OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [gas/] [expr.c] - Diff between revs 816 and 818

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 818
/* expr.c -operands, expressions-
/* expr.c -operands, expressions-
   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GAS, the GNU Assembler.
   This file is part of GAS, the GNU Assembler.
 
 
   GAS is free software; you can redistribute it and/or modify
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GAS is distributed in the hope that it will be useful,
   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */
   02110-1301, USA.  */
 
 
/* This is really a branch office of as-read.c. I split it out to clearly
/* This is really a branch office of as-read.c. I split it out to clearly
   distinguish the world of expressions from the world of statements.
   distinguish the world of expressions from the world of statements.
   (It also gives smaller files to re-compile.)
   (It also gives smaller files to re-compile.)
   Here, "operand"s are of expressions, not instructions.  */
   Here, "operand"s are of expressions, not instructions.  */
 
 
#define min(a, b)       ((a) < (b) ? (a) : (b))
#define min(a, b)       ((a) < (b) ? (a) : (b))
 
 
#include "as.h"
#include "as.h"
#include "safe-ctype.h"
#include "safe-ctype.h"
#include "obstack.h"
#include "obstack.h"
 
 
#ifdef HAVE_LIMITS_H
#ifdef HAVE_LIMITS_H
#include <limits.h>
#include <limits.h>
#endif
#endif
#ifndef CHAR_BIT
#ifndef CHAR_BIT
#define CHAR_BIT 8
#define CHAR_BIT 8
#endif
#endif
 
 
static void floating_constant (expressionS * expressionP);
static void floating_constant (expressionS * expressionP);
static valueT generic_bignum_to_int32 (void);
static valueT generic_bignum_to_int32 (void);
#ifdef BFD64
#ifdef BFD64
static valueT generic_bignum_to_int64 (void);
static valueT generic_bignum_to_int64 (void);
#endif
#endif
static void integer_constant (int radix, expressionS * expressionP);
static void integer_constant (int radix, expressionS * expressionP);
static void mri_char_constant (expressionS *);
static void mri_char_constant (expressionS *);
static void current_location (expressionS *);
static void current_location (expressionS *);
static void clean_up_expression (expressionS * expressionP);
static void clean_up_expression (expressionS * expressionP);
static segT operand (expressionS *, enum expr_mode);
static segT operand (expressionS *, enum expr_mode);
static operatorT operatorf (int *);
static operatorT operatorf (int *);
 
 
extern const char EXP_CHARS[], FLT_CHARS[];
extern const char EXP_CHARS[], FLT_CHARS[];
 
 
/* We keep a mapping of expression symbols to file positions, so that
/* We keep a mapping of expression symbols to file positions, so that
   we can provide better error messages.  */
   we can provide better error messages.  */
 
 
struct expr_symbol_line {
struct expr_symbol_line {
  struct expr_symbol_line *next;
  struct expr_symbol_line *next;
  symbolS *sym;
  symbolS *sym;
  char *file;
  char *file;
  unsigned int line;
  unsigned int line;
};
};
 
 
static struct expr_symbol_line *expr_symbol_lines;
static struct expr_symbol_line *expr_symbol_lines;


/* Build a dummy symbol to hold a complex expression.  This is how we
/* Build a dummy symbol to hold a complex expression.  This is how we
   build expressions up out of other expressions.  The symbol is put
   build expressions up out of other expressions.  The symbol is put
   into the fake section expr_section.  */
   into the fake section expr_section.  */
 
 
symbolS *
symbolS *
make_expr_symbol (expressionS *expressionP)
make_expr_symbol (expressionS *expressionP)
{
{
  expressionS zero;
  expressionS zero;
  symbolS *symbolP;
  symbolS *symbolP;
  struct expr_symbol_line *n;
  struct expr_symbol_line *n;
 
 
  if (expressionP->X_op == O_symbol
  if (expressionP->X_op == O_symbol
      && expressionP->X_add_number == 0)
      && expressionP->X_add_number == 0)
    return expressionP->X_add_symbol;
    return expressionP->X_add_symbol;
 
 
  if (expressionP->X_op == O_big)
  if (expressionP->X_op == O_big)
    {
    {
      /* This won't work, because the actual value is stored in
      /* This won't work, because the actual value is stored in
         generic_floating_point_number or generic_bignum, and we are
         generic_floating_point_number or generic_bignum, and we are
         going to lose it if we haven't already.  */
         going to lose it if we haven't already.  */
      if (expressionP->X_add_number > 0)
      if (expressionP->X_add_number > 0)
        as_bad (_("bignum invalid"));
        as_bad (_("bignum invalid"));
      else
      else
        as_bad (_("floating point number invalid"));
        as_bad (_("floating point number invalid"));
      zero.X_op = O_constant;
      zero.X_op = O_constant;
      zero.X_add_number = 0;
      zero.X_add_number = 0;
      zero.X_unsigned = 0;
      zero.X_unsigned = 0;
      clean_up_expression (&zero);
      clean_up_expression (&zero);
      expressionP = &zero;
      expressionP = &zero;
    }
    }
 
 
  /* Putting constant symbols in absolute_section rather than
  /* Putting constant symbols in absolute_section rather than
     expr_section is convenient for the old a.out code, for which
     expr_section is convenient for the old a.out code, for which
     S_GET_SEGMENT does not always retrieve the value put in by
     S_GET_SEGMENT does not always retrieve the value put in by
     S_SET_SEGMENT.  */
     S_SET_SEGMENT.  */
  symbolP = symbol_create (FAKE_LABEL_NAME,
  symbolP = symbol_create (FAKE_LABEL_NAME,
                           (expressionP->X_op == O_constant
                           (expressionP->X_op == O_constant
                            ? absolute_section
                            ? absolute_section
                            : expressionP->X_op == O_register
                            : expressionP->X_op == O_register
                              ? reg_section
                              ? reg_section
                              : expr_section),
                              : expr_section),
                           0, &zero_address_frag);
                           0, &zero_address_frag);
  symbol_set_value_expression (symbolP, expressionP);
  symbol_set_value_expression (symbolP, expressionP);
 
 
  if (expressionP->X_op == O_constant)
  if (expressionP->X_op == O_constant)
    resolve_symbol_value (symbolP);
    resolve_symbol_value (symbolP);
 
 
  n = (struct expr_symbol_line *) xmalloc (sizeof *n);
  n = (struct expr_symbol_line *) xmalloc (sizeof *n);
  n->sym = symbolP;
  n->sym = symbolP;
  as_where (&n->file, &n->line);
  as_where (&n->file, &n->line);
  n->next = expr_symbol_lines;
  n->next = expr_symbol_lines;
  expr_symbol_lines = n;
  expr_symbol_lines = n;
 
 
  return symbolP;
  return symbolP;
}
}
 
 
/* Return the file and line number for an expr symbol.  Return
/* Return the file and line number for an expr symbol.  Return
   non-zero if something was found, 0 if no information is known for
   non-zero if something was found, 0 if no information is known for
   the symbol.  */
   the symbol.  */
 
 
int
int
expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
{
{
  register struct expr_symbol_line *l;
  register struct expr_symbol_line *l;
 
 
  for (l = expr_symbol_lines; l != NULL; l = l->next)
  for (l = expr_symbol_lines; l != NULL; l = l->next)
    {
    {
      if (l->sym == sym)
      if (l->sym == sym)
        {
        {
          *pfile = l->file;
          *pfile = l->file;
          *pline = l->line;
          *pline = l->line;
          return 1;
          return 1;
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Utilities for building expressions.
/* Utilities for building expressions.
   Since complex expressions are recorded as symbols for use in other
   Since complex expressions are recorded as symbols for use in other
   expressions these return a symbolS * and not an expressionS *.
   expressions these return a symbolS * and not an expressionS *.
   These explicitly do not take an "add_number" argument.  */
   These explicitly do not take an "add_number" argument.  */
/* ??? For completeness' sake one might want expr_build_symbol.
/* ??? For completeness' sake one might want expr_build_symbol.
   It would just return its argument.  */
   It would just return its argument.  */
 
 
/* Build an expression for an unsigned constant.
/* Build an expression for an unsigned constant.
   The corresponding one for signed constants is missing because
   The corresponding one for signed constants is missing because
   there's currently no need for it.  One could add an unsigned_p flag
   there's currently no need for it.  One could add an unsigned_p flag
   but that seems more clumsy.  */
   but that seems more clumsy.  */
 
 
symbolS *
symbolS *
expr_build_uconstant (offsetT value)
expr_build_uconstant (offsetT value)
{
{
  expressionS e;
  expressionS e;
 
 
  e.X_op = O_constant;
  e.X_op = O_constant;
  e.X_add_number = value;
  e.X_add_number = value;
  e.X_unsigned = 1;
  e.X_unsigned = 1;
  return make_expr_symbol (&e);
  return make_expr_symbol (&e);
}
}
 
 
/* Build an expression for the current location ('.').  */
/* Build an expression for the current location ('.').  */
 
 
symbolS *
symbolS *
expr_build_dot (void)
expr_build_dot (void)
{
{
  expressionS e;
  expressionS e;
 
 
  current_location (&e);
  current_location (&e);
  return make_expr_symbol (&e);
  return make_expr_symbol (&e);
}
}


/* Build any floating-point literal here.
/* Build any floating-point literal here.
   Also build any bignum literal here.  */
   Also build any bignum literal here.  */
 
 
/* Seems atof_machine can backscan through generic_bignum and hit whatever
/* Seems atof_machine can backscan through generic_bignum and hit whatever
   happens to be loaded before it in memory.  And its way too complicated
   happens to be loaded before it in memory.  And its way too complicated
   for me to fix right.  Thus a hack.  JF:  Just make generic_bignum bigger,
   for me to fix right.  Thus a hack.  JF:  Just make generic_bignum bigger,
   and never write into the early words, thus they'll always be zero.
   and never write into the early words, thus they'll always be zero.
   I hate Dean's floating-point code.  Bleh.  */
   I hate Dean's floating-point code.  Bleh.  */
LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
 
 
FLONUM_TYPE generic_floating_point_number = {
FLONUM_TYPE generic_floating_point_number = {
  &generic_bignum[6],           /* low.  (JF: Was 0)  */
  &generic_bignum[6],           /* low.  (JF: Was 0)  */
  &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high.  JF: (added +6)  */
  &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high.  JF: (added +6)  */
  0,                             /* leader.  */
  0,                             /* leader.  */
  0,                             /* exponent.  */
  0,                             /* exponent.  */
  0                              /* sign.  */
  0                              /* sign.  */
};
};
 
 


static void
static void
floating_constant (expressionS *expressionP)
floating_constant (expressionS *expressionP)
{
{
  /* input_line_pointer -> floating-point constant.  */
  /* input_line_pointer -> floating-point constant.  */
  int error_code;
  int error_code;
 
 
  error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
  error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
                             &generic_floating_point_number);
                             &generic_floating_point_number);
 
 
  if (error_code)
  if (error_code)
    {
    {
      if (error_code == ERROR_EXPONENT_OVERFLOW)
      if (error_code == ERROR_EXPONENT_OVERFLOW)
        {
        {
          as_bad (_("bad floating-point constant: exponent overflow"));
          as_bad (_("bad floating-point constant: exponent overflow"));
        }
        }
      else
      else
        {
        {
          as_bad (_("bad floating-point constant: unknown error code=%d"),
          as_bad (_("bad floating-point constant: unknown error code=%d"),
                  error_code);
                  error_code);
        }
        }
    }
    }
  expressionP->X_op = O_big;
  expressionP->X_op = O_big;
  /* input_line_pointer -> just after constant, which may point to
  /* input_line_pointer -> just after constant, which may point to
     whitespace.  */
     whitespace.  */
  expressionP->X_add_number = -1;
  expressionP->X_add_number = -1;
}
}
 
 
static valueT
static valueT
generic_bignum_to_int32 (void)
generic_bignum_to_int32 (void)
{
{
  valueT number =
  valueT number =
           ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
           ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
           | (generic_bignum[0] & LITTLENUM_MASK);
           | (generic_bignum[0] & LITTLENUM_MASK);
  number &= 0xffffffff;
  number &= 0xffffffff;
  return number;
  return number;
}
}
 
 
#ifdef BFD64
#ifdef BFD64
static valueT
static valueT
generic_bignum_to_int64 (void)
generic_bignum_to_int64 (void)
{
{
  valueT number =
  valueT number =
    ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
    ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
          << LITTLENUM_NUMBER_OF_BITS)
          << LITTLENUM_NUMBER_OF_BITS)
         | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
         | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
        << LITTLENUM_NUMBER_OF_BITS)
        << LITTLENUM_NUMBER_OF_BITS)
       | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
       | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
      << LITTLENUM_NUMBER_OF_BITS)
      << LITTLENUM_NUMBER_OF_BITS)
     | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
     | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
  return number;
  return number;
}
}
#endif
#endif
 
 
static void
static void
integer_constant (int radix, expressionS *expressionP)
integer_constant (int radix, expressionS *expressionP)
{
{
  char *start;          /* Start of number.  */
  char *start;          /* Start of number.  */
  char *suffix = NULL;
  char *suffix = NULL;
  char c;
  char c;
  valueT number;        /* Offset or (absolute) value.  */
  valueT number;        /* Offset or (absolute) value.  */
  short int digit;      /* Value of next digit in current radix.  */
  short int digit;      /* Value of next digit in current radix.  */
  short int maxdig = 0;  /* Highest permitted digit value.  */
  short int maxdig = 0;  /* Highest permitted digit value.  */
  int too_many_digits = 0;       /* If we see >= this number of.  */
  int too_many_digits = 0;       /* If we see >= this number of.  */
  char *name;           /* Points to name of symbol.  */
  char *name;           /* Points to name of symbol.  */
  symbolS *symbolP;     /* Points to symbol.  */
  symbolS *symbolP;     /* Points to symbol.  */
 
 
  int small;                    /* True if fits in 32 bits.  */
  int small;                    /* True if fits in 32 bits.  */
 
 
  /* May be bignum, or may fit in 32 bits.  */
  /* May be bignum, or may fit in 32 bits.  */
  /* Most numbers fit into 32 bits, and we want this case to be fast.
  /* Most numbers fit into 32 bits, and we want this case to be fast.
     so we pretend it will fit into 32 bits.  If, after making up a 32
     so we pretend it will fit into 32 bits.  If, after making up a 32
     bit number, we realise that we have scanned more digits than
     bit number, we realise that we have scanned more digits than
     comfortably fit into 32 bits, we re-scan the digits coding them
     comfortably fit into 32 bits, we re-scan the digits coding them
     into a bignum.  For decimal and octal numbers we are
     into a bignum.  For decimal and octal numbers we are
     conservative: Some numbers may be assumed bignums when in fact
     conservative: Some numbers may be assumed bignums when in fact
     they do fit into 32 bits.  Numbers of any radix can have excess
     they do fit into 32 bits.  Numbers of any radix can have excess
     leading zeros: We strive to recognise this and cast them back
     leading zeros: We strive to recognise this and cast them back
     into 32 bits.  We must check that the bignum really is more than
     into 32 bits.  We must check that the bignum really is more than
     32 bits, and change it back to a 32-bit number if it fits.  The
     32 bits, and change it back to a 32-bit number if it fits.  The
     number we are looking for is expected to be positive, but if it
     number we are looking for is expected to be positive, but if it
     fits into 32 bits as an unsigned number, we let it be a 32-bit
     fits into 32 bits as an unsigned number, we let it be a 32-bit
     number.  The cavalier approach is for speed in ordinary cases.  */
     number.  The cavalier approach is for speed in ordinary cases.  */
  /* This has been extended for 64 bits.  We blindly assume that if
  /* This has been extended for 64 bits.  We blindly assume that if
     you're compiling in 64-bit mode, the target is a 64-bit machine.
     you're compiling in 64-bit mode, the target is a 64-bit machine.
     This should be cleaned up.  */
     This should be cleaned up.  */
 
 
#ifdef BFD64
#ifdef BFD64
#define valuesize 64
#define valuesize 64
#else /* includes non-bfd case, mostly */
#else /* includes non-bfd case, mostly */
#define valuesize 32
#define valuesize 32
#endif
#endif
 
 
  if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
  if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
    {
    {
      int flt = 0;
      int flt = 0;
 
 
      /* In MRI mode, the number may have a suffix indicating the
      /* In MRI mode, the number may have a suffix indicating the
         radix.  For that matter, it might actually be a floating
         radix.  For that matter, it might actually be a floating
         point constant.  */
         point constant.  */
      for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
      for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
        {
        {
          if (*suffix == 'e' || *suffix == 'E')
          if (*suffix == 'e' || *suffix == 'E')
            flt = 1;
            flt = 1;
        }
        }
 
 
      if (suffix == input_line_pointer)
      if (suffix == input_line_pointer)
        {
        {
          radix = 10;
          radix = 10;
          suffix = NULL;
          suffix = NULL;
        }
        }
      else
      else
        {
        {
          c = *--suffix;
          c = *--suffix;
          c = TOUPPER (c);
          c = TOUPPER (c);
          /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
          /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
             we distinguish between 'B' and 'b'.  This is the case for
             we distinguish between 'B' and 'b'.  This is the case for
             Z80.  */
             Z80.  */
          if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
          if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
            radix = 2;
            radix = 2;
          else if (c == 'D')
          else if (c == 'D')
            radix = 10;
            radix = 10;
          else if (c == 'O' || c == 'Q')
          else if (c == 'O' || c == 'Q')
            radix = 8;
            radix = 8;
          else if (c == 'H')
          else if (c == 'H')
            radix = 16;
            radix = 16;
          else if (suffix[1] == '.' || c == 'E' || flt)
          else if (suffix[1] == '.' || c == 'E' || flt)
            {
            {
              floating_constant (expressionP);
              floating_constant (expressionP);
              return;
              return;
            }
            }
          else
          else
            {
            {
              radix = 10;
              radix = 10;
              suffix = NULL;
              suffix = NULL;
            }
            }
        }
        }
    }
    }
 
 
  switch (radix)
  switch (radix)
    {
    {
    case 2:
    case 2:
      maxdig = 2;
      maxdig = 2;
      too_many_digits = valuesize + 1;
      too_many_digits = valuesize + 1;
      break;
      break;
    case 8:
    case 8:
      maxdig = radix = 8;
      maxdig = radix = 8;
      too_many_digits = (valuesize + 2) / 3 + 1;
      too_many_digits = (valuesize + 2) / 3 + 1;
      break;
      break;
    case 16:
    case 16:
      maxdig = radix = 16;
      maxdig = radix = 16;
      too_many_digits = (valuesize + 3) / 4 + 1;
      too_many_digits = (valuesize + 3) / 4 + 1;
      break;
      break;
    case 10:
    case 10:
      maxdig = radix = 10;
      maxdig = radix = 10;
      too_many_digits = (valuesize + 11) / 4; /* Very rough.  */
      too_many_digits = (valuesize + 11) / 4; /* Very rough.  */
    }
    }
#undef valuesize
#undef valuesize
  start = input_line_pointer;
  start = input_line_pointer;
  c = *input_line_pointer++;
  c = *input_line_pointer++;
  for (number = 0;
  for (number = 0;
       (digit = hex_value (c)) < maxdig;
       (digit = hex_value (c)) < maxdig;
       c = *input_line_pointer++)
       c = *input_line_pointer++)
    {
    {
      number = number * radix + digit;
      number = number * radix + digit;
    }
    }
  /* c contains character after number.  */
  /* c contains character after number.  */
  /* input_line_pointer->char after c.  */
  /* input_line_pointer->char after c.  */
  small = (input_line_pointer - start - 1) < too_many_digits;
  small = (input_line_pointer - start - 1) < too_many_digits;
 
 
  if (radix == 16 && c == '_')
  if (radix == 16 && c == '_')
    {
    {
      /* This is literal of the form 0x333_0_12345678_1.
      /* This is literal of the form 0x333_0_12345678_1.
         This example is equivalent to 0x00000333000000001234567800000001.  */
         This example is equivalent to 0x00000333000000001234567800000001.  */
 
 
      int num_little_digits = 0;
      int num_little_digits = 0;
      int i;
      int i;
      input_line_pointer = start;       /* -> 1st digit.  */
      input_line_pointer = start;       /* -> 1st digit.  */
 
 
      know (LITTLENUM_NUMBER_OF_BITS == 16);
      know (LITTLENUM_NUMBER_OF_BITS == 16);
 
 
      for (c = '_'; c == '_'; num_little_digits += 2)
      for (c = '_'; c == '_'; num_little_digits += 2)
        {
        {
 
 
          /* Convert one 64-bit word.  */
          /* Convert one 64-bit word.  */
          int ndigit = 0;
          int ndigit = 0;
          number = 0;
          number = 0;
          for (c = *input_line_pointer++;
          for (c = *input_line_pointer++;
               (digit = hex_value (c)) < maxdig;
               (digit = hex_value (c)) < maxdig;
               c = *(input_line_pointer++))
               c = *(input_line_pointer++))
            {
            {
              number = number * radix + digit;
              number = number * radix + digit;
              ndigit++;
              ndigit++;
            }
            }
 
 
          /* Check for 8 digit per word max.  */
          /* Check for 8 digit per word max.  */
          if (ndigit > 8)
          if (ndigit > 8)
            as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
            as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
 
 
          /* Add this chunk to the bignum.
          /* Add this chunk to the bignum.
             Shift things down 2 little digits.  */
             Shift things down 2 little digits.  */
          know (LITTLENUM_NUMBER_OF_BITS == 16);
          know (LITTLENUM_NUMBER_OF_BITS == 16);
          for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
          for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
               i >= 2;
               i >= 2;
               i--)
               i--)
            generic_bignum[i] = generic_bignum[i - 2];
            generic_bignum[i] = generic_bignum[i - 2];
 
 
          /* Add the new digits as the least significant new ones.  */
          /* Add the new digits as the least significant new ones.  */
          generic_bignum[0] = number & 0xffffffff;
          generic_bignum[0] = number & 0xffffffff;
          generic_bignum[1] = number >> 16;
          generic_bignum[1] = number >> 16;
        }
        }
 
 
      /* Again, c is char after number, input_line_pointer->after c.  */
      /* Again, c is char after number, input_line_pointer->after c.  */
 
 
      if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
      if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
        num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
        num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
 
 
      gas_assert (num_little_digits >= 4);
      gas_assert (num_little_digits >= 4);
 
 
      if (num_little_digits != 8)
      if (num_little_digits != 8)
        as_bad (_("a bignum with underscores must have exactly 4 words"));
        as_bad (_("a bignum with underscores must have exactly 4 words"));
 
 
      /* We might have some leading zeros.  These can be trimmed to give
      /* We might have some leading zeros.  These can be trimmed to give
         us a change to fit this constant into a small number.  */
         us a change to fit this constant into a small number.  */
      while (generic_bignum[num_little_digits - 1] == 0
      while (generic_bignum[num_little_digits - 1] == 0
             && num_little_digits > 1)
             && num_little_digits > 1)
        num_little_digits--;
        num_little_digits--;
 
 
      if (num_little_digits <= 2)
      if (num_little_digits <= 2)
        {
        {
          /* will fit into 32 bits.  */
          /* will fit into 32 bits.  */
          number = generic_bignum_to_int32 ();
          number = generic_bignum_to_int32 ();
          small = 1;
          small = 1;
        }
        }
#ifdef BFD64
#ifdef BFD64
      else if (num_little_digits <= 4)
      else if (num_little_digits <= 4)
        {
        {
          /* Will fit into 64 bits.  */
          /* Will fit into 64 bits.  */
          number = generic_bignum_to_int64 ();
          number = generic_bignum_to_int64 ();
          small = 1;
          small = 1;
        }
        }
#endif
#endif
      else
      else
        {
        {
          small = 0;
          small = 0;
 
 
          /* Number of littlenums in the bignum.  */
          /* Number of littlenums in the bignum.  */
          number = num_little_digits;
          number = num_little_digits;
        }
        }
    }
    }
  else if (!small)
  else if (!small)
    {
    {
      /* We saw a lot of digits. manufacture a bignum the hard way.  */
      /* We saw a lot of digits. manufacture a bignum the hard way.  */
      LITTLENUM_TYPE *leader;   /* -> high order littlenum of the bignum.  */
      LITTLENUM_TYPE *leader;   /* -> high order littlenum of the bignum.  */
      LITTLENUM_TYPE *pointer;  /* -> littlenum we are frobbing now.  */
      LITTLENUM_TYPE *pointer;  /* -> littlenum we are frobbing now.  */
      long carry;
      long carry;
 
 
      leader = generic_bignum;
      leader = generic_bignum;
      generic_bignum[0] = 0;
      generic_bignum[0] = 0;
      generic_bignum[1] = 0;
      generic_bignum[1] = 0;
      generic_bignum[2] = 0;
      generic_bignum[2] = 0;
      generic_bignum[3] = 0;
      generic_bignum[3] = 0;
      input_line_pointer = start;       /* -> 1st digit.  */
      input_line_pointer = start;       /* -> 1st digit.  */
      c = *input_line_pointer++;
      c = *input_line_pointer++;
      for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
      for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
        {
        {
          for (pointer = generic_bignum; pointer <= leader; pointer++)
          for (pointer = generic_bignum; pointer <= leader; pointer++)
            {
            {
              long work;
              long work;
 
 
              work = carry + radix * *pointer;
              work = carry + radix * *pointer;
              *pointer = work & LITTLENUM_MASK;
              *pointer = work & LITTLENUM_MASK;
              carry = work >> LITTLENUM_NUMBER_OF_BITS;
              carry = work >> LITTLENUM_NUMBER_OF_BITS;
            }
            }
          if (carry)
          if (carry)
            {
            {
              if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
              if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
                {
                {
                  /* Room to grow a longer bignum.  */
                  /* Room to grow a longer bignum.  */
                  *++leader = carry;
                  *++leader = carry;
                }
                }
            }
            }
        }
        }
      /* Again, c is char after number.  */
      /* Again, c is char after number.  */
      /* input_line_pointer -> after c.  */
      /* input_line_pointer -> after c.  */
      know (LITTLENUM_NUMBER_OF_BITS == 16);
      know (LITTLENUM_NUMBER_OF_BITS == 16);
      if (leader < generic_bignum + 2)
      if (leader < generic_bignum + 2)
        {
        {
          /* Will fit into 32 bits.  */
          /* Will fit into 32 bits.  */
          number = generic_bignum_to_int32 ();
          number = generic_bignum_to_int32 ();
          small = 1;
          small = 1;
        }
        }
#ifdef BFD64
#ifdef BFD64
      else if (leader < generic_bignum + 4)
      else if (leader < generic_bignum + 4)
        {
        {
          /* Will fit into 64 bits.  */
          /* Will fit into 64 bits.  */
          number = generic_bignum_to_int64 ();
          number = generic_bignum_to_int64 ();
          small = 1;
          small = 1;
        }
        }
#endif
#endif
      else
      else
        {
        {
          /* Number of littlenums in the bignum.  */
          /* Number of littlenums in the bignum.  */
          number = leader - generic_bignum + 1;
          number = leader - generic_bignum + 1;
        }
        }
    }
    }
 
 
  if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
  if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
      && suffix != NULL
      && suffix != NULL
      && input_line_pointer - 1 == suffix)
      && input_line_pointer - 1 == suffix)
    c = *input_line_pointer++;
    c = *input_line_pointer++;
 
 
  if (small)
  if (small)
    {
    {
      /* Here with number, in correct radix. c is the next char.
      /* Here with number, in correct radix. c is the next char.
         Note that unlike un*x, we allow "011f" "0x9f" to both mean
         Note that unlike un*x, we allow "011f" "0x9f" to both mean
         the same as the (conventional) "9f".
         the same as the (conventional) "9f".
         This is simply easier than checking for strict canonical
         This is simply easier than checking for strict canonical
         form.  Syntax sux!  */
         form.  Syntax sux!  */
 
 
      if (LOCAL_LABELS_FB && c == 'b')
      if (LOCAL_LABELS_FB && c == 'b')
        {
        {
          /* Backward ref to local label.
          /* Backward ref to local label.
             Because it is backward, expect it to be defined.  */
             Because it is backward, expect it to be defined.  */
          /* Construct a local label.  */
          /* Construct a local label.  */
          name = fb_label_name ((int) number, 0);
          name = fb_label_name ((int) number, 0);
 
 
          /* Seen before, or symbol is defined: OK.  */
          /* Seen before, or symbol is defined: OK.  */
          symbolP = symbol_find (name);
          symbolP = symbol_find (name);
          if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
          if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
            {
            {
              /* Local labels are never absolute.  Don't waste time
              /* Local labels are never absolute.  Don't waste time
                 checking absoluteness.  */
                 checking absoluteness.  */
              know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
              know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
 
 
              expressionP->X_op = O_symbol;
              expressionP->X_op = O_symbol;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_symbol = symbolP;
            }
            }
          else
          else
            {
            {
              /* Either not seen or not defined.  */
              /* Either not seen or not defined.  */
              /* @@ Should print out the original string instead of
              /* @@ Should print out the original string instead of
                 the parsed number.  */
                 the parsed number.  */
              as_bad (_("backward ref to unknown label \"%d:\""),
              as_bad (_("backward ref to unknown label \"%d:\""),
                      (int) number);
                      (int) number);
              expressionP->X_op = O_constant;
              expressionP->X_op = O_constant;
            }
            }
 
 
          expressionP->X_add_number = 0;
          expressionP->X_add_number = 0;
        }                       /* case 'b' */
        }                       /* case 'b' */
      else if (LOCAL_LABELS_FB && c == 'f')
      else if (LOCAL_LABELS_FB && c == 'f')
        {
        {
          /* Forward reference.  Expect symbol to be undefined or
          /* Forward reference.  Expect symbol to be undefined or
             unknown.  undefined: seen it before.  unknown: never seen
             unknown.  undefined: seen it before.  unknown: never seen
             it before.
             it before.
 
 
             Construct a local label name, then an undefined symbol.
             Construct a local label name, then an undefined symbol.
             Don't create a xseg frag for it: caller may do that.
             Don't create a xseg frag for it: caller may do that.
             Just return it as never seen before.  */
             Just return it as never seen before.  */
          name = fb_label_name ((int) number, 1);
          name = fb_label_name ((int) number, 1);
          symbolP = symbol_find_or_make (name);
          symbolP = symbol_find_or_make (name);
          /* We have no need to check symbol properties.  */
          /* We have no need to check symbol properties.  */
#ifndef many_segments
#ifndef many_segments
          /* Since "know" puts its arg into a "string", we
          /* Since "know" puts its arg into a "string", we
             can't have newlines in the argument.  */
             can't have newlines in the argument.  */
          know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
          know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
#endif
#endif
          expressionP->X_op = O_symbol;
          expressionP->X_op = O_symbol;
          expressionP->X_add_symbol = symbolP;
          expressionP->X_add_symbol = symbolP;
          expressionP->X_add_number = 0;
          expressionP->X_add_number = 0;
        }                       /* case 'f' */
        }                       /* case 'f' */
      else if (LOCAL_LABELS_DOLLAR && c == '$')
      else if (LOCAL_LABELS_DOLLAR && c == '$')
        {
        {
          /* If the dollar label is *currently* defined, then this is just
          /* If the dollar label is *currently* defined, then this is just
             another reference to it.  If it is not *currently* defined,
             another reference to it.  If it is not *currently* defined,
             then this is a fresh instantiation of that number, so create
             then this is a fresh instantiation of that number, so create
             it.  */
             it.  */
 
 
          if (dollar_label_defined ((long) number))
          if (dollar_label_defined ((long) number))
            {
            {
              name = dollar_label_name ((long) number, 0);
              name = dollar_label_name ((long) number, 0);
              symbolP = symbol_find (name);
              symbolP = symbol_find (name);
              know (symbolP != NULL);
              know (symbolP != NULL);
            }
            }
          else
          else
            {
            {
              name = dollar_label_name ((long) number, 1);
              name = dollar_label_name ((long) number, 1);
              symbolP = symbol_find_or_make (name);
              symbolP = symbol_find_or_make (name);
            }
            }
 
 
          expressionP->X_op = O_symbol;
          expressionP->X_op = O_symbol;
          expressionP->X_add_symbol = symbolP;
          expressionP->X_add_symbol = symbolP;
          expressionP->X_add_number = 0;
          expressionP->X_add_number = 0;
        }                       /* case '$' */
        }                       /* case '$' */
      else
      else
        {
        {
          expressionP->X_op = O_constant;
          expressionP->X_op = O_constant;
          expressionP->X_add_number = number;
          expressionP->X_add_number = number;
          input_line_pointer--; /* Restore following character.  */
          input_line_pointer--; /* Restore following character.  */
        }                       /* Really just a number.  */
        }                       /* Really just a number.  */
    }
    }
  else
  else
    {
    {
      /* Not a small number.  */
      /* Not a small number.  */
      expressionP->X_op = O_big;
      expressionP->X_op = O_big;
      expressionP->X_add_number = number;       /* Number of littlenums.  */
      expressionP->X_add_number = number;       /* Number of littlenums.  */
      input_line_pointer--;     /* -> char following number.  */
      input_line_pointer--;     /* -> char following number.  */
    }
    }
}
}
 
 
/* Parse an MRI multi character constant.  */
/* Parse an MRI multi character constant.  */
 
 
static void
static void
mri_char_constant (expressionS *expressionP)
mri_char_constant (expressionS *expressionP)
{
{
  int i;
  int i;
 
 
  if (*input_line_pointer == '\''
  if (*input_line_pointer == '\''
      && input_line_pointer[1] != '\'')
      && input_line_pointer[1] != '\'')
    {
    {
      expressionP->X_op = O_constant;
      expressionP->X_op = O_constant;
      expressionP->X_add_number = 0;
      expressionP->X_add_number = 0;
      return;
      return;
    }
    }
 
 
  /* In order to get the correct byte ordering, we must build the
  /* In order to get the correct byte ordering, we must build the
     number in reverse.  */
     number in reverse.  */
  for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
  for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
    {
    {
      int j;
      int j;
 
 
      generic_bignum[i] = 0;
      generic_bignum[i] = 0;
      for (j = 0; j < CHARS_PER_LITTLENUM; j++)
      for (j = 0; j < CHARS_PER_LITTLENUM; j++)
        {
        {
          if (*input_line_pointer == '\'')
          if (*input_line_pointer == '\'')
            {
            {
              if (input_line_pointer[1] != '\'')
              if (input_line_pointer[1] != '\'')
                break;
                break;
              ++input_line_pointer;
              ++input_line_pointer;
            }
            }
          generic_bignum[i] <<= 8;
          generic_bignum[i] <<= 8;
          generic_bignum[i] += *input_line_pointer;
          generic_bignum[i] += *input_line_pointer;
          ++input_line_pointer;
          ++input_line_pointer;
        }
        }
 
 
      if (i < SIZE_OF_LARGE_NUMBER - 1)
      if (i < SIZE_OF_LARGE_NUMBER - 1)
        {
        {
          /* If there is more than one littlenum, left justify the
          /* If there is more than one littlenum, left justify the
             last one to make it match the earlier ones.  If there is
             last one to make it match the earlier ones.  If there is
             only one, we can just use the value directly.  */
             only one, we can just use the value directly.  */
          for (; j < CHARS_PER_LITTLENUM; j++)
          for (; j < CHARS_PER_LITTLENUM; j++)
            generic_bignum[i] <<= 8;
            generic_bignum[i] <<= 8;
        }
        }
 
 
      if (*input_line_pointer == '\''
      if (*input_line_pointer == '\''
          && input_line_pointer[1] != '\'')
          && input_line_pointer[1] != '\'')
        break;
        break;
    }
    }
 
 
  if (i < 0)
  if (i < 0)
    {
    {
      as_bad (_("character constant too large"));
      as_bad (_("character constant too large"));
      i = 0;
      i = 0;
    }
    }
 
 
  if (i > 0)
  if (i > 0)
    {
    {
      int c;
      int c;
      int j;
      int j;
 
 
      c = SIZE_OF_LARGE_NUMBER - i;
      c = SIZE_OF_LARGE_NUMBER - i;
      for (j = 0; j < c; j++)
      for (j = 0; j < c; j++)
        generic_bignum[j] = generic_bignum[i + j];
        generic_bignum[j] = generic_bignum[i + j];
      i = c;
      i = c;
    }
    }
 
 
  know (LITTLENUM_NUMBER_OF_BITS == 16);
  know (LITTLENUM_NUMBER_OF_BITS == 16);
  if (i > 2)
  if (i > 2)
    {
    {
      expressionP->X_op = O_big;
      expressionP->X_op = O_big;
      expressionP->X_add_number = i;
      expressionP->X_add_number = i;
    }
    }
  else
  else
    {
    {
      expressionP->X_op = O_constant;
      expressionP->X_op = O_constant;
      if (i < 2)
      if (i < 2)
        expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
        expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
      else
      else
        expressionP->X_add_number =
        expressionP->X_add_number =
          (((generic_bignum[1] & LITTLENUM_MASK)
          (((generic_bignum[1] & LITTLENUM_MASK)
            << LITTLENUM_NUMBER_OF_BITS)
            << LITTLENUM_NUMBER_OF_BITS)
           | (generic_bignum[0] & LITTLENUM_MASK));
           | (generic_bignum[0] & LITTLENUM_MASK));
    }
    }
 
 
  /* Skip the final closing quote.  */
  /* Skip the final closing quote.  */
  ++input_line_pointer;
  ++input_line_pointer;
}
}
 
 
/* Return an expression representing the current location.  This
/* Return an expression representing the current location.  This
   handles the magic symbol `.'.  */
   handles the magic symbol `.'.  */
 
 
static void
static void
current_location (expressionS *expressionp)
current_location (expressionS *expressionp)
{
{
  if (now_seg == absolute_section)
  if (now_seg == absolute_section)
    {
    {
      expressionp->X_op = O_constant;
      expressionp->X_op = O_constant;
      expressionp->X_add_number = abs_section_offset;
      expressionp->X_add_number = abs_section_offset;
    }
    }
  else
  else
    {
    {
      expressionp->X_op = O_symbol;
      expressionp->X_op = O_symbol;
      expressionp->X_add_symbol = symbol_temp_new_now ();
      expressionp->X_add_symbol = symbol_temp_new_now ();
      expressionp->X_add_number = 0;
      expressionp->X_add_number = 0;
    }
    }
}
}
 
 
/* In:  Input_line_pointer points to 1st char of operand, which may
/* In:  Input_line_pointer points to 1st char of operand, which may
        be a space.
        be a space.
 
 
   Out: An expressionS.
   Out: An expressionS.
        The operand may have been empty: in this case X_op == O_absent.
        The operand may have been empty: in this case X_op == O_absent.
        Input_line_pointer->(next non-blank) char after operand.  */
        Input_line_pointer->(next non-blank) char after operand.  */
 
 
static segT
static segT
operand (expressionS *expressionP, enum expr_mode mode)
operand (expressionS *expressionP, enum expr_mode mode)
{
{
  char c;
  char c;
  symbolS *symbolP;     /* Points to symbol.  */
  symbolS *symbolP;     /* Points to symbol.  */
  char *name;           /* Points to name of symbol.  */
  char *name;           /* Points to name of symbol.  */
  segT segment;
  segT segment;
 
 
  /* All integers are regarded as unsigned unless they are negated.
  /* All integers are regarded as unsigned unless they are negated.
     This is because the only thing which cares whether a number is
     This is because the only thing which cares whether a number is
     unsigned is the code in emit_expr which extends constants into
     unsigned is the code in emit_expr which extends constants into
     bignums.  It should only sign extend negative numbers, so that
     bignums.  It should only sign extend negative numbers, so that
     something like ``.quad 0x80000000'' is not sign extended even
     something like ``.quad 0x80000000'' is not sign extended even
     though it appears negative if valueT is 32 bits.  */
     though it appears negative if valueT is 32 bits.  */
  expressionP->X_unsigned = 1;
  expressionP->X_unsigned = 1;
 
 
  /* Digits, assume it is a bignum.  */
  /* Digits, assume it is a bignum.  */
 
 
  SKIP_WHITESPACE ();           /* Leading whitespace is part of operand.  */
  SKIP_WHITESPACE ();           /* Leading whitespace is part of operand.  */
  c = *input_line_pointer++;    /* input_line_pointer -> past char in c.  */
  c = *input_line_pointer++;    /* input_line_pointer -> past char in c.  */
 
 
  if (is_end_of_line[(unsigned char) c])
  if (is_end_of_line[(unsigned char) c])
    goto eol;
    goto eol;
 
 
  switch (c)
  switch (c)
    {
    {
    case '1':
    case '1':
    case '2':
    case '2':
    case '3':
    case '3':
    case '4':
    case '4':
    case '5':
    case '5':
    case '6':
    case '6':
    case '7':
    case '7':
    case '8':
    case '8':
    case '9':
    case '9':
      input_line_pointer--;
      input_line_pointer--;
 
 
      integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
      integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
                        ? 0 : 10,
                        ? 0 : 10,
                        expressionP);
                        expressionP);
      break;
      break;
 
 
#ifdef LITERAL_PREFIXDOLLAR_HEX
#ifdef LITERAL_PREFIXDOLLAR_HEX
    case '$':
    case '$':
      /* $L is the start of a local label, not a hex constant.  */
      /* $L is the start of a local label, not a hex constant.  */
      if (* input_line_pointer == 'L')
      if (* input_line_pointer == 'L')
      goto isname;
      goto isname;
      integer_constant (16, expressionP);
      integer_constant (16, expressionP);
      break;
      break;
#endif
#endif
 
 
#ifdef LITERAL_PREFIXPERCENT_BIN
#ifdef LITERAL_PREFIXPERCENT_BIN
    case '%':
    case '%':
      integer_constant (2, expressionP);
      integer_constant (2, expressionP);
      break;
      break;
#endif
#endif
 
 
    case '0':
    case '0':
      /* Non-decimal radix.  */
      /* Non-decimal radix.  */
 
 
      if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
      if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
        {
        {
          char *s;
          char *s;
 
 
          /* Check for a hex or float constant.  */
          /* Check for a hex or float constant.  */
          for (s = input_line_pointer; hex_p (*s); s++)
          for (s = input_line_pointer; hex_p (*s); s++)
            ;
            ;
          if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
          if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
            {
            {
              --input_line_pointer;
              --input_line_pointer;
              integer_constant (0, expressionP);
              integer_constant (0, expressionP);
              break;
              break;
            }
            }
        }
        }
      c = *input_line_pointer;
      c = *input_line_pointer;
      switch (c)
      switch (c)
        {
        {
        case 'o':
        case 'o':
        case 'O':
        case 'O':
        case 'q':
        case 'q':
        case 'Q':
        case 'Q':
        case '8':
        case '8':
        case '9':
        case '9':
          if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
          if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
            {
            {
              integer_constant (0, expressionP);
              integer_constant (0, expressionP);
              break;
              break;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
        default:
        default:
        default_case:
        default_case:
          if (c && strchr (FLT_CHARS, c))
          if (c && strchr (FLT_CHARS, c))
            {
            {
              input_line_pointer++;
              input_line_pointer++;
              floating_constant (expressionP);
              floating_constant (expressionP);
              expressionP->X_add_number = - TOLOWER (c);
              expressionP->X_add_number = - TOLOWER (c);
            }
            }
          else
          else
            {
            {
              /* The string was only zero.  */
              /* The string was only zero.  */
              expressionP->X_op = O_constant;
              expressionP->X_op = O_constant;
              expressionP->X_add_number = 0;
              expressionP->X_add_number = 0;
            }
            }
 
 
          break;
          break;
 
 
        case 'x':
        case 'x':
        case 'X':
        case 'X':
          if (flag_m68k_mri)
          if (flag_m68k_mri)
            goto default_case;
            goto default_case;
          input_line_pointer++;
          input_line_pointer++;
          integer_constant (16, expressionP);
          integer_constant (16, expressionP);
          break;
          break;
 
 
        case 'b':
        case 'b':
          if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
          if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
            {
            {
              /* This code used to check for '+' and '-' here, and, in
              /* This code used to check for '+' and '-' here, and, in
                 some conditions, fall through to call
                 some conditions, fall through to call
                 integer_constant.  However, that didn't make sense,
                 integer_constant.  However, that didn't make sense,
                 as integer_constant only accepts digits.  */
                 as integer_constant only accepts digits.  */
              /* Some of our code elsewhere does permit digits greater
              /* Some of our code elsewhere does permit digits greater
                 than the expected base; for consistency, do the same
                 than the expected base; for consistency, do the same
                 here.  */
                 here.  */
              if (input_line_pointer[1] < '0'
              if (input_line_pointer[1] < '0'
                  || input_line_pointer[1] > '9')
                  || input_line_pointer[1] > '9')
                {
                {
                  /* Parse this as a back reference to label 0.  */
                  /* Parse this as a back reference to label 0.  */
                  input_line_pointer--;
                  input_line_pointer--;
                  integer_constant (10, expressionP);
                  integer_constant (10, expressionP);
                  break;
                  break;
                }
                }
              /* Otherwise, parse this as a binary number.  */
              /* Otherwise, parse this as a binary number.  */
            }
            }
          /* Fall through.  */
          /* Fall through.  */
        case 'B':
        case 'B':
          input_line_pointer++;
          input_line_pointer++;
          if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
          if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
            goto default_case;
            goto default_case;
          integer_constant (2, expressionP);
          integer_constant (2, expressionP);
          break;
          break;
 
 
        case '0':
        case '0':
        case '1':
        case '1':
        case '2':
        case '2':
        case '3':
        case '3':
        case '4':
        case '4':
        case '5':
        case '5':
        case '6':
        case '6':
        case '7':
        case '7':
          integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
          integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
                            ? 0 : 8,
                            ? 0 : 8,
                            expressionP);
                            expressionP);
          break;
          break;
 
 
        case 'f':
        case 'f':
          if (LOCAL_LABELS_FB)
          if (LOCAL_LABELS_FB)
            {
            {
              /* If it says "0f" and it could possibly be a floating point
              /* If it says "0f" and it could possibly be a floating point
                 number, make it one.  Otherwise, make it a local label,
                 number, make it one.  Otherwise, make it a local label,
                 and try to deal with parsing the rest later.  */
                 and try to deal with parsing the rest later.  */
              if (!input_line_pointer[1]
              if (!input_line_pointer[1]
                  || (is_end_of_line[0xff & input_line_pointer[1]])
                  || (is_end_of_line[0xff & input_line_pointer[1]])
                  || strchr (FLT_CHARS, 'f') == NULL)
                  || strchr (FLT_CHARS, 'f') == NULL)
                goto is_0f_label;
                goto is_0f_label;
              {
              {
                char *cp = input_line_pointer + 1;
                char *cp = input_line_pointer + 1;
                int r = atof_generic (&cp, ".", EXP_CHARS,
                int r = atof_generic (&cp, ".", EXP_CHARS,
                                      &generic_floating_point_number);
                                      &generic_floating_point_number);
                switch (r)
                switch (r)
                  {
                  {
                  case 0:
                  case 0:
                  case ERROR_EXPONENT_OVERFLOW:
                  case ERROR_EXPONENT_OVERFLOW:
                    if (*cp == 'f' || *cp == 'b')
                    if (*cp == 'f' || *cp == 'b')
                      /* Looks like a difference expression.  */
                      /* Looks like a difference expression.  */
                      goto is_0f_label;
                      goto is_0f_label;
                    else if (cp == input_line_pointer + 1)
                    else if (cp == input_line_pointer + 1)
                      /* No characters has been accepted -- looks like
                      /* No characters has been accepted -- looks like
                         end of operand.  */
                         end of operand.  */
                      goto is_0f_label;
                      goto is_0f_label;
                    else
                    else
                      goto is_0f_float;
                      goto is_0f_float;
                  default:
                  default:
                    as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
                    as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
                              r);
                              r);
                  }
                  }
              }
              }
 
 
              /* Okay, now we've sorted it out.  We resume at one of these
              /* Okay, now we've sorted it out.  We resume at one of these
                 two labels, depending on what we've decided we're probably
                 two labels, depending on what we've decided we're probably
                 looking at.  */
                 looking at.  */
            is_0f_label:
            is_0f_label:
              input_line_pointer--;
              input_line_pointer--;
              integer_constant (10, expressionP);
              integer_constant (10, expressionP);
              break;
              break;
 
 
            is_0f_float:
            is_0f_float:
              /* Fall through.  */
              /* Fall through.  */
              ;
              ;
            }
            }
 
 
        case 'd':
        case 'd':
        case 'D':
        case 'D':
          if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
          if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
            {
            {
              integer_constant (0, expressionP);
              integer_constant (0, expressionP);
              break;
              break;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
        case 'F':
        case 'F':
        case 'r':
        case 'r':
        case 'e':
        case 'e':
        case 'E':
        case 'E':
        case 'g':
        case 'g':
        case 'G':
        case 'G':
          input_line_pointer++;
          input_line_pointer++;
          floating_constant (expressionP);
          floating_constant (expressionP);
          expressionP->X_add_number = - TOLOWER (c);
          expressionP->X_add_number = - TOLOWER (c);
          break;
          break;
 
 
        case '$':
        case '$':
          if (LOCAL_LABELS_DOLLAR)
          if (LOCAL_LABELS_DOLLAR)
            {
            {
              integer_constant (10, expressionP);
              integer_constant (10, expressionP);
              break;
              break;
            }
            }
          else
          else
            goto default_case;
            goto default_case;
        }
        }
 
 
      break;
      break;
 
 
#ifndef NEED_INDEX_OPERATOR
#ifndef NEED_INDEX_OPERATOR
    case '[':
    case '[':
# ifdef md_need_index_operator
# ifdef md_need_index_operator
      if (md_need_index_operator())
      if (md_need_index_operator())
        goto de_fault;
        goto de_fault;
# endif
# endif
      /* FALLTHROUGH */
      /* FALLTHROUGH */
#endif
#endif
    case '(':
    case '(':
      /* Didn't begin with digit & not a name.  */
      /* Didn't begin with digit & not a name.  */
      if (mode != expr_defer)
      if (mode != expr_defer)
        segment = expression (expressionP);
        segment = expression (expressionP);
      else
      else
        segment = deferred_expression (expressionP);
        segment = deferred_expression (expressionP);
      /* expression () will pass trailing whitespace.  */
      /* expression () will pass trailing whitespace.  */
      if ((c == '(' && *input_line_pointer != ')')
      if ((c == '(' && *input_line_pointer != ')')
          || (c == '[' && *input_line_pointer != ']'))
          || (c == '[' && *input_line_pointer != ']'))
        as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
        as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
      else
      else
        input_line_pointer++;
        input_line_pointer++;
      SKIP_WHITESPACE ();
      SKIP_WHITESPACE ();
      /* Here with input_line_pointer -> char after "(...)".  */
      /* Here with input_line_pointer -> char after "(...)".  */
      return segment;
      return segment;
 
 
#ifdef TC_M68K
#ifdef TC_M68K
    case 'E':
    case 'E':
      if (! flag_m68k_mri || *input_line_pointer != '\'')
      if (! flag_m68k_mri || *input_line_pointer != '\'')
        goto de_fault;
        goto de_fault;
      as_bad (_("EBCDIC constants are not supported"));
      as_bad (_("EBCDIC constants are not supported"));
      /* Fall through.  */
      /* Fall through.  */
    case 'A':
    case 'A':
      if (! flag_m68k_mri || *input_line_pointer != '\'')
      if (! flag_m68k_mri || *input_line_pointer != '\'')
        goto de_fault;
        goto de_fault;
      ++input_line_pointer;
      ++input_line_pointer;
      /* Fall through.  */
      /* Fall through.  */
#endif
#endif
    case '\'':
    case '\'':
      if (! flag_m68k_mri)
      if (! flag_m68k_mri)
        {
        {
          /* Warning: to conform to other people's assemblers NO
          /* Warning: to conform to other people's assemblers NO
             ESCAPEMENT is permitted for a single quote.  The next
             ESCAPEMENT is permitted for a single quote.  The next
             character, parity errors and all, is taken as the value
             character, parity errors and all, is taken as the value
             of the operand.  VERY KINKY.  */
             of the operand.  VERY KINKY.  */
          expressionP->X_op = O_constant;
          expressionP->X_op = O_constant;
          expressionP->X_add_number = *input_line_pointer++;
          expressionP->X_add_number = *input_line_pointer++;
          break;
          break;
        }
        }
 
 
      mri_char_constant (expressionP);
      mri_char_constant (expressionP);
      break;
      break;
 
 
#ifdef TC_M68K
#ifdef TC_M68K
    case '"':
    case '"':
      /* Double quote is the bitwise not operator in MRI mode.  */
      /* Double quote is the bitwise not operator in MRI mode.  */
      if (! flag_m68k_mri)
      if (! flag_m68k_mri)
        goto de_fault;
        goto de_fault;
      /* Fall through.  */
      /* Fall through.  */
#endif
#endif
    case '~':
    case '~':
      /* '~' is permitted to start a label on the Delta.  */
      /* '~' is permitted to start a label on the Delta.  */
      if (is_name_beginner (c))
      if (is_name_beginner (c))
        goto isname;
        goto isname;
    case '!':
    case '!':
    case '-':
    case '-':
    case '+':
    case '+':
      {
      {
#ifdef md_operator
#ifdef md_operator
      unary:
      unary:
#endif
#endif
        operand (expressionP, mode);
        operand (expressionP, mode);
        if (expressionP->X_op == O_constant)
        if (expressionP->X_op == O_constant)
          {
          {
            /* input_line_pointer -> char after operand.  */
            /* input_line_pointer -> char after operand.  */
            if (c == '-')
            if (c == '-')
              {
              {
                expressionP->X_add_number = - expressionP->X_add_number;
                expressionP->X_add_number = - expressionP->X_add_number;
                /* Notice: '-' may overflow: no warning is given.
                /* Notice: '-' may overflow: no warning is given.
                   This is compatible with other people's
                   This is compatible with other people's
                   assemblers.  Sigh.  */
                   assemblers.  Sigh.  */
                expressionP->X_unsigned = 0;
                expressionP->X_unsigned = 0;
              }
              }
            else if (c == '~' || c == '"')
            else if (c == '~' || c == '"')
              expressionP->X_add_number = ~ expressionP->X_add_number;
              expressionP->X_add_number = ~ expressionP->X_add_number;
            else if (c == '!')
            else if (c == '!')
              expressionP->X_add_number = ! expressionP->X_add_number;
              expressionP->X_add_number = ! expressionP->X_add_number;
          }
          }
        else if (expressionP->X_op == O_big
        else if (expressionP->X_op == O_big
                 && expressionP->X_add_number <= 0
                 && expressionP->X_add_number <= 0
                 && c == '-'
                 && c == '-'
                 && (generic_floating_point_number.sign == '+'
                 && (generic_floating_point_number.sign == '+'
                     || generic_floating_point_number.sign == 'P'))
                     || generic_floating_point_number.sign == 'P'))
          {
          {
            /* Negative flonum (eg, -1.000e0).  */
            /* Negative flonum (eg, -1.000e0).  */
            if (generic_floating_point_number.sign == '+')
            if (generic_floating_point_number.sign == '+')
              generic_floating_point_number.sign = '-';
              generic_floating_point_number.sign = '-';
            else
            else
              generic_floating_point_number.sign = 'N';
              generic_floating_point_number.sign = 'N';
          }
          }
        else if (expressionP->X_op == O_big
        else if (expressionP->X_op == O_big
                 && expressionP->X_add_number > 0)
                 && expressionP->X_add_number > 0)
          {
          {
            int i;
            int i;
 
 
            if (c == '~' || c == '-')
            if (c == '~' || c == '-')
              {
              {
                for (i = 0; i < expressionP->X_add_number; ++i)
                for (i = 0; i < expressionP->X_add_number; ++i)
                  generic_bignum[i] = ~generic_bignum[i];
                  generic_bignum[i] = ~generic_bignum[i];
                if (c == '-')
                if (c == '-')
                  for (i = 0; i < expressionP->X_add_number; ++i)
                  for (i = 0; i < expressionP->X_add_number; ++i)
                    {
                    {
                      generic_bignum[i] += 1;
                      generic_bignum[i] += 1;
                      if (generic_bignum[i])
                      if (generic_bignum[i])
                        break;
                        break;
                    }
                    }
              }
              }
            else if (c == '!')
            else if (c == '!')
              {
              {
                int nonzero = 0;
                int nonzero = 0;
                for (i = 0; i < expressionP->X_add_number; ++i)
                for (i = 0; i < expressionP->X_add_number; ++i)
                  {
                  {
                    if (generic_bignum[i])
                    if (generic_bignum[i])
                      nonzero = 1;
                      nonzero = 1;
                    generic_bignum[i] = 0;
                    generic_bignum[i] = 0;
                  }
                  }
                generic_bignum[0] = nonzero;
                generic_bignum[0] = nonzero;
              }
              }
          }
          }
        else if (expressionP->X_op != O_illegal
        else if (expressionP->X_op != O_illegal
                 && expressionP->X_op != O_absent)
                 && expressionP->X_op != O_absent)
          {
          {
            if (c != '+')
            if (c != '+')
              {
              {
                expressionP->X_add_symbol = make_expr_symbol (expressionP);
                expressionP->X_add_symbol = make_expr_symbol (expressionP);
                if (c == '-')
                if (c == '-')
                  expressionP->X_op = O_uminus;
                  expressionP->X_op = O_uminus;
                else if (c == '~' || c == '"')
                else if (c == '~' || c == '"')
                  expressionP->X_op = O_bit_not;
                  expressionP->X_op = O_bit_not;
                else
                else
                  expressionP->X_op = O_logical_not;
                  expressionP->X_op = O_logical_not;
                expressionP->X_add_number = 0;
                expressionP->X_add_number = 0;
              }
              }
          }
          }
        else
        else
          as_warn (_("Unary operator %c ignored because bad operand follows"),
          as_warn (_("Unary operator %c ignored because bad operand follows"),
                   c);
                   c);
      }
      }
      break;
      break;
 
 
#if defined (DOLLAR_DOT) || defined (TC_M68K)
#if defined (DOLLAR_DOT) || defined (TC_M68K)
    case '$':
    case '$':
      /* '$' is the program counter when in MRI mode, or when
      /* '$' is the program counter when in MRI mode, or when
         DOLLAR_DOT is defined.  */
         DOLLAR_DOT is defined.  */
#ifndef DOLLAR_DOT
#ifndef DOLLAR_DOT
      if (! flag_m68k_mri)
      if (! flag_m68k_mri)
        goto de_fault;
        goto de_fault;
#endif
#endif
      if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
      if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
        {
        {
          /* In MRI mode and on Z80, '$' is also used as the prefix
          /* In MRI mode and on Z80, '$' is also used as the prefix
             for a hexadecimal constant.  */
             for a hexadecimal constant.  */
          integer_constant (16, expressionP);
          integer_constant (16, expressionP);
          break;
          break;
        }
        }
 
 
      if (is_part_of_name (*input_line_pointer))
      if (is_part_of_name (*input_line_pointer))
        goto isname;
        goto isname;
 
 
      current_location (expressionP);
      current_location (expressionP);
      break;
      break;
#endif
#endif
 
 
    case '.':
    case '.':
      if (!is_part_of_name (*input_line_pointer))
      if (!is_part_of_name (*input_line_pointer))
        {
        {
          current_location (expressionP);
          current_location (expressionP);
          break;
          break;
        }
        }
      else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
      else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
                && ! is_part_of_name (input_line_pointer[8]))
                && ! is_part_of_name (input_line_pointer[8]))
               || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
               || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
                   && ! is_part_of_name (input_line_pointer[7])))
                   && ! is_part_of_name (input_line_pointer[7])))
        {
        {
          int start;
          int start;
 
 
          start = (input_line_pointer[1] == 't'
          start = (input_line_pointer[1] == 't'
                   || input_line_pointer[1] == 'T');
                   || input_line_pointer[1] == 'T');
          input_line_pointer += start ? 8 : 7;
          input_line_pointer += start ? 8 : 7;
          SKIP_WHITESPACE ();
          SKIP_WHITESPACE ();
          if (*input_line_pointer != '(')
          if (*input_line_pointer != '(')
            as_bad (_("syntax error in .startof. or .sizeof."));
            as_bad (_("syntax error in .startof. or .sizeof."));
          else
          else
            {
            {
              char *buf;
              char *buf;
 
 
              ++input_line_pointer;
              ++input_line_pointer;
              SKIP_WHITESPACE ();
              SKIP_WHITESPACE ();
              name = input_line_pointer;
              name = input_line_pointer;
              c = get_symbol_end ();
              c = get_symbol_end ();
 
 
              buf = (char *) xmalloc (strlen (name) + 10);
              buf = (char *) xmalloc (strlen (name) + 10);
              if (start)
              if (start)
                sprintf (buf, ".startof.%s", name);
                sprintf (buf, ".startof.%s", name);
              else
              else
                sprintf (buf, ".sizeof.%s", name);
                sprintf (buf, ".sizeof.%s", name);
              symbolP = symbol_make (buf);
              symbolP = symbol_make (buf);
              free (buf);
              free (buf);
 
 
              expressionP->X_op = O_symbol;
              expressionP->X_op = O_symbol;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_number = 0;
              expressionP->X_add_number = 0;
 
 
              *input_line_pointer = c;
              *input_line_pointer = c;
              SKIP_WHITESPACE ();
              SKIP_WHITESPACE ();
              if (*input_line_pointer != ')')
              if (*input_line_pointer != ')')
                as_bad (_("syntax error in .startof. or .sizeof."));
                as_bad (_("syntax error in .startof. or .sizeof."));
              else
              else
                ++input_line_pointer;
                ++input_line_pointer;
            }
            }
          break;
          break;
        }
        }
      else
      else
        {
        {
          goto isname;
          goto isname;
        }
        }
 
 
    case ',':
    case ',':
    eol:
    eol:
      /* Can't imagine any other kind of operand.  */
      /* Can't imagine any other kind of operand.  */
      expressionP->X_op = O_absent;
      expressionP->X_op = O_absent;
      input_line_pointer--;
      input_line_pointer--;
      break;
      break;
 
 
#ifdef TC_M68K
#ifdef TC_M68K
    case '%':
    case '%':
      if (! flag_m68k_mri)
      if (! flag_m68k_mri)
        goto de_fault;
        goto de_fault;
      integer_constant (2, expressionP);
      integer_constant (2, expressionP);
      break;
      break;
 
 
    case '@':
    case '@':
      if (! flag_m68k_mri)
      if (! flag_m68k_mri)
        goto de_fault;
        goto de_fault;
      integer_constant (8, expressionP);
      integer_constant (8, expressionP);
      break;
      break;
 
 
    case ':':
    case ':':
      if (! flag_m68k_mri)
      if (! flag_m68k_mri)
        goto de_fault;
        goto de_fault;
 
 
      /* In MRI mode, this is a floating point constant represented
      /* In MRI mode, this is a floating point constant represented
         using hexadecimal digits.  */
         using hexadecimal digits.  */
 
 
      ++input_line_pointer;
      ++input_line_pointer;
      integer_constant (16, expressionP);
      integer_constant (16, expressionP);
      break;
      break;
 
 
    case '*':
    case '*':
      if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
      if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
        goto de_fault;
        goto de_fault;
 
 
      current_location (expressionP);
      current_location (expressionP);
      break;
      break;
#endif
#endif
 
 
    default:
    default:
#if defined(md_need_index_operator) || defined(TC_M68K)
#if defined(md_need_index_operator) || defined(TC_M68K)
    de_fault:
    de_fault:
#endif
#endif
      if (is_name_beginner (c)) /* Here if did not begin with a digit.  */
      if (is_name_beginner (c)) /* Here if did not begin with a digit.  */
        {
        {
          /* Identifier begins here.
          /* Identifier begins here.
             This is kludged for speed, so code is repeated.  */
             This is kludged for speed, so code is repeated.  */
        isname:
        isname:
          name = --input_line_pointer;
          name = --input_line_pointer;
          c = get_symbol_end ();
          c = get_symbol_end ();
 
 
#ifdef md_operator
#ifdef md_operator
          {
          {
            operatorT op = md_operator (name, 1, &c);
            operatorT op = md_operator (name, 1, &c);
 
 
            switch (op)
            switch (op)
              {
              {
              case O_uminus:
              case O_uminus:
                *input_line_pointer = c;
                *input_line_pointer = c;
                c = '-';
                c = '-';
                goto unary;
                goto unary;
              case O_bit_not:
              case O_bit_not:
                *input_line_pointer = c;
                *input_line_pointer = c;
                c = '~';
                c = '~';
                goto unary;
                goto unary;
              case O_logical_not:
              case O_logical_not:
                *input_line_pointer = c;
                *input_line_pointer = c;
                c = '!';
                c = '!';
                goto unary;
                goto unary;
              case O_illegal:
              case O_illegal:
                as_bad (_("invalid use of operator \"%s\""), name);
                as_bad (_("invalid use of operator \"%s\""), name);
                break;
                break;
              default:
              default:
                break;
                break;
              }
              }
            if (op != O_absent && op != O_illegal)
            if (op != O_absent && op != O_illegal)
              {
              {
                *input_line_pointer = c;
                *input_line_pointer = c;
                expr (9, expressionP, mode);
                expr (9, expressionP, mode);
                expressionP->X_add_symbol = make_expr_symbol (expressionP);
                expressionP->X_add_symbol = make_expr_symbol (expressionP);
                expressionP->X_op_symbol = NULL;
                expressionP->X_op_symbol = NULL;
                expressionP->X_add_number = 0;
                expressionP->X_add_number = 0;
                expressionP->X_op = op;
                expressionP->X_op = op;
                break;
                break;
              }
              }
          }
          }
#endif
#endif
 
 
#ifdef md_parse_name
#ifdef md_parse_name
          /* This is a hook for the backend to parse certain names
          /* This is a hook for the backend to parse certain names
             specially in certain contexts.  If a name always has a
             specially in certain contexts.  If a name always has a
             specific value, it can often be handled by simply
             specific value, it can often be handled by simply
             entering it in the symbol table.  */
             entering it in the symbol table.  */
          if (md_parse_name (name, expressionP, mode, &c))
          if (md_parse_name (name, expressionP, mode, &c))
            {
            {
              *input_line_pointer = c;
              *input_line_pointer = c;
              break;
              break;
            }
            }
#endif
#endif
 
 
#ifdef TC_I960
#ifdef TC_I960
          /* The MRI i960 assembler permits
          /* The MRI i960 assembler permits
                 lda sizeof code,g13
                 lda sizeof code,g13
             FIXME: This should use md_parse_name.  */
             FIXME: This should use md_parse_name.  */
          if (flag_mri
          if (flag_mri
              && (strcasecmp (name, "sizeof") == 0
              && (strcasecmp (name, "sizeof") == 0
                  || strcasecmp (name, "startof") == 0))
                  || strcasecmp (name, "startof") == 0))
            {
            {
              int start;
              int start;
              char *buf;
              char *buf;
 
 
              start = (name[1] == 't'
              start = (name[1] == 't'
                       || name[1] == 'T');
                       || name[1] == 'T');
 
 
              *input_line_pointer = c;
              *input_line_pointer = c;
              SKIP_WHITESPACE ();
              SKIP_WHITESPACE ();
 
 
              name = input_line_pointer;
              name = input_line_pointer;
              c = get_symbol_end ();
              c = get_symbol_end ();
 
 
              buf = (char *) xmalloc (strlen (name) + 10);
              buf = (char *) xmalloc (strlen (name) + 10);
              if (start)
              if (start)
                sprintf (buf, ".startof.%s", name);
                sprintf (buf, ".startof.%s", name);
              else
              else
                sprintf (buf, ".sizeof.%s", name);
                sprintf (buf, ".sizeof.%s", name);
              symbolP = symbol_make (buf);
              symbolP = symbol_make (buf);
              free (buf);
              free (buf);
 
 
              expressionP->X_op = O_symbol;
              expressionP->X_op = O_symbol;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_number = 0;
              expressionP->X_add_number = 0;
 
 
              *input_line_pointer = c;
              *input_line_pointer = c;
              SKIP_WHITESPACE ();
              SKIP_WHITESPACE ();
 
 
              break;
              break;
            }
            }
#endif
#endif
 
 
          symbolP = symbol_find_or_make (name);
          symbolP = symbol_find_or_make (name);
 
 
          /* If we have an absolute symbol or a reg, then we know its
          /* If we have an absolute symbol or a reg, then we know its
             value now.  */
             value now.  */
          segment = S_GET_SEGMENT (symbolP);
          segment = S_GET_SEGMENT (symbolP);
          if (mode != expr_defer && segment == absolute_section)
          if (mode != expr_defer && segment == absolute_section)
            {
            {
              expressionP->X_op = O_constant;
              expressionP->X_op = O_constant;
              expressionP->X_add_number = S_GET_VALUE (symbolP);
              expressionP->X_add_number = S_GET_VALUE (symbolP);
            }
            }
          else if (mode != expr_defer && segment == reg_section)
          else if (mode != expr_defer && segment == reg_section)
            {
            {
              expressionP->X_op = O_register;
              expressionP->X_op = O_register;
              expressionP->X_add_number = S_GET_VALUE (symbolP);
              expressionP->X_add_number = S_GET_VALUE (symbolP);
            }
            }
          else
          else
            {
            {
              expressionP->X_op = O_symbol;
              expressionP->X_op = O_symbol;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_symbol = symbolP;
              expressionP->X_add_number = 0;
              expressionP->X_add_number = 0;
            }
            }
          *input_line_pointer = c;
          *input_line_pointer = c;
        }
        }
      else
      else
        {
        {
          /* Let the target try to parse it.  Success is indicated by changing
          /* Let the target try to parse it.  Success is indicated by changing
             the X_op field to something other than O_absent and pointing
             the X_op field to something other than O_absent and pointing
             input_line_pointer past the expression.  If it can't parse the
             input_line_pointer past the expression.  If it can't parse the
             expression, X_op and input_line_pointer should be unchanged.  */
             expression, X_op and input_line_pointer should be unchanged.  */
          expressionP->X_op = O_absent;
          expressionP->X_op = O_absent;
          --input_line_pointer;
          --input_line_pointer;
          md_operand (expressionP);
          md_operand (expressionP);
          if (expressionP->X_op == O_absent)
          if (expressionP->X_op == O_absent)
            {
            {
              ++input_line_pointer;
              ++input_line_pointer;
              as_bad (_("bad expression"));
              as_bad (_("bad expression"));
              expressionP->X_op = O_constant;
              expressionP->X_op = O_constant;
              expressionP->X_add_number = 0;
              expressionP->X_add_number = 0;
            }
            }
        }
        }
      break;
      break;
    }
    }
 
 
  /* It is more 'efficient' to clean up the expressionS when they are
  /* It is more 'efficient' to clean up the expressionS when they are
     created.  Doing it here saves lines of code.  */
     created.  Doing it here saves lines of code.  */
  clean_up_expression (expressionP);
  clean_up_expression (expressionP);
  SKIP_WHITESPACE ();           /* -> 1st char after operand.  */
  SKIP_WHITESPACE ();           /* -> 1st char after operand.  */
  know (*input_line_pointer != ' ');
  know (*input_line_pointer != ' ');
 
 
  /* The PA port needs this information.  */
  /* The PA port needs this information.  */
  if (expressionP->X_add_symbol)
  if (expressionP->X_add_symbol)
    symbol_mark_used (expressionP->X_add_symbol);
    symbol_mark_used (expressionP->X_add_symbol);
 
 
  expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
  expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
  expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
  expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
 
 
  switch (expressionP->X_op)
  switch (expressionP->X_op)
    {
    {
    default:
    default:
      return absolute_section;
      return absolute_section;
    case O_symbol:
    case O_symbol:
      return S_GET_SEGMENT (expressionP->X_add_symbol);
      return S_GET_SEGMENT (expressionP->X_add_symbol);
    case O_register:
    case O_register:
      return reg_section;
      return reg_section;
    }
    }
}
}


/* Internal.  Simplify a struct expression for use by expr ().  */
/* Internal.  Simplify a struct expression for use by expr ().  */
 
 
/* In:  address of an expressionS.
/* In:  address of an expressionS.
        The X_op field of the expressionS may only take certain values.
        The X_op field of the expressionS may only take certain values.
        Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
        Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
 
 
   Out: expressionS may have been modified:
   Out: expressionS may have been modified:
        Unused fields zeroed to help expr ().  */
        Unused fields zeroed to help expr ().  */
 
 
static void
static void
clean_up_expression (expressionS *expressionP)
clean_up_expression (expressionS *expressionP)
{
{
  switch (expressionP->X_op)
  switch (expressionP->X_op)
    {
    {
    case O_illegal:
    case O_illegal:
    case O_absent:
    case O_absent:
      expressionP->X_add_number = 0;
      expressionP->X_add_number = 0;
      /* Fall through.  */
      /* Fall through.  */
    case O_big:
    case O_big:
    case O_constant:
    case O_constant:
    case O_register:
    case O_register:
      expressionP->X_add_symbol = NULL;
      expressionP->X_add_symbol = NULL;
      /* Fall through.  */
      /* Fall through.  */
    case O_symbol:
    case O_symbol:
    case O_uminus:
    case O_uminus:
    case O_bit_not:
    case O_bit_not:
      expressionP->X_op_symbol = NULL;
      expressionP->X_op_symbol = NULL;
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
}
}


/* Expression parser.  */
/* Expression parser.  */
 
 
/* We allow an empty expression, and just assume (absolute,0) silently.
/* We allow an empty expression, and just assume (absolute,0) silently.
   Unary operators and parenthetical expressions are treated as operands.
   Unary operators and parenthetical expressions are treated as operands.
   As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
   As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
 
 
   We used to do an aho/ullman shift-reduce parser, but the logic got so
   We used to do an aho/ullman shift-reduce parser, but the logic got so
   warped that I flushed it and wrote a recursive-descent parser instead.
   warped that I flushed it and wrote a recursive-descent parser instead.
   Now things are stable, would anybody like to write a fast parser?
   Now things are stable, would anybody like to write a fast parser?
   Most expressions are either register (which does not even reach here)
   Most expressions are either register (which does not even reach here)
   or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
   or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
   So I guess it doesn't really matter how inefficient more complex expressions
   So I guess it doesn't really matter how inefficient more complex expressions
   are parsed.
   are parsed.
 
 
   After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
   After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
   Also, we have consumed any leading or trailing spaces (operand does that)
   Also, we have consumed any leading or trailing spaces (operand does that)
   and done all intervening operators.
   and done all intervening operators.
 
 
   This returns the segment of the result, which will be
   This returns the segment of the result, which will be
   absolute_section or the segment of a symbol.  */
   absolute_section or the segment of a symbol.  */
 
 
#undef __
#undef __
#define __ O_illegal
#define __ O_illegal
#ifndef O_SINGLE_EQ
#ifndef O_SINGLE_EQ
#define O_SINGLE_EQ O_illegal
#define O_SINGLE_EQ O_illegal
#endif
#endif
 
 
/* Maps ASCII -> operators.  */
/* Maps ASCII -> operators.  */
static const operatorT op_encoding[256] = {
static const operatorT op_encoding[256] = {
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
 
 
  __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
  __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
  __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
  __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
  __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __,
  __, __, __,
#ifdef NEED_INDEX_OPERATOR
#ifdef NEED_INDEX_OPERATOR
  O_index,
  O_index,
#else
#else
  __,
  __,
#endif
#endif
  __, __, O_bit_exclusive_or, __,
  __, __, O_bit_exclusive_or, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __,
  __, __, __, __, O_bit_inclusive_or, __, __, __,
  __, __, __, __, O_bit_inclusive_or, __, __, __,
 
 
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
  __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
};
};
 
 
/* Rank Examples
/* Rank Examples
   0    operand, (expression)
   0    operand, (expression)
   1    ||
   1    ||
   2    &&
   2    &&
   3    == <> < <= >= >
   3    == <> < <= >= >
   4    + -
   4    + -
   5    used for * / % in MRI mode
   5    used for * / % in MRI mode
   6    & ^ ! |
   6    & ^ ! |
   7    * / % << >>
   7    * / % << >>
   8    unary - unary ~
   8    unary - unary ~
*/
*/
static operator_rankT op_rank[O_max] = {
static operator_rankT op_rank[O_max] = {
  0,     /* O_illegal */
  0,     /* O_illegal */
  0,     /* O_absent */
  0,     /* O_absent */
  0,     /* O_constant */
  0,     /* O_constant */
  0,     /* O_symbol */
  0,     /* O_symbol */
  0,     /* O_symbol_rva */
  0,     /* O_symbol_rva */
  0,     /* O_register */
  0,     /* O_register */
  0,     /* O_big */
  0,     /* O_big */
  9,    /* O_uminus */
  9,    /* O_uminus */
  9,    /* O_bit_not */
  9,    /* O_bit_not */
  9,    /* O_logical_not */
  9,    /* O_logical_not */
  8,    /* O_multiply */
  8,    /* O_multiply */
  8,    /* O_divide */
  8,    /* O_divide */
  8,    /* O_modulus */
  8,    /* O_modulus */
  8,    /* O_left_shift */
  8,    /* O_left_shift */
  8,    /* O_right_shift */
  8,    /* O_right_shift */
  7,    /* O_bit_inclusive_or */
  7,    /* O_bit_inclusive_or */
  7,    /* O_bit_or_not */
  7,    /* O_bit_or_not */
  7,    /* O_bit_exclusive_or */
  7,    /* O_bit_exclusive_or */
  7,    /* O_bit_and */
  7,    /* O_bit_and */
  5,    /* O_add */
  5,    /* O_add */
  5,    /* O_subtract */
  5,    /* O_subtract */
  4,    /* O_eq */
  4,    /* O_eq */
  4,    /* O_ne */
  4,    /* O_ne */
  4,    /* O_lt */
  4,    /* O_lt */
  4,    /* O_le */
  4,    /* O_le */
  4,    /* O_ge */
  4,    /* O_ge */
  4,    /* O_gt */
  4,    /* O_gt */
  3,    /* O_logical_and */
  3,    /* O_logical_and */
  2,    /* O_logical_or */
  2,    /* O_logical_or */
  1,    /* O_index */
  1,    /* O_index */
};
};
 
 
/* Unfortunately, in MRI mode for the m68k, multiplication and
/* Unfortunately, in MRI mode for the m68k, multiplication and
   division have lower precedence than the bit wise operators.  This
   division have lower precedence than the bit wise operators.  This
   function sets the operator precedences correctly for the current
   function sets the operator precedences correctly for the current
   mode.  Also, MRI uses a different bit_not operator, and this fixes
   mode.  Also, MRI uses a different bit_not operator, and this fixes
   that as well.  */
   that as well.  */
 
 
#define STANDARD_MUL_PRECEDENCE 8
#define STANDARD_MUL_PRECEDENCE 8
#define MRI_MUL_PRECEDENCE 6
#define MRI_MUL_PRECEDENCE 6
 
 
void
void
expr_set_precedence (void)
expr_set_precedence (void)
{
{
  if (flag_m68k_mri)
  if (flag_m68k_mri)
    {
    {
      op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
      op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
      op_rank[O_divide] = MRI_MUL_PRECEDENCE;
      op_rank[O_divide] = MRI_MUL_PRECEDENCE;
      op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
      op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
    }
    }
  else
  else
    {
    {
      op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
      op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
      op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
      op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
      op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
      op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
    }
    }
}
}
 
 
void
void
expr_set_rank (operatorT op, operator_rankT rank)
expr_set_rank (operatorT op, operator_rankT rank)
{
{
  gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
  gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
  op_rank[op] = rank;
  op_rank[op] = rank;
}
}
 
 
/* Initialize the expression parser.  */
/* Initialize the expression parser.  */
 
 
void
void
expr_begin (void)
expr_begin (void)
{
{
  expr_set_precedence ();
  expr_set_precedence ();
 
 
  /* Verify that X_op field is wide enough.  */
  /* Verify that X_op field is wide enough.  */
  {
  {
    expressionS e;
    expressionS e;
    e.X_op = O_max;
    e.X_op = O_max;
    gas_assert (e.X_op == O_max);
    gas_assert (e.X_op == O_max);
  }
  }
}
}


/* Return the encoding for the operator at INPUT_LINE_POINTER, and
/* Return the encoding for the operator at INPUT_LINE_POINTER, and
   sets NUM_CHARS to the number of characters in the operator.
   sets NUM_CHARS to the number of characters in the operator.
   Does not advance INPUT_LINE_POINTER.  */
   Does not advance INPUT_LINE_POINTER.  */
 
 
static inline operatorT
static inline operatorT
operatorf (int *num_chars)
operatorf (int *num_chars)
{
{
  int c;
  int c;
  operatorT ret;
  operatorT ret;
 
 
  c = *input_line_pointer & 0xff;
  c = *input_line_pointer & 0xff;
  *num_chars = 1;
  *num_chars = 1;
 
 
  if (is_end_of_line[c])
  if (is_end_of_line[c])
    return O_illegal;
    return O_illegal;
 
 
#ifdef md_operator
#ifdef md_operator
  if (is_name_beginner (c))
  if (is_name_beginner (c))
    {
    {
      char *name = input_line_pointer;
      char *name = input_line_pointer;
      char c = get_symbol_end ();
      char c = get_symbol_end ();
 
 
      ret = md_operator (name, 2, &c);
      ret = md_operator (name, 2, &c);
      switch (ret)
      switch (ret)
        {
        {
        case O_absent:
        case O_absent:
          *input_line_pointer = c;
          *input_line_pointer = c;
          input_line_pointer = name;
          input_line_pointer = name;
          break;
          break;
        case O_uminus:
        case O_uminus:
        case O_bit_not:
        case O_bit_not:
        case O_logical_not:
        case O_logical_not:
          as_bad (_("invalid use of operator \"%s\""), name);
          as_bad (_("invalid use of operator \"%s\""), name);
          ret = O_illegal;
          ret = O_illegal;
          /* FALLTHROUGH */
          /* FALLTHROUGH */
        default:
        default:
          *input_line_pointer = c;
          *input_line_pointer = c;
          *num_chars = input_line_pointer - name;
          *num_chars = input_line_pointer - name;
          input_line_pointer = name;
          input_line_pointer = name;
          return ret;
          return ret;
        }
        }
    }
    }
#endif
#endif
 
 
  switch (c)
  switch (c)
    {
    {
    default:
    default:
      ret = op_encoding[c];
      ret = op_encoding[c];
#ifdef md_operator
#ifdef md_operator
      if (ret == O_illegal)
      if (ret == O_illegal)
        {
        {
          char *start = input_line_pointer;
          char *start = input_line_pointer;
 
 
          ret = md_operator (NULL, 2, NULL);
          ret = md_operator (NULL, 2, NULL);
          if (ret != O_illegal)
          if (ret != O_illegal)
            *num_chars = input_line_pointer - start;
            *num_chars = input_line_pointer - start;
          input_line_pointer = start;
          input_line_pointer = start;
        }
        }
#endif
#endif
      return ret;
      return ret;
 
 
    case '+':
    case '+':
    case '-':
    case '-':
      return op_encoding[c];
      return op_encoding[c];
 
 
    case '<':
    case '<':
      switch (input_line_pointer[1])
      switch (input_line_pointer[1])
        {
        {
        default:
        default:
          return op_encoding[c];
          return op_encoding[c];
        case '<':
        case '<':
          ret = O_left_shift;
          ret = O_left_shift;
          break;
          break;
        case '>':
        case '>':
          ret = O_ne;
          ret = O_ne;
          break;
          break;
        case '=':
        case '=':
          ret = O_le;
          ret = O_le;
          break;
          break;
        }
        }
      *num_chars = 2;
      *num_chars = 2;
      return ret;
      return ret;
 
 
    case '=':
    case '=':
      if (input_line_pointer[1] != '=')
      if (input_line_pointer[1] != '=')
        return op_encoding[c];
        return op_encoding[c];
 
 
      *num_chars = 2;
      *num_chars = 2;
      return O_eq;
      return O_eq;
 
 
    case '>':
    case '>':
      switch (input_line_pointer[1])
      switch (input_line_pointer[1])
        {
        {
        default:
        default:
          return op_encoding[c];
          return op_encoding[c];
        case '>':
        case '>':
          ret = O_right_shift;
          ret = O_right_shift;
          break;
          break;
        case '=':
        case '=':
          ret = O_ge;
          ret = O_ge;
          break;
          break;
        }
        }
      *num_chars = 2;
      *num_chars = 2;
      return ret;
      return ret;
 
 
    case '!':
    case '!':
      switch (input_line_pointer[1])
      switch (input_line_pointer[1])
        {
        {
        case '!':
        case '!':
          /* We accept !! as equivalent to ^ for MRI compatibility. */
          /* We accept !! as equivalent to ^ for MRI compatibility. */
          *num_chars = 2;
          *num_chars = 2;
          return O_bit_exclusive_or;
          return O_bit_exclusive_or;
        case '=':
        case '=':
          /* We accept != as equivalent to <>.  */
          /* We accept != as equivalent to <>.  */
          *num_chars = 2;
          *num_chars = 2;
          return O_ne;
          return O_ne;
        default:
        default:
          if (flag_m68k_mri)
          if (flag_m68k_mri)
            return O_bit_inclusive_or;
            return O_bit_inclusive_or;
          return op_encoding[c];
          return op_encoding[c];
        }
        }
 
 
    case '|':
    case '|':
      if (input_line_pointer[1] != '|')
      if (input_line_pointer[1] != '|')
        return op_encoding[c];
        return op_encoding[c];
 
 
      *num_chars = 2;
      *num_chars = 2;
      return O_logical_or;
      return O_logical_or;
 
 
    case '&':
    case '&':
      if (input_line_pointer[1] != '&')
      if (input_line_pointer[1] != '&')
        return op_encoding[c];
        return op_encoding[c];
 
 
      *num_chars = 2;
      *num_chars = 2;
      return O_logical_and;
      return O_logical_and;
    }
    }
 
 
  /* NOTREACHED  */
  /* NOTREACHED  */
}
}
 
 
/* Parse an expression.  */
/* Parse an expression.  */
 
 
segT
segT
expr (int rankarg,              /* Larger # is higher rank.  */
expr (int rankarg,              /* Larger # is higher rank.  */
      expressionS *resultP,     /* Deliver result here.  */
      expressionS *resultP,     /* Deliver result here.  */
      enum expr_mode mode       /* Controls behavior.  */)
      enum expr_mode mode       /* Controls behavior.  */)
{
{
  operator_rankT rank = (operator_rankT) rankarg;
  operator_rankT rank = (operator_rankT) rankarg;
  segT retval;
  segT retval;
  expressionS right;
  expressionS right;
  operatorT op_left;
  operatorT op_left;
  operatorT op_right;
  operatorT op_right;
  int op_chars;
  int op_chars;
 
 
  know (rankarg >= 0);
  know (rankarg >= 0);
 
 
  /* Save the value of dot for the fixup code.  */
  /* Save the value of dot for the fixup code.  */
  if (rank == 0)
  if (rank == 0)
    dot_value = frag_now_fix ();
    dot_value = frag_now_fix ();
 
 
  retval = operand (resultP, mode);
  retval = operand (resultP, mode);
 
 
  /* operand () gobbles spaces.  */
  /* operand () gobbles spaces.  */
  know (*input_line_pointer != ' ');
  know (*input_line_pointer != ' ');
 
 
  op_left = operatorf (&op_chars);
  op_left = operatorf (&op_chars);
  while (op_left != O_illegal && op_rank[(int) op_left] > rank)
  while (op_left != O_illegal && op_rank[(int) op_left] > rank)
    {
    {
      segT rightseg;
      segT rightseg;
      bfd_vma frag_off;
      bfd_vma frag_off;
 
 
      input_line_pointer += op_chars;   /* -> after operator.  */
      input_line_pointer += op_chars;   /* -> after operator.  */
 
 
      rightseg = expr (op_rank[(int) op_left], &right, mode);
      rightseg = expr (op_rank[(int) op_left], &right, mode);
      if (right.X_op == O_absent)
      if (right.X_op == O_absent)
        {
        {
          as_warn (_("missing operand; zero assumed"));
          as_warn (_("missing operand; zero assumed"));
          right.X_op = O_constant;
          right.X_op = O_constant;
          right.X_add_number = 0;
          right.X_add_number = 0;
          right.X_add_symbol = NULL;
          right.X_add_symbol = NULL;
          right.X_op_symbol = NULL;
          right.X_op_symbol = NULL;
        }
        }
 
 
      know (*input_line_pointer != ' ');
      know (*input_line_pointer != ' ');
 
 
      if (op_left == O_index)
      if (op_left == O_index)
        {
        {
          if (*input_line_pointer != ']')
          if (*input_line_pointer != ']')
            as_bad ("missing right bracket");
            as_bad ("missing right bracket");
          else
          else
            {
            {
              ++input_line_pointer;
              ++input_line_pointer;
              SKIP_WHITESPACE ();
              SKIP_WHITESPACE ();
            }
            }
        }
        }
 
 
      op_right = operatorf (&op_chars);
      op_right = operatorf (&op_chars);
 
 
      know (op_right == O_illegal || op_left == O_index
      know (op_right == O_illegal || op_left == O_index
            || op_rank[(int) op_right] <= op_rank[(int) op_left]);
            || op_rank[(int) op_right] <= op_rank[(int) op_left]);
      know ((int) op_left >= (int) O_multiply);
      know ((int) op_left >= (int) O_multiply);
#ifndef md_operator
#ifndef md_operator
      know ((int) op_left <= (int) O_index);
      know ((int) op_left <= (int) O_index);
#else
#else
      know ((int) op_left < (int) O_max);
      know ((int) op_left < (int) O_max);
#endif
#endif
 
 
      /* input_line_pointer->after right-hand quantity.  */
      /* input_line_pointer->after right-hand quantity.  */
      /* left-hand quantity in resultP.  */
      /* left-hand quantity in resultP.  */
      /* right-hand quantity in right.  */
      /* right-hand quantity in right.  */
      /* operator in op_left.  */
      /* operator in op_left.  */
 
 
      if (resultP->X_op == O_big)
      if (resultP->X_op == O_big)
        {
        {
          if (resultP->X_add_number > 0)
          if (resultP->X_add_number > 0)
            as_warn (_("left operand is a bignum; integer 0 assumed"));
            as_warn (_("left operand is a bignum; integer 0 assumed"));
          else
          else
            as_warn (_("left operand is a float; integer 0 assumed"));
            as_warn (_("left operand is a float; integer 0 assumed"));
          resultP->X_op = O_constant;
          resultP->X_op = O_constant;
          resultP->X_add_number = 0;
          resultP->X_add_number = 0;
          resultP->X_add_symbol = NULL;
          resultP->X_add_symbol = NULL;
          resultP->X_op_symbol = NULL;
          resultP->X_op_symbol = NULL;
        }
        }
      if (right.X_op == O_big)
      if (right.X_op == O_big)
        {
        {
          if (right.X_add_number > 0)
          if (right.X_add_number > 0)
            as_warn (_("right operand is a bignum; integer 0 assumed"));
            as_warn (_("right operand is a bignum; integer 0 assumed"));
          else
          else
            as_warn (_("right operand is a float; integer 0 assumed"));
            as_warn (_("right operand is a float; integer 0 assumed"));
          right.X_op = O_constant;
          right.X_op = O_constant;
          right.X_add_number = 0;
          right.X_add_number = 0;
          right.X_add_symbol = NULL;
          right.X_add_symbol = NULL;
          right.X_op_symbol = NULL;
          right.X_op_symbol = NULL;
        }
        }
 
 
      /* Optimize common cases.  */
      /* Optimize common cases.  */
#ifdef md_optimize_expr
#ifdef md_optimize_expr
      if (md_optimize_expr (resultP, op_left, &right))
      if (md_optimize_expr (resultP, op_left, &right))
        {
        {
          /* Skip.  */
          /* Skip.  */
          ;
          ;
        }
        }
      else
      else
#endif
#endif
#ifndef md_register_arithmetic
#ifndef md_register_arithmetic
# define md_register_arithmetic 1
# define md_register_arithmetic 1
#endif
#endif
      if (op_left == O_add && right.X_op == O_constant
      if (op_left == O_add && right.X_op == O_constant
          && (md_register_arithmetic || resultP->X_op != O_register))
          && (md_register_arithmetic || resultP->X_op != O_register))
        {
        {
          /* X + constant.  */
          /* X + constant.  */
          resultP->X_add_number += right.X_add_number;
          resultP->X_add_number += right.X_add_number;
        }
        }
      /* This case comes up in PIC code.  */
      /* This case comes up in PIC code.  */
      else if (op_left == O_subtract
      else if (op_left == O_subtract
               && right.X_op == O_symbol
               && right.X_op == O_symbol
               && resultP->X_op == O_symbol
               && resultP->X_op == O_symbol
               && retval == rightseg
               && retval == rightseg
#ifdef md_allow_local_subtract
#ifdef md_allow_local_subtract
               && md_allow_local_subtract (resultP, & right, rightseg)
               && md_allow_local_subtract (resultP, & right, rightseg)
#endif
#endif
               && (SEG_NORMAL (rightseg)
               && (SEG_NORMAL (rightseg)
                   || right.X_add_symbol == resultP->X_add_symbol)
                   || right.X_add_symbol == resultP->X_add_symbol)
               && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
               && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
                                       symbol_get_frag (right.X_add_symbol),
                                       symbol_get_frag (right.X_add_symbol),
                                       &frag_off))
                                       &frag_off))
        {
        {
          resultP->X_add_number -= right.X_add_number;
          resultP->X_add_number -= right.X_add_number;
          resultP->X_add_number -= frag_off / OCTETS_PER_BYTE;
          resultP->X_add_number -= frag_off / OCTETS_PER_BYTE;
          resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
          resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
                                    - S_GET_VALUE (right.X_add_symbol));
                                    - S_GET_VALUE (right.X_add_symbol));
          resultP->X_op = O_constant;
          resultP->X_op = O_constant;
          resultP->X_add_symbol = 0;
          resultP->X_add_symbol = 0;
        }
        }
      else if (op_left == O_subtract && right.X_op == O_constant
      else if (op_left == O_subtract && right.X_op == O_constant
               && (md_register_arithmetic || resultP->X_op != O_register))
               && (md_register_arithmetic || resultP->X_op != O_register))
        {
        {
          /* X - constant.  */
          /* X - constant.  */
          resultP->X_add_number -= right.X_add_number;
          resultP->X_add_number -= right.X_add_number;
        }
        }
      else if (op_left == O_add && resultP->X_op == O_constant
      else if (op_left == O_add && resultP->X_op == O_constant
               && (md_register_arithmetic || right.X_op != O_register))
               && (md_register_arithmetic || right.X_op != O_register))
        {
        {
          /* Constant + X.  */
          /* Constant + X.  */
          resultP->X_op = right.X_op;
          resultP->X_op = right.X_op;
          resultP->X_add_symbol = right.X_add_symbol;
          resultP->X_add_symbol = right.X_add_symbol;
          resultP->X_op_symbol = right.X_op_symbol;
          resultP->X_op_symbol = right.X_op_symbol;
          resultP->X_add_number += right.X_add_number;
          resultP->X_add_number += right.X_add_number;
          retval = rightseg;
          retval = rightseg;
        }
        }
      else if (resultP->X_op == O_constant && right.X_op == O_constant)
      else if (resultP->X_op == O_constant && right.X_op == O_constant)
        {
        {
          /* Constant OP constant.  */
          /* Constant OP constant.  */
          offsetT v = right.X_add_number;
          offsetT v = right.X_add_number;
          if (v == 0 && (op_left == O_divide || op_left == O_modulus))
          if (v == 0 && (op_left == O_divide || op_left == O_modulus))
            {
            {
              as_warn (_("division by zero"));
              as_warn (_("division by zero"));
              v = 1;
              v = 1;
            }
            }
          if ((valueT) v >= sizeof(valueT) * CHAR_BIT
          if ((valueT) v >= sizeof(valueT) * CHAR_BIT
              && (op_left == O_left_shift || op_left == O_right_shift))
              && (op_left == O_left_shift || op_left == O_right_shift))
            {
            {
              as_warn_value_out_of_range (_("shift count"), v, 0,
              as_warn_value_out_of_range (_("shift count"), v, 0,
                                          sizeof(valueT) * CHAR_BIT - 1,
                                          sizeof(valueT) * CHAR_BIT - 1,
                                          NULL, 0);
                                          NULL, 0);
              resultP->X_add_number = v = 0;
              resultP->X_add_number = v = 0;
            }
            }
          switch (op_left)
          switch (op_left)
            {
            {
            default:                    goto general;
            default:                    goto general;
            case O_multiply:            resultP->X_add_number *= v; break;
            case O_multiply:            resultP->X_add_number *= v; break;
            case O_divide:              resultP->X_add_number /= v; break;
            case O_divide:              resultP->X_add_number /= v; break;
            case O_modulus:             resultP->X_add_number %= v; break;
            case O_modulus:             resultP->X_add_number %= v; break;
            case O_left_shift:          resultP->X_add_number <<= v; break;
            case O_left_shift:          resultP->X_add_number <<= v; break;
            case O_right_shift:
            case O_right_shift:
              /* We always use unsigned shifts, to avoid relying on
              /* We always use unsigned shifts, to avoid relying on
                 characteristics of the compiler used to compile gas.  */
                 characteristics of the compiler used to compile gas.  */
              resultP->X_add_number =
              resultP->X_add_number =
                (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
                (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
              break;
              break;
            case O_bit_inclusive_or:    resultP->X_add_number |= v; break;
            case O_bit_inclusive_or:    resultP->X_add_number |= v; break;
            case O_bit_or_not:          resultP->X_add_number |= ~v; break;
            case O_bit_or_not:          resultP->X_add_number |= ~v; break;
            case O_bit_exclusive_or:    resultP->X_add_number ^= v; break;
            case O_bit_exclusive_or:    resultP->X_add_number ^= v; break;
            case O_bit_and:             resultP->X_add_number &= v; break;
            case O_bit_and:             resultP->X_add_number &= v; break;
              /* Constant + constant (O_add) is handled by the
              /* Constant + constant (O_add) is handled by the
                 previous if statement for constant + X, so is omitted
                 previous if statement for constant + X, so is omitted
                 here.  */
                 here.  */
            case O_subtract:            resultP->X_add_number -= v; break;
            case O_subtract:            resultP->X_add_number -= v; break;
            case O_eq:
            case O_eq:
              resultP->X_add_number =
              resultP->X_add_number =
                resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
                resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
              break;
              break;
            case O_ne:
            case O_ne:
              resultP->X_add_number =
              resultP->X_add_number =
                resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
                resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
              break;
              break;
            case O_lt:
            case O_lt:
              resultP->X_add_number =
              resultP->X_add_number =
                resultP->X_add_number <  v ? ~ (offsetT) 0 : 0;
                resultP->X_add_number <  v ? ~ (offsetT) 0 : 0;
              break;
              break;
            case O_le:
            case O_le:
              resultP->X_add_number =
              resultP->X_add_number =
                resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
                resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
              break;
              break;
            case O_ge:
            case O_ge:
              resultP->X_add_number =
              resultP->X_add_number =
                resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
                resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
              break;
              break;
            case O_gt:
            case O_gt:
              resultP->X_add_number =
              resultP->X_add_number =
                resultP->X_add_number >  v ? ~ (offsetT) 0 : 0;
                resultP->X_add_number >  v ? ~ (offsetT) 0 : 0;
              break;
              break;
            case O_logical_and:
            case O_logical_and:
              resultP->X_add_number = resultP->X_add_number && v;
              resultP->X_add_number = resultP->X_add_number && v;
              break;
              break;
            case O_logical_or:
            case O_logical_or:
              resultP->X_add_number = resultP->X_add_number || v;
              resultP->X_add_number = resultP->X_add_number || v;
              break;
              break;
            }
            }
        }
        }
      else if (resultP->X_op == O_symbol
      else if (resultP->X_op == O_symbol
               && right.X_op == O_symbol
               && right.X_op == O_symbol
               && (op_left == O_add
               && (op_left == O_add
                   || op_left == O_subtract
                   || op_left == O_subtract
                   || (resultP->X_add_number == 0
                   || (resultP->X_add_number == 0
                       && right.X_add_number == 0)))
                       && right.X_add_number == 0)))
        {
        {
          /* Symbol OP symbol.  */
          /* Symbol OP symbol.  */
          resultP->X_op = op_left;
          resultP->X_op = op_left;
          resultP->X_op_symbol = right.X_add_symbol;
          resultP->X_op_symbol = right.X_add_symbol;
          if (op_left == O_add)
          if (op_left == O_add)
            resultP->X_add_number += right.X_add_number;
            resultP->X_add_number += right.X_add_number;
          else if (op_left == O_subtract)
          else if (op_left == O_subtract)
            {
            {
              resultP->X_add_number -= right.X_add_number;
              resultP->X_add_number -= right.X_add_number;
              if (retval == rightseg && SEG_NORMAL (retval))
              if (retval == rightseg && SEG_NORMAL (retval))
                {
                {
                  retval = absolute_section;
                  retval = absolute_section;
                  rightseg = absolute_section;
                  rightseg = absolute_section;
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
        general:
        general:
          /* The general case.  */
          /* The general case.  */
          resultP->X_add_symbol = make_expr_symbol (resultP);
          resultP->X_add_symbol = make_expr_symbol (resultP);
          resultP->X_op_symbol = make_expr_symbol (&right);
          resultP->X_op_symbol = make_expr_symbol (&right);
          resultP->X_op = op_left;
          resultP->X_op = op_left;
          resultP->X_add_number = 0;
          resultP->X_add_number = 0;
          resultP->X_unsigned = 1;
          resultP->X_unsigned = 1;
        }
        }
 
 
      if (retval != rightseg)
      if (retval != rightseg)
        {
        {
          if (! SEG_NORMAL (retval))
          if (! SEG_NORMAL (retval))
            {
            {
              if (retval != undefined_section || SEG_NORMAL (rightseg))
              if (retval != undefined_section || SEG_NORMAL (rightseg))
                retval = rightseg;
                retval = rightseg;
            }
            }
          else if (SEG_NORMAL (rightseg)
          else if (SEG_NORMAL (rightseg)
#ifdef DIFF_EXPR_OK
#ifdef DIFF_EXPR_OK
                   && op_left != O_subtract
                   && op_left != O_subtract
#endif
#endif
                   )
                   )
            as_bad (_("operation combines symbols in different segments"));
            as_bad (_("operation combines symbols in different segments"));
        }
        }
 
 
      op_left = op_right;
      op_left = op_right;
    }                           /* While next operator is >= this rank.  */
    }                           /* While next operator is >= this rank.  */
 
 
  /* The PA port needs this information.  */
  /* The PA port needs this information.  */
  if (resultP->X_add_symbol)
  if (resultP->X_add_symbol)
    symbol_mark_used (resultP->X_add_symbol);
    symbol_mark_used (resultP->X_add_symbol);
 
 
  if (rank == 0 && mode == expr_evaluate)
  if (rank == 0 && mode == expr_evaluate)
    resolve_expression (resultP);
    resolve_expression (resultP);
 
 
  return resultP->X_op == O_constant ? absolute_section : retval;
  return resultP->X_op == O_constant ? absolute_section : retval;
}
}
 
 
/* Resolve an expression without changing any symbols/sub-expressions
/* Resolve an expression without changing any symbols/sub-expressions
   used.  */
   used.  */
 
 
int
int
resolve_expression (expressionS *expressionP)
resolve_expression (expressionS *expressionP)
{
{
  /* Help out with CSE.  */
  /* Help out with CSE.  */
  valueT final_val = expressionP->X_add_number;
  valueT final_val = expressionP->X_add_number;
  symbolS *add_symbol = expressionP->X_add_symbol;
  symbolS *add_symbol = expressionP->X_add_symbol;
  symbolS *orig_add_symbol = add_symbol;
  symbolS *orig_add_symbol = add_symbol;
  symbolS *op_symbol = expressionP->X_op_symbol;
  symbolS *op_symbol = expressionP->X_op_symbol;
  operatorT op = expressionP->X_op;
  operatorT op = expressionP->X_op;
  valueT left, right;
  valueT left, right;
  segT seg_left, seg_right;
  segT seg_left, seg_right;
  fragS *frag_left, *frag_right;
  fragS *frag_left, *frag_right;
  bfd_vma frag_off;
  bfd_vma frag_off;
 
 
  switch (op)
  switch (op)
    {
    {
    default:
    default:
      return 0;
      return 0;
 
 
    case O_constant:
    case O_constant:
    case O_register:
    case O_register:
      left = 0;
      left = 0;
      break;
      break;
 
 
    case O_symbol:
    case O_symbol:
    case O_symbol_rva:
    case O_symbol_rva:
      if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
      if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
        return 0;
        return 0;
 
 
      break;
      break;
 
 
    case O_uminus:
    case O_uminus:
    case O_bit_not:
    case O_bit_not:
    case O_logical_not:
    case O_logical_not:
      if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
      if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
        return 0;
        return 0;
 
 
      if (seg_left != absolute_section)
      if (seg_left != absolute_section)
        return 0;
        return 0;
 
 
      if (op == O_logical_not)
      if (op == O_logical_not)
        left = !left;
        left = !left;
      else if (op == O_uminus)
      else if (op == O_uminus)
        left = -left;
        left = -left;
      else
      else
        left = ~left;
        left = ~left;
      op = O_constant;
      op = O_constant;
      break;
      break;
 
 
    case O_multiply:
    case O_multiply:
    case O_divide:
    case O_divide:
    case O_modulus:
    case O_modulus:
    case O_left_shift:
    case O_left_shift:
    case O_right_shift:
    case O_right_shift:
    case O_bit_inclusive_or:
    case O_bit_inclusive_or:
    case O_bit_or_not:
    case O_bit_or_not:
    case O_bit_exclusive_or:
    case O_bit_exclusive_or:
    case O_bit_and:
    case O_bit_and:
    case O_add:
    case O_add:
    case O_subtract:
    case O_subtract:
    case O_eq:
    case O_eq:
    case O_ne:
    case O_ne:
    case O_lt:
    case O_lt:
    case O_le:
    case O_le:
    case O_ge:
    case O_ge:
    case O_gt:
    case O_gt:
    case O_logical_and:
    case O_logical_and:
    case O_logical_or:
    case O_logical_or:
      if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
      if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
          || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
          || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
        return 0;
        return 0;
 
 
      /* Simplify addition or subtraction of a constant by folding the
      /* Simplify addition or subtraction of a constant by folding the
         constant into X_add_number.  */
         constant into X_add_number.  */
      if (op == O_add)
      if (op == O_add)
        {
        {
          if (seg_right == absolute_section)
          if (seg_right == absolute_section)
            {
            {
              final_val += right;
              final_val += right;
              op = O_symbol;
              op = O_symbol;
              break;
              break;
            }
            }
          else if (seg_left == absolute_section)
          else if (seg_left == absolute_section)
            {
            {
              final_val += left;
              final_val += left;
              left = right;
              left = right;
              seg_left = seg_right;
              seg_left = seg_right;
              add_symbol = op_symbol;
              add_symbol = op_symbol;
              orig_add_symbol = expressionP->X_op_symbol;
              orig_add_symbol = expressionP->X_op_symbol;
              op = O_symbol;
              op = O_symbol;
              break;
              break;
            }
            }
        }
        }
      else if (op == O_subtract)
      else if (op == O_subtract)
        {
        {
          if (seg_right == absolute_section)
          if (seg_right == absolute_section)
            {
            {
              final_val -= right;
              final_val -= right;
              op = O_symbol;
              op = O_symbol;
              break;
              break;
            }
            }
        }
        }
 
 
      /* Equality and non-equality tests are permitted on anything.
      /* Equality and non-equality tests are permitted on anything.
         Subtraction, and other comparison operators are permitted if
         Subtraction, and other comparison operators are permitted if
         both operands are in the same section.
         both operands are in the same section.
         Shifts by constant zero are permitted on anything.
         Shifts by constant zero are permitted on anything.
         Multiplies, bit-ors, and bit-ands with constant zero are
         Multiplies, bit-ors, and bit-ands with constant zero are
         permitted on anything.
         permitted on anything.
         Multiplies and divides by constant one are permitted on
         Multiplies and divides by constant one are permitted on
         anything.
         anything.
         Binary operations with both operands being the same register
         Binary operations with both operands being the same register
         or undefined symbol are permitted if the result doesn't depend
         or undefined symbol are permitted if the result doesn't depend
         on the input value.
         on the input value.
         Otherwise, both operands must be absolute.  We already handled
         Otherwise, both operands must be absolute.  We already handled
         the case of addition or subtraction of a constant above.  */
         the case of addition or subtraction of a constant above.  */
      frag_off = 0;
      frag_off = 0;
      if (!(seg_left == absolute_section
      if (!(seg_left == absolute_section
               && seg_right == absolute_section)
               && seg_right == absolute_section)
          && !(op == O_eq || op == O_ne)
          && !(op == O_eq || op == O_ne)
          && !((op == O_subtract
          && !((op == O_subtract
                || op == O_lt || op == O_le || op == O_ge || op == O_gt)
                || op == O_lt || op == O_le || op == O_ge || op == O_gt)
               && seg_left == seg_right
               && seg_left == seg_right
               && (finalize_syms
               && (finalize_syms
                   || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
                   || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
               && (seg_left != reg_section || left == right)
               && (seg_left != reg_section || left == right)
               && (seg_left != undefined_section || add_symbol == op_symbol)))
               && (seg_left != undefined_section || add_symbol == op_symbol)))
        {
        {
          if ((seg_left == absolute_section && left == 0)
          if ((seg_left == absolute_section && left == 0)
              || (seg_right == absolute_section && right == 0))
              || (seg_right == absolute_section && right == 0))
            {
            {
              if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
              if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
                {
                {
                  if (!(seg_right == absolute_section && right == 0))
                  if (!(seg_right == absolute_section && right == 0))
                    {
                    {
                      seg_left = seg_right;
                      seg_left = seg_right;
                      left = right;
                      left = right;
                      add_symbol = op_symbol;
                      add_symbol = op_symbol;
                      orig_add_symbol = expressionP->X_op_symbol;
                      orig_add_symbol = expressionP->X_op_symbol;
                    }
                    }
                  op = O_symbol;
                  op = O_symbol;
                  break;
                  break;
                }
                }
              else if (op == O_left_shift || op == O_right_shift)
              else if (op == O_left_shift || op == O_right_shift)
                {
                {
                  if (!(seg_left == absolute_section && left == 0))
                  if (!(seg_left == absolute_section && left == 0))
                    {
                    {
                      op = O_symbol;
                      op = O_symbol;
                      break;
                      break;
                    }
                    }
                }
                }
              else if (op != O_multiply
              else if (op != O_multiply
                       && op != O_bit_or_not && op != O_bit_and)
                       && op != O_bit_or_not && op != O_bit_and)
                return 0;
                return 0;
            }
            }
          else if (op == O_multiply
          else if (op == O_multiply
                   && seg_left == absolute_section && left == 1)
                   && seg_left == absolute_section && left == 1)
            {
            {
              seg_left = seg_right;
              seg_left = seg_right;
              left = right;
              left = right;
              add_symbol = op_symbol;
              add_symbol = op_symbol;
              orig_add_symbol = expressionP->X_op_symbol;
              orig_add_symbol = expressionP->X_op_symbol;
              op = O_symbol;
              op = O_symbol;
              break;
              break;
            }
            }
          else if ((op == O_multiply || op == O_divide)
          else if ((op == O_multiply || op == O_divide)
                   && seg_right == absolute_section && right == 1)
                   && seg_right == absolute_section && right == 1)
            {
            {
              op = O_symbol;
              op = O_symbol;
              break;
              break;
            }
            }
          else if (!(left == right
          else if (!(left == right
                     && ((seg_left == reg_section && seg_right == reg_section)
                     && ((seg_left == reg_section && seg_right == reg_section)
                         || (seg_left == undefined_section
                         || (seg_left == undefined_section
                             && seg_right == undefined_section
                             && seg_right == undefined_section
                             && add_symbol == op_symbol))))
                             && add_symbol == op_symbol))))
            return 0;
            return 0;
          else if (op == O_bit_and || op == O_bit_inclusive_or)
          else if (op == O_bit_and || op == O_bit_inclusive_or)
            {
            {
              op = O_symbol;
              op = O_symbol;
              break;
              break;
            }
            }
          else if (op != O_bit_exclusive_or && op != O_bit_or_not)
          else if (op != O_bit_exclusive_or && op != O_bit_or_not)
            return 0;
            return 0;
        }
        }
 
 
      right += frag_off / OCTETS_PER_BYTE;
      right += frag_off / OCTETS_PER_BYTE;
      switch (op)
      switch (op)
        {
        {
        case O_add:                     left += right; break;
        case O_add:                     left += right; break;
        case O_subtract:                left -= right; break;
        case O_subtract:                left -= right; break;
        case O_multiply:                left *= right; break;
        case O_multiply:                left *= right; break;
        case O_divide:
        case O_divide:
          if (right == 0)
          if (right == 0)
            return 0;
            return 0;
          left = (offsetT) left / (offsetT) right;
          left = (offsetT) left / (offsetT) right;
          break;
          break;
        case O_modulus:
        case O_modulus:
          if (right == 0)
          if (right == 0)
            return 0;
            return 0;
          left = (offsetT) left % (offsetT) right;
          left = (offsetT) left % (offsetT) right;
          break;
          break;
        case O_left_shift:              left <<= right; break;
        case O_left_shift:              left <<= right; break;
        case O_right_shift:             left >>= right; break;
        case O_right_shift:             left >>= right; break;
        case O_bit_inclusive_or:        left |= right; break;
        case O_bit_inclusive_or:        left |= right; break;
        case O_bit_or_not:              left |= ~right; break;
        case O_bit_or_not:              left |= ~right; break;
        case O_bit_exclusive_or:        left ^= right; break;
        case O_bit_exclusive_or:        left ^= right; break;
        case O_bit_and:                 left &= right; break;
        case O_bit_and:                 left &= right; break;
        case O_eq:
        case O_eq:
        case O_ne:
        case O_ne:
          left = (left == right
          left = (left == right
                  && seg_left == seg_right
                  && seg_left == seg_right
                  && (finalize_syms || frag_left == frag_right)
                  && (finalize_syms || frag_left == frag_right)
                  && (seg_left != undefined_section
                  && (seg_left != undefined_section
                      || add_symbol == op_symbol)
                      || add_symbol == op_symbol)
                  ? ~ (valueT) 0 : 0);
                  ? ~ (valueT) 0 : 0);
          if (op == O_ne)
          if (op == O_ne)
            left = ~left;
            left = ~left;
          break;
          break;
        case O_lt:
        case O_lt:
          left = (offsetT) left <  (offsetT) right ? ~ (valueT) 0 : 0;
          left = (offsetT) left <  (offsetT) right ? ~ (valueT) 0 : 0;
          break;
          break;
        case O_le:
        case O_le:
          left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
          left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
          break;
          break;
        case O_ge:
        case O_ge:
          left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
          left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
          break;
          break;
        case O_gt:
        case O_gt:
          left = (offsetT) left >  (offsetT) right ? ~ (valueT) 0 : 0;
          left = (offsetT) left >  (offsetT) right ? ~ (valueT) 0 : 0;
          break;
          break;
        case O_logical_and:     left = left && right; break;
        case O_logical_and:     left = left && right; break;
        case O_logical_or:      left = left || right; break;
        case O_logical_or:      left = left || right; break;
        default:                abort ();
        default:                abort ();
        }
        }
 
 
      op = O_constant;
      op = O_constant;
      break;
      break;
    }
    }
 
 
  if (op == O_symbol)
  if (op == O_symbol)
    {
    {
      if (seg_left == absolute_section)
      if (seg_left == absolute_section)
        op = O_constant;
        op = O_constant;
      else if (seg_left == reg_section && final_val == 0)
      else if (seg_left == reg_section && final_val == 0)
        op = O_register;
        op = O_register;
      else if (!symbol_same_p (add_symbol, orig_add_symbol))
      else if (!symbol_same_p (add_symbol, orig_add_symbol))
        final_val += left;
        final_val += left;
      expressionP->X_add_symbol = add_symbol;
      expressionP->X_add_symbol = add_symbol;
    }
    }
  expressionP->X_op = op;
  expressionP->X_op = op;
 
 
  if (op == O_constant || op == O_register)
  if (op == O_constant || op == O_register)
    final_val += left;
    final_val += left;
  expressionP->X_add_number = final_val;
  expressionP->X_add_number = final_val;
 
 
  return 1;
  return 1;
}
}


/* This lives here because it belongs equally in expr.c & read.c.
/* This lives here because it belongs equally in expr.c & read.c.
   expr.c is just a branch office read.c anyway, and putting it
   expr.c is just a branch office read.c anyway, and putting it
   here lessens the crowd at read.c.
   here lessens the crowd at read.c.
 
 
   Assume input_line_pointer is at start of symbol name.
   Assume input_line_pointer is at start of symbol name.
   Advance input_line_pointer past symbol name.
   Advance input_line_pointer past symbol name.
   Turn that character into a '\0', returning its former value.
   Turn that character into a '\0', returning its former value.
   This allows a string compare (RMS wants symbol names to be strings)
   This allows a string compare (RMS wants symbol names to be strings)
   of the symbol name.
   of the symbol name.
   There will always be a char following symbol name, because all good
   There will always be a char following symbol name, because all good
   lines end in end-of-line.  */
   lines end in end-of-line.  */
 
 
char
char
get_symbol_end (void)
get_symbol_end (void)
{
{
  char c;
  char c;
 
 
  /* We accept \001 in a name in case this is being called with a
  /* We accept \001 in a name in case this is being called with a
     constructed string.  */
     constructed string.  */
  if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
  if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
    {
    {
      while (is_part_of_name (c = *input_line_pointer++)
      while (is_part_of_name (c = *input_line_pointer++)
             || c == '\001')
             || c == '\001')
        ;
        ;
      if (is_name_ender (c))
      if (is_name_ender (c))
        c = *input_line_pointer++;
        c = *input_line_pointer++;
    }
    }
  *--input_line_pointer = 0;
  *--input_line_pointer = 0;
  return (c);
  return (c);
}
}
 
 
unsigned int
unsigned int
get_single_number (void)
get_single_number (void)
{
{
  expressionS exp;
  expressionS exp;
  operand (&exp, expr_normal);
  operand (&exp, expr_normal);
  return exp.X_add_number;
  return exp.X_add_number;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.