for friend declarations of
               members of other classes.  */
               members of other classes.  */
            /* All method decls are public, so tell grokfndecl to set
            /* All method decls are public, so tell grokfndecl to set
               TREE_PUBLIC, also.  */
               TREE_PUBLIC, also.  */
            decl = grokfndecl (ctype, type,
            decl = grokfndecl (ctype, type,
                               TREE_CODE (unqualified_id) != TEMPLATE_ID_EXPR
                               TREE_CODE (unqualified_id) != TEMPLATE_ID_EXPR
                               ? unqualified_id : dname,
                               ? unqualified_id : dname,
                               parms,
                               parms,
                               unqualified_id,
                               unqualified_id,
                               virtualp, flags, memfn_quals, raises,
                               virtualp, flags, memfn_quals, raises,
                               friendp ? -1 : 0, friendp, 1, 0, sfk,
                               friendp ? -1 : 0, friendp, 1, 0, sfk,
                               funcdef_flag, template_count, in_namespace,
                               funcdef_flag, template_count, in_namespace,
                               attrlist,
                               attrlist,
                               declarator->id_loc);
                               declarator->id_loc);
            if (decl == NULL_TREE)
            if (decl == NULL_TREE)
              return error_mark_node;
              return error_mark_node;
          }
          }
        else if (!staticp && !dependent_type_p (type)
        else if (!staticp && !dependent_type_p (type)
                 && !COMPLETE_TYPE_P (complete_type (type))
                 && !COMPLETE_TYPE_P (complete_type (type))
                 && (TREE_CODE (type) != ARRAY_TYPE || initialized == 0))
                 && (TREE_CODE (type) != ARRAY_TYPE || initialized == 0))
          {
          {
            if (unqualified_id)
            if (unqualified_id)
              error ("field %qD has incomplete type", unqualified_id);
              error ("field %qD has incomplete type", unqualified_id);
            else
            else
              error ("name %qT has incomplete type", type);
              error ("name %qT has incomplete type", type);
 
 
            /* If we're instantiating a template, tell them which
            /* If we're instantiating a template, tell them which
               instantiation made the field's type be incomplete.  */
               instantiation made the field's type be incomplete.  */
            if (current_class_type
            if (current_class_type
                && TYPE_NAME (current_class_type)
                && TYPE_NAME (current_class_type)
                && IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type))
                && IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type))
                && declspecs->type
                && declspecs->type
                && declspecs->type == type)
                && declspecs->type == type)
              error ("  in instantiation of template %qT",
              error ("  in instantiation of template %qT",
                     current_class_type);
                     current_class_type);
 
 
            return error_mark_node;
            return error_mark_node;
          }
          }
        else
        else
          {
          {
            if (friendp)
            if (friendp)
              {
              {
                error ("%qE is neither function nor member function; "
                error ("%qE is neither function nor member function; "
                       "cannot be declared friend", unqualified_id);
                       "cannot be declared friend", unqualified_id);
                friendp = 0;
                friendp = 0;
              }
              }
            decl = NULL_TREE;
            decl = NULL_TREE;
          }
          }
 
 
        if (friendp)
        if (friendp)
          {
          {
            /* Friends are treated specially.  */
            /* Friends are treated specially.  */
            if (ctype == current_class_type)
            if (ctype == current_class_type)
              ;  /* We already issued a permerror.  */
              ;  /* We already issued a permerror.  */
            else if (decl && DECL_NAME (decl))
            else if (decl && DECL_NAME (decl))
              {
              {
                if (template_class_depth (current_class_type) == 0)
                if (template_class_depth (current_class_type) == 0)
                  {
                  {
                    decl = check_explicit_specialization
                    decl = check_explicit_specialization
                      (unqualified_id, decl, template_count,
                      (unqualified_id, decl, template_count,
                       2 * funcdef_flag + 4);
                       2 * funcdef_flag + 4);
                    if (decl == error_mark_node)
                    if (decl == error_mark_node)
                      return error_mark_node;
                      return error_mark_node;
                  }
                  }
 
 
                DECL_DECLARED_CONSTEXPR_P (decl) = constexpr_p;
                DECL_DECLARED_CONSTEXPR_P (decl) = constexpr_p;
                decl = do_friend (ctype, unqualified_id, decl,
                decl = do_friend (ctype, unqualified_id, decl,
                                  *attrlist, flags,
                                  *attrlist, flags,
                                  funcdef_flag);
                                  funcdef_flag);
                return decl;
                return decl;
              }
              }
            else
            else
              return error_mark_node;
              return error_mark_node;
          }
          }
 
 
        /* Structure field.  It may not be a function, except for C++.  */
        /* Structure field.  It may not be a function, except for C++.  */
 
 
        if (decl == NULL_TREE)
        if (decl == NULL_TREE)
          {
          {
            if (initialized)
            if (initialized)
              {
              {
                if (!staticp)
                if (!staticp)
                  {
                  {
                    /* An attempt is being made to initialize a non-static
                    /* An attempt is being made to initialize a non-static
                       member.  But, from [class.mem]:
                       member.  But, from [class.mem]:
 
 
                       4 A member-declarator can contain a
                       4 A member-declarator can contain a
                       constant-initializer only if it declares a static
                       constant-initializer only if it declares a static
                       member (_class.static_) of integral or enumeration
                       member (_class.static_) of integral or enumeration
                       type, see _class.static.data_.
                       type, see _class.static.data_.
 
 
                       This used to be relatively common practice, but
                       This used to be relatively common practice, but
                       the rest of the compiler does not correctly
                       the rest of the compiler does not correctly
                       handle the initialization unless the member is
                       handle the initialization unless the member is
                       static so we make it static below.  */
                       static so we make it static below.  */
                    permerror (input_location, "ISO C++ forbids initialization of member %qD",
                    permerror (input_location, "ISO C++ forbids initialization of member %qD",
                               unqualified_id);
                               unqualified_id);
                    permerror (input_location, "making %qD static", unqualified_id);
                    permerror (input_location, "making %qD static", unqualified_id);
                    staticp = 1;
                    staticp = 1;
                  }
                  }
 
 
                if (uses_template_parms (type))
                if (uses_template_parms (type))
                  /* We'll check at instantiation time.  */
                  /* We'll check at instantiation time.  */
                  ;
                  ;
                else if (check_static_variable_definition (unqualified_id,
                else if (check_static_variable_definition (unqualified_id,
                                                           type))
                                                           type))
                  /* If we just return the declaration, crashes
                  /* If we just return the declaration, crashes
                     will sometimes occur.  We therefore return
                     will sometimes occur.  We therefore return
                     void_type_node, as if this was a friend
                     void_type_node, as if this was a friend
                     declaration, to cause callers to completely
                     declaration, to cause callers to completely
                     ignore this declaration.  */
                     ignore this declaration.  */
                  return error_mark_node;
                  return error_mark_node;
              }
              }
 
 
            if (staticp)
            if (staticp)
              {
              {
                /* C++ allows static class members.  All other work
                /* C++ allows static class members.  All other work
                   for this is done by grokfield.  */
                   for this is done by grokfield.  */
                decl = build_lang_decl (VAR_DECL, unqualified_id, type);
                decl = build_lang_decl (VAR_DECL, unqualified_id, type);
                set_linkage_for_static_data_member (decl);
                set_linkage_for_static_data_member (decl);
                /* Even if there is an in-class initialization, DECL
                /* Even if there is an in-class initialization, DECL
                   is considered undefined until an out-of-class
                   is considered undefined until an out-of-class
                   definition is provided.  */
                   definition is provided.  */
                DECL_EXTERNAL (decl) = 1;
                DECL_EXTERNAL (decl) = 1;
 
 
                if (thread_p)
                if (thread_p)
                  DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
                  DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
              }
              }
            else
            else
              {
              {
                if (constexpr_p)
                if (constexpr_p)
                  error ("non-static data member %qE declared %<constexpr%>",
                  error ("non-static data member %qE declared %<constexpr%>",
                         unqualified_id);
                         unqualified_id);
                decl = build_decl (input_location,
                decl = build_decl (input_location,
                                   FIELD_DECL, unqualified_id, type);
                                   FIELD_DECL, unqualified_id, type);
                DECL_NONADDRESSABLE_P (decl) = bitfield;
                DECL_NONADDRESSABLE_P (decl) = bitfield;
                if (bitfield && !unqualified_id)
                if (bitfield && !unqualified_id)
                  TREE_NO_WARNING (decl) = 1;
                  TREE_NO_WARNING (decl) = 1;
 
 
                if (storage_class == sc_mutable)
                if (storage_class == sc_mutable)
                  {
                  {
                    DECL_MUTABLE_P (decl) = 1;
                    DECL_MUTABLE_P (decl) = 1;
                    storage_class = sc_none;
                    storage_class = sc_none;
                  }
                  }
              }
              }
 
 
            bad_specifiers (decl, "field", virtualp,
            bad_specifiers (decl, "field", virtualp,
                            memfn_quals != TYPE_UNQUALIFIED,
                            memfn_quals != TYPE_UNQUALIFIED,
                            inlinep, friendp, raises != NULL_TREE);
                            inlinep, friendp, raises != NULL_TREE);
          }
          }
      }
      }
    else if (TREE_CODE (type) == FUNCTION_TYPE
    else if (TREE_CODE (type) == FUNCTION_TYPE
             || TREE_CODE (type) == METHOD_TYPE)
             || TREE_CODE (type) == METHOD_TYPE)
      {
      {
        tree original_name;
        tree original_name;
        int publicp = 0;
        int publicp = 0;
 
 
        if (!unqualified_id)
        if (!unqualified_id)
          return error_mark_node;
          return error_mark_node;
 
 
        if (TREE_CODE (unqualified_id) == TEMPLATE_ID_EXPR)
        if (TREE_CODE (unqualified_id) == TEMPLATE_ID_EXPR)
          original_name = dname;
          original_name = dname;
        else
        else
          original_name = unqualified_id;
          original_name = unqualified_id;
 
 
        if (storage_class == sc_auto)
        if (storage_class == sc_auto)
          error ("storage class %<auto%> invalid for function %qs", name);
          error ("storage class %<auto%> invalid for function %qs", name);
        else if (storage_class == sc_register)
        else if (storage_class == sc_register)
          error ("storage class %<register%> invalid for function %qs", name);
          error ("storage class %<register%> invalid for function %qs", name);
        else if (thread_p)
        else if (thread_p)
          error ("storage class %<__thread%> invalid for function %qs", name);
          error ("storage class %<__thread%> invalid for function %qs", name);
 
 
        /* Function declaration not at top level.
        /* Function declaration not at top level.
           Storage classes other than `extern' are not allowed
           Storage classes other than `extern' are not allowed
           and `extern' makes no difference.  */
           and `extern' makes no difference.  */
        if (! toplevel_bindings_p ()
        if (! toplevel_bindings_p ()
            && (storage_class == sc_static
            && (storage_class == sc_static
                || declspecs->specs[(int)ds_inline])
                || declspecs->specs[(int)ds_inline])
            && pedantic)
            && pedantic)
          {
          {
            if (storage_class == sc_static)
            if (storage_class == sc_static)
              pedwarn (input_location, OPT_pedantic,
              pedwarn (input_location, OPT_pedantic,
                       "%<static%> specified invalid for function %qs "
                       "%<static%> specified invalid for function %qs "
                       "declared out of global scope", name);
                       "declared out of global scope", name);
            else
            else
              pedwarn (input_location, OPT_pedantic,
              pedwarn (input_location, OPT_pedantic,
                       "%<inline%> specifier invalid for function %qs "
                       "%<inline%> specifier invalid for function %qs "
                       "declared out of global scope", name);
                       "declared out of global scope", name);
          }
          }
 
 
        if (ctype != NULL_TREE
        if (ctype != NULL_TREE
            && TREE_CODE (ctype) != NAMESPACE_DECL && !MAYBE_CLASS_TYPE_P (ctype))
            && TREE_CODE (ctype) != NAMESPACE_DECL && !MAYBE_CLASS_TYPE_P (ctype))
          {
          {
            error ("%q#T is not a class or a namespace", ctype);
            error ("%q#T is not a class or a namespace", ctype);
            ctype = NULL_TREE;
            ctype = NULL_TREE;
          }
          }
 
 
        if (ctype == NULL_TREE)
        if (ctype == NULL_TREE)
          {
          {
            if (virtualp)
            if (virtualp)
              {
              {
                error ("virtual non-class function %qs", name);
                error ("virtual non-class function %qs", name);
                virtualp = 0;
                virtualp = 0;
              }
              }
            else if (sfk == sfk_constructor
            else if (sfk == sfk_constructor
                     || sfk == sfk_destructor)
                     || sfk == sfk_destructor)
              {
              {
                error (funcdef_flag
                error (funcdef_flag
                       ? "%qs defined in a non-class scope"
                       ? "%qs defined in a non-class scope"
                       : "%qs declared in a non-class scope", name);
                       : "%qs declared in a non-class scope", name);
                sfk = sfk_none;
                sfk = sfk_none;
              }
              }
          }
          }
        else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2
        else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2
                 && !NEW_DELETE_OPNAME_P (original_name))
                 && !NEW_DELETE_OPNAME_P (original_name))
          type = build_method_type_directly (ctype,
          type = build_method_type_directly (ctype,
                                             TREE_TYPE (type),
                                             TREE_TYPE (type),
                                             TYPE_ARG_TYPES (type));
                                             TYPE_ARG_TYPES (type));
 
 
        /* Record presence of `static'.  */
        /* Record presence of `static'.  */
        publicp = (ctype != NULL_TREE
        publicp = (ctype != NULL_TREE
                   || storage_class == sc_extern
                   || storage_class == sc_extern
                   || storage_class != sc_static);
                   || storage_class != sc_static);
 
 
        decl = grokfndecl (ctype, type, original_name, parms, unqualified_id,
        decl = grokfndecl (ctype, type, original_name, parms, unqualified_id,
                           virtualp, flags, memfn_quals, raises,
                           virtualp, flags, memfn_quals, raises,
                           1, friendp,
                           1, friendp,
                           publicp, inlinep || constexpr_p, sfk, funcdef_flag,
                           publicp, inlinep || constexpr_p, sfk, funcdef_flag,
                           template_count, in_namespace, attrlist,
                           template_count, in_namespace, attrlist,
                           declarator->id_loc);
                           declarator->id_loc);
        if (decl == NULL_TREE)
        if (decl == NULL_TREE)
          return error_mark_node;
          return error_mark_node;
 
 
        if (staticp == 1)
        if (staticp == 1)
          {
          {
            int invalid_static = 0;
            int invalid_static = 0;
 
 
            /* Don't allow a static member function in a class, and forbid
            /* Don't allow a static member function in a class, and forbid
               declaring main to be static.  */
               declaring main to be static.  */
            if (TREE_CODE (type) == METHOD_TYPE)
            if (TREE_CODE (type) == METHOD_TYPE)
              {
              {
                permerror (input_location, "cannot declare member function %qD to have "
                permerror (input_location, "cannot declare member function %qD to have "
                           "static linkage", decl);
                           "static linkage", decl);
                invalid_static = 1;
                invalid_static = 1;
              }
              }
            else if (current_function_decl)
            else if (current_function_decl)
              {
              {
                /* FIXME need arm citation */
                /* FIXME need arm citation */
                error ("cannot declare static function inside another function");
                error ("cannot declare static function inside another function");
                invalid_static = 1;
                invalid_static = 1;
              }
              }
 
 
            if (invalid_static)
            if (invalid_static)
              {
              {
                staticp = 0;
                staticp = 0;
                storage_class = sc_none;
                storage_class = sc_none;
              }
              }
          }
          }
      }
      }
    else
    else
      {
      {
        /* It's a variable.  */
        /* It's a variable.  */
 
 
        /* An uninitialized decl with `extern' is a reference.  */
        /* An uninitialized decl with `extern' is a reference.  */
        decl = grokvardecl (type, unqualified_id,
        decl = grokvardecl (type, unqualified_id,
                            declspecs,
                            declspecs,
                            initialized,
                            initialized,
                            (type_quals & TYPE_QUAL_CONST) != 0,
                            (type_quals & TYPE_QUAL_CONST) != 0,
                            ctype ? ctype : in_namespace);
                            ctype ? ctype : in_namespace);
        bad_specifiers (decl, "variable", virtualp,
        bad_specifiers (decl, "variable", virtualp,
                        memfn_quals != TYPE_UNQUALIFIED,
                        memfn_quals != TYPE_UNQUALIFIED,
                        inlinep, friendp, raises != NULL_TREE);
                        inlinep, friendp, raises != NULL_TREE);
 
 
        if (ctype)
        if (ctype)
          {
          {
            DECL_CONTEXT (decl) = ctype;
            DECL_CONTEXT (decl) = ctype;
            if (staticp == 1)
            if (staticp == 1)
              {
              {
                permerror (input_location, "%<static%> may not be used when defining "
                permerror (input_location, "%<static%> may not be used when defining "
                           "(as opposed to declaring) a static data member");
                           "(as opposed to declaring) a static data member");
                staticp = 0;
                staticp = 0;
                storage_class = sc_none;
                storage_class = sc_none;
              }
              }
            if (storage_class == sc_register && TREE_STATIC (decl))
            if (storage_class == sc_register && TREE_STATIC (decl))
              {
              {
                error ("static member %qD declared %<register%>", decl);
                error ("static member %qD declared %<register%>", decl);
                storage_class = sc_none;
                storage_class = sc_none;
              }
              }
            if (storage_class == sc_extern && pedantic)
            if (storage_class == sc_extern && pedantic)
              {
              {
                pedwarn (input_location, OPT_pedantic,
                pedwarn (input_location, OPT_pedantic,
                         "cannot explicitly declare member %q#D to have "
                         "cannot explicitly declare member %q#D to have "
                         "extern linkage", decl);
                         "extern linkage", decl);
                storage_class = sc_none;
                storage_class = sc_none;
              }
              }
          }
          }
      }
      }
 
 
    if (storage_class == sc_extern && initialized && !funcdef_flag)
    if (storage_class == sc_extern && initialized && !funcdef_flag)
      {
      {
        if (toplevel_bindings_p ())
        if (toplevel_bindings_p ())
          {
          {
            /* It's common practice (and completely valid) to have a const
            /* It's common practice (and completely valid) to have a const
               be initialized and declared extern.  */
               be initialized and declared extern.  */
            if (!(type_quals & TYPE_QUAL_CONST))
            if (!(type_quals & TYPE_QUAL_CONST))
              warning (0, "%qs initialized and declared %<extern%>", name);
              warning (0, "%qs initialized and declared %<extern%>", name);
          }
          }
        else
        else
          {
          {
            error ("%qs has both %<extern%> and initializer", name);
            error ("%qs has both %<extern%> and initializer", name);
            return error_mark_node;
            return error_mark_node;
          }
          }
      }
      }
 
 
    /* Record `register' declaration for warnings on &
    /* Record `register' declaration for warnings on &
       and in case doing stupid register allocation.  */
       and in case doing stupid register allocation.  */
 
 
    if (storage_class == sc_register)
    if (storage_class == sc_register)
      DECL_REGISTER (decl) = 1;
      DECL_REGISTER (decl) = 1;
    else if (storage_class == sc_extern)
    else if (storage_class == sc_extern)
      DECL_THIS_EXTERN (decl) = 1;
      DECL_THIS_EXTERN (decl) = 1;
    else if (storage_class == sc_static)
    else if (storage_class == sc_static)
      DECL_THIS_STATIC (decl) = 1;
      DECL_THIS_STATIC (decl) = 1;
 
 
    /* Don't forget constexprness.  */
    /* Don't forget constexprness.  */
    if (VAR_OR_FUNCTION_DECL_P (decl))
    if (VAR_OR_FUNCTION_DECL_P (decl))
      DECL_DECLARED_CONSTEXPR_P (decl) = constexpr_p;
      DECL_DECLARED_CONSTEXPR_P (decl) = constexpr_p;
 
 
    /* Record constancy and volatility on the DECL itself .  There's
    /* Record constancy and volatility on the DECL itself .  There's
       no need to do this when processing a template; we'll do this
       no need to do this when processing a template; we'll do this
       for the instantiated declaration based on the type of DECL.  */
       for the instantiated declaration based on the type of DECL.  */
    if (!processing_template_decl)
    if (!processing_template_decl)
      cp_apply_type_quals_to_decl (type_quals, decl);
      cp_apply_type_quals_to_decl (type_quals, decl);
 
 
    return decl;
    return decl;
  }
  }
}
}


/* Subroutine of start_function.  Ensure that each of the parameter
/* Subroutine of start_function.  Ensure that each of the parameter
   types (as listed in PARMS) is complete, as is required for a
   types (as listed in PARMS) is complete, as is required for a
   function definition.  */
   function definition.  */
 
 
static void
static void
require_complete_types_for_parms (tree parms)
require_complete_types_for_parms (tree parms)
{
{
  for (; parms; parms = TREE_CHAIN (parms))
  for (; parms; parms = TREE_CHAIN (parms))
    {
    {
      if (dependent_type_p (TREE_TYPE (parms)))
      if (dependent_type_p (TREE_TYPE (parms)))
        continue;
        continue;
      if (!VOID_TYPE_P (TREE_TYPE (parms))
      if (!VOID_TYPE_P (TREE_TYPE (parms))
          && complete_type_or_else (TREE_TYPE (parms), parms))
          && complete_type_or_else (TREE_TYPE (parms), parms))
        {
        {
          relayout_decl (parms);
          relayout_decl (parms);
          DECL_ARG_TYPE (parms) = type_passed_as (TREE_TYPE (parms));
          DECL_ARG_TYPE (parms) = type_passed_as (TREE_TYPE (parms));
        }
        }
      else
      else
        /* grokparms or complete_type_or_else will have already issued
        /* grokparms or complete_type_or_else will have already issued
           an error.  */
           an error.  */
        TREE_TYPE (parms) = error_mark_node;
        TREE_TYPE (parms) = error_mark_node;
    }
    }
}
}
 
 
/* Returns nonzero if T is a local variable.  */
/* Returns nonzero if T is a local variable.  */
 
 
int
int
local_variable_p (const_tree t)
local_variable_p (const_tree t)
{
{
  if ((TREE_CODE (t) == VAR_DECL
  if ((TREE_CODE (t) == VAR_DECL
       /* A VAR_DECL with a context that is a _TYPE is a static data
       /* A VAR_DECL with a context that is a _TYPE is a static data
          member.  */
          member.  */
       && !TYPE_P (CP_DECL_CONTEXT (t))
       && !TYPE_P (CP_DECL_CONTEXT (t))
       /* Any other non-local variable must be at namespace scope.  */
       /* Any other non-local variable must be at namespace scope.  */
       && !DECL_NAMESPACE_SCOPE_P (t))
       && !DECL_NAMESPACE_SCOPE_P (t))
      || (TREE_CODE (t) == PARM_DECL))
      || (TREE_CODE (t) == PARM_DECL))
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Like local_variable_p, but suitable for use as a tree-walking
/* Like local_variable_p, but suitable for use as a tree-walking
   function.  */
   function.  */
 
 
static tree
static tree
local_variable_p_walkfn (tree *tp, int *walk_subtrees,
local_variable_p_walkfn (tree *tp, int *walk_subtrees,
                         void *data ATTRIBUTE_UNUSED)
                         void *data ATTRIBUTE_UNUSED)
{
{
  if (local_variable_p (*tp) && !DECL_ARTIFICIAL (*tp))
  if (local_variable_p (*tp) && !DECL_ARTIFICIAL (*tp))
    return *tp;
    return *tp;
  else if (TYPE_P (*tp))
  else if (TYPE_P (*tp))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Check that ARG, which is a default-argument expression for a
/* Check that ARG, which is a default-argument expression for a
   parameter DECL, is valid.  Returns ARG, or ERROR_MARK_NODE, if
   parameter DECL, is valid.  Returns ARG, or ERROR_MARK_NODE, if
   something goes wrong.  DECL may also be a _TYPE node, rather than a
   something goes wrong.  DECL may also be a _TYPE node, rather than a
   DECL, if there is no DECL available.  */
   DECL, if there is no DECL available.  */
 
 
tree
tree
check_default_argument (tree decl, tree arg)
check_default_argument (tree decl, tree arg)
{
{
  tree var;
  tree var;
  tree decl_type;
  tree decl_type;
 
 
  if (TREE_CODE (arg) == DEFAULT_ARG)
  if (TREE_CODE (arg) == DEFAULT_ARG)
    /* We get a DEFAULT_ARG when looking at an in-class declaration
    /* We get a DEFAULT_ARG when looking at an in-class declaration
       with a default argument.  Ignore the argument for now; we'll
       with a default argument.  Ignore the argument for now; we'll
       deal with it after the class is complete.  */
       deal with it after the class is complete.  */
    return arg;
    return arg;
 
 
  if (TYPE_P (decl))
  if (TYPE_P (decl))
    {
    {
      decl_type = decl;
      decl_type = decl;
      decl = NULL_TREE;
      decl = NULL_TREE;
    }
    }
  else
  else
    decl_type = TREE_TYPE (decl);
    decl_type = TREE_TYPE (decl);
 
 
  if (arg == error_mark_node
  if (arg == error_mark_node
      || decl == error_mark_node
      || decl == error_mark_node
      || TREE_TYPE (arg) == error_mark_node
      || TREE_TYPE (arg) == error_mark_node
      || decl_type == error_mark_node)
      || decl_type == error_mark_node)
    /* Something already went wrong.  There's no need to check
    /* Something already went wrong.  There's no need to check
       further.  */
       further.  */
    return error_mark_node;
    return error_mark_node;
 
 
  /* [dcl.fct.default]
  /* [dcl.fct.default]
 
 
     A default argument expression is implicitly converted to the
     A default argument expression is implicitly converted to the
     parameter type.  */
     parameter type.  */
  if (!TREE_TYPE (arg)
  if (!TREE_TYPE (arg)
      || !can_convert_arg (decl_type, TREE_TYPE (arg), arg, LOOKUP_NORMAL))
      || !can_convert_arg (decl_type, TREE_TYPE (arg), arg, LOOKUP_NORMAL))
    {
    {
      if (decl)
      if (decl)
        error ("default argument for %q#D has type %qT",
        error ("default argument for %q#D has type %qT",
               decl, TREE_TYPE (arg));
               decl, TREE_TYPE (arg));
      else
      else
        error ("default argument for parameter of type %qT has type %qT",
        error ("default argument for parameter of type %qT has type %qT",
               decl_type, TREE_TYPE (arg));
               decl_type, TREE_TYPE (arg));
 
 
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* [dcl.fct.default]
  /* [dcl.fct.default]
 
 
     Local variables shall not be used in default argument
     Local variables shall not be used in default argument
     expressions.
     expressions.
 
 
     The keyword `this' shall not be used in a default argument of a
     The keyword `this' shall not be used in a default argument of a
     member function.  */
     member function.  */
  var = cp_walk_tree_without_duplicates (&arg, local_variable_p_walkfn, NULL);
  var = cp_walk_tree_without_duplicates (&arg, local_variable_p_walkfn, NULL);
  if (var)
  if (var)
    {
    {
      error ("default argument %qE uses local variable %qD", arg, var);
      error ("default argument %qE uses local variable %qD", arg, var);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* All is well.  */
  /* All is well.  */
  return arg;
  return arg;
}
}
 
 
/* Returns a deprecated type used within TYPE, or NULL_TREE if none.  */
/* Returns a deprecated type used within TYPE, or NULL_TREE if none.  */
 
 
static tree
static tree
type_is_deprecated (tree type)
type_is_deprecated (tree type)
{
{
  enum tree_code code;
  enum tree_code code;
  if (TREE_DEPRECATED (type))
  if (TREE_DEPRECATED (type))
    return type;
    return type;
  if (TYPE_NAME (type)
  if (TYPE_NAME (type)
      && TREE_DEPRECATED (TYPE_NAME (type)))
      && TREE_DEPRECATED (TYPE_NAME (type)))
    return type;
    return type;
 
 
  /* Do warn about using typedefs to a deprecated class.  */
  /* Do warn about using typedefs to a deprecated class.  */
  if (TAGGED_TYPE_P (type) && type != TYPE_MAIN_VARIANT (type))
  if (TAGGED_TYPE_P (type) && type != TYPE_MAIN_VARIANT (type))
    return type_is_deprecated (TYPE_MAIN_VARIANT (type));
    return type_is_deprecated (TYPE_MAIN_VARIANT (type));
 
 
  code = TREE_CODE (type);
  code = TREE_CODE (type);
 
 
  if (code == POINTER_TYPE || code == REFERENCE_TYPE
  if (code == POINTER_TYPE || code == REFERENCE_TYPE
      || code == OFFSET_TYPE || code == FUNCTION_TYPE
      || code == OFFSET_TYPE || code == FUNCTION_TYPE
      || code == METHOD_TYPE || code == ARRAY_TYPE)
      || code == METHOD_TYPE || code == ARRAY_TYPE)
    return type_is_deprecated (TREE_TYPE (type));
    return type_is_deprecated (TREE_TYPE (type));
 
 
  if (TYPE_PTRMEMFUNC_P (type))
  if (TYPE_PTRMEMFUNC_P (type))
    return type_is_deprecated
    return type_is_deprecated
      (TREE_TYPE (TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (type))));
      (TREE_TYPE (TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (type))));
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Decode the list of parameter types for a function type.
/* Decode the list of parameter types for a function type.
   Given the list of things declared inside the parens,
   Given the list of things declared inside the parens,
   return a list of types.
   return a list of types.
 
 
   If this parameter does not end with an ellipsis, we append
   If this parameter does not end with an ellipsis, we append
   void_list_node.
   void_list_node.
 
 
   *PARMS is set to the chain of PARM_DECLs created.  */
   *PARMS is set to the chain of PARM_DECLs created.  */
 
 
static tree
static tree
grokparms (tree parmlist, tree *parms)
grokparms (tree parmlist, tree *parms)
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
  tree decls = NULL_TREE;
  tree decls = NULL_TREE;
  tree parm;
  tree parm;
  int any_error = 0;
  int any_error = 0;
 
 
  for (parm = parmlist; parm != NULL_TREE; parm = TREE_CHAIN (parm))
  for (parm = parmlist; parm != NULL_TREE; parm = TREE_CHAIN (parm))
    {
    {
      tree type = NULL_TREE;
      tree type = NULL_TREE;
      tree init = TREE_PURPOSE (parm);
      tree init = TREE_PURPOSE (parm);
      tree decl = TREE_VALUE (parm);
      tree decl = TREE_VALUE (parm);
      const char *errmsg;
      const char *errmsg;
 
 
      if (parm == void_list_node)
      if (parm == void_list_node)
        break;
        break;
 
 
      if (! decl || TREE_TYPE (decl) == error_mark_node)
      if (! decl || TREE_TYPE (decl) == error_mark_node)
        continue;
        continue;
 
 
      type = TREE_TYPE (decl);
      type = TREE_TYPE (decl);
      if (VOID_TYPE_P (type))
      if (VOID_TYPE_P (type))
        {
        {
          if (same_type_p (type, void_type_node)
          if (same_type_p (type, void_type_node)
              && DECL_SELF_REFERENCE_P (type)
              && DECL_SELF_REFERENCE_P (type)
              && !DECL_NAME (decl) && !result && TREE_CHAIN (parm) == void_list_node)
              && !DECL_NAME (decl) && !result && TREE_CHAIN (parm) == void_list_node)
            /* this is a parmlist of `(void)', which is ok.  */
            /* this is a parmlist of `(void)', which is ok.  */
            break;
            break;
          cxx_incomplete_type_error (decl, type);
          cxx_incomplete_type_error (decl, type);
          /* It's not a good idea to actually create parameters of
          /* It's not a good idea to actually create parameters of
             type `void'; other parts of the compiler assume that a
             type `void'; other parts of the compiler assume that a
             void type terminates the parameter list.  */
             void type terminates the parameter list.  */
          type = error_mark_node;
          type = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
        }
        }
 
 
      if (type != error_mark_node
      if (type != error_mark_node
          && TYPE_FOR_JAVA (type)
          && TYPE_FOR_JAVA (type)
          && MAYBE_CLASS_TYPE_P (type))
          && MAYBE_CLASS_TYPE_P (type))
        {
        {
          error ("parameter %qD has Java class type", decl);
          error ("parameter %qD has Java class type", decl);
          type = error_mark_node;
          type = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
          init = NULL_TREE;
          init = NULL_TREE;
        }
        }
 
 
      if (type != error_mark_node
      if (type != error_mark_node
          && (errmsg = targetm.invalid_parameter_type (type)))
          && (errmsg = targetm.invalid_parameter_type (type)))
        {
        {
          error (errmsg);
          error (errmsg);
          type = error_mark_node;
          type = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
          TREE_TYPE (decl) = error_mark_node;
        }
        }
 
 
      if (type != error_mark_node)
      if (type != error_mark_node)
        {
        {
          if (deprecated_state != DEPRECATED_SUPPRESS)
          if (deprecated_state != DEPRECATED_SUPPRESS)
            {
            {
              tree deptype = type_is_deprecated (type);
              tree deptype = type_is_deprecated (type);
              if (deptype)
              if (deptype)
                warn_deprecated_use (deptype, NULL_TREE);
                warn_deprecated_use (deptype, NULL_TREE);
            }
            }
 
 
          /* Top-level qualifiers on the parameters are
          /* Top-level qualifiers on the parameters are
             ignored for function types.  */
             ignored for function types.  */
          type = cp_build_qualified_type (type, 0);
          type = cp_build_qualified_type (type, 0);
          if (TREE_CODE (type) == METHOD_TYPE)
          if (TREE_CODE (type) == METHOD_TYPE)
            {
            {
              error ("parameter %qD invalidly declared method type", decl);
              error ("parameter %qD invalidly declared method type", decl);
              type = build_pointer_type (type);
              type = build_pointer_type (type);
              TREE_TYPE (decl) = type;
              TREE_TYPE (decl) = type;
            }
            }
          else if (abstract_virtuals_error (decl, type))
          else if (abstract_virtuals_error (decl, type))
            any_error = 1;  /* Seems like a good idea.  */
            any_error = 1;  /* Seems like a good idea.  */
          else if (POINTER_TYPE_P (type))
          else if (POINTER_TYPE_P (type))
            {
            {
              /* [dcl.fct]/6, parameter types cannot contain pointers
              /* [dcl.fct]/6, parameter types cannot contain pointers
                 (references) to arrays of unknown bound.  */
                 (references) to arrays of unknown bound.  */
              tree t = TREE_TYPE (type);
              tree t = TREE_TYPE (type);
              int ptr = TYPE_PTR_P (type);
              int ptr = TYPE_PTR_P (type);
 
 
              while (1)
              while (1)
                {
                {
                  if (TYPE_PTR_P (t))
                  if (TYPE_PTR_P (t))
                    ptr = 1;
                    ptr = 1;
                  else if (TREE_CODE (t) != ARRAY_TYPE)
                  else if (TREE_CODE (t) != ARRAY_TYPE)
                    break;
                    break;
                  else if (!TYPE_DOMAIN (t))
                  else if (!TYPE_DOMAIN (t))
                    break;
                    break;
                  t = TREE_TYPE (t);
                  t = TREE_TYPE (t);
                }
                }
              if (TREE_CODE (t) == ARRAY_TYPE)
              if (TREE_CODE (t) == ARRAY_TYPE)
                error (ptr
                error (ptr
                       ? G_("parameter %qD includes pointer to array of "
                       ? G_("parameter %qD includes pointer to array of "
                            "unknown bound %qT")
                            "unknown bound %qT")
                       : G_("parameter %qD includes reference to array of "
                       : G_("parameter %qD includes reference to array of "
                            "unknown bound %qT"),
                            "unknown bound %qT"),
                       decl, t);
                       decl, t);
            }
            }
 
 
          if (any_error)
          if (any_error)
            init = NULL_TREE;
            init = NULL_TREE;
          else if (init && !processing_template_decl)
          else if (init && !processing_template_decl)
            init = check_default_argument (decl, init);
            init = check_default_argument (decl, init);
        }
        }
 
 
      if (TREE_CODE (decl) == PARM_DECL
      if (TREE_CODE (decl) == PARM_DECL
          && FUNCTION_PARAMETER_PACK_P (decl)
          && FUNCTION_PARAMETER_PACK_P (decl)
          && TREE_CHAIN (parm)
          && TREE_CHAIN (parm)
          && TREE_CHAIN (parm) != void_list_node)
          && TREE_CHAIN (parm) != void_list_node)
        error ("parameter packs must be at the end of the parameter list");
        error ("parameter packs must be at the end of the parameter list");
 
 
      TREE_CHAIN (decl) = decls;
      TREE_CHAIN (decl) = decls;
      decls = decl;
      decls = decl;
      result = tree_cons (init, type, result);
      result = tree_cons (init, type, result);
    }
    }
  decls = nreverse (decls);
  decls = nreverse (decls);
  result = nreverse (result);
  result = nreverse (result);
  if (parm)
  if (parm)
    result = chainon (result, void_list_node);
    result = chainon (result, void_list_node);
  *parms = decls;
  *parms = decls;
 
 
  return result;
  return result;
}
}
 
 


/* D is a constructor or overloaded `operator='.
/* D is a constructor or overloaded `operator='.
 
 
   Let T be the class in which D is declared. Then, this function
   Let T be the class in which D is declared. Then, this function
   returns:
   returns:
 
 
   -1 if D's is an ill-formed constructor or copy assignment operator
   -1 if D's is an ill-formed constructor or copy assignment operator
      whose first parameter is of type `T'.
      whose first parameter is of type `T'.
   0  if D is not a copy constructor or copy assignment
   0  if D is not a copy constructor or copy assignment
      operator.
      operator.
   1  if D is a copy constructor or copy assignment operator whose
   1  if D is a copy constructor or copy assignment operator whose
      first parameter is a reference to non-const qualified T.
      first parameter is a reference to non-const qualified T.
   2  if D is a copy constructor or copy assignment operator whose
   2  if D is a copy constructor or copy assignment operator whose
      first parameter is a reference to const qualified T.
      first parameter is a reference to const qualified T.
 
 
   This function can be used as a predicate. Positive values indicate
   This function can be used as a predicate. Positive values indicate
   a copy constructor and nonzero values indicate a copy assignment
   a copy constructor and nonzero values indicate a copy assignment
   operator.  */
   operator.  */
 
 
int
int
copy_fn_p (const_tree d)
copy_fn_p (const_tree d)
{
{
  tree args;
  tree args;
  tree arg_type;
  tree arg_type;
  int result = 1;
  int result = 1;
 
 
  gcc_assert (DECL_FUNCTION_MEMBER_P (d));
  gcc_assert (DECL_FUNCTION_MEMBER_P (d));
 
 
  if (TREE_CODE (d) == TEMPLATE_DECL
  if (TREE_CODE (d) == TEMPLATE_DECL
      || (DECL_TEMPLATE_INFO (d)
      || (DECL_TEMPLATE_INFO (d)
          && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (d))))
          && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (d))))
    /* Instantiations of template member functions are never copy
    /* Instantiations of template member functions are never copy
       functions.  Note that member functions of templated classes are
       functions.  Note that member functions of templated classes are
       represented as template functions internally, and we must
       represented as template functions internally, and we must
       accept those as copy functions.  */
       accept those as copy functions.  */
    return 0;
    return 0;
 
 
  args = FUNCTION_FIRST_USER_PARMTYPE (d);
  args = FUNCTION_FIRST_USER_PARMTYPE (d);
  if (!args)
  if (!args)
    return 0;
    return 0;
 
 
  arg_type = TREE_VALUE (args);
  arg_type = TREE_VALUE (args);
  if (arg_type == error_mark_node)
  if (arg_type == error_mark_node)
    return 0;
    return 0;
 
 
  if (TYPE_MAIN_VARIANT (arg_type) == DECL_CONTEXT (d))
  if (TYPE_MAIN_VARIANT (arg_type) == DECL_CONTEXT (d))
    {
    {
      /* Pass by value copy assignment operator.  */
      /* Pass by value copy assignment operator.  */
      result = -1;
      result = -1;
    }
    }
  else if (TREE_CODE (arg_type) == REFERENCE_TYPE
  else if (TREE_CODE (arg_type) == REFERENCE_TYPE
           && !TYPE_REF_IS_RVALUE (arg_type)
           && !TYPE_REF_IS_RVALUE (arg_type)
           && TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)) == DECL_CONTEXT (d))
           && TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)) == DECL_CONTEXT (d))
    {
    {
      if (CP_TYPE_CONST_P (TREE_TYPE (arg_type)))
      if (CP_TYPE_CONST_P (TREE_TYPE (arg_type)))
        result = 2;
        result = 2;
    }
    }
  else
  else
    return 0;
    return 0;
 
 
  args = TREE_CHAIN (args);
  args = TREE_CHAIN (args);
 
 
  if (args && args != void_list_node && !TREE_PURPOSE (args))
  if (args && args != void_list_node && !TREE_PURPOSE (args))
    /* There are more non-optional args.  */
    /* There are more non-optional args.  */
    return 0;
    return 0;
 
 
  return result;
  return result;
}
}
 
 
/* D is a constructor or overloaded `operator='.
/* D is a constructor or overloaded `operator='.
 
 
   Let T be the class in which D is declared. Then, this function
   Let T be the class in which D is declared. Then, this function
   returns true when D is a move constructor or move assignment
   returns true when D is a move constructor or move assignment
   operator, false otherwise.  */
   operator, false otherwise.  */
 
 
bool
bool
move_fn_p (const_tree d)
move_fn_p (const_tree d)
{
{
  tree args;
  tree args;
  tree arg_type;
  tree arg_type;
  bool result = false;
  bool result = false;
 
 
  gcc_assert (DECL_FUNCTION_MEMBER_P (d));
  gcc_assert (DECL_FUNCTION_MEMBER_P (d));
 
 
  if (cxx_dialect == cxx98)
  if (cxx_dialect == cxx98)
    /* There are no move constructors if we are in C++98 mode.  */
    /* There are no move constructors if we are in C++98 mode.  */
    return false;
    return false;
 
 
  if (TREE_CODE (d) == TEMPLATE_DECL
  if (TREE_CODE (d) == TEMPLATE_DECL
      || (DECL_TEMPLATE_INFO (d)
      || (DECL_TEMPLATE_INFO (d)
         && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (d))))
         && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (d))))
    /* Instantiations of template member functions are never copy
    /* Instantiations of template member functions are never copy
       functions.  Note that member functions of templated classes are
       functions.  Note that member functions of templated classes are
       represented as template functions internally, and we must
       represented as template functions internally, and we must
       accept those as copy functions.  */
       accept those as copy functions.  */
    return 0;
    return 0;
 
 
  args = FUNCTION_FIRST_USER_PARMTYPE (d);
  args = FUNCTION_FIRST_USER_PARMTYPE (d);
  if (!args)
  if (!args)
    return 0;
    return 0;
 
 
  arg_type = TREE_VALUE (args);
  arg_type = TREE_VALUE (args);
  if (arg_type == error_mark_node)
  if (arg_type == error_mark_node)
    return 0;
    return 0;
 
 
  if (TREE_CODE (arg_type) == REFERENCE_TYPE
  if (TREE_CODE (arg_type) == REFERENCE_TYPE
      && TYPE_REF_IS_RVALUE (arg_type)
      && TYPE_REF_IS_RVALUE (arg_type)
      && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)),
      && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)),
                      DECL_CONTEXT (d)))
                      DECL_CONTEXT (d)))
    result = true;
    result = true;
 
 
  args = TREE_CHAIN (args);
  args = TREE_CHAIN (args);
 
 
  if (args && args != void_list_node && !TREE_PURPOSE (args))
  if (args && args != void_list_node && !TREE_PURPOSE (args))
    /* There are more non-optional args.  */
    /* There are more non-optional args.  */
    return false;
    return false;
 
 
  return result;
  return result;
}
}
 
 
/* Remember any special properties of member function DECL.  */
/* Remember any special properties of member function DECL.  */
 
 
void
void
grok_special_member_properties (tree decl)
grok_special_member_properties (tree decl)
{
{
  tree class_type;
  tree class_type;
 
 
  if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
  if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
    return;
    return;
 
 
  class_type = DECL_CONTEXT (decl);
  class_type = DECL_CONTEXT (decl);
  if (DECL_CONSTRUCTOR_P (decl))
  if (DECL_CONSTRUCTOR_P (decl))
    {
    {
      int ctor = copy_fn_p (decl);
      int ctor = copy_fn_p (decl);
 
 
      if (!DECL_ARTIFICIAL (decl))
      if (!DECL_ARTIFICIAL (decl))
        TYPE_HAS_USER_CONSTRUCTOR (class_type) = 1;
        TYPE_HAS_USER_CONSTRUCTOR (class_type) = 1;
 
 
      if (ctor > 0)
      if (ctor > 0)
        {
        {
          /* [class.copy]
          /* [class.copy]
 
 
             A non-template constructor for class X is a copy
             A non-template constructor for class X is a copy
             constructor if its first parameter is of type X&, const
             constructor if its first parameter is of type X&, const
             X&, volatile X& or const volatile X&, and either there
             X&, volatile X& or const volatile X&, and either there
             are no other parameters or else all other parameters have
             are no other parameters or else all other parameters have
             default arguments.  */
             default arguments.  */
          TYPE_HAS_INIT_REF (class_type) = 1;
          TYPE_HAS_INIT_REF (class_type) = 1;
          if (user_provided_p (decl))
          if (user_provided_p (decl))
            TYPE_HAS_COMPLEX_INIT_REF (class_type) = 1;
            TYPE_HAS_COMPLEX_INIT_REF (class_type) = 1;
          if (ctor > 1)
          if (ctor > 1)
            TYPE_HAS_CONST_INIT_REF (class_type) = 1;
            TYPE_HAS_CONST_INIT_REF (class_type) = 1;
        }
        }
      else if (sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (decl)))
      else if (sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (decl)))
        {
        {
          TYPE_HAS_DEFAULT_CONSTRUCTOR (class_type) = 1;
          TYPE_HAS_DEFAULT_CONSTRUCTOR (class_type) = 1;
          if (user_provided_p (decl))
          if (user_provided_p (decl))
            TYPE_HAS_COMPLEX_DFLT (class_type) = 1;
            TYPE_HAS_COMPLEX_DFLT (class_type) = 1;
        }
        }
      else if (is_list_ctor (decl))
      else if (is_list_ctor (decl))
        TYPE_HAS_LIST_CTOR (class_type) = 1;
        TYPE_HAS_LIST_CTOR (class_type) = 1;
    }
    }
  else if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
  else if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
    {
    {
      /* [class.copy]
      /* [class.copy]
 
 
         A non-template assignment operator for class X is a copy
         A non-template assignment operator for class X is a copy
         assignment operator if its parameter is of type X, X&, const
         assignment operator if its parameter is of type X, X&, const
         X&, volatile X& or const volatile X&.  */
         X&, volatile X& or const volatile X&.  */
 
 
      int assop = copy_fn_p (decl);
      int assop = copy_fn_p (decl);
 
 
      if (assop)
      if (assop)
        {
        {
          TYPE_HAS_ASSIGN_REF (class_type) = 1;
          TYPE_HAS_ASSIGN_REF (class_type) = 1;
          if (user_provided_p (decl))
          if (user_provided_p (decl))
            TYPE_HAS_COMPLEX_ASSIGN_REF (class_type) = 1;
            TYPE_HAS_COMPLEX_ASSIGN_REF (class_type) = 1;
          if (assop != 1)
          if (assop != 1)
            TYPE_HAS_CONST_ASSIGN_REF (class_type) = 1;
            TYPE_HAS_CONST_ASSIGN_REF (class_type) = 1;
        }
        }
    }
    }
}
}
 
 
/* Check a constructor DECL has the correct form.  Complains
/* Check a constructor DECL has the correct form.  Complains
   if the class has a constructor of the form X(X).  */
   if the class has a constructor of the form X(X).  */
 
 
int
int
grok_ctor_properties (const_tree ctype, const_tree decl)
grok_ctor_properties (const_tree ctype, const_tree decl)
{
{
  int ctor_parm = copy_fn_p (decl);
  int ctor_parm = copy_fn_p (decl);
 
 
  if (ctor_parm < 0)
  if (ctor_parm < 0)
    {
    {
      /* [class.copy]
      /* [class.copy]
 
 
         A declaration of a constructor for a class X is ill-formed if
         A declaration of a constructor for a class X is ill-formed if
         its first parameter is of type (optionally cv-qualified) X
         its first parameter is of type (optionally cv-qualified) X
         and either there are no other parameters or else all other
         and either there are no other parameters or else all other
         parameters have default arguments.
         parameters have default arguments.
 
 
         We *don't* complain about member template instantiations that
         We *don't* complain about member template instantiations that
         have this form, though; they can occur as we try to decide
         have this form, though; they can occur as we try to decide
         what constructor to use during overload resolution.  Since
         what constructor to use during overload resolution.  Since
         overload resolution will never prefer such a constructor to
         overload resolution will never prefer such a constructor to
         the non-template copy constructor (which is either explicitly
         the non-template copy constructor (which is either explicitly
         or implicitly defined), there's no need to worry about their
         or implicitly defined), there's no need to worry about their
         existence.  Theoretically, they should never even be
         existence.  Theoretically, they should never even be
         instantiated, but that's hard to forestall.  */
         instantiated, but that's hard to forestall.  */
      error ("invalid constructor; you probably meant %<%T (const %T&)%>",
      error ("invalid constructor; you probably meant %<%T (const %T&)%>",
                ctype, ctype);
                ctype, ctype);
      return 0;
      return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* An operator with this code is unary, but can also be binary.  */
/* An operator with this code is unary, but can also be binary.  */
 
 
static int
static int
ambi_op_p (enum tree_code code)
ambi_op_p (enum tree_code code)
{
{
  return (code == INDIRECT_REF
  return (code == INDIRECT_REF
          || code == ADDR_EXPR
          || code == ADDR_EXPR
          || code == UNARY_PLUS_EXPR
          || code == UNARY_PLUS_EXPR
          || code == NEGATE_EXPR
          || code == NEGATE_EXPR
          || code == PREINCREMENT_EXPR
          || code == PREINCREMENT_EXPR
          || code == PREDECREMENT_EXPR);
          || code == PREDECREMENT_EXPR);
}
}
 
 
/* An operator with this name can only be unary.  */
/* An operator with this name can only be unary.  */
 
 
static int
static int
unary_op_p (enum tree_code code)
unary_op_p (enum tree_code code)
{
{
  return (code == TRUTH_NOT_EXPR
  return (code == TRUTH_NOT_EXPR
          || code == BIT_NOT_EXPR
          || code == BIT_NOT_EXPR
          || code == COMPONENT_REF
          || code == COMPONENT_REF
          || code == TYPE_EXPR);
          || code == TYPE_EXPR);
}
}
 
 
/* DECL is a declaration for an overloaded operator.  If COMPLAIN is true,
/* DECL is a declaration for an overloaded operator.  If COMPLAIN is true,
   errors are issued for invalid declarations.  */
   errors are issued for invalid declarations.  */
 
 
bool
bool
grok_op_properties (tree decl, bool complain)
grok_op_properties (tree decl, bool complain)
{
{
  tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl));
  tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl));
  tree argtype;
  tree argtype;
  int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE);
  int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE);
  tree name = DECL_NAME (decl);
  tree name = DECL_NAME (decl);
  enum tree_code operator_code;
  enum tree_code operator_code;
  int arity;
  int arity;
  bool ellipsis_p;
  bool ellipsis_p;
  tree class_type;
  tree class_type;
 
 
  /* Count the number of arguments and check for ellipsis.  */
  /* Count the number of arguments and check for ellipsis.  */
  for (argtype = argtypes, arity = 0;
  for (argtype = argtypes, arity = 0;
       argtype && argtype != void_list_node;
       argtype && argtype != void_list_node;
       argtype = TREE_CHAIN (argtype))
       argtype = TREE_CHAIN (argtype))
    ++arity;
    ++arity;
  ellipsis_p = !argtype;
  ellipsis_p = !argtype;
 
 
  class_type = DECL_CONTEXT (decl);
  class_type = DECL_CONTEXT (decl);
  if (class_type && !CLASS_TYPE_P (class_type))
  if (class_type && !CLASS_TYPE_P (class_type))
    class_type = NULL_TREE;
    class_type = NULL_TREE;
 
 
  if (DECL_CONV_FN_P (decl))
  if (DECL_CONV_FN_P (decl))
    operator_code = TYPE_EXPR;
    operator_code = TYPE_EXPR;
  else
  else
    do
    do
      {
      {
#define DEF_OPERATOR(NAME, CODE, MANGLING, ARITY, ASSN_P)       \
#define DEF_OPERATOR(NAME, CODE, MANGLING, ARITY, ASSN_P)       \
        if (ansi_opname (CODE) == name)                         \
        if (ansi_opname (CODE) == name)                         \
          {                                                     \
          {                                                     \
            operator_code = (CODE);                             \
            operator_code = (CODE);                             \
            break;                                              \
            break;                                              \
          }                                                     \
          }                                                     \
        else if (ansi_assopname (CODE) == name)                 \
        else if (ansi_assopname (CODE) == name)                 \
          {                                                     \
          {                                                     \
            operator_code = (CODE);                             \
            operator_code = (CODE);                             \
            DECL_ASSIGNMENT_OPERATOR_P (decl) = 1;              \
            DECL_ASSIGNMENT_OPERATOR_P (decl) = 1;              \
            break;                                              \
            break;                                              \
          }
          }
 
 
#include "operators.def"
#include "operators.def"
#undef DEF_OPERATOR
#undef DEF_OPERATOR
 
 
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
    while (0);
    while (0);
  gcc_assert (operator_code != MAX_TREE_CODES);
  gcc_assert (operator_code != MAX_TREE_CODES);
  SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);
  SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);
 
 
  if (class_type)
  if (class_type)
    switch (operator_code)
    switch (operator_code)
      {
      {
      case NEW_EXPR:
      case NEW_EXPR:
        TYPE_HAS_NEW_OPERATOR (class_type) = 1;
        TYPE_HAS_NEW_OPERATOR (class_type) = 1;
        break;
        break;
 
 
      case DELETE_EXPR:
      case DELETE_EXPR:
        TYPE_GETS_DELETE (class_type) |= 1;
        TYPE_GETS_DELETE (class_type) |= 1;
        break;
        break;
 
 
      case VEC_NEW_EXPR:
      case VEC_NEW_EXPR:
        TYPE_HAS_ARRAY_NEW_OPERATOR (class_type) = 1;
        TYPE_HAS_ARRAY_NEW_OPERATOR (class_type) = 1;
        break;
        break;
 
 
      case VEC_DELETE_EXPR:
      case VEC_DELETE_EXPR:
        TYPE_GETS_DELETE (class_type) |= 2;
        TYPE_GETS_DELETE (class_type) |= 2;
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
 
 
    /* [basic.std.dynamic.allocation]/1:
    /* [basic.std.dynamic.allocation]/1:
 
 
       A program is ill-formed if an allocation function is declared
       A program is ill-formed if an allocation function is declared
       in a namespace scope other than global scope or declared static
       in a namespace scope other than global scope or declared static
       in global scope.
       in global scope.
 
 
       The same also holds true for deallocation functions.  */
       The same also holds true for deallocation functions.  */
  if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR
  if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR
      || operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR)
      || operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR)
    {
    {
      if (DECL_NAMESPACE_SCOPE_P (decl))
      if (DECL_NAMESPACE_SCOPE_P (decl))
        {
        {
          if (CP_DECL_CONTEXT (decl) != global_namespace)
          if (CP_DECL_CONTEXT (decl) != global_namespace)
            {
            {
              error ("%qD may not be declared within a namespace", decl);
              error ("%qD may not be declared within a namespace", decl);
              return false;
              return false;
            }
            }
          else if (!TREE_PUBLIC (decl))
          else if (!TREE_PUBLIC (decl))
            {
            {
              error ("%qD may not be declared as static", decl);
              error ("%qD may not be declared as static", decl);
              return false;
              return false;
            }
            }
        }
        }
    }
    }
 
 
  if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR)
  if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR)
    {
    {
      TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl));
      TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl));
      DECL_IS_OPERATOR_NEW (decl) = 1;
      DECL_IS_OPERATOR_NEW (decl) = 1;
    }
    }
  else if (operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR)
  else if (operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR)
    TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl));
    TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl));
  else
  else
    {
    {
      /* An operator function must either be a non-static member function
      /* An operator function must either be a non-static member function
         or have at least one parameter of a class, a reference to a class,
         or have at least one parameter of a class, a reference to a class,
         an enumeration, or a reference to an enumeration.  13.4.0.6 */
         an enumeration, or a reference to an enumeration.  13.4.0.6 */
      if (! methodp || DECL_STATIC_FUNCTION_P (decl))
      if (! methodp || DECL_STATIC_FUNCTION_P (decl))
        {
        {
          if (operator_code == TYPE_EXPR
          if (operator_code == TYPE_EXPR
              || operator_code == CALL_EXPR
              || operator_code == CALL_EXPR
              || operator_code == COMPONENT_REF
              || operator_code == COMPONENT_REF
              || operator_code == ARRAY_REF
              || operator_code == ARRAY_REF
              || operator_code == NOP_EXPR)
              || operator_code == NOP_EXPR)
            {
            {
              error ("%qD must be a nonstatic member function", decl);
              error ("%qD must be a nonstatic member function", decl);
              return false;
              return false;
            }
            }
          else
          else
            {
            {
              tree p;
              tree p;
 
 
              if (DECL_STATIC_FUNCTION_P (decl))
              if (DECL_STATIC_FUNCTION_P (decl))
                {
                {
                  error ("%qD must be either a non-static member "
                  error ("%qD must be either a non-static member "
                         "function or a non-member function", decl);
                         "function or a non-member function", decl);
                  return false;
                  return false;
                }
                }
 
 
              for (p = argtypes; p && p != void_list_node; p = TREE_CHAIN (p))
              for (p = argtypes; p && p != void_list_node; p = TREE_CHAIN (p))
                {
                {
                  tree arg = non_reference (TREE_VALUE (p));
                  tree arg = non_reference (TREE_VALUE (p));
                  if (arg == error_mark_node)
                  if (arg == error_mark_node)
                    return false;
                    return false;
 
 
                  /* MAYBE_CLASS_TYPE_P, rather than CLASS_TYPE_P, is used
                  /* MAYBE_CLASS_TYPE_P, rather than CLASS_TYPE_P, is used
                     because these checks are performed even on
                     because these checks are performed even on
                     template functions.  */
                     template functions.  */
                  if (MAYBE_CLASS_TYPE_P (arg)
                  if (MAYBE_CLASS_TYPE_P (arg)
                      || TREE_CODE (arg) == ENUMERAL_TYPE)
                      || TREE_CODE (arg) == ENUMERAL_TYPE)
                    break;
                    break;
                }
                }
 
 
              if (!p || p == void_list_node)
              if (!p || p == void_list_node)
                {
                {
                  if (complain)
                  if (complain)
                    error ("%qD must have an argument of class or "
                    error ("%qD must have an argument of class or "
                           "enumerated type", decl);
                           "enumerated type", decl);
                  return false;
                  return false;
                }
                }
            }
            }
        }
        }
 
 
      /* There are no restrictions on the arguments to an overloaded
      /* There are no restrictions on the arguments to an overloaded
         "operator ()".  */
         "operator ()".  */
      if (operator_code == CALL_EXPR)
      if (operator_code == CALL_EXPR)
        return true;
        return true;
 
 
      /* Warn about conversion operators that will never be used.  */
      /* Warn about conversion operators that will never be used.  */
      if (IDENTIFIER_TYPENAME_P (name)
      if (IDENTIFIER_TYPENAME_P (name)
          && ! DECL_TEMPLATE_INFO (decl)
          && ! DECL_TEMPLATE_INFO (decl)
          && warn_conversion
          && warn_conversion
          /* Warn only declaring the function; there is no need to
          /* Warn only declaring the function; there is no need to
             warn again about out-of-class definitions.  */
             warn again about out-of-class definitions.  */
          && class_type == current_class_type)
          && class_type == current_class_type)
        {
        {
          tree t = TREE_TYPE (name);
          tree t = TREE_TYPE (name);
          int ref = (TREE_CODE (t) == REFERENCE_TYPE);
          int ref = (TREE_CODE (t) == REFERENCE_TYPE);
 
 
          if (ref)
          if (ref)
            t = TYPE_MAIN_VARIANT (TREE_TYPE (t));
            t = TYPE_MAIN_VARIANT (TREE_TYPE (t));
 
 
          if (TREE_CODE (t) == VOID_TYPE)
          if (TREE_CODE (t) == VOID_TYPE)
            warning (OPT_Wconversion,
            warning (OPT_Wconversion,
                     ref
                     ref
                     ? G_("conversion to a reference to void "
                     ? G_("conversion to a reference to void "
                          "will never use a type conversion operator")
                          "will never use a type conversion operator")
                     : G_("conversion to void "
                     : G_("conversion to void "
                          "will never use a type conversion operator"));
                          "will never use a type conversion operator"));
          else if (class_type)
          else if (class_type)
            {
            {
              if (t == class_type)
              if (t == class_type)
                warning (OPT_Wconversion,
                warning (OPT_Wconversion,
                     ref
                     ref
                     ? G_("conversion to a reference to the same type "
                     ? G_("conversion to a reference to the same type "
                          "will never use a type conversion operator")
                          "will never use a type conversion operator")
                     : G_("conversion to the same type "
                     : G_("conversion to the same type "
                          "will never use a type conversion operator"));
                          "will never use a type conversion operator"));
              /* Don't force t to be complete here.  */
              /* Don't force t to be complete here.  */
              else if (MAYBE_CLASS_TYPE_P (t)
              else if (MAYBE_CLASS_TYPE_P (t)
                       && COMPLETE_TYPE_P (t)
                       && COMPLETE_TYPE_P (t)
                       && DERIVED_FROM_P (t, class_type))
                       && DERIVED_FROM_P (t, class_type))
                 warning (OPT_Wconversion,
                 warning (OPT_Wconversion,
                          ref
                          ref
                          ? G_("conversion to a reference to a base class "
                          ? G_("conversion to a reference to a base class "
                               "will never use a type conversion operator")
                               "will never use a type conversion operator")
                          : G_("conversion to a base class "
                          : G_("conversion to a base class "
                               "will never use a type conversion operator"));
                               "will never use a type conversion operator"));
            }
            }
 
 
        }
        }
 
 
      if (operator_code == COND_EXPR)
      if (operator_code == COND_EXPR)
        {
        {
          /* 13.4.0.3 */
          /* 13.4.0.3 */
          error ("ISO C++ prohibits overloading operator ?:");
          error ("ISO C++ prohibits overloading operator ?:");
          return false;
          return false;
        }
        }
      else if (ellipsis_p)
      else if (ellipsis_p)
        {
        {
          error ("%qD must not have variable number of arguments", decl);
          error ("%qD must not have variable number of arguments", decl);
          return false;
          return false;
        }
        }
      else if (ambi_op_p (operator_code))
      else if (ambi_op_p (operator_code))
        {
        {
          if (arity == 1)
          if (arity == 1)
            /* We pick the one-argument operator codes by default, so
            /* We pick the one-argument operator codes by default, so
               we don't have to change anything.  */
               we don't have to change anything.  */
            ;
            ;
          else if (arity == 2)
          else if (arity == 2)
            {
            {
              /* If we thought this was a unary operator, we now know
              /* If we thought this was a unary operator, we now know
                 it to be a binary operator.  */
                 it to be a binary operator.  */
              switch (operator_code)
              switch (operator_code)
                {
                {
                case INDIRECT_REF:
                case INDIRECT_REF:
                  operator_code = MULT_EXPR;
                  operator_code = MULT_EXPR;
                  break;
                  break;
 
 
                case ADDR_EXPR:
                case ADDR_EXPR:
                  operator_code = BIT_AND_EXPR;
                  operator_code = BIT_AND_EXPR;
                  break;
                  break;
 
 
                case UNARY_PLUS_EXPR:
                case UNARY_PLUS_EXPR:
                  operator_code = PLUS_EXPR;
                  operator_code = PLUS_EXPR;
                  break;
                  break;
 
 
                case NEGATE_EXPR:
                case NEGATE_EXPR:
                  operator_code = MINUS_EXPR;
                  operator_code = MINUS_EXPR;
                  break;
                  break;
 
 
                case PREINCREMENT_EXPR:
                case PREINCREMENT_EXPR:
                  operator_code = POSTINCREMENT_EXPR;
                  operator_code = POSTINCREMENT_EXPR;
                  break;
                  break;
 
 
                case PREDECREMENT_EXPR:
                case PREDECREMENT_EXPR:
                  operator_code = POSTDECREMENT_EXPR;
                  operator_code = POSTDECREMENT_EXPR;
                  break;
                  break;
 
 
                default:
                default:
                  gcc_unreachable ();
                  gcc_unreachable ();
                }
                }
 
 
              SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);
              SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);
 
 
              if ((operator_code == POSTINCREMENT_EXPR
              if ((operator_code == POSTINCREMENT_EXPR
                   || operator_code == POSTDECREMENT_EXPR)
                   || operator_code == POSTDECREMENT_EXPR)
                  && ! processing_template_decl
                  && ! processing_template_decl
                  && ! same_type_p (TREE_VALUE (TREE_CHAIN (argtypes)), integer_type_node))
                  && ! same_type_p (TREE_VALUE (TREE_CHAIN (argtypes)), integer_type_node))
                {
                {
                  if (methodp)
                  if (methodp)
                    error ("postfix %qD must take %<int%> as its argument",
                    error ("postfix %qD must take %<int%> as its argument",
                           decl);
                           decl);
                  else
                  else
                    error ("postfix %qD must take %<int%> as its second "
                    error ("postfix %qD must take %<int%> as its second "
                           "argument", decl);
                           "argument", decl);
                  return false;
                  return false;
                }
                }
            }
            }
          else
          else
            {
            {
              if (methodp)
              if (methodp)
                error ("%qD must take either zero or one argument", decl);
                error ("%qD must take either zero or one argument", decl);
              else
              else
                error ("%qD must take either one or two arguments", decl);
                error ("%qD must take either one or two arguments", decl);
              return false;
              return false;
            }
            }
 
 
          /* More Effective C++ rule 6.  */
          /* More Effective C++ rule 6.  */
          if (warn_ecpp
          if (warn_ecpp
              && (operator_code == POSTINCREMENT_EXPR
              && (operator_code == POSTINCREMENT_EXPR
                  || operator_code == POSTDECREMENT_EXPR
                  || operator_code == POSTDECREMENT_EXPR
                  || operator_code == PREINCREMENT_EXPR
                  || operator_code == PREINCREMENT_EXPR
                  || operator_code == PREDECREMENT_EXPR))
                  || operator_code == PREDECREMENT_EXPR))
            {
            {
              tree arg = TREE_VALUE (argtypes);
              tree arg = TREE_VALUE (argtypes);
              tree ret = TREE_TYPE (TREE_TYPE (decl));
              tree ret = TREE_TYPE (TREE_TYPE (decl));
              if (methodp || TREE_CODE (arg) == REFERENCE_TYPE)
              if (methodp || TREE_CODE (arg) == REFERENCE_TYPE)
                arg = TREE_TYPE (arg);
                arg = TREE_TYPE (arg);
              arg = TYPE_MAIN_VARIANT (arg);
              arg = TYPE_MAIN_VARIANT (arg);
              if (operator_code == PREINCREMENT_EXPR
              if (operator_code == PREINCREMENT_EXPR
                  || operator_code == PREDECREMENT_EXPR)
                  || operator_code == PREDECREMENT_EXPR)
                {
                {
                  if (TREE_CODE (ret) != REFERENCE_TYPE
                  if (TREE_CODE (ret) != REFERENCE_TYPE
                      || !same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (ret)),
                      || !same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (ret)),
                                       arg))
                                       arg))
                    warning (OPT_Weffc__, "prefix %qD should return %qT", decl,
                    warning (OPT_Weffc__, "prefix %qD should return %qT", decl,
                             build_reference_type (arg));
                             build_reference_type (arg));
                }
                }
              else
              else
                {
                {
                  if (!same_type_p (TYPE_MAIN_VARIANT (ret), arg))
                  if (!same_type_p (TYPE_MAIN_VARIANT (ret), arg))
                    warning (OPT_Weffc__, "postfix %qD should return %qT", decl, arg);
                    warning (OPT_Weffc__, "postfix %qD should return %qT", decl, arg);
                }
                }
            }
            }
        }
        }
      else if (unary_op_p (operator_code))
      else if (unary_op_p (operator_code))
        {
        {
          if (arity != 1)
          if (arity != 1)
            {
            {
              if (methodp)
              if (methodp)
                error ("%qD must take %<void%>", decl);
                error ("%qD must take %<void%>", decl);
              else
              else
                error ("%qD must take exactly one argument", decl);
                error ("%qD must take exactly one argument", decl);
              return false;
              return false;
            }
            }
        }
        }
      else /* if (binary_op_p (operator_code)) */
      else /* if (binary_op_p (operator_code)) */
        {
        {
          if (arity != 2)
          if (arity != 2)
            {
            {
              if (methodp)
              if (methodp)
                error ("%qD must take exactly one argument", decl);
                error ("%qD must take exactly one argument", decl);
              else
              else
                error ("%qD must take exactly two arguments", decl);
                error ("%qD must take exactly two arguments", decl);
              return false;
              return false;
            }
            }
 
 
          /* More Effective C++ rule 7.  */
          /* More Effective C++ rule 7.  */
          if (warn_ecpp
          if (warn_ecpp
              && (operator_code == TRUTH_ANDIF_EXPR
              && (operator_code == TRUTH_ANDIF_EXPR
                  || operator_code == TRUTH_ORIF_EXPR
                  || operator_code == TRUTH_ORIF_EXPR
                  || operator_code == COMPOUND_EXPR))
                  || operator_code == COMPOUND_EXPR))
            warning (OPT_Weffc__, "user-defined %qD always evaluates both arguments",
            warning (OPT_Weffc__, "user-defined %qD always evaluates both arguments",
                     decl);
                     decl);
        }
        }
 
 
      /* Effective C++ rule 23.  */
      /* Effective C++ rule 23.  */
      if (warn_ecpp
      if (warn_ecpp
          && arity == 2
          && arity == 2
          && !DECL_ASSIGNMENT_OPERATOR_P (decl)
          && !DECL_ASSIGNMENT_OPERATOR_P (decl)
          && (operator_code == PLUS_EXPR
          && (operator_code == PLUS_EXPR
              || operator_code == MINUS_EXPR
              || operator_code == MINUS_EXPR
              || operator_code == TRUNC_DIV_EXPR
              || operator_code == TRUNC_DIV_EXPR
              || operator_code == MULT_EXPR
              || operator_code == MULT_EXPR
              || operator_code == TRUNC_MOD_EXPR)
              || operator_code == TRUNC_MOD_EXPR)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (decl))) == REFERENCE_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (decl))) == REFERENCE_TYPE)
        warning (OPT_Weffc__, "%qD should return by value", decl);
        warning (OPT_Weffc__, "%qD should return by value", decl);
 
 
      /* [over.oper]/8 */
      /* [over.oper]/8 */
      for (; argtypes && argtypes != void_list_node;
      for (; argtypes && argtypes != void_list_node;
          argtypes = TREE_CHAIN (argtypes))
          argtypes = TREE_CHAIN (argtypes))
        if (TREE_PURPOSE (argtypes))
        if (TREE_PURPOSE (argtypes))
          {
          {
            TREE_PURPOSE (argtypes) = NULL_TREE;
            TREE_PURPOSE (argtypes) = NULL_TREE;
            if (operator_code == POSTINCREMENT_EXPR
            if (operator_code == POSTINCREMENT_EXPR
                || operator_code == POSTDECREMENT_EXPR)
                || operator_code == POSTDECREMENT_EXPR)
              {
              {
                pedwarn (input_location, OPT_pedantic, "%qD cannot have default arguments",
                pedwarn (input_location, OPT_pedantic, "%qD cannot have default arguments",
                         decl);
                         decl);
              }
              }
            else
            else
              {
              {
                error ("%qD cannot have default arguments", decl);
                error ("%qD cannot have default arguments", decl);
                return false;
                return false;
              }
              }
          }
          }
    }
    }
  return true;
  return true;
}
}


/* Return a string giving the keyword associate with CODE.  */
/* Return a string giving the keyword associate with CODE.  */
 
 
static const char *
static const char *
tag_name (enum tag_types code)
tag_name (enum tag_types code)
{
{
  switch (code)
  switch (code)
    {
    {
    case record_type:
    case record_type:
      return "struct";
      return "struct";
    case class_type:
    case class_type:
      return "class";
      return "class";
    case union_type:
    case union_type:
      return "union";
      return "union";
    case enum_type:
    case enum_type:
      return "enum";
      return "enum";
    case typename_type:
    case typename_type:
      return "typename";
      return "typename";
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Name lookup in an elaborated-type-specifier (after the keyword
/* Name lookup in an elaborated-type-specifier (after the keyword
   indicated by TAG_CODE) has found the TYPE_DECL DECL.  If the
   indicated by TAG_CODE) has found the TYPE_DECL DECL.  If the
   elaborated-type-specifier is invalid, issue a diagnostic and return
   elaborated-type-specifier is invalid, issue a diagnostic and return
   error_mark_node; otherwise, return the *_TYPE to which it referred.
   error_mark_node; otherwise, return the *_TYPE to which it referred.
   If ALLOW_TEMPLATE_P is true, TYPE may be a class template.  */
   If ALLOW_TEMPLATE_P is true, TYPE may be a class template.  */
 
 
tree
tree
check_elaborated_type_specifier (enum tag_types tag_code,
check_elaborated_type_specifier (enum tag_types tag_code,
                                 tree decl,
                                 tree decl,
                                 bool allow_template_p)
                                 bool allow_template_p)
{
{
  tree type;
  tree type;
 
 
  /* In the case of:
  /* In the case of:
 
 
       struct S { struct S *p; };
       struct S { struct S *p; };
 
 
     name lookup will find the TYPE_DECL for the implicit "S::S"
     name lookup will find the TYPE_DECL for the implicit "S::S"
     typedef.  Adjust for that here.  */
     typedef.  Adjust for that here.  */
  if (DECL_SELF_REFERENCE_P (decl))
  if (DECL_SELF_REFERENCE_P (decl))
    decl = TYPE_NAME (TREE_TYPE (decl));
    decl = TYPE_NAME (TREE_TYPE (decl));
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
 
 
  /* Check TEMPLATE_TYPE_PARM first because DECL_IMPLICIT_TYPEDEF_P
  /* Check TEMPLATE_TYPE_PARM first because DECL_IMPLICIT_TYPEDEF_P
     is false for this case as well.  */
     is false for this case as well.  */
  if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
  if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
    {
    {
      error ("using template type parameter %qT after %qs",
      error ("using template type parameter %qT after %qs",
             type, tag_name (tag_code));
             type, tag_name (tag_code));
      return error_mark_node;
      return error_mark_node;
    }
    }
  /*   [dcl.type.elab]
  /*   [dcl.type.elab]
 
 
       If the identifier resolves to a typedef-name or a template
       If the identifier resolves to a typedef-name or a template
       type-parameter, the elaborated-type-specifier is ill-formed.
       type-parameter, the elaborated-type-specifier is ill-formed.
 
 
     In other words, the only legitimate declaration to use in the
     In other words, the only legitimate declaration to use in the
     elaborated type specifier is the implicit typedef created when
     elaborated type specifier is the implicit typedef created when
     the type is declared.  */
     the type is declared.  */
  else if (!DECL_IMPLICIT_TYPEDEF_P (decl)
  else if (!DECL_IMPLICIT_TYPEDEF_P (decl)
           && !DECL_SELF_REFERENCE_P (decl)
           && !DECL_SELF_REFERENCE_P (decl)
           && tag_code != typename_type)
           && tag_code != typename_type)
    {
    {
      error ("using typedef-name %qD after %qs", decl, tag_name (tag_code));
      error ("using typedef-name %qD after %qs", decl, tag_name (tag_code));
      error ("%q+D has a previous declaration here", decl);
      error ("%q+D has a previous declaration here", decl);
      return error_mark_node;
      return error_mark_node;
    }
    }
  else if (TREE_CODE (type) != RECORD_TYPE
  else if (TREE_CODE (type) != RECORD_TYPE
           && TREE_CODE (type) != UNION_TYPE
           && TREE_CODE (type) != UNION_TYPE
           && tag_code != enum_type
           && tag_code != enum_type
           && tag_code != typename_type)
           && tag_code != typename_type)
    {
    {
      error ("%qT referred to as %qs", type, tag_name (tag_code));
      error ("%qT referred to as %qs", type, tag_name (tag_code));
      error ("%q+T has a previous declaration here", type);
      error ("%q+T has a previous declaration here", type);
      return error_mark_node;
      return error_mark_node;
    }
    }
  else if (TREE_CODE (type) != ENUMERAL_TYPE
  else if (TREE_CODE (type) != ENUMERAL_TYPE
           && tag_code == enum_type)
           && tag_code == enum_type)
    {
    {
      error ("%qT referred to as enum", type);
      error ("%qT referred to as enum", type);
      error ("%q+T has a previous declaration here", type);
      error ("%q+T has a previous declaration here", type);
      return error_mark_node;
      return error_mark_node;
    }
    }
  else if (!allow_template_p
  else if (!allow_template_p
           && TREE_CODE (type) == RECORD_TYPE
           && TREE_CODE (type) == RECORD_TYPE
           && CLASSTYPE_IS_TEMPLATE (type))
           && CLASSTYPE_IS_TEMPLATE (type))
    {
    {
      /* If a class template appears as elaborated type specifier
      /* If a class template appears as elaborated type specifier
         without a template header such as:
         without a template header such as:
 
 
           template <class T> class C {};
           template <class T> class C {};
           void f(class C);             // No template header here
           void f(class C);             // No template header here
 
 
         then the required template argument is missing.  */
         then the required template argument is missing.  */
      error ("template argument required for %<%s %T%>",
      error ("template argument required for %<%s %T%>",
             tag_name (tag_code),
             tag_name (tag_code),
             DECL_NAME (CLASSTYPE_TI_TEMPLATE (type)));
             DECL_NAME (CLASSTYPE_TI_TEMPLATE (type)));
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
/* Lookup NAME in elaborate type specifier in scope according to
/* Lookup NAME in elaborate type specifier in scope according to
   SCOPE and issue diagnostics if necessary.
   SCOPE and issue diagnostics if necessary.
   Return *_TYPE node upon success, NULL_TREE when the NAME is not
   Return *_TYPE node upon success, NULL_TREE when the NAME is not
   found, and ERROR_MARK_NODE for type error.  */
   found, and ERROR_MARK_NODE for type error.  */
 
 
static tree
static tree
lookup_and_check_tag (enum tag_types tag_code, tree name,
lookup_and_check_tag (enum tag_types tag_code, tree name,
                      tag_scope scope, bool template_header_p)
                      tag_scope scope, bool template_header_p)
{
{
  tree t;
  tree t;
  tree decl;
  tree decl;
  if (scope == ts_global)
  if (scope == ts_global)
    {
    {
      /* First try ordinary name lookup, ignoring hidden class name
      /* First try ordinary name lookup, ignoring hidden class name
         injected via friend declaration.  */
         injected via friend declaration.  */
      decl = lookup_name_prefer_type (name, 2);
      decl = lookup_name_prefer_type (name, 2);
      /* If that fails, the name will be placed in the smallest
      /* If that fails, the name will be placed in the smallest
         non-class, non-function-prototype scope according to 3.3.1/5.
         non-class, non-function-prototype scope according to 3.3.1/5.
         We may already have a hidden name declared as friend in this
         We may already have a hidden name declared as friend in this
         scope.  So lookup again but not ignoring hidden names.
         scope.  So lookup again but not ignoring hidden names.
         If we find one, that name will be made visible rather than
         If we find one, that name will be made visible rather than
         creating a new tag.  */
         creating a new tag.  */
      if (!decl)
      if (!decl)
        decl = lookup_type_scope (name, ts_within_enclosing_non_class);
        decl = lookup_type_scope (name, ts_within_enclosing_non_class);
    }
    }
  else
  else
    decl = lookup_type_scope (name, scope);
    decl = lookup_type_scope (name, scope);
 
 
  if (decl && DECL_CLASS_TEMPLATE_P (decl))
  if (decl && DECL_CLASS_TEMPLATE_P (decl))
    decl = DECL_TEMPLATE_RESULT (decl);
    decl = DECL_TEMPLATE_RESULT (decl);
 
 
  if (decl && TREE_CODE (decl) == TYPE_DECL)
  if (decl && TREE_CODE (decl) == TYPE_DECL)
    {
    {
      /* Look for invalid nested type:
      /* Look for invalid nested type:
           class C {
           class C {
             class C {};
             class C {};
           };  */
           };  */
      if (scope == ts_current && DECL_SELF_REFERENCE_P (decl))
      if (scope == ts_current && DECL_SELF_REFERENCE_P (decl))
        {
        {
          error ("%qD has the same name as the class in which it is "
          error ("%qD has the same name as the class in which it is "
                 "declared",
                 "declared",
                 decl);
                 decl);
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      /* Two cases we need to consider when deciding if a class
      /* Two cases we need to consider when deciding if a class
         template is allowed as an elaborated type specifier:
         template is allowed as an elaborated type specifier:
         1. It is a self reference to its own class.
         1. It is a self reference to its own class.
         2. It comes with a template header.
         2. It comes with a template header.
 
 
         For example:
         For example:
 
 
           template <class T> class C {
           template <class T> class C {
             class C *c1;               // DECL_SELF_REFERENCE_P is true
             class C *c1;               // DECL_SELF_REFERENCE_P is true
             class D;
             class D;
           };
           };
           template <class U> class C; // template_header_p is true
           template <class U> class C; // template_header_p is true
           template <class T> class C<T>::D {
           template <class T> class C<T>::D {
             class C *c2;               // DECL_SELF_REFERENCE_P is true
             class C *c2;               // DECL_SELF_REFERENCE_P is true
           };  */
           };  */
 
 
      t = check_elaborated_type_specifier (tag_code,
      t = check_elaborated_type_specifier (tag_code,
                                           decl,
                                           decl,
                                           template_header_p
                                           template_header_p
                                           | DECL_SELF_REFERENCE_P (decl));
                                           | DECL_SELF_REFERENCE_P (decl));
      return t;
      return t;
    }
    }
  else if (decl && TREE_CODE (decl) == TREE_LIST)
  else if (decl && TREE_CODE (decl) == TREE_LIST)
    {
    {
      error ("reference to %qD is ambiguous", name);
      error ("reference to %qD is ambiguous", name);
      print_candidates (decl);
      print_candidates (decl);
      return error_mark_node;
      return error_mark_node;
    }
    }
  else
  else
    return NULL_TREE;
    return NULL_TREE;
}
}
 
 
/* Get the struct, enum or union (TAG_CODE says which) with tag NAME.
/* Get the struct, enum or union (TAG_CODE says which) with tag NAME.
   Define the tag as a forward-reference if it is not defined.
   Define the tag as a forward-reference if it is not defined.
 
 
   If a declaration is given, process it here, and report an error if
   If a declaration is given, process it here, and report an error if
   multiple declarations are not identical.
   multiple declarations are not identical.
 
 
   SCOPE is TS_CURRENT when this is also a definition.  Only look in
   SCOPE is TS_CURRENT when this is also a definition.  Only look in
   the current frame for the name (since C++ allows new names in any
   the current frame for the name (since C++ allows new names in any
   scope.)  It is TS_WITHIN_ENCLOSING_NON_CLASS if this is a friend
   scope.)  It is TS_WITHIN_ENCLOSING_NON_CLASS if this is a friend
   declaration.  Only look beginning from the current scope outward up
   declaration.  Only look beginning from the current scope outward up
   till the nearest non-class scope.  Otherwise it is TS_GLOBAL.
   till the nearest non-class scope.  Otherwise it is TS_GLOBAL.
 
 
   TEMPLATE_HEADER_P is true when this declaration is preceded by
   TEMPLATE_HEADER_P is true when this declaration is preceded by
   a set of template parameters.  */
   a set of template parameters.  */
 
 
tree
tree
xref_tag (enum tag_types tag_code, tree name,
xref_tag (enum tag_types tag_code, tree name,
          tag_scope scope, bool template_header_p)
          tag_scope scope, bool template_header_p)
{
{
  enum tree_code code;
  enum tree_code code;
  tree t;
  tree t;
  tree context = NULL_TREE;
  tree context = NULL_TREE;
 
 
  timevar_push (TV_NAME_LOOKUP);
  timevar_push (TV_NAME_LOOKUP);
 
 
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
 
 
  switch (tag_code)
  switch (tag_code)
    {
    {
    case record_type:
    case record_type:
    case class_type:
    case class_type:
      code = RECORD_TYPE;
      code = RECORD_TYPE;
      break;
      break;
    case union_type:
    case union_type:
      code = UNION_TYPE;
      code = UNION_TYPE;
      break;
      break;
    case enum_type:
    case enum_type:
      code = ENUMERAL_TYPE;
      code = ENUMERAL_TYPE;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* In case of anonymous name, xref_tag is only called to
  /* In case of anonymous name, xref_tag is only called to
     make type node and push name.  Name lookup is not required.  */
     make type node and push name.  Name lookup is not required.  */
  if (ANON_AGGRNAME_P (name))
  if (ANON_AGGRNAME_P (name))
    t = NULL_TREE;
    t = NULL_TREE;
  else
  else
    t = lookup_and_check_tag  (tag_code, name,
    t = lookup_and_check_tag  (tag_code, name,
                               scope, template_header_p);
                               scope, template_header_p);
 
 
  if (t == error_mark_node)
  if (t == error_mark_node)
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
    POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
 
 
  if (scope != ts_current && t && current_class_type
  if (scope != ts_current && t && current_class_type
      && template_class_depth (current_class_type)
      && template_class_depth (current_class_type)
      && template_header_p)
      && template_header_p)
    {
    {
      /* Since SCOPE is not TS_CURRENT, we are not looking at a
      /* Since SCOPE is not TS_CURRENT, we are not looking at a
         definition of this tag.  Since, in addition, we are currently
         definition of this tag.  Since, in addition, we are currently
         processing a (member) template declaration of a template
         processing a (member) template declaration of a template
         class, we must be very careful; consider:
         class, we must be very careful; consider:
 
 
           template <class X>
           template <class X>
           struct S1
           struct S1
 
 
           template <class U>
           template <class U>
           struct S2
           struct S2
           { template <class V>
           { template <class V>
           friend struct S1; };
           friend struct S1; };
 
 
         Here, the S2::S1 declaration should not be confused with the
         Here, the S2::S1 declaration should not be confused with the
         outer declaration.  In particular, the inner version should
         outer declaration.  In particular, the inner version should
         have a template parameter of level 2, not level 1.  This
         have a template parameter of level 2, not level 1.  This
         would be particularly important if the member declaration
         would be particularly important if the member declaration
         were instead:
         were instead:
 
 
           template <class V = U> friend struct S1;
           template <class V = U> friend struct S1;
 
 
         say, when we should tsubst into `U' when instantiating
         say, when we should tsubst into `U' when instantiating
         S2.  On the other hand, when presented with:
         S2.  On the other hand, when presented with:
 
 
           template <class T>
           template <class T>
           struct S1 {
           struct S1 {
             template <class U>
             template <class U>
             struct S2 {};
             struct S2 {};
             template <class U>
             template <class U>
             friend struct S2;
             friend struct S2;
           };
           };
 
 
         we must find the inner binding eventually.  We
         we must find the inner binding eventually.  We
         accomplish this by making sure that the new type we
         accomplish this by making sure that the new type we
         create to represent this declaration has the right
         create to represent this declaration has the right
         TYPE_CONTEXT.  */
         TYPE_CONTEXT.  */
      context = TYPE_CONTEXT (t);
      context = TYPE_CONTEXT (t);
      t = NULL_TREE;
      t = NULL_TREE;
    }
    }
 
 
  if (! t)
  if (! t)
    {
    {
      /* If no such tag is yet defined, create a forward-reference node
      /* If no such tag is yet defined, create a forward-reference node
         and record it as the "definition".
         and record it as the "definition".
         When a real declaration of this type is found,
         When a real declaration of this type is found,
         the forward-reference will be altered into a real type.  */
         the forward-reference will be altered into a real type.  */
      if (code == ENUMERAL_TYPE)
      if (code == ENUMERAL_TYPE)
        {
        {
          error ("use of enum %q#D without previous declaration", name);
          error ("use of enum %q#D without previous declaration", name);
          POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
          POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
        }
        }
      else
      else
        {
        {
          t = make_class_type (code);
          t = make_class_type (code);
          TYPE_CONTEXT (t) = context;
          TYPE_CONTEXT (t) = context;
          t = pushtag (name, t, scope);
          t = pushtag (name, t, scope);
        }
        }
    }
    }
  else
  else
    {
    {
      if (template_header_p && MAYBE_CLASS_TYPE_P (t))
      if (template_header_p && MAYBE_CLASS_TYPE_P (t))
        {
        {
          if (!redeclare_class_template (t, current_template_parms))
          if (!redeclare_class_template (t, current_template_parms))
            POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
            POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
        }
        }
      else if (!processing_template_decl
      else if (!processing_template_decl
               && CLASS_TYPE_P (t)
               && CLASS_TYPE_P (t)
               && CLASSTYPE_IS_TEMPLATE (t))
               && CLASSTYPE_IS_TEMPLATE (t))
        {
        {
          error ("redeclaration of %qT as a non-template", t);
          error ("redeclaration of %qT as a non-template", t);
          error ("previous declaration %q+D", t);
          error ("previous declaration %q+D", t);
          POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
          POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
        }
        }
 
 
      /* Make injected friend class visible.  */
      /* Make injected friend class visible.  */
      if (scope != ts_within_enclosing_non_class
      if (scope != ts_within_enclosing_non_class
          && hidden_name_p (TYPE_NAME (t)))
          && hidden_name_p (TYPE_NAME (t)))
        {
        {
          DECL_ANTICIPATED (TYPE_NAME (t)) = 0;
          DECL_ANTICIPATED (TYPE_NAME (t)) = 0;
          DECL_FRIEND_P (TYPE_NAME (t)) = 0;
          DECL_FRIEND_P (TYPE_NAME (t)) = 0;
 
 
          if (TYPE_TEMPLATE_INFO (t))
          if (TYPE_TEMPLATE_INFO (t))
            {
            {
              DECL_ANTICIPATED (TYPE_TI_TEMPLATE (t)) = 0;
              DECL_ANTICIPATED (TYPE_TI_TEMPLATE (t)) = 0;
              DECL_FRIEND_P (TYPE_TI_TEMPLATE (t)) = 0;
              DECL_FRIEND_P (TYPE_TI_TEMPLATE (t)) = 0;
            }
            }
        }
        }
    }
    }
 
 
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
  POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
}
}
 
 
tree
tree
xref_tag_from_type (tree old, tree id, tag_scope scope)
xref_tag_from_type (tree old, tree id, tag_scope scope)
{
{
  enum tag_types tag_kind;
  enum tag_types tag_kind;
 
 
  if (TREE_CODE (old) == RECORD_TYPE)
  if (TREE_CODE (old) == RECORD_TYPE)
    tag_kind = (CLASSTYPE_DECLARED_CLASS (old) ? class_type : record_type);
    tag_kind = (CLASSTYPE_DECLARED_CLASS (old) ? class_type : record_type);
  else
  else
    tag_kind  = union_type;
    tag_kind  = union_type;
 
 
  if (id == NULL_TREE)
  if (id == NULL_TREE)
    id = TYPE_IDENTIFIER (old);
    id = TYPE_IDENTIFIER (old);
 
 
  return xref_tag (tag_kind, id, scope, false);
  return xref_tag (tag_kind, id, scope, false);
}
}
 
 
/* Create the binfo hierarchy for REF with (possibly NULL) base list
/* Create the binfo hierarchy for REF with (possibly NULL) base list
   BASE_LIST.  For each element on BASE_LIST the TREE_PURPOSE is an
   BASE_LIST.  For each element on BASE_LIST the TREE_PURPOSE is an
   access_* node, and the TREE_VALUE is the type of the base-class.
   access_* node, and the TREE_VALUE is the type of the base-class.
   Non-NULL TREE_TYPE indicates virtual inheritance.
   Non-NULL TREE_TYPE indicates virtual inheritance.
 
 
   Returns true if the binfo hierarchy was successfully created,
   Returns true if the binfo hierarchy was successfully created,
   false if an error was detected. */
   false if an error was detected. */
 
 
bool
bool
xref_basetypes (tree ref, tree base_list)
xref_basetypes (tree ref, tree base_list)
{
{
  tree *basep;
  tree *basep;
  tree binfo, base_binfo;
  tree binfo, base_binfo;
  unsigned max_vbases = 0; /* Maximum direct & indirect virtual bases.  */
  unsigned max_vbases = 0; /* Maximum direct & indirect virtual bases.  */
  unsigned max_bases = 0;  /* Maximum direct bases.  */
  unsigned max_bases = 0;  /* Maximum direct bases.  */
  int i;
  int i;
  tree default_access;
  tree default_access;
  tree igo_prev; /* Track Inheritance Graph Order.  */
  tree igo_prev; /* Track Inheritance Graph Order.  */
 
 
  if (ref == error_mark_node)
  if (ref == error_mark_node)
    return false;
    return false;
 
 
  /* The base of a derived class is private by default, all others are
  /* The base of a derived class is private by default, all others are
     public.  */
     public.  */
  default_access = (TREE_CODE (ref) == RECORD_TYPE
  default_access = (TREE_CODE (ref) == RECORD_TYPE
                    && CLASSTYPE_DECLARED_CLASS (ref)
                    && CLASSTYPE_DECLARED_CLASS (ref)
                    ? access_private_node : access_public_node);
                    ? access_private_node : access_public_node);
 
 
  /* First, make sure that any templates in base-classes are
  /* First, make sure that any templates in base-classes are
     instantiated.  This ensures that if we call ourselves recursively
     instantiated.  This ensures that if we call ourselves recursively
     we do not get confused about which classes are marked and which
     we do not get confused about which classes are marked and which
     are not.  */
     are not.  */
  basep = &base_list;
  basep = &base_list;
  while (*basep)
  while (*basep)
    {
    {
      tree basetype = TREE_VALUE (*basep);
      tree basetype = TREE_VALUE (*basep);
 
 
      if (!(processing_template_decl && uses_template_parms (basetype))
      if (!(processing_template_decl && uses_template_parms (basetype))
          && !complete_type_or_else (basetype, NULL))
          && !complete_type_or_else (basetype, NULL))
        /* An incomplete type.  Remove it from the list.  */
        /* An incomplete type.  Remove it from the list.  */
        *basep = TREE_CHAIN (*basep);
        *basep = TREE_CHAIN (*basep);
      else
      else
        {
        {
          max_bases++;
          max_bases++;
          if (TREE_TYPE (*basep))
          if (TREE_TYPE (*basep))
            max_vbases++;
            max_vbases++;
          if (CLASS_TYPE_P (basetype))
          if (CLASS_TYPE_P (basetype))
            max_vbases += VEC_length (tree, CLASSTYPE_VBASECLASSES (basetype));
            max_vbases += VEC_length (tree, CLASSTYPE_VBASECLASSES (basetype));
          basep = &TREE_CHAIN (*basep);
          basep = &TREE_CHAIN (*basep);
        }
        }
    }
    }
 
 
  TYPE_MARKED_P (ref) = 1;
  TYPE_MARKED_P (ref) = 1;
 
 
  /* The binfo slot should be empty, unless this is an (ill-formed)
  /* The binfo slot should be empty, unless this is an (ill-formed)
     redefinition.  */
     redefinition.  */
  gcc_assert (!TYPE_BINFO (ref) || TYPE_SIZE (ref));
  gcc_assert (!TYPE_BINFO (ref) || TYPE_SIZE (ref));
  gcc_assert (TYPE_MAIN_VARIANT (ref) == ref);
  gcc_assert (TYPE_MAIN_VARIANT (ref) == ref);
 
 
  binfo = make_tree_binfo (max_bases);
  binfo = make_tree_binfo (max_bases);
 
 
  TYPE_BINFO (ref) = binfo;
  TYPE_BINFO (ref) = binfo;
  BINFO_OFFSET (binfo) = size_zero_node;
  BINFO_OFFSET (binfo) = size_zero_node;
  BINFO_TYPE (binfo) = ref;
  BINFO_TYPE (binfo) = ref;
 
 
  /* Apply base-class info set up to the variants of this type.  */
  /* Apply base-class info set up to the variants of this type.  */
  fixup_type_variants (ref);
  fixup_type_variants (ref);
 
 
  if (max_bases)
  if (max_bases)
    {
    {
      BINFO_BASE_ACCESSES (binfo) = VEC_alloc (tree, gc, max_bases);
      BINFO_BASE_ACCESSES (binfo) = VEC_alloc (tree, gc, max_bases);
      /* An aggregate cannot have baseclasses.  */
      /* An aggregate cannot have baseclasses.  */
      CLASSTYPE_NON_AGGREGATE (ref) = 1;
      CLASSTYPE_NON_AGGREGATE (ref) = 1;
 
 
      if (TREE_CODE (ref) == UNION_TYPE)
      if (TREE_CODE (ref) == UNION_TYPE)
        {
        {
          error ("derived union %qT invalid", ref);
          error ("derived union %qT invalid", ref);
          return false;
          return false;
        }
        }
    }
    }
 
 
  if (max_bases > 1)
  if (max_bases > 1)
    {
    {
      if (TYPE_FOR_JAVA (ref))
      if (TYPE_FOR_JAVA (ref))
        {
        {
          error ("Java class %qT cannot have multiple bases", ref);
          error ("Java class %qT cannot have multiple bases", ref);
          return false;
          return false;
        }
        }
    }
    }
 
 
  if (max_vbases)
  if (max_vbases)
    {
    {
      CLASSTYPE_VBASECLASSES (ref) = VEC_alloc (tree, gc, max_vbases);
      CLASSTYPE_VBASECLASSES (ref) = VEC_alloc (tree, gc, max_vbases);
 
 
      if (TYPE_FOR_JAVA (ref))
      if (TYPE_FOR_JAVA (ref))
        {
        {
          error ("Java class %qT cannot have virtual bases", ref);
          error ("Java class %qT cannot have virtual bases", ref);
          return false;
          return false;
        }
        }
    }
    }
 
 
  for (igo_prev = binfo; base_list; base_list = TREE_CHAIN (base_list))
  for (igo_prev = binfo; base_list; base_list = TREE_CHAIN (base_list))
    {
    {
      tree access = TREE_PURPOSE (base_list);
      tree access = TREE_PURPOSE (base_list);
      int via_virtual = TREE_TYPE (base_list) != NULL_TREE;
      int via_virtual = TREE_TYPE (base_list) != NULL_TREE;
      tree basetype = TREE_VALUE (base_list);
      tree basetype = TREE_VALUE (base_list);
 
 
      if (access == access_default_node)
      if (access == access_default_node)
        access = default_access;
        access = default_access;
 
 
      if (PACK_EXPANSION_P (basetype))
      if (PACK_EXPANSION_P (basetype))
        basetype = PACK_EXPANSION_PATTERN (basetype);
        basetype = PACK_EXPANSION_PATTERN (basetype);
      if (TREE_CODE (basetype) == TYPE_DECL)
      if (TREE_CODE (basetype) == TYPE_DECL)
        basetype = TREE_TYPE (basetype);
        basetype = TREE_TYPE (basetype);
      if (!MAYBE_CLASS_TYPE_P (basetype) || TREE_CODE (basetype) == UNION_TYPE)
      if (!MAYBE_CLASS_TYPE_P (basetype) || TREE_CODE (basetype) == UNION_TYPE)
        {
        {
          error ("base type %qT fails to be a struct or class type",
          error ("base type %qT fails to be a struct or class type",
                 basetype);
                 basetype);
          return false;
          return false;
        }
        }
 
 
      if (TYPE_FOR_JAVA (basetype) && (current_lang_depth () == 0))
      if (TYPE_FOR_JAVA (basetype) && (current_lang_depth () == 0))
        TYPE_FOR_JAVA (ref) = 1;
        TYPE_FOR_JAVA (ref) = 1;
 
 
      base_binfo = NULL_TREE;
      base_binfo = NULL_TREE;
      if (CLASS_TYPE_P (basetype) && !dependent_type_p (basetype))
      if (CLASS_TYPE_P (basetype) && !dependent_type_p (basetype))
        {
        {
          base_binfo = TYPE_BINFO (basetype);
          base_binfo = TYPE_BINFO (basetype);
          /* The original basetype could have been a typedef'd type.  */
          /* The original basetype could have been a typedef'd type.  */
          basetype = BINFO_TYPE (base_binfo);
          basetype = BINFO_TYPE (base_binfo);
 
 
          /* Inherit flags from the base.  */
          /* Inherit flags from the base.  */
          TYPE_HAS_NEW_OPERATOR (ref)
          TYPE_HAS_NEW_OPERATOR (ref)
            |= TYPE_HAS_NEW_OPERATOR (basetype);
            |= TYPE_HAS_NEW_OPERATOR (basetype);
          TYPE_HAS_ARRAY_NEW_OPERATOR (ref)
          TYPE_HAS_ARRAY_NEW_OPERATOR (ref)
            |= TYPE_HAS_ARRAY_NEW_OPERATOR (basetype);
            |= TYPE_HAS_ARRAY_NEW_OPERATOR (basetype);
          TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype);
          TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype);
          TYPE_HAS_CONVERSION (ref) |= TYPE_HAS_CONVERSION (basetype);
          TYPE_HAS_CONVERSION (ref) |= TYPE_HAS_CONVERSION (basetype);
          CLASSTYPE_DIAMOND_SHAPED_P (ref)
          CLASSTYPE_DIAMOND_SHAPED_P (ref)
            |= CLASSTYPE_DIAMOND_SHAPED_P (basetype);
            |= CLASSTYPE_DIAMOND_SHAPED_P (basetype);
          CLASSTYPE_REPEATED_BASE_P (ref)
          CLASSTYPE_REPEATED_BASE_P (ref)
            |= CLASSTYPE_REPEATED_BASE_P (basetype);
            |= CLASSTYPE_REPEATED_BASE_P (basetype);
        }
        }
 
 
      /* We must do this test after we've seen through a typedef
      /* We must do this test after we've seen through a typedef
         type.  */
         type.  */
      if (TYPE_MARKED_P (basetype))
      if (TYPE_MARKED_P (basetype))
        {
        {
          if (basetype == ref)
          if (basetype == ref)
            error ("recursive type %qT undefined", basetype);
            error ("recursive type %qT undefined", basetype);
          else
          else
            error ("duplicate base type %qT invalid", basetype);
            error ("duplicate base type %qT invalid", basetype);
          return false;
          return false;
        }
        }
 
 
      if (PACK_EXPANSION_P (TREE_VALUE (base_list)))
      if (PACK_EXPANSION_P (TREE_VALUE (base_list)))
        /* Regenerate the pack expansion for the bases. */
        /* Regenerate the pack expansion for the bases. */
        basetype = make_pack_expansion (basetype);
        basetype = make_pack_expansion (basetype);
 
 
      TYPE_MARKED_P (basetype) = 1;
      TYPE_MARKED_P (basetype) = 1;
 
 
      base_binfo = copy_binfo (base_binfo, basetype, ref,
      base_binfo = copy_binfo (base_binfo, basetype, ref,
                               &igo_prev, via_virtual);
                               &igo_prev, via_virtual);
      if (!BINFO_INHERITANCE_CHAIN (base_binfo))
      if (!BINFO_INHERITANCE_CHAIN (base_binfo))
        BINFO_INHERITANCE_CHAIN (base_binfo) = binfo;
        BINFO_INHERITANCE_CHAIN (base_binfo) = binfo;
 
 
      BINFO_BASE_APPEND (binfo, base_binfo);
      BINFO_BASE_APPEND (binfo, base_binfo);
      BINFO_BASE_ACCESS_APPEND (binfo, access);
      BINFO_BASE_ACCESS_APPEND (binfo, access);
    }
    }
 
 
  if (VEC_space (tree, CLASSTYPE_VBASECLASSES (ref), 1))
  if (VEC_space (tree, CLASSTYPE_VBASECLASSES (ref), 1))
    /* If we have space in the vbase vector, we must have shared at
    /* If we have space in the vbase vector, we must have shared at
       least one of them, and are therefore diamond shaped.  */
       least one of them, and are therefore diamond shaped.  */
    CLASSTYPE_DIAMOND_SHAPED_P (ref) = 1;
    CLASSTYPE_DIAMOND_SHAPED_P (ref) = 1;
 
 
  /* Unmark all the types.  */
  /* Unmark all the types.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 0;
    TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 0;
  TYPE_MARKED_P (ref) = 0;
  TYPE_MARKED_P (ref) = 0;
 
 
  /* Now see if we have a repeated base type.  */
  /* Now see if we have a repeated base type.  */
  if (!CLASSTYPE_REPEATED_BASE_P (ref))
  if (!CLASSTYPE_REPEATED_BASE_P (ref))
    {
    {
      for (base_binfo = binfo; base_binfo;
      for (base_binfo = binfo; base_binfo;
           base_binfo = TREE_CHAIN (base_binfo))
           base_binfo = TREE_CHAIN (base_binfo))
        {
        {
          if (TYPE_MARKED_P (BINFO_TYPE (base_binfo)))
          if (TYPE_MARKED_P (BINFO_TYPE (base_binfo)))
            {
            {
              CLASSTYPE_REPEATED_BASE_P (ref) = 1;
              CLASSTYPE_REPEATED_BASE_P (ref) = 1;
              break;
              break;
            }
            }
          TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 1;
          TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 1;
        }
        }
      for (base_binfo = binfo; base_binfo;
      for (base_binfo = binfo; base_binfo;
           base_binfo = TREE_CHAIN (base_binfo))
           base_binfo = TREE_CHAIN (base_binfo))
        if (TYPE_MARKED_P (BINFO_TYPE (base_binfo)))
        if (TYPE_MARKED_P (BINFO_TYPE (base_binfo)))
          TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 0;
          TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 0;
        else
        else
          break;
          break;
    }
    }
 
 
  return true;
  return true;
}
}
 
 


/* Begin compiling the definition of an enumeration type.
/* Begin compiling the definition of an enumeration type.
   NAME is its name,
   NAME is its name,
 
 
   UNDERLYING_TYPE is the type that will be used as the storage for
   UNDERLYING_TYPE is the type that will be used as the storage for
   the enumeration type. This should be NULL_TREE if no storage type
   the enumeration type. This should be NULL_TREE if no storage type
   was specified.
   was specified.
 
 
   SCOPED_ENUM_P is true if this is a scoped enumeration type.
   SCOPED_ENUM_P is true if this is a scoped enumeration type.
 
 
   Returns the type object, as yet incomplete.
   Returns the type object, as yet incomplete.
   Also records info about it so that build_enumerator
   Also records info about it so that build_enumerator
   may be used to declare the individual values as they are read.  */
   may be used to declare the individual values as they are read.  */
 
 
tree
tree
start_enum (tree name, tree underlying_type, bool scoped_enum_p)
start_enum (tree name, tree underlying_type, bool scoped_enum_p)
{
{
  tree enumtype;
  tree enumtype;
 
 
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
 
 
  /* If this is the real definition for a previous forward reference,
  /* If this is the real definition for a previous forward reference,
     fill in the contents in the same object that used to be the
     fill in the contents in the same object that used to be the
     forward reference.  */
     forward reference.  */
 
 
  enumtype = lookup_and_check_tag (enum_type, name,
  enumtype = lookup_and_check_tag (enum_type, name,
                                   /*tag_scope=*/ts_current,
                                   /*tag_scope=*/ts_current,
                                   /*template_header_p=*/false);
                                   /*template_header_p=*/false);
 
 
  if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE)
  if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE)
    {
    {
      error_at (input_location, "multiple definition of %q#T", enumtype);
      error_at (input_location, "multiple definition of %q#T", enumtype);
      error_at (DECL_SOURCE_LOCATION (TYPE_MAIN_DECL (enumtype)),
      error_at (DECL_SOURCE_LOCATION (TYPE_MAIN_DECL (enumtype)),
                "previous definition here");
                "previous definition here");
      /* Clear out TYPE_VALUES, and start again.  */
      /* Clear out TYPE_VALUES, and start again.  */
      TYPE_VALUES (enumtype) = NULL_TREE;
      TYPE_VALUES (enumtype) = NULL_TREE;
    }
    }
  else
  else
    {
    {
      /* In case of error, make a dummy enum to allow parsing to
      /* In case of error, make a dummy enum to allow parsing to
         continue.  */
         continue.  */
      if (enumtype == error_mark_node)
      if (enumtype == error_mark_node)
        name = make_anon_name ();
        name = make_anon_name ();
 
 
      enumtype = cxx_make_type (ENUMERAL_TYPE);
      enumtype = cxx_make_type (ENUMERAL_TYPE);
      enumtype = pushtag (name, enumtype, /*tag_scope=*/ts_current);
      enumtype = pushtag (name, enumtype, /*tag_scope=*/ts_current);
    }
    }
 
 
  if (enumtype == error_mark_node)
  if (enumtype == error_mark_node)
    return enumtype;
    return enumtype;
 
 
  if (scoped_enum_p)
  if (scoped_enum_p)
    {
    {
      SET_SCOPED_ENUM_P (enumtype, 1);
      SET_SCOPED_ENUM_P (enumtype, 1);
      begin_scope (sk_scoped_enum, enumtype);
      begin_scope (sk_scoped_enum, enumtype);
 
 
      /* [C++0x dcl.enum]p5:
      /* [C++0x dcl.enum]p5:
 
 
          If not explicitly specified, the underlying type of a scoped
          If not explicitly specified, the underlying type of a scoped
          enumeration type is int.  */
          enumeration type is int.  */
      if (!underlying_type)
      if (!underlying_type)
        underlying_type = integer_type_node;
        underlying_type = integer_type_node;
    }
    }
 
 
  if (underlying_type)
  if (underlying_type)
    {
    {
      if (CP_INTEGRAL_TYPE_P (underlying_type))
      if (CP_INTEGRAL_TYPE_P (underlying_type))
        {
        {
          TYPE_MIN_VALUE (enumtype) = TYPE_MIN_VALUE (underlying_type);
          TYPE_MIN_VALUE (enumtype) = TYPE_MIN_VALUE (underlying_type);
          TYPE_MAX_VALUE (enumtype) = TYPE_MAX_VALUE (underlying_type);
          TYPE_MAX_VALUE (enumtype) = TYPE_MAX_VALUE (underlying_type);
          TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type);
          TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type);
          TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type);
          TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type);
          SET_TYPE_MODE (enumtype, TYPE_MODE (underlying_type));
          SET_TYPE_MODE (enumtype, TYPE_MODE (underlying_type));
          TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type);
          TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type);
          TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type);
          TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type);
          TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type);
          TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type);
          TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (underlying_type);
          TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (underlying_type);
          ENUM_UNDERLYING_TYPE (enumtype) = underlying_type;
          ENUM_UNDERLYING_TYPE (enumtype) = underlying_type;
        }
        }
      else if (!dependent_type_p (underlying_type))
      else if (!dependent_type_p (underlying_type))
        error ("underlying type %<%T%> of %<%T%> must be an integral type",
        error ("underlying type %<%T%> of %<%T%> must be an integral type",
               underlying_type, enumtype);
               underlying_type, enumtype);
    }
    }
 
 
  return enumtype;
  return enumtype;
}
}
 
 
/* After processing and defining all the values of an enumeration type,
/* After processing and defining all the values of an enumeration type,
   install their decls in the enumeration type and finish it off.
   install their decls in the enumeration type and finish it off.
   ENUMTYPE is the type object and VALUES a list of name-value pairs.  */
   ENUMTYPE is the type object and VALUES a list of name-value pairs.  */
 
 
void
void
finish_enum (tree enumtype)
finish_enum (tree enumtype)
{
{
  tree values;
  tree values;
  tree decl;
  tree decl;
  tree minnode;
  tree minnode;
  tree maxnode;
  tree maxnode;
  tree value;
  tree value;
  tree t;
  tree t;
  bool unsignedp;
  bool unsignedp;
  bool use_short_enum;
  bool use_short_enum;
  int lowprec;
  int lowprec;
  int highprec;
  int highprec;
  int precision;
  int precision;
  unsigned int itk;
  unsigned int itk;
  tree underlying_type = NULL_TREE;
  tree underlying_type = NULL_TREE;
  bool fixed_underlying_type_p
  bool fixed_underlying_type_p
    = ENUM_UNDERLYING_TYPE (enumtype) != NULL_TREE;
    = ENUM_UNDERLYING_TYPE (enumtype) != NULL_TREE;
 
 
  /* We built up the VALUES in reverse order.  */
  /* We built up the VALUES in reverse order.  */
  TYPE_VALUES (enumtype) = nreverse (TYPE_VALUES (enumtype));
  TYPE_VALUES (enumtype) = nreverse (TYPE_VALUES (enumtype));
 
 
  /* For an enum defined in a template, just set the type of the values;
  /* For an enum defined in a template, just set the type of the values;
     all further processing is postponed until the template is
     all further processing is postponed until the template is
     instantiated.  We need to set the type so that tsubst of a CONST_DECL
     instantiated.  We need to set the type so that tsubst of a CONST_DECL
     works.  */
     works.  */
  if (processing_template_decl)
  if (processing_template_decl)
    {
    {
      for (values = TYPE_VALUES (enumtype);
      for (values = TYPE_VALUES (enumtype);
           values;
           values;
           values = TREE_CHAIN (values))
           values = TREE_CHAIN (values))
        TREE_TYPE (TREE_VALUE (values)) = enumtype;
        TREE_TYPE (TREE_VALUE (values)) = enumtype;
      if (at_function_scope_p ())
      if (at_function_scope_p ())
        add_stmt (build_min (TAG_DEFN, enumtype));
        add_stmt (build_min (TAG_DEFN, enumtype));
      if (SCOPED_ENUM_P (enumtype))
      if (SCOPED_ENUM_P (enumtype))
        finish_scope ();
        finish_scope ();
      return;
      return;
    }
    }
 
 
  /* Determine the minimum and maximum values of the enumerators.  */
  /* Determine the minimum and maximum values of the enumerators.  */
  if (TYPE_VALUES (enumtype))
  if (TYPE_VALUES (enumtype))
    {
    {
      minnode = maxnode = NULL_TREE;
      minnode = maxnode = NULL_TREE;
 
 
      for (values = TYPE_VALUES (enumtype);
      for (values = TYPE_VALUES (enumtype);
           values;
           values;
           values = TREE_CHAIN (values))
           values = TREE_CHAIN (values))
        {
        {
          decl = TREE_VALUE (values);
          decl = TREE_VALUE (values);
 
 
          /* [dcl.enum]: Following the closing brace of an enum-specifier,
          /* [dcl.enum]: Following the closing brace of an enum-specifier,
             each enumerator has the type of its enumeration.  Prior to the
             each enumerator has the type of its enumeration.  Prior to the
             closing brace, the type of each enumerator is the type of its
             closing brace, the type of each enumerator is the type of its
             initializing value.  */
             initializing value.  */
          TREE_TYPE (decl) = enumtype;
          TREE_TYPE (decl) = enumtype;
 
 
          /* Update the minimum and maximum values, if appropriate.  */
          /* Update the minimum and maximum values, if appropriate.  */
          value = DECL_INITIAL (decl);
          value = DECL_INITIAL (decl);
          if (value == error_mark_node)
          if (value == error_mark_node)
            value = integer_zero_node;
            value = integer_zero_node;
          /* Figure out what the minimum and maximum values of the
          /* Figure out what the minimum and maximum values of the
             enumerators are.  */
             enumerators are.  */
          if (!minnode)
          if (!minnode)
            minnode = maxnode = value;
            minnode = maxnode = value;
          else if (tree_int_cst_lt (maxnode, value))
          else if (tree_int_cst_lt (maxnode, value))
            maxnode = value;
            maxnode = value;
          else if (tree_int_cst_lt (value, minnode))
          else if (tree_int_cst_lt (value, minnode))
            minnode = value;
            minnode = value;
        }
        }
    }
    }
  else
  else
    /* [dcl.enum]
    /* [dcl.enum]
 
 
       If the enumerator-list is empty, the underlying type is as if
       If the enumerator-list is empty, the underlying type is as if
       the enumeration had a single enumerator with value 0.  */
       the enumeration had a single enumerator with value 0.  */
    minnode = maxnode = integer_zero_node;
    minnode = maxnode = integer_zero_node;
 
 
  /* Compute the number of bits require to represent all values of the
  /* Compute the number of bits require to represent all values of the
     enumeration.  We must do this before the type of MINNODE and
     enumeration.  We must do this before the type of MINNODE and
     MAXNODE are transformed, since tree_int_cst_min_precision relies
     MAXNODE are transformed, since tree_int_cst_min_precision relies
     on the TREE_TYPE of the value it is passed.  */
     on the TREE_TYPE of the value it is passed.  */
  unsignedp = tree_int_cst_sgn (minnode) >= 0;
  unsignedp = tree_int_cst_sgn (minnode) >= 0;
  lowprec = tree_int_cst_min_precision (minnode, unsignedp);
  lowprec = tree_int_cst_min_precision (minnode, unsignedp);
  highprec = tree_int_cst_min_precision (maxnode, unsignedp);
  highprec = tree_int_cst_min_precision (maxnode, unsignedp);
  precision = MAX (lowprec, highprec);
  precision = MAX (lowprec, highprec);
 
 
  if (!fixed_underlying_type_p)
  if (!fixed_underlying_type_p)
    {
    {
      /* Determine the underlying type of the enumeration.
      /* Determine the underlying type of the enumeration.
 
 
         [dcl.enum]
         [dcl.enum]
 
 
         The underlying type of an enumeration is an integral type that
         The underlying type of an enumeration is an integral type that
         can represent all the enumerator values defined in the
         can represent all the enumerator values defined in the
         enumeration.  It is implementation-defined which integral type is
         enumeration.  It is implementation-defined which integral type is
         used as the underlying type for an enumeration except that the
         used as the underlying type for an enumeration except that the
         underlying type shall not be larger than int unless the value of
         underlying type shall not be larger than int unless the value of
         an enumerator cannot fit in an int or unsigned int.
         an enumerator cannot fit in an int or unsigned int.
 
 
         We use "int" or an "unsigned int" as the underlying type, even if
         We use "int" or an "unsigned int" as the underlying type, even if
         a smaller integral type would work, unless the user has
         a smaller integral type would work, unless the user has
         explicitly requested that we use the smallest possible type.  The
         explicitly requested that we use the smallest possible type.  The
         user can request that for all enumerations with a command line
         user can request that for all enumerations with a command line
         flag, or for just one enumeration with an attribute.  */
         flag, or for just one enumeration with an attribute.  */
 
 
      use_short_enum = flag_short_enums
      use_short_enum = flag_short_enums
        || lookup_attribute ("packed", TYPE_ATTRIBUTES (enumtype));
        || lookup_attribute ("packed", TYPE_ATTRIBUTES (enumtype));
 
 
      for (itk = (use_short_enum ? itk_char : itk_int);
      for (itk = (use_short_enum ? itk_char : itk_int);
           itk != itk_none;
           itk != itk_none;
           itk++)
           itk++)
        {
        {
          underlying_type = integer_types[itk];
          underlying_type = integer_types[itk];
          if (TYPE_PRECISION (underlying_type) >= precision
          if (TYPE_PRECISION (underlying_type) >= precision
              && TYPE_UNSIGNED (underlying_type) == unsignedp)
              && TYPE_UNSIGNED (underlying_type) == unsignedp)
            break;
            break;
        }
        }
      if (itk == itk_none)
      if (itk == itk_none)
        {
        {
          /* DR 377
          /* DR 377
 
 
             IF no integral type can represent all the enumerator values, the
             IF no integral type can represent all the enumerator values, the
             enumeration is ill-formed.  */
             enumeration is ill-formed.  */
          error ("no integral type can represent all of the enumerator values "
          error ("no integral type can represent all of the enumerator values "
                 "for %qT", enumtype);
                 "for %qT", enumtype);
          precision = TYPE_PRECISION (long_long_integer_type_node);
          precision = TYPE_PRECISION (long_long_integer_type_node);
          underlying_type = integer_types[itk_unsigned_long_long];
          underlying_type = integer_types[itk_unsigned_long_long];
        }
        }
 
 
      /* [dcl.enum]
      /* [dcl.enum]
 
 
         The value of sizeof() applied to an enumeration type, an object
         The value of sizeof() applied to an enumeration type, an object
         of an enumeration type, or an enumerator, is the value of sizeof()
         of an enumeration type, or an enumerator, is the value of sizeof()
         applied to the underlying type.  */
         applied to the underlying type.  */
      TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type);
      TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type);
      TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type);
      TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type);
      SET_TYPE_MODE (enumtype, TYPE_MODE (underlying_type));
      SET_TYPE_MODE (enumtype, TYPE_MODE (underlying_type));
      TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type);
      TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type);
      TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type);
      TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type);
      TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (underlying_type);
      TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (underlying_type);
 
 
      /* Set the underlying type of the enumeration type to the
      /* Set the underlying type of the enumeration type to the
         computed enumeration type, restricted to the enumerator
         computed enumeration type, restricted to the enumerator
         values. */
         values. */
      ENUM_UNDERLYING_TYPE (enumtype)
      ENUM_UNDERLYING_TYPE (enumtype)
        = build_distinct_type_copy (underlying_type);
        = build_distinct_type_copy (underlying_type);
      set_min_and_max_values_for_integral_type
      set_min_and_max_values_for_integral_type
        (ENUM_UNDERLYING_TYPE (enumtype), precision, unsignedp);
        (ENUM_UNDERLYING_TYPE (enumtype), precision, unsignedp);
    }
    }
  else
  else
    underlying_type = ENUM_UNDERLYING_TYPE (enumtype);
    underlying_type = ENUM_UNDERLYING_TYPE (enumtype);
 
 
  /* Compute the minimum and maximum values for the type.
  /* Compute the minimum and maximum values for the type.
 
 
     [dcl.enum]
     [dcl.enum]
 
 
     For an enumeration where emin is the smallest enumerator and emax
     For an enumeration where emin is the smallest enumerator and emax
     is the largest, the values of the enumeration are the values of the
     is the largest, the values of the enumeration are the values of the
     underlying type in the range bmin to bmax, where bmin and bmax are,
     underlying type in the range bmin to bmax, where bmin and bmax are,
     respectively, the smallest and largest values of the smallest bit-
     respectively, the smallest and largest values of the smallest bit-
     field that can store emin and emax.  */
     field that can store emin and emax.  */
 
 
  /* The middle-end currently assumes that types with TYPE_PRECISION
  /* The middle-end currently assumes that types with TYPE_PRECISION
     narrower than their underlying type are suitably zero or sign
     narrower than their underlying type are suitably zero or sign
     extended to fill their mode.  g++ doesn't make these guarantees.
     extended to fill their mode.  g++ doesn't make these guarantees.
     Until the middle-end can represent such paradoxical types, we
     Until the middle-end can represent such paradoxical types, we
     set the TYPE_PRECISION to the width of the underlying type.  */
     set the TYPE_PRECISION to the width of the underlying type.  */
  TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type);
  TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type);
 
 
  set_min_and_max_values_for_integral_type (enumtype, precision, unsignedp);
  set_min_and_max_values_for_integral_type (enumtype, precision, unsignedp);
 
 
  /* Convert each of the enumerators to the type of the underlying
  /* Convert each of the enumerators to the type of the underlying
     type of the enumeration.  */
     type of the enumeration.  */
  for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
  for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
    {
    {
      location_t saved_location;
      location_t saved_location;
 
 
      decl = TREE_VALUE (values);
      decl = TREE_VALUE (values);
      saved_location = input_location;
      saved_location = input_location;
      input_location = DECL_SOURCE_LOCATION (decl);
      input_location = DECL_SOURCE_LOCATION (decl);
      if (fixed_underlying_type_p)
      if (fixed_underlying_type_p)
        /* If the enumeration type has a fixed underlying type, we
        /* If the enumeration type has a fixed underlying type, we
           already checked all of the enumerator values.  */
           already checked all of the enumerator values.  */
        value = DECL_INITIAL (decl);
        value = DECL_INITIAL (decl);
      else
      else
        value = perform_implicit_conversion (underlying_type,
        value = perform_implicit_conversion (underlying_type,
                                             DECL_INITIAL (decl),
                                             DECL_INITIAL (decl),
                                             tf_warning_or_error);
                                             tf_warning_or_error);
      input_location = saved_location;
      input_location = saved_location;
 
 
      /* Do not clobber shared ints.  */
      /* Do not clobber shared ints.  */
      value = copy_node (value);
      value = copy_node (value);
 
 
      TREE_TYPE (value) = enumtype;
      TREE_TYPE (value) = enumtype;
      DECL_INITIAL (decl) = value;
      DECL_INITIAL (decl) = value;
    }
    }
 
 
  /* Fix up all variant types of this enum type.  */
  /* Fix up all variant types of this enum type.  */
  for (t = TYPE_MAIN_VARIANT (enumtype); t; t = TYPE_NEXT_VARIANT (t))
  for (t = TYPE_MAIN_VARIANT (enumtype); t; t = TYPE_NEXT_VARIANT (t))
    {
    {
      TYPE_VALUES (t) = TYPE_VALUES (enumtype);
      TYPE_VALUES (t) = TYPE_VALUES (enumtype);
      TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (enumtype);
      TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (enumtype);
      TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (enumtype);
      TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (enumtype);
      TYPE_SIZE (t) = TYPE_SIZE (enumtype);
      TYPE_SIZE (t) = TYPE_SIZE (enumtype);
      TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (enumtype);
      TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (enumtype);
      SET_TYPE_MODE (t, TYPE_MODE (enumtype));
      SET_TYPE_MODE (t, TYPE_MODE (enumtype));
      TYPE_PRECISION (t) = TYPE_PRECISION (enumtype);
      TYPE_PRECISION (t) = TYPE_PRECISION (enumtype);
      TYPE_ALIGN (t) = TYPE_ALIGN (enumtype);
      TYPE_ALIGN (t) = TYPE_ALIGN (enumtype);
      TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (enumtype);
      TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (enumtype);
      TYPE_UNSIGNED (t) = TYPE_UNSIGNED (enumtype);
      TYPE_UNSIGNED (t) = TYPE_UNSIGNED (enumtype);
      ENUM_UNDERLYING_TYPE (t) = ENUM_UNDERLYING_TYPE (enumtype);
      ENUM_UNDERLYING_TYPE (t) = ENUM_UNDERLYING_TYPE (enumtype);
    }
    }
 
 
  /* Finish up the scope of a scoped enumeration.  */
  /* Finish up the scope of a scoped enumeration.  */
  if (SCOPED_ENUM_P (enumtype))
  if (SCOPED_ENUM_P (enumtype))
    finish_scope ();
    finish_scope ();
 
 
  /* Finish debugging output for this type.  */
  /* Finish debugging output for this type.  */
  rest_of_type_compilation (enumtype, namespace_bindings_p ());
  rest_of_type_compilation (enumtype, namespace_bindings_p ());
}
}
 
 
/* Build and install a CONST_DECL for an enumeration constant of the
/* Build and install a CONST_DECL for an enumeration constant of the
   enumeration type ENUMTYPE whose NAME and VALUE (if any) are provided.
   enumeration type ENUMTYPE whose NAME and VALUE (if any) are provided.
   Assignment of sequential values by default is handled here.  */
   Assignment of sequential values by default is handled here.  */
 
 
void
void
build_enumerator (tree name, tree value, tree enumtype)
build_enumerator (tree name, tree value, tree enumtype)
{
{
  tree decl;
  tree decl;
  tree context;
  tree context;
  tree type;
  tree type;
 
 
  /* If the VALUE was erroneous, pretend it wasn't there; that will
  /* If the VALUE was erroneous, pretend it wasn't there; that will
     result in the enum being assigned the next value in sequence.  */
     result in the enum being assigned the next value in sequence.  */
  if (value == error_mark_node)
  if (value == error_mark_node)
    value = NULL_TREE;
    value = NULL_TREE;
 
 
  /* Remove no-op casts from the value.  */
  /* Remove no-op casts from the value.  */
  if (value)
  if (value)
    STRIP_TYPE_NOPS (value);
    STRIP_TYPE_NOPS (value);
 
 
  if (! processing_template_decl)
  if (! processing_template_decl)
    {
    {
      /* Validate and default VALUE.  */
      /* Validate and default VALUE.  */
      if (value != NULL_TREE)
      if (value != NULL_TREE)
        {
        {
          value = integral_constant_value (value);
          value = integral_constant_value (value);
 
 
          if (TREE_CODE (value) == INTEGER_CST)
          if (TREE_CODE (value) == INTEGER_CST)
            {
            {
              value = perform_integral_promotions (value);
              value = perform_integral_promotions (value);
              constant_expression_warning (value);
              constant_expression_warning (value);
            }
            }
          else
          else
            {
            {
              error ("enumerator value for %qD is not an integer constant", name);
              error ("enumerator value for %qD is not an integer constant", name);
              value = NULL_TREE;
              value = NULL_TREE;
            }
            }
        }
        }
 
 
      /* Default based on previous value.  */
      /* Default based on previous value.  */
      if (value == NULL_TREE)
      if (value == NULL_TREE)
        {
        {
          if (TYPE_VALUES (enumtype))
          if (TYPE_VALUES (enumtype))
            {
            {
              HOST_WIDE_INT hi;
              HOST_WIDE_INT hi;
              unsigned HOST_WIDE_INT lo;
              unsigned HOST_WIDE_INT lo;
              tree prev_value;
              tree prev_value;
              bool overflowed;
              bool overflowed;
 
 
              /* The next value is the previous value plus one.
              /* The next value is the previous value plus one.
                 add_double doesn't know the type of the target expression,
                 add_double doesn't know the type of the target expression,
                 so we must check with int_fits_type_p as well.  */
                 so we must check with int_fits_type_p as well.  */
              prev_value = DECL_INITIAL (TREE_VALUE (TYPE_VALUES (enumtype)));
              prev_value = DECL_INITIAL (TREE_VALUE (TYPE_VALUES (enumtype)));
              if (error_operand_p (prev_value))
              if (error_operand_p (prev_value))
                value = error_mark_node;
                value = error_mark_node;
              else
              else
                {
                {
                  overflowed = add_double (TREE_INT_CST_LOW (prev_value),
                  overflowed = add_double (TREE_INT_CST_LOW (prev_value),
                                           TREE_INT_CST_HIGH (prev_value),
                                           TREE_INT_CST_HIGH (prev_value),
                                           1, 0, &lo, &hi);
                                           1, 0, &lo, &hi);
                  value = build_int_cst_wide (TREE_TYPE (prev_value), lo, hi);
                  value = build_int_cst_wide (TREE_TYPE (prev_value), lo, hi);
                  overflowed
                  overflowed
                    |= !int_fits_type_p (value, TREE_TYPE (prev_value));
                    |= !int_fits_type_p (value, TREE_TYPE (prev_value));
 
 
                  if (overflowed)
                  if (overflowed)
                    {
                    {
                      error ("overflow in enumeration values at %qD", name);
                      error ("overflow in enumeration values at %qD", name);
                      value = error_mark_node;
                      value = error_mark_node;
                    }
                    }
                }
                }
            }
            }
          else
          else
            value = integer_zero_node;
            value = integer_zero_node;
        }
        }
 
 
      /* Remove no-op casts from the value.  */
      /* Remove no-op casts from the value.  */
      STRIP_TYPE_NOPS (value);
      STRIP_TYPE_NOPS (value);
 
 
      /* If the underlying type of the enum is fixed, check whether
      /* If the underlying type of the enum is fixed, check whether
         the enumerator values fits in the underlying type.  If it
         the enumerator values fits in the underlying type.  If it
         does not fit, the program is ill-formed [C++0x dcl.enum].  */
         does not fit, the program is ill-formed [C++0x dcl.enum].  */
      if (ENUM_UNDERLYING_TYPE (enumtype)
      if (ENUM_UNDERLYING_TYPE (enumtype)
          && value
          && value
          && TREE_CODE (value) == INTEGER_CST
          && TREE_CODE (value) == INTEGER_CST
          && !int_fits_type_p (value, ENUM_UNDERLYING_TYPE (enumtype)))
          && !int_fits_type_p (value, ENUM_UNDERLYING_TYPE (enumtype)))
        {
        {
          error ("enumerator value %E is too large for underlying type %<%T%>",
          error ("enumerator value %E is too large for underlying type %<%T%>",
                 value, ENUM_UNDERLYING_TYPE (enumtype));
                 value, ENUM_UNDERLYING_TYPE (enumtype));
 
 
          /* Silently convert the value so that we can continue.  */
          /* Silently convert the value so that we can continue.  */
          value = perform_implicit_conversion (ENUM_UNDERLYING_TYPE (enumtype),
          value = perform_implicit_conversion (ENUM_UNDERLYING_TYPE (enumtype),
                                               value, tf_none);
                                               value, tf_none);
        }
        }
    }
    }
 
 
  /* C++ associates enums with global, function, or class declarations.  */
  /* C++ associates enums with global, function, or class declarations.  */
  context = current_scope ();
  context = current_scope ();
 
 
  /* Build the actual enumeration constant.  Note that the enumeration
  /* Build the actual enumeration constant.  Note that the enumeration
     constants have the underlying type of the enum (if it is fixed)
     constants have the underlying type of the enum (if it is fixed)
     or the type of their initializer (if the underlying type of the
     or the type of their initializer (if the underlying type of the
     enum is not fixed):
     enum is not fixed):
 
 
      [ C++0x dcl.enum ]
      [ C++0x dcl.enum ]
 
 
        If the underlying type is fixed, the type of each enumerator
        If the underlying type is fixed, the type of each enumerator
        prior to the closing brace is the underlying type; if the
        prior to the closing brace is the underlying type; if the
        initializing value of an enumerator cannot be represented by
        initializing value of an enumerator cannot be represented by
        the underlying type, the program is ill-formed. If the
        the underlying type, the program is ill-formed. If the
        underlying type is not fixed, the type of each enumerator is
        underlying type is not fixed, the type of each enumerator is
        the type of its initializing value.
        the type of its initializing value.
 
 
    If the underlying type is not fixed, it will be computed by
    If the underlying type is not fixed, it will be computed by
    finish_enum and we will reset the type of this enumerator.  Of
    finish_enum and we will reset the type of this enumerator.  Of
    course, if we're processing a template, there may be no value.  */
    course, if we're processing a template, there may be no value.  */
  type = value ? TREE_TYPE (value) : NULL_TREE;
  type = value ? TREE_TYPE (value) : NULL_TREE;
 
 
  if (context && context == current_class_type)
  if (context && context == current_class_type)
    /* This enum declaration is local to the class.  We need the full
    /* This enum declaration is local to the class.  We need the full
       lang_decl so that we can record DECL_CLASS_CONTEXT, for example.  */
       lang_decl so that we can record DECL_CLASS_CONTEXT, for example.  */
    decl = build_lang_decl (CONST_DECL, name, type);
    decl = build_lang_decl (CONST_DECL, name, type);
  else
  else
    /* It's a global enum, or it's local to a function.  (Note local to
    /* It's a global enum, or it's local to a function.  (Note local to
      a function could mean local to a class method.  */
      a function could mean local to a class method.  */
    decl = build_decl (input_location, CONST_DECL, name, type);
    decl = build_decl (input_location, CONST_DECL, name, type);
 
 
  DECL_CONTEXT (decl) = FROB_CONTEXT (context);
  DECL_CONTEXT (decl) = FROB_CONTEXT (context);
  TREE_CONSTANT (decl) = 1;
  TREE_CONSTANT (decl) = 1;
  TREE_READONLY (decl) = 1;
  TREE_READONLY (decl) = 1;
  DECL_INITIAL (decl) = value;
  DECL_INITIAL (decl) = value;
 
 
  if (context && context == current_class_type && !SCOPED_ENUM_P (enumtype))
  if (context && context == current_class_type && !SCOPED_ENUM_P (enumtype))
    /* In something like `struct S { enum E { i = 7 }; };' we put `i'
    /* In something like `struct S { enum E { i = 7 }; };' we put `i'
       on the TYPE_FIELDS list for `S'.  (That's so that you can say
       on the TYPE_FIELDS list for `S'.  (That's so that you can say
       things like `S::i' later.)  */
       things like `S::i' later.)  */
    finish_member_declaration (decl);
    finish_member_declaration (decl);
  else
  else
    pushdecl (decl);
    pushdecl (decl);
 
 
  /* Add this enumeration constant to the list for this type.  */
  /* Add this enumeration constant to the list for this type.  */
  TYPE_VALUES (enumtype) = tree_cons (name, decl, TYPE_VALUES (enumtype));
  TYPE_VALUES (enumtype) = tree_cons (name, decl, TYPE_VALUES (enumtype));
}
}
 
 
/* Look for an enumerator with the given NAME within the enumeration
/* Look for an enumerator with the given NAME within the enumeration
   type ENUMTYPE.  This routine is used primarily for qualified name
   type ENUMTYPE.  This routine is used primarily for qualified name
   lookup into an enumerator in C++0x, e.g.,
   lookup into an enumerator in C++0x, e.g.,
 
 
     enum class Color { Red, Green, Blue };
     enum class Color { Red, Green, Blue };
 
 
     Color color = Color::Red;
     Color color = Color::Red;
 
 
   Returns the value corresponding to the enumerator, or
   Returns the value corresponding to the enumerator, or
   NULL_TREE if no such enumerator was found.  */
   NULL_TREE if no such enumerator was found.  */
tree
tree
lookup_enumerator (tree enumtype, tree name)
lookup_enumerator (tree enumtype, tree name)
{
{
  tree e;
  tree e;
  gcc_assert (enumtype && TREE_CODE (enumtype) == ENUMERAL_TYPE);
  gcc_assert (enumtype && TREE_CODE (enumtype) == ENUMERAL_TYPE);
 
 
  e = purpose_member (name, TYPE_VALUES (enumtype));
  e = purpose_member (name, TYPE_VALUES (enumtype));
  return e? TREE_VALUE (e) : NULL_TREE;
  return e? TREE_VALUE (e) : NULL_TREE;
}
}
 
 


/* We're defining DECL.  Make sure that its type is OK.  */
/* We're defining DECL.  Make sure that its type is OK.  */
 
 
static void
static void
check_function_type (tree decl, tree current_function_parms)
check_function_type (tree decl, tree current_function_parms)
{
{
  tree fntype = TREE_TYPE (decl);
  tree fntype = TREE_TYPE (decl);
  tree return_type = complete_type (TREE_TYPE (fntype));
  tree return_type = complete_type (TREE_TYPE (fntype));
 
 
  /* In a function definition, arg types must be complete.  */
  /* In a function definition, arg types must be complete.  */
  require_complete_types_for_parms (current_function_parms);
  require_complete_types_for_parms (current_function_parms);
 
 
  /* constexpr functions must have literal argument types and
  /* constexpr functions must have literal argument types and
     literal return type.  */
     literal return type.  */
  validate_constexpr_fundecl (decl);
  validate_constexpr_fundecl (decl);
 
 
  if (dependent_type_p (return_type))
  if (dependent_type_p (return_type))
    return;
    return;
  if (!COMPLETE_OR_VOID_TYPE_P (return_type)
  if (!COMPLETE_OR_VOID_TYPE_P (return_type)
      || (TYPE_FOR_JAVA (return_type) && MAYBE_CLASS_TYPE_P (return_type)))
      || (TYPE_FOR_JAVA (return_type) && MAYBE_CLASS_TYPE_P (return_type)))
    {
    {
      tree args = TYPE_ARG_TYPES (fntype);
      tree args = TYPE_ARG_TYPES (fntype);
 
 
      if (!COMPLETE_OR_VOID_TYPE_P (return_type))
      if (!COMPLETE_OR_VOID_TYPE_P (return_type))
        error ("return type %q#T is incomplete", return_type);
        error ("return type %q#T is incomplete", return_type);
      else
      else
        error ("return type has Java class type %q#T", return_type);
        error ("return type has Java class type %q#T", return_type);
 
 
      /* Make it return void instead.  */
      /* Make it return void instead.  */
      if (TREE_CODE (fntype) == METHOD_TYPE)
      if (TREE_CODE (fntype) == METHOD_TYPE)
        fntype = build_method_type_directly (TREE_TYPE (TREE_VALUE (args)),
        fntype = build_method_type_directly (TREE_TYPE (TREE_VALUE (args)),
                                             void_type_node,
                                             void_type_node,
                                             TREE_CHAIN (args));
                                             TREE_CHAIN (args));
      else
      else
        fntype = build_function_type (void_type_node, args);
        fntype = build_function_type (void_type_node, args);
      fntype
      fntype
        = build_exception_variant (fntype,
        = build_exception_variant (fntype,
                                   TYPE_RAISES_EXCEPTIONS (TREE_TYPE (decl)));
                                   TYPE_RAISES_EXCEPTIONS (TREE_TYPE (decl)));
      fntype = (cp_build_type_attribute_variant
      fntype = (cp_build_type_attribute_variant
                (fntype, TYPE_ATTRIBUTES (TREE_TYPE (decl))));
                (fntype, TYPE_ATTRIBUTES (TREE_TYPE (decl))));
      TREE_TYPE (decl) = fntype;
      TREE_TYPE (decl) = fntype;
    }
    }
  else
  else
    abstract_virtuals_error (decl, TREE_TYPE (fntype));
    abstract_virtuals_error (decl, TREE_TYPE (fntype));
}
}
 
 
/* Create the FUNCTION_DECL for a function definition.
/* Create the FUNCTION_DECL for a function definition.
   DECLSPECS and DECLARATOR are the parts of the declaration;
   DECLSPECS and DECLARATOR are the parts of the declaration;
   they describe the function's name and the type it returns,
   they describe the function's name and the type it returns,
   but twisted together in a fashion that parallels the syntax of C.
   but twisted together in a fashion that parallels the syntax of C.
 
 
   FLAGS is a bitwise or of SF_PRE_PARSED (indicating that the
   FLAGS is a bitwise or of SF_PRE_PARSED (indicating that the
   DECLARATOR is really the DECL for the function we are about to
   DECLARATOR is really the DECL for the function we are about to
   process and that DECLSPECS should be ignored), SF_INCLASS_INLINE
   process and that DECLSPECS should be ignored), SF_INCLASS_INLINE
   indicating that the function is an inline defined in-class.
   indicating that the function is an inline defined in-class.
 
 
   This function creates a binding context for the function body
   This function creates a binding context for the function body
   as well as setting up the FUNCTION_DECL in current_function_decl.
   as well as setting up the FUNCTION_DECL in current_function_decl.
 
 
   For C++, we must first check whether that datum makes any sense.
   For C++, we must first check whether that datum makes any sense.
   For example, "class A local_a(1,2);" means that variable local_a
   For example, "class A local_a(1,2);" means that variable local_a
   is an aggregate of type A, which should have a constructor
   is an aggregate of type A, which should have a constructor
   applied to it with the argument list [1, 2].
   applied to it with the argument list [1, 2].
 
 
   On entry, DECL_INITIAL (decl1) should be NULL_TREE or error_mark_node,
   On entry, DECL_INITIAL (decl1) should be NULL_TREE or error_mark_node,
   or may be a BLOCK if the function has been defined previously
   or may be a BLOCK if the function has been defined previously
   in this translation unit.  On exit, DECL_INITIAL (decl1) will be
   in this translation unit.  On exit, DECL_INITIAL (decl1) will be
   error_mark_node if the function has never been defined, or
   error_mark_node if the function has never been defined, or
   a BLOCK if the function has been defined somewhere.  */
   a BLOCK if the function has been defined somewhere.  */
 
 
void
void
start_preparsed_function (tree decl1, tree attrs, int flags)
start_preparsed_function (tree decl1, tree attrs, int flags)
{
{
  tree ctype = NULL_TREE;
  tree ctype = NULL_TREE;
  tree fntype;
  tree fntype;
  tree restype;
  tree restype;
  int doing_friend = 0;
  int doing_friend = 0;
  struct cp_binding_level *bl;
  struct cp_binding_level *bl;
  tree current_function_parms;
  tree current_function_parms;
  struct c_fileinfo *finfo
  struct c_fileinfo *finfo
    = get_fileinfo (LOCATION_FILE (DECL_SOURCE_LOCATION (decl1)));
    = get_fileinfo (LOCATION_FILE (DECL_SOURCE_LOCATION (decl1)));
  bool honor_interface;
  bool honor_interface;
 
 
  /* Sanity check.  */
  /* Sanity check.  */
  gcc_assert (TREE_CODE (TREE_VALUE (void_list_node)) == VOID_TYPE);
  gcc_assert (TREE_CODE (TREE_VALUE (void_list_node)) == VOID_TYPE);
  gcc_assert (TREE_CHAIN (void_list_node) == NULL_TREE);
  gcc_assert (TREE_CHAIN (void_list_node) == NULL_TREE);
 
 
  fntype = TREE_TYPE (decl1);
  fntype = TREE_TYPE (decl1);
  if (TREE_CODE (fntype) == METHOD_TYPE)
  if (TREE_CODE (fntype) == METHOD_TYPE)
    ctype = TYPE_METHOD_BASETYPE (fntype);
    ctype = TYPE_METHOD_BASETYPE (fntype);
 
 
  /* ISO C++ 11.4/5.  A friend function defined in a class is in
  /* ISO C++ 11.4/5.  A friend function defined in a class is in
     the (lexical) scope of the class in which it is defined.  */
     the (lexical) scope of the class in which it is defined.  */
  if (!ctype && DECL_FRIEND_P (decl1))
  if (!ctype && DECL_FRIEND_P (decl1))
    {
    {
      ctype = DECL_FRIEND_CONTEXT (decl1);
      ctype = DECL_FRIEND_CONTEXT (decl1);
 
 
      /* CTYPE could be null here if we're dealing with a template;
      /* CTYPE could be null here if we're dealing with a template;
         for example, `inline friend float foo()' inside a template
         for example, `inline friend float foo()' inside a template
         will have no CTYPE set.  */
         will have no CTYPE set.  */
      if (ctype && TREE_CODE (ctype) != RECORD_TYPE)
      if (ctype && TREE_CODE (ctype) != RECORD_TYPE)
        ctype = NULL_TREE;
        ctype = NULL_TREE;
      else
      else
        doing_friend = 1;
        doing_friend = 1;
    }
    }
 
 
  if (DECL_DECLARED_INLINE_P (decl1)
  if (DECL_DECLARED_INLINE_P (decl1)
      && lookup_attribute ("noinline", attrs))
      && lookup_attribute ("noinline", attrs))
    warning (0, "inline function %q+D given attribute noinline", decl1);
    warning (0, "inline function %q+D given attribute noinline", decl1);
 
 
  /* Handle gnu_inline attribute.  */
  /* Handle gnu_inline attribute.  */
  if (GNU_INLINE_P (decl1))
  if (GNU_INLINE_P (decl1))
    {
    {
      DECL_EXTERNAL (decl1) = 1;
      DECL_EXTERNAL (decl1) = 1;
      DECL_NOT_REALLY_EXTERN (decl1) = 0;
      DECL_NOT_REALLY_EXTERN (decl1) = 0;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      DECL_DISREGARD_INLINE_LIMITS (decl1) = 1;
      DECL_DISREGARD_INLINE_LIMITS (decl1) = 1;
    }
    }
 
 
  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl1))
  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl1))
    /* This is a constructor, we must ensure that any default args
    /* This is a constructor, we must ensure that any default args
       introduced by this definition are propagated to the clones
       introduced by this definition are propagated to the clones
       now. The clones are used directly in overload resolution.  */
       now. The clones are used directly in overload resolution.  */
    adjust_clone_args (decl1);
    adjust_clone_args (decl1);
 
 
  /* Sometimes we don't notice that a function is a static member, and
  /* Sometimes we don't notice that a function is a static member, and
     build a METHOD_TYPE for it.  Fix that up now.  */
     build a METHOD_TYPE for it.  Fix that up now.  */
  if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1)
  if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1)
      && TREE_CODE (TREE_TYPE (decl1)) == METHOD_TYPE)
      && TREE_CODE (TREE_TYPE (decl1)) == METHOD_TYPE)
    {
    {
      revert_static_member_fn (decl1);
      revert_static_member_fn (decl1);
      ctype = NULL_TREE;
      ctype = NULL_TREE;
    }
    }
 
 
  /* Set up current_class_type, and enter the scope of the class, if
  /* Set up current_class_type, and enter the scope of the class, if
     appropriate.  */
     appropriate.  */
  if (ctype)
  if (ctype)
    push_nested_class (ctype);
    push_nested_class (ctype);
  else if (DECL_STATIC_FUNCTION_P (decl1))
  else if (DECL_STATIC_FUNCTION_P (decl1))
    push_nested_class (DECL_CONTEXT (decl1));
    push_nested_class (DECL_CONTEXT (decl1));
 
 
  /* Now that we have entered the scope of the class, we must restore
  /* Now that we have entered the scope of the class, we must restore
     the bindings for any template parameters surrounding DECL1, if it
     the bindings for any template parameters surrounding DECL1, if it
     is an inline member template.  (Order is important; consider the
     is an inline member template.  (Order is important; consider the
     case where a template parameter has the same name as a field of
     case where a template parameter has the same name as a field of
     the class.)  It is not until after this point that
     the class.)  It is not until after this point that
     PROCESSING_TEMPLATE_DECL is guaranteed to be set up correctly.  */
     PROCESSING_TEMPLATE_DECL is guaranteed to be set up correctly.  */
  if (flags & SF_INCLASS_INLINE)
  if (flags & SF_INCLASS_INLINE)
    maybe_begin_member_template_processing (decl1);
    maybe_begin_member_template_processing (decl1);
 
 
  /* Effective C++ rule 15.  */
  /* Effective C++ rule 15.  */
  if (warn_ecpp
  if (warn_ecpp
      && DECL_OVERLOADED_OPERATOR_P (decl1) == NOP_EXPR
      && DECL_OVERLOADED_OPERATOR_P (decl1) == NOP_EXPR
      && TREE_CODE (TREE_TYPE (fntype)) == VOID_TYPE)
      && TREE_CODE (TREE_TYPE (fntype)) == VOID_TYPE)
    warning (OPT_Weffc__, "%<operator=%> should return a reference to %<*this%>");
    warning (OPT_Weffc__, "%<operator=%> should return a reference to %<*this%>");
 
 
  /* Make the init_value nonzero so pushdecl knows this is not tentative.
  /* Make the init_value nonzero so pushdecl knows this is not tentative.
     error_mark_node is replaced below (in poplevel) with the BLOCK.  */
     error_mark_node is replaced below (in poplevel) with the BLOCK.  */
  if (!DECL_INITIAL (decl1))
  if (!DECL_INITIAL (decl1))
    DECL_INITIAL (decl1) = error_mark_node;
    DECL_INITIAL (decl1) = error_mark_node;
 
 
  /* This function exists in static storage.
  /* This function exists in static storage.
     (This does not mean `static' in the C sense!)  */
     (This does not mean `static' in the C sense!)  */
  TREE_STATIC (decl1) = 1;
  TREE_STATIC (decl1) = 1;
 
 
  /* We must call push_template_decl after current_class_type is set
  /* We must call push_template_decl after current_class_type is set
     up.  (If we are processing inline definitions after exiting a
     up.  (If we are processing inline definitions after exiting a
     class scope, current_class_type will be NULL_TREE until set above
     class scope, current_class_type will be NULL_TREE until set above
     by push_nested_class.)  */
     by push_nested_class.)  */
  if (processing_template_decl)
  if (processing_template_decl)
    {
    {
      /* FIXME: Handle error_mark_node more gracefully.  */
      /* FIXME: Handle error_mark_node more gracefully.  */
      tree newdecl1 = push_template_decl (decl1);
      tree newdecl1 = push_template_decl (decl1);
      if (newdecl1 != error_mark_node)
      if (newdecl1 != error_mark_node)
        decl1 = newdecl1;
        decl1 = newdecl1;
    }
    }
 
 
  /* We are now in the scope of the function being defined.  */
  /* We are now in the scope of the function being defined.  */
  current_function_decl = decl1;
  current_function_decl = decl1;
 
 
  /* Save the parm names or decls from this function's declarator
  /* Save the parm names or decls from this function's declarator
     where store_parm_decls will find them.  */
     where store_parm_decls will find them.  */
  current_function_parms = DECL_ARGUMENTS (decl1);
  current_function_parms = DECL_ARGUMENTS (decl1);
 
 
  /* Make sure the parameter and return types are reasonable.  When
  /* Make sure the parameter and return types are reasonable.  When
     you declare a function, these types can be incomplete, but they
     you declare a function, these types can be incomplete, but they
     must be complete when you define the function.  */
     must be complete when you define the function.  */
  check_function_type (decl1, current_function_parms);
  check_function_type (decl1, current_function_parms);
 
 
  /* Build the return declaration for the function.  */
  /* Build the return declaration for the function.  */
  restype = TREE_TYPE (fntype);
  restype = TREE_TYPE (fntype);
  if (DECL_RESULT (decl1) == NULL_TREE)
  if (DECL_RESULT (decl1) == NULL_TREE)
    {
    {
      tree resdecl;
      tree resdecl;
 
 
      resdecl = build_decl (input_location, RESULT_DECL, 0, restype);
      resdecl = build_decl (input_location, RESULT_DECL, 0, restype);
      DECL_ARTIFICIAL (resdecl) = 1;
      DECL_ARTIFICIAL (resdecl) = 1;
      DECL_IGNORED_P (resdecl) = 1;
      DECL_IGNORED_P (resdecl) = 1;
      DECL_RESULT (decl1) = resdecl;
      DECL_RESULT (decl1) = resdecl;
 
 
      cp_apply_type_quals_to_decl (cp_type_quals (restype), resdecl);
      cp_apply_type_quals_to_decl (cp_type_quals (restype), resdecl);
    }
    }
 
 
  /* Let the user know we're compiling this function.  */
  /* Let the user know we're compiling this function.  */
  announce_function (decl1);
  announce_function (decl1);
 
 
  /* Record the decl so that the function name is defined.
  /* Record the decl so that the function name is defined.
     If we already have a decl for this name, and it is a FUNCTION_DECL,
     If we already have a decl for this name, and it is a FUNCTION_DECL,
     use the old decl.  */
     use the old decl.  */
  if (!processing_template_decl && !(flags & SF_PRE_PARSED))
  if (!processing_template_decl && !(flags & SF_PRE_PARSED))
    {
    {
      /* A specialization is not used to guide overload resolution.  */
      /* A specialization is not used to guide overload resolution.  */
      if (!DECL_FUNCTION_MEMBER_P (decl1)
      if (!DECL_FUNCTION_MEMBER_P (decl1)
          && !(DECL_USE_TEMPLATE (decl1) &&
          && !(DECL_USE_TEMPLATE (decl1) &&
               PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl1))))
               PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl1))))
        {
        {
          tree olddecl = pushdecl (decl1);
          tree olddecl = pushdecl (decl1);
 
 
          if (olddecl == error_mark_node)
          if (olddecl == error_mark_node)
            /* If something went wrong when registering the declaration,
            /* If something went wrong when registering the declaration,
               use DECL1; we have to have a FUNCTION_DECL to use when
               use DECL1; we have to have a FUNCTION_DECL to use when
               parsing the body of the function.  */
               parsing the body of the function.  */
            ;
            ;
          else
          else
            {
            {
              /* Otherwise, OLDDECL is either a previous declaration
              /* Otherwise, OLDDECL is either a previous declaration
                 of the same function or DECL1 itself.  */
                 of the same function or DECL1 itself.  */
 
 
              if (warn_missing_declarations
              if (warn_missing_declarations
                  && olddecl == decl1
                  && olddecl == decl1
                  && !DECL_MAIN_P (decl1)
                  && !DECL_MAIN_P (decl1)
                  && TREE_PUBLIC (decl1)
                  && TREE_PUBLIC (decl1)
                  && !DECL_DECLARED_INLINE_P (decl1))
                  && !DECL_DECLARED_INLINE_P (decl1))
                {
                {
                  tree context;
                  tree context;
 
 
                  /* Check whether DECL1 is in an anonymous
                  /* Check whether DECL1 is in an anonymous
                     namespace.  */
                     namespace.  */
                  for (context = DECL_CONTEXT (decl1);
                  for (context = DECL_CONTEXT (decl1);
                       context;
                       context;
                       context = DECL_CONTEXT (context))
                       context = DECL_CONTEXT (context))
                    {
                    {
                      if (TREE_CODE (context) == NAMESPACE_DECL
                      if (TREE_CODE (context) == NAMESPACE_DECL
                          && DECL_NAME (context) == NULL_TREE)
                          && DECL_NAME (context) == NULL_TREE)
                        break;
                        break;
                    }
                    }
 
 
                  if (context == NULL)
                  if (context == NULL)
                    warning (OPT_Wmissing_declarations,
                    warning (OPT_Wmissing_declarations,
                             "no previous declaration for %q+D", decl1);
                             "no previous declaration for %q+D", decl1);
                }
                }
 
 
              decl1 = olddecl;
              decl1 = olddecl;
            }
            }
        }
        }
      else
      else
        {
        {
          /* We need to set the DECL_CONTEXT.  */
          /* We need to set the DECL_CONTEXT.  */
          if (!DECL_CONTEXT (decl1) && DECL_TEMPLATE_INFO (decl1))
          if (!DECL_CONTEXT (decl1) && DECL_TEMPLATE_INFO (decl1))
            DECL_CONTEXT (decl1) = DECL_CONTEXT (DECL_TI_TEMPLATE (decl1));
            DECL_CONTEXT (decl1) = DECL_CONTEXT (DECL_TI_TEMPLATE (decl1));
        }
        }
      fntype = TREE_TYPE (decl1);
      fntype = TREE_TYPE (decl1);
 
 
      /* If #pragma weak applies, mark the decl appropriately now.
      /* If #pragma weak applies, mark the decl appropriately now.
         The pragma only applies to global functions.  Because
         The pragma only applies to global functions.  Because
         determining whether or not the #pragma applies involves
         determining whether or not the #pragma applies involves
         computing the mangled name for the declaration, we cannot
         computing the mangled name for the declaration, we cannot
         apply the pragma until after we have merged this declaration
         apply the pragma until after we have merged this declaration
         with any previous declarations; if the original declaration
         with any previous declarations; if the original declaration
         has a linkage specification, that specification applies to
         has a linkage specification, that specification applies to
         the definition as well, and may affect the mangled name.  */
         the definition as well, and may affect the mangled name.  */
      if (!DECL_CONTEXT (decl1))
      if (!DECL_CONTEXT (decl1))
        maybe_apply_pragma_weak (decl1);
        maybe_apply_pragma_weak (decl1);
    }
    }
 
 
  /* Reset this in case the call to pushdecl changed it.  */
  /* Reset this in case the call to pushdecl changed it.  */
  current_function_decl = decl1;
  current_function_decl = decl1;
 
 
  gcc_assert (DECL_INITIAL (decl1));
  gcc_assert (DECL_INITIAL (decl1));
 
 
  /* This function may already have been parsed, in which case just
  /* This function may already have been parsed, in which case just
     return; our caller will skip over the body without parsing.  */
     return; our caller will skip over the body without parsing.  */
  if (DECL_INITIAL (decl1) != error_mark_node)
  if (DECL_INITIAL (decl1) != error_mark_node)
    return;
    return;
 
 
  /* Initialize RTL machinery.  We cannot do this until
  /* Initialize RTL machinery.  We cannot do this until
     CURRENT_FUNCTION_DECL and DECL_RESULT are set up.  We do this
     CURRENT_FUNCTION_DECL and DECL_RESULT are set up.  We do this
     even when processing a template; this is how we get
     even when processing a template; this is how we get
     CFUN set up, and our per-function variables initialized.
     CFUN set up, and our per-function variables initialized.
     FIXME factor out the non-RTL stuff.  */
     FIXME factor out the non-RTL stuff.  */
  bl = current_binding_level;
  bl = current_binding_level;
  allocate_struct_function (decl1, processing_template_decl);
  allocate_struct_function (decl1, processing_template_decl);
 
 
  /* Initialize the language data structures.  Whenever we start
  /* Initialize the language data structures.  Whenever we start
     a new function, we destroy temporaries in the usual way.  */
     a new function, we destroy temporaries in the usual way.  */
  cfun->language = GGC_CNEW (struct language_function);
  cfun->language = GGC_CNEW (struct language_function);
  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
  current_binding_level = bl;
  current_binding_level = bl;
 
 
  /* Even though we're inside a function body, we still don't want to
  /* Even though we're inside a function body, we still don't want to
     call expand_expr to calculate the size of a variable-sized array.
     call expand_expr to calculate the size of a variable-sized array.
     We haven't necessarily assigned RTL to all variables yet, so it's
     We haven't necessarily assigned RTL to all variables yet, so it's
     not safe to try to expand expressions involving them.  */
     not safe to try to expand expressions involving them.  */
  cfun->dont_save_pending_sizes_p = 1;
  cfun->dont_save_pending_sizes_p = 1;
 
 
  /* Start the statement-tree, start the tree now.  */
  /* Start the statement-tree, start the tree now.  */
  DECL_SAVED_TREE (decl1) = push_stmt_list ();
  DECL_SAVED_TREE (decl1) = push_stmt_list ();
 
 
  /* If we are (erroneously) defining a function that we have already
  /* If we are (erroneously) defining a function that we have already
     defined before, wipe out what we knew before.  */
     defined before, wipe out what we knew before.  */
  if (!DECL_PENDING_INLINE_P (decl1))
  if (!DECL_PENDING_INLINE_P (decl1))
    DECL_SAVED_FUNCTION_DATA (decl1) = NULL;
    DECL_SAVED_FUNCTION_DATA (decl1) = NULL;
 
 
  if (ctype && !doing_friend && !DECL_STATIC_FUNCTION_P (decl1))
  if (ctype && !doing_friend && !DECL_STATIC_FUNCTION_P (decl1))
    {
    {
      /* We know that this was set up by `grokclassfn'.  We do not
      /* We know that this was set up by `grokclassfn'.  We do not
         wait until `store_parm_decls', since evil parse errors may
         wait until `store_parm_decls', since evil parse errors may
         never get us to that point.  Here we keep the consistency
         never get us to that point.  Here we keep the consistency
         between `current_class_type' and `current_class_ptr'.  */
         between `current_class_type' and `current_class_ptr'.  */
      tree t = DECL_ARGUMENTS (decl1);
      tree t = DECL_ARGUMENTS (decl1);
 
 
      gcc_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL);
      gcc_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL);
      gcc_assert (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE);
      gcc_assert (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE);
 
 
      cp_function_chain->x_current_class_ref
      cp_function_chain->x_current_class_ref
        = cp_build_indirect_ref (t, RO_NULL, tf_warning_or_error);
        = cp_build_indirect_ref (t, RO_NULL, tf_warning_or_error);
      cp_function_chain->x_current_class_ptr = t;
      cp_function_chain->x_current_class_ptr = t;
 
 
      /* Constructors and destructors need to know whether they're "in
      /* Constructors and destructors need to know whether they're "in
         charge" of initializing virtual base classes.  */
         charge" of initializing virtual base classes.  */
      t = TREE_CHAIN (t);
      t = TREE_CHAIN (t);
      if (DECL_HAS_IN_CHARGE_PARM_P (decl1))
      if (DECL_HAS_IN_CHARGE_PARM_P (decl1))
        {
        {
          current_in_charge_parm = t;
          current_in_charge_parm = t;
          t = TREE_CHAIN (t);
          t = TREE_CHAIN (t);
        }
        }
      if (DECL_HAS_VTT_PARM_P (decl1))
      if (DECL_HAS_VTT_PARM_P (decl1))
        {
        {
          gcc_assert (DECL_NAME (t) == vtt_parm_identifier);
          gcc_assert (DECL_NAME (t) == vtt_parm_identifier);
          current_vtt_parm = t;
          current_vtt_parm = t;
        }
        }
    }
    }
 
 
  honor_interface = (!DECL_TEMPLATE_INSTANTIATION (decl1)
  honor_interface = (!DECL_TEMPLATE_INSTANTIATION (decl1)
                     /* Implicitly-defined methods (like the
                     /* Implicitly-defined methods (like the
                        destructor for a class in which no destructor
                        destructor for a class in which no destructor
                        is explicitly declared) must not be defined
                        is explicitly declared) must not be defined
                        until their definition is needed.  So, we
                        until their definition is needed.  So, we
                        ignore interface specifications for
                        ignore interface specifications for
                        compiler-generated functions.  */
                        compiler-generated functions.  */
                     && !DECL_ARTIFICIAL (decl1));
                     && !DECL_ARTIFICIAL (decl1));
 
 
  if (DECL_INTERFACE_KNOWN (decl1))
  if (DECL_INTERFACE_KNOWN (decl1))
    {
    {
      tree ctx = decl_function_context (decl1);
      tree ctx = decl_function_context (decl1);
 
 
      if (DECL_NOT_REALLY_EXTERN (decl1))
      if (DECL_NOT_REALLY_EXTERN (decl1))
        DECL_EXTERNAL (decl1) = 0;
        DECL_EXTERNAL (decl1) = 0;
 
 
      if (ctx != NULL_TREE && DECL_DECLARED_INLINE_P (ctx)
      if (ctx != NULL_TREE && DECL_DECLARED_INLINE_P (ctx)
          && TREE_PUBLIC (ctx))
          && TREE_PUBLIC (ctx))
        /* This is a function in a local class in an extern inline
        /* This is a function in a local class in an extern inline
           function.  */
           function.  */
        comdat_linkage (decl1);
        comdat_linkage (decl1);
    }
    }
  /* If this function belongs to an interface, it is public.
  /* If this function belongs to an interface, it is public.
     If it belongs to someone else's interface, it is also external.
     If it belongs to someone else's interface, it is also external.
     This only affects inlines and template instantiations.  */
     This only affects inlines and template instantiations.  */
  else if (!finfo->interface_unknown && honor_interface)
  else if (!finfo->interface_unknown && honor_interface)
    {
    {
      if (DECL_DECLARED_INLINE_P (decl1)
      if (DECL_DECLARED_INLINE_P (decl1)
          || DECL_TEMPLATE_INSTANTIATION (decl1)
          || DECL_TEMPLATE_INSTANTIATION (decl1)
          || processing_template_decl)
          || processing_template_decl)
        {
        {
          DECL_EXTERNAL (decl1)
          DECL_EXTERNAL (decl1)
            = (finfo->interface_only
            = (finfo->interface_only
               || (DECL_DECLARED_INLINE_P (decl1)
               || (DECL_DECLARED_INLINE_P (decl1)
                   && ! flag_implement_inlines
                   && ! flag_implement_inlines
                   && !DECL_VINDEX (decl1)));
                   && !DECL_VINDEX (decl1)));
 
 
          /* For WIN32 we also want to put these in linkonce sections.  */
          /* For WIN32 we also want to put these in linkonce sections.  */
          maybe_make_one_only (decl1);
          maybe_make_one_only (decl1);
        }
        }
      else
      else
        DECL_EXTERNAL (decl1) = 0;
        DECL_EXTERNAL (decl1) = 0;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      /* If this function is in an interface implemented in this file,
      /* If this function is in an interface implemented in this file,
         make sure that the back end knows to emit this function
         make sure that the back end knows to emit this function
         here.  */
         here.  */
      if (!DECL_EXTERNAL (decl1))
      if (!DECL_EXTERNAL (decl1))
        mark_needed (decl1);
        mark_needed (decl1);
    }
    }
  else if (finfo->interface_unknown && finfo->interface_only
  else if (finfo->interface_unknown && finfo->interface_only
           && honor_interface)
           && honor_interface)
    {
    {
      /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma
      /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma
         interface, we will have both finfo->interface_unknown and
         interface, we will have both finfo->interface_unknown and
         finfo->interface_only set.  In that case, we don't want to
         finfo->interface_only set.  In that case, we don't want to
         use the normal heuristics because someone will supply a
         use the normal heuristics because someone will supply a
         #pragma implementation elsewhere, and deducing it here would
         #pragma implementation elsewhere, and deducing it here would
         produce a conflict.  */
         produce a conflict.  */
      comdat_linkage (decl1);
      comdat_linkage (decl1);
      DECL_EXTERNAL (decl1) = 0;
      DECL_EXTERNAL (decl1) = 0;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      DECL_INTERFACE_KNOWN (decl1) = 1;
      DECL_DEFER_OUTPUT (decl1) = 1;
      DECL_DEFER_OUTPUT (decl1) = 1;
    }
    }
  else
  else
    {
    {
      /* This is a definition, not a reference.
      /* This is a definition, not a reference.
         So clear DECL_EXTERNAL, unless this is a GNU extern inline.  */
         So clear DECL_EXTERNAL, unless this is a GNU extern inline.  */
      if (!GNU_INLINE_P (decl1))
      if (!GNU_INLINE_P (decl1))
        DECL_EXTERNAL (decl1) = 0;
        DECL_EXTERNAL (decl1) = 0;
 
 
      if ((DECL_DECLARED_INLINE_P (decl1)
      if ((DECL_DECLARED_INLINE_P (decl1)
           || DECL_TEMPLATE_INSTANTIATION (decl1))
           || DECL_TEMPLATE_INSTANTIATION (decl1))
          && ! DECL_INTERFACE_KNOWN (decl1))
          && ! DECL_INTERFACE_KNOWN (decl1))
        DECL_DEFER_OUTPUT (decl1) = 1;
        DECL_DEFER_OUTPUT (decl1) = 1;
      else
      else
        DECL_INTERFACE_KNOWN (decl1) = 1;
        DECL_INTERFACE_KNOWN (decl1) = 1;
    }
    }
 
 
  /* Determine the ELF visibility attribute for the function.  We must not
  /* Determine the ELF visibility attribute for the function.  We must not
     do this before calling "pushdecl", as we must allow "duplicate_decls"
     do this before calling "pushdecl", as we must allow "duplicate_decls"
     to merge any attributes appropriately.  We also need to wait until
     to merge any attributes appropriately.  We also need to wait until
     linkage is set.  */
     linkage is set.  */
  if (!DECL_CLONED_FUNCTION_P (decl1))
  if (!DECL_CLONED_FUNCTION_P (decl1))
    determine_visibility (decl1);
    determine_visibility (decl1);
 
 
  begin_scope (sk_function_parms, decl1);
  begin_scope (sk_function_parms, decl1);
 
 
  ++function_depth;
  ++function_depth;
 
 
  if (DECL_DESTRUCTOR_P (decl1)
  if (DECL_DESTRUCTOR_P (decl1)
      || (DECL_CONSTRUCTOR_P (decl1)
      || (DECL_CONSTRUCTOR_P (decl1)
          && targetm.cxx.cdtor_returns_this ()))
          && targetm.cxx.cdtor_returns_this ()))
    {
    {
      cdtor_label = build_decl (input_location,
      cdtor_label = build_decl (input_location,
                                LABEL_DECL, NULL_TREE, NULL_TREE);
                                LABEL_DECL, NULL_TREE, NULL_TREE);
      DECL_CONTEXT (cdtor_label) = current_function_decl;
      DECL_CONTEXT (cdtor_label) = current_function_decl;
    }
    }
 
 
  start_fname_decls ();
  start_fname_decls ();
 
 
  store_parm_decls (current_function_parms);
  store_parm_decls (current_function_parms);
}
}
 
 
 
 
/* Like start_preparsed_function, except that instead of a
/* Like start_preparsed_function, except that instead of a
   FUNCTION_DECL, this function takes DECLSPECS and DECLARATOR.
   FUNCTION_DECL, this function takes DECLSPECS and DECLARATOR.
 
 
   Returns 1 on success.  If the DECLARATOR is not suitable for a function
   Returns 1 on success.  If the DECLARATOR is not suitable for a function
   (it defines a datum instead), we return 0, which tells
   (it defines a datum instead), we return 0, which tells
   yyparse to report a parse error.  */
   yyparse to report a parse error.  */
 
 
int
int
start_function (cp_decl_specifier_seq *declspecs,
start_function (cp_decl_specifier_seq *declspecs,
                const cp_declarator *declarator,
                const cp_declarator *declarator,
                tree attrs)
                tree attrs)
{
{
  tree decl1;
  tree decl1;
 
 
  decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, &attrs);
  decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, &attrs);
  if (decl1 == error_mark_node)
  if (decl1 == error_mark_node)
    return 0;
    return 0;
  /* If the declarator is not suitable for a function definition,
  /* If the declarator is not suitable for a function definition,
     cause a syntax error.  */
     cause a syntax error.  */
  if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL)
  if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL)
    {
    {
      error ("invalid function declaration");
      error ("invalid function declaration");
      return 0;
      return 0;
    }
    }
 
 
  if (DECL_MAIN_P (decl1))
  if (DECL_MAIN_P (decl1))
    /* main must return int.  grokfndecl should have corrected it
    /* main must return int.  grokfndecl should have corrected it
       (and issued a diagnostic) if the user got it wrong.  */
       (and issued a diagnostic) if the user got it wrong.  */
    gcc_assert (same_type_p (TREE_TYPE (TREE_TYPE (decl1)),
    gcc_assert (same_type_p (TREE_TYPE (TREE_TYPE (decl1)),
                             integer_type_node));
                             integer_type_node));
 
 
  start_preparsed_function (decl1, attrs, /*flags=*/SF_DEFAULT);
  start_preparsed_function (decl1, attrs, /*flags=*/SF_DEFAULT);
 
 
  return 1;
  return 1;
}
}


/* Returns true iff an EH_SPEC_BLOCK should be created in the body of
/* Returns true iff an EH_SPEC_BLOCK should be created in the body of
   FN.  */
   FN.  */
 
 
static bool
static bool
use_eh_spec_block (tree fn)
use_eh_spec_block (tree fn)
{
{
  return (flag_exceptions && flag_enforce_eh_specs
  return (flag_exceptions && flag_enforce_eh_specs
          && !processing_template_decl
          && !processing_template_decl
          && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn))
          && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn))
          /* We insert the EH_SPEC_BLOCK only in the original
          /* We insert the EH_SPEC_BLOCK only in the original
             function; then, it is copied automatically to the
             function; then, it is copied automatically to the
             clones.  */
             clones.  */
          && !DECL_CLONED_FUNCTION_P (fn)
          && !DECL_CLONED_FUNCTION_P (fn)
          /* Implicitly-generated constructors and destructors have
          /* Implicitly-generated constructors and destructors have
             exception specifications.  However, those specifications
             exception specifications.  However, those specifications
             are the union of the possible exceptions specified by the
             are the union of the possible exceptions specified by the
             constructors/destructors for bases and members, so no
             constructors/destructors for bases and members, so no
             unallowed exception will ever reach this function.  By
             unallowed exception will ever reach this function.  By
             not creating the EH_SPEC_BLOCK we save a little memory,
             not creating the EH_SPEC_BLOCK we save a little memory,
             and we avoid spurious warnings about unreachable
             and we avoid spurious warnings about unreachable
             code.  */
             code.  */
          && !DECL_ARTIFICIAL (fn));
          && !DECL_ARTIFICIAL (fn));
}
}
 
 
/* Store the parameter declarations into the current function declaration.
/* Store the parameter declarations into the current function declaration.
   This is called after parsing the parameter declarations, before
   This is called after parsing the parameter declarations, before
   digesting the body of the function.
   digesting the body of the function.
 
 
   Also install to binding contour return value identifier, if any.  */
   Also install to binding contour return value identifier, if any.  */
 
 
static void
static void
store_parm_decls (tree current_function_parms)
store_parm_decls (tree current_function_parms)
{
{
  tree fndecl = current_function_decl;
  tree fndecl = current_function_decl;
  tree parm;
  tree parm;
 
 
  /* This is a chain of any other decls that came in among the parm
  /* This is a chain of any other decls that came in among the parm
     declarations.  If a parm is declared with  enum {foo, bar} x;
     declarations.  If a parm is declared with  enum {foo, bar} x;
     then CONST_DECLs for foo and bar are put here.  */
     then CONST_DECLs for foo and bar are put here.  */
  tree nonparms = NULL_TREE;
  tree nonparms = NULL_TREE;
 
 
  if (current_function_parms)
  if (current_function_parms)
    {
    {
      /* This case is when the function was defined with an ANSI prototype.
      /* This case is when the function was defined with an ANSI prototype.
         The parms already have decls, so we need not do anything here
         The parms already have decls, so we need not do anything here
         except record them as in effect
         except record them as in effect
         and complain if any redundant old-style parm decls were written.  */
         and complain if any redundant old-style parm decls were written.  */
 
 
      tree specparms = current_function_parms;
      tree specparms = current_function_parms;
      tree next;
      tree next;
 
 
      /* Must clear this because it might contain TYPE_DECLs declared
      /* Must clear this because it might contain TYPE_DECLs declared
             at class level.  */
             at class level.  */
      current_binding_level->names = NULL;
      current_binding_level->names = NULL;
 
 
      /* If we're doing semantic analysis, then we'll call pushdecl
      /* If we're doing semantic analysis, then we'll call pushdecl
             for each of these.  We must do them in reverse order so that
             for each of these.  We must do them in reverse order so that
             they end in the correct forward order.  */
             they end in the correct forward order.  */
      specparms = nreverse (specparms);
      specparms = nreverse (specparms);
 
 
      for (parm = specparms; parm; parm = next)
      for (parm = specparms; parm; parm = next)
        {
        {
          next = TREE_CHAIN (parm);
          next = TREE_CHAIN (parm);
          if (TREE_CODE (parm) == PARM_DECL)
          if (TREE_CODE (parm) == PARM_DECL)
            {
            {
              if (DECL_NAME (parm) == NULL_TREE
              if (DECL_NAME (parm) == NULL_TREE
                  || TREE_CODE (parm) != VOID_TYPE)
                  || TREE_CODE (parm) != VOID_TYPE)
                pushdecl (parm);
                pushdecl (parm);
              else
              else
                error ("parameter %qD declared void", parm);
                error ("parameter %qD declared void", parm);
            }
            }
          else
          else
            {
            {
              /* If we find an enum constant or a type tag,
              /* If we find an enum constant or a type tag,
                 put it aside for the moment.  */
                 put it aside for the moment.  */
              TREE_CHAIN (parm) = NULL_TREE;
              TREE_CHAIN (parm) = NULL_TREE;
              nonparms = chainon (nonparms, parm);
              nonparms = chainon (nonparms, parm);
            }
            }
        }
        }
 
 
      /* Get the decls in their original chain order and record in the
      /* Get the decls in their original chain order and record in the
         function.  This is all and only the PARM_DECLs that were
         function.  This is all and only the PARM_DECLs that were
         pushed into scope by the loop above.  */
         pushed into scope by the loop above.  */
      DECL_ARGUMENTS (fndecl) = getdecls ();
      DECL_ARGUMENTS (fndecl) = getdecls ();
    }
    }
  else
  else
    DECL_ARGUMENTS (fndecl) = NULL_TREE;
    DECL_ARGUMENTS (fndecl) = NULL_TREE;
 
 
  /* Now store the final chain of decls for the arguments
  /* Now store the final chain of decls for the arguments
     as the decl-chain of the current lexical scope.
     as the decl-chain of the current lexical scope.
     Put the enumerators in as well, at the front so that
     Put the enumerators in as well, at the front so that
     DECL_ARGUMENTS is not modified.  */
     DECL_ARGUMENTS is not modified.  */
  current_binding_level->names = chainon (nonparms, DECL_ARGUMENTS (fndecl));
  current_binding_level->names = chainon (nonparms, DECL_ARGUMENTS (fndecl));
 
 
  if (use_eh_spec_block (current_function_decl))
  if (use_eh_spec_block (current_function_decl))
    current_eh_spec_block = begin_eh_spec_block ();
    current_eh_spec_block = begin_eh_spec_block ();
}
}
 
 


/* We have finished doing semantic analysis on DECL, but have not yet
/* We have finished doing semantic analysis on DECL, but have not yet
   generated RTL for its body.  Save away our current state, so that
   generated RTL for its body.  Save away our current state, so that
   when we want to generate RTL later we know what to do.  */
   when we want to generate RTL later we know what to do.  */
 
 
static void
static void
save_function_data (tree decl)
save_function_data (tree decl)
{
{
  struct language_function *f;
  struct language_function *f;
 
 
  /* Save the language-specific per-function data so that we can
  /* Save the language-specific per-function data so that we can
     get it back when we really expand this function.  */
     get it back when we really expand this function.  */
  gcc_assert (!DECL_PENDING_INLINE_P (decl));
  gcc_assert (!DECL_PENDING_INLINE_P (decl));
 
 
  /* Make a copy.  */
  /* Make a copy.  */
  f = GGC_NEW (struct language_function);
  f = GGC_NEW (struct language_function);
  memcpy (f, cp_function_chain, sizeof (struct language_function));
  memcpy (f, cp_function_chain, sizeof (struct language_function));
  DECL_SAVED_FUNCTION_DATA (decl) = f;
  DECL_SAVED_FUNCTION_DATA (decl) = f;
 
 
  /* Clear out the bits we don't need.  */
  /* Clear out the bits we don't need.  */
  f->base.x_stmt_tree.x_cur_stmt_list = NULL_TREE;
  f->base.x_stmt_tree.x_cur_stmt_list = NULL_TREE;
  f->bindings = NULL;
  f->bindings = NULL;
  f->x_local_names = NULL;
  f->x_local_names = NULL;
}
}
 
 
 
 
/* Set the return value of the constructor (if present).  */
/* Set the return value of the constructor (if present).  */
 
 
static void
static void
finish_constructor_body (void)
finish_constructor_body (void)
{
{
  tree val;
  tree val;
  tree exprstmt;
  tree exprstmt;
 
 
  if (targetm.cxx.cdtor_returns_this ()
  if (targetm.cxx.cdtor_returns_this ()
      && (! TYPE_FOR_JAVA (current_class_type)))
      && (! TYPE_FOR_JAVA (current_class_type)))
    {
    {
      /* Any return from a constructor will end up here.  */
      /* Any return from a constructor will end up here.  */
      add_stmt (build_stmt (input_location, LABEL_EXPR, cdtor_label));
      add_stmt (build_stmt (input_location, LABEL_EXPR, cdtor_label));
 
 
      val = DECL_ARGUMENTS (current_function_decl);
      val = DECL_ARGUMENTS (current_function_decl);
      val = build2 (MODIFY_EXPR, TREE_TYPE (val),
      val = build2 (MODIFY_EXPR, TREE_TYPE (val),
                    DECL_RESULT (current_function_decl), val);
                    DECL_RESULT (current_function_decl), val);
      /* Return the address of the object.  */
      /* Return the address of the object.  */
      exprstmt = build_stmt (input_location, RETURN_EXPR, val);
      exprstmt = build_stmt (input_location, RETURN_EXPR, val);
      add_stmt (exprstmt);
      add_stmt (exprstmt);
    }
    }
}
}
 
 
/* Do all the processing for the beginning of a destructor; set up the
/* Do all the processing for the beginning of a destructor; set up the
   vtable pointers and cleanups for bases and members.  */
   vtable pointers and cleanups for bases and members.  */
 
 
static void
static void
begin_destructor_body (void)
begin_destructor_body (void)
{
{
  tree compound_stmt;
  tree compound_stmt;
 
 
  /* If the CURRENT_CLASS_TYPE is incomplete, we will have already
  /* If the CURRENT_CLASS_TYPE is incomplete, we will have already
     issued an error message.  We still want to try to process the
     issued an error message.  We still want to try to process the
     body of the function, but initialize_vtbl_ptrs will crash if
     body of the function, but initialize_vtbl_ptrs will crash if
     TYPE_BINFO is NULL.  */
     TYPE_BINFO is NULL.  */
  if (COMPLETE_TYPE_P (current_class_type))
  if (COMPLETE_TYPE_P (current_class_type))
    {
    {
      compound_stmt = begin_compound_stmt (0);
      compound_stmt = begin_compound_stmt (0);
      /* Make all virtual function table pointers in non-virtual base
      /* Make all virtual function table pointers in non-virtual base
         classes point to CURRENT_CLASS_TYPE's virtual function
         classes point to CURRENT_CLASS_TYPE's virtual function
         tables.  */
         tables.  */
      initialize_vtbl_ptrs (current_class_ptr);
      initialize_vtbl_ptrs (current_class_ptr);
      finish_compound_stmt (compound_stmt);
      finish_compound_stmt (compound_stmt);
 
 
      /* And insert cleanups for our bases and members so that they
      /* And insert cleanups for our bases and members so that they
         will be properly destroyed if we throw.  */
         will be properly destroyed if we throw.  */
      push_base_cleanups ();
      push_base_cleanups ();
    }
    }
}
}
 
 
/* At the end of every destructor we generate code to delete the object if
/* At the end of every destructor we generate code to delete the object if
   necessary.  Do that now.  */
   necessary.  Do that now.  */
 
 
static void
static void
finish_destructor_body (void)
finish_destructor_body (void)
{
{
  tree exprstmt;
  tree exprstmt;
 
 
  /* Any return from a destructor will end up here; that way all base
  /* Any return from a destructor will end up here; that way all base
     and member cleanups will be run when the function returns.  */
     and member cleanups will be run when the function returns.  */
  add_stmt (build_stmt (input_location, LABEL_EXPR, cdtor_label));
  add_stmt (build_stmt (input_location, LABEL_EXPR, cdtor_label));
 
 
  /* In a virtual destructor, we must call delete.  */
  /* In a virtual destructor, we must call delete.  */
  if (DECL_VIRTUAL_P (current_function_decl))
  if (DECL_VIRTUAL_P (current_function_decl))
    {
    {
      tree if_stmt;
      tree if_stmt;
      tree virtual_size = cxx_sizeof (current_class_type);
      tree virtual_size = cxx_sizeof (current_class_type);
 
 
      /* [class.dtor]
      /* [class.dtor]
 
 
      At the point of definition of a virtual destructor (including
      At the point of definition of a virtual destructor (including
      an implicit definition), non-placement operator delete shall
      an implicit definition), non-placement operator delete shall
      be looked up in the scope of the destructor's class and if
      be looked up in the scope of the destructor's class and if
      found shall be accessible and unambiguous.  */
      found shall be accessible and unambiguous.  */
      exprstmt = build_op_delete_call(DELETE_EXPR, current_class_ptr,
      exprstmt = build_op_delete_call(DELETE_EXPR, current_class_ptr,
                                      virtual_size,
                                      virtual_size,
                                      /*global_p=*/false,
                                      /*global_p=*/false,
                                      /*placement=*/NULL_TREE,
                                      /*placement=*/NULL_TREE,
                                      /*alloc_fn=*/NULL_TREE);
                                      /*alloc_fn=*/NULL_TREE);
 
 
      if_stmt = begin_if_stmt ();
      if_stmt = begin_if_stmt ();
      finish_if_stmt_cond (build2 (BIT_AND_EXPR, integer_type_node,
      finish_if_stmt_cond (build2 (BIT_AND_EXPR, integer_type_node,
                                   current_in_charge_parm,
                                   current_in_charge_parm,
                                   integer_one_node),
                                   integer_one_node),
                           if_stmt);
                           if_stmt);
      finish_expr_stmt (exprstmt);
      finish_expr_stmt (exprstmt);
      finish_then_clause (if_stmt);
      finish_then_clause (if_stmt);
      finish_if_stmt (if_stmt);
      finish_if_stmt (if_stmt);
    }
    }
 
 
  if (targetm.cxx.cdtor_returns_this ())
  if (targetm.cxx.cdtor_returns_this ())
    {
    {
      tree val;
      tree val;
 
 
      val = DECL_ARGUMENTS (current_function_decl);
      val = DECL_ARGUMENTS (current_function_decl);
      val = build2 (MODIFY_EXPR, TREE_TYPE (val),
      val = build2 (MODIFY_EXPR, TREE_TYPE (val),
                    DECL_RESULT (current_function_decl), val);
                    DECL_RESULT (current_function_decl), val);
      /* Return the address of the object.  */
      /* Return the address of the object.  */
      exprstmt = build_stmt (input_location, RETURN_EXPR, val);
      exprstmt = build_stmt (input_location, RETURN_EXPR, val);
      add_stmt (exprstmt);
      add_stmt (exprstmt);
    }
    }
}
}
 
 
/* Do the necessary processing for the beginning of a function body, which
/* Do the necessary processing for the beginning of a function body, which
   in this case includes member-initializers, but not the catch clauses of
   in this case includes member-initializers, but not the catch clauses of
   a function-try-block.  Currently, this means opening a binding level
   a function-try-block.  Currently, this means opening a binding level
   for the member-initializers (in a ctor) and member cleanups (in a dtor).  */
   for the member-initializers (in a ctor) and member cleanups (in a dtor).  */
 
 
tree
tree
begin_function_body (void)
begin_function_body (void)
{
{
  tree stmt;
  tree stmt;
 
 
  if (! FUNCTION_NEEDS_BODY_BLOCK (current_function_decl))
  if (! FUNCTION_NEEDS_BODY_BLOCK (current_function_decl))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (processing_template_decl)
  if (processing_template_decl)
    /* Do nothing now.  */;
    /* Do nothing now.  */;
  else
  else
    /* Always keep the BLOCK node associated with the outermost pair of
    /* Always keep the BLOCK node associated with the outermost pair of
       curly braces of a function.  These are needed for correct
       curly braces of a function.  These are needed for correct
       operation of dwarfout.c.  */
       operation of dwarfout.c.  */
    keep_next_level (true);
    keep_next_level (true);
 
 
  stmt = begin_compound_stmt (BCS_FN_BODY);
  stmt = begin_compound_stmt (BCS_FN_BODY);
 
 
  if (processing_template_decl)
  if (processing_template_decl)
    /* Do nothing now.  */;
    /* Do nothing now.  */;
  else if (DECL_DESTRUCTOR_P (current_function_decl))
  else if (DECL_DESTRUCTOR_P (current_function_decl))
    begin_destructor_body ();
    begin_destructor_body ();
 
 
  return stmt;
  return stmt;
}
}
 
 
/* Do the processing for the end of a function body.  Currently, this means
/* Do the processing for the end of a function body.  Currently, this means
   closing out the cleanups for fully-constructed bases and members, and in
   closing out the cleanups for fully-constructed bases and members, and in
   the case of the destructor, deleting the object if desired.  Again, this
   the case of the destructor, deleting the object if desired.  Again, this
   is only meaningful for [cd]tors, since they are the only functions where
   is only meaningful for [cd]tors, since they are the only functions where
   there is a significant distinction between the main body and any
   there is a significant distinction between the main body and any
   function catch clauses.  Handling, say, main() return semantics here
   function catch clauses.  Handling, say, main() return semantics here
   would be wrong, as flowing off the end of a function catch clause for
   would be wrong, as flowing off the end of a function catch clause for
   main() would also need to return 0.  */
   main() would also need to return 0.  */
 
 
void
void
finish_function_body (tree compstmt)
finish_function_body (tree compstmt)
{
{
  if (compstmt == NULL_TREE)
  if (compstmt == NULL_TREE)
    return;
    return;
 
 
  /* Close the block.  */
  /* Close the block.  */
  finish_compound_stmt (compstmt);
  finish_compound_stmt (compstmt);
 
 
  if (processing_template_decl)
  if (processing_template_decl)
    /* Do nothing now.  */;
    /* Do nothing now.  */;
  else if (DECL_CONSTRUCTOR_P (current_function_decl))
  else if (DECL_CONSTRUCTOR_P (current_function_decl))
    finish_constructor_body ();
    finish_constructor_body ();
  else if (DECL_DESTRUCTOR_P (current_function_decl))
  else if (DECL_DESTRUCTOR_P (current_function_decl))
    finish_destructor_body ();
    finish_destructor_body ();
}
}
 
 
/* Given a function, returns the BLOCK corresponding to the outermost level
/* Given a function, returns the BLOCK corresponding to the outermost level
   of curly braces, skipping the artificial block created for constructor
   of curly braces, skipping the artificial block created for constructor
   initializers.  */
   initializers.  */
 
 
tree
tree
outer_curly_brace_block (tree fndecl)
outer_curly_brace_block (tree fndecl)
{
{
  tree block = BLOCK_SUBBLOCKS (DECL_INITIAL (fndecl));
  tree block = BLOCK_SUBBLOCKS (DECL_INITIAL (fndecl));
  if (FUNCTION_NEEDS_BODY_BLOCK (current_function_decl))
  if (FUNCTION_NEEDS_BODY_BLOCK (current_function_decl))
    /* Skip the artificial function body block.  */
    /* Skip the artificial function body block.  */
    block = BLOCK_SUBBLOCKS (block);
    block = BLOCK_SUBBLOCKS (block);
  return block;
  return block;
}
}
 
 
/* Finish up a function declaration and compile that function
/* Finish up a function declaration and compile that function
   all the way to assembler language output.  The free the storage
   all the way to assembler language output.  The free the storage
   for the function definition.
   for the function definition.
 
 
   FLAGS is a bitwise or of the following values:
   FLAGS is a bitwise or of the following values:
     2 - INCLASS_INLINE
     2 - INCLASS_INLINE
       We just finished processing the body of an in-class inline
       We just finished processing the body of an in-class inline
       function definition.  (This processing will have taken place
       function definition.  (This processing will have taken place
       after the class definition is complete.)  */
       after the class definition is complete.)  */
 
 
tree
tree
finish_function (int flags)
finish_function (int flags)
{
{
  tree fndecl = current_function_decl;
  tree fndecl = current_function_decl;
  tree fntype, ctype = NULL_TREE;
  tree fntype, ctype = NULL_TREE;
  int inclass_inline = (flags & 2) != 0;
  int inclass_inline = (flags & 2) != 0;
  int nested;
  int nested;
 
 
  /* When we get some parse errors, we can end up without a
  /* When we get some parse errors, we can end up without a
     current_function_decl, so cope.  */
     current_function_decl, so cope.  */
  if (fndecl == NULL_TREE)
  if (fndecl == NULL_TREE)
    return error_mark_node;
    return error_mark_node;
 
 
  gcc_assert (!defer_mark_used_calls);
  gcc_assert (!defer_mark_used_calls);
  defer_mark_used_calls = true;
  defer_mark_used_calls = true;
 
 
  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fndecl)
  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fndecl)
      && DECL_VIRTUAL_P (fndecl)
      && DECL_VIRTUAL_P (fndecl)
      && !processing_template_decl)
      && !processing_template_decl)
    {
    {
      tree fnclass = DECL_CONTEXT (fndecl);
      tree fnclass = DECL_CONTEXT (fndecl);
      if (fndecl == CLASSTYPE_KEY_METHOD (fnclass))
      if (fndecl == CLASSTYPE_KEY_METHOD (fnclass))
        keyed_classes = tree_cons (NULL_TREE, fnclass, keyed_classes);
        keyed_classes = tree_cons (NULL_TREE, fnclass, keyed_classes);
    }
    }
 
 
  nested = function_depth > 1;
  nested = function_depth > 1;
  fntype = TREE_TYPE (fndecl);
  fntype = TREE_TYPE (fndecl);
 
 
  /*  TREE_READONLY (fndecl) = 1;
  /*  TREE_READONLY (fndecl) = 1;
      This caused &foo to be of type ptr-to-const-function
      This caused &foo to be of type ptr-to-const-function
      which then got a warning when stored in a ptr-to-function variable.  */
      which then got a warning when stored in a ptr-to-function variable.  */
 
 
  gcc_assert (building_stmt_tree ());
  gcc_assert (building_stmt_tree ());
  /* The current function is being defined, so its DECL_INITIAL should
  /* The current function is being defined, so its DECL_INITIAL should
     be set, and unless there's a multiple definition, it should be
     be set, and unless there's a multiple definition, it should be
     error_mark_node.  */
     error_mark_node.  */
  gcc_assert (DECL_INITIAL (fndecl) == error_mark_node);
  gcc_assert (DECL_INITIAL (fndecl) == error_mark_node);
 
 
  /* For a cloned function, we've already got all the code we need;
  /* For a cloned function, we've already got all the code we need;
     there's no need to add any extra bits.  */
     there's no need to add any extra bits.  */
  if (!DECL_CLONED_FUNCTION_P (fndecl))
  if (!DECL_CLONED_FUNCTION_P (fndecl))
    {
    {
      if (DECL_MAIN_P (current_function_decl))
      if (DECL_MAIN_P (current_function_decl))
        {
        {
          tree stmt;
          tree stmt;
 
 
          /* Make it so that `main' always returns 0 by default (or
          /* Make it so that `main' always returns 0 by default (or
             1 for VMS).  */
             1 for VMS).  */
#if VMS_TARGET
#if VMS_TARGET
          stmt = finish_return_stmt (integer_one_node);
          stmt = finish_return_stmt (integer_one_node);
#else
#else
          stmt = finish_return_stmt (integer_zero_node);
          stmt = finish_return_stmt (integer_zero_node);
#endif
#endif
          /* Hack.  We don't want the middle-end to warn that this
          /* Hack.  We don't want the middle-end to warn that this
             return is unreachable, so put the statement on the
             return is unreachable, so put the statement on the
             special line 0.  */
             special line 0.  */
          {
          {
            location_t linezero = linemap_line_start (line_table, 0, 1);
            location_t linezero = linemap_line_start (line_table, 0, 1);
            SET_EXPR_LOCATION (stmt, linezero);
            SET_EXPR_LOCATION (stmt, linezero);
          }
          }
        }
        }
 
 
      if (use_eh_spec_block (current_function_decl))
      if (use_eh_spec_block (current_function_decl))
        finish_eh_spec_block (TYPE_RAISES_EXCEPTIONS
        finish_eh_spec_block (TYPE_RAISES_EXCEPTIONS
                              (TREE_TYPE (current_function_decl)),
                              (TREE_TYPE (current_function_decl)),
                              current_eh_spec_block);
                              current_eh_spec_block);
    }
    }
 
 
  /* If we're saving up tree structure, tie off the function now.  */
  /* If we're saving up tree structure, tie off the function now.  */
  DECL_SAVED_TREE (fndecl) = pop_stmt_list (DECL_SAVED_TREE (fndecl));
  DECL_SAVED_TREE (fndecl) = pop_stmt_list (DECL_SAVED_TREE (fndecl));
 
 
  finish_fname_decls ();
  finish_fname_decls ();
 
 
  /* If this function can't throw any exceptions, remember that.  */
  /* If this function can't throw any exceptions, remember that.  */
  if (!processing_template_decl
  if (!processing_template_decl
      && !cp_function_chain->can_throw
      && !cp_function_chain->can_throw
      && !flag_non_call_exceptions
      && !flag_non_call_exceptions
      && !DECL_REPLACEABLE_P (fndecl))
      && !DECL_REPLACEABLE_P (fndecl))
    TREE_NOTHROW (fndecl) = 1;
    TREE_NOTHROW (fndecl) = 1;
 
 
  /* This must come after expand_function_end because cleanups might
  /* This must come after expand_function_end because cleanups might
     have declarations (from inline functions) that need to go into
     have declarations (from inline functions) that need to go into
     this function's blocks.  */
     this function's blocks.  */
 
 
  /* If the current binding level isn't the outermost binding level
  /* If the current binding level isn't the outermost binding level
     for this function, either there is a bug, or we have experienced
     for this function, either there is a bug, or we have experienced
     syntax errors and the statement tree is malformed.  */
     syntax errors and the statement tree is malformed.  */
  if (current_binding_level->kind != sk_function_parms)
  if (current_binding_level->kind != sk_function_parms)
    {
    {
      /* Make sure we have already experienced errors.  */
      /* Make sure we have already experienced errors.  */
      gcc_assert (errorcount);
      gcc_assert (errorcount);
 
 
      /* Throw away the broken statement tree and extra binding
      /* Throw away the broken statement tree and extra binding
         levels.  */
         levels.  */
      DECL_SAVED_TREE (fndecl) = alloc_stmt_list ();
      DECL_SAVED_TREE (fndecl) = alloc_stmt_list ();
 
 
      while (current_binding_level->kind != sk_function_parms)
      while (current_binding_level->kind != sk_function_parms)
        {
        {
          if (current_binding_level->kind == sk_class)
          if (current_binding_level->kind == sk_class)
            pop_nested_class ();
            pop_nested_class ();
          else
          else
            poplevel (0, 0, 0);
            poplevel (0, 0, 0);
        }
        }
    }
    }
  poplevel (1, 0, 1);
  poplevel (1, 0, 1);
 
 
  /* Statements should always be full-expressions at the outermost set
  /* Statements should always be full-expressions at the outermost set
     of curly braces for a function.  */
     of curly braces for a function.  */
  gcc_assert (stmts_are_full_exprs_p ());
  gcc_assert (stmts_are_full_exprs_p ());
 
 
  /* Set up the named return value optimization, if we can.  Candidate
  /* Set up the named return value optimization, if we can.  Candidate
     variables are selected in check_return_expr.  */
     variables are selected in check_return_expr.  */
  if (current_function_return_value)
  if (current_function_return_value)
    {
    {
      tree r = current_function_return_value;
      tree r = current_function_return_value;
      tree outer;
      tree outer;
 
 
      if (r != error_mark_node
      if (r != error_mark_node
          /* This is only worth doing for fns that return in memory--and
          /* This is only worth doing for fns that return in memory--and
             simpler, since we don't have to worry about promoted modes.  */
             simpler, since we don't have to worry about promoted modes.  */
          && aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl)), fndecl)
          && aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl)), fndecl)
          /* Only allow this for variables declared in the outer scope of
          /* Only allow this for variables declared in the outer scope of
             the function so we know that their lifetime always ends with a
             the function so we know that their lifetime always ends with a
             return; see g++.dg/opt/nrv6.C.  We could be more flexible if
             return; see g++.dg/opt/nrv6.C.  We could be more flexible if
             we were to do this optimization in tree-ssa.  */
             we were to do this optimization in tree-ssa.  */
          && (outer = outer_curly_brace_block (fndecl))
          && (outer = outer_curly_brace_block (fndecl))
          && chain_member (r, BLOCK_VARS (outer)))
          && chain_member (r, BLOCK_VARS (outer)))
        finalize_nrv (&DECL_SAVED_TREE (fndecl), r, DECL_RESULT (fndecl));
        finalize_nrv (&DECL_SAVED_TREE (fndecl), r, DECL_RESULT (fndecl));
 
 
      current_function_return_value = NULL_TREE;
      current_function_return_value = NULL_TREE;
    }
    }
 
 
  /* Remember that we were in class scope.  */
  /* Remember that we were in class scope.  */
  if (current_class_name)
  if (current_class_name)
    ctype = current_class_type;
    ctype = current_class_type;
 
 
  /* Must mark the RESULT_DECL as being in this function.  */
  /* Must mark the RESULT_DECL as being in this function.  */
  DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
  DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
 
 
  /* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point
  /* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point
     to the FUNCTION_DECL node itself.  */
     to the FUNCTION_DECL node itself.  */
  BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
  BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
 
 
  /* Save away current state, if appropriate.  */
  /* Save away current state, if appropriate.  */
  if (!processing_template_decl)
  if (!processing_template_decl)
    save_function_data (fndecl);
    save_function_data (fndecl);
 
 
  /* Complain if there's just no return statement.  */
  /* Complain if there's just no return statement.  */
  if (warn_return_type
  if (warn_return_type
      && TREE_CODE (TREE_TYPE (fntype)) != VOID_TYPE
      && TREE_CODE (TREE_TYPE (fntype)) != VOID_TYPE
      && !dependent_type_p (TREE_TYPE (fntype))
      && !dependent_type_p (TREE_TYPE (fntype))
      && !current_function_returns_value && !current_function_returns_null
      && !current_function_returns_value && !current_function_returns_null
      /* Don't complain if we abort or throw.  */
      /* Don't complain if we abort or throw.  */
      && !current_function_returns_abnormally
      && !current_function_returns_abnormally
      /* Don't complain if we are declared noreturn.  */
      /* Don't complain if we are declared noreturn.  */
      && !TREE_THIS_VOLATILE (fndecl)
      && !TREE_THIS_VOLATILE (fndecl)
      && !DECL_NAME (DECL_RESULT (fndecl))
      && !DECL_NAME (DECL_RESULT (fndecl))
      && !TREE_NO_WARNING (fndecl)
      && !TREE_NO_WARNING (fndecl)
      /* Structor return values (if any) are set by the compiler.  */
      /* Structor return values (if any) are set by the compiler.  */
      && !DECL_CONSTRUCTOR_P (fndecl)
      && !DECL_CONSTRUCTOR_P (fndecl)
      && !DECL_DESTRUCTOR_P (fndecl))
      && !DECL_DESTRUCTOR_P (fndecl))
    {
    {
      warning (OPT_Wreturn_type,
      warning (OPT_Wreturn_type,
               "no return statement in function returning non-void");
               "no return statement in function returning non-void");
      TREE_NO_WARNING (fndecl) = 1;
      TREE_NO_WARNING (fndecl) = 1;
    }
    }
 
 
  /* Store the end of the function, so that we get good line number
  /* Store the end of the function, so that we get good line number
     info for the epilogue.  */
     info for the epilogue.  */
  cfun->function_end_locus = input_location;
  cfun->function_end_locus = input_location;
 
 
  /* Genericize before inlining.  */
  /* Genericize before inlining.  */
  if (!processing_template_decl)
  if (!processing_template_decl)
    {
    {
      struct language_function *f = DECL_SAVED_FUNCTION_DATA (fndecl);
      struct language_function *f = DECL_SAVED_FUNCTION_DATA (fndecl);
      invoke_plugin_callbacks (PLUGIN_PRE_GENERICIZE, fndecl);
      invoke_plugin_callbacks (PLUGIN_PRE_GENERICIZE, fndecl);
      cp_genericize (fndecl);
      cp_genericize (fndecl);
      /* Clear out the bits we don't need.  */
      /* Clear out the bits we don't need.  */
      f->x_current_class_ptr = NULL;
      f->x_current_class_ptr = NULL;
      f->x_current_class_ref = NULL;
      f->x_current_class_ref = NULL;
      f->x_eh_spec_block = NULL;
      f->x_eh_spec_block = NULL;
      f->x_in_charge_parm = NULL;
      f->x_in_charge_parm = NULL;
      f->x_vtt_parm = NULL;
      f->x_vtt_parm = NULL;
      f->x_return_value = NULL;
      f->x_return_value = NULL;
      f->bindings = NULL;
      f->bindings = NULL;
      f->extern_decl_map = NULL;
      f->extern_decl_map = NULL;
    }
    }
  /* Clear out the bits we don't need.  */
  /* Clear out the bits we don't need.  */
  local_names = NULL;
  local_names = NULL;
 
 
  /* We're leaving the context of this function, so zap cfun.  It's still in
  /* We're leaving the context of this function, so zap cfun.  It's still in
     DECL_STRUCT_FUNCTION, and we'll restore it in tree_rest_of_compilation.  */
     DECL_STRUCT_FUNCTION, and we'll restore it in tree_rest_of_compilation.  */
  set_cfun (NULL);
  set_cfun (NULL);
  current_function_decl = NULL;
  current_function_decl = NULL;
 
 
  /* If this is an in-class inline definition, we may have to pop the
  /* If this is an in-class inline definition, we may have to pop the
     bindings for the template parameters that we added in
     bindings for the template parameters that we added in
     maybe_begin_member_template_processing when start_function was
     maybe_begin_member_template_processing when start_function was
     called.  */
     called.  */
  if (inclass_inline)
  if (inclass_inline)
    maybe_end_member_template_processing ();
    maybe_end_member_template_processing ();
 
 
  /* Leave the scope of the class.  */
  /* Leave the scope of the class.  */
  if (ctype)
  if (ctype)
    pop_nested_class ();
    pop_nested_class ();
 
 
  --function_depth;
  --function_depth;
 
 
  /* Clean up.  */
  /* Clean up.  */
  if (! nested)
  if (! nested)
    /* Let the error reporting routines know that we're outside a
    /* Let the error reporting routines know that we're outside a
       function.  For a nested function, this value is used in
       function.  For a nested function, this value is used in
       cxx_pop_function_context and then reset via pop_function_context.  */
       cxx_pop_function_context and then reset via pop_function_context.  */
    current_function_decl = NULL_TREE;
    current_function_decl = NULL_TREE;
 
 
  defer_mark_used_calls = false;
  defer_mark_used_calls = false;
  if (deferred_mark_used_calls)
  if (deferred_mark_used_calls)
    {
    {
      unsigned int i;
      unsigned int i;
      tree decl;
      tree decl;
 
 
      for (i = 0; VEC_iterate (tree, deferred_mark_used_calls, i, decl); i++)
      for (i = 0; VEC_iterate (tree, deferred_mark_used_calls, i, decl); i++)
        mark_used (decl);
        mark_used (decl);
      VEC_free (tree, gc, deferred_mark_used_calls);
      VEC_free (tree, gc, deferred_mark_used_calls);
    }
    }
 
 
  return fndecl;
  return fndecl;
}
}


/* Create the FUNCTION_DECL for a function definition.
/* Create the FUNCTION_DECL for a function definition.
   DECLSPECS and DECLARATOR are the parts of the declaration;
   DECLSPECS and DECLARATOR are the parts of the declaration;
   they describe the return type and the name of the function,
   they describe the return type and the name of the function,
   but twisted together in a fashion that parallels the syntax of C.
   but twisted together in a fashion that parallels the syntax of C.
 
 
   This function creates a binding context for the function body
   This function creates a binding context for the function body
   as well as setting up the FUNCTION_DECL in current_function_decl.
   as well as setting up the FUNCTION_DECL in current_function_decl.
 
 
   Returns a FUNCTION_DECL on success.
   Returns a FUNCTION_DECL on success.
 
 
   If the DECLARATOR is not suitable for a function (it defines a datum
   If the DECLARATOR is not suitable for a function (it defines a datum
   instead), we return 0, which tells yyparse to report a parse error.
   instead), we return 0, which tells yyparse to report a parse error.
 
 
   May return void_type_node indicating that this method is actually
   May return void_type_node indicating that this method is actually
   a friend.  See grokfield for more details.
   a friend.  See grokfield for more details.
 
 
   Came here with a `.pushlevel' .
   Came here with a `.pushlevel' .
 
 
   DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING
   DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING
   CHANGES TO CODE IN `grokfield'.  */
   CHANGES TO CODE IN `grokfield'.  */
 
 
tree
tree
grokmethod (cp_decl_specifier_seq *declspecs,
grokmethod (cp_decl_specifier_seq *declspecs,
            const cp_declarator *declarator, tree attrlist)
            const cp_declarator *declarator, tree attrlist)
{
{
  tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0,
  tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0,
                                &attrlist);
                                &attrlist);
 
 
  if (fndecl == error_mark_node)
  if (fndecl == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  if (fndecl == NULL || TREE_CODE (fndecl) != FUNCTION_DECL)
  if (fndecl == NULL || TREE_CODE (fndecl) != FUNCTION_DECL)
    {
    {
      error ("invalid member function declaration");
      error ("invalid member function declaration");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (attrlist)
  if (attrlist)
    cplus_decl_attributes (&fndecl, attrlist, 0);
    cplus_decl_attributes (&fndecl, attrlist, 0);
 
 
  /* Pass friends other than inline friend functions back.  */
  /* Pass friends other than inline friend functions back.  */
  if (fndecl == void_type_node)
  if (fndecl == void_type_node)
    return fndecl;
    return fndecl;
 
 
  if (DECL_IN_AGGR_P (fndecl))
  if (DECL_IN_AGGR_P (fndecl))
    {
    {
      if (DECL_CONTEXT (fndecl)
      if (DECL_CONTEXT (fndecl)
          && TREE_CODE (DECL_CONTEXT (fndecl)) != NAMESPACE_DECL)
          && TREE_CODE (DECL_CONTEXT (fndecl)) != NAMESPACE_DECL)
        error ("%qD is already defined in class %qT", fndecl,
        error ("%qD is already defined in class %qT", fndecl,
               DECL_CONTEXT (fndecl));
               DECL_CONTEXT (fndecl));
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  check_template_shadow (fndecl);
  check_template_shadow (fndecl);
 
 
  DECL_DECLARED_INLINE_P (fndecl) = 1;
  DECL_DECLARED_INLINE_P (fndecl) = 1;
  DECL_NO_INLINE_WARNING_P (fndecl) = 1;
  DECL_NO_INLINE_WARNING_P (fndecl) = 1;
 
 
  /* We process method specializations in finish_struct_1.  */
  /* We process method specializations in finish_struct_1.  */
  if (processing_template_decl && !DECL_TEMPLATE_SPECIALIZATION (fndecl))
  if (processing_template_decl && !DECL_TEMPLATE_SPECIALIZATION (fndecl))
    {
    {
      fndecl = push_template_decl (fndecl);
      fndecl = push_template_decl (fndecl);
      if (fndecl == error_mark_node)
      if (fndecl == error_mark_node)
        return fndecl;
        return fndecl;
    }
    }
 
 
  if (! DECL_FRIEND_P (fndecl))
  if (! DECL_FRIEND_P (fndecl))
    {
    {
      if (TREE_CHAIN (fndecl))
      if (TREE_CHAIN (fndecl))
        {
        {
          fndecl = copy_node (fndecl);
          fndecl = copy_node (fndecl);
          TREE_CHAIN (fndecl) = NULL_TREE;
          TREE_CHAIN (fndecl) = NULL_TREE;
        }
        }
    }
    }
 
 
  cp_finish_decl (fndecl, NULL_TREE, false, NULL_TREE, 0);
  cp_finish_decl (fndecl, NULL_TREE, false, NULL_TREE, 0);
 
 
  DECL_IN_AGGR_P (fndecl) = 1;
  DECL_IN_AGGR_P (fndecl) = 1;
  return fndecl;
  return fndecl;
}
}


 
 
/* VAR is a VAR_DECL.  If its type is incomplete, remember VAR so that
/* VAR is a VAR_DECL.  If its type is incomplete, remember VAR so that
   we can lay it out later, when and if its type becomes complete.  */
   we can lay it out later, when and if its type becomes complete.  */
 
 
void
void
maybe_register_incomplete_var (tree var)
maybe_register_incomplete_var (tree var)
{
{
  gcc_assert (TREE_CODE (var) == VAR_DECL);
  gcc_assert (TREE_CODE (var) == VAR_DECL);
 
 
  /* Keep track of variables with incomplete types.  */
  /* Keep track of variables with incomplete types.  */
  if (!processing_template_decl && TREE_TYPE (var) != error_mark_node
  if (!processing_template_decl && TREE_TYPE (var) != error_mark_node
      && DECL_EXTERNAL (var))
      && DECL_EXTERNAL (var))
    {
    {
      tree inner_type = TREE_TYPE (var);
      tree inner_type = TREE_TYPE (var);
 
 
      while (TREE_CODE (inner_type) == ARRAY_TYPE)
      while (TREE_CODE (inner_type) == ARRAY_TYPE)
        inner_type = TREE_TYPE (inner_type);
        inner_type = TREE_TYPE (inner_type);
      inner_type = TYPE_MAIN_VARIANT (inner_type);
      inner_type = TYPE_MAIN_VARIANT (inner_type);
 
 
      if ((!COMPLETE_TYPE_P (inner_type) && CLASS_TYPE_P (inner_type))
      if ((!COMPLETE_TYPE_P (inner_type) && CLASS_TYPE_P (inner_type))
          /* RTTI TD entries are created while defining the type_info.  */
          /* RTTI TD entries are created while defining the type_info.  */
          || (TYPE_LANG_SPECIFIC (inner_type)
          || (TYPE_LANG_SPECIFIC (inner_type)
              && TYPE_BEING_DEFINED (inner_type)))
              && TYPE_BEING_DEFINED (inner_type)))
        incomplete_vars = tree_cons (inner_type, var, incomplete_vars);
        incomplete_vars = tree_cons (inner_type, var, incomplete_vars);
    }
    }
}
}
 
 
/* Called when a class type (given by TYPE) is defined.  If there are
/* Called when a class type (given by TYPE) is defined.  If there are
   any existing VAR_DECLs whose type has been completed by this
   any existing VAR_DECLs whose type has been completed by this
   declaration, update them now.  */
   declaration, update them now.  */
 
 
void
void
complete_vars (tree type)
complete_vars (tree type)
{
{
  tree *list = &incomplete_vars;
  tree *list = &incomplete_vars;
 
 
  gcc_assert (CLASS_TYPE_P (type));
  gcc_assert (CLASS_TYPE_P (type));
  while (*list)
  while (*list)
    {
    {
      if (same_type_p (type, TREE_PURPOSE (*list)))
      if (same_type_p (type, TREE_PURPOSE (*list)))
        {
        {
          tree var = TREE_VALUE (*list);
          tree var = TREE_VALUE (*list);
          tree type = TREE_TYPE (var);
          tree type = TREE_TYPE (var);
          /* Complete the type of the variable.  The VAR_DECL itself
          /* Complete the type of the variable.  The VAR_DECL itself
             will be laid out in expand_expr.  */
             will be laid out in expand_expr.  */
          complete_type (type);
          complete_type (type);
          cp_apply_type_quals_to_decl (cp_type_quals (type), var);
          cp_apply_type_quals_to_decl (cp_type_quals (type), var);
          /* Remove this entry from the list.  */
          /* Remove this entry from the list.  */
          *list = TREE_CHAIN (*list);
          *list = TREE_CHAIN (*list);
        }
        }
      else
      else
        list = &TREE_CHAIN (*list);
        list = &TREE_CHAIN (*list);
    }
    }
 
 
  /* Check for pending declarations which may have abstract type.  */
  /* Check for pending declarations which may have abstract type.  */
  complete_type_check_abstract (type);
  complete_type_check_abstract (type);
}
}
 
 
/* If DECL is of a type which needs a cleanup, build and return an
/* If DECL is of a type which needs a cleanup, build and return an
   expression to perform that cleanup here.  Return NULL_TREE if no
   expression to perform that cleanup here.  Return NULL_TREE if no
   cleanup need be done.  */
   cleanup need be done.  */
 
 
tree
tree
cxx_maybe_build_cleanup (tree decl)
cxx_maybe_build_cleanup (tree decl)
{
{
  tree type;
  tree type;
  tree attr;
  tree attr;
  tree cleanup;
  tree cleanup;
 
 
  /* Assume no cleanup is required.  */
  /* Assume no cleanup is required.  */
  cleanup = NULL_TREE;
  cleanup = NULL_TREE;
 
 
  if (error_operand_p (decl))
  if (error_operand_p (decl))
    return cleanup;
    return cleanup;
 
 
  /* Handle "__attribute__((cleanup))".  We run the cleanup function
  /* Handle "__attribute__((cleanup))".  We run the cleanup function
     before the destructor since the destructor is what actually
     before the destructor since the destructor is what actually
     terminates the lifetime of the object.  */
     terminates the lifetime of the object.  */
  attr = lookup_attribute ("cleanup", DECL_ATTRIBUTES (decl));
  attr = lookup_attribute ("cleanup", DECL_ATTRIBUTES (decl));
  if (attr)
  if (attr)
    {
    {
      tree id;
      tree id;
      tree fn;
      tree fn;
      tree arg;
      tree arg;
 
 
      /* Get the name specified by the user for the cleanup function.  */
      /* Get the name specified by the user for the cleanup function.  */
      id = TREE_VALUE (TREE_VALUE (attr));
      id = TREE_VALUE (TREE_VALUE (attr));
      /* Look up the name to find the cleanup function to call.  It is
      /* Look up the name to find the cleanup function to call.  It is
         important to use lookup_name here because that is what is
         important to use lookup_name here because that is what is
         used in c-common.c:handle_cleanup_attribute when performing
         used in c-common.c:handle_cleanup_attribute when performing
         initial checks on the attribute.  Note that those checks
         initial checks on the attribute.  Note that those checks
         include ensuring that the function found is not an overloaded
         include ensuring that the function found is not an overloaded
         function, or an object with an overloaded call operator,
         function, or an object with an overloaded call operator,
         etc.; we can rely on the fact that the function found is an
         etc.; we can rely on the fact that the function found is an
         ordinary FUNCTION_DECL.  */
         ordinary FUNCTION_DECL.  */
      fn = lookup_name (id);
      fn = lookup_name (id);
      arg = build_address (decl);
      arg = build_address (decl);
      mark_used (decl);
      mark_used (decl);
      cleanup = cp_build_function_call (fn, build_tree_list (NULL_TREE,
      cleanup = cp_build_function_call (fn, build_tree_list (NULL_TREE,
                                                             arg),
                                                             arg),
                                        tf_warning_or_error);
                                        tf_warning_or_error);
    }
    }
  /* Handle ordinary C++ destructors.  */
  /* Handle ordinary C++ destructors.  */
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
    {
    {
      int flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR;
      int flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR;
      bool has_vbases = (TREE_CODE (type) == RECORD_TYPE
      bool has_vbases = (TREE_CODE (type) == RECORD_TYPE
                         && CLASSTYPE_VBASECLASSES (type));
                         && CLASSTYPE_VBASECLASSES (type));
      tree addr;
      tree addr;
      tree call;
      tree call;
 
 
      if (TREE_CODE (type) == ARRAY_TYPE)
      if (TREE_CODE (type) == ARRAY_TYPE)
        addr = decl;
        addr = decl;
      else
      else
        addr = build_address (decl);
        addr = build_address (decl);
 
 
      /* Optimize for space over speed here.  */
      /* Optimize for space over speed here.  */
      if (!has_vbases || flag_expensive_optimizations)
      if (!has_vbases || flag_expensive_optimizations)
        flags |= LOOKUP_NONVIRTUAL;
        flags |= LOOKUP_NONVIRTUAL;
 
 
      call = build_delete (TREE_TYPE (addr), addr,
      call = build_delete (TREE_TYPE (addr), addr,
                           sfk_complete_destructor, flags, 0);
                           sfk_complete_destructor, flags, 0);
      if (cleanup)
      if (cleanup)
        cleanup = build_compound_expr (input_location, cleanup, call);
        cleanup = build_compound_expr (input_location, cleanup, call);
      else
      else
        cleanup = call;
        cleanup = call;
    }
    }
 
 
  return cleanup;
  return cleanup;
}
}


/* When a stmt has been parsed, this function is called.  */
/* When a stmt has been parsed, this function is called.  */
 
 
void
void
finish_stmt (void)
finish_stmt (void)
{
{
}
}
 
 
/* Return the FUNCTION_TYPE that corresponds to MEMFNTYPE, which can be a
/* Return the FUNCTION_TYPE that corresponds to MEMFNTYPE, which can be a
   FUNCTION_DECL, METHOD_TYPE, FUNCTION_TYPE, pointer or reference to
   FUNCTION_DECL, METHOD_TYPE, FUNCTION_TYPE, pointer or reference to
   METHOD_TYPE or FUNCTION_TYPE, or pointer to member function.  */
   METHOD_TYPE or FUNCTION_TYPE, or pointer to member function.  */
 
 
tree
tree
static_fn_type (tree memfntype)
static_fn_type (tree memfntype)
{
{
  tree fntype;
  tree fntype;
  tree args;
  tree args;
  int quals;
  int quals;
 
 
  if (TYPE_PTRMEMFUNC_P (memfntype))
  if (TYPE_PTRMEMFUNC_P (memfntype))
    memfntype = TYPE_PTRMEMFUNC_FN_TYPE (memfntype);
    memfntype = TYPE_PTRMEMFUNC_FN_TYPE (memfntype);
  if (POINTER_TYPE_P (memfntype)
  if (POINTER_TYPE_P (memfntype)
      || TREE_CODE (memfntype) == FUNCTION_DECL)
      || TREE_CODE (memfntype) == FUNCTION_DECL)
    memfntype = TREE_TYPE (memfntype);
    memfntype = TREE_TYPE (memfntype);
  if (TREE_CODE (memfntype) == FUNCTION_TYPE)
  if (TREE_CODE (memfntype) == FUNCTION_TYPE)
    return memfntype;
    return memfntype;
  gcc_assert (TREE_CODE (memfntype) == METHOD_TYPE);
  gcc_assert (TREE_CODE (memfntype) == METHOD_TYPE);
  args = TYPE_ARG_TYPES (memfntype);
  args = TYPE_ARG_TYPES (memfntype);
  fntype = build_function_type (TREE_TYPE (memfntype), TREE_CHAIN (args));
  fntype = build_function_type (TREE_TYPE (memfntype), TREE_CHAIN (args));
  quals = cp_type_quals (TREE_TYPE (TREE_VALUE (args)));
  quals = cp_type_quals (TREE_TYPE (TREE_VALUE (args)));
  fntype = build_qualified_type (fntype, quals);
  fntype = build_qualified_type (fntype, quals);
  fntype = (cp_build_type_attribute_variant
  fntype = (cp_build_type_attribute_variant
            (fntype, TYPE_ATTRIBUTES (memfntype)));
            (fntype, TYPE_ATTRIBUTES (memfntype)));
  fntype = (build_exception_variant
  fntype = (build_exception_variant
            (fntype, TYPE_RAISES_EXCEPTIONS (memfntype)));
            (fntype, TYPE_RAISES_EXCEPTIONS (memfntype)));
  return fntype;
  return fntype;
}
}
 
 
/* DECL was originally constructed as a non-static member function,
/* DECL was originally constructed as a non-static member function,
   but turned out to be static.  Update it accordingly.  */
   but turned out to be static.  Update it accordingly.  */
 
 
void
void
revert_static_member_fn (tree decl)
revert_static_member_fn (tree decl)
{
{
  TREE_TYPE (decl) = static_fn_type (decl);
  TREE_TYPE (decl) = static_fn_type (decl);
 
 
  if (cp_type_quals (TREE_TYPE (decl)) != TYPE_UNQUALIFIED)
  if (cp_type_quals (TREE_TYPE (decl)) != TYPE_UNQUALIFIED)
    error ("static member function %q#D declared with type qualifiers", decl);
    error ("static member function %q#D declared with type qualifiers", decl);
 
 
  if (DECL_ARGUMENTS (decl))
  if (DECL_ARGUMENTS (decl))
    DECL_ARGUMENTS (decl) = TREE_CHAIN (DECL_ARGUMENTS (decl));
    DECL_ARGUMENTS (decl) = TREE_CHAIN (DECL_ARGUMENTS (decl));
  DECL_STATIC_FUNCTION_P (decl) = 1;
  DECL_STATIC_FUNCTION_P (decl) = 1;
}
}
 
 
/* Return which tree structure is used by T, or TS_CP_GENERIC if T is
/* Return which tree structure is used by T, or TS_CP_GENERIC if T is
   one of the language-independent trees.  */
   one of the language-independent trees.  */
 
 
enum cp_tree_node_structure_enum
enum cp_tree_node_structure_enum
cp_tree_node_structure (union lang_tree_node * t)
cp_tree_node_structure (union lang_tree_node * t)
{
{
  switch (TREE_CODE (&t->generic))
  switch (TREE_CODE (&t->generic))
    {
    {
    case DEFAULT_ARG:           return TS_CP_DEFAULT_ARG;
    case DEFAULT_ARG:           return TS_CP_DEFAULT_ARG;
    case IDENTIFIER_NODE:       return TS_CP_IDENTIFIER;
    case IDENTIFIER_NODE:       return TS_CP_IDENTIFIER;
    case OVERLOAD:              return TS_CP_OVERLOAD;
    case OVERLOAD:              return TS_CP_OVERLOAD;
    case TEMPLATE_PARM_INDEX:   return TS_CP_TPI;
    case TEMPLATE_PARM_INDEX:   return TS_CP_TPI;
    case PTRMEM_CST:            return TS_CP_PTRMEM;
    case PTRMEM_CST:            return TS_CP_PTRMEM;
    case BASELINK:              return TS_CP_BASELINK;
    case BASELINK:              return TS_CP_BASELINK;
    case STATIC_ASSERT:         return TS_CP_STATIC_ASSERT;
    case STATIC_ASSERT:         return TS_CP_STATIC_ASSERT;
    case ARGUMENT_PACK_SELECT:  return TS_CP_ARGUMENT_PACK_SELECT;
    case ARGUMENT_PACK_SELECT:  return TS_CP_ARGUMENT_PACK_SELECT;
    case TRAIT_EXPR:            return TS_CP_TRAIT_EXPR;
    case TRAIT_EXPR:            return TS_CP_TRAIT_EXPR;
    case LAMBDA_EXPR:           return TS_CP_LAMBDA_EXPR;
    case LAMBDA_EXPR:           return TS_CP_LAMBDA_EXPR;
    case TEMPLATE_INFO:         return TS_CP_TEMPLATE_INFO;
    case TEMPLATE_INFO:         return TS_CP_TEMPLATE_INFO;
    default:                    return TS_CP_GENERIC;
    default:                    return TS_CP_GENERIC;
    }
    }
}
}
 
 
/* Build the void_list_node (void_type_node having been created).  */
/* Build the void_list_node (void_type_node having been created).  */
tree
tree
build_void_list_node (void)
build_void_list_node (void)
{
{
  tree t = build_tree_list (NULL_TREE, void_type_node);
  tree t = build_tree_list (NULL_TREE, void_type_node);
  return t;
  return t;
}
}
 
 
bool
bool
cp_missing_noreturn_ok_p (tree decl)
cp_missing_noreturn_ok_p (tree decl)
{
{
  /* A missing noreturn is ok for the `main' function.  */
  /* A missing noreturn is ok for the `main' function.  */
  return DECL_MAIN_P (decl);
  return DECL_MAIN_P (decl);
}
}
 
 
/* Return the COMDAT group into which DECL should be placed.  */
/* Return the COMDAT group into which DECL should be placed.  */
 
 
tree
tree
cxx_comdat_group (tree decl)
cxx_comdat_group (tree decl)
{
{
  tree name;
  tree name;
 
 
  /* Virtual tables, construction virtual tables, and virtual table
  /* Virtual tables, construction virtual tables, and virtual table
     tables all go in a single COMDAT group, named after the primary
     tables all go in a single COMDAT group, named after the primary
     virtual table.  */
     virtual table.  */
  if (TREE_CODE (decl) == VAR_DECL && DECL_VTABLE_OR_VTT_P (decl))
  if (TREE_CODE (decl) == VAR_DECL && DECL_VTABLE_OR_VTT_P (decl))
    name = DECL_ASSEMBLER_NAME (CLASSTYPE_VTABLES (DECL_CONTEXT (decl)));
    name = DECL_ASSEMBLER_NAME (CLASSTYPE_VTABLES (DECL_CONTEXT (decl)));
  /* For all other DECLs, the COMDAT group is the mangled name of the
  /* For all other DECLs, the COMDAT group is the mangled name of the
     declaration itself.  */
     declaration itself.  */
  else
  else
    {
    {
      while (DECL_THUNK_P (decl))
      while (DECL_THUNK_P (decl))
        {
        {
          /* If TARGET_USE_LOCAL_THUNK_ALIAS_P, use_thunk puts the thunk
          /* If TARGET_USE_LOCAL_THUNK_ALIAS_P, use_thunk puts the thunk
             into the same section as the target function.  In that case
             into the same section as the target function.  In that case
             we must return target's name.  */
             we must return target's name.  */
          tree target = THUNK_TARGET (decl);
          tree target = THUNK_TARGET (decl);
          if (TARGET_USE_LOCAL_THUNK_ALIAS_P (target)
          if (TARGET_USE_LOCAL_THUNK_ALIAS_P (target)
              && DECL_SECTION_NAME (target) != NULL
              && DECL_SECTION_NAME (target) != NULL
              && DECL_ONE_ONLY (target))
              && DECL_ONE_ONLY (target))
            decl = target;
            decl = target;
          else
          else
            break;
            break;
        }
        }
      name = DECL_ASSEMBLER_NAME (decl);
      name = DECL_ASSEMBLER_NAME (decl);
    }
    }
 
 
  return name;
  return name;
}
}
 
 
#include "gt-cp-decl.h"
#include "gt-cp-decl.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.