OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [bfd/] [elf32-hppa.c] - Diff between revs 816 and 818

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 818
/* BFD back-end for HP PA-RISC ELF files.
/* BFD back-end for HP PA-RISC ELF files.
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Original code by
   Original code by
        Center for Software Science
        Center for Software Science
        Department of Computer Science
        Department of Computer Science
        University of Utah
        University of Utah
   Largely rewritten by Alan Modra <alan@linuxcare.com.au>
   Largely rewritten by Alan Modra <alan@linuxcare.com.au>
   Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
   Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
   TLS support written by Randolph Chung <tausq@debian.org>
   TLS support written by Randolph Chung <tausq@debian.org>
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "libhppa.h"
#include "elf32-hppa.h"
#include "elf32-hppa.h"
#define ARCH_SIZE               32
#define ARCH_SIZE               32
#include "elf32-hppa.h"
#include "elf32-hppa.h"
#include "elf-hppa.h"
#include "elf-hppa.h"
 
 
/* In order to gain some understanding of code in this file without
/* In order to gain some understanding of code in this file without
   knowing all the intricate details of the linker, note the
   knowing all the intricate details of the linker, note the
   following:
   following:
 
 
   Functions named elf32_hppa_* are called by external routines, other
   Functions named elf32_hppa_* are called by external routines, other
   functions are only called locally.  elf32_hppa_* functions appear
   functions are only called locally.  elf32_hppa_* functions appear
   in this file more or less in the order in which they are called
   in this file more or less in the order in which they are called
   from external routines.  eg. elf32_hppa_check_relocs is called
   from external routines.  eg. elf32_hppa_check_relocs is called
   early in the link process, elf32_hppa_finish_dynamic_sections is
   early in the link process, elf32_hppa_finish_dynamic_sections is
   one of the last functions.  */
   one of the last functions.  */
 
 
/* We use two hash tables to hold information for linking PA ELF objects.
/* We use two hash tables to hold information for linking PA ELF objects.
 
 
   The first is the elf32_hppa_link_hash_table which is derived
   The first is the elf32_hppa_link_hash_table which is derived
   from the standard ELF linker hash table.  We use this as a place to
   from the standard ELF linker hash table.  We use this as a place to
   attach other hash tables and static information.
   attach other hash tables and static information.
 
 
   The second is the stub hash table which is derived from the
   The second is the stub hash table which is derived from the
   base BFD hash table.  The stub hash table holds the information
   base BFD hash table.  The stub hash table holds the information
   necessary to build the linker stubs during a link.
   necessary to build the linker stubs during a link.
 
 
   There are a number of different stubs generated by the linker.
   There are a number of different stubs generated by the linker.
 
 
   Long branch stub:
   Long branch stub:
   :            ldil LR'X,%r1
   :            ldil LR'X,%r1
   :            be,n RR'X(%sr4,%r1)
   :            be,n RR'X(%sr4,%r1)
 
 
   PIC long branch stub:
   PIC long branch stub:
   :            b,l .+8,%r1
   :            b,l .+8,%r1
   :            addil LR'X - ($PIC_pcrel$0 - 4),%r1
   :            addil LR'X - ($PIC_pcrel$0 - 4),%r1
   :            be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
   :            be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
 
 
   Import stub to call shared library routine from normal object file
   Import stub to call shared library routine from normal object file
   (single sub-space version)
   (single sub-space version)
   :            addil LR'lt_ptr+ltoff,%dp       ; get procedure entry point
   :            addil LR'lt_ptr+ltoff,%dp       ; get procedure entry point
   :            ldw RR'lt_ptr+ltoff(%r1),%r21
   :            ldw RR'lt_ptr+ltoff(%r1),%r21
   :            bv %r0(%r21)
   :            bv %r0(%r21)
   :            ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
   :            ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
 
 
   Import stub to call shared library routine from shared library
   Import stub to call shared library routine from shared library
   (single sub-space version)
   (single sub-space version)
   :            addil LR'ltoff,%r19             ; get procedure entry point
   :            addil LR'ltoff,%r19             ; get procedure entry point
   :            ldw RR'ltoff(%r1),%r21
   :            ldw RR'ltoff(%r1),%r21
   :            bv %r0(%r21)
   :            bv %r0(%r21)
   :            ldw RR'ltoff+4(%r1),%r19        ; get new dlt value.
   :            ldw RR'ltoff+4(%r1),%r19        ; get new dlt value.
 
 
   Import stub to call shared library routine from normal object file
   Import stub to call shared library routine from normal object file
   (multiple sub-space support)
   (multiple sub-space support)
   :            addil LR'lt_ptr+ltoff,%dp       ; get procedure entry point
   :            addil LR'lt_ptr+ltoff,%dp       ; get procedure entry point
   :            ldw RR'lt_ptr+ltoff(%r1),%r21
   :            ldw RR'lt_ptr+ltoff(%r1),%r21
   :            ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
   :            ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
   :            ldsid (%r21),%r1
   :            ldsid (%r21),%r1
   :            mtsp %r1,%sr0
   :            mtsp %r1,%sr0
   :            be 0(%sr0,%r21)                 ; branch to target
   :            be 0(%sr0,%r21)                 ; branch to target
   :            stw %rp,-24(%sp)                ; save rp
   :            stw %rp,-24(%sp)                ; save rp
 
 
   Import stub to call shared library routine from shared library
   Import stub to call shared library routine from shared library
   (multiple sub-space support)
   (multiple sub-space support)
   :            addil LR'ltoff,%r19             ; get procedure entry point
   :            addil LR'ltoff,%r19             ; get procedure entry point
   :            ldw RR'ltoff(%r1),%r21
   :            ldw RR'ltoff(%r1),%r21
   :            ldw RR'ltoff+4(%r1),%r19        ; get new dlt value.
   :            ldw RR'ltoff+4(%r1),%r19        ; get new dlt value.
   :            ldsid (%r21),%r1
   :            ldsid (%r21),%r1
   :            mtsp %r1,%sr0
   :            mtsp %r1,%sr0
   :            be 0(%sr0,%r21)                 ; branch to target
   :            be 0(%sr0,%r21)                 ; branch to target
   :            stw %rp,-24(%sp)                ; save rp
   :            stw %rp,-24(%sp)                ; save rp
 
 
   Export stub to return from shared lib routine (multiple sub-space support)
   Export stub to return from shared lib routine (multiple sub-space support)
   One of these is created for each exported procedure in a shared
   One of these is created for each exported procedure in a shared
   library (and stored in the shared lib).  Shared lib routines are
   library (and stored in the shared lib).  Shared lib routines are
   called via the first instruction in the export stub so that we can
   called via the first instruction in the export stub so that we can
   do an inter-space return.  Not required for single sub-space.
   do an inter-space return.  Not required for single sub-space.
   :            bl,n X,%rp                      ; trap the return
   :            bl,n X,%rp                      ; trap the return
   :            nop
   :            nop
   :            ldw -24(%sp),%rp                ; restore the original rp
   :            ldw -24(%sp),%rp                ; restore the original rp
   :            ldsid (%rp),%r1
   :            ldsid (%rp),%r1
   :            mtsp %r1,%sr0
   :            mtsp %r1,%sr0
   :            be,n 0(%sr0,%rp)                ; inter-space return.  */
   :            be,n 0(%sr0,%rp)                ; inter-space return.  */
 
 
 
 
/* Variable names follow a coding style.
/* Variable names follow a coding style.
   Please follow this (Apps Hungarian) style:
   Please follow this (Apps Hungarian) style:
 
 
   Structure/Variable                   Prefix
   Structure/Variable                   Prefix
   elf_link_hash_table                  "etab"
   elf_link_hash_table                  "etab"
   elf_link_hash_entry                  "eh"
   elf_link_hash_entry                  "eh"
 
 
   elf32_hppa_link_hash_table           "htab"
   elf32_hppa_link_hash_table           "htab"
   elf32_hppa_link_hash_entry           "hh"
   elf32_hppa_link_hash_entry           "hh"
 
 
   bfd_hash_table                       "btab"
   bfd_hash_table                       "btab"
   bfd_hash_entry                       "bh"
   bfd_hash_entry                       "bh"
 
 
   bfd_hash_table containing stubs      "bstab"
   bfd_hash_table containing stubs      "bstab"
   elf32_hppa_stub_hash_entry           "hsh"
   elf32_hppa_stub_hash_entry           "hsh"
 
 
   elf32_hppa_dyn_reloc_entry           "hdh"
   elf32_hppa_dyn_reloc_entry           "hdh"
 
 
   Always remember to use GNU Coding Style. */
   Always remember to use GNU Coding Style. */
 
 
#define PLT_ENTRY_SIZE 8
#define PLT_ENTRY_SIZE 8
#define GOT_ENTRY_SIZE 4
#define GOT_ENTRY_SIZE 4
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
 
 
static const bfd_byte plt_stub[] =
static const bfd_byte plt_stub[] =
{
{
  0x0e, 0x80, 0x10, 0x96,  /* 1: ldw    0(%r20),%r22            */
  0x0e, 0x80, 0x10, 0x96,  /* 1: ldw    0(%r20),%r22            */
  0xea, 0xc0, 0xc0, 0x00,  /*    bv     %r0(%r22)               */
  0xea, 0xc0, 0xc0, 0x00,  /*    bv     %r0(%r22)               */
  0x0e, 0x88, 0x10, 0x95,  /*    ldw    4(%r20),%r21            */
  0x0e, 0x88, 0x10, 0x95,  /*    ldw    4(%r20),%r21            */
#define PLT_STUB_ENTRY (3*4)
#define PLT_STUB_ENTRY (3*4)
  0xea, 0x9f, 0x1f, 0xdd,  /*    b,l    1b,%r20                 */
  0xea, 0x9f, 0x1f, 0xdd,  /*    b,l    1b,%r20                 */
  0xd6, 0x80, 0x1c, 0x1e,  /*    depi   0,31,2,%r20             */
  0xd6, 0x80, 0x1c, 0x1e,  /*    depi   0,31,2,%r20             */
  0x00, 0xc0, 0xff, 0xee,  /* 9: .word  fixup_func              */
  0x00, 0xc0, 0xff, 0xee,  /* 9: .word  fixup_func              */
  0xde, 0xad, 0xbe, 0xef   /*    .word  fixup_ltp               */
  0xde, 0xad, 0xbe, 0xef   /*    .word  fixup_ltp               */
};
};
 
 
/* Section name for stubs is the associated section name plus this
/* Section name for stubs is the associated section name plus this
   string.  */
   string.  */
#define STUB_SUFFIX ".stub"
#define STUB_SUFFIX ".stub"
 
 
/* We don't need to copy certain PC- or GP-relative dynamic relocs
/* We don't need to copy certain PC- or GP-relative dynamic relocs
   into a shared object's dynamic section.  All the relocs of the
   into a shared object's dynamic section.  All the relocs of the
   limited class we are interested in, are absolute.  */
   limited class we are interested in, are absolute.  */
#ifndef RELATIVE_DYNRELOCS
#ifndef RELATIVE_DYNRELOCS
#define RELATIVE_DYNRELOCS 0
#define RELATIVE_DYNRELOCS 0
#define IS_ABSOLUTE_RELOC(r_type) 1
#define IS_ABSOLUTE_RELOC(r_type) 1
#endif
#endif
 
 
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
   copying dynamic variables from a shared lib into an app's dynbss
   copying dynamic variables from a shared lib into an app's dynbss
   section, and instead use a dynamic relocation to point into the
   section, and instead use a dynamic relocation to point into the
   shared lib.  */
   shared lib.  */
#define ELIMINATE_COPY_RELOCS 1
#define ELIMINATE_COPY_RELOCS 1
 
 
enum elf32_hppa_stub_type
enum elf32_hppa_stub_type
{
{
  hppa_stub_long_branch,
  hppa_stub_long_branch,
  hppa_stub_long_branch_shared,
  hppa_stub_long_branch_shared,
  hppa_stub_import,
  hppa_stub_import,
  hppa_stub_import_shared,
  hppa_stub_import_shared,
  hppa_stub_export,
  hppa_stub_export,
  hppa_stub_none
  hppa_stub_none
};
};
 
 
struct elf32_hppa_stub_hash_entry
struct elf32_hppa_stub_hash_entry
{
{
  /* Base hash table entry structure.  */
  /* Base hash table entry structure.  */
  struct bfd_hash_entry bh_root;
  struct bfd_hash_entry bh_root;
 
 
  /* The stub section.  */
  /* The stub section.  */
  asection *stub_sec;
  asection *stub_sec;
 
 
  /* Offset within stub_sec of the beginning of this stub.  */
  /* Offset within stub_sec of the beginning of this stub.  */
  bfd_vma stub_offset;
  bfd_vma stub_offset;
 
 
  /* Given the symbol's value and its section we can determine its final
  /* Given the symbol's value and its section we can determine its final
     value when building the stubs (so the stub knows where to jump.  */
     value when building the stubs (so the stub knows where to jump.  */
  bfd_vma target_value;
  bfd_vma target_value;
  asection *target_section;
  asection *target_section;
 
 
  enum elf32_hppa_stub_type stub_type;
  enum elf32_hppa_stub_type stub_type;
 
 
  /* The symbol table entry, if any, that this was derived from.  */
  /* The symbol table entry, if any, that this was derived from.  */
  struct elf32_hppa_link_hash_entry *hh;
  struct elf32_hppa_link_hash_entry *hh;
 
 
  /* Where this stub is being called from, or, in the case of combined
  /* Where this stub is being called from, or, in the case of combined
     stub sections, the first input section in the group.  */
     stub sections, the first input section in the group.  */
  asection *id_sec;
  asection *id_sec;
};
};
 
 
struct elf32_hppa_link_hash_entry
struct elf32_hppa_link_hash_entry
{
{
  struct elf_link_hash_entry eh;
  struct elf_link_hash_entry eh;
 
 
  /* A pointer to the most recently used stub hash entry against this
  /* A pointer to the most recently used stub hash entry against this
     symbol.  */
     symbol.  */
  struct elf32_hppa_stub_hash_entry *hsh_cache;
  struct elf32_hppa_stub_hash_entry *hsh_cache;
 
 
  /* Used to count relocations for delayed sizing of relocation
  /* Used to count relocations for delayed sizing of relocation
     sections.  */
     sections.  */
  struct elf32_hppa_dyn_reloc_entry
  struct elf32_hppa_dyn_reloc_entry
  {
  {
    /* Next relocation in the chain.  */
    /* Next relocation in the chain.  */
    struct elf32_hppa_dyn_reloc_entry *hdh_next;
    struct elf32_hppa_dyn_reloc_entry *hdh_next;
 
 
    /* The input section of the reloc.  */
    /* The input section of the reloc.  */
    asection *sec;
    asection *sec;
 
 
    /* Number of relocs copied in this section.  */
    /* Number of relocs copied in this section.  */
    bfd_size_type count;
    bfd_size_type count;
 
 
#if RELATIVE_DYNRELOCS
#if RELATIVE_DYNRELOCS
  /* Number of relative relocs copied for the input section.  */
  /* Number of relative relocs copied for the input section.  */
    bfd_size_type relative_count;
    bfd_size_type relative_count;
#endif
#endif
  } *dyn_relocs;
  } *dyn_relocs;
 
 
  enum
  enum
  {
  {
    GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
    GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
  } tls_type;
  } tls_type;
 
 
  /* Set if this symbol is used by a plabel reloc.  */
  /* Set if this symbol is used by a plabel reloc.  */
  unsigned int plabel:1;
  unsigned int plabel:1;
};
};
 
 
struct elf32_hppa_link_hash_table
struct elf32_hppa_link_hash_table
{
{
  /* The main hash table.  */
  /* The main hash table.  */
  struct elf_link_hash_table etab;
  struct elf_link_hash_table etab;
 
 
  /* The stub hash table.  */
  /* The stub hash table.  */
  struct bfd_hash_table bstab;
  struct bfd_hash_table bstab;
 
 
  /* Linker stub bfd.  */
  /* Linker stub bfd.  */
  bfd *stub_bfd;
  bfd *stub_bfd;
 
 
  /* Linker call-backs.  */
  /* Linker call-backs.  */
  asection * (*add_stub_section) (const char *, asection *);
  asection * (*add_stub_section) (const char *, asection *);
  void (*layout_sections_again) (void);
  void (*layout_sections_again) (void);
 
 
  /* Array to keep track of which stub sections have been created, and
  /* Array to keep track of which stub sections have been created, and
     information on stub grouping.  */
     information on stub grouping.  */
  struct map_stub
  struct map_stub
  {
  {
    /* This is the section to which stubs in the group will be
    /* This is the section to which stubs in the group will be
       attached.  */
       attached.  */
    asection *link_sec;
    asection *link_sec;
    /* The stub section.  */
    /* The stub section.  */
    asection *stub_sec;
    asection *stub_sec;
  } *stub_group;
  } *stub_group;
 
 
  /* Assorted information used by elf32_hppa_size_stubs.  */
  /* Assorted information used by elf32_hppa_size_stubs.  */
  unsigned int bfd_count;
  unsigned int bfd_count;
  int top_index;
  int top_index;
  asection **input_list;
  asection **input_list;
  Elf_Internal_Sym **all_local_syms;
  Elf_Internal_Sym **all_local_syms;
 
 
  /* Short-cuts to get to dynamic linker sections.  */
  /* Short-cuts to get to dynamic linker sections.  */
  asection *sgot;
  asection *sgot;
  asection *srelgot;
  asection *srelgot;
  asection *splt;
  asection *splt;
  asection *srelplt;
  asection *srelplt;
  asection *sdynbss;
  asection *sdynbss;
  asection *srelbss;
  asection *srelbss;
 
 
  /* Used during a final link to store the base of the text and data
  /* Used during a final link to store the base of the text and data
     segments so that we can perform SEGREL relocations.  */
     segments so that we can perform SEGREL relocations.  */
  bfd_vma text_segment_base;
  bfd_vma text_segment_base;
  bfd_vma data_segment_base;
  bfd_vma data_segment_base;
 
 
  /* Whether we support multiple sub-spaces for shared libs.  */
  /* Whether we support multiple sub-spaces for shared libs.  */
  unsigned int multi_subspace:1;
  unsigned int multi_subspace:1;
 
 
  /* Flags set when various size branches are detected.  Used to
  /* Flags set when various size branches are detected.  Used to
     select suitable defaults for the stub group size.  */
     select suitable defaults for the stub group size.  */
  unsigned int has_12bit_branch:1;
  unsigned int has_12bit_branch:1;
  unsigned int has_17bit_branch:1;
  unsigned int has_17bit_branch:1;
  unsigned int has_22bit_branch:1;
  unsigned int has_22bit_branch:1;
 
 
  /* Set if we need a .plt stub to support lazy dynamic linking.  */
  /* Set if we need a .plt stub to support lazy dynamic linking.  */
  unsigned int need_plt_stub:1;
  unsigned int need_plt_stub:1;
 
 
  /* Small local sym cache.  */
  /* Small local sym cache.  */
  struct sym_cache sym_cache;
  struct sym_cache sym_cache;
 
 
  /* Data for LDM relocations.  */
  /* Data for LDM relocations.  */
  union
  union
  {
  {
    bfd_signed_vma refcount;
    bfd_signed_vma refcount;
    bfd_vma offset;
    bfd_vma offset;
  } tls_ldm_got;
  } tls_ldm_got;
};
};
 
 
/* Various hash macros and functions.  */
/* Various hash macros and functions.  */
#define hppa_link_hash_table(p) \
#define hppa_link_hash_table(p) \
  ((struct elf32_hppa_link_hash_table *) ((p)->hash))
  ((struct elf32_hppa_link_hash_table *) ((p)->hash))
 
 
#define hppa_elf_hash_entry(ent) \
#define hppa_elf_hash_entry(ent) \
  ((struct elf32_hppa_link_hash_entry *)(ent))
  ((struct elf32_hppa_link_hash_entry *)(ent))
 
 
#define hppa_stub_hash_entry(ent) \
#define hppa_stub_hash_entry(ent) \
  ((struct elf32_hppa_stub_hash_entry *)(ent))
  ((struct elf32_hppa_stub_hash_entry *)(ent))
 
 
#define hppa_stub_hash_lookup(table, string, create, copy) \
#define hppa_stub_hash_lookup(table, string, create, copy) \
  ((struct elf32_hppa_stub_hash_entry *) \
  ((struct elf32_hppa_stub_hash_entry *) \
   bfd_hash_lookup ((table), (string), (create), (copy)))
   bfd_hash_lookup ((table), (string), (create), (copy)))
 
 
#define hppa_elf_local_got_tls_type(abfd) \
#define hppa_elf_local_got_tls_type(abfd) \
  ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
  ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
 
 
#define hh_name(hh) \
#define hh_name(hh) \
  (hh ? hh->eh.root.root.string : "<undef>")
  (hh ? hh->eh.root.root.string : "<undef>")
 
 
#define eh_name(eh) \
#define eh_name(eh) \
  (eh ? eh->root.root.string : "<undef>")
  (eh ? eh->root.root.string : "<undef>")
 
 
/* Override the generic function because we want to mark our BFDs.  */
/* Override the generic function because we want to mark our BFDs.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_mkobject (bfd *abfd)
elf32_hppa_mkobject (bfd *abfd)
{
{
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
                                  HPPA_ELF_TDATA);
                                  HPPA_ELF_TDATA);
}
}
 
 
/* Assorted hash table functions.  */
/* Assorted hash table functions.  */
 
 
/* Initialize an entry in the stub hash table.  */
/* Initialize an entry in the stub hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
stub_hash_newfunc (struct bfd_hash_entry *entry,
                   struct bfd_hash_table *table,
                   struct bfd_hash_table *table,
                   const char *string)
                   const char *string)
{
{
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (entry == NULL)
  if (entry == NULL)
    {
    {
      entry = bfd_hash_allocate (table,
      entry = bfd_hash_allocate (table,
                                 sizeof (struct elf32_hppa_stub_hash_entry));
                                 sizeof (struct elf32_hppa_stub_hash_entry));
      if (entry == NULL)
      if (entry == NULL)
        return entry;
        return entry;
    }
    }
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  entry = bfd_hash_newfunc (entry, table, string);
  entry = bfd_hash_newfunc (entry, table, string);
  if (entry != NULL)
  if (entry != NULL)
    {
    {
      struct elf32_hppa_stub_hash_entry *hsh;
      struct elf32_hppa_stub_hash_entry *hsh;
 
 
      /* Initialize the local fields.  */
      /* Initialize the local fields.  */
      hsh = hppa_stub_hash_entry (entry);
      hsh = hppa_stub_hash_entry (entry);
      hsh->stub_sec = NULL;
      hsh->stub_sec = NULL;
      hsh->stub_offset = 0;
      hsh->stub_offset = 0;
      hsh->target_value = 0;
      hsh->target_value = 0;
      hsh->target_section = NULL;
      hsh->target_section = NULL;
      hsh->stub_type = hppa_stub_long_branch;
      hsh->stub_type = hppa_stub_long_branch;
      hsh->hh = NULL;
      hsh->hh = NULL;
      hsh->id_sec = NULL;
      hsh->id_sec = NULL;
    }
    }
 
 
  return entry;
  return entry;
}
}
 
 
/* Initialize an entry in the link hash table.  */
/* Initialize an entry in the link hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
                        struct bfd_hash_table *table,
                        struct bfd_hash_table *table,
                        const char *string)
                        const char *string)
{
{
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (entry == NULL)
  if (entry == NULL)
    {
    {
      entry = bfd_hash_allocate (table,
      entry = bfd_hash_allocate (table,
                                 sizeof (struct elf32_hppa_link_hash_entry));
                                 sizeof (struct elf32_hppa_link_hash_entry));
      if (entry == NULL)
      if (entry == NULL)
        return entry;
        return entry;
    }
    }
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
  if (entry != NULL)
  if (entry != NULL)
    {
    {
      struct elf32_hppa_link_hash_entry *hh;
      struct elf32_hppa_link_hash_entry *hh;
 
 
      /* Initialize the local fields.  */
      /* Initialize the local fields.  */
      hh = hppa_elf_hash_entry (entry);
      hh = hppa_elf_hash_entry (entry);
      hh->hsh_cache = NULL;
      hh->hsh_cache = NULL;
      hh->dyn_relocs = NULL;
      hh->dyn_relocs = NULL;
      hh->plabel = 0;
      hh->plabel = 0;
      hh->tls_type = GOT_UNKNOWN;
      hh->tls_type = GOT_UNKNOWN;
    }
    }
 
 
  return entry;
  return entry;
}
}
 
 
/* Create the derived linker hash table.  The PA ELF port uses the derived
/* Create the derived linker hash table.  The PA ELF port uses the derived
   hash table to keep information specific to the PA ELF linker (without
   hash table to keep information specific to the PA ELF linker (without
   using static variables).  */
   using static variables).  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create (bfd *abfd)
elf32_hppa_link_hash_table_create (bfd *abfd)
{
{
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  bfd_size_type amt = sizeof (*htab);
  bfd_size_type amt = sizeof (*htab);
 
 
  htab = bfd_malloc (amt);
  htab = bfd_malloc (amt);
  if (htab == NULL)
  if (htab == NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
  if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
                                      sizeof (struct elf32_hppa_link_hash_entry)))
                                      sizeof (struct elf32_hppa_link_hash_entry)))
    {
    {
      free (htab);
      free (htab);
      return NULL;
      return NULL;
    }
    }
 
 
  /* Init the stub hash table too.  */
  /* Init the stub hash table too.  */
  if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
  if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
                            sizeof (struct elf32_hppa_stub_hash_entry)))
                            sizeof (struct elf32_hppa_stub_hash_entry)))
    return NULL;
    return NULL;
 
 
  htab->stub_bfd = NULL;
  htab->stub_bfd = NULL;
  htab->add_stub_section = NULL;
  htab->add_stub_section = NULL;
  htab->layout_sections_again = NULL;
  htab->layout_sections_again = NULL;
  htab->stub_group = NULL;
  htab->stub_group = NULL;
  htab->sgot = NULL;
  htab->sgot = NULL;
  htab->srelgot = NULL;
  htab->srelgot = NULL;
  htab->splt = NULL;
  htab->splt = NULL;
  htab->srelplt = NULL;
  htab->srelplt = NULL;
  htab->sdynbss = NULL;
  htab->sdynbss = NULL;
  htab->srelbss = NULL;
  htab->srelbss = NULL;
  htab->text_segment_base = (bfd_vma) -1;
  htab->text_segment_base = (bfd_vma) -1;
  htab->data_segment_base = (bfd_vma) -1;
  htab->data_segment_base = (bfd_vma) -1;
  htab->multi_subspace = 0;
  htab->multi_subspace = 0;
  htab->has_12bit_branch = 0;
  htab->has_12bit_branch = 0;
  htab->has_17bit_branch = 0;
  htab->has_17bit_branch = 0;
  htab->has_22bit_branch = 0;
  htab->has_22bit_branch = 0;
  htab->need_plt_stub = 0;
  htab->need_plt_stub = 0;
  htab->sym_cache.abfd = NULL;
  htab->sym_cache.abfd = NULL;
  htab->tls_ldm_got.refcount = 0;
  htab->tls_ldm_got.refcount = 0;
 
 
  return &htab->etab.root;
  return &htab->etab.root;
}
}
 
 
/* Free the derived linker hash table.  */
/* Free the derived linker hash table.  */
 
 
static void
static void
elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
{
{
  struct elf32_hppa_link_hash_table *htab
  struct elf32_hppa_link_hash_table *htab
    = (struct elf32_hppa_link_hash_table *) btab;
    = (struct elf32_hppa_link_hash_table *) btab;
 
 
  bfd_hash_table_free (&htab->bstab);
  bfd_hash_table_free (&htab->bstab);
  _bfd_generic_link_hash_table_free (btab);
  _bfd_generic_link_hash_table_free (btab);
}
}
 
 
/* Build a name for an entry in the stub hash table.  */
/* Build a name for an entry in the stub hash table.  */
 
 
static char *
static char *
hppa_stub_name (const asection *input_section,
hppa_stub_name (const asection *input_section,
                const asection *sym_sec,
                const asection *sym_sec,
                const struct elf32_hppa_link_hash_entry *hh,
                const struct elf32_hppa_link_hash_entry *hh,
                const Elf_Internal_Rela *rela)
                const Elf_Internal_Rela *rela)
{
{
  char *stub_name;
  char *stub_name;
  bfd_size_type len;
  bfd_size_type len;
 
 
  if (hh)
  if (hh)
    {
    {
      len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
      len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
      stub_name = bfd_malloc (len);
      stub_name = bfd_malloc (len);
      if (stub_name != NULL)
      if (stub_name != NULL)
        sprintf (stub_name, "%08x_%s+%x",
        sprintf (stub_name, "%08x_%s+%x",
                 input_section->id & 0xffffffff,
                 input_section->id & 0xffffffff,
                 hh_name (hh),
                 hh_name (hh),
                 (int) rela->r_addend & 0xffffffff);
                 (int) rela->r_addend & 0xffffffff);
    }
    }
  else
  else
    {
    {
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
      stub_name = bfd_malloc (len);
      stub_name = bfd_malloc (len);
      if (stub_name != NULL)
      if (stub_name != NULL)
        sprintf (stub_name, "%08x_%x:%x+%x",
        sprintf (stub_name, "%08x_%x:%x+%x",
                 input_section->id & 0xffffffff,
                 input_section->id & 0xffffffff,
                 sym_sec->id & 0xffffffff,
                 sym_sec->id & 0xffffffff,
                 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
                 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
                 (int) rela->r_addend & 0xffffffff);
                 (int) rela->r_addend & 0xffffffff);
    }
    }
  return stub_name;
  return stub_name;
}
}
 
 
/* Look up an entry in the stub hash.  Stub entries are cached because
/* Look up an entry in the stub hash.  Stub entries are cached because
   creating the stub name takes a bit of time.  */
   creating the stub name takes a bit of time.  */
 
 
static struct elf32_hppa_stub_hash_entry *
static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry (const asection *input_section,
hppa_get_stub_entry (const asection *input_section,
                     const asection *sym_sec,
                     const asection *sym_sec,
                     struct elf32_hppa_link_hash_entry *hh,
                     struct elf32_hppa_link_hash_entry *hh,
                     const Elf_Internal_Rela *rela,
                     const Elf_Internal_Rela *rela,
                     struct elf32_hppa_link_hash_table *htab)
                     struct elf32_hppa_link_hash_table *htab)
{
{
  struct elf32_hppa_stub_hash_entry *hsh_entry;
  struct elf32_hppa_stub_hash_entry *hsh_entry;
  const asection *id_sec;
  const asection *id_sec;
 
 
  /* If this input section is part of a group of sections sharing one
  /* If this input section is part of a group of sections sharing one
     stub section, then use the id of the first section in the group.
     stub section, then use the id of the first section in the group.
     Stub names need to include a section id, as there may well be
     Stub names need to include a section id, as there may well be
     more than one stub used to reach say, printf, and we need to
     more than one stub used to reach say, printf, and we need to
     distinguish between them.  */
     distinguish between them.  */
  id_sec = htab->stub_group[input_section->id].link_sec;
  id_sec = htab->stub_group[input_section->id].link_sec;
 
 
  if (hh != NULL && hh->hsh_cache != NULL
  if (hh != NULL && hh->hsh_cache != NULL
      && hh->hsh_cache->hh == hh
      && hh->hsh_cache->hh == hh
      && hh->hsh_cache->id_sec == id_sec)
      && hh->hsh_cache->id_sec == id_sec)
    {
    {
      hsh_entry = hh->hsh_cache;
      hsh_entry = hh->hsh_cache;
    }
    }
  else
  else
    {
    {
      char *stub_name;
      char *stub_name;
 
 
      stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
      stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
      if (stub_name == NULL)
      if (stub_name == NULL)
        return NULL;
        return NULL;
 
 
      hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
      hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
                                          stub_name, FALSE, FALSE);
                                          stub_name, FALSE, FALSE);
      if (hh != NULL)
      if (hh != NULL)
        hh->hsh_cache = hsh_entry;
        hh->hsh_cache = hsh_entry;
 
 
      free (stub_name);
      free (stub_name);
    }
    }
 
 
  return hsh_entry;
  return hsh_entry;
}
}
 
 
/* Add a new stub entry to the stub hash.  Not all fields of the new
/* Add a new stub entry to the stub hash.  Not all fields of the new
   stub entry are initialised.  */
   stub entry are initialised.  */
 
 
static struct elf32_hppa_stub_hash_entry *
static struct elf32_hppa_stub_hash_entry *
hppa_add_stub (const char *stub_name,
hppa_add_stub (const char *stub_name,
               asection *section,
               asection *section,
               struct elf32_hppa_link_hash_table *htab)
               struct elf32_hppa_link_hash_table *htab)
{
{
  asection *link_sec;
  asection *link_sec;
  asection *stub_sec;
  asection *stub_sec;
  struct elf32_hppa_stub_hash_entry *hsh;
  struct elf32_hppa_stub_hash_entry *hsh;
 
 
  link_sec = htab->stub_group[section->id].link_sec;
  link_sec = htab->stub_group[section->id].link_sec;
  stub_sec = htab->stub_group[section->id].stub_sec;
  stub_sec = htab->stub_group[section->id].stub_sec;
  if (stub_sec == NULL)
  if (stub_sec == NULL)
    {
    {
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
      if (stub_sec == NULL)
      if (stub_sec == NULL)
        {
        {
          size_t namelen;
          size_t namelen;
          bfd_size_type len;
          bfd_size_type len;
          char *s_name;
          char *s_name;
 
 
          namelen = strlen (link_sec->name);
          namelen = strlen (link_sec->name);
          len = namelen + sizeof (STUB_SUFFIX);
          len = namelen + sizeof (STUB_SUFFIX);
          s_name = bfd_alloc (htab->stub_bfd, len);
          s_name = bfd_alloc (htab->stub_bfd, len);
          if (s_name == NULL)
          if (s_name == NULL)
            return NULL;
            return NULL;
 
 
          memcpy (s_name, link_sec->name, namelen);
          memcpy (s_name, link_sec->name, namelen);
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
          if (stub_sec == NULL)
          if (stub_sec == NULL)
            return NULL;
            return NULL;
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
        }
        }
      htab->stub_group[section->id].stub_sec = stub_sec;
      htab->stub_group[section->id].stub_sec = stub_sec;
    }
    }
 
 
  /* Enter this entry into the linker stub hash table.  */
  /* Enter this entry into the linker stub hash table.  */
  hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
  hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
                                      TRUE, FALSE);
                                      TRUE, FALSE);
  if (hsh == NULL)
  if (hsh == NULL)
    {
    {
      (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
      (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
                             section->owner,
                             section->owner,
                             stub_name);
                             stub_name);
      return NULL;
      return NULL;
    }
    }
 
 
  hsh->stub_sec = stub_sec;
  hsh->stub_sec = stub_sec;
  hsh->stub_offset = 0;
  hsh->stub_offset = 0;
  hsh->id_sec = link_sec;
  hsh->id_sec = link_sec;
  return hsh;
  return hsh;
}
}
 
 
/* Determine the type of stub needed, if any, for a call.  */
/* Determine the type of stub needed, if any, for a call.  */
 
 
static enum elf32_hppa_stub_type
static enum elf32_hppa_stub_type
hppa_type_of_stub (asection *input_sec,
hppa_type_of_stub (asection *input_sec,
                   const Elf_Internal_Rela *rela,
                   const Elf_Internal_Rela *rela,
                   struct elf32_hppa_link_hash_entry *hh,
                   struct elf32_hppa_link_hash_entry *hh,
                   bfd_vma destination,
                   bfd_vma destination,
                   struct bfd_link_info *info)
                   struct bfd_link_info *info)
{
{
  bfd_vma location;
  bfd_vma location;
  bfd_vma branch_offset;
  bfd_vma branch_offset;
  bfd_vma max_branch_offset;
  bfd_vma max_branch_offset;
  unsigned int r_type;
  unsigned int r_type;
 
 
  if (hh != NULL
  if (hh != NULL
      && hh->eh.plt.offset != (bfd_vma) -1
      && hh->eh.plt.offset != (bfd_vma) -1
      && hh->eh.dynindx != -1
      && hh->eh.dynindx != -1
      && !hh->plabel
      && !hh->plabel
      && (info->shared
      && (info->shared
          || !hh->eh.def_regular
          || !hh->eh.def_regular
          || hh->eh.root.type == bfd_link_hash_defweak))
          || hh->eh.root.type == bfd_link_hash_defweak))
    {
    {
      /* We need an import stub.  Decide between hppa_stub_import
      /* We need an import stub.  Decide between hppa_stub_import
         and hppa_stub_import_shared later.  */
         and hppa_stub_import_shared later.  */
      return hppa_stub_import;
      return hppa_stub_import;
    }
    }
 
 
  /* Determine where the call point is.  */
  /* Determine where the call point is.  */
  location = (input_sec->output_offset
  location = (input_sec->output_offset
              + input_sec->output_section->vma
              + input_sec->output_section->vma
              + rela->r_offset);
              + rela->r_offset);
 
 
  branch_offset = destination - location - 8;
  branch_offset = destination - location - 8;
  r_type = ELF32_R_TYPE (rela->r_info);
  r_type = ELF32_R_TYPE (rela->r_info);
 
 
  /* Determine if a long branch stub is needed.  parisc branch offsets
  /* Determine if a long branch stub is needed.  parisc branch offsets
     are relative to the second instruction past the branch, ie. +8
     are relative to the second instruction past the branch, ie. +8
     bytes on from the branch instruction location.  The offset is
     bytes on from the branch instruction location.  The offset is
     signed and counts in units of 4 bytes.  */
     signed and counts in units of 4 bytes.  */
  if (r_type == (unsigned int) R_PARISC_PCREL17F)
  if (r_type == (unsigned int) R_PARISC_PCREL17F)
    max_branch_offset = (1 << (17 - 1)) << 2;
    max_branch_offset = (1 << (17 - 1)) << 2;
 
 
  else if (r_type == (unsigned int) R_PARISC_PCREL12F)
  else if (r_type == (unsigned int) R_PARISC_PCREL12F)
    max_branch_offset = (1 << (12 - 1)) << 2;
    max_branch_offset = (1 << (12 - 1)) << 2;
 
 
  else /* R_PARISC_PCREL22F.  */
  else /* R_PARISC_PCREL22F.  */
    max_branch_offset = (1 << (22 - 1)) << 2;
    max_branch_offset = (1 << (22 - 1)) << 2;
 
 
  if (branch_offset + max_branch_offset >= 2*max_branch_offset)
  if (branch_offset + max_branch_offset >= 2*max_branch_offset)
    return hppa_stub_long_branch;
    return hppa_stub_long_branch;
 
 
  return hppa_stub_none;
  return hppa_stub_none;
}
}
 
 
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
   IN_ARG contains the link info pointer.  */
   IN_ARG contains the link info pointer.  */
 
 
#define LDIL_R1         0x20200000      /* ldil  LR'XXX,%r1             */
#define LDIL_R1         0x20200000      /* ldil  LR'XXX,%r1             */
#define BE_SR4_R1       0xe0202002      /* be,n  RR'XXX(%sr4,%r1)       */
#define BE_SR4_R1       0xe0202002      /* be,n  RR'XXX(%sr4,%r1)       */
 
 
#define BL_R1           0xe8200000      /* b,l   .+8,%r1                */
#define BL_R1           0xe8200000      /* b,l   .+8,%r1                */
#define ADDIL_R1        0x28200000      /* addil LR'XXX,%r1,%r1         */
#define ADDIL_R1        0x28200000      /* addil LR'XXX,%r1,%r1         */
#define DEPI_R1         0xd4201c1e      /* depi  0,31,2,%r1             */
#define DEPI_R1         0xd4201c1e      /* depi  0,31,2,%r1             */
 
 
#define ADDIL_DP        0x2b600000      /* addil LR'XXX,%dp,%r1         */
#define ADDIL_DP        0x2b600000      /* addil LR'XXX,%dp,%r1         */
#define LDW_R1_R21      0x48350000      /* ldw   RR'XXX(%sr0,%r1),%r21  */
#define LDW_R1_R21      0x48350000      /* ldw   RR'XXX(%sr0,%r1),%r21  */
#define BV_R0_R21       0xeaa0c000      /* bv    %r0(%r21)              */
#define BV_R0_R21       0xeaa0c000      /* bv    %r0(%r21)              */
#define LDW_R1_R19      0x48330000      /* ldw   RR'XXX(%sr0,%r1),%r19  */
#define LDW_R1_R19      0x48330000      /* ldw   RR'XXX(%sr0,%r1),%r19  */
 
 
#define ADDIL_R19       0x2a600000      /* addil LR'XXX,%r19,%r1        */
#define ADDIL_R19       0x2a600000      /* addil LR'XXX,%r19,%r1        */
#define LDW_R1_DP       0x483b0000      /* ldw   RR'XXX(%sr0,%r1),%dp   */
#define LDW_R1_DP       0x483b0000      /* ldw   RR'XXX(%sr0,%r1),%dp   */
 
 
#define LDSID_R21_R1    0x02a010a1      /* ldsid (%sr0,%r21),%r1        */
#define LDSID_R21_R1    0x02a010a1      /* ldsid (%sr0,%r21),%r1        */
#define MTSP_R1         0x00011820      /* mtsp  %r1,%sr0               */
#define MTSP_R1         0x00011820      /* mtsp  %r1,%sr0               */
#define BE_SR0_R21      0xe2a00000      /* be    0(%sr0,%r21)           */
#define BE_SR0_R21      0xe2a00000      /* be    0(%sr0,%r21)           */
#define STW_RP          0x6bc23fd1      /* stw   %rp,-24(%sr0,%sp)      */
#define STW_RP          0x6bc23fd1      /* stw   %rp,-24(%sr0,%sp)      */
 
 
#define BL22_RP         0xe800a002      /* b,l,n XXX,%rp                */
#define BL22_RP         0xe800a002      /* b,l,n XXX,%rp                */
#define BL_RP           0xe8400002      /* b,l,n XXX,%rp                */
#define BL_RP           0xe8400002      /* b,l,n XXX,%rp                */
#define NOP             0x08000240      /* nop                          */
#define NOP             0x08000240      /* nop                          */
#define LDW_RP          0x4bc23fd1      /* ldw   -24(%sr0,%sp),%rp      */
#define LDW_RP          0x4bc23fd1      /* ldw   -24(%sr0,%sp),%rp      */
#define LDSID_RP_R1     0x004010a1      /* ldsid (%sr0,%rp),%r1         */
#define LDSID_RP_R1     0x004010a1      /* ldsid (%sr0,%rp),%r1         */
#define BE_SR0_RP       0xe0400002      /* be,n  0(%sr0,%rp)            */
#define BE_SR0_RP       0xe0400002      /* be,n  0(%sr0,%rp)            */
 
 
#ifndef R19_STUBS
#ifndef R19_STUBS
#define R19_STUBS 1
#define R19_STUBS 1
#endif
#endif
 
 
#if R19_STUBS
#if R19_STUBS
#define LDW_R1_DLT      LDW_R1_R19
#define LDW_R1_DLT      LDW_R1_R19
#else
#else
#define LDW_R1_DLT      LDW_R1_DP
#define LDW_R1_DLT      LDW_R1_DP
#endif
#endif
 
 
static bfd_boolean
static bfd_boolean
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
{
  struct elf32_hppa_stub_hash_entry *hsh;
  struct elf32_hppa_stub_hash_entry *hsh;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  asection *stub_sec;
  asection *stub_sec;
  bfd *stub_bfd;
  bfd *stub_bfd;
  bfd_byte *loc;
  bfd_byte *loc;
  bfd_vma sym_value;
  bfd_vma sym_value;
  bfd_vma insn;
  bfd_vma insn;
  bfd_vma off;
  bfd_vma off;
  int val;
  int val;
  int size;
  int size;
 
 
  /* Massage our args to the form they really have.  */
  /* Massage our args to the form they really have.  */
  hsh = hppa_stub_hash_entry (bh);
  hsh = hppa_stub_hash_entry (bh);
  info = (struct bfd_link_info *)in_arg;
  info = (struct bfd_link_info *)in_arg;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  stub_sec = hsh->stub_sec;
  stub_sec = hsh->stub_sec;
 
 
  /* Make a note of the offset within the stubs for this entry.  */
  /* Make a note of the offset within the stubs for this entry.  */
  hsh->stub_offset = stub_sec->size;
  hsh->stub_offset = stub_sec->size;
  loc = stub_sec->contents + hsh->stub_offset;
  loc = stub_sec->contents + hsh->stub_offset;
 
 
  stub_bfd = stub_sec->owner;
  stub_bfd = stub_sec->owner;
 
 
  switch (hsh->stub_type)
  switch (hsh->stub_type)
    {
    {
    case hppa_stub_long_branch:
    case hppa_stub_long_branch:
      /* Create the long branch.  A long branch is formed with "ldil"
      /* Create the long branch.  A long branch is formed with "ldil"
         loading the upper bits of the target address into a register,
         loading the upper bits of the target address into a register,
         then branching with "be" which adds in the lower bits.
         then branching with "be" which adds in the lower bits.
         The "be" has its delay slot nullified.  */
         The "be" has its delay slot nullified.  */
      sym_value = (hsh->target_value
      sym_value = (hsh->target_value
                   + hsh->target_section->output_offset
                   + hsh->target_section->output_offset
                   + hsh->target_section->output_section->vma);
                   + hsh->target_section->output_section->vma);
 
 
      val = hppa_field_adjust (sym_value, 0, e_lrsel);
      val = hppa_field_adjust (sym_value, 0, e_lrsel);
      insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
      insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
      bfd_put_32 (stub_bfd, insn, loc);
      bfd_put_32 (stub_bfd, insn, loc);
 
 
      val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
      val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
      insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
      insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
      bfd_put_32 (stub_bfd, insn, loc + 4);
      bfd_put_32 (stub_bfd, insn, loc + 4);
 
 
      size = 8;
      size = 8;
      break;
      break;
 
 
    case hppa_stub_long_branch_shared:
    case hppa_stub_long_branch_shared:
      /* Branches are relative.  This is where we are going to.  */
      /* Branches are relative.  This is where we are going to.  */
      sym_value = (hsh->target_value
      sym_value = (hsh->target_value
                   + hsh->target_section->output_offset
                   + hsh->target_section->output_offset
                   + hsh->target_section->output_section->vma);
                   + hsh->target_section->output_section->vma);
 
 
      /* And this is where we are coming from, more or less.  */
      /* And this is where we are coming from, more or less.  */
      sym_value -= (hsh->stub_offset
      sym_value -= (hsh->stub_offset
                    + stub_sec->output_offset
                    + stub_sec->output_offset
                    + stub_sec->output_section->vma);
                    + stub_sec->output_section->vma);
 
 
      bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
      bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
      insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
      insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
      bfd_put_32 (stub_bfd, insn, loc + 4);
      bfd_put_32 (stub_bfd, insn, loc + 4);
 
 
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
      insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
      insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
      bfd_put_32 (stub_bfd, insn, loc + 8);
      bfd_put_32 (stub_bfd, insn, loc + 8);
      size = 12;
      size = 12;
      break;
      break;
 
 
    case hppa_stub_import:
    case hppa_stub_import:
    case hppa_stub_import_shared:
    case hppa_stub_import_shared:
      off = hsh->hh->eh.plt.offset;
      off = hsh->hh->eh.plt.offset;
      if (off >= (bfd_vma) -2)
      if (off >= (bfd_vma) -2)
        abort ();
        abort ();
 
 
      off &= ~ (bfd_vma) 1;
      off &= ~ (bfd_vma) 1;
      sym_value = (off
      sym_value = (off
                   + htab->splt->output_offset
                   + htab->splt->output_offset
                   + htab->splt->output_section->vma
                   + htab->splt->output_section->vma
                   - elf_gp (htab->splt->output_section->owner));
                   - elf_gp (htab->splt->output_section->owner));
 
 
      insn = ADDIL_DP;
      insn = ADDIL_DP;
#if R19_STUBS
#if R19_STUBS
      if (hsh->stub_type == hppa_stub_import_shared)
      if (hsh->stub_type == hppa_stub_import_shared)
        insn = ADDIL_R19;
        insn = ADDIL_R19;
#endif
#endif
      val = hppa_field_adjust (sym_value, 0, e_lrsel),
      val = hppa_field_adjust (sym_value, 0, e_lrsel),
      insn = hppa_rebuild_insn ((int) insn, val, 21);
      insn = hppa_rebuild_insn ((int) insn, val, 21);
      bfd_put_32 (stub_bfd, insn, loc);
      bfd_put_32 (stub_bfd, insn, loc);
 
 
      /* It is critical to use lrsel/rrsel here because we are using
      /* It is critical to use lrsel/rrsel here because we are using
         two different offsets (+0 and +4) from sym_value.  If we use
         two different offsets (+0 and +4) from sym_value.  If we use
         lsel/rsel then with unfortunate sym_values we will round
         lsel/rsel then with unfortunate sym_values we will round
         sym_value+4 up to the next 2k block leading to a mis-match
         sym_value+4 up to the next 2k block leading to a mis-match
         between the lsel and rsel value.  */
         between the lsel and rsel value.  */
      val = hppa_field_adjust (sym_value, 0, e_rrsel);
      val = hppa_field_adjust (sym_value, 0, e_rrsel);
      insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
      insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
      bfd_put_32 (stub_bfd, insn, loc + 4);
      bfd_put_32 (stub_bfd, insn, loc + 4);
 
 
      if (htab->multi_subspace)
      if (htab->multi_subspace)
        {
        {
          val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
          val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
          insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
          insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
          bfd_put_32 (stub_bfd, insn, loc + 8);
          bfd_put_32 (stub_bfd, insn, loc + 8);
 
 
          bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
          bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
          bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
          bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
          bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
          bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
          bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
          bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
 
 
          size = 28;
          size = 28;
        }
        }
      else
      else
        {
        {
          bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
          bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
          val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
          val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
          insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
          insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
          bfd_put_32 (stub_bfd, insn, loc + 12);
          bfd_put_32 (stub_bfd, insn, loc + 12);
 
 
          size = 16;
          size = 16;
        }
        }
 
 
      break;
      break;
 
 
    case hppa_stub_export:
    case hppa_stub_export:
      /* Branches are relative.  This is where we are going to.  */
      /* Branches are relative.  This is where we are going to.  */
      sym_value = (hsh->target_value
      sym_value = (hsh->target_value
                   + hsh->target_section->output_offset
                   + hsh->target_section->output_offset
                   + hsh->target_section->output_section->vma);
                   + hsh->target_section->output_section->vma);
 
 
      /* And this is where we are coming from.  */
      /* And this is where we are coming from.  */
      sym_value -= (hsh->stub_offset
      sym_value -= (hsh->stub_offset
                    + stub_sec->output_offset
                    + stub_sec->output_offset
                    + stub_sec->output_section->vma);
                    + stub_sec->output_section->vma);
 
 
      if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
      if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
          && (!htab->has_22bit_branch
          && (!htab->has_22bit_branch
              || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
              || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
            (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
             hsh->target_section->owner,
             hsh->target_section->owner,
             stub_sec,
             stub_sec,
             (long) hsh->stub_offset,
             (long) hsh->stub_offset,
             hsh->bh_root.string);
             hsh->bh_root.string);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
      val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
      if (!htab->has_22bit_branch)
      if (!htab->has_22bit_branch)
        insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
        insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
      else
      else
        insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
        insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
      bfd_put_32 (stub_bfd, insn, loc);
      bfd_put_32 (stub_bfd, insn, loc);
 
 
      bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
      bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
      bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
      bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
      bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
      bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
      bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
      bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
      bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
      bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
 
 
      /* Point the function symbol at the stub.  */
      /* Point the function symbol at the stub.  */
      hsh->hh->eh.root.u.def.section = stub_sec;
      hsh->hh->eh.root.u.def.section = stub_sec;
      hsh->hh->eh.root.u.def.value = stub_sec->size;
      hsh->hh->eh.root.u.def.value = stub_sec->size;
 
 
      size = 24;
      size = 24;
      break;
      break;
 
 
    default:
    default:
      BFD_FAIL ();
      BFD_FAIL ();
      return FALSE;
      return FALSE;
    }
    }
 
 
  stub_sec->size += size;
  stub_sec->size += size;
  return TRUE;
  return TRUE;
}
}
 
 
#undef LDIL_R1
#undef LDIL_R1
#undef BE_SR4_R1
#undef BE_SR4_R1
#undef BL_R1
#undef BL_R1
#undef ADDIL_R1
#undef ADDIL_R1
#undef DEPI_R1
#undef DEPI_R1
#undef LDW_R1_R21
#undef LDW_R1_R21
#undef LDW_R1_DLT
#undef LDW_R1_DLT
#undef LDW_R1_R19
#undef LDW_R1_R19
#undef ADDIL_R19
#undef ADDIL_R19
#undef LDW_R1_DP
#undef LDW_R1_DP
#undef LDSID_R21_R1
#undef LDSID_R21_R1
#undef MTSP_R1
#undef MTSP_R1
#undef BE_SR0_R21
#undef BE_SR0_R21
#undef STW_RP
#undef STW_RP
#undef BV_R0_R21
#undef BV_R0_R21
#undef BL_RP
#undef BL_RP
#undef NOP
#undef NOP
#undef LDW_RP
#undef LDW_RP
#undef LDSID_RP_R1
#undef LDSID_RP_R1
#undef BE_SR0_RP
#undef BE_SR0_RP
 
 
/* As above, but don't actually build the stub.  Just bump offset so
/* As above, but don't actually build the stub.  Just bump offset so
   we know stub section sizes.  */
   we know stub section sizes.  */
 
 
static bfd_boolean
static bfd_boolean
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
{
  struct elf32_hppa_stub_hash_entry *hsh;
  struct elf32_hppa_stub_hash_entry *hsh;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  int size;
  int size;
 
 
  /* Massage our args to the form they really have.  */
  /* Massage our args to the form they really have.  */
  hsh = hppa_stub_hash_entry (bh);
  hsh = hppa_stub_hash_entry (bh);
  htab = in_arg;
  htab = in_arg;
 
 
  if (hsh->stub_type == hppa_stub_long_branch)
  if (hsh->stub_type == hppa_stub_long_branch)
    size = 8;
    size = 8;
  else if (hsh->stub_type == hppa_stub_long_branch_shared)
  else if (hsh->stub_type == hppa_stub_long_branch_shared)
    size = 12;
    size = 12;
  else if (hsh->stub_type == hppa_stub_export)
  else if (hsh->stub_type == hppa_stub_export)
    size = 24;
    size = 24;
  else /* hppa_stub_import or hppa_stub_import_shared.  */
  else /* hppa_stub_import or hppa_stub_import_shared.  */
    {
    {
      if (htab->multi_subspace)
      if (htab->multi_subspace)
        size = 28;
        size = 28;
      else
      else
        size = 16;
        size = 16;
    }
    }
 
 
  hsh->stub_sec->size += size;
  hsh->stub_sec->size += size;
  return TRUE;
  return TRUE;
}
}
 
 
/* Return nonzero if ABFD represents an HPPA ELF32 file.
/* Return nonzero if ABFD represents an HPPA ELF32 file.
   Additionally we set the default architecture and machine.  */
   Additionally we set the default architecture and machine.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_object_p (bfd *abfd)
elf32_hppa_object_p (bfd *abfd)
{
{
  Elf_Internal_Ehdr * i_ehdrp;
  Elf_Internal_Ehdr * i_ehdrp;
  unsigned int flags;
  unsigned int flags;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
  if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
  if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
    {
    {
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
         but the kernel produces corefiles with OSABI=SysV.  */
         but the kernel produces corefiles with OSABI=SysV.  */
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
          i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
          i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
        return FALSE;
        return FALSE;
    }
    }
  else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
  else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
    {
    {
      /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
      /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
         but the kernel produces corefiles with OSABI=SysV.  */
         but the kernel produces corefiles with OSABI=SysV.  */
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
          i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
          i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    {
    {
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
        return FALSE;
        return FALSE;
    }
    }
 
 
  flags = i_ehdrp->e_flags;
  flags = i_ehdrp->e_flags;
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
    {
    {
    case EFA_PARISC_1_0:
    case EFA_PARISC_1_0:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
    case EFA_PARISC_1_1:
    case EFA_PARISC_1_1:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
    case EFA_PARISC_2_0:
    case EFA_PARISC_2_0:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the .plt and .got sections, and set up our hash table
/* Create the .plt and .got sections, and set up our hash table
   short-cuts to various dynamic sections.  */
   short-cuts to various dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  struct elf_link_hash_entry *eh;
  struct elf_link_hash_entry *eh;
 
 
  /* Don't try to create the .plt and .got twice.  */
  /* Don't try to create the .plt and .got twice.  */
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  if (htab->splt != NULL)
  if (htab->splt != NULL)
    return TRUE;
    return TRUE;
 
 
  /* Call the generic code to do most of the work.  */
  /* Call the generic code to do most of the work.  */
  if (! _bfd_elf_create_dynamic_sections (abfd, info))
  if (! _bfd_elf_create_dynamic_sections (abfd, info))
    return FALSE;
    return FALSE;
 
 
  htab->splt = bfd_get_section_by_name (abfd, ".plt");
  htab->splt = bfd_get_section_by_name (abfd, ".plt");
  htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
  htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
 
 
  htab->sgot = bfd_get_section_by_name (abfd, ".got");
  htab->sgot = bfd_get_section_by_name (abfd, ".got");
  htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
  htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
 
 
  htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
  htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
  htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
  htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
 
 
  /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
  /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
     application, because __canonicalize_funcptr_for_compare needs it.  */
     application, because __canonicalize_funcptr_for_compare needs it.  */
  eh = elf_hash_table (info)->hgot;
  eh = elf_hash_table (info)->hgot;
  eh->forced_local = 0;
  eh->forced_local = 0;
  eh->other = STV_DEFAULT;
  eh->other = STV_DEFAULT;
  return bfd_elf_link_record_dynamic_symbol (info, eh);
  return bfd_elf_link_record_dynamic_symbol (info, eh);
}
}
 
 
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
 
 
static void
static void
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
                                 struct elf_link_hash_entry *eh_dir,
                                 struct elf_link_hash_entry *eh_dir,
                                 struct elf_link_hash_entry *eh_ind)
                                 struct elf_link_hash_entry *eh_ind)
{
{
  struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
  struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
 
 
  hh_dir = hppa_elf_hash_entry (eh_dir);
  hh_dir = hppa_elf_hash_entry (eh_dir);
  hh_ind = hppa_elf_hash_entry (eh_ind);
  hh_ind = hppa_elf_hash_entry (eh_ind);
 
 
  if (hh_ind->dyn_relocs != NULL)
  if (hh_ind->dyn_relocs != NULL)
    {
    {
      if (hh_dir->dyn_relocs != NULL)
      if (hh_dir->dyn_relocs != NULL)
        {
        {
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
 
 
          /* Add reloc counts against the indirect sym to the direct sym
          /* Add reloc counts against the indirect sym to the direct sym
             list.  Merge any entries against the same section.  */
             list.  Merge any entries against the same section.  */
          for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
          for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
            {
            {
              struct elf32_hppa_dyn_reloc_entry *hdh_q;
              struct elf32_hppa_dyn_reloc_entry *hdh_q;
 
 
              for (hdh_q = hh_dir->dyn_relocs;
              for (hdh_q = hh_dir->dyn_relocs;
                   hdh_q != NULL;
                   hdh_q != NULL;
                   hdh_q = hdh_q->hdh_next)
                   hdh_q = hdh_q->hdh_next)
                if (hdh_q->sec == hdh_p->sec)
                if (hdh_q->sec == hdh_p->sec)
                  {
                  {
#if RELATIVE_DYNRELOCS
#if RELATIVE_DYNRELOCS
                    hdh_q->relative_count += hdh_p->relative_count;
                    hdh_q->relative_count += hdh_p->relative_count;
#endif
#endif
                    hdh_q->count += hdh_p->count;
                    hdh_q->count += hdh_p->count;
                    *hdh_pp = hdh_p->hdh_next;
                    *hdh_pp = hdh_p->hdh_next;
                    break;
                    break;
                  }
                  }
              if (hdh_q == NULL)
              if (hdh_q == NULL)
                hdh_pp = &hdh_p->hdh_next;
                hdh_pp = &hdh_p->hdh_next;
            }
            }
          *hdh_pp = hh_dir->dyn_relocs;
          *hdh_pp = hh_dir->dyn_relocs;
        }
        }
 
 
      hh_dir->dyn_relocs = hh_ind->dyn_relocs;
      hh_dir->dyn_relocs = hh_ind->dyn_relocs;
      hh_ind->dyn_relocs = NULL;
      hh_ind->dyn_relocs = NULL;
    }
    }
 
 
  if (ELIMINATE_COPY_RELOCS
  if (ELIMINATE_COPY_RELOCS
      && eh_ind->root.type != bfd_link_hash_indirect
      && eh_ind->root.type != bfd_link_hash_indirect
      && eh_dir->dynamic_adjusted)
      && eh_dir->dynamic_adjusted)
    {
    {
      /* If called to transfer flags for a weakdef during processing
      /* If called to transfer flags for a weakdef during processing
         of elf_adjust_dynamic_symbol, don't copy non_got_ref.
         of elf_adjust_dynamic_symbol, don't copy non_got_ref.
         We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
         We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
      eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
      eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
      eh_dir->ref_regular |= eh_ind->ref_regular;
      eh_dir->ref_regular |= eh_ind->ref_regular;
      eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
      eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
      eh_dir->needs_plt |= eh_ind->needs_plt;
      eh_dir->needs_plt |= eh_ind->needs_plt;
    }
    }
  else
  else
    {
    {
      if (eh_ind->root.type == bfd_link_hash_indirect
      if (eh_ind->root.type == bfd_link_hash_indirect
          && eh_dir->got.refcount <= 0)
          && eh_dir->got.refcount <= 0)
        {
        {
          hh_dir->tls_type = hh_ind->tls_type;
          hh_dir->tls_type = hh_ind->tls_type;
          hh_ind->tls_type = GOT_UNKNOWN;
          hh_ind->tls_type = GOT_UNKNOWN;
        }
        }
 
 
      _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
      _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
    }
    }
}
}
 
 
static int
static int
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
                                int r_type, int is_local ATTRIBUTE_UNUSED)
                                int r_type, int is_local ATTRIBUTE_UNUSED)
{
{
  /* For now we don't support linker optimizations.  */
  /* For now we don't support linker optimizations.  */
  return r_type;
  return r_type;
}
}
 
 
/* Return a pointer to the local GOT, PLT and TLS reference counts
/* Return a pointer to the local GOT, PLT and TLS reference counts
   for ABFD.  Returns NULL if the storage allocation fails.  */
   for ABFD.  Returns NULL if the storage allocation fails.  */
 
 
static bfd_signed_vma *
static bfd_signed_vma *
hppa32_elf_local_refcounts (bfd *abfd)
hppa32_elf_local_refcounts (bfd *abfd)
{
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  bfd_signed_vma *local_refcounts;
  bfd_signed_vma *local_refcounts;
 
 
  local_refcounts = elf_local_got_refcounts (abfd);
  local_refcounts = elf_local_got_refcounts (abfd);
  if (local_refcounts == NULL)
  if (local_refcounts == NULL)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
 
 
      /* Allocate space for local GOT and PLT reference
      /* Allocate space for local GOT and PLT reference
         counts.  Done this way to save polluting elf_obj_tdata
         counts.  Done this way to save polluting elf_obj_tdata
         with another target specific pointer.  */
         with another target specific pointer.  */
      size = symtab_hdr->sh_info;
      size = symtab_hdr->sh_info;
      size *= 2 * sizeof (bfd_signed_vma);
      size *= 2 * sizeof (bfd_signed_vma);
      /* Add in space to store the local GOT TLS types.  */
      /* Add in space to store the local GOT TLS types.  */
      size += symtab_hdr->sh_info;
      size += symtab_hdr->sh_info;
      local_refcounts = bfd_zalloc (abfd, size);
      local_refcounts = bfd_zalloc (abfd, size);
      if (local_refcounts == NULL)
      if (local_refcounts == NULL)
        return NULL;
        return NULL;
      elf_local_got_refcounts (abfd) = local_refcounts;
      elf_local_got_refcounts (abfd) = local_refcounts;
      memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
      memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
              symtab_hdr->sh_info);
              symtab_hdr->sh_info);
    }
    }
  return local_refcounts;
  return local_refcounts;
}
}
 
 
 
 
/* Look through the relocs for a section during the first phase, and
/* Look through the relocs for a section during the first phase, and
   calculate needed space in the global offset table, procedure linkage
   calculate needed space in the global offset table, procedure linkage
   table, and dynamic reloc sections.  At this point we haven't
   table, and dynamic reloc sections.  At this point we haven't
   necessarily read all the input files.  */
   necessarily read all the input files.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_check_relocs (bfd *abfd,
elf32_hppa_check_relocs (bfd *abfd,
                         struct bfd_link_info *info,
                         struct bfd_link_info *info,
                         asection *sec,
                         asection *sec,
                         const Elf_Internal_Rela *relocs)
                         const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **eh_syms;
  struct elf_link_hash_entry **eh_syms;
  const Elf_Internal_Rela *rela;
  const Elf_Internal_Rela *rela;
  const Elf_Internal_Rela *rela_end;
  const Elf_Internal_Rela *rela_end;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  asection *sreloc;
  asection *sreloc;
  asection *stubreloc;
  asection *stubreloc;
  int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
  int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  eh_syms = elf_sym_hashes (abfd);
  eh_syms = elf_sym_hashes (abfd);
  sreloc = NULL;
  sreloc = NULL;
  stubreloc = NULL;
  stubreloc = NULL;
 
 
  rela_end = relocs + sec->reloc_count;
  rela_end = relocs + sec->reloc_count;
  for (rela = relocs; rela < rela_end; rela++)
  for (rela = relocs; rela < rela_end; rela++)
    {
    {
      enum {
      enum {
        NEED_GOT = 1,
        NEED_GOT = 1,
        NEED_PLT = 2,
        NEED_PLT = 2,
        NEED_DYNREL = 4,
        NEED_DYNREL = 4,
        PLT_PLABEL = 8
        PLT_PLABEL = 8
      };
      };
 
 
      unsigned int r_symndx, r_type;
      unsigned int r_symndx, r_type;
      struct elf32_hppa_link_hash_entry *hh;
      struct elf32_hppa_link_hash_entry *hh;
      int need_entry = 0;
      int need_entry = 0;
 
 
      r_symndx = ELF32_R_SYM (rela->r_info);
      r_symndx = ELF32_R_SYM (rela->r_info);
 
 
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        hh = NULL;
        hh = NULL;
      else
      else
        {
        {
          hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
          hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
          while (hh->eh.root.type == bfd_link_hash_indirect
          while (hh->eh.root.type == bfd_link_hash_indirect
                 || hh->eh.root.type == bfd_link_hash_warning)
                 || hh->eh.root.type == bfd_link_hash_warning)
            hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
            hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
        }
        }
 
 
      r_type = ELF32_R_TYPE (rela->r_info);
      r_type = ELF32_R_TYPE (rela->r_info);
      r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
      r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
 
 
      switch (r_type)
      switch (r_type)
        {
        {
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND21L:
        case R_PARISC_DLTIND21L:
          /* This symbol requires a global offset table entry.  */
          /* This symbol requires a global offset table entry.  */
          need_entry = NEED_GOT;
          need_entry = NEED_GOT;
          break;
          break;
 
 
        case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
        case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
        case R_PARISC_PLABEL21L:
        case R_PARISC_PLABEL21L:
        case R_PARISC_PLABEL32:
        case R_PARISC_PLABEL32:
          /* If the addend is non-zero, we break badly.  */
          /* If the addend is non-zero, we break badly.  */
          if (rela->r_addend != 0)
          if (rela->r_addend != 0)
            abort ();
            abort ();
 
 
          /* If we are creating a shared library, then we need to
          /* If we are creating a shared library, then we need to
             create a PLT entry for all PLABELs, because PLABELs with
             create a PLT entry for all PLABELs, because PLABELs with
             local symbols may be passed via a pointer to another
             local symbols may be passed via a pointer to another
             object.  Additionally, output a dynamic relocation
             object.  Additionally, output a dynamic relocation
             pointing to the PLT entry.
             pointing to the PLT entry.
 
 
             For executables, the original 32-bit ABI allowed two
             For executables, the original 32-bit ABI allowed two
             different styles of PLABELs (function pointers):  For
             different styles of PLABELs (function pointers):  For
             global functions, the PLABEL word points into the .plt
             global functions, the PLABEL word points into the .plt
             two bytes past a (function address, gp) pair, and for
             two bytes past a (function address, gp) pair, and for
             local functions the PLABEL points directly at the
             local functions the PLABEL points directly at the
             function.  The magic +2 for the first type allows us to
             function.  The magic +2 for the first type allows us to
             differentiate between the two.  As you can imagine, this
             differentiate between the two.  As you can imagine, this
             is a real pain when it comes to generating code to call
             is a real pain when it comes to generating code to call
             functions indirectly or to compare function pointers.
             functions indirectly or to compare function pointers.
             We avoid the mess by always pointing a PLABEL into the
             We avoid the mess by always pointing a PLABEL into the
             .plt, even for local functions.  */
             .plt, even for local functions.  */
          need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
          need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
          break;
          break;
 
 
        case R_PARISC_PCREL12F:
        case R_PARISC_PCREL12F:
          htab->has_12bit_branch = 1;
          htab->has_12bit_branch = 1;
          goto branch_common;
          goto branch_common;
 
 
        case R_PARISC_PCREL17C:
        case R_PARISC_PCREL17C:
        case R_PARISC_PCREL17F:
        case R_PARISC_PCREL17F:
          htab->has_17bit_branch = 1;
          htab->has_17bit_branch = 1;
          goto branch_common;
          goto branch_common;
 
 
        case R_PARISC_PCREL22F:
        case R_PARISC_PCREL22F:
          htab->has_22bit_branch = 1;
          htab->has_22bit_branch = 1;
        branch_common:
        branch_common:
          /* Function calls might need to go through the .plt, and
          /* Function calls might need to go through the .plt, and
             might require long branch stubs.  */
             might require long branch stubs.  */
          if (hh == NULL)
          if (hh == NULL)
            {
            {
              /* We know local syms won't need a .plt entry, and if
              /* We know local syms won't need a .plt entry, and if
                 they need a long branch stub we can't guarantee that
                 they need a long branch stub we can't guarantee that
                 we can reach the stub.  So just flag an error later
                 we can reach the stub.  So just flag an error later
                 if we're doing a shared link and find we need a long
                 if we're doing a shared link and find we need a long
                 branch stub.  */
                 branch stub.  */
              continue;
              continue;
            }
            }
          else
          else
            {
            {
              /* Global symbols will need a .plt entry if they remain
              /* Global symbols will need a .plt entry if they remain
                 global, and in most cases won't need a long branch
                 global, and in most cases won't need a long branch
                 stub.  Unfortunately, we have to cater for the case
                 stub.  Unfortunately, we have to cater for the case
                 where a symbol is forced local by versioning, or due
                 where a symbol is forced local by versioning, or due
                 to symbolic linking, and we lose the .plt entry.  */
                 to symbolic linking, and we lose the .plt entry.  */
              need_entry = NEED_PLT;
              need_entry = NEED_PLT;
              if (hh->eh.type == STT_PARISC_MILLI)
              if (hh->eh.type == STT_PARISC_MILLI)
                need_entry = 0;
                need_entry = 0;
            }
            }
          break;
          break;
 
 
        case R_PARISC_SEGBASE:  /* Used to set segment base.  */
        case R_PARISC_SEGBASE:  /* Used to set segment base.  */
        case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
        case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
        case R_PARISC_PCREL14F: /* PC relative load/store.  */
        case R_PARISC_PCREL14F: /* PC relative load/store.  */
        case R_PARISC_PCREL14R:
        case R_PARISC_PCREL14R:
        case R_PARISC_PCREL17R: /* External branches.  */
        case R_PARISC_PCREL17R: /* External branches.  */
        case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
        case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
        case R_PARISC_PCREL32:
        case R_PARISC_PCREL32:
          /* We don't need to propagate the relocation if linking a
          /* We don't need to propagate the relocation if linking a
             shared object since these are section relative.  */
             shared object since these are section relative.  */
          continue;
          continue;
 
 
        case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
        case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
        case R_PARISC_DPREL14R:
        case R_PARISC_DPREL14R:
        case R_PARISC_DPREL21L:
        case R_PARISC_DPREL21L:
          if (info->shared)
          if (info->shared)
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
                (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
                 abfd,
                 abfd,
                 elf_hppa_howto_table[r_type].name);
                 elf_hppa_howto_table[r_type].name);
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
 
 
        case R_PARISC_DIR17F: /* Used for external branches.  */
        case R_PARISC_DIR17F: /* Used for external branches.  */
        case R_PARISC_DIR17R:
        case R_PARISC_DIR17R:
        case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
        case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
        case R_PARISC_DIR14R:
        case R_PARISC_DIR14R:
        case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
        case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
        case R_PARISC_DIR32: /* .word relocs.  */
        case R_PARISC_DIR32: /* .word relocs.  */
          /* We may want to output a dynamic relocation later.  */
          /* We may want to output a dynamic relocation later.  */
          need_entry = NEED_DYNREL;
          need_entry = NEED_DYNREL;
          break;
          break;
 
 
          /* This relocation describes the C++ object vtable hierarchy.
          /* This relocation describes the C++ object vtable hierarchy.
             Reconstruct it for later use during GC.  */
             Reconstruct it for later use during GC.  */
        case R_PARISC_GNU_VTINHERIT:
        case R_PARISC_GNU_VTINHERIT:
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
            return FALSE;
            return FALSE;
          continue;
          continue;
 
 
          /* This relocation describes which C++ vtable entries are actually
          /* This relocation describes which C++ vtable entries are actually
             used.  Record for later use during GC.  */
             used.  Record for later use during GC.  */
        case R_PARISC_GNU_VTENTRY:
        case R_PARISC_GNU_VTENTRY:
          BFD_ASSERT (hh != NULL);
          BFD_ASSERT (hh != NULL);
          if (hh != NULL
          if (hh != NULL
              && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
              && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
            return FALSE;
            return FALSE;
          continue;
          continue;
 
 
        case R_PARISC_TLS_GD21L:
        case R_PARISC_TLS_GD21L:
        case R_PARISC_TLS_GD14R:
        case R_PARISC_TLS_GD14R:
        case R_PARISC_TLS_LDM21L:
        case R_PARISC_TLS_LDM21L:
        case R_PARISC_TLS_LDM14R:
        case R_PARISC_TLS_LDM14R:
          need_entry = NEED_GOT;
          need_entry = NEED_GOT;
          break;
          break;
 
 
        case R_PARISC_TLS_IE21L:
        case R_PARISC_TLS_IE21L:
        case R_PARISC_TLS_IE14R:
        case R_PARISC_TLS_IE14R:
          if (info->shared)
          if (info->shared)
            info->flags |= DF_STATIC_TLS;
            info->flags |= DF_STATIC_TLS;
          need_entry = NEED_GOT;
          need_entry = NEED_GOT;
          break;
          break;
 
 
        default:
        default:
          continue;
          continue;
        }
        }
 
 
      /* Now carry out our orders.  */
      /* Now carry out our orders.  */
      if (need_entry & NEED_GOT)
      if (need_entry & NEED_GOT)
        {
        {
          switch (r_type)
          switch (r_type)
            {
            {
            default:
            default:
              tls_type = GOT_NORMAL;
              tls_type = GOT_NORMAL;
              break;
              break;
            case R_PARISC_TLS_GD21L:
            case R_PARISC_TLS_GD21L:
            case R_PARISC_TLS_GD14R:
            case R_PARISC_TLS_GD14R:
              tls_type |= GOT_TLS_GD;
              tls_type |= GOT_TLS_GD;
              break;
              break;
            case R_PARISC_TLS_LDM21L:
            case R_PARISC_TLS_LDM21L:
            case R_PARISC_TLS_LDM14R:
            case R_PARISC_TLS_LDM14R:
              tls_type |= GOT_TLS_LDM;
              tls_type |= GOT_TLS_LDM;
              break;
              break;
            case R_PARISC_TLS_IE21L:
            case R_PARISC_TLS_IE21L:
            case R_PARISC_TLS_IE14R:
            case R_PARISC_TLS_IE14R:
              tls_type |= GOT_TLS_IE;
              tls_type |= GOT_TLS_IE;
              break;
              break;
            }
            }
 
 
          /* Allocate space for a GOT entry, as well as a dynamic
          /* Allocate space for a GOT entry, as well as a dynamic
             relocation for this entry.  */
             relocation for this entry.  */
          if (htab->sgot == NULL)
          if (htab->sgot == NULL)
            {
            {
              if (htab->etab.dynobj == NULL)
              if (htab->etab.dynobj == NULL)
                htab->etab.dynobj = abfd;
                htab->etab.dynobj = abfd;
              if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
              if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
                return FALSE;
                return FALSE;
            }
            }
 
 
          if (r_type == R_PARISC_TLS_LDM21L
          if (r_type == R_PARISC_TLS_LDM21L
              || r_type == R_PARISC_TLS_LDM14R)
              || r_type == R_PARISC_TLS_LDM14R)
            hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
            hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
          else
          else
            {
            {
              if (hh != NULL)
              if (hh != NULL)
                {
                {
                  hh->eh.got.refcount += 1;
                  hh->eh.got.refcount += 1;
                  old_tls_type = hh->tls_type;
                  old_tls_type = hh->tls_type;
                }
                }
              else
              else
                {
                {
                  bfd_signed_vma *local_got_refcounts;
                  bfd_signed_vma *local_got_refcounts;
 
 
                  /* This is a global offset table entry for a local symbol.  */
                  /* This is a global offset table entry for a local symbol.  */
                  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
                  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
                  if (local_got_refcounts == NULL)
                  if (local_got_refcounts == NULL)
                    return FALSE;
                    return FALSE;
                  local_got_refcounts[r_symndx] += 1;
                  local_got_refcounts[r_symndx] += 1;
 
 
                  old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
                  old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
                }
                }
 
 
              tls_type |= old_tls_type;
              tls_type |= old_tls_type;
 
 
              if (old_tls_type != tls_type)
              if (old_tls_type != tls_type)
                {
                {
                  if (hh != NULL)
                  if (hh != NULL)
                    hh->tls_type = tls_type;
                    hh->tls_type = tls_type;
                  else
                  else
                    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
                    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
                }
                }
 
 
            }
            }
        }
        }
 
 
      if (need_entry & NEED_PLT)
      if (need_entry & NEED_PLT)
        {
        {
          /* If we are creating a shared library, and this is a reloc
          /* If we are creating a shared library, and this is a reloc
             against a weak symbol or a global symbol in a dynamic
             against a weak symbol or a global symbol in a dynamic
             object, then we will be creating an import stub and a
             object, then we will be creating an import stub and a
             .plt entry for the symbol.  Similarly, on a normal link
             .plt entry for the symbol.  Similarly, on a normal link
             to symbols defined in a dynamic object we'll need the
             to symbols defined in a dynamic object we'll need the
             import stub and a .plt entry.  We don't know yet whether
             import stub and a .plt entry.  We don't know yet whether
             the symbol is defined or not, so make an entry anyway and
             the symbol is defined or not, so make an entry anyway and
             clean up later in adjust_dynamic_symbol.  */
             clean up later in adjust_dynamic_symbol.  */
          if ((sec->flags & SEC_ALLOC) != 0)
          if ((sec->flags & SEC_ALLOC) != 0)
            {
            {
              if (hh != NULL)
              if (hh != NULL)
                {
                {
                  hh->eh.needs_plt = 1;
                  hh->eh.needs_plt = 1;
                  hh->eh.plt.refcount += 1;
                  hh->eh.plt.refcount += 1;
 
 
                  /* If this .plt entry is for a plabel, mark it so
                  /* If this .plt entry is for a plabel, mark it so
                     that adjust_dynamic_symbol will keep the entry
                     that adjust_dynamic_symbol will keep the entry
                     even if it appears to be local.  */
                     even if it appears to be local.  */
                  if (need_entry & PLT_PLABEL)
                  if (need_entry & PLT_PLABEL)
                    hh->plabel = 1;
                    hh->plabel = 1;
                }
                }
              else if (need_entry & PLT_PLABEL)
              else if (need_entry & PLT_PLABEL)
                {
                {
                  bfd_signed_vma *local_got_refcounts;
                  bfd_signed_vma *local_got_refcounts;
                  bfd_signed_vma *local_plt_refcounts;
                  bfd_signed_vma *local_plt_refcounts;
 
 
                  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
                  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
                  if (local_got_refcounts == NULL)
                  if (local_got_refcounts == NULL)
                    return FALSE;
                    return FALSE;
                  local_plt_refcounts = (local_got_refcounts
                  local_plt_refcounts = (local_got_refcounts
                                         + symtab_hdr->sh_info);
                                         + symtab_hdr->sh_info);
                  local_plt_refcounts[r_symndx] += 1;
                  local_plt_refcounts[r_symndx] += 1;
                }
                }
            }
            }
        }
        }
 
 
      if (need_entry & NEED_DYNREL)
      if (need_entry & NEED_DYNREL)
        {
        {
          /* Flag this symbol as having a non-got, non-plt reference
          /* Flag this symbol as having a non-got, non-plt reference
             so that we generate copy relocs if it turns out to be
             so that we generate copy relocs if it turns out to be
             dynamic.  */
             dynamic.  */
          if (hh != NULL && !info->shared)
          if (hh != NULL && !info->shared)
            hh->eh.non_got_ref = 1;
            hh->eh.non_got_ref = 1;
 
 
          /* If we are creating a shared library then we need to copy
          /* If we are creating a shared library then we need to copy
             the reloc into the shared library.  However, if we are
             the reloc into the shared library.  However, if we are
             linking with -Bsymbolic, we need only copy absolute
             linking with -Bsymbolic, we need only copy absolute
             relocs or relocs against symbols that are not defined in
             relocs or relocs against symbols that are not defined in
             an object we are including in the link.  PC- or DP- or
             an object we are including in the link.  PC- or DP- or
             DLT-relative relocs against any local sym or global sym
             DLT-relative relocs against any local sym or global sym
             with DEF_REGULAR set, can be discarded.  At this point we
             with DEF_REGULAR set, can be discarded.  At this point we
             have not seen all the input files, so it is possible that
             have not seen all the input files, so it is possible that
             DEF_REGULAR is not set now but will be set later (it is
             DEF_REGULAR is not set now but will be set later (it is
             never cleared).  We account for that possibility below by
             never cleared).  We account for that possibility below by
             storing information in the dyn_relocs field of the
             storing information in the dyn_relocs field of the
             hash table entry.
             hash table entry.
 
 
             A similar situation to the -Bsymbolic case occurs when
             A similar situation to the -Bsymbolic case occurs when
             creating shared libraries and symbol visibility changes
             creating shared libraries and symbol visibility changes
             render the symbol local.
             render the symbol local.
 
 
             As it turns out, all the relocs we will be creating here
             As it turns out, all the relocs we will be creating here
             are absolute, so we cannot remove them on -Bsymbolic
             are absolute, so we cannot remove them on -Bsymbolic
             links or visibility changes anyway.  A STUB_REL reloc
             links or visibility changes anyway.  A STUB_REL reloc
             is absolute too, as in that case it is the reloc in the
             is absolute too, as in that case it is the reloc in the
             stub we will be creating, rather than copying the PCREL
             stub we will be creating, rather than copying the PCREL
             reloc in the branch.
             reloc in the branch.
 
 
             If on the other hand, we are creating an executable, we
             If on the other hand, we are creating an executable, we
             may need to keep relocations for symbols satisfied by a
             may need to keep relocations for symbols satisfied by a
             dynamic library if we manage to avoid copy relocs for the
             dynamic library if we manage to avoid copy relocs for the
             symbol.  */
             symbol.  */
          if ((info->shared
          if ((info->shared
               && (sec->flags & SEC_ALLOC) != 0
               && (sec->flags & SEC_ALLOC) != 0
               && (IS_ABSOLUTE_RELOC (r_type)
               && (IS_ABSOLUTE_RELOC (r_type)
                   || (hh != NULL
                   || (hh != NULL
                       && (!info->symbolic
                       && (!info->symbolic
                           || hh->eh.root.type == bfd_link_hash_defweak
                           || hh->eh.root.type == bfd_link_hash_defweak
                           || !hh->eh.def_regular))))
                           || !hh->eh.def_regular))))
              || (ELIMINATE_COPY_RELOCS
              || (ELIMINATE_COPY_RELOCS
                  && !info->shared
                  && !info->shared
                  && (sec->flags & SEC_ALLOC) != 0
                  && (sec->flags & SEC_ALLOC) != 0
                  && hh != NULL
                  && hh != NULL
                  && (hh->eh.root.type == bfd_link_hash_defweak
                  && (hh->eh.root.type == bfd_link_hash_defweak
                      || !hh->eh.def_regular)))
                      || !hh->eh.def_regular)))
            {
            {
              struct elf32_hppa_dyn_reloc_entry *hdh_p;
              struct elf32_hppa_dyn_reloc_entry *hdh_p;
              struct elf32_hppa_dyn_reloc_entry **hdh_head;
              struct elf32_hppa_dyn_reloc_entry **hdh_head;
 
 
              /* Create a reloc section in dynobj and make room for
              /* Create a reloc section in dynobj and make room for
                 this reloc.  */
                 this reloc.  */
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  if (htab->etab.dynobj == NULL)
                  if (htab->etab.dynobj == NULL)
                    htab->etab.dynobj = abfd;
                    htab->etab.dynobj = abfd;
 
 
                  sreloc = _bfd_elf_make_dynamic_reloc_section
                  sreloc = _bfd_elf_make_dynamic_reloc_section
                    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
                    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
 
 
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    {
                    {
                      bfd_set_error (bfd_error_bad_value);
                      bfd_set_error (bfd_error_bad_value);
                      return FALSE;
                      return FALSE;
                    }
                    }
                }
                }
 
 
              /* If this is a global symbol, we count the number of
              /* If this is a global symbol, we count the number of
                 relocations we need for this symbol.  */
                 relocations we need for this symbol.  */
              if (hh != NULL)
              if (hh != NULL)
                {
                {
                  hdh_head = &hh->dyn_relocs;
                  hdh_head = &hh->dyn_relocs;
                }
                }
              else
              else
                {
                {
                  /* Track dynamic relocs needed for local syms too.
                  /* Track dynamic relocs needed for local syms too.
                     We really need local syms available to do this
                     We really need local syms available to do this
                     easily.  Oh well.  */
                     easily.  Oh well.  */
                  asection *sr;
                  asection *sr;
                  void *vpp;
                  void *vpp;
                  Elf_Internal_Sym *isym;
                  Elf_Internal_Sym *isym;
 
 
                  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
                  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
                                                abfd, r_symndx);
                                                abfd, r_symndx);
                  if (isym == NULL)
                  if (isym == NULL)
                    return FALSE;
                    return FALSE;
 
 
                  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
                  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
                  if (sr == NULL)
                  if (sr == NULL)
                    sr = sec;
                    sr = sec;
 
 
                  vpp = &elf_section_data (sr)->local_dynrel;
                  vpp = &elf_section_data (sr)->local_dynrel;
                  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
                  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
                }
                }
 
 
              hdh_p = *hdh_head;
              hdh_p = *hdh_head;
              if (hdh_p == NULL || hdh_p->sec != sec)
              if (hdh_p == NULL || hdh_p->sec != sec)
                {
                {
                  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
                  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
                  if (hdh_p == NULL)
                  if (hdh_p == NULL)
                    return FALSE;
                    return FALSE;
                  hdh_p->hdh_next = *hdh_head;
                  hdh_p->hdh_next = *hdh_head;
                  *hdh_head = hdh_p;
                  *hdh_head = hdh_p;
                  hdh_p->sec = sec;
                  hdh_p->sec = sec;
                  hdh_p->count = 0;
                  hdh_p->count = 0;
#if RELATIVE_DYNRELOCS
#if RELATIVE_DYNRELOCS
                  hdh_p->relative_count = 0;
                  hdh_p->relative_count = 0;
#endif
#endif
                }
                }
 
 
              hdh_p->count += 1;
              hdh_p->count += 1;
#if RELATIVE_DYNRELOCS
#if RELATIVE_DYNRELOCS
              if (!IS_ABSOLUTE_RELOC (rtype))
              if (!IS_ABSOLUTE_RELOC (rtype))
                hdh_p->relative_count += 1;
                hdh_p->relative_count += 1;
#endif
#endif
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the section that should be marked against garbage collection
/* Return the section that should be marked against garbage collection
   for a given relocation.  */
   for a given relocation.  */
 
 
static asection *
static asection *
elf32_hppa_gc_mark_hook (asection *sec,
elf32_hppa_gc_mark_hook (asection *sec,
                         struct bfd_link_info *info,
                         struct bfd_link_info *info,
                         Elf_Internal_Rela *rela,
                         Elf_Internal_Rela *rela,
                         struct elf_link_hash_entry *hh,
                         struct elf_link_hash_entry *hh,
                         Elf_Internal_Sym *sym)
                         Elf_Internal_Sym *sym)
{
{
  if (hh != NULL)
  if (hh != NULL)
    switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
    switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
      {
      {
      case R_PARISC_GNU_VTINHERIT:
      case R_PARISC_GNU_VTINHERIT:
      case R_PARISC_GNU_VTENTRY:
      case R_PARISC_GNU_VTENTRY:
        return NULL;
        return NULL;
      }
      }
 
 
  return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
  return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
}
}
 
 
/* Update the got and plt entry reference counts for the section being
/* Update the got and plt entry reference counts for the section being
   removed.  */
   removed.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_gc_sweep_hook (bfd *abfd,
elf32_hppa_gc_sweep_hook (bfd *abfd,
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
                          struct bfd_link_info *info ATTRIBUTE_UNUSED,
                          asection *sec,
                          asection *sec,
                          const Elf_Internal_Rela *relocs)
                          const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **eh_syms;
  struct elf_link_hash_entry **eh_syms;
  bfd_signed_vma *local_got_refcounts;
  bfd_signed_vma *local_got_refcounts;
  bfd_signed_vma *local_plt_refcounts;
  bfd_signed_vma *local_plt_refcounts;
  const Elf_Internal_Rela *rela, *relend;
  const Elf_Internal_Rela *rela, *relend;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  elf_section_data (sec)->local_dynrel = NULL;
  elf_section_data (sec)->local_dynrel = NULL;
 
 
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  eh_syms = elf_sym_hashes (abfd);
  eh_syms = elf_sym_hashes (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
  local_plt_refcounts = local_got_refcounts;
  local_plt_refcounts = local_got_refcounts;
  if (local_plt_refcounts != NULL)
  if (local_plt_refcounts != NULL)
    local_plt_refcounts += symtab_hdr->sh_info;
    local_plt_refcounts += symtab_hdr->sh_info;
 
 
  relend = relocs + sec->reloc_count;
  relend = relocs + sec->reloc_count;
  for (rela = relocs; rela < relend; rela++)
  for (rela = relocs; rela < relend; rela++)
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
      unsigned int r_type;
      unsigned int r_type;
      struct elf_link_hash_entry *eh = NULL;
      struct elf_link_hash_entry *eh = NULL;
 
 
      r_symndx = ELF32_R_SYM (rela->r_info);
      r_symndx = ELF32_R_SYM (rela->r_info);
      if (r_symndx >= symtab_hdr->sh_info)
      if (r_symndx >= symtab_hdr->sh_info)
        {
        {
          struct elf32_hppa_link_hash_entry *hh;
          struct elf32_hppa_link_hash_entry *hh;
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
 
 
          eh = eh_syms[r_symndx - symtab_hdr->sh_info];
          eh = eh_syms[r_symndx - symtab_hdr->sh_info];
          while (eh->root.type == bfd_link_hash_indirect
          while (eh->root.type == bfd_link_hash_indirect
                 || eh->root.type == bfd_link_hash_warning)
                 || eh->root.type == bfd_link_hash_warning)
            eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
            eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
          hh = hppa_elf_hash_entry (eh);
          hh = hppa_elf_hash_entry (eh);
 
 
          for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
          for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
            if (hdh_p->sec == sec)
            if (hdh_p->sec == sec)
              {
              {
                /* Everything must go for SEC.  */
                /* Everything must go for SEC.  */
                *hdh_pp = hdh_p->hdh_next;
                *hdh_pp = hdh_p->hdh_next;
                break;
                break;
              }
              }
        }
        }
 
 
      r_type = ELF32_R_TYPE (rela->r_info);
      r_type = ELF32_R_TYPE (rela->r_info);
      r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
      r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
 
 
      switch (r_type)
      switch (r_type)
        {
        {
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND21L:
        case R_PARISC_DLTIND21L:
        case R_PARISC_TLS_GD21L:
        case R_PARISC_TLS_GD21L:
        case R_PARISC_TLS_GD14R:
        case R_PARISC_TLS_GD14R:
        case R_PARISC_TLS_IE21L:
        case R_PARISC_TLS_IE21L:
        case R_PARISC_TLS_IE14R:
        case R_PARISC_TLS_IE14R:
          if (eh != NULL)
          if (eh != NULL)
            {
            {
              if (eh->got.refcount > 0)
              if (eh->got.refcount > 0)
                eh->got.refcount -= 1;
                eh->got.refcount -= 1;
            }
            }
          else if (local_got_refcounts != NULL)
          else if (local_got_refcounts != NULL)
            {
            {
              if (local_got_refcounts[r_symndx] > 0)
              if (local_got_refcounts[r_symndx] > 0)
                local_got_refcounts[r_symndx] -= 1;
                local_got_refcounts[r_symndx] -= 1;
            }
            }
          break;
          break;
 
 
        case R_PARISC_TLS_LDM21L:
        case R_PARISC_TLS_LDM21L:
        case R_PARISC_TLS_LDM14R:
        case R_PARISC_TLS_LDM14R:
          hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
          hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
          break;
          break;
 
 
        case R_PARISC_PCREL12F:
        case R_PARISC_PCREL12F:
        case R_PARISC_PCREL17C:
        case R_PARISC_PCREL17C:
        case R_PARISC_PCREL17F:
        case R_PARISC_PCREL17F:
        case R_PARISC_PCREL22F:
        case R_PARISC_PCREL22F:
          if (eh != NULL)
          if (eh != NULL)
            {
            {
              if (eh->plt.refcount > 0)
              if (eh->plt.refcount > 0)
                eh->plt.refcount -= 1;
                eh->plt.refcount -= 1;
            }
            }
          break;
          break;
 
 
        case R_PARISC_PLABEL14R:
        case R_PARISC_PLABEL14R:
        case R_PARISC_PLABEL21L:
        case R_PARISC_PLABEL21L:
        case R_PARISC_PLABEL32:
        case R_PARISC_PLABEL32:
          if (eh != NULL)
          if (eh != NULL)
            {
            {
              if (eh->plt.refcount > 0)
              if (eh->plt.refcount > 0)
                eh->plt.refcount -= 1;
                eh->plt.refcount -= 1;
            }
            }
          else if (local_plt_refcounts != NULL)
          else if (local_plt_refcounts != NULL)
            {
            {
              if (local_plt_refcounts[r_symndx] > 0)
              if (local_plt_refcounts[r_symndx] > 0)
                local_plt_refcounts[r_symndx] -= 1;
                local_plt_refcounts[r_symndx] -= 1;
            }
            }
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Support for core dump NOTE sections.  */
/* Support for core dump NOTE sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  int offset;
  int offset;
  size_t size;
  size_t size;
 
 
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 396:         /* Linux/hppa */
      case 396:         /* Linux/hppa */
        /* pr_cursig */
        /* pr_cursig */
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
 
 
        /* pr_pid */
        /* pr_pid */
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
 
 
        /* pr_reg */
        /* pr_reg */
        offset = 72;
        offset = 72;
        size = 320;
        size = 320;
 
 
        break;
        break;
    }
    }
 
 
  /* Make a ".reg/999" section.  */
  /* Make a ".reg/999" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
                                          size, note->descpos + offset);
                                          size, note->descpos + offset);
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 124:         /* Linux/hppa elf_prpsinfo.  */
      case 124:         /* Linux/hppa elf_prpsinfo.  */
        elf_tdata (abfd)->core_program
        elf_tdata (abfd)->core_program
          = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
          = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
        elf_tdata (abfd)->core_command
        elf_tdata (abfd)->core_command
          = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
          = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
    }
    }
 
 
  /* Note that for some reason, a spurious space is tacked
  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */
     implementations, so strip it off if it exists.  */
  {
  {
    char *command = elf_tdata (abfd)->core_command;
    char *command = elf_tdata (abfd)->core_command;
    int n = strlen (command);
    int n = strlen (command);
 
 
    if (0 < n && command[n - 1] == ' ')
    if (0 < n && command[n - 1] == ' ')
      command[n - 1] = '\0';
      command[n - 1] = '\0';
  }
  }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Our own version of hide_symbol, so that we can keep plt entries for
/* Our own version of hide_symbol, so that we can keep plt entries for
   plabels.  */
   plabels.  */
 
 
static void
static void
elf32_hppa_hide_symbol (struct bfd_link_info *info,
elf32_hppa_hide_symbol (struct bfd_link_info *info,
                        struct elf_link_hash_entry *eh,
                        struct elf_link_hash_entry *eh,
                        bfd_boolean force_local)
                        bfd_boolean force_local)
{
{
  if (force_local)
  if (force_local)
    {
    {
      eh->forced_local = 1;
      eh->forced_local = 1;
      if (eh->dynindx != -1)
      if (eh->dynindx != -1)
        {
        {
          eh->dynindx = -1;
          eh->dynindx = -1;
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
                                  eh->dynstr_index);
                                  eh->dynstr_index);
        }
        }
    }
    }
 
 
  if (! hppa_elf_hash_entry (eh)->plabel)
  if (! hppa_elf_hash_entry (eh)->plabel)
    {
    {
      eh->needs_plt = 0;
      eh->needs_plt = 0;
      eh->plt = elf_hash_table (info)->init_plt_refcount;
      eh->plt = elf_hash_table (info)->init_plt_refcount;
    }
    }
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   change the definition to something the rest of the link can
   understand.  */
   understand.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
                                  struct elf_link_hash_entry *eh)
                                  struct elf_link_hash_entry *eh)
{
{
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  asection *sec;
  asection *sec;
 
 
  /* If this is a function, put it in the procedure linkage table.  We
  /* If this is a function, put it in the procedure linkage table.  We
     will fill in the contents of the procedure linkage table later.  */
     will fill in the contents of the procedure linkage table later.  */
  if (eh->type == STT_FUNC
  if (eh->type == STT_FUNC
      || eh->needs_plt)
      || eh->needs_plt)
    {
    {
      if (eh->plt.refcount <= 0
      if (eh->plt.refcount <= 0
          || (eh->def_regular
          || (eh->def_regular
              && eh->root.type != bfd_link_hash_defweak
              && eh->root.type != bfd_link_hash_defweak
              && ! hppa_elf_hash_entry (eh)->plabel
              && ! hppa_elf_hash_entry (eh)->plabel
              && (!info->shared || info->symbolic)))
              && (!info->shared || info->symbolic)))
        {
        {
          /* The .plt entry is not needed when:
          /* The .plt entry is not needed when:
             a) Garbage collection has removed all references to the
             a) Garbage collection has removed all references to the
             symbol, or
             symbol, or
             b) We know for certain the symbol is defined in this
             b) We know for certain the symbol is defined in this
             object, and it's not a weak definition, nor is the symbol
             object, and it's not a weak definition, nor is the symbol
             used by a plabel relocation.  Either this object is the
             used by a plabel relocation.  Either this object is the
             application or we are doing a shared symbolic link.  */
             application or we are doing a shared symbolic link.  */
 
 
          eh->plt.offset = (bfd_vma) -1;
          eh->plt.offset = (bfd_vma) -1;
          eh->needs_plt = 0;
          eh->needs_plt = 0;
        }
        }
 
 
      return TRUE;
      return TRUE;
    }
    }
  else
  else
    eh->plt.offset = (bfd_vma) -1;
    eh->plt.offset = (bfd_vma) -1;
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (eh->u.weakdef != NULL)
  if (eh->u.weakdef != NULL)
    {
    {
      if (eh->u.weakdef->root.type != bfd_link_hash_defined
      if (eh->u.weakdef->root.type != bfd_link_hash_defined
          && eh->u.weakdef->root.type != bfd_link_hash_defweak)
          && eh->u.weakdef->root.type != bfd_link_hash_defweak)
        abort ();
        abort ();
      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
      eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
      eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
      if (ELIMINATE_COPY_RELOCS)
      if (ELIMINATE_COPY_RELOCS)
        eh->non_got_ref = eh->u.weakdef->non_got_ref;
        eh->non_got_ref = eh->u.weakdef->non_got_ref;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* This is a reference to a symbol defined by a dynamic object which
  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  */
     is not a function.  */
 
 
  /* If we are creating a shared library, we must presume that the
  /* If we are creating a shared library, we must presume that the
     only references to the symbol are via the global offset table.
     only references to the symbol are via the global offset table.
     For such cases we need not do anything here; the relocations will
     For such cases we need not do anything here; the relocations will
     be handled correctly by relocate_section.  */
     be handled correctly by relocate_section.  */
  if (info->shared)
  if (info->shared)
    return TRUE;
    return TRUE;
 
 
  /* If there are no references to this symbol that do not use the
  /* If there are no references to this symbol that do not use the
     GOT, we don't need to generate a copy reloc.  */
     GOT, we don't need to generate a copy reloc.  */
  if (!eh->non_got_ref)
  if (!eh->non_got_ref)
    return TRUE;
    return TRUE;
 
 
  if (ELIMINATE_COPY_RELOCS)
  if (ELIMINATE_COPY_RELOCS)
    {
    {
      struct elf32_hppa_link_hash_entry *hh;
      struct elf32_hppa_link_hash_entry *hh;
      struct elf32_hppa_dyn_reloc_entry *hdh_p;
      struct elf32_hppa_dyn_reloc_entry *hdh_p;
 
 
      hh = hppa_elf_hash_entry (eh);
      hh = hppa_elf_hash_entry (eh);
      for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
      for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
        {
        {
          sec = hdh_p->sec->output_section;
          sec = hdh_p->sec->output_section;
          if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
          if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
            break;
            break;
        }
        }
 
 
      /* If we didn't find any dynamic relocs in read-only sections, then
      /* If we didn't find any dynamic relocs in read-only sections, then
         we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
         we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
      if (hdh_p == NULL)
      if (hdh_p == NULL)
        {
        {
          eh->non_got_ref = 0;
          eh->non_got_ref = 0;
          return TRUE;
          return TRUE;
        }
        }
    }
    }
 
 
  if (eh->size == 0)
  if (eh->size == 0)
    {
    {
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
                             eh->root.root.string);
                             eh->root.root.string);
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* We must allocate the symbol in our .dynbss section, which will
  /* We must allocate the symbol in our .dynbss section, which will
     become part of the .bss section of the executable.  There will be
     become part of the .bss section of the executable.  There will be
     an entry for this symbol in the .dynsym section.  The dynamic
     an entry for this symbol in the .dynsym section.  The dynamic
     object will contain position independent code, so all references
     object will contain position independent code, so all references
     from the dynamic object to this symbol will go through the global
     from the dynamic object to this symbol will go through the global
     offset table.  The dynamic linker will use the .dynsym entry to
     offset table.  The dynamic linker will use the .dynsym entry to
     determine the address it must put in the global offset table, so
     determine the address it must put in the global offset table, so
     both the dynamic object and the regular object will refer to the
     both the dynamic object and the regular object will refer to the
     same memory location for the variable.  */
     same memory location for the variable.  */
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
 
 
  /* We must generate a COPY reloc to tell the dynamic linker to
  /* We must generate a COPY reloc to tell the dynamic linker to
     copy the initial value out of the dynamic object and into the
     copy the initial value out of the dynamic object and into the
     runtime process image.  */
     runtime process image.  */
  if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
  if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
    {
    {
      htab->srelbss->size += sizeof (Elf32_External_Rela);
      htab->srelbss->size += sizeof (Elf32_External_Rela);
      eh->needs_copy = 1;
      eh->needs_copy = 1;
    }
    }
 
 
  sec = htab->sdynbss;
  sec = htab->sdynbss;
 
 
  return _bfd_elf_adjust_dynamic_copy (eh, sec);
  return _bfd_elf_adjust_dynamic_copy (eh, sec);
}
}
 
 
/* Allocate space in the .plt for entries that won't have relocations.
/* Allocate space in the .plt for entries that won't have relocations.
   ie. plabel entries.  */
   ie. plabel entries.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_entry *hh;
  struct elf32_hppa_link_hash_entry *hh;
  asection *sec;
  asection *sec;
 
 
  if (eh->root.type == bfd_link_hash_indirect)
  if (eh->root.type == bfd_link_hash_indirect)
    return TRUE;
    return TRUE;
 
 
  if (eh->root.type == bfd_link_hash_warning)
  if (eh->root.type == bfd_link_hash_warning)
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
  info = (struct bfd_link_info *) inf;
  info = (struct bfd_link_info *) inf;
  hh = hppa_elf_hash_entry (eh);
  hh = hppa_elf_hash_entry (eh);
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  if (htab->etab.dynamic_sections_created
  if (htab->etab.dynamic_sections_created
      && eh->plt.refcount > 0)
      && eh->plt.refcount > 0)
    {
    {
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (eh->dynindx == -1
      if (eh->dynindx == -1
          && !eh->forced_local
          && !eh->forced_local
          && eh->type != STT_PARISC_MILLI)
          && eh->type != STT_PARISC_MILLI)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, eh))
          if (! bfd_elf_link_record_dynamic_symbol (info, eh))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
        {
        {
          /* Allocate these later.  From this point on, h->plabel
          /* Allocate these later.  From this point on, h->plabel
             means that the plt entry is only used by a plabel.
             means that the plt entry is only used by a plabel.
             We'll be using a normal plt entry for this symbol, so
             We'll be using a normal plt entry for this symbol, so
             clear the plabel indicator.  */
             clear the plabel indicator.  */
 
 
          hh->plabel = 0;
          hh->plabel = 0;
        }
        }
      else if (hh->plabel)
      else if (hh->plabel)
        {
        {
          /* Make an entry in the .plt section for plabel references
          /* Make an entry in the .plt section for plabel references
             that won't have a .plt entry for other reasons.  */
             that won't have a .plt entry for other reasons.  */
          sec = htab->splt;
          sec = htab->splt;
          eh->plt.offset = sec->size;
          eh->plt.offset = sec->size;
          sec->size += PLT_ENTRY_SIZE;
          sec->size += PLT_ENTRY_SIZE;
        }
        }
      else
      else
        {
        {
          /* No .plt entry needed.  */
          /* No .plt entry needed.  */
          eh->plt.offset = (bfd_vma) -1;
          eh->plt.offset = (bfd_vma) -1;
          eh->needs_plt = 0;
          eh->needs_plt = 0;
        }
        }
    }
    }
  else
  else
    {
    {
      eh->plt.offset = (bfd_vma) -1;
      eh->plt.offset = (bfd_vma) -1;
      eh->needs_plt = 0;
      eh->needs_plt = 0;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space in .plt, .got and associated reloc sections for
/* Allocate space in .plt, .got and associated reloc sections for
   global syms.  */
   global syms.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  asection *sec;
  asection *sec;
  struct elf32_hppa_link_hash_entry *hh;
  struct elf32_hppa_link_hash_entry *hh;
  struct elf32_hppa_dyn_reloc_entry *hdh_p;
  struct elf32_hppa_dyn_reloc_entry *hdh_p;
 
 
  if (eh->root.type == bfd_link_hash_indirect)
  if (eh->root.type == bfd_link_hash_indirect)
    return TRUE;
    return TRUE;
 
 
  if (eh->root.type == bfd_link_hash_warning)
  if (eh->root.type == bfd_link_hash_warning)
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
  info = inf;
  info = inf;
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  hh = hppa_elf_hash_entry (eh);
  hh = hppa_elf_hash_entry (eh);
 
 
  if (htab->etab.dynamic_sections_created
  if (htab->etab.dynamic_sections_created
      && eh->plt.offset != (bfd_vma) -1
      && eh->plt.offset != (bfd_vma) -1
      && !hh->plabel
      && !hh->plabel
      && eh->plt.refcount > 0)
      && eh->plt.refcount > 0)
    {
    {
      /* Make an entry in the .plt section.  */
      /* Make an entry in the .plt section.  */
      sec = htab->splt;
      sec = htab->splt;
      eh->plt.offset = sec->size;
      eh->plt.offset = sec->size;
      sec->size += PLT_ENTRY_SIZE;
      sec->size += PLT_ENTRY_SIZE;
 
 
      /* We also need to make an entry in the .rela.plt section.  */
      /* We also need to make an entry in the .rela.plt section.  */
      htab->srelplt->size += sizeof (Elf32_External_Rela);
      htab->srelplt->size += sizeof (Elf32_External_Rela);
      htab->need_plt_stub = 1;
      htab->need_plt_stub = 1;
    }
    }
 
 
  if (eh->got.refcount > 0)
  if (eh->got.refcount > 0)
    {
    {
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (eh->dynindx == -1
      if (eh->dynindx == -1
          && !eh->forced_local
          && !eh->forced_local
          && eh->type != STT_PARISC_MILLI)
          && eh->type != STT_PARISC_MILLI)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, eh))
          if (! bfd_elf_link_record_dynamic_symbol (info, eh))
            return FALSE;
            return FALSE;
        }
        }
 
 
      sec = htab->sgot;
      sec = htab->sgot;
      eh->got.offset = sec->size;
      eh->got.offset = sec->size;
      sec->size += GOT_ENTRY_SIZE;
      sec->size += GOT_ENTRY_SIZE;
      /* R_PARISC_TLS_GD* needs two GOT entries */
      /* R_PARISC_TLS_GD* needs two GOT entries */
      if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
      if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
        sec->size += GOT_ENTRY_SIZE * 2;
        sec->size += GOT_ENTRY_SIZE * 2;
      else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
      else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
        sec->size += GOT_ENTRY_SIZE;
        sec->size += GOT_ENTRY_SIZE;
      if (htab->etab.dynamic_sections_created
      if (htab->etab.dynamic_sections_created
          && (info->shared
          && (info->shared
              || (eh->dynindx != -1
              || (eh->dynindx != -1
                  && !eh->forced_local)))
                  && !eh->forced_local)))
        {
        {
          htab->srelgot->size += sizeof (Elf32_External_Rela);
          htab->srelgot->size += sizeof (Elf32_External_Rela);
          if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
          if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
            htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
            htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
          else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
          else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
            htab->srelgot->size += sizeof (Elf32_External_Rela);
            htab->srelgot->size += sizeof (Elf32_External_Rela);
        }
        }
    }
    }
  else
  else
    eh->got.offset = (bfd_vma) -1;
    eh->got.offset = (bfd_vma) -1;
 
 
  if (hh->dyn_relocs == NULL)
  if (hh->dyn_relocs == NULL)
    return TRUE;
    return TRUE;
 
 
  /* If this is a -Bsymbolic shared link, then we need to discard all
  /* If this is a -Bsymbolic shared link, then we need to discard all
     space allocated for dynamic pc-relative relocs against symbols
     space allocated for dynamic pc-relative relocs against symbols
     defined in a regular object.  For the normal shared case, discard
     defined in a regular object.  For the normal shared case, discard
     space for relocs that have become local due to symbol visibility
     space for relocs that have become local due to symbol visibility
     changes.  */
     changes.  */
  if (info->shared)
  if (info->shared)
    {
    {
#if RELATIVE_DYNRELOCS
#if RELATIVE_DYNRELOCS
      if (SYMBOL_CALLS_LOCAL (info, eh))
      if (SYMBOL_CALLS_LOCAL (info, eh))
        {
        {
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
          struct elf32_hppa_dyn_reloc_entry **hdh_pp;
 
 
          for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
          for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
            {
            {
              hdh_p->count -= hdh_p->relative_count;
              hdh_p->count -= hdh_p->relative_count;
              hdh_p->relative_count = 0;
              hdh_p->relative_count = 0;
              if (hdh_p->count == 0)
              if (hdh_p->count == 0)
                *hdh_pp = hdh_p->hdh_next;
                *hdh_pp = hdh_p->hdh_next;
              else
              else
                hdh_pp = &hdh_p->hdh_next;
                hdh_pp = &hdh_p->hdh_next;
            }
            }
        }
        }
#endif
#endif
 
 
      /* Also discard relocs on undefined weak syms with non-default
      /* Also discard relocs on undefined weak syms with non-default
         visibility.  */
         visibility.  */
      if (hh->dyn_relocs != NULL
      if (hh->dyn_relocs != NULL
          && eh->root.type == bfd_link_hash_undefweak)
          && eh->root.type == bfd_link_hash_undefweak)
        {
        {
          if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
          if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
            hh->dyn_relocs = NULL;
            hh->dyn_relocs = NULL;
 
 
          /* Make sure undefined weak symbols are output as a dynamic
          /* Make sure undefined weak symbols are output as a dynamic
             symbol in PIEs.  */
             symbol in PIEs.  */
          else if (eh->dynindx == -1
          else if (eh->dynindx == -1
                   && !eh->forced_local)
                   && !eh->forced_local)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, eh))
              if (! bfd_elf_link_record_dynamic_symbol (info, eh))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      /* For the non-shared case, discard space for relocs against
      /* For the non-shared case, discard space for relocs against
         symbols which turn out to need copy relocs or are not
         symbols which turn out to need copy relocs or are not
         dynamic.  */
         dynamic.  */
 
 
      if (!eh->non_got_ref
      if (!eh->non_got_ref
          && ((ELIMINATE_COPY_RELOCS
          && ((ELIMINATE_COPY_RELOCS
               && eh->def_dynamic
               && eh->def_dynamic
               && !eh->def_regular)
               && !eh->def_regular)
               || (htab->etab.dynamic_sections_created
               || (htab->etab.dynamic_sections_created
                   && (eh->root.type == bfd_link_hash_undefweak
                   && (eh->root.type == bfd_link_hash_undefweak
                       || eh->root.type == bfd_link_hash_undefined))))
                       || eh->root.type == bfd_link_hash_undefined))))
        {
        {
          /* Make sure this symbol is output as a dynamic symbol.
          /* Make sure this symbol is output as a dynamic symbol.
             Undefined weak syms won't yet be marked as dynamic.  */
             Undefined weak syms won't yet be marked as dynamic.  */
          if (eh->dynindx == -1
          if (eh->dynindx == -1
              && !eh->forced_local
              && !eh->forced_local
              && eh->type != STT_PARISC_MILLI)
              && eh->type != STT_PARISC_MILLI)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, eh))
              if (! bfd_elf_link_record_dynamic_symbol (info, eh))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* If that succeeded, we know we'll be keeping all the
          /* If that succeeded, we know we'll be keeping all the
             relocs.  */
             relocs.  */
          if (eh->dynindx != -1)
          if (eh->dynindx != -1)
            goto keep;
            goto keep;
        }
        }
 
 
      hh->dyn_relocs = NULL;
      hh->dyn_relocs = NULL;
      return TRUE;
      return TRUE;
 
 
    keep: ;
    keep: ;
    }
    }
 
 
  /* Finally, allocate space.  */
  /* Finally, allocate space.  */
  for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
  for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
    {
    {
      asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
      asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
      sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
      sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* This function is called via elf_link_hash_traverse to force
/* This function is called via elf_link_hash_traverse to force
   millicode symbols local so they do not end up as globals in the
   millicode symbols local so they do not end up as globals in the
   dynamic symbol table.  We ought to be able to do this in
   dynamic symbol table.  We ought to be able to do this in
   adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
   adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
   for all dynamic symbols.  Arguably, this is a bug in
   for all dynamic symbols.  Arguably, this is a bug in
   elf_adjust_dynamic_symbol.  */
   elf_adjust_dynamic_symbol.  */
 
 
static bfd_boolean
static bfd_boolean
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
                           struct bfd_link_info *info)
                           struct bfd_link_info *info)
{
{
  if (eh->root.type == bfd_link_hash_warning)
  if (eh->root.type == bfd_link_hash_warning)
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
  if (eh->type == STT_PARISC_MILLI
  if (eh->type == STT_PARISC_MILLI
      && !eh->forced_local)
      && !eh->forced_local)
    {
    {
      elf32_hppa_hide_symbol (info, eh, TRUE);
      elf32_hppa_hide_symbol (info, eh, TRUE);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Find any dynamic relocs that apply to read-only sections.  */
/* Find any dynamic relocs that apply to read-only sections.  */
 
 
static bfd_boolean
static bfd_boolean
readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
{
{
  struct elf32_hppa_link_hash_entry *hh;
  struct elf32_hppa_link_hash_entry *hh;
  struct elf32_hppa_dyn_reloc_entry *hdh_p;
  struct elf32_hppa_dyn_reloc_entry *hdh_p;
 
 
  if (eh->root.type == bfd_link_hash_warning)
  if (eh->root.type == bfd_link_hash_warning)
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
 
 
  hh = hppa_elf_hash_entry (eh);
  hh = hppa_elf_hash_entry (eh);
  for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
  for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
    {
    {
      asection *sec = hdh_p->sec->output_section;
      asection *sec = hdh_p->sec->output_section;
 
 
      if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
      if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
        {
        {
          struct bfd_link_info *info = inf;
          struct bfd_link_info *info = inf;
 
 
          info->flags |= DF_TEXTREL;
          info->flags |= DF_TEXTREL;
 
 
          /* Not an error, just cut short the traversal.  */
          /* Not an error, just cut short the traversal.  */
          return FALSE;
          return FALSE;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Set the sizes of the dynamic sections.  */
/* Set the sizes of the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
                                  struct bfd_link_info *info)
                                  struct bfd_link_info *info)
{
{
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  bfd *dynobj;
  bfd *dynobj;
  bfd *ibfd;
  bfd *ibfd;
  asection *sec;
  asection *sec;
  bfd_boolean relocs;
  bfd_boolean relocs;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  dynobj = htab->etab.dynobj;
  dynobj = htab->etab.dynobj;
  if (dynobj == NULL)
  if (dynobj == NULL)
    abort ();
    abort ();
 
 
  if (htab->etab.dynamic_sections_created)
  if (htab->etab.dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
      if (info->executable)
        {
        {
          sec = bfd_get_section_by_name (dynobj, ".interp");
          sec = bfd_get_section_by_name (dynobj, ".interp");
          if (sec == NULL)
          if (sec == NULL)
            abort ();
            abort ();
          sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
          sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
          sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
 
 
      /* Force millicode symbols local.  */
      /* Force millicode symbols local.  */
      elf_link_hash_traverse (&htab->etab,
      elf_link_hash_traverse (&htab->etab,
                              clobber_millicode_symbols,
                              clobber_millicode_symbols,
                              info);
                              info);
    }
    }
 
 
  /* Set up .got and .plt offsets for local syms, and space for local
  /* Set up .got and .plt offsets for local syms, and space for local
     dynamic relocs.  */
     dynamic relocs.  */
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      bfd_signed_vma *local_got;
      bfd_signed_vma *local_got;
      bfd_signed_vma *end_local_got;
      bfd_signed_vma *end_local_got;
      bfd_signed_vma *local_plt;
      bfd_signed_vma *local_plt;
      bfd_signed_vma *end_local_plt;
      bfd_signed_vma *end_local_plt;
      bfd_size_type locsymcount;
      bfd_size_type locsymcount;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      asection *srel;
      asection *srel;
      char *local_tls_type;
      char *local_tls_type;
 
 
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
        continue;
        continue;
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        {
        {
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
          struct elf32_hppa_dyn_reloc_entry *hdh_p;
 
 
          for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
          for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
                    elf_section_data (sec)->local_dynrel);
                    elf_section_data (sec)->local_dynrel);
               hdh_p != NULL;
               hdh_p != NULL;
               hdh_p = hdh_p->hdh_next)
               hdh_p = hdh_p->hdh_next)
            {
            {
              if (!bfd_is_abs_section (hdh_p->sec)
              if (!bfd_is_abs_section (hdh_p->sec)
                  && bfd_is_abs_section (hdh_p->sec->output_section))
                  && bfd_is_abs_section (hdh_p->sec->output_section))
                {
                {
                  /* Input section has been discarded, either because
                  /* Input section has been discarded, either because
                     it is a copy of a linkonce section or due to
                     it is a copy of a linkonce section or due to
                     linker script /DISCARD/, so we'll be discarding
                     linker script /DISCARD/, so we'll be discarding
                     the relocs too.  */
                     the relocs too.  */
                }
                }
              else if (hdh_p->count != 0)
              else if (hdh_p->count != 0)
                {
                {
                  srel = elf_section_data (hdh_p->sec)->sreloc;
                  srel = elf_section_data (hdh_p->sec)->sreloc;
                  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
                  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
                  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
                  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                }
                }
            }
            }
        }
        }
 
 
      local_got = elf_local_got_refcounts (ibfd);
      local_got = elf_local_got_refcounts (ibfd);
      if (!local_got)
      if (!local_got)
        continue;
        continue;
 
 
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      locsymcount = symtab_hdr->sh_info;
      locsymcount = symtab_hdr->sh_info;
      end_local_got = local_got + locsymcount;
      end_local_got = local_got + locsymcount;
      local_tls_type = hppa_elf_local_got_tls_type (ibfd);
      local_tls_type = hppa_elf_local_got_tls_type (ibfd);
      sec = htab->sgot;
      sec = htab->sgot;
      srel = htab->srelgot;
      srel = htab->srelgot;
      for (; local_got < end_local_got; ++local_got)
      for (; local_got < end_local_got; ++local_got)
        {
        {
          if (*local_got > 0)
          if (*local_got > 0)
            {
            {
              *local_got = sec->size;
              *local_got = sec->size;
              sec->size += GOT_ENTRY_SIZE;
              sec->size += GOT_ENTRY_SIZE;
              if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
              if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
                sec->size += 2 * GOT_ENTRY_SIZE;
                sec->size += 2 * GOT_ENTRY_SIZE;
              else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
              else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
                sec->size += GOT_ENTRY_SIZE;
                sec->size += GOT_ENTRY_SIZE;
              if (info->shared)
              if (info->shared)
                {
                {
                  srel->size += sizeof (Elf32_External_Rela);
                  srel->size += sizeof (Elf32_External_Rela);
                  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
                  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
                    srel->size += 2 * sizeof (Elf32_External_Rela);
                    srel->size += 2 * sizeof (Elf32_External_Rela);
                  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
                  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
                    srel->size += sizeof (Elf32_External_Rela);
                    srel->size += sizeof (Elf32_External_Rela);
                }
                }
            }
            }
          else
          else
            *local_got = (bfd_vma) -1;
            *local_got = (bfd_vma) -1;
 
 
          ++local_tls_type;
          ++local_tls_type;
        }
        }
 
 
      local_plt = end_local_got;
      local_plt = end_local_got;
      end_local_plt = local_plt + locsymcount;
      end_local_plt = local_plt + locsymcount;
      if (! htab->etab.dynamic_sections_created)
      if (! htab->etab.dynamic_sections_created)
        {
        {
          /* Won't be used, but be safe.  */
          /* Won't be used, but be safe.  */
          for (; local_plt < end_local_plt; ++local_plt)
          for (; local_plt < end_local_plt; ++local_plt)
            *local_plt = (bfd_vma) -1;
            *local_plt = (bfd_vma) -1;
        }
        }
      else
      else
        {
        {
          sec = htab->splt;
          sec = htab->splt;
          srel = htab->srelplt;
          srel = htab->srelplt;
          for (; local_plt < end_local_plt; ++local_plt)
          for (; local_plt < end_local_plt; ++local_plt)
            {
            {
              if (*local_plt > 0)
              if (*local_plt > 0)
                {
                {
                  *local_plt = sec->size;
                  *local_plt = sec->size;
                  sec->size += PLT_ENTRY_SIZE;
                  sec->size += PLT_ENTRY_SIZE;
                  if (info->shared)
                  if (info->shared)
                    srel->size += sizeof (Elf32_External_Rela);
                    srel->size += sizeof (Elf32_External_Rela);
                }
                }
              else
              else
                *local_plt = (bfd_vma) -1;
                *local_plt = (bfd_vma) -1;
            }
            }
        }
        }
    }
    }
 
 
  if (htab->tls_ldm_got.refcount > 0)
  if (htab->tls_ldm_got.refcount > 0)
    {
    {
      /* Allocate 2 got entries and 1 dynamic reloc for
      /* Allocate 2 got entries and 1 dynamic reloc for
         R_PARISC_TLS_DTPMOD32 relocs.  */
         R_PARISC_TLS_DTPMOD32 relocs.  */
      htab->tls_ldm_got.offset = htab->sgot->size;
      htab->tls_ldm_got.offset = htab->sgot->size;
      htab->sgot->size += (GOT_ENTRY_SIZE * 2);
      htab->sgot->size += (GOT_ENTRY_SIZE * 2);
      htab->srelgot->size += sizeof (Elf32_External_Rela);
      htab->srelgot->size += sizeof (Elf32_External_Rela);
    }
    }
  else
  else
    htab->tls_ldm_got.offset = -1;
    htab->tls_ldm_got.offset = -1;
 
 
  /* Do all the .plt entries without relocs first.  The dynamic linker
  /* Do all the .plt entries without relocs first.  The dynamic linker
     uses the last .plt reloc to find the end of the .plt (and hence
     uses the last .plt reloc to find the end of the .plt (and hence
     the start of the .got) for lazy linking.  */
     the start of the .got) for lazy linking.  */
  elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
  elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
 
 
  /* Allocate global sym .plt and .got entries, and space for global
  /* Allocate global sym .plt and .got entries, and space for global
     sym dynamic relocs.  */
     sym dynamic relocs.  */
  elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
  elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
 
 
  /* The check_relocs and adjust_dynamic_symbol entry points have
  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
     memory for them.  */
  relocs = FALSE;
  relocs = FALSE;
  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
  for (sec = dynobj->sections; sec != NULL; sec = sec->next)
    {
    {
      if ((sec->flags & SEC_LINKER_CREATED) == 0)
      if ((sec->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      if (sec == htab->splt)
      if (sec == htab->splt)
        {
        {
          if (htab->need_plt_stub)
          if (htab->need_plt_stub)
            {
            {
              /* Make space for the plt stub at the end of the .plt
              /* Make space for the plt stub at the end of the .plt
                 section.  We want this stub right at the end, up
                 section.  We want this stub right at the end, up
                 against the .got section.  */
                 against the .got section.  */
              int gotalign = bfd_section_alignment (dynobj, htab->sgot);
              int gotalign = bfd_section_alignment (dynobj, htab->sgot);
              int pltalign = bfd_section_alignment (dynobj, sec);
              int pltalign = bfd_section_alignment (dynobj, sec);
              bfd_size_type mask;
              bfd_size_type mask;
 
 
              if (gotalign > pltalign)
              if (gotalign > pltalign)
                bfd_set_section_alignment (dynobj, sec, gotalign);
                bfd_set_section_alignment (dynobj, sec, gotalign);
              mask = ((bfd_size_type) 1 << gotalign) - 1;
              mask = ((bfd_size_type) 1 << gotalign) - 1;
              sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
              sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
            }
            }
        }
        }
      else if (sec == htab->sgot
      else if (sec == htab->sgot
               || sec == htab->sdynbss)
               || sec == htab->sdynbss)
        ;
        ;
      else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
      else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
        {
        {
          if (sec->size != 0)
          if (sec->size != 0)
            {
            {
              /* Remember whether there are any reloc sections other
              /* Remember whether there are any reloc sections other
                 than .rela.plt.  */
                 than .rela.plt.  */
              if (sec != htab->srelplt)
              if (sec != htab->srelplt)
                relocs = TRUE;
                relocs = TRUE;
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              sec->reloc_count = 0;
              sec->reloc_count = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (sec->size == 0)
      if (sec->size == 0)
        {
        {
          /* If we don't need this section, strip it from the
          /* If we don't need this section, strip it from the
             output file.  This is mostly to handle .rela.bss and
             output file.  This is mostly to handle .rela.bss and
             .rela.plt.  We must create both sections in
             .rela.plt.  We must create both sections in
             create_dynamic_sections, because they must be created
             create_dynamic_sections, because they must be created
             before the linker maps input sections to output
             before the linker maps input sections to output
             sections.  The linker does that before
             sections.  The linker does that before
             adjust_dynamic_symbol is called, and it is that
             adjust_dynamic_symbol is called, and it is that
             function which decides whether anything needs to go
             function which decides whether anything needs to go
             into these sections.  */
             into these sections.  */
          sec->flags |= SEC_EXCLUDE;
          sec->flags |= SEC_EXCLUDE;
          continue;
          continue;
        }
        }
 
 
      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
      if ((sec->flags & SEC_HAS_CONTENTS) == 0)
        continue;
        continue;
 
 
      /* Allocate memory for the section contents.  Zero it, because
      /* Allocate memory for the section contents.  Zero it, because
         we may not fill in all the reloc sections.  */
         we may not fill in all the reloc sections.  */
      sec->contents = bfd_zalloc (dynobj, sec->size);
      sec->contents = bfd_zalloc (dynobj, sec->size);
      if (sec->contents == NULL)
      if (sec->contents == NULL)
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (htab->etab.dynamic_sections_created)
  if (htab->etab.dynamic_sections_created)
    {
    {
      /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
      /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
         actually has nothing to do with the PLT, it is how we
         actually has nothing to do with the PLT, it is how we
         communicate the LTP value of a load module to the dynamic
         communicate the LTP value of a load module to the dynamic
         linker.  */
         linker.  */
#define add_dynamic_entry(TAG, VAL) \
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
 
 
      if (!add_dynamic_entry (DT_PLTGOT, 0))
      if (!add_dynamic_entry (DT_PLTGOT, 0))
        return FALSE;
        return FALSE;
 
 
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in elf32_hppa_finish_dynamic_sections, but we
         values later, in elf32_hppa_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         dynamic linker and used by the debugger.  */
         dynamic linker and used by the debugger.  */
      if (info->executable)
      if (info->executable)
        {
        {
          if (!add_dynamic_entry (DT_DEBUG, 0))
          if (!add_dynamic_entry (DT_DEBUG, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (htab->srelplt->size != 0)
      if (htab->srelplt->size != 0)
        {
        {
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
              || !add_dynamic_entry (DT_JMPREL, 0))
              || !add_dynamic_entry (DT_JMPREL, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (relocs)
      if (relocs)
        {
        {
          if (!add_dynamic_entry (DT_RELA, 0)
          if (!add_dynamic_entry (DT_RELA, 0)
              || !add_dynamic_entry (DT_RELASZ, 0)
              || !add_dynamic_entry (DT_RELASZ, 0)
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
            return FALSE;
            return FALSE;
 
 
          /* If any dynamic relocs apply to a read-only section,
          /* If any dynamic relocs apply to a read-only section,
             then we need a DT_TEXTREL entry.  */
             then we need a DT_TEXTREL entry.  */
          if ((info->flags & DF_TEXTREL) == 0)
          if ((info->flags & DF_TEXTREL) == 0)
            elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
            elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
 
 
          if ((info->flags & DF_TEXTREL) != 0)
          if ((info->flags & DF_TEXTREL) != 0)
            {
            {
              if (!add_dynamic_entry (DT_TEXTREL, 0))
              if (!add_dynamic_entry (DT_TEXTREL, 0))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
    }
    }
#undef add_dynamic_entry
#undef add_dynamic_entry
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* External entry points for sizing and building linker stubs.  */
/* External entry points for sizing and building linker stubs.  */
 
 
/* Set up various things so that we can make a list of input sections
/* Set up various things so that we can make a list of input sections
   for each output section included in the link.  Returns -1 on error,
   for each output section included in the link.  Returns -1 on error,
   0 when no stubs will be needed, and 1 on success.  */
   0 when no stubs will be needed, and 1 on success.  */
 
 
int
int
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
{
{
  bfd *input_bfd;
  bfd *input_bfd;
  unsigned int bfd_count;
  unsigned int bfd_count;
  int top_id, top_index;
  int top_id, top_index;
  asection *section;
  asection *section;
  asection **input_list, **list;
  asection **input_list, **list;
  bfd_size_type amt;
  bfd_size_type amt;
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
 
 
  /* Count the number of input BFDs and find the top input section id.  */
  /* Count the number of input BFDs and find the top input section id.  */
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next)
       input_bfd = input_bfd->link_next)
    {
    {
      bfd_count += 1;
      bfd_count += 1;
      for (section = input_bfd->sections;
      for (section = input_bfd->sections;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          if (top_id < section->id)
          if (top_id < section->id)
            top_id = section->id;
            top_id = section->id;
        }
        }
    }
    }
  htab->bfd_count = bfd_count;
  htab->bfd_count = bfd_count;
 
 
  amt = sizeof (struct map_stub) * (top_id + 1);
  amt = sizeof (struct map_stub) * (top_id + 1);
  htab->stub_group = bfd_zmalloc (amt);
  htab->stub_group = bfd_zmalloc (amt);
  if (htab->stub_group == NULL)
  if (htab->stub_group == NULL)
    return -1;
    return -1;
 
 
  /* We can't use output_bfd->section_count here to find the top output
  /* We can't use output_bfd->section_count here to find the top output
     section index as some sections may have been removed, and
     section index as some sections may have been removed, and
     strip_excluded_output_sections doesn't renumber the indices.  */
     strip_excluded_output_sections doesn't renumber the indices.  */
  for (section = output_bfd->sections, top_index = 0;
  for (section = output_bfd->sections, top_index = 0;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      if (top_index < section->index)
      if (top_index < section->index)
        top_index = section->index;
        top_index = section->index;
    }
    }
 
 
  htab->top_index = top_index;
  htab->top_index = top_index;
  amt = sizeof (asection *) * (top_index + 1);
  amt = sizeof (asection *) * (top_index + 1);
  input_list = bfd_malloc (amt);
  input_list = bfd_malloc (amt);
  htab->input_list = input_list;
  htab->input_list = input_list;
  if (input_list == NULL)
  if (input_list == NULL)
    return -1;
    return -1;
 
 
  /* For sections we aren't interested in, mark their entries with a
  /* For sections we aren't interested in, mark their entries with a
     value we can check later.  */
     value we can check later.  */
  list = input_list + top_index;
  list = input_list + top_index;
  do
  do
    *list = bfd_abs_section_ptr;
    *list = bfd_abs_section_ptr;
  while (list-- != input_list);
  while (list-- != input_list);
 
 
  for (section = output_bfd->sections;
  for (section = output_bfd->sections;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      if ((section->flags & SEC_CODE) != 0)
      if ((section->flags & SEC_CODE) != 0)
        input_list[section->index] = NULL;
        input_list[section->index] = NULL;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* The linker repeatedly calls this function for each input section,
/* The linker repeatedly calls this function for each input section,
   in the order that input sections are linked into output sections.
   in the order that input sections are linked into output sections.
   Build lists of input sections to determine groupings between which
   Build lists of input sections to determine groupings between which
   we may insert linker stubs.  */
   we may insert linker stubs.  */
 
 
void
void
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
{
{
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
 
 
  if (isec->output_section->index <= htab->top_index)
  if (isec->output_section->index <= htab->top_index)
    {
    {
      asection **list = htab->input_list + isec->output_section->index;
      asection **list = htab->input_list + isec->output_section->index;
      if (*list != bfd_abs_section_ptr)
      if (*list != bfd_abs_section_ptr)
        {
        {
          /* Steal the link_sec pointer for our list.  */
          /* Steal the link_sec pointer for our list.  */
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
          /* This happens to make the list in reverse order,
          /* This happens to make the list in reverse order,
             which is what we want.  */
             which is what we want.  */
          PREV_SEC (isec) = *list;
          PREV_SEC (isec) = *list;
          *list = isec;
          *list = isec;
        }
        }
    }
    }
}
}
 
 
/* See whether we can group stub sections together.  Grouping stub
/* See whether we can group stub sections together.  Grouping stub
   sections may result in fewer stubs.  More importantly, we need to
   sections may result in fewer stubs.  More importantly, we need to
   put all .init* and .fini* stubs at the beginning of the .init or
   put all .init* and .fini* stubs at the beginning of the .init or
   .fini output sections respectively, because glibc splits the
   .fini output sections respectively, because glibc splits the
   _init and _fini functions into multiple parts.  Putting a stub in
   _init and _fini functions into multiple parts.  Putting a stub in
   the middle of a function is not a good idea.  */
   the middle of a function is not a good idea.  */
 
 
static void
static void
group_sections (struct elf32_hppa_link_hash_table *htab,
group_sections (struct elf32_hppa_link_hash_table *htab,
                bfd_size_type stub_group_size,
                bfd_size_type stub_group_size,
                bfd_boolean stubs_always_before_branch)
                bfd_boolean stubs_always_before_branch)
{
{
  asection **list = htab->input_list + htab->top_index;
  asection **list = htab->input_list + htab->top_index;
  do
  do
    {
    {
      asection *tail = *list;
      asection *tail = *list;
      if (tail == bfd_abs_section_ptr)
      if (tail == bfd_abs_section_ptr)
        continue;
        continue;
      while (tail != NULL)
      while (tail != NULL)
        {
        {
          asection *curr;
          asection *curr;
          asection *prev;
          asection *prev;
          bfd_size_type total;
          bfd_size_type total;
          bfd_boolean big_sec;
          bfd_boolean big_sec;
 
 
          curr = tail;
          curr = tail;
          total = tail->size;
          total = tail->size;
          big_sec = total >= stub_group_size;
          big_sec = total >= stub_group_size;
 
 
          while ((prev = PREV_SEC (curr)) != NULL
          while ((prev = PREV_SEC (curr)) != NULL
                 && ((total += curr->output_offset - prev->output_offset)
                 && ((total += curr->output_offset - prev->output_offset)
                     < stub_group_size))
                     < stub_group_size))
            curr = prev;
            curr = prev;
 
 
          /* OK, the size from the start of CURR to the end is less
          /* OK, the size from the start of CURR to the end is less
             than 240000 bytes and thus can be handled by one stub
             than 240000 bytes and thus can be handled by one stub
             section.  (or the tail section is itself larger than
             section.  (or the tail section is itself larger than
             240000 bytes, in which case we may be toast.)
             240000 bytes, in which case we may be toast.)
             We should really be keeping track of the total size of
             We should really be keeping track of the total size of
             stubs added here, as stubs contribute to the final output
             stubs added here, as stubs contribute to the final output
             section size.  That's a little tricky, and this way will
             section size.  That's a little tricky, and this way will
             only break if stubs added total more than 22144 bytes, or
             only break if stubs added total more than 22144 bytes, or
             2768 long branch stubs.  It seems unlikely for more than
             2768 long branch stubs.  It seems unlikely for more than
             2768 different functions to be called, especially from
             2768 different functions to be called, especially from
             code only 240000 bytes long.  This limit used to be
             code only 240000 bytes long.  This limit used to be
             250000, but c++ code tends to generate lots of little
             250000, but c++ code tends to generate lots of little
             functions, and sometimes violated the assumption.  */
             functions, and sometimes violated the assumption.  */
          do
          do
            {
            {
              prev = PREV_SEC (tail);
              prev = PREV_SEC (tail);
              /* Set up this stub group.  */
              /* Set up this stub group.  */
              htab->stub_group[tail->id].link_sec = curr;
              htab->stub_group[tail->id].link_sec = curr;
            }
            }
          while (tail != curr && (tail = prev) != NULL);
          while (tail != curr && (tail = prev) != NULL);
 
 
          /* But wait, there's more!  Input sections up to 240000
          /* But wait, there's more!  Input sections up to 240000
             bytes before the stub section can be handled by it too.
             bytes before the stub section can be handled by it too.
             Don't do this if we have a really large section after the
             Don't do this if we have a really large section after the
             stubs, as adding more stubs increases the chance that
             stubs, as adding more stubs increases the chance that
             branches may not reach into the stub section.  */
             branches may not reach into the stub section.  */
          if (!stubs_always_before_branch && !big_sec)
          if (!stubs_always_before_branch && !big_sec)
            {
            {
              total = 0;
              total = 0;
              while (prev != NULL
              while (prev != NULL
                     && ((total += tail->output_offset - prev->output_offset)
                     && ((total += tail->output_offset - prev->output_offset)
                         < stub_group_size))
                         < stub_group_size))
                {
                {
                  tail = prev;
                  tail = prev;
                  prev = PREV_SEC (tail);
                  prev = PREV_SEC (tail);
                  htab->stub_group[tail->id].link_sec = curr;
                  htab->stub_group[tail->id].link_sec = curr;
                }
                }
            }
            }
          tail = prev;
          tail = prev;
        }
        }
    }
    }
  while (list-- != htab->input_list);
  while (list-- != htab->input_list);
  free (htab->input_list);
  free (htab->input_list);
#undef PREV_SEC
#undef PREV_SEC
}
}
 
 
/* Read in all local syms for all input bfds, and create hash entries
/* Read in all local syms for all input bfds, and create hash entries
   for export stubs if we are building a multi-subspace shared lib.
   for export stubs if we are building a multi-subspace shared lib.
   Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
   Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
 
 
static int
static int
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
{
{
  unsigned int bfd_indx;
  unsigned int bfd_indx;
  Elf_Internal_Sym *local_syms, **all_local_syms;
  Elf_Internal_Sym *local_syms, **all_local_syms;
  int stub_changed = 0;
  int stub_changed = 0;
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
 
 
  /* We want to read in symbol extension records only once.  To do this
  /* We want to read in symbol extension records only once.  To do this
     we need to read in the local symbols in parallel and save them for
     we need to read in the local symbols in parallel and save them for
     later use; so hold pointers to the local symbols in an array.  */
     later use; so hold pointers to the local symbols in an array.  */
  bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
  bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
  all_local_syms = bfd_zmalloc (amt);
  all_local_syms = bfd_zmalloc (amt);
  htab->all_local_syms = all_local_syms;
  htab->all_local_syms = all_local_syms;
  if (all_local_syms == NULL)
  if (all_local_syms == NULL)
    return -1;
    return -1;
 
 
  /* Walk over all the input BFDs, swapping in local symbols.
  /* Walk over all the input BFDs, swapping in local symbols.
     If we are creating a shared library, create hash entries for the
     If we are creating a shared library, create hash entries for the
     export stubs.  */
     export stubs.  */
  for (bfd_indx = 0;
  for (bfd_indx = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next, bfd_indx++)
       input_bfd = input_bfd->link_next, bfd_indx++)
    {
    {
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
 
 
      /* We'll need the symbol table in a second.  */
      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
      if (symtab_hdr->sh_info == 0)
        continue;
        continue;
 
 
      /* We need an array of the local symbols attached to the input bfd.  */
      /* We need an array of the local symbols attached to the input bfd.  */
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      if (local_syms == NULL)
      if (local_syms == NULL)
        {
        {
          local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
          local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
                                             symtab_hdr->sh_info, 0,
                                             symtab_hdr->sh_info, 0,
                                             NULL, NULL, NULL);
                                             NULL, NULL, NULL);
          /* Cache them for elf_link_input_bfd.  */
          /* Cache them for elf_link_input_bfd.  */
          symtab_hdr->contents = (unsigned char *) local_syms;
          symtab_hdr->contents = (unsigned char *) local_syms;
        }
        }
      if (local_syms == NULL)
      if (local_syms == NULL)
        return -1;
        return -1;
 
 
      all_local_syms[bfd_indx] = local_syms;
      all_local_syms[bfd_indx] = local_syms;
 
 
      if (info->shared && htab->multi_subspace)
      if (info->shared && htab->multi_subspace)
        {
        {
          struct elf_link_hash_entry **eh_syms;
          struct elf_link_hash_entry **eh_syms;
          struct elf_link_hash_entry **eh_symend;
          struct elf_link_hash_entry **eh_symend;
          unsigned int symcount;
          unsigned int symcount;
 
 
          symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
          symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
                      - symtab_hdr->sh_info);
                      - symtab_hdr->sh_info);
          eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
          eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
          eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
          eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
 
 
          /* Look through the global syms for functions;  We need to
          /* Look through the global syms for functions;  We need to
             build export stubs for all globally visible functions.  */
             build export stubs for all globally visible functions.  */
          for (; eh_syms < eh_symend; eh_syms++)
          for (; eh_syms < eh_symend; eh_syms++)
            {
            {
              struct elf32_hppa_link_hash_entry *hh;
              struct elf32_hppa_link_hash_entry *hh;
 
 
              hh = hppa_elf_hash_entry (*eh_syms);
              hh = hppa_elf_hash_entry (*eh_syms);
 
 
              while (hh->eh.root.type == bfd_link_hash_indirect
              while (hh->eh.root.type == bfd_link_hash_indirect
                     || hh->eh.root.type == bfd_link_hash_warning)
                     || hh->eh.root.type == bfd_link_hash_warning)
                   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
                   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
 
 
              /* At this point in the link, undefined syms have been
              /* At this point in the link, undefined syms have been
                 resolved, so we need to check that the symbol was
                 resolved, so we need to check that the symbol was
                 defined in this BFD.  */
                 defined in this BFD.  */
              if ((hh->eh.root.type == bfd_link_hash_defined
              if ((hh->eh.root.type == bfd_link_hash_defined
                   || hh->eh.root.type == bfd_link_hash_defweak)
                   || hh->eh.root.type == bfd_link_hash_defweak)
                  && hh->eh.type == STT_FUNC
                  && hh->eh.type == STT_FUNC
                  && hh->eh.root.u.def.section->output_section != NULL
                  && hh->eh.root.u.def.section->output_section != NULL
                  && (hh->eh.root.u.def.section->output_section->owner
                  && (hh->eh.root.u.def.section->output_section->owner
                      == output_bfd)
                      == output_bfd)
                  && hh->eh.root.u.def.section->owner == input_bfd
                  && hh->eh.root.u.def.section->owner == input_bfd
                  && hh->eh.def_regular
                  && hh->eh.def_regular
                  && !hh->eh.forced_local
                  && !hh->eh.forced_local
                  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
                  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
                {
                {
                  asection *sec;
                  asection *sec;
                  const char *stub_name;
                  const char *stub_name;
                  struct elf32_hppa_stub_hash_entry *hsh;
                  struct elf32_hppa_stub_hash_entry *hsh;
 
 
                  sec = hh->eh.root.u.def.section;
                  sec = hh->eh.root.u.def.section;
                  stub_name = hh_name (hh);
                  stub_name = hh_name (hh);
                  hsh = hppa_stub_hash_lookup (&htab->bstab,
                  hsh = hppa_stub_hash_lookup (&htab->bstab,
                                                      stub_name,
                                                      stub_name,
                                                      FALSE, FALSE);
                                                      FALSE, FALSE);
                  if (hsh == NULL)
                  if (hsh == NULL)
                    {
                    {
                      hsh = hppa_add_stub (stub_name, sec, htab);
                      hsh = hppa_add_stub (stub_name, sec, htab);
                      if (!hsh)
                      if (!hsh)
                        return -1;
                        return -1;
 
 
                      hsh->target_value = hh->eh.root.u.def.value;
                      hsh->target_value = hh->eh.root.u.def.value;
                      hsh->target_section = hh->eh.root.u.def.section;
                      hsh->target_section = hh->eh.root.u.def.section;
                      hsh->stub_type = hppa_stub_export;
                      hsh->stub_type = hppa_stub_export;
                      hsh->hh = hh;
                      hsh->hh = hh;
                      stub_changed = 1;
                      stub_changed = 1;
                    }
                    }
                  else
                  else
                    {
                    {
                      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
                      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
                                             input_bfd,
                                             input_bfd,
                                             stub_name);
                                             stub_name);
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  return stub_changed;
  return stub_changed;
}
}
 
 
/* Determine and set the size of the stub section for a final link.
/* Determine and set the size of the stub section for a final link.
 
 
   The basic idea here is to examine all the relocations looking for
   The basic idea here is to examine all the relocations looking for
   PC-relative calls to a target that is unreachable with a "bl"
   PC-relative calls to a target that is unreachable with a "bl"
   instruction.  */
   instruction.  */
 
 
bfd_boolean
bfd_boolean
elf32_hppa_size_stubs
elf32_hppa_size_stubs
  (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
  (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
   bfd_boolean multi_subspace, bfd_signed_vma group_size,
   bfd_boolean multi_subspace, bfd_signed_vma group_size,
   asection * (*add_stub_section) (const char *, asection *),
   asection * (*add_stub_section) (const char *, asection *),
   void (*layout_sections_again) (void))
   void (*layout_sections_again) (void))
{
{
  bfd_size_type stub_group_size;
  bfd_size_type stub_group_size;
  bfd_boolean stubs_always_before_branch;
  bfd_boolean stubs_always_before_branch;
  bfd_boolean stub_changed;
  bfd_boolean stub_changed;
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
  struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
 
 
  /* Stash our params away.  */
  /* Stash our params away.  */
  htab->stub_bfd = stub_bfd;
  htab->stub_bfd = stub_bfd;
  htab->multi_subspace = multi_subspace;
  htab->multi_subspace = multi_subspace;
  htab->add_stub_section = add_stub_section;
  htab->add_stub_section = add_stub_section;
  htab->layout_sections_again = layout_sections_again;
  htab->layout_sections_again = layout_sections_again;
  stubs_always_before_branch = group_size < 0;
  stubs_always_before_branch = group_size < 0;
  if (group_size < 0)
  if (group_size < 0)
    stub_group_size = -group_size;
    stub_group_size = -group_size;
  else
  else
    stub_group_size = group_size;
    stub_group_size = group_size;
  if (stub_group_size == 1)
  if (stub_group_size == 1)
    {
    {
      /* Default values.  */
      /* Default values.  */
      if (stubs_always_before_branch)
      if (stubs_always_before_branch)
        {
        {
          stub_group_size = 7680000;
          stub_group_size = 7680000;
          if (htab->has_17bit_branch || htab->multi_subspace)
          if (htab->has_17bit_branch || htab->multi_subspace)
            stub_group_size = 240000;
            stub_group_size = 240000;
          if (htab->has_12bit_branch)
          if (htab->has_12bit_branch)
            stub_group_size = 7500;
            stub_group_size = 7500;
        }
        }
      else
      else
        {
        {
          stub_group_size = 6971392;
          stub_group_size = 6971392;
          if (htab->has_17bit_branch || htab->multi_subspace)
          if (htab->has_17bit_branch || htab->multi_subspace)
            stub_group_size = 217856;
            stub_group_size = 217856;
          if (htab->has_12bit_branch)
          if (htab->has_12bit_branch)
            stub_group_size = 6808;
            stub_group_size = 6808;
        }
        }
    }
    }
 
 
  group_sections (htab, stub_group_size, stubs_always_before_branch);
  group_sections (htab, stub_group_size, stubs_always_before_branch);
 
 
  switch (get_local_syms (output_bfd, info->input_bfds, info))
  switch (get_local_syms (output_bfd, info->input_bfds, info))
    {
    {
    default:
    default:
      if (htab->all_local_syms)
      if (htab->all_local_syms)
        goto error_ret_free_local;
        goto error_ret_free_local;
      return FALSE;
      return FALSE;
 
 
    case 0:
    case 0:
      stub_changed = FALSE;
      stub_changed = FALSE;
      break;
      break;
 
 
    case 1:
    case 1:
      stub_changed = TRUE;
      stub_changed = TRUE;
      break;
      break;
    }
    }
 
 
  while (1)
  while (1)
    {
    {
      bfd *input_bfd;
      bfd *input_bfd;
      unsigned int bfd_indx;
      unsigned int bfd_indx;
      asection *stub_sec;
      asection *stub_sec;
 
 
      for (input_bfd = info->input_bfds, bfd_indx = 0;
      for (input_bfd = info->input_bfds, bfd_indx = 0;
           input_bfd != NULL;
           input_bfd != NULL;
           input_bfd = input_bfd->link_next, bfd_indx++)
           input_bfd = input_bfd->link_next, bfd_indx++)
        {
        {
          Elf_Internal_Shdr *symtab_hdr;
          Elf_Internal_Shdr *symtab_hdr;
          asection *section;
          asection *section;
          Elf_Internal_Sym *local_syms;
          Elf_Internal_Sym *local_syms;
 
 
          /* We'll need the symbol table in a second.  */
          /* We'll need the symbol table in a second.  */
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
          if (symtab_hdr->sh_info == 0)
          if (symtab_hdr->sh_info == 0)
            continue;
            continue;
 
 
          local_syms = htab->all_local_syms[bfd_indx];
          local_syms = htab->all_local_syms[bfd_indx];
 
 
          /* Walk over each section attached to the input bfd.  */
          /* Walk over each section attached to the input bfd.  */
          for (section = input_bfd->sections;
          for (section = input_bfd->sections;
               section != NULL;
               section != NULL;
               section = section->next)
               section = section->next)
            {
            {
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
 
 
              /* If there aren't any relocs, then there's nothing more
              /* If there aren't any relocs, then there's nothing more
                 to do.  */
                 to do.  */
              if ((section->flags & SEC_RELOC) == 0
              if ((section->flags & SEC_RELOC) == 0
                  || section->reloc_count == 0)
                  || section->reloc_count == 0)
                continue;
                continue;
 
 
              /* If this section is a link-once section that will be
              /* If this section is a link-once section that will be
                 discarded, then don't create any stubs.  */
                 discarded, then don't create any stubs.  */
              if (section->output_section == NULL
              if (section->output_section == NULL
                  || section->output_section->owner != output_bfd)
                  || section->output_section->owner != output_bfd)
                continue;
                continue;
 
 
              /* Get the relocs.  */
              /* Get the relocs.  */
              internal_relocs
              internal_relocs
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
                                             info->keep_memory);
                                             info->keep_memory);
              if (internal_relocs == NULL)
              if (internal_relocs == NULL)
                goto error_ret_free_local;
                goto error_ret_free_local;
 
 
              /* Now examine each relocation.  */
              /* Now examine each relocation.  */
              irela = internal_relocs;
              irela = internal_relocs;
              irelaend = irela + section->reloc_count;
              irelaend = irela + section->reloc_count;
              for (; irela < irelaend; irela++)
              for (; irela < irelaend; irela++)
                {
                {
                  unsigned int r_type, r_indx;
                  unsigned int r_type, r_indx;
                  enum elf32_hppa_stub_type stub_type;
                  enum elf32_hppa_stub_type stub_type;
                  struct elf32_hppa_stub_hash_entry *hsh;
                  struct elf32_hppa_stub_hash_entry *hsh;
                  asection *sym_sec;
                  asection *sym_sec;
                  bfd_vma sym_value;
                  bfd_vma sym_value;
                  bfd_vma destination;
                  bfd_vma destination;
                  struct elf32_hppa_link_hash_entry *hh;
                  struct elf32_hppa_link_hash_entry *hh;
                  char *stub_name;
                  char *stub_name;
                  const asection *id_sec;
                  const asection *id_sec;
 
 
                  r_type = ELF32_R_TYPE (irela->r_info);
                  r_type = ELF32_R_TYPE (irela->r_info);
                  r_indx = ELF32_R_SYM (irela->r_info);
                  r_indx = ELF32_R_SYM (irela->r_info);
 
 
                  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
                  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
                    {
                    {
                      bfd_set_error (bfd_error_bad_value);
                      bfd_set_error (bfd_error_bad_value);
                    error_ret_free_internal:
                    error_ret_free_internal:
                      if (elf_section_data (section)->relocs == NULL)
                      if (elf_section_data (section)->relocs == NULL)
                        free (internal_relocs);
                        free (internal_relocs);
                      goto error_ret_free_local;
                      goto error_ret_free_local;
                    }
                    }
 
 
                  /* Only look for stubs on call instructions.  */
                  /* Only look for stubs on call instructions.  */
                  if (r_type != (unsigned int) R_PARISC_PCREL12F
                  if (r_type != (unsigned int) R_PARISC_PCREL12F
                      && r_type != (unsigned int) R_PARISC_PCREL17F
                      && r_type != (unsigned int) R_PARISC_PCREL17F
                      && r_type != (unsigned int) R_PARISC_PCREL22F)
                      && r_type != (unsigned int) R_PARISC_PCREL22F)
                    continue;
                    continue;
 
 
                  /* Now determine the call target, its name, value,
                  /* Now determine the call target, its name, value,
                     section.  */
                     section.  */
                  sym_sec = NULL;
                  sym_sec = NULL;
                  sym_value = 0;
                  sym_value = 0;
                  destination = 0;
                  destination = 0;
                  hh = NULL;
                  hh = NULL;
                  if (r_indx < symtab_hdr->sh_info)
                  if (r_indx < symtab_hdr->sh_info)
                    {
                    {
                      /* It's a local symbol.  */
                      /* It's a local symbol.  */
                      Elf_Internal_Sym *sym;
                      Elf_Internal_Sym *sym;
                      Elf_Internal_Shdr *hdr;
                      Elf_Internal_Shdr *hdr;
                      unsigned int shndx;
                      unsigned int shndx;
 
 
                      sym = local_syms + r_indx;
                      sym = local_syms + r_indx;
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
                        sym_value = sym->st_value;
                        sym_value = sym->st_value;
                      shndx = sym->st_shndx;
                      shndx = sym->st_shndx;
                      if (shndx < elf_numsections (input_bfd))
                      if (shndx < elf_numsections (input_bfd))
                        {
                        {
                          hdr = elf_elfsections (input_bfd)[shndx];
                          hdr = elf_elfsections (input_bfd)[shndx];
                          sym_sec = hdr->bfd_section;
                          sym_sec = hdr->bfd_section;
                          destination = (sym_value + irela->r_addend
                          destination = (sym_value + irela->r_addend
                                         + sym_sec->output_offset
                                         + sym_sec->output_offset
                                         + sym_sec->output_section->vma);
                                         + sym_sec->output_section->vma);
                        }
                        }
                    }
                    }
                  else
                  else
                    {
                    {
                      /* It's an external symbol.  */
                      /* It's an external symbol.  */
                      int e_indx;
                      int e_indx;
 
 
                      e_indx = r_indx - symtab_hdr->sh_info;
                      e_indx = r_indx - symtab_hdr->sh_info;
                      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
                      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
 
 
                      while (hh->eh.root.type == bfd_link_hash_indirect
                      while (hh->eh.root.type == bfd_link_hash_indirect
                             || hh->eh.root.type == bfd_link_hash_warning)
                             || hh->eh.root.type == bfd_link_hash_warning)
                        hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
                        hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
 
 
                      if (hh->eh.root.type == bfd_link_hash_defined
                      if (hh->eh.root.type == bfd_link_hash_defined
                          || hh->eh.root.type == bfd_link_hash_defweak)
                          || hh->eh.root.type == bfd_link_hash_defweak)
                        {
                        {
                          sym_sec = hh->eh.root.u.def.section;
                          sym_sec = hh->eh.root.u.def.section;
                          sym_value = hh->eh.root.u.def.value;
                          sym_value = hh->eh.root.u.def.value;
                          if (sym_sec->output_section != NULL)
                          if (sym_sec->output_section != NULL)
                            destination = (sym_value + irela->r_addend
                            destination = (sym_value + irela->r_addend
                                           + sym_sec->output_offset
                                           + sym_sec->output_offset
                                           + sym_sec->output_section->vma);
                                           + sym_sec->output_section->vma);
                        }
                        }
                      else if (hh->eh.root.type == bfd_link_hash_undefweak)
                      else if (hh->eh.root.type == bfd_link_hash_undefweak)
                        {
                        {
                          if (! info->shared)
                          if (! info->shared)
                            continue;
                            continue;
                        }
                        }
                      else if (hh->eh.root.type == bfd_link_hash_undefined)
                      else if (hh->eh.root.type == bfd_link_hash_undefined)
                        {
                        {
                          if (! (info->unresolved_syms_in_objects == RM_IGNORE
                          if (! (info->unresolved_syms_in_objects == RM_IGNORE
                                 && (ELF_ST_VISIBILITY (hh->eh.other)
                                 && (ELF_ST_VISIBILITY (hh->eh.other)
                                     == STV_DEFAULT)
                                     == STV_DEFAULT)
                                 && hh->eh.type != STT_PARISC_MILLI))
                                 && hh->eh.type != STT_PARISC_MILLI))
                            continue;
                            continue;
                        }
                        }
                      else
                      else
                        {
                        {
                          bfd_set_error (bfd_error_bad_value);
                          bfd_set_error (bfd_error_bad_value);
                          goto error_ret_free_internal;
                          goto error_ret_free_internal;
                        }
                        }
                    }
                    }
 
 
                  /* Determine what (if any) linker stub is needed.  */
                  /* Determine what (if any) linker stub is needed.  */
                  stub_type = hppa_type_of_stub (section, irela, hh,
                  stub_type = hppa_type_of_stub (section, irela, hh,
                                                 destination, info);
                                                 destination, info);
                  if (stub_type == hppa_stub_none)
                  if (stub_type == hppa_stub_none)
                    continue;
                    continue;
 
 
                  /* Support for grouping stub sections.  */
                  /* Support for grouping stub sections.  */
                  id_sec = htab->stub_group[section->id].link_sec;
                  id_sec = htab->stub_group[section->id].link_sec;
 
 
                  /* Get the name of this stub.  */
                  /* Get the name of this stub.  */
                  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
                  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
                  if (!stub_name)
                  if (!stub_name)
                    goto error_ret_free_internal;
                    goto error_ret_free_internal;
 
 
                  hsh = hppa_stub_hash_lookup (&htab->bstab,
                  hsh = hppa_stub_hash_lookup (&htab->bstab,
                                                      stub_name,
                                                      stub_name,
                                                      FALSE, FALSE);
                                                      FALSE, FALSE);
                  if (hsh != NULL)
                  if (hsh != NULL)
                    {
                    {
                      /* The proper stub has already been created.  */
                      /* The proper stub has already been created.  */
                      free (stub_name);
                      free (stub_name);
                      continue;
                      continue;
                    }
                    }
 
 
                  hsh = hppa_add_stub (stub_name, section, htab);
                  hsh = hppa_add_stub (stub_name, section, htab);
                  if (hsh == NULL)
                  if (hsh == NULL)
                    {
                    {
                      free (stub_name);
                      free (stub_name);
                      goto error_ret_free_internal;
                      goto error_ret_free_internal;
                    }
                    }
 
 
                  hsh->target_value = sym_value;
                  hsh->target_value = sym_value;
                  hsh->target_section = sym_sec;
                  hsh->target_section = sym_sec;
                  hsh->stub_type = stub_type;
                  hsh->stub_type = stub_type;
                  if (info->shared)
                  if (info->shared)
                    {
                    {
                      if (stub_type == hppa_stub_import)
                      if (stub_type == hppa_stub_import)
                        hsh->stub_type = hppa_stub_import_shared;
                        hsh->stub_type = hppa_stub_import_shared;
                      else if (stub_type == hppa_stub_long_branch)
                      else if (stub_type == hppa_stub_long_branch)
                        hsh->stub_type = hppa_stub_long_branch_shared;
                        hsh->stub_type = hppa_stub_long_branch_shared;
                    }
                    }
                  hsh->hh = hh;
                  hsh->hh = hh;
                  stub_changed = TRUE;
                  stub_changed = TRUE;
                }
                }
 
 
              /* We're done with the internal relocs, free them.  */
              /* We're done with the internal relocs, free them.  */
              if (elf_section_data (section)->relocs == NULL)
              if (elf_section_data (section)->relocs == NULL)
                free (internal_relocs);
                free (internal_relocs);
            }
            }
        }
        }
 
 
      if (!stub_changed)
      if (!stub_changed)
        break;
        break;
 
 
      /* OK, we've added some stubs.  Find out the new size of the
      /* OK, we've added some stubs.  Find out the new size of the
         stub sections.  */
         stub sections.  */
      for (stub_sec = htab->stub_bfd->sections;
      for (stub_sec = htab->stub_bfd->sections;
           stub_sec != NULL;
           stub_sec != NULL;
           stub_sec = stub_sec->next)
           stub_sec = stub_sec->next)
        stub_sec->size = 0;
        stub_sec->size = 0;
 
 
      bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
      bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
 
 
      /* Ask the linker to do its stuff.  */
      /* Ask the linker to do its stuff.  */
      (*htab->layout_sections_again) ();
      (*htab->layout_sections_again) ();
      stub_changed = FALSE;
      stub_changed = FALSE;
    }
    }
 
 
  free (htab->all_local_syms);
  free (htab->all_local_syms);
  return TRUE;
  return TRUE;
 
 
 error_ret_free_local:
 error_ret_free_local:
  free (htab->all_local_syms);
  free (htab->all_local_syms);
  return FALSE;
  return FALSE;
}
}
 
 
/* For a final link, this function is called after we have sized the
/* For a final link, this function is called after we have sized the
   stubs to provide a value for __gp.  */
   stubs to provide a value for __gp.  */
 
 
bfd_boolean
bfd_boolean
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
{
{
  struct bfd_link_hash_entry *h;
  struct bfd_link_hash_entry *h;
  asection *sec = NULL;
  asection *sec = NULL;
  bfd_vma gp_val = 0;
  bfd_vma gp_val = 0;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
  h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
 
 
  if (h != NULL
  if (h != NULL
      && (h->type == bfd_link_hash_defined
      && (h->type == bfd_link_hash_defined
          || h->type == bfd_link_hash_defweak))
          || h->type == bfd_link_hash_defweak))
    {
    {
      gp_val = h->u.def.value;
      gp_val = h->u.def.value;
      sec = h->u.def.section;
      sec = h->u.def.section;
    }
    }
  else
  else
    {
    {
      asection *splt = bfd_get_section_by_name (abfd, ".plt");
      asection *splt = bfd_get_section_by_name (abfd, ".plt");
      asection *sgot = bfd_get_section_by_name (abfd, ".got");
      asection *sgot = bfd_get_section_by_name (abfd, ".got");
 
 
      /* Choose to point our LTP at, in this order, one of .plt, .got,
      /* Choose to point our LTP at, in this order, one of .plt, .got,
         or .data, if these sections exist.  In the case of choosing
         or .data, if these sections exist.  In the case of choosing
         .plt try to make the LTP ideal for addressing anywhere in the
         .plt try to make the LTP ideal for addressing anywhere in the
         .plt or .got with a 14 bit signed offset.  Typically, the end
         .plt or .got with a 14 bit signed offset.  Typically, the end
         of the .plt is the start of the .got, so choose .plt + 0x2000
         of the .plt is the start of the .got, so choose .plt + 0x2000
         if either the .plt or .got is larger than 0x2000.  If both
         if either the .plt or .got is larger than 0x2000.  If both
         the .plt and .got are smaller than 0x2000, choose the end of
         the .plt and .got are smaller than 0x2000, choose the end of
         the .plt section.  */
         the .plt section.  */
      sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
      sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
          ? NULL : splt;
          ? NULL : splt;
      if (sec != NULL)
      if (sec != NULL)
        {
        {
          gp_val = sec->size;
          gp_val = sec->size;
          if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
          if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
            {
            {
              gp_val = 0x2000;
              gp_val = 0x2000;
            }
            }
        }
        }
      else
      else
        {
        {
          sec = sgot;
          sec = sgot;
          if (sec != NULL)
          if (sec != NULL)
            {
            {
              if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
              if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
                {
                {
                  /* We know we don't have a .plt.  If .got is large,
                  /* We know we don't have a .plt.  If .got is large,
                     offset our LTP.  */
                     offset our LTP.  */
                  if (sec->size > 0x2000)
                  if (sec->size > 0x2000)
                    gp_val = 0x2000;
                    gp_val = 0x2000;
                }
                }
            }
            }
          else
          else
            {
            {
              /* No .plt or .got.  Who cares what the LTP is?  */
              /* No .plt or .got.  Who cares what the LTP is?  */
              sec = bfd_get_section_by_name (abfd, ".data");
              sec = bfd_get_section_by_name (abfd, ".data");
            }
            }
        }
        }
 
 
      if (h != NULL)
      if (h != NULL)
        {
        {
          h->type = bfd_link_hash_defined;
          h->type = bfd_link_hash_defined;
          h->u.def.value = gp_val;
          h->u.def.value = gp_val;
          if (sec != NULL)
          if (sec != NULL)
            h->u.def.section = sec;
            h->u.def.section = sec;
          else
          else
            h->u.def.section = bfd_abs_section_ptr;
            h->u.def.section = bfd_abs_section_ptr;
        }
        }
    }
    }
 
 
  if (sec != NULL && sec->output_section != NULL)
  if (sec != NULL && sec->output_section != NULL)
    gp_val += sec->output_section->vma + sec->output_offset;
    gp_val += sec->output_section->vma + sec->output_offset;
 
 
  elf_gp (abfd) = gp_val;
  elf_gp (abfd) = gp_val;
  return TRUE;
  return TRUE;
}
}
 
 
/* Build all the stubs associated with the current output file.  The
/* Build all the stubs associated with the current output file.  The
   stubs are kept in a hash table attached to the main linker hash
   stubs are kept in a hash table attached to the main linker hash
   table.  We also set up the .plt entries for statically linked PIC
   table.  We also set up the .plt entries for statically linked PIC
   functions here.  This function is called via hppaelf_finish in the
   functions here.  This function is called via hppaelf_finish in the
   linker.  */
   linker.  */
 
 
bfd_boolean
bfd_boolean
elf32_hppa_build_stubs (struct bfd_link_info *info)
elf32_hppa_build_stubs (struct bfd_link_info *info)
{
{
  asection *stub_sec;
  asection *stub_sec;
  struct bfd_hash_table *table;
  struct bfd_hash_table *table;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
 
 
  for (stub_sec = htab->stub_bfd->sections;
  for (stub_sec = htab->stub_bfd->sections;
       stub_sec != NULL;
       stub_sec != NULL;
       stub_sec = stub_sec->next)
       stub_sec = stub_sec->next)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
 
 
      /* Allocate memory to hold the linker stubs.  */
      /* Allocate memory to hold the linker stubs.  */
      size = stub_sec->size;
      size = stub_sec->size;
      stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
      stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
      if (stub_sec->contents == NULL && size != 0)
      if (stub_sec->contents == NULL && size != 0)
        return FALSE;
        return FALSE;
      stub_sec->size = 0;
      stub_sec->size = 0;
    }
    }
 
 
  /* Build the stubs as directed by the stub hash table.  */
  /* Build the stubs as directed by the stub hash table.  */
  table = &htab->bstab;
  table = &htab->bstab;
  bfd_hash_traverse (table, hppa_build_one_stub, info);
  bfd_hash_traverse (table, hppa_build_one_stub, info);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the base vma address which should be subtracted from the real
/* Return the base vma address which should be subtracted from the real
   address when resolving a dtpoff relocation.
   address when resolving a dtpoff relocation.
   This is PT_TLS segment p_vaddr.  */
   This is PT_TLS segment p_vaddr.  */
 
 
static bfd_vma
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
dtpoff_base (struct bfd_link_info *info)
{
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
    return 0;
  return elf_hash_table (info)->tls_sec->vma;
  return elf_hash_table (info)->tls_sec->vma;
}
}
 
 
/* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
/* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
 
 
static bfd_vma
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
tpoff (struct bfd_link_info *info, bfd_vma address)
{
{
  struct elf_link_hash_table *htab = elf_hash_table (info);
  struct elf_link_hash_table *htab = elf_hash_table (info);
 
 
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (htab->tls_sec == NULL)
  if (htab->tls_sec == NULL)
    return 0;
    return 0;
  /* hppa TLS ABI is variant I and static TLS block start just after
  /* hppa TLS ABI is variant I and static TLS block start just after
     tcbhead structure which has 2 pointer fields.  */
     tcbhead structure which has 2 pointer fields.  */
  return (address - htab->tls_sec->vma
  return (address - htab->tls_sec->vma
          + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
          + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
}
}
 
 
/* Perform a final link.  */
/* Perform a final link.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
{
{
  /* Invoke the regular ELF linker to do all the work.  */
  /* Invoke the regular ELF linker to do all the work.  */
  if (!bfd_elf_final_link (abfd, info))
  if (!bfd_elf_final_link (abfd, info))
    return FALSE;
    return FALSE;
 
 
  /* If we're producing a final executable, sort the contents of the
  /* If we're producing a final executable, sort the contents of the
     unwind section.  */
     unwind section.  */
  return elf_hppa_sort_unwind (abfd);
  return elf_hppa_sort_unwind (abfd);
}
}
 
 
/* Record the lowest address for the data and text segments.  */
/* Record the lowest address for the data and text segments.  */
 
 
static void
static void
hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
{
{
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
 
 
  htab = (struct elf32_hppa_link_hash_table*) data;
  htab = (struct elf32_hppa_link_hash_table*) data;
 
 
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
  if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
    {
    {
      bfd_vma value;
      bfd_vma value;
      Elf_Internal_Phdr *p;
      Elf_Internal_Phdr *p;
 
 
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
      p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
      BFD_ASSERT (p != NULL);
      BFD_ASSERT (p != NULL);
      value = p->p_vaddr;
      value = p->p_vaddr;
 
 
      if ((section->flags & SEC_READONLY) != 0)
      if ((section->flags & SEC_READONLY) != 0)
        {
        {
          if (value < htab->text_segment_base)
          if (value < htab->text_segment_base)
            htab->text_segment_base = value;
            htab->text_segment_base = value;
        }
        }
      else
      else
        {
        {
          if (value < htab->data_segment_base)
          if (value < htab->data_segment_base)
            htab->data_segment_base = value;
            htab->data_segment_base = value;
        }
        }
    }
    }
}
}
 
 
/* Perform a relocation as part of a final link.  */
/* Perform a relocation as part of a final link.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
final_link_relocate (asection *input_section,
final_link_relocate (asection *input_section,
                     bfd_byte *contents,
                     bfd_byte *contents,
                     const Elf_Internal_Rela *rela,
                     const Elf_Internal_Rela *rela,
                     bfd_vma value,
                     bfd_vma value,
                     struct elf32_hppa_link_hash_table *htab,
                     struct elf32_hppa_link_hash_table *htab,
                     asection *sym_sec,
                     asection *sym_sec,
                     struct elf32_hppa_link_hash_entry *hh,
                     struct elf32_hppa_link_hash_entry *hh,
                     struct bfd_link_info *info)
                     struct bfd_link_info *info)
{
{
  int insn;
  int insn;
  unsigned int r_type = ELF32_R_TYPE (rela->r_info);
  unsigned int r_type = ELF32_R_TYPE (rela->r_info);
  unsigned int orig_r_type = r_type;
  unsigned int orig_r_type = r_type;
  reloc_howto_type *howto = elf_hppa_howto_table + r_type;
  reloc_howto_type *howto = elf_hppa_howto_table + r_type;
  int r_format = howto->bitsize;
  int r_format = howto->bitsize;
  enum hppa_reloc_field_selector_type_alt r_field;
  enum hppa_reloc_field_selector_type_alt r_field;
  bfd *input_bfd = input_section->owner;
  bfd *input_bfd = input_section->owner;
  bfd_vma offset = rela->r_offset;
  bfd_vma offset = rela->r_offset;
  bfd_vma max_branch_offset = 0;
  bfd_vma max_branch_offset = 0;
  bfd_byte *hit_data = contents + offset;
  bfd_byte *hit_data = contents + offset;
  bfd_signed_vma addend = rela->r_addend;
  bfd_signed_vma addend = rela->r_addend;
  bfd_vma location;
  bfd_vma location;
  struct elf32_hppa_stub_hash_entry *hsh = NULL;
  struct elf32_hppa_stub_hash_entry *hsh = NULL;
  int val;
  int val;
 
 
  if (r_type == R_PARISC_NONE)
  if (r_type == R_PARISC_NONE)
    return bfd_reloc_ok;
    return bfd_reloc_ok;
 
 
  insn = bfd_get_32 (input_bfd, hit_data);
  insn = bfd_get_32 (input_bfd, hit_data);
 
 
  /* Find out where we are and where we're going.  */
  /* Find out where we are and where we're going.  */
  location = (offset +
  location = (offset +
              input_section->output_offset +
              input_section->output_offset +
              input_section->output_section->vma);
              input_section->output_section->vma);
 
 
  /* If we are not building a shared library, convert DLTIND relocs to
  /* If we are not building a shared library, convert DLTIND relocs to
     DPREL relocs.  */
     DPREL relocs.  */
  if (!info->shared)
  if (!info->shared)
    {
    {
      switch (r_type)
      switch (r_type)
        {
        {
          case R_PARISC_DLTIND21L:
          case R_PARISC_DLTIND21L:
            r_type = R_PARISC_DPREL21L;
            r_type = R_PARISC_DPREL21L;
            break;
            break;
 
 
          case R_PARISC_DLTIND14R:
          case R_PARISC_DLTIND14R:
            r_type = R_PARISC_DPREL14R;
            r_type = R_PARISC_DPREL14R;
            break;
            break;
 
 
          case R_PARISC_DLTIND14F:
          case R_PARISC_DLTIND14F:
            r_type = R_PARISC_DPREL14F;
            r_type = R_PARISC_DPREL14F;
            break;
            break;
        }
        }
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL22F:
      /* If this call should go via the plt, find the import stub in
      /* If this call should go via the plt, find the import stub in
         the stub hash.  */
         the stub hash.  */
      if (sym_sec == NULL
      if (sym_sec == NULL
          || sym_sec->output_section == NULL
          || sym_sec->output_section == NULL
          || (hh != NULL
          || (hh != NULL
              && hh->eh.plt.offset != (bfd_vma) -1
              && hh->eh.plt.offset != (bfd_vma) -1
              && hh->eh.dynindx != -1
              && hh->eh.dynindx != -1
              && !hh->plabel
              && !hh->plabel
              && (info->shared
              && (info->shared
                  || !hh->eh.def_regular
                  || !hh->eh.def_regular
                  || hh->eh.root.type == bfd_link_hash_defweak)))
                  || hh->eh.root.type == bfd_link_hash_defweak)))
        {
        {
          hsh = hppa_get_stub_entry (input_section, sym_sec,
          hsh = hppa_get_stub_entry (input_section, sym_sec,
                                            hh, rela, htab);
                                            hh, rela, htab);
          if (hsh != NULL)
          if (hsh != NULL)
            {
            {
              value = (hsh->stub_offset
              value = (hsh->stub_offset
                       + hsh->stub_sec->output_offset
                       + hsh->stub_sec->output_offset
                       + hsh->stub_sec->output_section->vma);
                       + hsh->stub_sec->output_section->vma);
              addend = 0;
              addend = 0;
            }
            }
          else if (sym_sec == NULL && hh != NULL
          else if (sym_sec == NULL && hh != NULL
                   && hh->eh.root.type == bfd_link_hash_undefweak)
                   && hh->eh.root.type == bfd_link_hash_undefweak)
            {
            {
              /* It's OK if undefined weak.  Calls to undefined weak
              /* It's OK if undefined weak.  Calls to undefined weak
                 symbols behave as if the "called" function
                 symbols behave as if the "called" function
                 immediately returns.  We can thus call to a weak
                 immediately returns.  We can thus call to a weak
                 function without first checking whether the function
                 function without first checking whether the function
                 is defined.  */
                 is defined.  */
              value = location;
              value = location;
              addend = 8;
              addend = 8;
            }
            }
          else
          else
            return bfd_reloc_undefined;
            return bfd_reloc_undefined;
        }
        }
      /* Fall thru.  */
      /* Fall thru.  */
 
 
    case R_PARISC_PCREL21L:
    case R_PARISC_PCREL21L:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL32:
    case R_PARISC_PCREL32:
      /* Make it a pc relative offset.  */
      /* Make it a pc relative offset.  */
      value -= location;
      value -= location;
      addend -= 8;
      addend -= 8;
      break;
      break;
 
 
    case R_PARISC_DPREL21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14F:
    case R_PARISC_DPREL14F:
      /* Convert instructions that use the linkage table pointer (r19) to
      /* Convert instructions that use the linkage table pointer (r19) to
         instructions that use the global data pointer (dp).  This is the
         instructions that use the global data pointer (dp).  This is the
         most efficient way of using PIC code in an incomplete executable,
         most efficient way of using PIC code in an incomplete executable,
         but the user must follow the standard runtime conventions for
         but the user must follow the standard runtime conventions for
         accessing data for this to work.  */
         accessing data for this to work.  */
      if (orig_r_type == R_PARISC_DLTIND21L)
      if (orig_r_type == R_PARISC_DLTIND21L)
        {
        {
          /* Convert addil instructions if the original reloc was a
          /* Convert addil instructions if the original reloc was a
             DLTIND21L.  GCC sometimes uses a register other than r19 for
             DLTIND21L.  GCC sometimes uses a register other than r19 for
             the operation, so we must convert any addil instruction
             the operation, so we must convert any addil instruction
             that uses this relocation.  */
             that uses this relocation.  */
          if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
          if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
            insn = ADDIL_DP;
            insn = ADDIL_DP;
          else
          else
            /* We must have a ldil instruction.  It's too hard to find
            /* We must have a ldil instruction.  It's too hard to find
               and convert the associated add instruction, so issue an
               and convert the associated add instruction, so issue an
               error.  */
               error.  */
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
              (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
               input_bfd,
               input_bfd,
               input_section,
               input_section,
               (long) offset,
               (long) offset,
               howto->name,
               howto->name,
               insn);
               insn);
        }
        }
      else if (orig_r_type == R_PARISC_DLTIND14F)
      else if (orig_r_type == R_PARISC_DLTIND14F)
        {
        {
          /* This must be a format 1 load/store.  Change the base
          /* This must be a format 1 load/store.  Change the base
             register to dp.  */
             register to dp.  */
          insn = (insn & 0xfc1ffff) | (27 << 21);
          insn = (insn & 0xfc1ffff) | (27 << 21);
        }
        }
 
 
    /* For all the DP relative relocations, we need to examine the symbol's
    /* For all the DP relative relocations, we need to examine the symbol's
       section.  If it has no section or if it's a code section, then
       section.  If it has no section or if it's a code section, then
       "data pointer relative" makes no sense.  In that case we don't
       "data pointer relative" makes no sense.  In that case we don't
       adjust the "value", and for 21 bit addil instructions, we change the
       adjust the "value", and for 21 bit addil instructions, we change the
       source addend register from %dp to %r0.  This situation commonly
       source addend register from %dp to %r0.  This situation commonly
       arises for undefined weak symbols and when a variable's "constness"
       arises for undefined weak symbols and when a variable's "constness"
       is declared differently from the way the variable is defined.  For
       is declared differently from the way the variable is defined.  For
       instance: "extern int foo" with foo defined as "const int foo".  */
       instance: "extern int foo" with foo defined as "const int foo".  */
      if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
      if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
        {
        {
          if ((insn & ((0x3f << 26) | (0x1f << 21)))
          if ((insn & ((0x3f << 26) | (0x1f << 21)))
              == (((int) OP_ADDIL << 26) | (27 << 21)))
              == (((int) OP_ADDIL << 26) | (27 << 21)))
            {
            {
              insn &= ~ (0x1f << 21);
              insn &= ~ (0x1f << 21);
            }
            }
          /* Now try to make things easy for the dynamic linker.  */
          /* Now try to make things easy for the dynamic linker.  */
 
 
          break;
          break;
        }
        }
      /* Fall thru.  */
      /* Fall thru.  */
 
 
    case R_PARISC_DLTIND21L:
    case R_PARISC_DLTIND21L:
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14F:
    case R_PARISC_DLTIND14F:
    case R_PARISC_TLS_GD21L:
    case R_PARISC_TLS_GD21L:
    case R_PARISC_TLS_GD14R:
    case R_PARISC_TLS_GD14R:
    case R_PARISC_TLS_LDM21L:
    case R_PARISC_TLS_LDM21L:
    case R_PARISC_TLS_LDM14R:
    case R_PARISC_TLS_LDM14R:
    case R_PARISC_TLS_IE21L:
    case R_PARISC_TLS_IE21L:
    case R_PARISC_TLS_IE14R:
    case R_PARISC_TLS_IE14R:
      value -= elf_gp (input_section->output_section->owner);
      value -= elf_gp (input_section->output_section->owner);
      break;
      break;
 
 
    case R_PARISC_SEGREL32:
    case R_PARISC_SEGREL32:
      if ((sym_sec->flags & SEC_CODE) != 0)
      if ((sym_sec->flags & SEC_CODE) != 0)
        value -= htab->text_segment_base;
        value -= htab->text_segment_base;
      else
      else
        value -= htab->data_segment_base;
        value -= htab->data_segment_base;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_PARISC_DIR32:
    case R_PARISC_DIR32:
    case R_PARISC_DIR14F:
    case R_PARISC_DIR14F:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR17F:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL14F:
    case R_PARISC_PCREL32:
    case R_PARISC_PCREL32:
    case R_PARISC_DPREL14F:
    case R_PARISC_DPREL14F:
    case R_PARISC_PLABEL32:
    case R_PARISC_PLABEL32:
    case R_PARISC_DLTIND14F:
    case R_PARISC_DLTIND14F:
    case R_PARISC_SEGBASE:
    case R_PARISC_SEGBASE:
    case R_PARISC_SEGREL32:
    case R_PARISC_SEGREL32:
    case R_PARISC_TLS_DTPMOD32:
    case R_PARISC_TLS_DTPMOD32:
    case R_PARISC_TLS_DTPOFF32:
    case R_PARISC_TLS_DTPOFF32:
    case R_PARISC_TLS_TPREL32:
    case R_PARISC_TLS_TPREL32:
      r_field = e_fsel;
      r_field = e_fsel;
      break;
      break;
 
 
    case R_PARISC_DLTIND21L:
    case R_PARISC_DLTIND21L:
    case R_PARISC_PCREL21L:
    case R_PARISC_PCREL21L:
    case R_PARISC_PLABEL21L:
    case R_PARISC_PLABEL21L:
      r_field = e_lsel;
      r_field = e_lsel;
      break;
      break;
 
 
    case R_PARISC_DIR21L:
    case R_PARISC_DIR21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_DPREL21L:
    case R_PARISC_TLS_GD21L:
    case R_PARISC_TLS_GD21L:
    case R_PARISC_TLS_LDM21L:
    case R_PARISC_TLS_LDM21L:
    case R_PARISC_TLS_LDO21L:
    case R_PARISC_TLS_LDO21L:
    case R_PARISC_TLS_IE21L:
    case R_PARISC_TLS_IE21L:
    case R_PARISC_TLS_LE21L:
    case R_PARISC_TLS_LE21L:
      r_field = e_lrsel;
      r_field = e_lrsel;
      break;
      break;
 
 
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PCREL14R:
    case R_PARISC_PLABEL14R:
    case R_PARISC_PLABEL14R:
    case R_PARISC_DLTIND14R:
    case R_PARISC_DLTIND14R:
      r_field = e_rsel;
      r_field = e_rsel;
      break;
      break;
 
 
    case R_PARISC_DIR17R:
    case R_PARISC_DIR17R:
    case R_PARISC_DIR14R:
    case R_PARISC_DIR14R:
    case R_PARISC_DPREL14R:
    case R_PARISC_DPREL14R:
    case R_PARISC_TLS_GD14R:
    case R_PARISC_TLS_GD14R:
    case R_PARISC_TLS_LDM14R:
    case R_PARISC_TLS_LDM14R:
    case R_PARISC_TLS_LDO14R:
    case R_PARISC_TLS_LDO14R:
    case R_PARISC_TLS_IE14R:
    case R_PARISC_TLS_IE14R:
    case R_PARISC_TLS_LE14R:
    case R_PARISC_TLS_LE14R:
      r_field = e_rrsel;
      r_field = e_rrsel;
      break;
      break;
 
 
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL22F:
      r_field = e_fsel;
      r_field = e_fsel;
 
 
      if (r_type == (unsigned int) R_PARISC_PCREL17F)
      if (r_type == (unsigned int) R_PARISC_PCREL17F)
        {
        {
          max_branch_offset = (1 << (17-1)) << 2;
          max_branch_offset = (1 << (17-1)) << 2;
        }
        }
      else if (r_type == (unsigned int) R_PARISC_PCREL12F)
      else if (r_type == (unsigned int) R_PARISC_PCREL12F)
        {
        {
          max_branch_offset = (1 << (12-1)) << 2;
          max_branch_offset = (1 << (12-1)) << 2;
        }
        }
      else
      else
        {
        {
          max_branch_offset = (1 << (22-1)) << 2;
          max_branch_offset = (1 << (22-1)) << 2;
        }
        }
 
 
      /* sym_sec is NULL on undefined weak syms or when shared on
      /* sym_sec is NULL on undefined weak syms or when shared on
         undefined syms.  We've already checked for a stub for the
         undefined syms.  We've already checked for a stub for the
         shared undefined case.  */
         shared undefined case.  */
      if (sym_sec == NULL)
      if (sym_sec == NULL)
        break;
        break;
 
 
      /* If the branch is out of reach, then redirect the
      /* If the branch is out of reach, then redirect the
         call to the local stub for this function.  */
         call to the local stub for this function.  */
      if (value + addend + max_branch_offset >= 2*max_branch_offset)
      if (value + addend + max_branch_offset >= 2*max_branch_offset)
        {
        {
          hsh = hppa_get_stub_entry (input_section, sym_sec,
          hsh = hppa_get_stub_entry (input_section, sym_sec,
                                            hh, rela, htab);
                                            hh, rela, htab);
          if (hsh == NULL)
          if (hsh == NULL)
            return bfd_reloc_undefined;
            return bfd_reloc_undefined;
 
 
          /* Munge up the value and addend so that we call the stub
          /* Munge up the value and addend so that we call the stub
             rather than the procedure directly.  */
             rather than the procedure directly.  */
          value = (hsh->stub_offset
          value = (hsh->stub_offset
                   + hsh->stub_sec->output_offset
                   + hsh->stub_sec->output_offset
                   + hsh->stub_sec->output_section->vma
                   + hsh->stub_sec->output_section->vma
                   - location);
                   - location);
          addend = -8;
          addend = -8;
        }
        }
      break;
      break;
 
 
    /* Something we don't know how to handle.  */
    /* Something we don't know how to handle.  */
    default:
    default:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
    }
    }
 
 
  /* Make sure we can reach the stub.  */
  /* Make sure we can reach the stub.  */
  if (max_branch_offset != 0
  if (max_branch_offset != 0
      && value + addend + max_branch_offset >= 2*max_branch_offset)
      && value + addend + max_branch_offset >= 2*max_branch_offset)
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
        (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
         input_bfd,
         input_bfd,
         input_section,
         input_section,
         (long) offset,
         (long) offset,
         hsh->bh_root.string);
         hsh->bh_root.string);
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
    }
    }
 
 
  val = hppa_field_adjust (value, addend, r_field);
  val = hppa_field_adjust (value, addend, r_field);
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL12F:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17C:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL17F:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL17R:
    case R_PARISC_PCREL22F:
    case R_PARISC_PCREL22F:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR17F:
    case R_PARISC_DIR17R:
    case R_PARISC_DIR17R:
      /* This is a branch.  Divide the offset by four.
      /* This is a branch.  Divide the offset by four.
         Note that we need to decide whether it's a branch or
         Note that we need to decide whether it's a branch or
         otherwise by inspecting the reloc.  Inspecting insn won't
         otherwise by inspecting the reloc.  Inspecting insn won't
         work as insn might be from a .word directive.  */
         work as insn might be from a .word directive.  */
      val >>= 2;
      val >>= 2;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  insn = hppa_rebuild_insn (insn, val, r_format);
  insn = hppa_rebuild_insn (insn, val, r_format);
 
 
  /* Update the instruction word.  */
  /* Update the instruction word.  */
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
  bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* Relocate an HPPA ELF section.  */
/* Relocate an HPPA ELF section.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_relocate_section (bfd *output_bfd,
elf32_hppa_relocate_section (bfd *output_bfd,
                             struct bfd_link_info *info,
                             struct bfd_link_info *info,
                             bfd *input_bfd,
                             bfd *input_bfd,
                             asection *input_section,
                             asection *input_section,
                             bfd_byte *contents,
                             bfd_byte *contents,
                             Elf_Internal_Rela *relocs,
                             Elf_Internal_Rela *relocs,
                             Elf_Internal_Sym *local_syms,
                             Elf_Internal_Sym *local_syms,
                             asection **local_sections)
                             asection **local_sections)
{
{
  bfd_vma *local_got_offsets;
  bfd_vma *local_got_offsets;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *rela;
  Elf_Internal_Rela *rela;
  Elf_Internal_Rela *relend;
  Elf_Internal_Rela *relend;
 
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  local_got_offsets = elf_local_got_offsets (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
 
 
  rela = relocs;
  rela = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rela < relend; rela++)
  for (; rela < relend; rela++)
    {
    {
      unsigned int r_type;
      unsigned int r_type;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
      unsigned int r_symndx;
      unsigned int r_symndx;
      struct elf32_hppa_link_hash_entry *hh;
      struct elf32_hppa_link_hash_entry *hh;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      asection *sym_sec;
      asection *sym_sec;
      bfd_vma relocation;
      bfd_vma relocation;
      bfd_reloc_status_type rstatus;
      bfd_reloc_status_type rstatus;
      const char *sym_name;
      const char *sym_name;
      bfd_boolean plabel;
      bfd_boolean plabel;
      bfd_boolean warned_undef;
      bfd_boolean warned_undef;
 
 
      r_type = ELF32_R_TYPE (rela->r_info);
      r_type = ELF32_R_TYPE (rela->r_info);
      if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
      if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
      if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
          || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
          || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
        continue;
        continue;
 
 
      r_symndx = ELF32_R_SYM (rela->r_info);
      r_symndx = ELF32_R_SYM (rela->r_info);
      hh = NULL;
      hh = NULL;
      sym = NULL;
      sym = NULL;
      sym_sec = NULL;
      sym_sec = NULL;
      warned_undef = FALSE;
      warned_undef = FALSE;
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          /* This is a local symbol, h defaults to NULL.  */
          /* This is a local symbol, h defaults to NULL.  */
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sym_sec = local_sections[r_symndx];
          sym_sec = local_sections[r_symndx];
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
        }
        }
      else
      else
        {
        {
          struct elf_link_hash_entry *eh;
          struct elf_link_hash_entry *eh;
          bfd_boolean unresolved_reloc;
          bfd_boolean unresolved_reloc;
          struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
          struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
 
 
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   eh, sym_sec, relocation,
                                   eh, sym_sec, relocation,
                                   unresolved_reloc, warned_undef);
                                   unresolved_reloc, warned_undef);
 
 
          if (!info->relocatable
          if (!info->relocatable
              && relocation == 0
              && relocation == 0
              && eh->root.type != bfd_link_hash_defined
              && eh->root.type != bfd_link_hash_defined
              && eh->root.type != bfd_link_hash_defweak
              && eh->root.type != bfd_link_hash_defweak
              && eh->root.type != bfd_link_hash_undefweak)
              && eh->root.type != bfd_link_hash_undefweak)
            {
            {
              if (info->unresolved_syms_in_objects == RM_IGNORE
              if (info->unresolved_syms_in_objects == RM_IGNORE
                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
                  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
                  && eh->type == STT_PARISC_MILLI)
                  && eh->type == STT_PARISC_MILLI)
                {
                {
                  if (! info->callbacks->undefined_symbol
                  if (! info->callbacks->undefined_symbol
                      (info, eh_name (eh), input_bfd,
                      (info, eh_name (eh), input_bfd,
                       input_section, rela->r_offset, FALSE))
                       input_section, rela->r_offset, FALSE))
                    return FALSE;
                    return FALSE;
                  warned_undef = TRUE;
                  warned_undef = TRUE;
                }
                }
            }
            }
          hh = hppa_elf_hash_entry (eh);
          hh = hppa_elf_hash_entry (eh);
        }
        }
 
 
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
      if (sym_sec != NULL && elf_discarded_section (sym_sec))
        {
        {
          /* For relocs against symbols from removed linkonce
          /* For relocs against symbols from removed linkonce
             sections, or sections discarded by a linker script,
             sections, or sections discarded by a linker script,
             we just want the section contents zeroed.  Avoid any
             we just want the section contents zeroed.  Avoid any
             special processing.  */
             special processing.  */
          _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
          _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
                               contents + rela->r_offset);
                               contents + rela->r_offset);
          rela->r_info = 0;
          rela->r_info = 0;
          rela->r_addend = 0;
          rela->r_addend = 0;
          continue;
          continue;
        }
        }
 
 
      if (info->relocatable)
      if (info->relocatable)
        continue;
        continue;
 
 
      /* Do any required modifications to the relocation value, and
      /* Do any required modifications to the relocation value, and
         determine what types of dynamic info we need to output, if
         determine what types of dynamic info we need to output, if
         any.  */
         any.  */
      plabel = 0;
      plabel = 0;
      switch (r_type)
      switch (r_type)
        {
        {
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14F:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND14R:
        case R_PARISC_DLTIND21L:
        case R_PARISC_DLTIND21L:
          {
          {
            bfd_vma off;
            bfd_vma off;
            bfd_boolean do_got = 0;
            bfd_boolean do_got = 0;
 
 
            /* Relocation is to the entry for this symbol in the
            /* Relocation is to the entry for this symbol in the
               global offset table.  */
               global offset table.  */
            if (hh != NULL)
            if (hh != NULL)
              {
              {
                bfd_boolean dyn;
                bfd_boolean dyn;
 
 
                off = hh->eh.got.offset;
                off = hh->eh.got.offset;
                dyn = htab->etab.dynamic_sections_created;
                dyn = htab->etab.dynamic_sections_created;
                if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
                if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
                                                       &hh->eh))
                                                       &hh->eh))
                  {
                  {
                    /* If we aren't going to call finish_dynamic_symbol,
                    /* If we aren't going to call finish_dynamic_symbol,
                       then we need to handle initialisation of the .got
                       then we need to handle initialisation of the .got
                       entry and create needed relocs here.  Since the
                       entry and create needed relocs here.  Since the
                       offset must always be a multiple of 4, we use the
                       offset must always be a multiple of 4, we use the
                       least significant bit to record whether we have
                       least significant bit to record whether we have
                       initialised it already.  */
                       initialised it already.  */
                    if ((off & 1) != 0)
                    if ((off & 1) != 0)
                      off &= ~1;
                      off &= ~1;
                    else
                    else
                      {
                      {
                        hh->eh.got.offset |= 1;
                        hh->eh.got.offset |= 1;
                        do_got = 1;
                        do_got = 1;
                      }
                      }
                  }
                  }
              }
              }
            else
            else
              {
              {
                /* Local symbol case.  */
                /* Local symbol case.  */
                if (local_got_offsets == NULL)
                if (local_got_offsets == NULL)
                  abort ();
                  abort ();
 
 
                off = local_got_offsets[r_symndx];
                off = local_got_offsets[r_symndx];
 
 
                /* The offset must always be a multiple of 4.  We use
                /* The offset must always be a multiple of 4.  We use
                   the least significant bit to record whether we have
                   the least significant bit to record whether we have
                   already generated the necessary reloc.  */
                   already generated the necessary reloc.  */
                if ((off & 1) != 0)
                if ((off & 1) != 0)
                  off &= ~1;
                  off &= ~1;
                else
                else
                  {
                  {
                    local_got_offsets[r_symndx] |= 1;
                    local_got_offsets[r_symndx] |= 1;
                    do_got = 1;
                    do_got = 1;
                  }
                  }
              }
              }
 
 
            if (do_got)
            if (do_got)
              {
              {
                if (info->shared)
                if (info->shared)
                  {
                  {
                    /* Output a dynamic relocation for this GOT entry.
                    /* Output a dynamic relocation for this GOT entry.
                       In this case it is relative to the base of the
                       In this case it is relative to the base of the
                       object because the symbol index is zero.  */
                       object because the symbol index is zero.  */
                    Elf_Internal_Rela outrel;
                    Elf_Internal_Rela outrel;
                    bfd_byte *loc;
                    bfd_byte *loc;
                    asection *sec = htab->srelgot;
                    asection *sec = htab->srelgot;
 
 
                    outrel.r_offset = (off
                    outrel.r_offset = (off
                                       + htab->sgot->output_offset
                                       + htab->sgot->output_offset
                                       + htab->sgot->output_section->vma);
                                       + htab->sgot->output_section->vma);
                    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
                    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
                    outrel.r_addend = relocation;
                    outrel.r_addend = relocation;
                    loc = sec->contents;
                    loc = sec->contents;
                    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
                    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
                    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                  }
                  }
                else
                else
                  bfd_put_32 (output_bfd, relocation,
                  bfd_put_32 (output_bfd, relocation,
                              htab->sgot->contents + off);
                              htab->sgot->contents + off);
              }
              }
 
 
            if (off >= (bfd_vma) -2)
            if (off >= (bfd_vma) -2)
              abort ();
              abort ();
 
 
            /* Add the base of the GOT to the relocation value.  */
            /* Add the base of the GOT to the relocation value.  */
            relocation = (off
            relocation = (off
                          + htab->sgot->output_offset
                          + htab->sgot->output_offset
                          + htab->sgot->output_section->vma);
                          + htab->sgot->output_section->vma);
          }
          }
          break;
          break;
 
 
        case R_PARISC_SEGREL32:
        case R_PARISC_SEGREL32:
          /* If this is the first SEGREL relocation, then initialize
          /* If this is the first SEGREL relocation, then initialize
             the segment base values.  */
             the segment base values.  */
          if (htab->text_segment_base == (bfd_vma) -1)
          if (htab->text_segment_base == (bfd_vma) -1)
            bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
            bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
          break;
          break;
 
 
        case R_PARISC_PLABEL14R:
        case R_PARISC_PLABEL14R:
        case R_PARISC_PLABEL21L:
        case R_PARISC_PLABEL21L:
        case R_PARISC_PLABEL32:
        case R_PARISC_PLABEL32:
          if (htab->etab.dynamic_sections_created)
          if (htab->etab.dynamic_sections_created)
            {
            {
              bfd_vma off;
              bfd_vma off;
              bfd_boolean do_plt = 0;
              bfd_boolean do_plt = 0;
              /* If we have a global symbol with a PLT slot, then
              /* If we have a global symbol with a PLT slot, then
                 redirect this relocation to it.  */
                 redirect this relocation to it.  */
              if (hh != NULL)
              if (hh != NULL)
                {
                {
                  off = hh->eh.plt.offset;
                  off = hh->eh.plt.offset;
                  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
                  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
                                                         &hh->eh))
                                                         &hh->eh))
                    {
                    {
                      /* In a non-shared link, adjust_dynamic_symbols
                      /* In a non-shared link, adjust_dynamic_symbols
                         isn't called for symbols forced local.  We
                         isn't called for symbols forced local.  We
                         need to write out the plt entry here.  */
                         need to write out the plt entry here.  */
                      if ((off & 1) != 0)
                      if ((off & 1) != 0)
                        off &= ~1;
                        off &= ~1;
                      else
                      else
                        {
                        {
                          hh->eh.plt.offset |= 1;
                          hh->eh.plt.offset |= 1;
                          do_plt = 1;
                          do_plt = 1;
                        }
                        }
                    }
                    }
                }
                }
              else
              else
                {
                {
                  bfd_vma *local_plt_offsets;
                  bfd_vma *local_plt_offsets;
 
 
                  if (local_got_offsets == NULL)
                  if (local_got_offsets == NULL)
                    abort ();
                    abort ();
 
 
                  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
                  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
                  off = local_plt_offsets[r_symndx];
                  off = local_plt_offsets[r_symndx];
 
 
                  /* As for the local .got entry case, we use the last
                  /* As for the local .got entry case, we use the last
                     bit to record whether we've already initialised
                     bit to record whether we've already initialised
                     this local .plt entry.  */
                     this local .plt entry.  */
                  if ((off & 1) != 0)
                  if ((off & 1) != 0)
                    off &= ~1;
                    off &= ~1;
                  else
                  else
                    {
                    {
                      local_plt_offsets[r_symndx] |= 1;
                      local_plt_offsets[r_symndx] |= 1;
                      do_plt = 1;
                      do_plt = 1;
                    }
                    }
                }
                }
 
 
              if (do_plt)
              if (do_plt)
                {
                {
                  if (info->shared)
                  if (info->shared)
                    {
                    {
                      /* Output a dynamic IPLT relocation for this
                      /* Output a dynamic IPLT relocation for this
                         PLT entry.  */
                         PLT entry.  */
                      Elf_Internal_Rela outrel;
                      Elf_Internal_Rela outrel;
                      bfd_byte *loc;
                      bfd_byte *loc;
                      asection *s = htab->srelplt;
                      asection *s = htab->srelplt;
 
 
                      outrel.r_offset = (off
                      outrel.r_offset = (off
                                         + htab->splt->output_offset
                                         + htab->splt->output_offset
                                         + htab->splt->output_section->vma);
                                         + htab->splt->output_section->vma);
                      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
                      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
                      outrel.r_addend = relocation;
                      outrel.r_addend = relocation;
                      loc = s->contents;
                      loc = s->contents;
                      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
                      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                    }
                    }
                  else
                  else
                    {
                    {
                      bfd_put_32 (output_bfd,
                      bfd_put_32 (output_bfd,
                                  relocation,
                                  relocation,
                                  htab->splt->contents + off);
                                  htab->splt->contents + off);
                      bfd_put_32 (output_bfd,
                      bfd_put_32 (output_bfd,
                                  elf_gp (htab->splt->output_section->owner),
                                  elf_gp (htab->splt->output_section->owner),
                                  htab->splt->contents + off + 4);
                                  htab->splt->contents + off + 4);
                    }
                    }
                }
                }
 
 
              if (off >= (bfd_vma) -2)
              if (off >= (bfd_vma) -2)
                abort ();
                abort ();
 
 
              /* PLABELs contain function pointers.  Relocation is to
              /* PLABELs contain function pointers.  Relocation is to
                 the entry for the function in the .plt.  The magic +2
                 the entry for the function in the .plt.  The magic +2
                 offset signals to $$dyncall that the function pointer
                 offset signals to $$dyncall that the function pointer
                 is in the .plt and thus has a gp pointer too.
                 is in the .plt and thus has a gp pointer too.
                 Exception:  Undefined PLABELs should have a value of
                 Exception:  Undefined PLABELs should have a value of
                 zero.  */
                 zero.  */
              if (hh == NULL
              if (hh == NULL
                  || (hh->eh.root.type != bfd_link_hash_undefweak
                  || (hh->eh.root.type != bfd_link_hash_undefweak
                      && hh->eh.root.type != bfd_link_hash_undefined))
                      && hh->eh.root.type != bfd_link_hash_undefined))
                {
                {
                  relocation = (off
                  relocation = (off
                                + htab->splt->output_offset
                                + htab->splt->output_offset
                                + htab->splt->output_section->vma
                                + htab->splt->output_section->vma
                                + 2);
                                + 2);
                }
                }
              plabel = 1;
              plabel = 1;
            }
            }
          /* Fall through and possibly emit a dynamic relocation.  */
          /* Fall through and possibly emit a dynamic relocation.  */
 
 
        case R_PARISC_DIR17F:
        case R_PARISC_DIR17F:
        case R_PARISC_DIR17R:
        case R_PARISC_DIR17R:
        case R_PARISC_DIR14F:
        case R_PARISC_DIR14F:
        case R_PARISC_DIR14R:
        case R_PARISC_DIR14R:
        case R_PARISC_DIR21L:
        case R_PARISC_DIR21L:
        case R_PARISC_DPREL14F:
        case R_PARISC_DPREL14F:
        case R_PARISC_DPREL14R:
        case R_PARISC_DPREL14R:
        case R_PARISC_DPREL21L:
        case R_PARISC_DPREL21L:
        case R_PARISC_DIR32:
        case R_PARISC_DIR32:
          if ((input_section->flags & SEC_ALLOC) == 0)
          if ((input_section->flags & SEC_ALLOC) == 0)
            break;
            break;
 
 
          /* The reloc types handled here and this conditional
          /* The reloc types handled here and this conditional
             expression must match the code in ..check_relocs and
             expression must match the code in ..check_relocs and
             allocate_dynrelocs.  ie. We need exactly the same condition
             allocate_dynrelocs.  ie. We need exactly the same condition
             as in ..check_relocs, with some extra conditions (dynindx
             as in ..check_relocs, with some extra conditions (dynindx
             test in this case) to cater for relocs removed by
             test in this case) to cater for relocs removed by
             allocate_dynrelocs.  If you squint, the non-shared test
             allocate_dynrelocs.  If you squint, the non-shared test
             here does indeed match the one in ..check_relocs, the
             here does indeed match the one in ..check_relocs, the
             difference being that here we test DEF_DYNAMIC as well as
             difference being that here we test DEF_DYNAMIC as well as
             !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
             !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
             which is why we can't use just that test here.
             which is why we can't use just that test here.
             Conversely, DEF_DYNAMIC can't be used in check_relocs as
             Conversely, DEF_DYNAMIC can't be used in check_relocs as
             there all files have not been loaded.  */
             there all files have not been loaded.  */
          if ((info->shared
          if ((info->shared
               && (hh == NULL
               && (hh == NULL
                   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
                   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
                   || hh->eh.root.type != bfd_link_hash_undefweak)
                   || hh->eh.root.type != bfd_link_hash_undefweak)
               && (IS_ABSOLUTE_RELOC (r_type)
               && (IS_ABSOLUTE_RELOC (r_type)
                   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
                   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
              || (!info->shared
              || (!info->shared
                  && hh != NULL
                  && hh != NULL
                  && hh->eh.dynindx != -1
                  && hh->eh.dynindx != -1
                  && !hh->eh.non_got_ref
                  && !hh->eh.non_got_ref
                  && ((ELIMINATE_COPY_RELOCS
                  && ((ELIMINATE_COPY_RELOCS
                       && hh->eh.def_dynamic
                       && hh->eh.def_dynamic
                       && !hh->eh.def_regular)
                       && !hh->eh.def_regular)
                      || hh->eh.root.type == bfd_link_hash_undefweak
                      || hh->eh.root.type == bfd_link_hash_undefweak
                      || hh->eh.root.type == bfd_link_hash_undefined)))
                      || hh->eh.root.type == bfd_link_hash_undefined)))
            {
            {
              Elf_Internal_Rela outrel;
              Elf_Internal_Rela outrel;
              bfd_boolean skip;
              bfd_boolean skip;
              asection *sreloc;
              asection *sreloc;
              bfd_byte *loc;
              bfd_byte *loc;
 
 
              /* When generating a shared object, these relocations
              /* When generating a shared object, these relocations
                 are copied into the output file to be resolved at run
                 are copied into the output file to be resolved at run
                 time.  */
                 time.  */
 
 
              outrel.r_addend = rela->r_addend;
              outrel.r_addend = rela->r_addend;
              outrel.r_offset =
              outrel.r_offset =
                _bfd_elf_section_offset (output_bfd, info, input_section,
                _bfd_elf_section_offset (output_bfd, info, input_section,
                                         rela->r_offset);
                                         rela->r_offset);
              skip = (outrel.r_offset == (bfd_vma) -1
              skip = (outrel.r_offset == (bfd_vma) -1
                      || outrel.r_offset == (bfd_vma) -2);
                      || outrel.r_offset == (bfd_vma) -2);
              outrel.r_offset += (input_section->output_offset
              outrel.r_offset += (input_section->output_offset
                                  + input_section->output_section->vma);
                                  + input_section->output_section->vma);
 
 
              if (skip)
              if (skip)
                {
                {
                  memset (&outrel, 0, sizeof (outrel));
                  memset (&outrel, 0, sizeof (outrel));
                }
                }
              else if (hh != NULL
              else if (hh != NULL
                       && hh->eh.dynindx != -1
                       && hh->eh.dynindx != -1
                       && (plabel
                       && (plabel
                           || !IS_ABSOLUTE_RELOC (r_type)
                           || !IS_ABSOLUTE_RELOC (r_type)
                           || !info->shared
                           || !info->shared
                           || !info->symbolic
                           || !info->symbolic
                           || !hh->eh.def_regular))
                           || !hh->eh.def_regular))
                {
                {
                  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
                  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
                }
                }
              else /* It's a local symbol, or one marked to become local.  */
              else /* It's a local symbol, or one marked to become local.  */
                {
                {
                  int indx = 0;
                  int indx = 0;
 
 
                  /* Add the absolute offset of the symbol.  */
                  /* Add the absolute offset of the symbol.  */
                  outrel.r_addend += relocation;
                  outrel.r_addend += relocation;
 
 
                  /* Global plabels need to be processed by the
                  /* Global plabels need to be processed by the
                     dynamic linker so that functions have at most one
                     dynamic linker so that functions have at most one
                     fptr.  For this reason, we need to differentiate
                     fptr.  For this reason, we need to differentiate
                     between global and local plabels, which we do by
                     between global and local plabels, which we do by
                     providing the function symbol for a global plabel
                     providing the function symbol for a global plabel
                     reloc, and no symbol for local plabels.  */
                     reloc, and no symbol for local plabels.  */
                  if (! plabel
                  if (! plabel
                      && sym_sec != NULL
                      && sym_sec != NULL
                      && sym_sec->output_section != NULL
                      && sym_sec->output_section != NULL
                      && ! bfd_is_abs_section (sym_sec))
                      && ! bfd_is_abs_section (sym_sec))
                    {
                    {
                      asection *osec;
                      asection *osec;
 
 
                      osec = sym_sec->output_section;
                      osec = sym_sec->output_section;
                      indx = elf_section_data (osec)->dynindx;
                      indx = elf_section_data (osec)->dynindx;
                      if (indx == 0)
                      if (indx == 0)
                        {
                        {
                          osec = htab->etab.text_index_section;
                          osec = htab->etab.text_index_section;
                          indx = elf_section_data (osec)->dynindx;
                          indx = elf_section_data (osec)->dynindx;
                        }
                        }
                      BFD_ASSERT (indx != 0);
                      BFD_ASSERT (indx != 0);
 
 
                      /* We are turning this relocation into one
                      /* We are turning this relocation into one
                         against a section symbol, so subtract out the
                         against a section symbol, so subtract out the
                         output section's address but not the offset
                         output section's address but not the offset
                         of the input section in the output section.  */
                         of the input section in the output section.  */
                      outrel.r_addend -= osec->vma;
                      outrel.r_addend -= osec->vma;
                    }
                    }
 
 
                  outrel.r_info = ELF32_R_INFO (indx, r_type);
                  outrel.r_info = ELF32_R_INFO (indx, r_type);
                }
                }
              sreloc = elf_section_data (input_section)->sreloc;
              sreloc = elf_section_data (input_section)->sreloc;
              if (sreloc == NULL)
              if (sreloc == NULL)
                abort ();
                abort ();
 
 
              loc = sreloc->contents;
              loc = sreloc->contents;
              loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
              loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
              bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
            }
            }
          break;
          break;
 
 
        case R_PARISC_TLS_LDM21L:
        case R_PARISC_TLS_LDM21L:
        case R_PARISC_TLS_LDM14R:
        case R_PARISC_TLS_LDM14R:
          {
          {
            bfd_vma off;
            bfd_vma off;
 
 
            off = htab->tls_ldm_got.offset;
            off = htab->tls_ldm_got.offset;
            if (off & 1)
            if (off & 1)
              off &= ~1;
              off &= ~1;
            else
            else
              {
              {
                Elf_Internal_Rela outrel;
                Elf_Internal_Rela outrel;
                bfd_byte *loc;
                bfd_byte *loc;
 
 
                outrel.r_offset = (off
                outrel.r_offset = (off
                                   + htab->sgot->output_section->vma
                                   + htab->sgot->output_section->vma
                                   + htab->sgot->output_offset);
                                   + htab->sgot->output_offset);
                outrel.r_addend = 0;
                outrel.r_addend = 0;
                outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
                outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
                loc = htab->srelgot->contents;
                loc = htab->srelgot->contents;
                loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
                loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
 
 
                bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                htab->tls_ldm_got.offset |= 1;
                htab->tls_ldm_got.offset |= 1;
              }
              }
 
 
            /* Add the base of the GOT to the relocation value.  */
            /* Add the base of the GOT to the relocation value.  */
            relocation = (off
            relocation = (off
                          + htab->sgot->output_offset
                          + htab->sgot->output_offset
                          + htab->sgot->output_section->vma);
                          + htab->sgot->output_section->vma);
 
 
            break;
            break;
          }
          }
 
 
        case R_PARISC_TLS_LDO21L:
        case R_PARISC_TLS_LDO21L:
        case R_PARISC_TLS_LDO14R:
        case R_PARISC_TLS_LDO14R:
          relocation -= dtpoff_base (info);
          relocation -= dtpoff_base (info);
          break;
          break;
 
 
        case R_PARISC_TLS_GD21L:
        case R_PARISC_TLS_GD21L:
        case R_PARISC_TLS_GD14R:
        case R_PARISC_TLS_GD14R:
        case R_PARISC_TLS_IE21L:
        case R_PARISC_TLS_IE21L:
        case R_PARISC_TLS_IE14R:
        case R_PARISC_TLS_IE14R:
          {
          {
            bfd_vma off;
            bfd_vma off;
            int indx;
            int indx;
            char tls_type;
            char tls_type;
 
 
            indx = 0;
            indx = 0;
            if (hh != NULL)
            if (hh != NULL)
              {
              {
                bfd_boolean dyn;
                bfd_boolean dyn;
                dyn = htab->etab.dynamic_sections_created;
                dyn = htab->etab.dynamic_sections_created;
 
 
                if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
                if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
                    && (!info->shared
                    && (!info->shared
                        || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
                        || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
                  {
                  {
                    indx = hh->eh.dynindx;
                    indx = hh->eh.dynindx;
                  }
                  }
                off = hh->eh.got.offset;
                off = hh->eh.got.offset;
                tls_type = hh->tls_type;
                tls_type = hh->tls_type;
              }
              }
            else
            else
              {
              {
                off = local_got_offsets[r_symndx];
                off = local_got_offsets[r_symndx];
                tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
                tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
              }
              }
 
 
            if (tls_type == GOT_UNKNOWN)
            if (tls_type == GOT_UNKNOWN)
              abort ();
              abort ();
 
 
            if ((off & 1) != 0)
            if ((off & 1) != 0)
              off &= ~1;
              off &= ~1;
            else
            else
              {
              {
                bfd_boolean need_relocs = FALSE;
                bfd_boolean need_relocs = FALSE;
                Elf_Internal_Rela outrel;
                Elf_Internal_Rela outrel;
                bfd_byte *loc = NULL;
                bfd_byte *loc = NULL;
                int cur_off = off;
                int cur_off = off;
 
 
                /* The GOT entries have not been initialized yet.  Do it
                /* The GOT entries have not been initialized yet.  Do it
                   now, and emit any relocations.  If both an IE GOT and a
                   now, and emit any relocations.  If both an IE GOT and a
                   GD GOT are necessary, we emit the GD first.  */
                   GD GOT are necessary, we emit the GD first.  */
 
 
                if ((info->shared || indx != 0)
                if ((info->shared || indx != 0)
                    && (hh == NULL
                    && (hh == NULL
                        || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
                        || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
                        || hh->eh.root.type != bfd_link_hash_undefweak))
                        || hh->eh.root.type != bfd_link_hash_undefweak))
                  {
                  {
                    need_relocs = TRUE;
                    need_relocs = TRUE;
                    loc = htab->srelgot->contents;
                    loc = htab->srelgot->contents;
                    /* FIXME (CAO): Should this be reloc_count++ ? */
                    /* FIXME (CAO): Should this be reloc_count++ ? */
                    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
                    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
                  }
                  }
 
 
                if (tls_type & GOT_TLS_GD)
                if (tls_type & GOT_TLS_GD)
                  {
                  {
                    if (need_relocs)
                    if (need_relocs)
                      {
                      {
                        outrel.r_offset = (cur_off
                        outrel.r_offset = (cur_off
                                           + htab->sgot->output_section->vma
                                           + htab->sgot->output_section->vma
                                           + htab->sgot->output_offset);
                                           + htab->sgot->output_offset);
                        outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
                        outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
                        outrel.r_addend = 0;
                        outrel.r_addend = 0;
                        bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
                        bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                        htab->srelgot->reloc_count++;
                        htab->srelgot->reloc_count++;
                        loc += sizeof (Elf32_External_Rela);
                        loc += sizeof (Elf32_External_Rela);
 
 
                        if (indx == 0)
                        if (indx == 0)
                          bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
                          bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
                                      htab->sgot->contents + cur_off + 4);
                                      htab->sgot->contents + cur_off + 4);
                        else
                        else
                          {
                          {
                            bfd_put_32 (output_bfd, 0,
                            bfd_put_32 (output_bfd, 0,
                                        htab->sgot->contents + cur_off + 4);
                                        htab->sgot->contents + cur_off + 4);
                            outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
                            outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
                            outrel.r_offset += 4;
                            outrel.r_offset += 4;
                            bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
                            bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
                            htab->srelgot->reloc_count++;
                            htab->srelgot->reloc_count++;
                            loc += sizeof (Elf32_External_Rela);
                            loc += sizeof (Elf32_External_Rela);
                          }
                          }
                      }
                      }
                    else
                    else
                      {
                      {
                        /* If we are not emitting relocations for a
                        /* If we are not emitting relocations for a
                           general dynamic reference, then we must be in a
                           general dynamic reference, then we must be in a
                           static link or an executable link with the
                           static link or an executable link with the
                           symbol binding locally.  Mark it as belonging
                           symbol binding locally.  Mark it as belonging
                           to module 1, the executable.  */
                           to module 1, the executable.  */
                        bfd_put_32 (output_bfd, 1,
                        bfd_put_32 (output_bfd, 1,
                                    htab->sgot->contents + cur_off);
                                    htab->sgot->contents + cur_off);
                        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
                        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
                                    htab->sgot->contents + cur_off + 4);
                                    htab->sgot->contents + cur_off + 4);
                      }
                      }
 
 
 
 
                    cur_off += 8;
                    cur_off += 8;
                  }
                  }
 
 
                if (tls_type & GOT_TLS_IE)
                if (tls_type & GOT_TLS_IE)
                  {
                  {
                    if (need_relocs)
                    if (need_relocs)
                      {
                      {
                        outrel.r_offset = (cur_off
                        outrel.r_offset = (cur_off
                                           + htab->sgot->output_section->vma
                                           + htab->sgot->output_section->vma
                                           + htab->sgot->output_offset);
                                           + htab->sgot->output_offset);
                        outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
                        outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
 
 
                        if (indx == 0)
                        if (indx == 0)
                          outrel.r_addend = relocation - dtpoff_base (info);
                          outrel.r_addend = relocation - dtpoff_base (info);
                        else
                        else
                          outrel.r_addend = 0;
                          outrel.r_addend = 0;
 
 
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                        bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
                        htab->srelgot->reloc_count++;
                        htab->srelgot->reloc_count++;
                        loc += sizeof (Elf32_External_Rela);
                        loc += sizeof (Elf32_External_Rela);
                      }
                      }
                    else
                    else
                      bfd_put_32 (output_bfd, tpoff (info, relocation),
                      bfd_put_32 (output_bfd, tpoff (info, relocation),
                                  htab->sgot->contents + cur_off);
                                  htab->sgot->contents + cur_off);
 
 
                    cur_off += 4;
                    cur_off += 4;
                  }
                  }
 
 
                if (hh != NULL)
                if (hh != NULL)
                  hh->eh.got.offset |= 1;
                  hh->eh.got.offset |= 1;
                else
                else
                  local_got_offsets[r_symndx] |= 1;
                  local_got_offsets[r_symndx] |= 1;
              }
              }
 
 
            if ((tls_type & GOT_TLS_GD)
            if ((tls_type & GOT_TLS_GD)
                && r_type != R_PARISC_TLS_GD21L
                && r_type != R_PARISC_TLS_GD21L
                && r_type != R_PARISC_TLS_GD14R)
                && r_type != R_PARISC_TLS_GD14R)
              off += 2 * GOT_ENTRY_SIZE;
              off += 2 * GOT_ENTRY_SIZE;
 
 
            /* Add the base of the GOT to the relocation value.  */
            /* Add the base of the GOT to the relocation value.  */
            relocation = (off
            relocation = (off
                          + htab->sgot->output_offset
                          + htab->sgot->output_offset
                          + htab->sgot->output_section->vma);
                          + htab->sgot->output_section->vma);
 
 
            break;
            break;
          }
          }
 
 
        case R_PARISC_TLS_LE21L:
        case R_PARISC_TLS_LE21L:
        case R_PARISC_TLS_LE14R:
        case R_PARISC_TLS_LE14R:
          {
          {
            relocation = tpoff (info, relocation);
            relocation = tpoff (info, relocation);
            break;
            break;
          }
          }
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      rstatus = final_link_relocate (input_section, contents, rela, relocation,
      rstatus = final_link_relocate (input_section, contents, rela, relocation,
                               htab, sym_sec, hh, info);
                               htab, sym_sec, hh, info);
 
 
      if (rstatus == bfd_reloc_ok)
      if (rstatus == bfd_reloc_ok)
        continue;
        continue;
 
 
      if (hh != NULL)
      if (hh != NULL)
        sym_name = hh_name (hh);
        sym_name = hh_name (hh);
      else
      else
        {
        {
          sym_name = bfd_elf_string_from_elf_section (input_bfd,
          sym_name = bfd_elf_string_from_elf_section (input_bfd,
                                                      symtab_hdr->sh_link,
                                                      symtab_hdr->sh_link,
                                                      sym->st_name);
                                                      sym->st_name);
          if (sym_name == NULL)
          if (sym_name == NULL)
            return FALSE;
            return FALSE;
          if (*sym_name == '\0')
          if (*sym_name == '\0')
            sym_name = bfd_section_name (input_bfd, sym_sec);
            sym_name = bfd_section_name (input_bfd, sym_sec);
        }
        }
 
 
      howto = elf_hppa_howto_table + r_type;
      howto = elf_hppa_howto_table + r_type;
 
 
      if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
      if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
        {
        {
          if (rstatus == bfd_reloc_notsupported || !warned_undef)
          if (rstatus == bfd_reloc_notsupported || !warned_undef)
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B(%A+0x%lx): cannot handle %s for %s"),
                (_("%B(%A+0x%lx): cannot handle %s for %s"),
                 input_bfd,
                 input_bfd,
                 input_section,
                 input_section,
                 (long) rela->r_offset,
                 (long) rela->r_offset,
                 howto->name,
                 howto->name,
                 sym_name);
                 sym_name);
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
        }
        }
      else
      else
        {
        {
          if (!((*info->callbacks->reloc_overflow)
          if (!((*info->callbacks->reloc_overflow)
                (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
                (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
                 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
                 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
                                  struct bfd_link_info *info,
                                  struct bfd_link_info *info,
                                  struct elf_link_hash_entry *eh,
                                  struct elf_link_hash_entry *eh,
                                  Elf_Internal_Sym *sym)
                                  Elf_Internal_Sym *sym)
{
{
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  Elf_Internal_Rela rela;
  Elf_Internal_Rela rela;
  bfd_byte *loc;
  bfd_byte *loc;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
 
 
  if (eh->plt.offset != (bfd_vma) -1)
  if (eh->plt.offset != (bfd_vma) -1)
    {
    {
      bfd_vma value;
      bfd_vma value;
 
 
      if (eh->plt.offset & 1)
      if (eh->plt.offset & 1)
        abort ();
        abort ();
 
 
      /* This symbol has an entry in the procedure linkage table.  Set
      /* This symbol has an entry in the procedure linkage table.  Set
         it up.
         it up.
 
 
         The format of a plt entry is
         The format of a plt entry is
         <funcaddr>
         <funcaddr>
         <__gp>
         <__gp>
      */
      */
      value = 0;
      value = 0;
      if (eh->root.type == bfd_link_hash_defined
      if (eh->root.type == bfd_link_hash_defined
          || eh->root.type == bfd_link_hash_defweak)
          || eh->root.type == bfd_link_hash_defweak)
        {
        {
          value = eh->root.u.def.value;
          value = eh->root.u.def.value;
          if (eh->root.u.def.section->output_section != NULL)
          if (eh->root.u.def.section->output_section != NULL)
            value += (eh->root.u.def.section->output_offset
            value += (eh->root.u.def.section->output_offset
                      + eh->root.u.def.section->output_section->vma);
                      + eh->root.u.def.section->output_section->vma);
        }
        }
 
 
      /* Create a dynamic IPLT relocation for this entry.  */
      /* Create a dynamic IPLT relocation for this entry.  */
      rela.r_offset = (eh->plt.offset
      rela.r_offset = (eh->plt.offset
                      + htab->splt->output_offset
                      + htab->splt->output_offset
                      + htab->splt->output_section->vma);
                      + htab->splt->output_section->vma);
      if (eh->dynindx != -1)
      if (eh->dynindx != -1)
        {
        {
          rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
          rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
          rela.r_addend = 0;
          rela.r_addend = 0;
        }
        }
      else
      else
        {
        {
          /* This symbol has been marked to become local, and is
          /* This symbol has been marked to become local, and is
             used by a plabel so must be kept in the .plt.  */
             used by a plabel so must be kept in the .plt.  */
          rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
          rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
          rela.r_addend = value;
          rela.r_addend = value;
        }
        }
 
 
      loc = htab->srelplt->contents;
      loc = htab->srelplt->contents;
      loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
      loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
      bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
      bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
 
 
      if (!eh->def_regular)
      if (!eh->def_regular)
        {
        {
          /* Mark the symbol as undefined, rather than as defined in
          /* Mark the symbol as undefined, rather than as defined in
             the .plt section.  Leave the value alone.  */
             the .plt section.  Leave the value alone.  */
          sym->st_shndx = SHN_UNDEF;
          sym->st_shndx = SHN_UNDEF;
        }
        }
    }
    }
 
 
  if (eh->got.offset != (bfd_vma) -1
  if (eh->got.offset != (bfd_vma) -1
      && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
      && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
      && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
      && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
    {
    {
      /* This symbol has an entry in the global offset table.  Set it
      /* This symbol has an entry in the global offset table.  Set it
         up.  */
         up.  */
 
 
      rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
      rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
                      + htab->sgot->output_offset
                      + htab->sgot->output_offset
                      + htab->sgot->output_section->vma);
                      + htab->sgot->output_section->vma);
 
 
      /* If this is a -Bsymbolic link and the symbol is defined
      /* If this is a -Bsymbolic link and the symbol is defined
         locally or was forced to be local because of a version file,
         locally or was forced to be local because of a version file,
         we just want to emit a RELATIVE reloc.  The entry in the
         we just want to emit a RELATIVE reloc.  The entry in the
         global offset table will already have been initialized in the
         global offset table will already have been initialized in the
         relocate_section function.  */
         relocate_section function.  */
      if (info->shared
      if (info->shared
          && (info->symbolic || eh->dynindx == -1)
          && (info->symbolic || eh->dynindx == -1)
          && eh->def_regular)
          && eh->def_regular)
        {
        {
          rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
          rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
          rela.r_addend = (eh->root.u.def.value
          rela.r_addend = (eh->root.u.def.value
                          + eh->root.u.def.section->output_offset
                          + eh->root.u.def.section->output_offset
                          + eh->root.u.def.section->output_section->vma);
                          + eh->root.u.def.section->output_section->vma);
        }
        }
      else
      else
        {
        {
          if ((eh->got.offset & 1) != 0)
          if ((eh->got.offset & 1) != 0)
            abort ();
            abort ();
 
 
          bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
          bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
          rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
          rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
          rela.r_addend = 0;
          rela.r_addend = 0;
        }
        }
 
 
      loc = htab->srelgot->contents;
      loc = htab->srelgot->contents;
      loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
      loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
    }
    }
 
 
  if (eh->needs_copy)
  if (eh->needs_copy)
    {
    {
      asection *sec;
      asection *sec;
 
 
      /* This symbol needs a copy reloc.  Set it up.  */
      /* This symbol needs a copy reloc.  Set it up.  */
 
 
      if (! (eh->dynindx != -1
      if (! (eh->dynindx != -1
             && (eh->root.type == bfd_link_hash_defined
             && (eh->root.type == bfd_link_hash_defined
                 || eh->root.type == bfd_link_hash_defweak)))
                 || eh->root.type == bfd_link_hash_defweak)))
        abort ();
        abort ();
 
 
      sec = htab->srelbss;
      sec = htab->srelbss;
 
 
      rela.r_offset = (eh->root.u.def.value
      rela.r_offset = (eh->root.u.def.value
                      + eh->root.u.def.section->output_offset
                      + eh->root.u.def.section->output_offset
                      + eh->root.u.def.section->output_section->vma);
                      + eh->root.u.def.section->output_section->vma);
      rela.r_addend = 0;
      rela.r_addend = 0;
      rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
      rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
      loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
      loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
    }
    }
 
 
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  if (eh_name (eh)[0] == '_'
  if (eh_name (eh)[0] == '_'
      && (strcmp (eh_name (eh), "_DYNAMIC") == 0
      && (strcmp (eh_name (eh), "_DYNAMIC") == 0
          || eh == htab->etab.hgot))
          || eh == htab->etab.hgot))
    {
    {
      sym->st_shndx = SHN_ABS;
      sym->st_shndx = SHN_ABS;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Used to decide how to sort relocs in an optimal manner for the
/* Used to decide how to sort relocs in an optimal manner for the
   dynamic linker, before writing them out.  */
   dynamic linker, before writing them out.  */
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
{
{
  /* Handle TLS relocs first; we don't want them to be marked
  /* Handle TLS relocs first; we don't want them to be marked
     relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
     relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
     check below.  */
     check below.  */
  switch ((int) ELF32_R_TYPE (rela->r_info))
  switch ((int) ELF32_R_TYPE (rela->r_info))
    {
    {
      case R_PARISC_TLS_DTPMOD32:
      case R_PARISC_TLS_DTPMOD32:
      case R_PARISC_TLS_DTPOFF32:
      case R_PARISC_TLS_DTPOFF32:
      case R_PARISC_TLS_TPREL32:
      case R_PARISC_TLS_TPREL32:
        return reloc_class_normal;
        return reloc_class_normal;
    }
    }
 
 
  if (ELF32_R_SYM (rela->r_info) == 0)
  if (ELF32_R_SYM (rela->r_info) == 0)
    return reloc_class_relative;
    return reloc_class_relative;
 
 
  switch ((int) ELF32_R_TYPE (rela->r_info))
  switch ((int) ELF32_R_TYPE (rela->r_info))
    {
    {
    case R_PARISC_IPLT:
    case R_PARISC_IPLT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_PARISC_COPY:
    case R_PARISC_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
                                    struct bfd_link_info *info)
                                    struct bfd_link_info *info)
{
{
  bfd *dynobj;
  bfd *dynobj;
  struct elf32_hppa_link_hash_table *htab;
  struct elf32_hppa_link_hash_table *htab;
  asection *sdyn;
  asection *sdyn;
 
 
  htab = hppa_link_hash_table (info);
  htab = hppa_link_hash_table (info);
  dynobj = htab->etab.dynobj;
  dynobj = htab->etab.dynobj;
 
 
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
  if (htab->etab.dynamic_sections_created)
  if (htab->etab.dynamic_sections_created)
    {
    {
      Elf32_External_Dyn *dyncon, *dynconend;
      Elf32_External_Dyn *dyncon, *dynconend;
 
 
      if (sdyn == NULL)
      if (sdyn == NULL)
        abort ();
        abort ();
 
 
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          asection *s;
          asection *s;
 
 
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            default:
            default:
              continue;
              continue;
 
 
            case DT_PLTGOT:
            case DT_PLTGOT:
              /* Use PLTGOT to set the GOT register.  */
              /* Use PLTGOT to set the GOT register.  */
              dyn.d_un.d_ptr = elf_gp (output_bfd);
              dyn.d_un.d_ptr = elf_gp (output_bfd);
              break;
              break;
 
 
            case DT_JMPREL:
            case DT_JMPREL:
              s = htab->srelplt;
              s = htab->srelplt;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              break;
              break;
 
 
            case DT_PLTRELSZ:
            case DT_PLTRELSZ:
              s = htab->srelplt;
              s = htab->srelplt;
              dyn.d_un.d_val = s->size;
              dyn.d_un.d_val = s->size;
              break;
              break;
 
 
            case DT_RELASZ:
            case DT_RELASZ:
              /* Don't count procedure linkage table relocs in the
              /* Don't count procedure linkage table relocs in the
                 overall reloc count.  */
                 overall reloc count.  */
              s = htab->srelplt;
              s = htab->srelplt;
              if (s == NULL)
              if (s == NULL)
                continue;
                continue;
              dyn.d_un.d_val -= s->size;
              dyn.d_un.d_val -= s->size;
              break;
              break;
 
 
            case DT_RELA:
            case DT_RELA:
              /* We may not be using the standard ELF linker script.
              /* We may not be using the standard ELF linker script.
                 If .rela.plt is the first .rela section, we adjust
                 If .rela.plt is the first .rela section, we adjust
                 DT_RELA to not include it.  */
                 DT_RELA to not include it.  */
              s = htab->srelplt;
              s = htab->srelplt;
              if (s == NULL)
              if (s == NULL)
                continue;
                continue;
              if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
              if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
                continue;
                continue;
              dyn.d_un.d_ptr += s->size;
              dyn.d_un.d_ptr += s->size;
              break;
              break;
            }
            }
 
 
          bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
          bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
        }
        }
    }
    }
 
 
  if (htab->sgot != NULL && htab->sgot->size != 0)
  if (htab->sgot != NULL && htab->sgot->size != 0)
    {
    {
      /* Fill in the first entry in the global offset table.
      /* Fill in the first entry in the global offset table.
         We use it to point to our dynamic section, if we have one.  */
         We use it to point to our dynamic section, if we have one.  */
      bfd_put_32 (output_bfd,
      bfd_put_32 (output_bfd,
                  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
                  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
                  htab->sgot->contents);
                  htab->sgot->contents);
 
 
      /* The second entry is reserved for use by the dynamic linker.  */
      /* The second entry is reserved for use by the dynamic linker.  */
      memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
      memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
 
 
      /* Set .got entry size.  */
      /* Set .got entry size.  */
      elf_section_data (htab->sgot->output_section)
      elf_section_data (htab->sgot->output_section)
        ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
        ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
    }
    }
 
 
  if (htab->splt != NULL && htab->splt->size != 0)
  if (htab->splt != NULL && htab->splt->size != 0)
    {
    {
      /* Set plt entry size.  */
      /* Set plt entry size.  */
      elf_section_data (htab->splt->output_section)
      elf_section_data (htab->splt->output_section)
        ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
        ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
 
 
      if (htab->need_plt_stub)
      if (htab->need_plt_stub)
        {
        {
          /* Set up the .plt stub.  */
          /* Set up the .plt stub.  */
          memcpy (htab->splt->contents
          memcpy (htab->splt->contents
                  + htab->splt->size - sizeof (plt_stub),
                  + htab->splt->size - sizeof (plt_stub),
                  plt_stub, sizeof (plt_stub));
                  plt_stub, sizeof (plt_stub));
 
 
          if ((htab->splt->output_offset
          if ((htab->splt->output_offset
               + htab->splt->output_section->vma
               + htab->splt->output_section->vma
               + htab->splt->size)
               + htab->splt->size)
              != (htab->sgot->output_offset
              != (htab->sgot->output_offset
                  + htab->sgot->output_section->vma))
                  + htab->sgot->output_section->vma))
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_(".got section not immediately after .plt section"));
                (_(".got section not immediately after .plt section"));
              return FALSE;
              return FALSE;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Called when writing out an object file to decide the type of a
/* Called when writing out an object file to decide the type of a
   symbol.  */
   symbol.  */
static int
static int
elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
{
{
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
    return STT_PARISC_MILLI;
    return STT_PARISC_MILLI;
  else
  else
    return type;
    return type;
}
}
 
 
/* Misc BFD support code.  */
/* Misc BFD support code.  */
#define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
#define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
#define bfd_elf32_bfd_reloc_type_lookup      elf_hppa_reloc_type_lookup
#define bfd_elf32_bfd_reloc_type_lookup      elf_hppa_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
#define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
#define elf_info_to_howto                    elf_hppa_info_to_howto
#define elf_info_to_howto                    elf_hppa_info_to_howto
#define elf_info_to_howto_rel                elf_hppa_info_to_howto_rel
#define elf_info_to_howto_rel                elf_hppa_info_to_howto_rel
 
 
/* Stuff for the BFD linker.  */
/* Stuff for the BFD linker.  */
#define bfd_elf32_mkobject                   elf32_hppa_mkobject
#define bfd_elf32_mkobject                   elf32_hppa_mkobject
#define bfd_elf32_bfd_final_link             elf32_hppa_final_link
#define bfd_elf32_bfd_final_link             elf32_hppa_final_link
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
#define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
#define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
#define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
#define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
#define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
#define elf_backend_check_relocs             elf32_hppa_check_relocs
#define elf_backend_check_relocs             elf32_hppa_check_relocs
#define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
#define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
#define elf_backend_fake_sections            elf_hppa_fake_sections
#define elf_backend_fake_sections            elf_hppa_fake_sections
#define elf_backend_relocate_section         elf32_hppa_relocate_section
#define elf_backend_relocate_section         elf32_hppa_relocate_section
#define elf_backend_hide_symbol              elf32_hppa_hide_symbol
#define elf_backend_hide_symbol              elf32_hppa_hide_symbol
#define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
#define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
#define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
#define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
#define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
#define elf_backend_init_index_section       _bfd_elf_init_1_index_section
#define elf_backend_init_index_section       _bfd_elf_init_1_index_section
#define elf_backend_gc_mark_hook             elf32_hppa_gc_mark_hook
#define elf_backend_gc_mark_hook             elf32_hppa_gc_mark_hook
#define elf_backend_gc_sweep_hook            elf32_hppa_gc_sweep_hook
#define elf_backend_gc_sweep_hook            elf32_hppa_gc_sweep_hook
#define elf_backend_grok_prstatus            elf32_hppa_grok_prstatus
#define elf_backend_grok_prstatus            elf32_hppa_grok_prstatus
#define elf_backend_grok_psinfo              elf32_hppa_grok_psinfo
#define elf_backend_grok_psinfo              elf32_hppa_grok_psinfo
#define elf_backend_object_p                 elf32_hppa_object_p
#define elf_backend_object_p                 elf32_hppa_object_p
#define elf_backend_final_write_processing   elf_hppa_final_write_processing
#define elf_backend_final_write_processing   elf_hppa_final_write_processing
#define elf_backend_post_process_headers     _bfd_elf_set_osabi
#define elf_backend_post_process_headers     _bfd_elf_set_osabi
#define elf_backend_get_symbol_type          elf32_hppa_elf_get_symbol_type
#define elf_backend_get_symbol_type          elf32_hppa_elf_get_symbol_type
#define elf_backend_reloc_type_class         elf32_hppa_reloc_type_class
#define elf_backend_reloc_type_class         elf32_hppa_reloc_type_class
#define elf_backend_action_discarded         elf_hppa_action_discarded
#define elf_backend_action_discarded         elf_hppa_action_discarded
 
 
#define elf_backend_can_gc_sections          1
#define elf_backend_can_gc_sections          1
#define elf_backend_can_refcount             1
#define elf_backend_can_refcount             1
#define elf_backend_plt_alignment            2
#define elf_backend_plt_alignment            2
#define elf_backend_want_got_plt             0
#define elf_backend_want_got_plt             0
#define elf_backend_plt_readonly             0
#define elf_backend_plt_readonly             0
#define elf_backend_want_plt_sym             0
#define elf_backend_want_plt_sym             0
#define elf_backend_got_header_size          8
#define elf_backend_got_header_size          8
#define elf_backend_rela_normal              1
#define elf_backend_rela_normal              1
 
 
#define TARGET_BIG_SYM          bfd_elf32_hppa_vec
#define TARGET_BIG_SYM          bfd_elf32_hppa_vec
#define TARGET_BIG_NAME         "elf32-hppa"
#define TARGET_BIG_NAME         "elf32-hppa"
#define ELF_ARCH                bfd_arch_hppa
#define ELF_ARCH                bfd_arch_hppa
#define ELF_MACHINE_CODE        EM_PARISC
#define ELF_MACHINE_CODE        EM_PARISC
#define ELF_MAXPAGESIZE         0x1000
#define ELF_MAXPAGESIZE         0x1000
#define ELF_OSABI               ELFOSABI_HPUX
#define ELF_OSABI               ELFOSABI_HPUX
#define elf32_bed               elf32_hppa_hpux_bed
#define elf32_bed               elf32_hppa_hpux_bed
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
#undef TARGET_BIG_SYM
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM          bfd_elf32_hppa_linux_vec
#define TARGET_BIG_SYM          bfd_elf32_hppa_linux_vec
#undef TARGET_BIG_NAME
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME         "elf32-hppa-linux"
#define TARGET_BIG_NAME         "elf32-hppa-linux"
#undef ELF_OSABI
#undef ELF_OSABI
#define ELF_OSABI               ELFOSABI_LINUX
#define ELF_OSABI               ELFOSABI_LINUX
#undef elf32_bed
#undef elf32_bed
#define elf32_bed               elf32_hppa_linux_bed
#define elf32_bed               elf32_hppa_linux_bed
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
#undef TARGET_BIG_SYM
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM          bfd_elf32_hppa_nbsd_vec
#define TARGET_BIG_SYM          bfd_elf32_hppa_nbsd_vec
#undef TARGET_BIG_NAME
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME         "elf32-hppa-netbsd"
#define TARGET_BIG_NAME         "elf32-hppa-netbsd"
#undef ELF_OSABI
#undef ELF_OSABI
#define ELF_OSABI               ELFOSABI_NETBSD
#define ELF_OSABI               ELFOSABI_NETBSD
#undef elf32_bed
#undef elf32_bed
#define elf32_bed               elf32_hppa_netbsd_bed
#define elf32_bed               elf32_hppa_netbsd_bed
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.