OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [gold/] [arm.cc] - Diff between revs 816 and 818

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 818
// arm.cc -- arm target support for gold.
// arm.cc -- arm target support for gold.
 
 
// Copyright 2009 Free Software Foundation, Inc.
// Copyright 2009 Free Software Foundation, Inc.
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
// by Ian Lance Taylor <iant@google.com>.
// by Ian Lance Taylor <iant@google.com>.
 
 
// This file is part of gold.
// This file is part of gold.
 
 
// This program is free software; you can redistribute it and/or modify
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// (at your option) any later version.
 
 
// This program is distributed in the hope that it will be useful,
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// GNU General Public License for more details.
 
 
// You should have received a copy of the GNU General Public License
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
// MA 02110-1301, USA.
 
 
#include "gold.h"
#include "gold.h"
 
 
#include <cstring>
#include <cstring>
#include <limits>
#include <limits>
#include <cstdio>
#include <cstdio>
#include <string>
#include <string>
 
 
#include "elfcpp.h"
#include "elfcpp.h"
#include "parameters.h"
#include "parameters.h"
#include "reloc.h"
#include "reloc.h"
#include "arm.h"
#include "arm.h"
#include "object.h"
#include "object.h"
#include "symtab.h"
#include "symtab.h"
#include "layout.h"
#include "layout.h"
#include "output.h"
#include "output.h"
#include "copy-relocs.h"
#include "copy-relocs.h"
#include "target.h"
#include "target.h"
#include "target-reloc.h"
#include "target-reloc.h"
#include "target-select.h"
#include "target-select.h"
#include "tls.h"
#include "tls.h"
#include "defstd.h"
#include "defstd.h"
#include "gc.h"
#include "gc.h"
 
 
namespace
namespace
{
{
 
 
using namespace gold;
using namespace gold;
 
 
template<bool big_endian>
template<bool big_endian>
class Output_data_plt_arm;
class Output_data_plt_arm;
 
 
// The arm target class.
// The arm target class.
//
//
// This is a very simple port of gold for ARM-EABI.  It is intended for
// This is a very simple port of gold for ARM-EABI.  It is intended for
// supporting Android only for the time being.  Only these relocation types
// supporting Android only for the time being.  Only these relocation types
// are supported.
// are supported.
//
//
// R_ARM_NONE
// R_ARM_NONE
// R_ARM_ABS32
// R_ARM_ABS32
// R_ARM_ABS32_NOI
// R_ARM_ABS32_NOI
// R_ARM_ABS16
// R_ARM_ABS16
// R_ARM_ABS12
// R_ARM_ABS12
// R_ARM_ABS8
// R_ARM_ABS8
// R_ARM_THM_ABS5
// R_ARM_THM_ABS5
// R_ARM_BASE_ABS
// R_ARM_BASE_ABS
// R_ARM_REL32
// R_ARM_REL32
// R_ARM_THM_CALL
// R_ARM_THM_CALL
// R_ARM_COPY
// R_ARM_COPY
// R_ARM_GLOB_DAT
// R_ARM_GLOB_DAT
// R_ARM_BASE_PREL
// R_ARM_BASE_PREL
// R_ARM_JUMP_SLOT
// R_ARM_JUMP_SLOT
// R_ARM_RELATIVE
// R_ARM_RELATIVE
// R_ARM_GOTOFF32
// R_ARM_GOTOFF32
// R_ARM_GOT_BREL
// R_ARM_GOT_BREL
// R_ARM_GOT_PREL
// R_ARM_GOT_PREL
// R_ARM_PLT32
// R_ARM_PLT32
// R_ARM_CALL
// R_ARM_CALL
// R_ARM_JUMP24
// R_ARM_JUMP24
// R_ARM_TARGET1
// R_ARM_TARGET1
// R_ARM_PREL31
// R_ARM_PREL31
// R_ARM_ABS8
// R_ARM_ABS8
// R_ARM_MOVW_ABS_NC
// R_ARM_MOVW_ABS_NC
// R_ARM_MOVT_ABS
// R_ARM_MOVT_ABS
// R_ARM_THM_MOVW_ABS_NC
// R_ARM_THM_MOVW_ABS_NC
// R_ARM_THM_MOVT_ABS
// R_ARM_THM_MOVT_ABS
// R_ARM_MOVW_PREL_NC
// R_ARM_MOVW_PREL_NC
// R_ARM_MOVT_PREL
// R_ARM_MOVT_PREL
// R_ARM_THM_MOVW_PREL_NC
// R_ARM_THM_MOVW_PREL_NC
// R_ARM_THM_MOVT_PREL
// R_ARM_THM_MOVT_PREL
// 
// 
// TODOs:
// TODOs:
// - Generate various branch stubs.
// - Generate various branch stubs.
// - Support interworking.
// - Support interworking.
// - Define section symbols __exidx_start and __exidx_stop.
// - Define section symbols __exidx_start and __exidx_stop.
// - Support more relocation types as needed. 
// - Support more relocation types as needed. 
// - Make PLTs more flexible for different architecture features like
// - Make PLTs more flexible for different architecture features like
//   Thumb-2 and BE8.
//   Thumb-2 and BE8.
// There are probably a lot more.
// There are probably a lot more.
 
 
// Utilities for manipulating integers of up to 32-bits
// Utilities for manipulating integers of up to 32-bits
 
 
namespace utils
namespace utils
{
{
  // Sign extend an n-bit unsigned integer stored in an uint32_t into
  // Sign extend an n-bit unsigned integer stored in an uint32_t into
  // an int32_t.  NO_BITS must be between 1 to 32.
  // an int32_t.  NO_BITS must be between 1 to 32.
  template<int no_bits>
  template<int no_bits>
  static inline int32_t
  static inline int32_t
  sign_extend(uint32_t bits)
  sign_extend(uint32_t bits)
  {
  {
    gold_assert(no_bits >= 0 && no_bits <= 32);
    gold_assert(no_bits >= 0 && no_bits <= 32);
    if (no_bits == 32)
    if (no_bits == 32)
      return static_cast<int32_t>(bits);
      return static_cast<int32_t>(bits);
    uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
    uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
    bits &= mask;
    bits &= mask;
    uint32_t top_bit = 1U << (no_bits - 1);
    uint32_t top_bit = 1U << (no_bits - 1);
    int32_t as_signed = static_cast<int32_t>(bits);
    int32_t as_signed = static_cast<int32_t>(bits);
    return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
    return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
  }
  }
 
 
  // Detects overflow of an NO_BITS integer stored in a uint32_t.
  // Detects overflow of an NO_BITS integer stored in a uint32_t.
  template<int no_bits>
  template<int no_bits>
  static inline bool
  static inline bool
  has_overflow(uint32_t bits)
  has_overflow(uint32_t bits)
  {
  {
    gold_assert(no_bits >= 0 && no_bits <= 32);
    gold_assert(no_bits >= 0 && no_bits <= 32);
    if (no_bits == 32)
    if (no_bits == 32)
      return false;
      return false;
    int32_t max = (1 << (no_bits - 1)) - 1;
    int32_t max = (1 << (no_bits - 1)) - 1;
    int32_t min = -(1 << (no_bits - 1));
    int32_t min = -(1 << (no_bits - 1));
    int32_t as_signed = static_cast<int32_t>(bits);
    int32_t as_signed = static_cast<int32_t>(bits);
    return as_signed > max || as_signed < min;
    return as_signed > max || as_signed < min;
  }
  }
 
 
  // Detects overflow of an NO_BITS integer stored in a uint32_t when it
  // Detects overflow of an NO_BITS integer stored in a uint32_t when it
  // fits in the given number of bits as either a signed or unsigned value.
  // fits in the given number of bits as either a signed or unsigned value.
  // For example, has_signed_unsigned_overflow<8> would check
  // For example, has_signed_unsigned_overflow<8> would check
  // -128 <= bits <= 255
  // -128 <= bits <= 255
  template<int no_bits>
  template<int no_bits>
  static inline bool
  static inline bool
  has_signed_unsigned_overflow(uint32_t bits)
  has_signed_unsigned_overflow(uint32_t bits)
  {
  {
    gold_assert(no_bits >= 2 && no_bits <= 32);
    gold_assert(no_bits >= 2 && no_bits <= 32);
    if (no_bits == 32)
    if (no_bits == 32)
      return false;
      return false;
    int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
    int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
    int32_t min = -(1 << (no_bits - 1));
    int32_t min = -(1 << (no_bits - 1));
    int32_t as_signed = static_cast<int32_t>(bits);
    int32_t as_signed = static_cast<int32_t>(bits);
    return as_signed > max || as_signed < min;
    return as_signed > max || as_signed < min;
  }
  }
 
 
  // Select bits from A and B using bits in MASK.  For each n in [0..31],
  // Select bits from A and B using bits in MASK.  For each n in [0..31],
  // the n-th bit in the result is chosen from the n-th bits of A and B.
  // the n-th bit in the result is chosen from the n-th bits of A and B.
  // A zero selects A and a one selects B.
  // A zero selects A and a one selects B.
  static inline uint32_t
  static inline uint32_t
  bit_select(uint32_t a, uint32_t b, uint32_t mask)
  bit_select(uint32_t a, uint32_t b, uint32_t mask)
  { return (a & ~mask) | (b & mask); }
  { return (a & ~mask) | (b & mask); }
};
};
 
 
template<bool big_endian>
template<bool big_endian>
class Target_arm : public Sized_target<32, big_endian>
class Target_arm : public Sized_target<32, big_endian>
{
{
 public:
 public:
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
    Reloc_section;
    Reloc_section;
 
 
  Target_arm()
  Target_arm()
    : Sized_target<32, big_endian>(&arm_info),
    : Sized_target<32, big_endian>(&arm_info),
      got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
      got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL)
      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL)
  { }
  { }
 
 
  // Process the relocations to determine unreferenced sections for 
  // Process the relocations to determine unreferenced sections for 
  // garbage collection.
  // garbage collection.
  void
  void
  gc_process_relocs(const General_options& options,
  gc_process_relocs(const General_options& options,
                    Symbol_table* symtab,
                    Symbol_table* symtab,
                    Layout* layout,
                    Layout* layout,
                    Sized_relobj<32, big_endian>* object,
                    Sized_relobj<32, big_endian>* object,
                    unsigned int data_shndx,
                    unsigned int data_shndx,
                    unsigned int sh_type,
                    unsigned int sh_type,
                    const unsigned char* prelocs,
                    const unsigned char* prelocs,
                    size_t reloc_count,
                    size_t reloc_count,
                    Output_section* output_section,
                    Output_section* output_section,
                    bool needs_special_offset_handling,
                    bool needs_special_offset_handling,
                    size_t local_symbol_count,
                    size_t local_symbol_count,
                    const unsigned char* plocal_symbols);
                    const unsigned char* plocal_symbols);
 
 
  // Scan the relocations to look for symbol adjustments.
  // Scan the relocations to look for symbol adjustments.
  void
  void
  scan_relocs(const General_options& options,
  scan_relocs(const General_options& options,
              Symbol_table* symtab,
              Symbol_table* symtab,
              Layout* layout,
              Layout* layout,
              Sized_relobj<32, big_endian>* object,
              Sized_relobj<32, big_endian>* object,
              unsigned int data_shndx,
              unsigned int data_shndx,
              unsigned int sh_type,
              unsigned int sh_type,
              const unsigned char* prelocs,
              const unsigned char* prelocs,
              size_t reloc_count,
              size_t reloc_count,
              Output_section* output_section,
              Output_section* output_section,
              bool needs_special_offset_handling,
              bool needs_special_offset_handling,
              size_t local_symbol_count,
              size_t local_symbol_count,
              const unsigned char* plocal_symbols);
              const unsigned char* plocal_symbols);
 
 
  // Finalize the sections.
  // Finalize the sections.
  void
  void
  do_finalize_sections(Layout*);
  do_finalize_sections(Layout*);
 
 
  // Return the value to use for a dynamic symbol which requires special
  // Return the value to use for a dynamic symbol which requires special
  // treatment.
  // treatment.
  uint64_t
  uint64_t
  do_dynsym_value(const Symbol*) const;
  do_dynsym_value(const Symbol*) const;
 
 
  // Relocate a section.
  // Relocate a section.
  void
  void
  relocate_section(const Relocate_info<32, big_endian>*,
  relocate_section(const Relocate_info<32, big_endian>*,
                   unsigned int sh_type,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   size_t reloc_count,
                   Output_section* output_section,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   bool needs_special_offset_handling,
                   unsigned char* view,
                   unsigned char* view,
                   elfcpp::Elf_types<32>::Elf_Addr view_address,
                   elfcpp::Elf_types<32>::Elf_Addr view_address,
                   section_size_type view_size,
                   section_size_type view_size,
                   const Reloc_symbol_changes*);
                   const Reloc_symbol_changes*);
 
 
  // Scan the relocs during a relocatable link.
  // Scan the relocs during a relocatable link.
  void
  void
  scan_relocatable_relocs(const General_options& options,
  scan_relocatable_relocs(const General_options& options,
                          Symbol_table* symtab,
                          Symbol_table* symtab,
                          Layout* layout,
                          Layout* layout,
                          Sized_relobj<32, big_endian>* object,
                          Sized_relobj<32, big_endian>* object,
                          unsigned int data_shndx,
                          unsigned int data_shndx,
                          unsigned int sh_type,
                          unsigned int sh_type,
                          const unsigned char* prelocs,
                          const unsigned char* prelocs,
                          size_t reloc_count,
                          size_t reloc_count,
                          Output_section* output_section,
                          Output_section* output_section,
                          bool needs_special_offset_handling,
                          bool needs_special_offset_handling,
                          size_t local_symbol_count,
                          size_t local_symbol_count,
                          const unsigned char* plocal_symbols,
                          const unsigned char* plocal_symbols,
                          Relocatable_relocs*);
                          Relocatable_relocs*);
 
 
  // Relocate a section during a relocatable link.
  // Relocate a section during a relocatable link.
  void
  void
  relocate_for_relocatable(const Relocate_info<32, big_endian>*,
  relocate_for_relocatable(const Relocate_info<32, big_endian>*,
                           unsigned int sh_type,
                           unsigned int sh_type,
                           const unsigned char* prelocs,
                           const unsigned char* prelocs,
                           size_t reloc_count,
                           size_t reloc_count,
                           Output_section* output_section,
                           Output_section* output_section,
                           off_t offset_in_output_section,
                           off_t offset_in_output_section,
                           const Relocatable_relocs*,
                           const Relocatable_relocs*,
                           unsigned char* view,
                           unsigned char* view,
                           elfcpp::Elf_types<32>::Elf_Addr view_address,
                           elfcpp::Elf_types<32>::Elf_Addr view_address,
                           section_size_type view_size,
                           section_size_type view_size,
                           unsigned char* reloc_view,
                           unsigned char* reloc_view,
                           section_size_type reloc_view_size);
                           section_size_type reloc_view_size);
 
 
  // Return whether SYM is defined by the ABI.
  // Return whether SYM is defined by the ABI.
  bool
  bool
  do_is_defined_by_abi(Symbol* sym) const
  do_is_defined_by_abi(Symbol* sym) const
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
 
 
  // Return the size of the GOT section.
  // Return the size of the GOT section.
  section_size_type
  section_size_type
  got_size()
  got_size()
  {
  {
    gold_assert(this->got_ != NULL);
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
    return this->got_->data_size();
  }
  }
 
 
  // Map platform-specific reloc types
  // Map platform-specific reloc types
  static unsigned int
  static unsigned int
  get_real_reloc_type (unsigned int r_type);
  get_real_reloc_type (unsigned int r_type);
 
 
 private:
 private:
  // The class which scans relocations.
  // The class which scans relocations.
  class Scan
  class Scan
  {
  {
   public:
   public:
    Scan()
    Scan()
      : issued_non_pic_error_(false)
      : issued_non_pic_error_(false)
    { }
    { }
 
 
    inline void
    inline void
    local(const General_options& options, Symbol_table* symtab,
    local(const General_options& options, Symbol_table* symtab,
          Layout* layout, Target_arm* target,
          Layout* layout, Target_arm* target,
          Sized_relobj<32, big_endian>* object,
          Sized_relobj<32, big_endian>* object,
          unsigned int data_shndx,
          unsigned int data_shndx,
          Output_section* output_section,
          Output_section* output_section,
          const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
          const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
          const elfcpp::Sym<32, big_endian>& lsym);
          const elfcpp::Sym<32, big_endian>& lsym);
 
 
    inline void
    inline void
    global(const General_options& options, Symbol_table* symtab,
    global(const General_options& options, Symbol_table* symtab,
           Layout* layout, Target_arm* target,
           Layout* layout, Target_arm* target,
           Sized_relobj<32, big_endian>* object,
           Sized_relobj<32, big_endian>* object,
           unsigned int data_shndx,
           unsigned int data_shndx,
           Output_section* output_section,
           Output_section* output_section,
           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
           Symbol* gsym);
           Symbol* gsym);
 
 
   private:
   private:
    static void
    static void
    unsupported_reloc_local(Sized_relobj<32, big_endian>*,
    unsupported_reloc_local(Sized_relobj<32, big_endian>*,
                            unsigned int r_type);
                            unsigned int r_type);
 
 
    static void
    static void
    unsupported_reloc_global(Sized_relobj<32, big_endian>*,
    unsupported_reloc_global(Sized_relobj<32, big_endian>*,
                             unsigned int r_type, Symbol*);
                             unsigned int r_type, Symbol*);
 
 
    void
    void
    check_non_pic(Relobj*, unsigned int r_type);
    check_non_pic(Relobj*, unsigned int r_type);
 
 
    // Almost identical to Symbol::needs_plt_entry except that it also
    // Almost identical to Symbol::needs_plt_entry except that it also
    // handles STT_ARM_TFUNC.
    // handles STT_ARM_TFUNC.
    static bool
    static bool
    symbol_needs_plt_entry(const Symbol* sym)
    symbol_needs_plt_entry(const Symbol* sym)
    {
    {
      // An undefined symbol from an executable does not need a PLT entry.
      // An undefined symbol from an executable does not need a PLT entry.
      if (sym->is_undefined() && !parameters->options().shared())
      if (sym->is_undefined() && !parameters->options().shared())
        return false;
        return false;
 
 
      return (!parameters->doing_static_link()
      return (!parameters->doing_static_link()
              && (sym->type() == elfcpp::STT_FUNC
              && (sym->type() == elfcpp::STT_FUNC
                  || sym->type() == elfcpp::STT_ARM_TFUNC)
                  || sym->type() == elfcpp::STT_ARM_TFUNC)
              && (sym->is_from_dynobj()
              && (sym->is_from_dynobj()
                  || sym->is_undefined()
                  || sym->is_undefined()
                  || sym->is_preemptible()));
                  || sym->is_preemptible()));
    }
    }
 
 
    // Whether we have issued an error about a non-PIC compilation.
    // Whether we have issued an error about a non-PIC compilation.
    bool issued_non_pic_error_;
    bool issued_non_pic_error_;
  };
  };
 
 
  // The class which implements relocation.
  // The class which implements relocation.
  class Relocate
  class Relocate
  {
  {
   public:
   public:
    Relocate()
    Relocate()
    { }
    { }
 
 
    ~Relocate()
    ~Relocate()
    { }
    { }
 
 
    // Return whether the static relocation needs to be applied.
    // Return whether the static relocation needs to be applied.
    inline bool
    inline bool
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
                              int ref_flags,
                              int ref_flags,
                              bool is_32bit,
                              bool is_32bit,
                              Output_section* output_section);
                              Output_section* output_section);
 
 
    // Do a relocation.  Return false if the caller should not issue
    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    // any warnings about this relocation.
    inline bool
    inline bool
    relocate(const Relocate_info<32, big_endian>*, Target_arm*,
    relocate(const Relocate_info<32, big_endian>*, Target_arm*,
             Output_section*,  size_t relnum,
             Output_section*,  size_t relnum,
             const elfcpp::Rel<32, big_endian>&,
             const elfcpp::Rel<32, big_endian>&,
             unsigned int r_type, const Sized_symbol<32>*,
             unsigned int r_type, const Sized_symbol<32>*,
             const Symbol_value<32>*,
             const Symbol_value<32>*,
             unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
             unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
             section_size_type);
             section_size_type);
 
 
    // Return whether we want to pass flag NON_PIC_REF for this
    // Return whether we want to pass flag NON_PIC_REF for this
    // reloc.
    // reloc.
    static inline bool
    static inline bool
    reloc_is_non_pic (unsigned int r_type)
    reloc_is_non_pic (unsigned int r_type)
    {
    {
      switch (r_type)
      switch (r_type)
        {
        {
        case elfcpp::R_ARM_REL32:
        case elfcpp::R_ARM_REL32:
        case elfcpp::R_ARM_THM_CALL:
        case elfcpp::R_ARM_THM_CALL:
        case elfcpp::R_ARM_CALL:
        case elfcpp::R_ARM_CALL:
        case elfcpp::R_ARM_JUMP24:
        case elfcpp::R_ARM_JUMP24:
        case elfcpp::R_ARM_PREL31:
        case elfcpp::R_ARM_PREL31:
        case elfcpp::R_ARM_THM_ABS5:
        case elfcpp::R_ARM_THM_ABS5:
        case elfcpp::R_ARM_ABS8:
        case elfcpp::R_ARM_ABS8:
        case elfcpp::R_ARM_ABS12:
        case elfcpp::R_ARM_ABS12:
        case elfcpp::R_ARM_ABS16:
        case elfcpp::R_ARM_ABS16:
        case elfcpp::R_ARM_BASE_ABS:
        case elfcpp::R_ARM_BASE_ABS:
          return true;
          return true;
        default:
        default:
          return false;
          return false;
        }
        }
    }
    }
  };
  };
 
 
  // A class which returns the size required for a relocation type,
  // A class which returns the size required for a relocation type,
  // used while scanning relocs during a relocatable link.
  // used while scanning relocs during a relocatable link.
  class Relocatable_size_for_reloc
  class Relocatable_size_for_reloc
  {
  {
   public:
   public:
    unsigned int
    unsigned int
    get_size_for_reloc(unsigned int, Relobj*);
    get_size_for_reloc(unsigned int, Relobj*);
  };
  };
 
 
  // Get the GOT section, creating it if necessary.
  // Get the GOT section, creating it if necessary.
  Output_data_got<32, big_endian>*
  Output_data_got<32, big_endian>*
  got_section(Symbol_table*, Layout*);
  got_section(Symbol_table*, Layout*);
 
 
  // Get the GOT PLT section.
  // Get the GOT PLT section.
  Output_data_space*
  Output_data_space*
  got_plt_section() const
  got_plt_section() const
  {
  {
    gold_assert(this->got_plt_ != NULL);
    gold_assert(this->got_plt_ != NULL);
    return this->got_plt_;
    return this->got_plt_;
  }
  }
 
 
  // Create a PLT entry for a global symbol.
  // Create a PLT entry for a global symbol.
  void
  void
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
 
 
  // Get the PLT section.
  // Get the PLT section.
  const Output_data_plt_arm<big_endian>*
  const Output_data_plt_arm<big_endian>*
  plt_section() const
  plt_section() const
  {
  {
    gold_assert(this->plt_ != NULL);
    gold_assert(this->plt_ != NULL);
    return this->plt_;
    return this->plt_;
  }
  }
 
 
  // Get the dynamic reloc section, creating it if necessary.
  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  Reloc_section*
  rel_dyn_section(Layout*);
  rel_dyn_section(Layout*);
 
 
  // Return true if the symbol may need a COPY relocation.
  // Return true if the symbol may need a COPY relocation.
  // References from an executable object to non-function symbols
  // References from an executable object to non-function symbols
  // defined in a dynamic object may need a COPY relocation.
  // defined in a dynamic object may need a COPY relocation.
  bool
  bool
  may_need_copy_reloc(Symbol* gsym)
  may_need_copy_reloc(Symbol* gsym)
  {
  {
    return (gsym->type() != elfcpp::STT_ARM_TFUNC
    return (gsym->type() != elfcpp::STT_ARM_TFUNC
            && gsym->may_need_copy_reloc());
            && gsym->may_need_copy_reloc());
  }
  }
 
 
  // Add a potential copy relocation.
  // Add a potential copy relocation.
  void
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
  copy_reloc(Symbol_table* symtab, Layout* layout,
             Sized_relobj<32, big_endian>* object,
             Sized_relobj<32, big_endian>* object,
             unsigned int shndx, Output_section* output_section,
             unsigned int shndx, Output_section* output_section,
             Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
             Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
  {
  {
    this->copy_relocs_.copy_reloc(symtab, layout,
    this->copy_relocs_.copy_reloc(symtab, layout,
                                  symtab->get_sized_symbol<32>(sym),
                                  symtab->get_sized_symbol<32>(sym),
                                  object, shndx, output_section, reloc,
                                  object, shndx, output_section, reloc,
                                  this->rel_dyn_section(layout));
                                  this->rel_dyn_section(layout));
  }
  }
 
 
  // Information about this specific target which we pass to the
  // Information about this specific target which we pass to the
  // general Target structure.
  // general Target structure.
  static const Target::Target_info arm_info;
  static const Target::Target_info arm_info;
 
 
  // The types of GOT entries needed for this platform.
  // The types of GOT entries needed for this platform.
  enum Got_type
  enum Got_type
  {
  {
    GOT_TYPE_STANDARD = 0        // GOT entry for a regular symbol
    GOT_TYPE_STANDARD = 0        // GOT entry for a regular symbol
  };
  };
 
 
  // The GOT section.
  // The GOT section.
  Output_data_got<32, big_endian>* got_;
  Output_data_got<32, big_endian>* got_;
  // The PLT section.
  // The PLT section.
  Output_data_plt_arm<big_endian>* plt_;
  Output_data_plt_arm<big_endian>* plt_;
  // The GOT PLT section.
  // The GOT PLT section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
  // The dynamic reloc section.
  // The dynamic reloc section.
  Reloc_section* rel_dyn_;
  Reloc_section* rel_dyn_;
  // Relocs saved to avoid a COPY reloc.
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
  Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
  // Space for variables copied with a COPY reloc.
  // Space for variables copied with a COPY reloc.
  Output_data_space* dynbss_;
  Output_data_space* dynbss_;
};
};
 
 
template<bool big_endian>
template<bool big_endian>
const Target::Target_info Target_arm<big_endian>::arm_info =
const Target::Target_info Target_arm<big_endian>::arm_info =
{
{
  32,                   // size
  32,                   // size
  big_endian,           // is_big_endian
  big_endian,           // is_big_endian
  elfcpp::EM_ARM,       // machine_code
  elfcpp::EM_ARM,       // machine_code
  false,                // has_make_symbol
  false,                // has_make_symbol
  false,                // has_resolve
  false,                // has_resolve
  false,                // has_code_fill
  false,                // has_code_fill
  true,                 // is_default_stack_executable
  true,                 // is_default_stack_executable
  '\0',                 // wrap_char
  '\0',                 // wrap_char
  "/usr/lib/libc.so.1", // dynamic_linker
  "/usr/lib/libc.so.1", // dynamic_linker
  0x8000,               // default_text_segment_address
  0x8000,               // default_text_segment_address
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // large_common_shndx
  elfcpp::SHN_UNDEF,    // large_common_shndx
  0,                     // small_common_section_flags
  0,                     // small_common_section_flags
  0                      // large_common_section_flags
  0                      // large_common_section_flags
};
};
 
 
// Arm relocate functions class
// Arm relocate functions class
//
//
 
 
template<bool big_endian>
template<bool big_endian>
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
{
{
 public:
 public:
  typedef enum
  typedef enum
  {
  {
    STATUS_OKAY,        // No error during relocation.
    STATUS_OKAY,        // No error during relocation.
    STATUS_OVERFLOW,    // Relocation oveflow.
    STATUS_OVERFLOW,    // Relocation oveflow.
    STATUS_BAD_RELOC    // Relocation cannot be applied.
    STATUS_BAD_RELOC    // Relocation cannot be applied.
  } Status;
  } Status;
 
 
 private:
 private:
  typedef Relocate_functions<32, big_endian> Base;
  typedef Relocate_functions<32, big_endian> Base;
  typedef Arm_relocate_functions<big_endian> This;
  typedef Arm_relocate_functions<big_endian> This;
 
 
  // Get an symbol value of *PSYMVAL with an ADDEND.  This is a wrapper
  // Get an symbol value of *PSYMVAL with an ADDEND.  This is a wrapper
  // to Symbol_value::value().  If HAS_THUMB_BIT is true, that LSB is used
  // to Symbol_value::value().  If HAS_THUMB_BIT is true, that LSB is used
  // to distinguish ARM and THUMB functions and it is treated specially.
  // to distinguish ARM and THUMB functions and it is treated specially.
  static inline Symbol_value<32>::Value
  static inline Symbol_value<32>::Value
  arm_symbol_value (const Sized_relobj<32, big_endian> *object,
  arm_symbol_value (const Sized_relobj<32, big_endian> *object,
                    const Symbol_value<32>* psymval,
                    const Symbol_value<32>* psymval,
                    Symbol_value<32>::Value addend,
                    Symbol_value<32>::Value addend,
                    bool has_thumb_bit)
                    bool has_thumb_bit)
  {
  {
    typedef Symbol_value<32>::Value Valtype;
    typedef Symbol_value<32>::Value Valtype;
 
 
    if (has_thumb_bit)
    if (has_thumb_bit)
      {
      {
        Valtype raw = psymval->value(object, 0);
        Valtype raw = psymval->value(object, 0);
        Valtype thumb_bit = raw & 1;
        Valtype thumb_bit = raw & 1;
        return ((raw & ~((Valtype) 1)) + addend) | thumb_bit;
        return ((raw & ~((Valtype) 1)) + addend) | thumb_bit;
      }
      }
    else
    else
      return psymval->value(object, addend);
      return psymval->value(object, addend);
  }
  }
 
 
  // Encoding of imm16 argument for movt and movw ARM instructions
  // Encoding of imm16 argument for movt and movw ARM instructions
  // from ARM ARM:
  // from ARM ARM:
  //     
  //     
  //     imm16 := imm4 | imm12
  //     imm16 := imm4 | imm12
  //
  //
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
  // +-------+---------------+-------+-------+-----------------------+
  // +-------+---------------+-------+-------+-----------------------+
  // |       |               |imm4   |       |imm12                  |
  // |       |               |imm4   |       |imm12                  |
  // +-------+---------------+-------+-------+-----------------------+
  // +-------+---------------+-------+-------+-----------------------+
 
 
  // Extract the relocation addend from VAL based on the ARM
  // Extract the relocation addend from VAL based on the ARM
  // instruction encoding described above.
  // instruction encoding described above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  extract_arm_movw_movt_addend(
  extract_arm_movw_movt_addend(
      typename elfcpp::Swap<32, big_endian>::Valtype val)
      typename elfcpp::Swap<32, big_endian>::Valtype val)
  {
  {
    // According to the Elf ABI for ARM Architecture the immediate
    // According to the Elf ABI for ARM Architecture the immediate
    // field is sign-extended to form the addend.
    // field is sign-extended to form the addend.
    return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
    return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
  }
  }
 
 
  // Insert X into VAL based on the ARM instruction encoding described
  // Insert X into VAL based on the ARM instruction encoding described
  // above.
  // above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  insert_val_arm_movw_movt(
  insert_val_arm_movw_movt(
      typename elfcpp::Swap<32, big_endian>::Valtype val,
      typename elfcpp::Swap<32, big_endian>::Valtype val,
      typename elfcpp::Swap<32, big_endian>::Valtype x)
      typename elfcpp::Swap<32, big_endian>::Valtype x)
  {
  {
    val &= 0xfff0f000;
    val &= 0xfff0f000;
    val |= x & 0x0fff;
    val |= x & 0x0fff;
    val |= (x & 0xf000) << 4;
    val |= (x & 0xf000) << 4;
    return val;
    return val;
  }
  }
 
 
  // Encoding of imm16 argument for movt and movw Thumb2 instructions
  // Encoding of imm16 argument for movt and movw Thumb2 instructions
  // from ARM ARM:
  // from ARM ARM:
  //     
  //     
  //     imm16 := imm4 | i | imm3 | imm8
  //     imm16 := imm4 | i | imm3 | imm8
  //
  //
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
  // +---------+-+-----------+-------++-+-----+-------+---------------+
  // +---------+-+-----------+-------++-+-----+-------+---------------+
  // |         |i|           |imm4   || |imm3 |       |imm8           |
  // |         |i|           |imm4   || |imm3 |       |imm8           |
  // +---------+-+-----------+-------++-+-----+-------+---------------+
  // +---------+-+-----------+-------++-+-----+-------+---------------+
 
 
  // Extract the relocation addend from VAL based on the Thumb2
  // Extract the relocation addend from VAL based on the Thumb2
  // instruction encoding described above.
  // instruction encoding described above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  extract_thumb_movw_movt_addend(
  extract_thumb_movw_movt_addend(
      typename elfcpp::Swap<32, big_endian>::Valtype val)
      typename elfcpp::Swap<32, big_endian>::Valtype val)
  {
  {
    // According to the Elf ABI for ARM Architecture the immediate
    // According to the Elf ABI for ARM Architecture the immediate
    // field is sign-extended to form the addend.
    // field is sign-extended to form the addend.
    return utils::sign_extend<16>(((val >> 4) & 0xf000)
    return utils::sign_extend<16>(((val >> 4) & 0xf000)
                                  | ((val >> 15) & 0x0800)
                                  | ((val >> 15) & 0x0800)
                                  | ((val >> 4) & 0x0700)
                                  | ((val >> 4) & 0x0700)
                                  | (val & 0x00ff));
                                  | (val & 0x00ff));
  }
  }
 
 
  // Insert X into VAL based on the Thumb2 instruction encoding
  // Insert X into VAL based on the Thumb2 instruction encoding
  // described above.
  // described above.
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
  insert_val_thumb_movw_movt(
  insert_val_thumb_movw_movt(
      typename elfcpp::Swap<32, big_endian>::Valtype val,
      typename elfcpp::Swap<32, big_endian>::Valtype val,
      typename elfcpp::Swap<32, big_endian>::Valtype x)
      typename elfcpp::Swap<32, big_endian>::Valtype x)
  {
  {
    val &= 0xfbf08f00;
    val &= 0xfbf08f00;
    val |= (x & 0xf000) << 4;
    val |= (x & 0xf000) << 4;
    val |= (x & 0x0800) << 15;
    val |= (x & 0x0800) << 15;
    val |= (x & 0x0700) << 4;
    val |= (x & 0x0700) << 4;
    val |= (x & 0x00ff);
    val |= (x & 0x00ff);
    return val;
    return val;
  }
  }
 
 
  // FIXME: This probably only works for Android on ARM v5te. We should
  // FIXME: This probably only works for Android on ARM v5te. We should
  // following GNU ld for the general case.
  // following GNU ld for the general case.
  template<unsigned r_type>
  template<unsigned r_type>
  static inline typename This::Status
  static inline typename This::Status
  arm_branch_common(unsigned char *view,
  arm_branch_common(unsigned char *view,
                    const Sized_relobj<32, big_endian>* object,
                    const Sized_relobj<32, big_endian>* object,
                    const Symbol_value<32>* psymval,
                    const Symbol_value<32>* psymval,
                    elfcpp::Elf_types<32>::Elf_Addr address,
                    elfcpp::Elf_types<32>::Elf_Addr address,
                    bool has_thumb_bit)
                    bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
 
 
    bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
    bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
                      && ((val & 0x0f000000UL) == 0x0a000000UL);
                      && ((val & 0x0f000000UL) == 0x0a000000UL);
    bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
    bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
    bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
    bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
                            && ((val & 0x0f000000UL) == 0x0b000000UL);
                            && ((val & 0x0f000000UL) == 0x0b000000UL);
    bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
    bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
    bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
    bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
 
 
    if (r_type == elfcpp::R_ARM_CALL)
    if (r_type == elfcpp::R_ARM_CALL)
      {
      {
        if (!insn_is_uncond_bl && !insn_is_blx)
        if (!insn_is_uncond_bl && !insn_is_blx)
          return This::STATUS_BAD_RELOC;
          return This::STATUS_BAD_RELOC;
      }
      }
    else if (r_type == elfcpp::R_ARM_JUMP24)
    else if (r_type == elfcpp::R_ARM_JUMP24)
      {
      {
        if (!insn_is_b && !insn_is_cond_bl)
        if (!insn_is_b && !insn_is_cond_bl)
          return This::STATUS_BAD_RELOC;
          return This::STATUS_BAD_RELOC;
      }
      }
    else if (r_type == elfcpp::R_ARM_PLT32)
    else if (r_type == elfcpp::R_ARM_PLT32)
      {
      {
        if (!insn_is_any_branch)
        if (!insn_is_any_branch)
          return This::STATUS_BAD_RELOC;
          return This::STATUS_BAD_RELOC;
      }
      }
    else
    else
      gold_unreachable();
      gold_unreachable();
 
 
    Valtype addend = utils::sign_extend<26>(val << 2);
    Valtype addend = utils::sign_extend<26>(val << 2);
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
                 - address);
                 - address);
 
 
    // If target has thumb bit set, we need to either turn the BL
    // If target has thumb bit set, we need to either turn the BL
    // into a BLX (for ARMv5 or above) or generate a stub.
    // into a BLX (for ARMv5 or above) or generate a stub.
    if (x & 1)
    if (x & 1)
      {
      {
        // Turn BL to BLX.
        // Turn BL to BLX.
        if (insn_is_uncond_bl)
        if (insn_is_uncond_bl)
          val = (val & 0xffffff) | 0xfa000000 | ((x & 2) << 23);
          val = (val & 0xffffff) | 0xfa000000 | ((x & 2) << 23);
        else
        else
          return This::STATUS_BAD_RELOC;
          return This::STATUS_BAD_RELOC;
      }
      }
    else
    else
      gold_assert(!insn_is_blx);
      gold_assert(!insn_is_blx);
 
 
    val = utils::bit_select(val, (x >> 2), 0xffffffUL);
    val = utils::bit_select(val, (x >> 2), 0xffffffUL);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return (utils::has_overflow<26>(x)
    return (utils::has_overflow<26>(x)
            ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
            ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
  }
  }
 
 
 public:
 public:
 
 
  // R_ARM_ABS8: S + A
  // R_ARM_ABS8: S + A
  static inline typename This::Status
  static inline typename This::Status
  abs8(unsigned char *view,
  abs8(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval)
       const Symbol_value<32>* psymval)
  {
  {
    typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
    Reltype addend = utils::sign_extend<8>(val);
    Reltype addend = utils::sign_extend<8>(val);
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    val = utils::bit_select(val, x, 0xffU);
    val = utils::bit_select(val, x, 0xffU);
    elfcpp::Swap<8, big_endian>::writeval(wv, val);
    elfcpp::Swap<8, big_endian>::writeval(wv, val);
    return (utils::has_signed_unsigned_overflow<8>(x)
    return (utils::has_signed_unsigned_overflow<8>(x)
            ? This::STATUS_OVERFLOW
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
            : This::STATUS_OKAY);
  }
  }
 
 
  // R_ARM_THM_ABS5: S + A
  // R_ARM_THM_ABS5: S + A
  static inline typename This::Status
  static inline typename This::Status
  thm_abs5(unsigned char *view,
  thm_abs5(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval)
       const Symbol_value<32>* psymval)
  {
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Reltype addend = (val & 0x7e0U) >> 6;
    Reltype addend = (val & 0x7e0U) >> 6;
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    val = utils::bit_select(val, x << 6, 0x7e0U);
    val = utils::bit_select(val, x << 6, 0x7e0U);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    return (utils::has_overflow<5>(x)
    return (utils::has_overflow<5>(x)
            ? This::STATUS_OVERFLOW
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
            : This::STATUS_OKAY);
  }
  }
 
 
  // R_ARM_ABS12: S + A
  // R_ARM_ABS12: S + A
  static inline typename This::Status
  static inline typename This::Status
  abs12(unsigned char *view,
  abs12(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval)
       const Symbol_value<32>* psymval)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Reltype addend = val & 0x0fffU;
    Reltype addend = val & 0x0fffU;
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    val = utils::bit_select(val, x, 0x0fffU);
    val = utils::bit_select(val, x, 0x0fffU);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return (utils::has_overflow<12>(x)
    return (utils::has_overflow<12>(x)
            ? This::STATUS_OVERFLOW
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
            : This::STATUS_OKAY);
  }
  }
 
 
  // R_ARM_ABS16: S + A
  // R_ARM_ABS16: S + A
  static inline typename This::Status
  static inline typename This::Status
  abs16(unsigned char *view,
  abs16(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval)
       const Symbol_value<32>* psymval)
  {
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
    Reltype addend = utils::sign_extend<16>(val);
    Reltype addend = utils::sign_extend<16>(val);
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
    val = utils::bit_select(val, x, 0xffffU);
    val = utils::bit_select(val, x, 0xffffU);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
    return (utils::has_signed_unsigned_overflow<16>(x)
    return (utils::has_signed_unsigned_overflow<16>(x)
            ? This::STATUS_OVERFLOW
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
            : This::STATUS_OKAY);
  }
  }
 
 
  // R_ARM_ABS32: (S + A) | T
  // R_ARM_ABS32: (S + A) | T
  static inline typename This::Status
  static inline typename This::Status
  abs32(unsigned char *view,
  abs32(unsigned char *view,
        const Sized_relobj<32, big_endian>* object,
        const Sized_relobj<32, big_endian>* object,
        const Symbol_value<32>* psymval,
        const Symbol_value<32>* psymval,
        bool has_thumb_bit)
        bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
    Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_REL32: (S + A) | T - P
  // R_ARM_REL32: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  rel32(unsigned char *view,
  rel32(unsigned char *view,
        const Sized_relobj<32, big_endian>* object,
        const Sized_relobj<32, big_endian>* object,
        const Symbol_value<32>* psymval,
        const Symbol_value<32>* psymval,
        elfcpp::Elf_types<32>::Elf_Addr address,
        elfcpp::Elf_types<32>::Elf_Addr address,
        bool has_thumb_bit)
        bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
                 - address);
                 - address);
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_THM_CALL: (S + A) | T - P
  // R_ARM_THM_CALL: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  thm_call(unsigned char *view,
  thm_call(unsigned char *view,
           const Sized_relobj<32, big_endian>* object,
           const Sized_relobj<32, big_endian>* object,
           const Symbol_value<32>* psymval,
           const Symbol_value<32>* psymval,
           elfcpp::Elf_types<32>::Elf_Addr address,
           elfcpp::Elf_types<32>::Elf_Addr address,
           bool has_thumb_bit)
           bool has_thumb_bit)
  {
  {
    // A thumb call consists of two instructions.
    // A thumb call consists of two instructions.
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype hi = elfcpp::Swap<16, big_endian>::readval(wv);
    Valtype hi = elfcpp::Swap<16, big_endian>::readval(wv);
    Valtype lo = elfcpp::Swap<16, big_endian>::readval(wv + 1);
    Valtype lo = elfcpp::Swap<16, big_endian>::readval(wv + 1);
    // Must be a BL instruction. lo == 11111xxxxxxxxxxx.
    // Must be a BL instruction. lo == 11111xxxxxxxxxxx.
    gold_assert((lo & 0xf800) == 0xf800);
    gold_assert((lo & 0xf800) == 0xf800);
    Reltype addend = utils::sign_extend<23>(((hi & 0x7ff) << 12)
    Reltype addend = utils::sign_extend<23>(((hi & 0x7ff) << 12)
                                           | ((lo & 0x7ff) << 1));
                                           | ((lo & 0x7ff) << 1));
    Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
    Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
                 - address);
                 - address);
 
 
    // If target has no thumb bit set, we need to either turn the BL
    // If target has no thumb bit set, we need to either turn the BL
    // into a BLX (for ARMv5 or above) or generate a stub.
    // into a BLX (for ARMv5 or above) or generate a stub.
    if ((x & 1) == 0)
    if ((x & 1) == 0)
      {
      {
        // This only works for ARMv5 and above with interworking enabled.
        // This only works for ARMv5 and above with interworking enabled.
        lo &= 0xefff;
        lo &= 0xefff;
      }
      }
    hi = utils::bit_select(hi, (x >> 12), 0x7ffU);
    hi = utils::bit_select(hi, (x >> 12), 0x7ffU);
    lo = utils::bit_select(lo, (x >> 1), 0x7ffU);
    lo = utils::bit_select(lo, (x >> 1), 0x7ffU);
    elfcpp::Swap<16, big_endian>::writeval(wv, hi);
    elfcpp::Swap<16, big_endian>::writeval(wv, hi);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, lo);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, lo);
    return (utils::has_overflow<23>(x)
    return (utils::has_overflow<23>(x)
            ? This::STATUS_OVERFLOW
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
            : This::STATUS_OKAY);
  }
  }
 
 
  // R_ARM_BASE_PREL: B(S) + A - P
  // R_ARM_BASE_PREL: B(S) + A - P
  static inline typename This::Status
  static inline typename This::Status
  base_prel(unsigned char* view,
  base_prel(unsigned char* view,
            elfcpp::Elf_types<32>::Elf_Addr origin,
            elfcpp::Elf_types<32>::Elf_Addr origin,
            elfcpp::Elf_types<32>::Elf_Addr address)
            elfcpp::Elf_types<32>::Elf_Addr address)
  {
  {
    Base::rel32(view, origin - address);
    Base::rel32(view, origin - address);
    return STATUS_OKAY;
    return STATUS_OKAY;
  }
  }
 
 
  // R_ARM_BASE_ABS: B(S) + A
  // R_ARM_BASE_ABS: B(S) + A
  static inline typename This::Status
  static inline typename This::Status
  base_abs(unsigned char* view,
  base_abs(unsigned char* view,
            elfcpp::Elf_types<32>::Elf_Addr origin)
            elfcpp::Elf_types<32>::Elf_Addr origin)
  {
  {
    Base::rel32(view, origin);
    Base::rel32(view, origin);
    return STATUS_OKAY;
    return STATUS_OKAY;
  }
  }
 
 
  // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
  // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
  static inline typename This::Status
  static inline typename This::Status
  got_brel(unsigned char* view,
  got_brel(unsigned char* view,
           typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
           typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
  {
  {
    Base::rel32(view, got_offset);
    Base::rel32(view, got_offset);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_GOT_PREL: GOT(S) + A – P
  // R_ARM_GOT_PREL: GOT(S) + A – P
  static inline typename This::Status
  static inline typename This::Status
  got_prel(unsigned char* view,
  got_prel(unsigned char* view,
           typename elfcpp::Swap<32, big_endian>::Valtype got_offset,
           typename elfcpp::Swap<32, big_endian>::Valtype got_offset,
           elfcpp::Elf_types<32>::Elf_Addr address)
           elfcpp::Elf_types<32>::Elf_Addr address)
  {
  {
    Base::rel32(view, got_offset - address);
    Base::rel32(view, got_offset - address);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_PLT32: (S + A) | T - P
  // R_ARM_PLT32: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  plt32(unsigned char *view,
  plt32(unsigned char *view,
        const Sized_relobj<32, big_endian>* object,
        const Sized_relobj<32, big_endian>* object,
        const Symbol_value<32>* psymval,
        const Symbol_value<32>* psymval,
        elfcpp::Elf_types<32>::Elf_Addr address,
        elfcpp::Elf_types<32>::Elf_Addr address,
        bool has_thumb_bit)
        bool has_thumb_bit)
  {
  {
    return arm_branch_common<elfcpp::R_ARM_PLT32>(view, object, psymval,
    return arm_branch_common<elfcpp::R_ARM_PLT32>(view, object, psymval,
                                                  address, has_thumb_bit);
                                                  address, has_thumb_bit);
  }
  }
 
 
  // R_ARM_CALL: (S + A) | T - P
  // R_ARM_CALL: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  call(unsigned char *view,
  call(unsigned char *view,
       const Sized_relobj<32, big_endian>* object,
       const Sized_relobj<32, big_endian>* object,
       const Symbol_value<32>* psymval,
       const Symbol_value<32>* psymval,
       elfcpp::Elf_types<32>::Elf_Addr address,
       elfcpp::Elf_types<32>::Elf_Addr address,
       bool has_thumb_bit)
       bool has_thumb_bit)
  {
  {
    return arm_branch_common<elfcpp::R_ARM_CALL>(view, object, psymval,
    return arm_branch_common<elfcpp::R_ARM_CALL>(view, object, psymval,
                                                 address, has_thumb_bit);
                                                 address, has_thumb_bit);
  }
  }
 
 
  // R_ARM_JUMP24: (S + A) | T - P
  // R_ARM_JUMP24: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  jump24(unsigned char *view,
  jump24(unsigned char *view,
         const Sized_relobj<32, big_endian>* object,
         const Sized_relobj<32, big_endian>* object,
         const Symbol_value<32>* psymval,
         const Symbol_value<32>* psymval,
         elfcpp::Elf_types<32>::Elf_Addr address,
         elfcpp::Elf_types<32>::Elf_Addr address,
         bool has_thumb_bit)
         bool has_thumb_bit)
  {
  {
    return arm_branch_common<elfcpp::R_ARM_JUMP24>(view, object, psymval,
    return arm_branch_common<elfcpp::R_ARM_JUMP24>(view, object, psymval,
                                                   address, has_thumb_bit);
                                                   address, has_thumb_bit);
  }
  }
 
 
  // R_ARM_PREL: (S + A) | T - P
  // R_ARM_PREL: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  prel31(unsigned char *view,
  prel31(unsigned char *view,
         const Sized_relobj<32, big_endian>* object,
         const Sized_relobj<32, big_endian>* object,
         const Symbol_value<32>* psymval,
         const Symbol_value<32>* psymval,
         elfcpp::Elf_types<32>::Elf_Addr address,
         elfcpp::Elf_types<32>::Elf_Addr address,
         bool has_thumb_bit)
         bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = utils::sign_extend<31>(val);
    Valtype addend = utils::sign_extend<31>(val);
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
                 - address);
                 - address);
    val = utils::bit_select(val, x, 0x7fffffffU);
    val = utils::bit_select(val, x, 0x7fffffffU);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return (utils::has_overflow<31>(x) ?
    return (utils::has_overflow<31>(x) ?
            This::STATUS_OVERFLOW : This::STATUS_OKAY);
            This::STATUS_OVERFLOW : This::STATUS_OKAY);
  }
  }
 
 
  // R_ARM_MOVW_ABS_NC: (S + A) | T
  // R_ARM_MOVW_ABS_NC: (S + A) | T
  static inline typename This::Status
  static inline typename This::Status
  movw_abs_nc(unsigned char *view,
  movw_abs_nc(unsigned char *view,
              const Sized_relobj<32, big_endian>* object,
              const Sized_relobj<32, big_endian>* object,
              const Symbol_value<32>* psymval,
              const Symbol_value<32>* psymval,
              bool has_thumb_bit)
              bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend =  This::extract_arm_movw_movt_addend(val);
    Valtype addend =  This::extract_arm_movw_movt_addend(val);
    Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
    Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
    val = This::insert_val_arm_movw_movt(val, x);
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_MOVT_ABS: S + A
  // R_ARM_MOVT_ABS: S + A
  static inline typename This::Status
  static inline typename This::Status
  movt_abs(unsigned char *view,
  movt_abs(unsigned char *view,
           const Sized_relobj<32, big_endian>* object,
           const Sized_relobj<32, big_endian>* object,
           const Symbol_value<32>* psymval)
           const Symbol_value<32>* psymval)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16;
    Valtype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16;
    val = This::insert_val_arm_movw_movt(val, x);
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  //  R_ARM_THM_MOVW_ABS_NC: S + A | T
  //  R_ARM_THM_MOVW_ABS_NC: S + A | T
  static inline typename This::Status
  static inline typename This::Status
  thm_movw_abs_nc(unsigned char *view,
  thm_movw_abs_nc(unsigned char *view,
                  const Sized_relobj<32, big_endian>* object,
                  const Sized_relobj<32, big_endian>* object,
                  const Symbol_value<32>* psymval,
                  const Symbol_value<32>* psymval,
                  bool has_thumb_bit)
                  bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                   | elfcpp::Swap<16, big_endian>::readval(wv + 1));
                   | elfcpp::Swap<16, big_endian>::readval(wv + 1));
    Reltype addend = extract_thumb_movw_movt_addend(val);
    Reltype addend = extract_thumb_movw_movt_addend(val);
    Reltype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
    Reltype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
    val = This::insert_val_thumb_movw_movt(val, x);
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  //  R_ARM_THM_MOVT_ABS: S + A
  //  R_ARM_THM_MOVT_ABS: S + A
  static inline typename This::Status
  static inline typename This::Status
  thm_movt_abs(unsigned char *view,
  thm_movt_abs(unsigned char *view,
               const Sized_relobj<32, big_endian>* object,
               const Sized_relobj<32, big_endian>* object,
               const Symbol_value<32>* psymval)
               const Symbol_value<32>* psymval)
  {
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                   | elfcpp::Swap<16, big_endian>::readval(wv + 1));
                   | elfcpp::Swap<16, big_endian>::readval(wv + 1));
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16;
    Reltype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16;
    val = This::insert_val_thumb_movw_movt(val, x);
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  movw_prel_nc(unsigned char *view,
  movw_prel_nc(unsigned char *view,
               const Sized_relobj<32, big_endian>* object,
               const Sized_relobj<32, big_endian>* object,
               const Symbol_value<32>* psymval,
               const Symbol_value<32>* psymval,
               elfcpp::Elf_types<32>::Elf_Addr address,
               elfcpp::Elf_types<32>::Elf_Addr address,
               bool has_thumb_bit)
               bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
                 - address);
                 - address);
    val = This::insert_val_arm_movw_movt(val, x);
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_MOVT_PREL: S + A - P
  // R_ARM_MOVT_PREL: S + A - P
  static inline typename This::Status
  static inline typename This::Status
  movt_prel(unsigned char *view,
  movt_prel(unsigned char *view,
            const Sized_relobj<32, big_endian>* object,
            const Sized_relobj<32, big_endian>* object,
            const Symbol_value<32>* psymval,
            const Symbol_value<32>* psymval,
            elfcpp::Elf_types<32>::Elf_Addr address)
            elfcpp::Elf_types<32>::Elf_Addr address)
  {
  {
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype addend = This::extract_arm_movw_movt_addend(val);
    Valtype x = (This::arm_symbol_value(object, psymval, addend, 0)
    Valtype x = (This::arm_symbol_value(object, psymval, addend, 0)
                 - address) >> 16;
                 - address) >> 16;
    val = This::insert_val_arm_movw_movt(val, x);
    val = This::insert_val_arm_movw_movt(val, x);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
  static inline typename This::Status
  static inline typename This::Status
  thm_movw_prel_nc(unsigned char *view,
  thm_movw_prel_nc(unsigned char *view,
                   const Sized_relobj<32, big_endian>* object,
                   const Sized_relobj<32, big_endian>* object,
                   const Symbol_value<32>* psymval,
                   const Symbol_value<32>* psymval,
                   elfcpp::Elf_types<32>::Elf_Addr address,
                   elfcpp::Elf_types<32>::Elf_Addr address,
                   bool has_thumb_bit)
                   bool has_thumb_bit)
  {
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
    Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
                 - address);
                 - address);
    val = This::insert_val_thumb_movw_movt(val, x);
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
 
 
  // R_ARM_THM_MOVT_PREL: S + A - P
  // R_ARM_THM_MOVT_PREL: S + A - P
  static inline typename This::Status
  static inline typename This::Status
  thm_movt_prel(unsigned char *view,
  thm_movt_prel(unsigned char *view,
                const Sized_relobj<32, big_endian>* object,
                const Sized_relobj<32, big_endian>* object,
                const Symbol_value<32>* psymval,
                const Symbol_value<32>* psymval,
                elfcpp::Elf_types<32>::Elf_Addr address)
                elfcpp::Elf_types<32>::Elf_Addr address)
  {
  {
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Valtype* wv = reinterpret_cast<Valtype*>(view);
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
    Reltype x = (This::arm_symbol_value(object, psymval, addend, 0)
    Reltype x = (This::arm_symbol_value(object, psymval, addend, 0)
                 - address) >> 16;
                 - address) >> 16;
    val = This::insert_val_thumb_movw_movt(val, x);
    val = This::insert_val_thumb_movw_movt(val, x);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
    return This::STATUS_OKAY;
    return This::STATUS_OKAY;
  }
  }
};
};
 
 
// Get the GOT section, creating it if necessary.
// Get the GOT section, creating it if necessary.
 
 
template<bool big_endian>
template<bool big_endian>
Output_data_got<32, big_endian>*
Output_data_got<32, big_endian>*
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
{
{
  if (this->got_ == NULL)
  if (this->got_ == NULL)
    {
    {
      gold_assert(symtab != NULL && layout != NULL);
      gold_assert(symtab != NULL && layout != NULL);
 
 
      this->got_ = new Output_data_got<32, big_endian>();
      this->got_ = new Output_data_got<32, big_endian>();
 
 
      Output_section* os;
      Output_section* os;
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                           (elfcpp::SHF_ALLOC
                                           (elfcpp::SHF_ALLOC
                                            | elfcpp::SHF_WRITE),
                                            | elfcpp::SHF_WRITE),
                                           this->got_, false);
                                           this->got_, false);
      os->set_is_relro();
      os->set_is_relro();
 
 
      // The old GNU linker creates a .got.plt section.  We just
      // The old GNU linker creates a .got.plt section.  We just
      // create another set of data in the .got section.  Note that we
      // create another set of data in the .got section.  Note that we
      // always create a PLT if we create a GOT, although the PLT
      // always create a PLT if we create a GOT, although the PLT
      // might be empty.
      // might be empty.
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                           (elfcpp::SHF_ALLOC
                                           (elfcpp::SHF_ALLOC
                                            | elfcpp::SHF_WRITE),
                                            | elfcpp::SHF_WRITE),
                                           this->got_plt_, false);
                                           this->got_plt_, false);
      os->set_is_relro();
      os->set_is_relro();
 
 
      // The first three entries are reserved.
      // The first three entries are reserved.
      this->got_plt_->set_current_data_size(3 * 4);
      this->got_plt_->set_current_data_size(3 * 4);
 
 
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                    this->got_plt_,
                                    this->got_plt_,
                                    0, 0, elfcpp::STT_OBJECT,
                                    0, 0, elfcpp::STT_OBJECT,
                                    elfcpp::STB_LOCAL,
                                    elfcpp::STB_LOCAL,
                                    elfcpp::STV_HIDDEN, 0,
                                    elfcpp::STV_HIDDEN, 0,
                                    false, false);
                                    false, false);
    }
    }
  return this->got_;
  return this->got_;
}
}
 
 
// Get the dynamic reloc section, creating it if necessary.
// Get the dynamic reloc section, creating it if necessary.
 
 
template<bool big_endian>
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
{
{
  if (this->rel_dyn_ == NULL)
  if (this->rel_dyn_ == NULL)
    {
    {
      gold_assert(layout != NULL);
      gold_assert(layout != NULL);
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
                                      elfcpp::SHF_ALLOC, this->rel_dyn_, true);
                                      elfcpp::SHF_ALLOC, this->rel_dyn_, true);
    }
    }
  return this->rel_dyn_;
  return this->rel_dyn_;
}
}
 
 
// A class to handle the PLT data.
// A class to handle the PLT data.
 
 
template<bool big_endian>
template<bool big_endian>
class Output_data_plt_arm : public Output_section_data
class Output_data_plt_arm : public Output_section_data
{
{
 public:
 public:
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
    Reloc_section;
    Reloc_section;
 
 
  Output_data_plt_arm(Layout*, Output_data_space*);
  Output_data_plt_arm(Layout*, Output_data_space*);
 
 
  // Add an entry to the PLT.
  // Add an entry to the PLT.
  void
  void
  add_entry(Symbol* gsym);
  add_entry(Symbol* gsym);
 
 
  // Return the .rel.plt section data.
  // Return the .rel.plt section data.
  const Reloc_section*
  const Reloc_section*
  rel_plt() const
  rel_plt() const
  { return this->rel_; }
  { return this->rel_; }
 
 
 protected:
 protected:
  void
  void
  do_adjust_output_section(Output_section* os);
  do_adjust_output_section(Output_section* os);
 
 
  // Write to a map file.
  // Write to a map file.
  void
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** PLT")); }
  { mapfile->print_output_data(this, _("** PLT")); }
 
 
 private:
 private:
  // Template for the first PLT entry.
  // Template for the first PLT entry.
  static const uint32_t first_plt_entry[5];
  static const uint32_t first_plt_entry[5];
 
 
  // Template for subsequent PLT entries. 
  // Template for subsequent PLT entries. 
  static const uint32_t plt_entry[3];
  static const uint32_t plt_entry[3];
 
 
  // Set the final size.
  // Set the final size.
  void
  void
  set_final_data_size()
  set_final_data_size()
  {
  {
    this->set_data_size(sizeof(first_plt_entry)
    this->set_data_size(sizeof(first_plt_entry)
                        + this->count_ * sizeof(plt_entry));
                        + this->count_ * sizeof(plt_entry));
  }
  }
 
 
  // Write out the PLT data.
  // Write out the PLT data.
  void
  void
  do_write(Output_file*);
  do_write(Output_file*);
 
 
  // The reloc section.
  // The reloc section.
  Reloc_section* rel_;
  Reloc_section* rel_;
  // The .got.plt section.
  // The .got.plt section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
  // The number of PLT entries.
  // The number of PLT entries.
  unsigned int count_;
  unsigned int count_;
};
};
 
 
// Create the PLT section.  The ordinary .got section is an argument,
// Create the PLT section.  The ordinary .got section is an argument,
// since we need to refer to the start.  We also create our own .got
// since we need to refer to the start.  We also create our own .got
// section just for PLT entries.
// section just for PLT entries.
 
 
template<bool big_endian>
template<bool big_endian>
Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
                                                     Output_data_space* got_plt)
                                                     Output_data_space* got_plt)
  : Output_section_data(4), got_plt_(got_plt), count_(0)
  : Output_section_data(4), got_plt_(got_plt), count_(0)
{
{
  this->rel_ = new Reloc_section(false);
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
                                  elfcpp::SHF_ALLOC, this->rel_, true);
                                  elfcpp::SHF_ALLOC, this->rel_, true);
}
}
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
{
{
  os->set_entsize(0);
  os->set_entsize(0);
}
}
 
 
// Add an entry to the PLT.
// Add an entry to the PLT.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
{
{
  gold_assert(!gsym->has_plt_offset());
  gold_assert(!gsym->has_plt_offset());
 
 
  // Note that when setting the PLT offset we skip the initial
  // Note that when setting the PLT offset we skip the initial
  // reserved PLT entry.
  // reserved PLT entry.
  gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
  gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
                       + sizeof(first_plt_entry));
                       + sizeof(first_plt_entry));
 
 
  ++this->count_;
  ++this->count_;
 
 
  section_offset_type got_offset = this->got_plt_->current_data_size();
  section_offset_type got_offset = this->got_plt_->current_data_size();
 
 
  // Every PLT entry needs a GOT entry which points back to the PLT
  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry (this will be changed by the dynamic linker, normally
  // entry (this will be changed by the dynamic linker, normally
  // lazily when the function is called).
  // lazily when the function is called).
  this->got_plt_->set_current_data_size(got_offset + 4);
  this->got_plt_->set_current_data_size(got_offset + 4);
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  gsym->set_needs_dynsym_entry();
  gsym->set_needs_dynsym_entry();
  this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
  this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
                         got_offset);
                         got_offset);
 
 
  // Note that we don't need to save the symbol.  The contents of the
  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
  // appear in the relocations.
}
}
 
 
// ARM PLTs.
// ARM PLTs.
// FIXME:  This is not very flexible.  Right now this has only been tested
// FIXME:  This is not very flexible.  Right now this has only been tested
// on armv5te.  If we are to support additional architecture features like
// on armv5te.  If we are to support additional architecture features like
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
 
 
// The first entry in the PLT.
// The first entry in the PLT.
template<bool big_endian>
template<bool big_endian>
const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
{
{
  0xe52de004,   // str   lr, [sp, #-4]!
  0xe52de004,   // str   lr, [sp, #-4]!
  0xe59fe004,   // ldr   lr, [pc, #4]
  0xe59fe004,   // ldr   lr, [pc, #4]
  0xe08fe00e,   // add   lr, pc, lr 
  0xe08fe00e,   // add   lr, pc, lr 
  0xe5bef008,   // ldr   pc, [lr, #8]!
  0xe5bef008,   // ldr   pc, [lr, #8]!
  0x00000000,   // &GOT[0] - .
  0x00000000,   // &GOT[0] - .
};
};
 
 
// Subsequent entries in the PLT.
// Subsequent entries in the PLT.
 
 
template<bool big_endian>
template<bool big_endian>
const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
{
{
  0xe28fc600,   // add   ip, pc, #0xNN00000
  0xe28fc600,   // add   ip, pc, #0xNN00000
  0xe28cca00,   // add   ip, ip, #0xNN000
  0xe28cca00,   // add   ip, ip, #0xNN000
  0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
  0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
};
};
 
 
// Write out the PLT.  This uses the hand-coded instructions above,
// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is all specified by the arm ELF
// and adjusts them as needed.  This is all specified by the arm ELF
// Processor Supplement.
// Processor Supplement.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
{
{
  const off_t offset = this->offset();
  const off_t offset = this->offset();
  const section_size_type oview_size =
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  unsigned char* const oview = of->get_output_view(offset, oview_size);
 
 
  const off_t got_file_offset = this->got_plt_->offset();
  const off_t got_file_offset = this->got_plt_->offset();
  const section_size_type got_size =
  const section_size_type got_size =
    convert_to_section_size_type(this->got_plt_->data_size());
    convert_to_section_size_type(this->got_plt_->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
  unsigned char* const got_view = of->get_output_view(got_file_offset,
                                                      got_size);
                                                      got_size);
  unsigned char* pov = oview;
  unsigned char* pov = oview;
 
 
  elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
  elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
  elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
  elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
 
 
  // Write first PLT entry.  All but the last word are constants.
  // Write first PLT entry.  All but the last word are constants.
  const size_t num_first_plt_words = (sizeof(first_plt_entry)
  const size_t num_first_plt_words = (sizeof(first_plt_entry)
                                      / sizeof(plt_entry[0]));
                                      / sizeof(plt_entry[0]));
  for (size_t i = 0; i < num_first_plt_words - 1; i++)
  for (size_t i = 0; i < num_first_plt_words - 1; i++)
    elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
    elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
  // Last word in first PLT entry is &GOT[0] - .
  // Last word in first PLT entry is &GOT[0] - .
  elfcpp::Swap<32, big_endian>::writeval(pov + 16,
  elfcpp::Swap<32, big_endian>::writeval(pov + 16,
                                         got_address - (plt_address + 16));
                                         got_address - (plt_address + 16));
  pov += sizeof(first_plt_entry);
  pov += sizeof(first_plt_entry);
 
 
  unsigned char* got_pov = got_view;
  unsigned char* got_pov = got_view;
 
 
  memset(got_pov, 0, 12);
  memset(got_pov, 0, 12);
  got_pov += 12;
  got_pov += 12;
 
 
  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
  unsigned int plt_offset = sizeof(first_plt_entry);
  unsigned int plt_offset = sizeof(first_plt_entry);
  unsigned int plt_rel_offset = 0;
  unsigned int plt_rel_offset = 0;
  unsigned int got_offset = 12;
  unsigned int got_offset = 12;
  const unsigned int count = this->count_;
  const unsigned int count = this->count_;
  for (unsigned int i = 0;
  for (unsigned int i = 0;
       i < count;
       i < count;
       ++i,
       ++i,
         pov += sizeof(plt_entry),
         pov += sizeof(plt_entry),
         got_pov += 4,
         got_pov += 4,
         plt_offset += sizeof(plt_entry),
         plt_offset += sizeof(plt_entry),
         plt_rel_offset += rel_size,
         plt_rel_offset += rel_size,
         got_offset += 4)
         got_offset += 4)
    {
    {
      // Set and adjust the PLT entry itself.
      // Set and adjust the PLT entry itself.
      int32_t offset = ((got_address + got_offset)
      int32_t offset = ((got_address + got_offset)
                         - (plt_address + plt_offset + 8));
                         - (plt_address + plt_offset + 8));
 
 
      gold_assert(offset >= 0 && offset < 0x0fffffff);
      gold_assert(offset >= 0 && offset < 0x0fffffff);
      uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
      uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
      elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
      elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
      uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
      uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
      uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
      uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
      elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
      elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
 
 
      // Set the entry in the GOT.
      // Set the entry in the GOT.
      elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
      elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
    }
    }
 
 
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
 
 
  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
  of->write_output_view(got_file_offset, got_size, got_view);
}
}
 
 
// Create a PLT entry for a global symbol.
// Create a PLT entry for a global symbol.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
                                       Symbol* gsym)
                                       Symbol* gsym)
{
{
  if (gsym->has_plt_offset())
  if (gsym->has_plt_offset())
    return;
    return;
 
 
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    {
    {
      // Create the GOT sections first.
      // Create the GOT sections first.
      this->got_section(symtab, layout);
      this->got_section(symtab, layout);
 
 
      this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
      this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                       | elfcpp::SHF_EXECINSTR),
                                      this->plt_, false);
                                      this->plt_, false);
    }
    }
  this->plt_->add_entry(gsym);
  this->plt_->add_entry(gsym);
}
}
 
 
// Report an unsupported relocation against a local symbol.
// Report an unsupported relocation against a local symbol.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::Scan::unsupported_reloc_local(
Target_arm<big_endian>::Scan::unsupported_reloc_local(
    Sized_relobj<32, big_endian>* object,
    Sized_relobj<32, big_endian>* object,
    unsigned int r_type)
    unsigned int r_type)
{
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
  gold_error(_("%s: unsupported reloc %u against local symbol"),
             object->name().c_str(), r_type);
             object->name().c_str(), r_type);
}
}
 
 
// We are about to emit a dynamic relocation of type R_TYPE.  If the
// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.  The GNU linker
// dynamic linker does not support it, issue an error.  The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// Here we know the section is allocated, but we don't know that it is
// read-only.  But we check for all the relocation types which the
// read-only.  But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.
// error even if the section is not read-only.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
                                            unsigned int r_type)
                                            unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    // These are the relocation types supported by glibc for ARM.
    // These are the relocation types supported by glibc for ARM.
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_PC24:
    case elfcpp::R_ARM_PC24:
    // FIXME: The following 3 types are not supported by Android's dynamic
    // FIXME: The following 3 types are not supported by Android's dynamic
    // linker.
    // linker.
    case elfcpp::R_ARM_TLS_DTPMOD32:
    case elfcpp::R_ARM_TLS_DTPMOD32:
    case elfcpp::R_ARM_TLS_DTPOFF32:
    case elfcpp::R_ARM_TLS_DTPOFF32:
    case elfcpp::R_ARM_TLS_TPOFF32:
    case elfcpp::R_ARM_TLS_TPOFF32:
      return;
      return;
 
 
    default:
    default:
      // This prevents us from issuing more than one error per reloc
      // This prevents us from issuing more than one error per reloc
      // section.  But we can still wind up issuing more than one
      // section.  But we can still wind up issuing more than one
      // error per object file.
      // error per object file.
      if (this->issued_non_pic_error_)
      if (this->issued_non_pic_error_)
        return;
        return;
      object->error(_("requires unsupported dynamic reloc; "
      object->error(_("requires unsupported dynamic reloc; "
                      "recompile with -fPIC"));
                      "recompile with -fPIC"));
      this->issued_non_pic_error_ = true;
      this->issued_non_pic_error_ = true;
      return;
      return;
 
 
    case elfcpp::R_ARM_NONE:
    case elfcpp::R_ARM_NONE:
      gold_unreachable();
      gold_unreachable();
    }
    }
}
}
 
 
// Scan a relocation for a local symbol.
// Scan a relocation for a local symbol.
// FIXME: This only handles a subset of relocation types used by Android
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.
// on ARM v5te devices.
 
 
template<bool big_endian>
template<bool big_endian>
inline void
inline void
Target_arm<big_endian>::Scan::local(const General_options&,
Target_arm<big_endian>::Scan::local(const General_options&,
                                    Symbol_table* symtab,
                                    Symbol_table* symtab,
                                    Layout* layout,
                                    Layout* layout,
                                    Target_arm* target,
                                    Target_arm* target,
                                    Sized_relobj<32, big_endian>* object,
                                    Sized_relobj<32, big_endian>* object,
                                    unsigned int data_shndx,
                                    unsigned int data_shndx,
                                    Output_section* output_section,
                                    Output_section* output_section,
                                    const elfcpp::Rel<32, big_endian>& reloc,
                                    const elfcpp::Rel<32, big_endian>& reloc,
                                    unsigned int r_type,
                                    unsigned int r_type,
                                    const elfcpp::Sym<32, big_endian>&)
                                    const elfcpp::Sym<32, big_endian>&)
{
{
  r_type = get_real_reloc_type(r_type);
  r_type = get_real_reloc_type(r_type);
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_ARM_NONE:
    case elfcpp::R_ARM_NONE:
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS32_NOI:
      // If building a shared library (or a position-independent
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for
      // executable), we need to create a dynamic relocation for
      // this location. The relocation applied at link time will
      // this location. The relocation applied at link time will
      // apply the link-time value, so we flag the location with
      // apply the link-time value, so we flag the location with
      // an R_ARM_RELATIVE relocation so the dynamic loader can
      // an R_ARM_RELATIVE relocation so the dynamic loader can
      // relocate it easily.
      // relocate it easily.
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
          // If we are to add more other reloc types than R_ARM_ABS32,
          // If we are to add more other reloc types than R_ARM_ABS32,
          // we need to add check_non_pic(object, r_type) here.
          // we need to add check_non_pic(object, r_type) here.
          rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
          rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
                                      output_section, data_shndx,
                                      output_section, data_shndx,
                                      reloc.get_r_offset());
                                      reloc.get_r_offset());
        }
        }
      break;
      break;
 
 
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVT_PREL:
      break;
      break;
 
 
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_GOTOFF32:
      // We need a GOT section:
      // We need a GOT section:
      target->got_section(symtab, layout);
      target->got_section(symtab, layout);
      break;
      break;
 
 
    case elfcpp::R_ARM_BASE_PREL:
    case elfcpp::R_ARM_BASE_PREL:
      // FIXME: What about this?
      // FIXME: What about this?
      break;
      break;
 
 
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_GOT_PREL:
      {
      {
        // The symbol requires a GOT entry.
        // The symbol requires a GOT entry.
        Output_data_got<32, big_endian>* got =
        Output_data_got<32, big_endian>* got =
          target->got_section(symtab, layout);
          target->got_section(symtab, layout);
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
        if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
        if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
          {
          {
            // If we are generating a shared object, we need to add a
            // If we are generating a shared object, we need to add a
            // dynamic RELATIVE relocation for this symbol's GOT entry.
            // dynamic RELATIVE relocation for this symbol's GOT entry.
            if (parameters->options().output_is_position_independent())
            if (parameters->options().output_is_position_independent())
              {
              {
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                rel_dyn->add_local_relative(
                rel_dyn->add_local_relative(
                    object, r_sym, elfcpp::R_ARM_RELATIVE, got,
                    object, r_sym, elfcpp::R_ARM_RELATIVE, got,
                    object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
                    object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_TARGET1:
    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // This should have been mapped to another type already.
      // Fall through.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
 
 
    default:
    default:
      unsupported_reloc_local(object, r_type);
      unsupported_reloc_local(object, r_type);
      break;
      break;
    }
    }
}
}
 
 
// Report an unsupported relocation against a global symbol.
// Report an unsupported relocation against a global symbol.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::Scan::unsupported_reloc_global(
Target_arm<big_endian>::Scan::unsupported_reloc_global(
    Sized_relobj<32, big_endian>* object,
    Sized_relobj<32, big_endian>* object,
    unsigned int r_type,
    unsigned int r_type,
    Symbol* gsym)
    Symbol* gsym)
{
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
}
 
 
// Scan a relocation for a global symbol.
// Scan a relocation for a global symbol.
// FIXME: This only handles a subset of relocation types used by Android
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.
// on ARM v5te devices.
 
 
template<bool big_endian>
template<bool big_endian>
inline void
inline void
Target_arm<big_endian>::Scan::global(const General_options&,
Target_arm<big_endian>::Scan::global(const General_options&,
                                     Symbol_table* symtab,
                                     Symbol_table* symtab,
                                     Layout* layout,
                                     Layout* layout,
                                     Target_arm* target,
                                     Target_arm* target,
                                     Sized_relobj<32, big_endian>* object,
                                     Sized_relobj<32, big_endian>* object,
                                     unsigned int data_shndx,
                                     unsigned int data_shndx,
                                     Output_section* output_section,
                                     Output_section* output_section,
                                     const elfcpp::Rel<32, big_endian>& reloc,
                                     const elfcpp::Rel<32, big_endian>& reloc,
                                     unsigned int r_type,
                                     unsigned int r_type,
                                     Symbol* gsym)
                                     Symbol* gsym)
{
{
  r_type = get_real_reloc_type(r_type);
  r_type = get_real_reloc_type(r_type);
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_ARM_NONE:
    case elfcpp::R_ARM_NONE:
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS32_NOI:
      {
      {
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
        if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
          {
          {
            if (target->may_need_copy_reloc(gsym))
            if (target->may_need_copy_reloc(gsym))
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else if (gsym->can_use_relative_reloc(false))
            else if (gsym->can_use_relative_reloc(false))
              {
              {
                // If we are to add more other reloc types than R_ARM_ABS32,
                // If we are to add more other reloc types than R_ARM_ABS32,
                // we need to add check_non_pic(object, r_type) here.
                // we need to add check_non_pic(object, r_type) here.
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
                rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
                                             output_section, object,
                                             output_section, object,
                                             data_shndx, reloc.get_r_offset());
                                             data_shndx, reloc.get_r_offset());
              }
              }
            else
            else
              {
              {
                // If we are to add more other reloc types than R_ARM_ABS32,
                // If we are to add more other reloc types than R_ARM_ABS32,
                // we need to add check_non_pic(object, r_type) here.
                // we need to add check_non_pic(object, r_type) here.
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global(gsym, r_type, output_section, object,
                rel_dyn->add_global(gsym, r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset());
                                    data_shndx, reloc.get_r_offset());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVT_PREL:
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_BASE_ABS:
      {
      {
        // No dynamic relocs of this kinds.
        // No dynamic relocs of this kinds.
        // Report the error in case of PIC.
        // Report the error in case of PIC.
        int flags = Symbol::NON_PIC_REF;
        int flags = Symbol::NON_PIC_REF;
        if (gsym->type() == elfcpp::STT_FUNC
        if (gsym->type() == elfcpp::STT_FUNC
            || gsym->type() == elfcpp::STT_ARM_TFUNC)
            || gsym->type() == elfcpp::STT_ARM_TFUNC)
          flags |= Symbol::FUNCTION_CALL;
          flags |= Symbol::FUNCTION_CALL;
        if (gsym->needs_dynamic_reloc(flags))
        if (gsym->needs_dynamic_reloc(flags))
          check_non_pic(object, r_type);
          check_non_pic(object, r_type);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_PREL31:
      {
      {
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        int flags = Symbol::NON_PIC_REF;
        int flags = Symbol::NON_PIC_REF;
        if (gsym->needs_dynamic_reloc(flags))
        if (gsym->needs_dynamic_reloc(flags))
          {
          {
            if (target->may_need_copy_reloc(gsym))
            if (target->may_need_copy_reloc(gsym))
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else
            else
              {
              {
                check_non_pic(object, r_type);
                check_non_pic(object, r_type);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global(gsym, r_type, output_section, object,
                rel_dyn->add_global(gsym, r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset());
                                    data_shndx, reloc.get_r_offset());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_CALL:
      {
      {
        if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
        if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
          target->make_plt_entry(symtab, layout, gsym);
          target->make_plt_entry(symtab, layout, gsym);
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        int flags = Symbol::NON_PIC_REF;
        int flags = Symbol::NON_PIC_REF;
        if (gsym->type() == elfcpp::STT_FUNC
        if (gsym->type() == elfcpp::STT_FUNC
            || gsym->type() == elfcpp::STT_ARM_TFUNC)
            || gsym->type() == elfcpp::STT_ARM_TFUNC)
          flags |= Symbol::FUNCTION_CALL;
          flags |= Symbol::FUNCTION_CALL;
        if (gsym->needs_dynamic_reloc(flags))
        if (gsym->needs_dynamic_reloc(flags))
          {
          {
            if (target->may_need_copy_reloc(gsym))
            if (target->may_need_copy_reloc(gsym))
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym,
                                   data_shndx, output_section, gsym,
                                   reloc);
                                   reloc);
              }
              }
            else
            else
              {
              {
                check_non_pic(object, r_type);
                check_non_pic(object, r_type);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global(gsym, r_type, output_section, object,
                rel_dyn->add_global(gsym, r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset());
                                    data_shndx, reloc.get_r_offset());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_PLT32:
      // If the symbol is fully resolved, this is just a relative
      // If the symbol is fully resolved, this is just a relative
      // local reloc.  Otherwise we need a PLT entry.
      // local reloc.  Otherwise we need a PLT entry.
      if (gsym->final_value_is_known())
      if (gsym->final_value_is_known())
        break;
        break;
      // If building a shared library, we can also skip the PLT entry
      // If building a shared library, we can also skip the PLT entry
      // if the symbol is defined in the output file and is protected
      // if the symbol is defined in the output file and is protected
      // or hidden.
      // or hidden.
      if (gsym->is_defined()
      if (gsym->is_defined()
          && !gsym->is_from_dynobj()
          && !gsym->is_from_dynobj()
          && !gsym->is_preemptible())
          && !gsym->is_preemptible())
        break;
        break;
      target->make_plt_entry(symtab, layout, gsym);
      target->make_plt_entry(symtab, layout, gsym);
      break;
      break;
 
 
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_GOTOFF32:
      // We need a GOT section.
      // We need a GOT section.
      target->got_section(symtab, layout);
      target->got_section(symtab, layout);
      break;
      break;
 
 
    case elfcpp::R_ARM_BASE_PREL:
    case elfcpp::R_ARM_BASE_PREL:
      // FIXME: What about this?
      // FIXME: What about this?
      break;
      break;
 
 
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_GOT_PREL:
      {
      {
        // The symbol requires a GOT entry.
        // The symbol requires a GOT entry.
        Output_data_got<32, big_endian>* got =
        Output_data_got<32, big_endian>* got =
          target->got_section(symtab, layout);
          target->got_section(symtab, layout);
        if (gsym->final_value_is_known())
        if (gsym->final_value_is_known())
          got->add_global(gsym, GOT_TYPE_STANDARD);
          got->add_global(gsym, GOT_TYPE_STANDARD);
        else
        else
          {
          {
            // If this symbol is not fully resolved, we need to add a
            // If this symbol is not fully resolved, we need to add a
            // GOT entry with a dynamic relocation.
            // GOT entry with a dynamic relocation.
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
            if (gsym->is_from_dynobj()
            if (gsym->is_from_dynobj()
                || gsym->is_undefined()
                || gsym->is_undefined()
                || gsym->is_preemptible())
                || gsym->is_preemptible())
              got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
              got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
                                       rel_dyn, elfcpp::R_ARM_GLOB_DAT);
                                       rel_dyn, elfcpp::R_ARM_GLOB_DAT);
            else
            else
              {
              {
                if (got->add_global(gsym, GOT_TYPE_STANDARD))
                if (got->add_global(gsym, GOT_TYPE_STANDARD))
                  rel_dyn->add_global_relative(
                  rel_dyn->add_global_relative(
                      gsym, elfcpp::R_ARM_RELATIVE, got,
                      gsym, elfcpp::R_ARM_RELATIVE, got,
                      gsym->got_offset(GOT_TYPE_STANDARD));
                      gsym->got_offset(GOT_TYPE_STANDARD));
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_TARGET1:
    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // This should have been mapped to another type already.
      // Fall through.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
 
 
    default:
    default:
      unsupported_reloc_global(object, r_type, gsym);
      unsupported_reloc_global(object, r_type, gsym);
      break;
      break;
    }
    }
}
}
 
 
// Process relocations for gc.
// Process relocations for gc.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::gc_process_relocs(const General_options& options,
Target_arm<big_endian>::gc_process_relocs(const General_options& options,
                                          Symbol_table* symtab,
                                          Symbol_table* symtab,
                                          Layout* layout,
                                          Layout* layout,
                                          Sized_relobj<32, big_endian>* object,
                                          Sized_relobj<32, big_endian>* object,
                                          unsigned int data_shndx,
                                          unsigned int data_shndx,
                                          unsigned int,
                                          unsigned int,
                                          const unsigned char* prelocs,
                                          const unsigned char* prelocs,
                                          size_t reloc_count,
                                          size_t reloc_count,
                                          Output_section* output_section,
                                          Output_section* output_section,
                                          bool needs_special_offset_handling,
                                          bool needs_special_offset_handling,
                                          size_t local_symbol_count,
                                          size_t local_symbol_count,
                                          const unsigned char* plocal_symbols)
                                          const unsigned char* plocal_symbols)
{
{
  typedef Target_arm<big_endian> Arm;
  typedef Target_arm<big_endian> Arm;
  typedef typename Target_arm<big_endian>::Scan Scan;
  typedef typename Target_arm<big_endian>::Scan Scan;
 
 
  gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
  gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
    options,
    options,
    symtab,
    symtab,
    layout,
    layout,
    this,
    this,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols);
    plocal_symbols);
}
}
 
 
// Scan relocations for a section.
// Scan relocations for a section.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::scan_relocs(const General_options& options,
Target_arm<big_endian>::scan_relocs(const General_options& options,
                                    Symbol_table* symtab,
                                    Symbol_table* symtab,
                                    Layout* layout,
                                    Layout* layout,
                                    Sized_relobj<32, big_endian>* object,
                                    Sized_relobj<32, big_endian>* object,
                                    unsigned int data_shndx,
                                    unsigned int data_shndx,
                                    unsigned int sh_type,
                                    unsigned int sh_type,
                                    const unsigned char* prelocs,
                                    const unsigned char* prelocs,
                                    size_t reloc_count,
                                    size_t reloc_count,
                                    Output_section* output_section,
                                    Output_section* output_section,
                                    bool needs_special_offset_handling,
                                    bool needs_special_offset_handling,
                                    size_t local_symbol_count,
                                    size_t local_symbol_count,
                                    const unsigned char* plocal_symbols)
                                    const unsigned char* plocal_symbols)
{
{
  typedef typename Target_arm<big_endian>::Scan Scan;
  typedef typename Target_arm<big_endian>::Scan Scan;
  if (sh_type == elfcpp::SHT_RELA)
  if (sh_type == elfcpp::SHT_RELA)
    {
    {
      gold_error(_("%s: unsupported RELA reloc section"),
      gold_error(_("%s: unsupported RELA reloc section"),
                 object->name().c_str());
                 object->name().c_str());
      return;
      return;
    }
    }
 
 
  gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
  gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
    options,
    options,
    symtab,
    symtab,
    layout,
    layout,
    this,
    this,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols);
    plocal_symbols);
}
}
 
 
// Finalize the sections.
// Finalize the sections.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::do_finalize_sections(Layout* layout)
Target_arm<big_endian>::do_finalize_sections(Layout* layout)
{
{
  // Fill in some more dynamic tags.
  // Fill in some more dynamic tags.
  Output_data_dynamic* const odyn = layout->dynamic_data();
  Output_data_dynamic* const odyn = layout->dynamic_data();
  if (odyn != NULL)
  if (odyn != NULL)
    {
    {
      if (this->got_plt_ != NULL
      if (this->got_plt_ != NULL
          && this->got_plt_->output_section() != NULL)
          && this->got_plt_->output_section() != NULL)
        odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
        odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
 
 
      if (this->plt_ != NULL
      if (this->plt_ != NULL
          && this->plt_->output_section() != NULL)
          && this->plt_->output_section() != NULL)
        {
        {
          const Output_data* od = this->plt_->rel_plt();
          const Output_data* od = this->plt_->rel_plt();
          odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
          odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
          odyn->add_section_address(elfcpp::DT_JMPREL, od);
          odyn->add_section_address(elfcpp::DT_JMPREL, od);
          odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
          odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
        }
        }
 
 
      if (this->rel_dyn_ != NULL
      if (this->rel_dyn_ != NULL
          && this->rel_dyn_->output_section() != NULL)
          && this->rel_dyn_->output_section() != NULL)
        {
        {
          const Output_data* od = this->rel_dyn_;
          const Output_data* od = this->rel_dyn_;
          odyn->add_section_address(elfcpp::DT_REL, od);
          odyn->add_section_address(elfcpp::DT_REL, od);
          odyn->add_section_size(elfcpp::DT_RELSZ, od);
          odyn->add_section_size(elfcpp::DT_RELSZ, od);
          odyn->add_constant(elfcpp::DT_RELENT,
          odyn->add_constant(elfcpp::DT_RELENT,
                             elfcpp::Elf_sizes<32>::rel_size);
                             elfcpp::Elf_sizes<32>::rel_size);
        }
        }
 
 
      if (!parameters->options().shared())
      if (!parameters->options().shared())
        {
        {
          // The value of the DT_DEBUG tag is filled in by the dynamic
          // The value of the DT_DEBUG tag is filled in by the dynamic
          // linker at run time, and used by the debugger.
          // linker at run time, and used by the debugger.
          odyn->add_constant(elfcpp::DT_DEBUG, 0);
          odyn->add_constant(elfcpp::DT_DEBUG, 0);
        }
        }
    }
    }
 
 
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit(this->rel_dyn_section(layout));
    this->copy_relocs_.emit(this->rel_dyn_section(layout));
 
 
  // For the ARM target, we need to add a PT_ARM_EXIDX segment for
  // For the ARM target, we need to add a PT_ARM_EXIDX segment for
  // the .ARM.exidx section.
  // the .ARM.exidx section.
  if (!layout->script_options()->saw_phdrs_clause()
  if (!layout->script_options()->saw_phdrs_clause()
      && !parameters->options().relocatable())
      && !parameters->options().relocatable())
    {
    {
      Output_section* exidx_section =
      Output_section* exidx_section =
        layout->find_output_section(".ARM.exidx");
        layout->find_output_section(".ARM.exidx");
 
 
      if (exidx_section != NULL
      if (exidx_section != NULL
          && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
          && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
        {
        {
          gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
          gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
                      == NULL);
                      == NULL);
          Output_segment*  exidx_segment =
          Output_segment*  exidx_segment =
            layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
            layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
          exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
          exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
                                            false);
                                            false);
        }
        }
    }
    }
}
}
 
 
// Return whether a direct absolute static relocation needs to be applied.
// Return whether a direct absolute static relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation other than R_ARM_RELATIVE, the addend
// a dynamic relocation other than R_ARM_RELATIVE, the addend
// of the relocation is carried in the data, and we must not
// of the relocation is carried in the data, and we must not
// apply the static relocation.
// apply the static relocation.
 
 
template<bool big_endian>
template<bool big_endian>
inline bool
inline bool
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
    const Sized_symbol<32>* gsym,
    const Sized_symbol<32>* gsym,
    int ref_flags,
    int ref_flags,
    bool is_32bit,
    bool is_32bit,
    Output_section* output_section)
    Output_section* output_section)
{
{
  // If the output section is not allocated, then we didn't call
  // If the output section is not allocated, then we didn't call
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
  // the reloc here.
  // the reloc here.
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
      return true;
      return true;
 
 
  // For local symbols, we will have created a non-RELATIVE dynamic
  // For local symbols, we will have created a non-RELATIVE dynamic
  // relocation only if (a) the output is position independent,
  // relocation only if (a) the output is position independent,
  // (b) the relocation is absolute (not pc- or segment-relative), and
  // (b) the relocation is absolute (not pc- or segment-relative), and
  // (c) the relocation is not 32 bits wide.
  // (c) the relocation is not 32 bits wide.
  if (gsym == NULL)
  if (gsym == NULL)
    return !(parameters->options().output_is_position_independent()
    return !(parameters->options().output_is_position_independent()
             && (ref_flags & Symbol::ABSOLUTE_REF)
             && (ref_flags & Symbol::ABSOLUTE_REF)
             && !is_32bit);
             && !is_32bit);
 
 
  // For global symbols, we use the same helper routines used in the
  // For global symbols, we use the same helper routines used in the
  // scan pass.  If we did not create a dynamic relocation, or if we
  // scan pass.  If we did not create a dynamic relocation, or if we
  // created a RELATIVE dynamic relocation, we should apply the static
  // created a RELATIVE dynamic relocation, we should apply the static
  // relocation.
  // relocation.
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
                 && gsym->can_use_relative_reloc(ref_flags
                 && gsym->can_use_relative_reloc(ref_flags
                                                 & Symbol::FUNCTION_CALL);
                                                 & Symbol::FUNCTION_CALL);
  return !has_dyn || is_rel;
  return !has_dyn || is_rel;
}
}
 
 
// Perform a relocation.
// Perform a relocation.
 
 
template<bool big_endian>
template<bool big_endian>
inline bool
inline bool
Target_arm<big_endian>::Relocate::relocate(
Target_arm<big_endian>::Relocate::relocate(
    const Relocate_info<32, big_endian>* relinfo,
    const Relocate_info<32, big_endian>* relinfo,
    Target_arm* target,
    Target_arm* target,
    Output_section *output_section,
    Output_section *output_section,
    size_t relnum,
    size_t relnum,
    const elfcpp::Rel<32, big_endian>& rel,
    const elfcpp::Rel<32, big_endian>& rel,
    unsigned int r_type,
    unsigned int r_type,
    const Sized_symbol<32>* gsym,
    const Sized_symbol<32>* gsym,
    const Symbol_value<32>* psymval,
    const Symbol_value<32>* psymval,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<32>::Elf_Addr address,
    elfcpp::Elf_types<32>::Elf_Addr address,
    section_size_type /* view_size */ )
    section_size_type /* view_size */ )
{
{
  typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
  typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
 
 
  r_type = get_real_reloc_type(r_type);
  r_type = get_real_reloc_type(r_type);
 
 
  // If this the symbol may be a Thumb function, set thumb bit to 1.
  // If this the symbol may be a Thumb function, set thumb bit to 1.
  bool has_thumb_bit = ((gsym != NULL)
  bool has_thumb_bit = ((gsym != NULL)
                        && (gsym->type() == elfcpp::STT_FUNC
                        && (gsym->type() == elfcpp::STT_FUNC
                            || gsym->type() == elfcpp::STT_ARM_TFUNC));
                            || gsym->type() == elfcpp::STT_ARM_TFUNC));
 
 
  // Pick the value to use for symbols defined in shared objects.
  // Pick the value to use for symbols defined in shared objects.
  Symbol_value<32> symval;
  Symbol_value<32> symval;
  if (gsym != NULL
  if (gsym != NULL
      && gsym->use_plt_offset(reloc_is_non_pic(r_type)))
      && gsym->use_plt_offset(reloc_is_non_pic(r_type)))
    {
    {
      symval.set_output_value(target->plt_section()->address()
      symval.set_output_value(target->plt_section()->address()
                              + gsym->plt_offset());
                              + gsym->plt_offset());
      psymval = &symval;
      psymval = &symval;
      has_thumb_bit = 0;
      has_thumb_bit = 0;
    }
    }
 
 
  const Sized_relobj<32, big_endian>* object = relinfo->object;
  const Sized_relobj<32, big_endian>* object = relinfo->object;
 
 
  // Get the GOT offset if needed.
  // Get the GOT offset if needed.
  // The GOT pointer points to the end of the GOT section.
  // The GOT pointer points to the end of the GOT section.
  // We need to subtract the size of the GOT section to get
  // We need to subtract the size of the GOT section to get
  // the actual offset to use in the relocation.
  // the actual offset to use in the relocation.
  bool have_got_offset = false;
  bool have_got_offset = false;
  unsigned int got_offset = 0;
  unsigned int got_offset = 0;
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_GOT_PREL:
      if (gsym != NULL)
      if (gsym != NULL)
        {
        {
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
          got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
                        - target->got_size());
                        - target->got_size());
        }
        }
      else
      else
        {
        {
          unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
                        - target->got_size());
                        - target->got_size());
        }
        }
      have_got_offset = true;
      have_got_offset = true;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  typename Arm_relocate_functions::Status reloc_status =
  typename Arm_relocate_functions::Status reloc_status =
        Arm_relocate_functions::STATUS_OKAY;
        Arm_relocate_functions::STATUS_OKAY;
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_ARM_NONE:
    case elfcpp::R_ARM_NONE:
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS8:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
        reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS12:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
        reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_ABS16:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
        reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
                                                     has_thumb_bit);
                                                     has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS32_NOI:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
                                    output_section))
        // No thumb bit for this relocation: (S + A)
        // No thumb bit for this relocation: (S + A)
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
                                                     false);
                                                     false);
      break;
      break;
 
 
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVW_ABS_NC:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
        reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
                                                           psymval,
                                                           psymval,
                                                           has_thumb_bit);
                                                           has_thumb_bit);
      else
      else
        gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
        gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
                     "a shared object; recompile with -fPIC"));
                     "a shared object; recompile with -fPIC"));
      break;
      break;
 
 
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_MOVT_ABS:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
        reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
      else
      else
        gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
        gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
                     "a shared object; recompile with -fPIC"));
                     "a shared object; recompile with -fPIC"));
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
        reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
                                                               psymval,
                                                               psymval,
                                                               has_thumb_bit);
                                                               has_thumb_bit);
      else
      else
        gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
        gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
                     "making a shared object; recompile with -fPIC"));
                     "making a shared object; recompile with -fPIC"));
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVT_ABS:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
        reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
                                                            psymval);
                                                            psymval);
      else
      else
        gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
        gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
                     "making a shared object; recompile with -fPIC"));
                     "making a shared object; recompile with -fPIC"));
      break;
      break;
 
 
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVW_PREL_NC:
      reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
      reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
                                                          psymval, address,
                                                          psymval, address,
                                                          has_thumb_bit);
                                                          has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_MOVT_PREL:
      reloc_status = Arm_relocate_functions::movt_prel(view, object,
      reloc_status = Arm_relocate_functions::movt_prel(view, object,
                                                       psymval, address);
                                                       psymval, address);
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
      reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
      reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
                                                              psymval, address,
                                                              psymval, address,
                                                              has_thumb_bit);
                                                              has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVT_PREL:
      reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
      reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
                                                           psymval, address);
                                                           psymval, address);
      break;
      break;
 
 
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_REL32:
      reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
      reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
                                                   address, has_thumb_bit);
                                                   address, has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_THM_ABS5:
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
                                    output_section))
        reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
        reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_THM_CALL:
      reloc_status = Arm_relocate_functions::thm_call(view, object, psymval,
      reloc_status = Arm_relocate_functions::thm_call(view, object, psymval,
                                                      address, has_thumb_bit);
                                                      address, has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_GOTOFF32:
      {
      {
        elfcpp::Elf_types<32>::Elf_Addr got_origin;
        elfcpp::Elf_types<32>::Elf_Addr got_origin;
        got_origin = target->got_plt_section()->address();
        got_origin = target->got_plt_section()->address();
        reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
        reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
                                                     got_origin, has_thumb_bit);
                                                     got_origin, has_thumb_bit);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_BASE_PREL:
    case elfcpp::R_ARM_BASE_PREL:
      {
      {
        uint32_t origin;
        uint32_t origin;
        // Get the addressing origin of the output segment defining the 
        // Get the addressing origin of the output segment defining the 
        // symbol gsym (AAELF 4.6.1.2 Relocation types)
        // symbol gsym (AAELF 4.6.1.2 Relocation types)
        gold_assert(gsym != NULL);
        gold_assert(gsym != NULL);
        if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
        if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
          origin = gsym->output_segment()->vaddr();
          origin = gsym->output_segment()->vaddr();
        else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
        else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
          origin = gsym->output_data()->address();
          origin = gsym->output_data()->address();
        else
        else
          {
          {
            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                                   _("cannot find origin of R_ARM_BASE_PREL"));
                                   _("cannot find origin of R_ARM_BASE_PREL"));
            return true;
            return true;
          }
          }
        reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
        reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_BASE_ABS:
      {
      {
        if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
        if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                      output_section))
                                      output_section))
          break;
          break;
 
 
        uint32_t origin;
        uint32_t origin;
        // Get the addressing origin of the output segment defining
        // Get the addressing origin of the output segment defining
        // the symbol gsym (AAELF 4.6.1.2 Relocation types).
        // the symbol gsym (AAELF 4.6.1.2 Relocation types).
        if (gsym == NULL)
        if (gsym == NULL)
          // R_ARM_BASE_ABS with the NULL symbol will give the
          // R_ARM_BASE_ABS with the NULL symbol will give the
          // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
          // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
          // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
          // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
          origin = target->got_plt_section()->address();
          origin = target->got_plt_section()->address();
        else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
        else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
          origin = gsym->output_segment()->vaddr();
          origin = gsym->output_segment()->vaddr();
        else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
        else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
          origin = gsym->output_data()->address();
          origin = gsym->output_data()->address();
        else
        else
          {
          {
            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                                   _("cannot find origin of R_ARM_BASE_ABS"));
                                   _("cannot find origin of R_ARM_BASE_ABS"));
            return true;
            return true;
          }
          }
 
 
        reloc_status = Arm_relocate_functions::base_abs(view, origin);
        reloc_status = Arm_relocate_functions::base_abs(view, origin);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_BREL:
      gold_assert(have_got_offset);
      gold_assert(have_got_offset);
      reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
      reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
      break;
      break;
 
 
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_GOT_PREL:
      gold_assert(have_got_offset);
      gold_assert(have_got_offset);
      // Get the address origin for GOT PLT, which is allocated right
      // Get the address origin for GOT PLT, which is allocated right
      // after the GOT section, to calculate an absolute address of
      // after the GOT section, to calculate an absolute address of
      // the symbol GOT entry (got_origin + got_offset).
      // the symbol GOT entry (got_origin + got_offset).
      elfcpp::Elf_types<32>::Elf_Addr got_origin;
      elfcpp::Elf_types<32>::Elf_Addr got_origin;
      got_origin = target->got_plt_section()->address();
      got_origin = target->got_plt_section()->address();
      reloc_status = Arm_relocate_functions::got_prel(view,
      reloc_status = Arm_relocate_functions::got_prel(view,
                                                      got_origin + got_offset,
                                                      got_origin + got_offset,
                                                      address);
                                                      address);
      break;
      break;
 
 
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_PLT32:
      gold_assert(gsym == NULL
      gold_assert(gsym == NULL
                  || gsym->has_plt_offset()
                  || gsym->has_plt_offset()
                  || gsym->final_value_is_known()
                  || gsym->final_value_is_known()
                  || (gsym->is_defined()
                  || (gsym->is_defined()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_preemptible()));
                      && !gsym->is_preemptible()));
      reloc_status = Arm_relocate_functions::plt32(view, object, psymval,
      reloc_status = Arm_relocate_functions::plt32(view, object, psymval,
                                                   address, has_thumb_bit);
                                                   address, has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_CALL:
      reloc_status = Arm_relocate_functions::call(view, object, psymval,
      reloc_status = Arm_relocate_functions::call(view, object, psymval,
                                                  address, has_thumb_bit);
                                                  address, has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_JUMP24:
      reloc_status = Arm_relocate_functions::jump24(view, object, psymval,
      reloc_status = Arm_relocate_functions::jump24(view, object, psymval,
                                                    address, has_thumb_bit);
                                                    address, has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_PREL31:
      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
                                                    address, has_thumb_bit);
                                                    address, has_thumb_bit);
      break;
      break;
 
 
    case elfcpp::R_ARM_TARGET1:
    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // This should have been mapped to another type already.
      // Fall through.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unexpected reloc %u in object file"),
                             _("unexpected reloc %u in object file"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    default:
    default:
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
    }
    }
 
 
  // Report any errors.
  // Report any errors.
  switch (reloc_status)
  switch (reloc_status)
    {
    {
    case Arm_relocate_functions::STATUS_OKAY:
    case Arm_relocate_functions::STATUS_OKAY:
      break;
      break;
    case Arm_relocate_functions::STATUS_OVERFLOW:
    case Arm_relocate_functions::STATUS_OVERFLOW:
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("relocation overflow in relocation %u"),
                             _("relocation overflow in relocation %u"),
                             r_type);
                             r_type);
      break;
      break;
    case Arm_relocate_functions::STATUS_BAD_RELOC:
    case Arm_relocate_functions::STATUS_BAD_RELOC:
      gold_error_at_location(
      gold_error_at_location(
        relinfo,
        relinfo,
        relnum,
        relnum,
        rel.get_r_offset(),
        rel.get_r_offset(),
        _("unexpected opcode while processing relocation %u"),
        _("unexpected opcode while processing relocation %u"),
        r_type);
        r_type);
      break;
      break;
    default:
    default:
      gold_unreachable();
      gold_unreachable();
    }
    }
 
 
  return true;
  return true;
}
}
 
 
// Relocate section data.
// Relocate section data.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::relocate_section(
Target_arm<big_endian>::relocate_section(
    const Relocate_info<32, big_endian>* relinfo,
    const Relocate_info<32, big_endian>* relinfo,
    unsigned int sh_type,
    unsigned int sh_type,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    bool needs_special_offset_handling,
    bool needs_special_offset_handling,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<32>::Elf_Addr address,
    elfcpp::Elf_types<32>::Elf_Addr address,
    section_size_type view_size,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
    const Reloc_symbol_changes* reloc_symbol_changes)
{
{
  typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
  typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
  gold_assert(sh_type == elfcpp::SHT_REL);
  gold_assert(sh_type == elfcpp::SHT_REL);
 
 
  gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
  gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
                         Arm_relocate>(
                         Arm_relocate>(
    relinfo,
    relinfo,
    this,
    this,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    view,
    view,
    address,
    address,
    view_size,
    view_size,
    reloc_symbol_changes);
    reloc_symbol_changes);
}
}
 
 
// Return the size of a relocation while scanning during a relocatable
// Return the size of a relocation while scanning during a relocatable
// link.
// link.
 
 
template<bool big_endian>
template<bool big_endian>
unsigned int
unsigned int
Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
    unsigned int r_type,
    unsigned int r_type,
    Relobj* object)
    Relobj* object)
{
{
  r_type = get_real_reloc_type(r_type);
  r_type = get_real_reloc_type(r_type);
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_ARM_NONE:
    case elfcpp::R_ARM_NONE:
      return 0;
      return 0;
 
 
    case elfcpp::R_ARM_ABS8:
    case elfcpp::R_ARM_ABS8:
      return 1;
      return 1;
 
 
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_ABS16:
    case elfcpp::R_ARM_THM_ABS5:
    case elfcpp::R_ARM_THM_ABS5:
      return 2;
      return 2;
 
 
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS32_NOI:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_ABS12:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_BASE_ABS:
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_REL32:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_THM_CALL:
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_GOTOFF32:
    case elfcpp::R_ARM_BASE_PREL:
    case elfcpp::R_ARM_BASE_PREL:
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_BREL:
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_GOT_PREL:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_PLT32:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_CALL:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_JUMP24:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_PREL31:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVW_ABS_NC:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_THM_MOVT_ABS:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVW_PREL_NC:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
    case elfcpp::R_ARM_THM_MOVT_PREL:
    case elfcpp::R_ARM_THM_MOVT_PREL:
      return 4;
      return 4;
 
 
    case elfcpp::R_ARM_TARGET1:
    case elfcpp::R_ARM_TARGET1:
      // This should have been mapped to another type already.
      // This should have been mapped to another type already.
      // Fall through.
      // Fall through.
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_COPY:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_GLOB_DAT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_JUMP_SLOT:
    case elfcpp::R_ARM_RELATIVE:
    case elfcpp::R_ARM_RELATIVE:
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      return 0;
      return 0;
 
 
    default:
    default:
      object->error(_("unsupported reloc %u in object file"), r_type);
      object->error(_("unsupported reloc %u in object file"), r_type);
      return 0;
      return 0;
    }
    }
}
}
 
 
// Scan the relocs during a relocatable link.
// Scan the relocs during a relocatable link.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::scan_relocatable_relocs(
Target_arm<big_endian>::scan_relocatable_relocs(
    const General_options& options,
    const General_options& options,
    Symbol_table* symtab,
    Symbol_table* symtab,
    Layout* layout,
    Layout* layout,
    Sized_relobj<32, big_endian>* object,
    Sized_relobj<32, big_endian>* object,
    unsigned int data_shndx,
    unsigned int data_shndx,
    unsigned int sh_type,
    unsigned int sh_type,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    bool needs_special_offset_handling,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    size_t local_symbol_count,
    const unsigned char* plocal_symbols,
    const unsigned char* plocal_symbols,
    Relocatable_relocs* rr)
    Relocatable_relocs* rr)
{
{
  gold_assert(sh_type == elfcpp::SHT_REL);
  gold_assert(sh_type == elfcpp::SHT_REL);
 
 
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
 
 
  gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
  gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
      Scan_relocatable_relocs>(
      Scan_relocatable_relocs>(
    options,
    options,
    symtab,
    symtab,
    layout,
    layout,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols,
    plocal_symbols,
    rr);
    rr);
}
}
 
 
// Relocate a section during a relocatable link.
// Relocate a section during a relocatable link.
 
 
template<bool big_endian>
template<bool big_endian>
void
void
Target_arm<big_endian>::relocate_for_relocatable(
Target_arm<big_endian>::relocate_for_relocatable(
    const Relocate_info<32, big_endian>* relinfo,
    const Relocate_info<32, big_endian>* relinfo,
    unsigned int sh_type,
    unsigned int sh_type,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    off_t offset_in_output_section,
    off_t offset_in_output_section,
    const Relocatable_relocs* rr,
    const Relocatable_relocs* rr,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<32>::Elf_Addr view_address,
    elfcpp::Elf_types<32>::Elf_Addr view_address,
    section_size_type view_size,
    section_size_type view_size,
    unsigned char* reloc_view,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
    section_size_type reloc_view_size)
{
{
  gold_assert(sh_type == elfcpp::SHT_REL);
  gold_assert(sh_type == elfcpp::SHT_REL);
 
 
  gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
  gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
    relinfo,
    relinfo,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    offset_in_output_section,
    offset_in_output_section,
    rr,
    rr,
    view,
    view,
    view_address,
    view_address,
    view_size,
    view_size,
    reloc_view,
    reloc_view,
    reloc_view_size);
    reloc_view_size);
}
}
 
 
// Return the value to use for a dynamic symbol which requires special
// Return the value to use for a dynamic symbol which requires special
// treatment.  This is how we support equality comparisons of function
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
// processor specific ABI supplement.
 
 
template<bool big_endian>
template<bool big_endian>
uint64_t
uint64_t
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
{
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_section()->address() + gsym->plt_offset();
  return this->plt_section()->address() + gsym->plt_offset();
}
}
 
 
// Map platform-specific relocs to real relocs
// Map platform-specific relocs to real relocs
//
//
template<bool big_endian>
template<bool big_endian>
unsigned int
unsigned int
Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_ARM_TARGET1:
    case elfcpp::R_ARM_TARGET1:
      // This is either R_ARM_ABS32 or R_ARM_REL32;
      // This is either R_ARM_ABS32 or R_ARM_REL32;
      return elfcpp::R_ARM_ABS32;
      return elfcpp::R_ARM_ABS32;
 
 
    case elfcpp::R_ARM_TARGET2:
    case elfcpp::R_ARM_TARGET2:
      // This can be any reloc type but ususally is R_ARM_GOT_PREL
      // This can be any reloc type but ususally is R_ARM_GOT_PREL
      return elfcpp::R_ARM_GOT_PREL;
      return elfcpp::R_ARM_GOT_PREL;
 
 
    default:
    default:
      return r_type;
      return r_type;
    }
    }
}
}
 
 
// The selector for arm object files.
// The selector for arm object files.
 
 
template<bool big_endian>
template<bool big_endian>
class Target_selector_arm : public Target_selector
class Target_selector_arm : public Target_selector
{
{
 public:
 public:
  Target_selector_arm()
  Target_selector_arm()
    : Target_selector(elfcpp::EM_ARM, 32, big_endian,
    : Target_selector(elfcpp::EM_ARM, 32, big_endian,
                      (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
                      (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
  { }
  { }
 
 
  Target*
  Target*
  do_instantiate_target()
  do_instantiate_target()
  { return new Target_arm<big_endian>(); }
  { return new Target_arm<big_endian>(); }
};
};
 
 
Target_selector_arm<false> target_selector_arm;
Target_selector_arm<false> target_selector_arm;
Target_selector_arm<true> target_selector_armbe;
Target_selector_arm<true> target_selector_armbe;
 
 
} // End anonymous namespace.
} // End anonymous namespace.
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.