OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [builtins.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Expand builtin functions.
/* Expand builtin functions.
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "machmode.h"
#include "machmode.h"
#include "real.h"
#include "real.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "gimple.h"
#include "gimple.h"
#include "flags.h"
#include "flags.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "except.h"
#include "except.h"
#include "function.h"
#include "function.h"
#include "insn-config.h"
#include "insn-config.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "recog.h"
#include "recog.h"
#include "output.h"
#include "output.h"
#include "typeclass.h"
#include "typeclass.h"
#include "toplev.h"
#include "toplev.h"
#include "predict.h"
#include "predict.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "langhooks.h"
#include "langhooks.h"
#include "basic-block.h"
#include "basic-block.h"
#include "tree-mudflap.h"
#include "tree-mudflap.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "value-prof.h"
#include "value-prof.h"
#include "diagnostic.h"
#include "diagnostic.h"
 
 
#ifndef SLOW_UNALIGNED_ACCESS
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#endif
#endif
 
 
#ifndef PAD_VARARGS_DOWN
#ifndef PAD_VARARGS_DOWN
#define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN
#define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN
#endif
#endif
static tree do_mpc_arg1 (tree, tree, int (*)(mpc_ptr, mpc_srcptr, mpc_rnd_t));
static tree do_mpc_arg1 (tree, tree, int (*)(mpc_ptr, mpc_srcptr, mpc_rnd_t));
 
 
/* Define the names of the builtin function types and codes.  */
/* Define the names of the builtin function types and codes.  */
const char *const built_in_class_names[4]
const char *const built_in_class_names[4]
  = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"};
  = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"};
 
 
#define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X,
#define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X,
const char * built_in_names[(int) END_BUILTINS] =
const char * built_in_names[(int) END_BUILTINS] =
{
{
#include "builtins.def"
#include "builtins.def"
};
};
#undef DEF_BUILTIN
#undef DEF_BUILTIN
 
 
/* Setup an array of _DECL trees, make sure each element is
/* Setup an array of _DECL trees, make sure each element is
   initialized to NULL_TREE.  */
   initialized to NULL_TREE.  */
tree built_in_decls[(int) END_BUILTINS];
tree built_in_decls[(int) END_BUILTINS];
/* Declarations used when constructing the builtin implicitly in the compiler.
/* Declarations used when constructing the builtin implicitly in the compiler.
   It may be NULL_TREE when this is invalid (for instance runtime is not
   It may be NULL_TREE when this is invalid (for instance runtime is not
   required to implement the function call in all cases).  */
   required to implement the function call in all cases).  */
tree implicit_built_in_decls[(int) END_BUILTINS];
tree implicit_built_in_decls[(int) END_BUILTINS];
 
 
static const char *c_getstr (tree);
static const char *c_getstr (tree);
static rtx c_readstr (const char *, enum machine_mode);
static rtx c_readstr (const char *, enum machine_mode);
static int target_char_cast (tree, char *);
static int target_char_cast (tree, char *);
static rtx get_memory_rtx (tree, tree);
static rtx get_memory_rtx (tree, tree);
static int apply_args_size (void);
static int apply_args_size (void);
static int apply_result_size (void);
static int apply_result_size (void);
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
static rtx result_vector (int, rtx);
static rtx result_vector (int, rtx);
#endif
#endif
static void expand_builtin_update_setjmp_buf (rtx);
static void expand_builtin_update_setjmp_buf (rtx);
static void expand_builtin_prefetch (tree);
static void expand_builtin_prefetch (tree);
static rtx expand_builtin_apply_args (void);
static rtx expand_builtin_apply_args (void);
static rtx expand_builtin_apply_args_1 (void);
static rtx expand_builtin_apply_args_1 (void);
static rtx expand_builtin_apply (rtx, rtx, rtx);
static rtx expand_builtin_apply (rtx, rtx, rtx);
static void expand_builtin_return (rtx);
static void expand_builtin_return (rtx);
static enum type_class type_to_class (tree);
static enum type_class type_to_class (tree);
static rtx expand_builtin_classify_type (tree);
static rtx expand_builtin_classify_type (tree);
static void expand_errno_check (tree, rtx);
static void expand_errno_check (tree, rtx);
static rtx expand_builtin_mathfn (tree, rtx, rtx);
static rtx expand_builtin_mathfn (tree, rtx, rtx);
static rtx expand_builtin_mathfn_2 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_2 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_3 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_3 (tree, rtx, rtx);
static rtx expand_builtin_interclass_mathfn (tree, rtx, rtx);
static rtx expand_builtin_interclass_mathfn (tree, rtx, rtx);
static rtx expand_builtin_sincos (tree);
static rtx expand_builtin_sincos (tree);
static rtx expand_builtin_cexpi (tree, rtx, rtx);
static rtx expand_builtin_cexpi (tree, rtx, rtx);
static rtx expand_builtin_int_roundingfn (tree, rtx);
static rtx expand_builtin_int_roundingfn (tree, rtx);
static rtx expand_builtin_int_roundingfn_2 (tree, rtx);
static rtx expand_builtin_int_roundingfn_2 (tree, rtx);
static rtx expand_builtin_args_info (tree);
static rtx expand_builtin_args_info (tree);
static rtx expand_builtin_next_arg (void);
static rtx expand_builtin_next_arg (void);
static rtx expand_builtin_va_start (tree);
static rtx expand_builtin_va_start (tree);
static rtx expand_builtin_va_end (tree);
static rtx expand_builtin_va_end (tree);
static rtx expand_builtin_va_copy (tree);
static rtx expand_builtin_va_copy (tree);
static rtx expand_builtin_memcmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_memcmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strcmp (tree, rtx);
static rtx expand_builtin_strcmp (tree, rtx);
static rtx expand_builtin_strncmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncmp (tree, rtx, enum machine_mode);
static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_memcpy (tree, rtx);
static rtx expand_builtin_memcpy (tree, rtx);
static rtx expand_builtin_mempcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_mempcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_mempcpy_args (tree, tree, tree, rtx,
static rtx expand_builtin_mempcpy_args (tree, tree, tree, rtx,
                                        enum machine_mode, int);
                                        enum machine_mode, int);
static rtx expand_builtin_strcpy (tree, rtx);
static rtx expand_builtin_strcpy (tree, rtx);
static rtx expand_builtin_strcpy_args (tree, tree, rtx);
static rtx expand_builtin_strcpy_args (tree, tree, rtx);
static rtx expand_builtin_stpcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_stpcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncpy (tree, rtx);
static rtx expand_builtin_strncpy (tree, rtx);
static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_memset (tree, rtx, enum machine_mode);
static rtx expand_builtin_memset (tree, rtx, enum machine_mode);
static rtx expand_builtin_memset_args (tree, tree, tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_memset_args (tree, tree, tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_bzero (tree);
static rtx expand_builtin_bzero (tree);
static rtx expand_builtin_strlen (tree, rtx, enum machine_mode);
static rtx expand_builtin_strlen (tree, rtx, enum machine_mode);
static rtx expand_builtin_alloca (tree, rtx);
static rtx expand_builtin_alloca (tree, rtx);
static rtx expand_builtin_unop (enum machine_mode, tree, rtx, rtx, optab);
static rtx expand_builtin_unop (enum machine_mode, tree, rtx, rtx, optab);
static rtx expand_builtin_frame_address (tree, tree);
static rtx expand_builtin_frame_address (tree, tree);
static tree stabilize_va_list_loc (location_t, tree, int);
static tree stabilize_va_list_loc (location_t, tree, int);
static rtx expand_builtin_expect (tree, rtx);
static rtx expand_builtin_expect (tree, rtx);
static tree fold_builtin_constant_p (tree);
static tree fold_builtin_constant_p (tree);
static tree fold_builtin_expect (location_t, tree, tree);
static tree fold_builtin_expect (location_t, tree, tree);
static tree fold_builtin_classify_type (tree);
static tree fold_builtin_classify_type (tree);
static tree fold_builtin_strlen (location_t, tree, tree);
static tree fold_builtin_strlen (location_t, tree, tree);
static tree fold_builtin_inf (location_t, tree, int);
static tree fold_builtin_inf (location_t, tree, int);
static tree fold_builtin_nan (tree, tree, int);
static tree fold_builtin_nan (tree, tree, int);
static tree rewrite_call_expr (location_t, tree, int, tree, int, ...);
static tree rewrite_call_expr (location_t, tree, int, tree, int, ...);
static bool validate_arg (const_tree, enum tree_code code);
static bool validate_arg (const_tree, enum tree_code code);
static bool integer_valued_real_p (tree);
static bool integer_valued_real_p (tree);
static tree fold_trunc_transparent_mathfn (location_t, tree, tree);
static tree fold_trunc_transparent_mathfn (location_t, tree, tree);
static bool readonly_data_expr (tree);
static bool readonly_data_expr (tree);
static rtx expand_builtin_fabs (tree, rtx, rtx);
static rtx expand_builtin_fabs (tree, rtx, rtx);
static rtx expand_builtin_signbit (tree, rtx);
static rtx expand_builtin_signbit (tree, rtx);
static tree fold_builtin_sqrt (location_t, tree, tree);
static tree fold_builtin_sqrt (location_t, tree, tree);
static tree fold_builtin_cbrt (location_t, tree, tree);
static tree fold_builtin_cbrt (location_t, tree, tree);
static tree fold_builtin_pow (location_t, tree, tree, tree, tree);
static tree fold_builtin_pow (location_t, tree, tree, tree, tree);
static tree fold_builtin_powi (location_t, tree, tree, tree, tree);
static tree fold_builtin_powi (location_t, tree, tree, tree, tree);
static tree fold_builtin_cos (location_t, tree, tree, tree);
static tree fold_builtin_cos (location_t, tree, tree, tree);
static tree fold_builtin_cosh (location_t, tree, tree, tree);
static tree fold_builtin_cosh (location_t, tree, tree, tree);
static tree fold_builtin_tan (tree, tree);
static tree fold_builtin_tan (tree, tree);
static tree fold_builtin_trunc (location_t, tree, tree);
static tree fold_builtin_trunc (location_t, tree, tree);
static tree fold_builtin_floor (location_t, tree, tree);
static tree fold_builtin_floor (location_t, tree, tree);
static tree fold_builtin_ceil (location_t, tree, tree);
static tree fold_builtin_ceil (location_t, tree, tree);
static tree fold_builtin_round (location_t, tree, tree);
static tree fold_builtin_round (location_t, tree, tree);
static tree fold_builtin_int_roundingfn (location_t, tree, tree);
static tree fold_builtin_int_roundingfn (location_t, tree, tree);
static tree fold_builtin_bitop (tree, tree);
static tree fold_builtin_bitop (tree, tree);
static tree fold_builtin_memory_op (location_t, tree, tree, tree, tree, bool, int);
static tree fold_builtin_memory_op (location_t, tree, tree, tree, tree, bool, int);
static tree fold_builtin_strchr (location_t, tree, tree, tree);
static tree fold_builtin_strchr (location_t, tree, tree, tree);
static tree fold_builtin_memchr (location_t, tree, tree, tree, tree);
static tree fold_builtin_memchr (location_t, tree, tree, tree, tree);
static tree fold_builtin_memcmp (location_t, tree, tree, tree);
static tree fold_builtin_memcmp (location_t, tree, tree, tree);
static tree fold_builtin_strcmp (location_t, tree, tree);
static tree fold_builtin_strcmp (location_t, tree, tree);
static tree fold_builtin_strncmp (location_t, tree, tree, tree);
static tree fold_builtin_strncmp (location_t, tree, tree, tree);
static tree fold_builtin_signbit (location_t, tree, tree);
static tree fold_builtin_signbit (location_t, tree, tree);
static tree fold_builtin_copysign (location_t, tree, tree, tree, tree);
static tree fold_builtin_copysign (location_t, tree, tree, tree, tree);
static tree fold_builtin_isascii (location_t, tree);
static tree fold_builtin_isascii (location_t, tree);
static tree fold_builtin_toascii (location_t, tree);
static tree fold_builtin_toascii (location_t, tree);
static tree fold_builtin_isdigit (location_t, tree);
static tree fold_builtin_isdigit (location_t, tree);
static tree fold_builtin_fabs (location_t, tree, tree);
static tree fold_builtin_fabs (location_t, tree, tree);
static tree fold_builtin_abs (location_t, tree, tree);
static tree fold_builtin_abs (location_t, tree, tree);
static tree fold_builtin_unordered_cmp (location_t, tree, tree, tree, enum tree_code,
static tree fold_builtin_unordered_cmp (location_t, tree, tree, tree, enum tree_code,
                                        enum tree_code);
                                        enum tree_code);
static tree fold_builtin_n (location_t, tree, tree *, int, bool);
static tree fold_builtin_n (location_t, tree, tree *, int, bool);
static tree fold_builtin_0 (location_t, tree, bool);
static tree fold_builtin_0 (location_t, tree, bool);
static tree fold_builtin_1 (location_t, tree, tree, bool);
static tree fold_builtin_1 (location_t, tree, tree, bool);
static tree fold_builtin_2 (location_t, tree, tree, tree, bool);
static tree fold_builtin_2 (location_t, tree, tree, tree, bool);
static tree fold_builtin_3 (location_t, tree, tree, tree, tree, bool);
static tree fold_builtin_3 (location_t, tree, tree, tree, tree, bool);
static tree fold_builtin_4 (location_t, tree, tree, tree, tree, tree, bool);
static tree fold_builtin_4 (location_t, tree, tree, tree, tree, tree, bool);
static tree fold_builtin_varargs (location_t, tree, tree, bool);
static tree fold_builtin_varargs (location_t, tree, tree, bool);
 
 
static tree fold_builtin_strpbrk (location_t, tree, tree, tree);
static tree fold_builtin_strpbrk (location_t, tree, tree, tree);
static tree fold_builtin_strstr (location_t, tree, tree, tree);
static tree fold_builtin_strstr (location_t, tree, tree, tree);
static tree fold_builtin_strrchr (location_t, tree, tree, tree);
static tree fold_builtin_strrchr (location_t, tree, tree, tree);
static tree fold_builtin_strcat (location_t, tree, tree);
static tree fold_builtin_strcat (location_t, tree, tree);
static tree fold_builtin_strncat (location_t, tree, tree, tree);
static tree fold_builtin_strncat (location_t, tree, tree, tree);
static tree fold_builtin_strspn (location_t, tree, tree);
static tree fold_builtin_strspn (location_t, tree, tree);
static tree fold_builtin_strcspn (location_t, tree, tree);
static tree fold_builtin_strcspn (location_t, tree, tree);
static tree fold_builtin_sprintf (location_t, tree, tree, tree, int);
static tree fold_builtin_sprintf (location_t, tree, tree, tree, int);
 
 
static rtx expand_builtin_object_size (tree);
static rtx expand_builtin_object_size (tree);
static rtx expand_builtin_memory_chk (tree, rtx, enum machine_mode,
static rtx expand_builtin_memory_chk (tree, rtx, enum machine_mode,
                                      enum built_in_function);
                                      enum built_in_function);
static void maybe_emit_chk_warning (tree, enum built_in_function);
static void maybe_emit_chk_warning (tree, enum built_in_function);
static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function);
static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function);
static void maybe_emit_free_warning (tree);
static void maybe_emit_free_warning (tree);
static tree fold_builtin_object_size (tree, tree);
static tree fold_builtin_object_size (tree, tree);
static tree fold_builtin_strcat_chk (location_t, tree, tree, tree, tree);
static tree fold_builtin_strcat_chk (location_t, tree, tree, tree, tree);
static tree fold_builtin_strncat_chk (location_t, tree, tree, tree, tree, tree);
static tree fold_builtin_strncat_chk (location_t, tree, tree, tree, tree, tree);
static tree fold_builtin_sprintf_chk (location_t, tree, enum built_in_function);
static tree fold_builtin_sprintf_chk (location_t, tree, enum built_in_function);
static tree fold_builtin_printf (location_t, tree, tree, tree, bool, enum built_in_function);
static tree fold_builtin_printf (location_t, tree, tree, tree, bool, enum built_in_function);
static tree fold_builtin_fprintf (location_t, tree, tree, tree, tree, bool,
static tree fold_builtin_fprintf (location_t, tree, tree, tree, tree, bool,
                                  enum built_in_function);
                                  enum built_in_function);
static bool init_target_chars (void);
static bool init_target_chars (void);
 
 
static unsigned HOST_WIDE_INT target_newline;
static unsigned HOST_WIDE_INT target_newline;
static unsigned HOST_WIDE_INT target_percent;
static unsigned HOST_WIDE_INT target_percent;
static unsigned HOST_WIDE_INT target_c;
static unsigned HOST_WIDE_INT target_c;
static unsigned HOST_WIDE_INT target_s;
static unsigned HOST_WIDE_INT target_s;
static char target_percent_c[3];
static char target_percent_c[3];
static char target_percent_s[3];
static char target_percent_s[3];
static char target_percent_s_newline[4];
static char target_percent_s_newline[4];
static tree do_mpfr_arg1 (tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
static tree do_mpfr_arg1 (tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
                          const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, bool);
                          const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, bool);
static tree do_mpfr_arg2 (tree, tree, tree,
static tree do_mpfr_arg2 (tree, tree, tree,
                          int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
                          int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
static tree do_mpfr_arg3 (tree, tree, tree, tree,
static tree do_mpfr_arg3 (tree, tree, tree, tree,
                          int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
                          int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
static tree do_mpfr_sincos (tree, tree, tree);
static tree do_mpfr_sincos (tree, tree, tree);
static tree do_mpfr_bessel_n (tree, tree, tree,
static tree do_mpfr_bessel_n (tree, tree, tree,
                              int (*)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
                              int (*)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
                              const REAL_VALUE_TYPE *, bool);
                              const REAL_VALUE_TYPE *, bool);
static tree do_mpfr_remquo (tree, tree, tree);
static tree do_mpfr_remquo (tree, tree, tree);
static tree do_mpfr_lgamma_r (tree, tree, tree);
static tree do_mpfr_lgamma_r (tree, tree, tree);
 
 
/* Return true if NAME starts with __builtin_ or __sync_.  */
/* Return true if NAME starts with __builtin_ or __sync_.  */
 
 
bool
bool
is_builtin_name (const char *name)
is_builtin_name (const char *name)
{
{
  if (strncmp (name, "__builtin_", 10) == 0)
  if (strncmp (name, "__builtin_", 10) == 0)
    return true;
    return true;
  if (strncmp (name, "__sync_", 7) == 0)
  if (strncmp (name, "__sync_", 7) == 0)
    return true;
    return true;
  return false;
  return false;
}
}
 
 
 
 
/* Return true if DECL is a function symbol representing a built-in.  */
/* Return true if DECL is a function symbol representing a built-in.  */
 
 
bool
bool
is_builtin_fn (tree decl)
is_builtin_fn (tree decl)
{
{
  return TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl);
  return TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl);
}
}
 
 
 
 
/* Return true if NODE should be considered for inline expansion regardless
/* Return true if NODE should be considered for inline expansion regardless
   of the optimization level.  This means whenever a function is invoked with
   of the optimization level.  This means whenever a function is invoked with
   its "internal" name, which normally contains the prefix "__builtin".  */
   its "internal" name, which normally contains the prefix "__builtin".  */
 
 
static bool
static bool
called_as_built_in (tree node)
called_as_built_in (tree node)
{
{
  /* Note that we must use DECL_NAME, not DECL_ASSEMBLER_NAME_SET_P since
  /* Note that we must use DECL_NAME, not DECL_ASSEMBLER_NAME_SET_P since
     we want the name used to call the function, not the name it
     we want the name used to call the function, not the name it
     will have. */
     will have. */
  const char *name = IDENTIFIER_POINTER (DECL_NAME (node));
  const char *name = IDENTIFIER_POINTER (DECL_NAME (node));
  return is_builtin_name (name);
  return is_builtin_name (name);
}
}
 
 
/* Return the alignment in bits of EXP, an object.
/* Return the alignment in bits of EXP, an object.
   Don't return more than MAX_ALIGN no matter what, ALIGN is the inital
   Don't return more than MAX_ALIGN no matter what, ALIGN is the inital
   guessed alignment e.g. from type alignment.  */
   guessed alignment e.g. from type alignment.  */
 
 
int
int
get_object_alignment (tree exp, unsigned int align, unsigned int max_align)
get_object_alignment (tree exp, unsigned int align, unsigned int max_align)
{
{
  unsigned int inner;
  unsigned int inner;
 
 
  inner = max_align;
  inner = max_align;
  if (handled_component_p (exp))
  if (handled_component_p (exp))
   {
   {
      HOST_WIDE_INT bitsize, bitpos;
      HOST_WIDE_INT bitsize, bitpos;
      tree offset;
      tree offset;
      enum machine_mode mode;
      enum machine_mode mode;
      int unsignedp, volatilep;
      int unsignedp, volatilep;
 
 
      exp = get_inner_reference (exp, &bitsize, &bitpos, &offset,
      exp = get_inner_reference (exp, &bitsize, &bitpos, &offset,
                                 &mode, &unsignedp, &volatilep, true);
                                 &mode, &unsignedp, &volatilep, true);
      if (bitpos)
      if (bitpos)
        inner = MIN (inner, (unsigned) (bitpos & -bitpos));
        inner = MIN (inner, (unsigned) (bitpos & -bitpos));
      while (offset)
      while (offset)
        {
        {
          tree next_offset;
          tree next_offset;
 
 
          if (TREE_CODE (offset) == PLUS_EXPR)
          if (TREE_CODE (offset) == PLUS_EXPR)
            {
            {
              next_offset = TREE_OPERAND (offset, 0);
              next_offset = TREE_OPERAND (offset, 0);
              offset = TREE_OPERAND (offset, 1);
              offset = TREE_OPERAND (offset, 1);
            }
            }
          else
          else
            next_offset = NULL;
            next_offset = NULL;
          if (host_integerp (offset, 1))
          if (host_integerp (offset, 1))
            {
            {
              /* Any overflow in calculating offset_bits won't change
              /* Any overflow in calculating offset_bits won't change
                 the alignment.  */
                 the alignment.  */
              unsigned offset_bits
              unsigned offset_bits
                = ((unsigned) tree_low_cst (offset, 1) * BITS_PER_UNIT);
                = ((unsigned) tree_low_cst (offset, 1) * BITS_PER_UNIT);
 
 
              if (offset_bits)
              if (offset_bits)
                inner = MIN (inner, (offset_bits & -offset_bits));
                inner = MIN (inner, (offset_bits & -offset_bits));
            }
            }
          else if (TREE_CODE (offset) == MULT_EXPR
          else if (TREE_CODE (offset) == MULT_EXPR
                   && host_integerp (TREE_OPERAND (offset, 1), 1))
                   && host_integerp (TREE_OPERAND (offset, 1), 1))
            {
            {
              /* Any overflow in calculating offset_factor won't change
              /* Any overflow in calculating offset_factor won't change
                 the alignment.  */
                 the alignment.  */
              unsigned offset_factor
              unsigned offset_factor
                = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
                = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
                   * BITS_PER_UNIT);
                   * BITS_PER_UNIT);
 
 
              if (offset_factor)
              if (offset_factor)
                inner = MIN (inner, (offset_factor & -offset_factor));
                inner = MIN (inner, (offset_factor & -offset_factor));
            }
            }
          else
          else
            {
            {
              inner = MIN (inner, BITS_PER_UNIT);
              inner = MIN (inner, BITS_PER_UNIT);
              break;
              break;
            }
            }
          offset = next_offset;
          offset = next_offset;
        }
        }
    }
    }
  if (TREE_CODE (exp) == CONST_DECL)
  if (TREE_CODE (exp) == CONST_DECL)
    exp = DECL_INITIAL (exp);
    exp = DECL_INITIAL (exp);
  if (DECL_P (exp)
  if (DECL_P (exp)
      && TREE_CODE (exp) != LABEL_DECL)
      && TREE_CODE (exp) != LABEL_DECL)
    align = MIN (inner, DECL_ALIGN (exp));
    align = MIN (inner, DECL_ALIGN (exp));
#ifdef CONSTANT_ALIGNMENT
#ifdef CONSTANT_ALIGNMENT
  else if (CONSTANT_CLASS_P (exp))
  else if (CONSTANT_CLASS_P (exp))
    align = MIN (inner, (unsigned)CONSTANT_ALIGNMENT (exp, align));
    align = MIN (inner, (unsigned)CONSTANT_ALIGNMENT (exp, align));
#endif
#endif
  else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR
  else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR
           || TREE_CODE (exp) == INDIRECT_REF)
           || TREE_CODE (exp) == INDIRECT_REF)
    align = MIN (TYPE_ALIGN (TREE_TYPE (exp)), inner);
    align = MIN (TYPE_ALIGN (TREE_TYPE (exp)), inner);
  else
  else
    align = MIN (align, inner);
    align = MIN (align, inner);
  return MIN (align, max_align);
  return MIN (align, max_align);
}
}
 
 
/* Returns true iff we can trust that alignment information has been
/* Returns true iff we can trust that alignment information has been
   calculated properly.  */
   calculated properly.  */
 
 
bool
bool
can_trust_pointer_alignment (void)
can_trust_pointer_alignment (void)
{
{
  /* We rely on TER to compute accurate alignment information.  */
  /* We rely on TER to compute accurate alignment information.  */
  return (optimize && flag_tree_ter);
  return (optimize && flag_tree_ter);
}
}
 
 
/* Return the alignment in bits of EXP, a pointer valued expression.
/* Return the alignment in bits of EXP, a pointer valued expression.
   But don't return more than MAX_ALIGN no matter what.
   But don't return more than MAX_ALIGN no matter what.
   The alignment returned is, by default, the alignment of the thing that
   The alignment returned is, by default, the alignment of the thing that
   EXP points to.  If it is not a POINTER_TYPE, 0 is returned.
   EXP points to.  If it is not a POINTER_TYPE, 0 is returned.
 
 
   Otherwise, look at the expression to see if we can do better, i.e., if the
   Otherwise, look at the expression to see if we can do better, i.e., if the
   expression is actually pointing at an object whose alignment is tighter.  */
   expression is actually pointing at an object whose alignment is tighter.  */
 
 
int
int
get_pointer_alignment (tree exp, unsigned int max_align)
get_pointer_alignment (tree exp, unsigned int max_align)
{
{
  unsigned int align, inner;
  unsigned int align, inner;
 
 
  if (!can_trust_pointer_alignment ())
  if (!can_trust_pointer_alignment ())
    return 0;
    return 0;
 
 
  if (!POINTER_TYPE_P (TREE_TYPE (exp)))
  if (!POINTER_TYPE_P (TREE_TYPE (exp)))
    return 0;
    return 0;
 
 
  align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
  align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
  align = MIN (align, max_align);
  align = MIN (align, max_align);
 
 
  while (1)
  while (1)
    {
    {
      switch (TREE_CODE (exp))
      switch (TREE_CODE (exp))
        {
        {
        CASE_CONVERT:
        CASE_CONVERT:
          exp = TREE_OPERAND (exp, 0);
          exp = TREE_OPERAND (exp, 0);
          if (! POINTER_TYPE_P (TREE_TYPE (exp)))
          if (! POINTER_TYPE_P (TREE_TYPE (exp)))
            return align;
            return align;
 
 
          inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
          inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
          align = MIN (inner, max_align);
          align = MIN (inner, max_align);
          break;
          break;
 
 
        case POINTER_PLUS_EXPR:
        case POINTER_PLUS_EXPR:
          /* If sum of pointer + int, restrict our maximum alignment to that
          /* If sum of pointer + int, restrict our maximum alignment to that
             imposed by the integer.  If not, we can't do any better than
             imposed by the integer.  If not, we can't do any better than
             ALIGN.  */
             ALIGN.  */
          if (! host_integerp (TREE_OPERAND (exp, 1), 1))
          if (! host_integerp (TREE_OPERAND (exp, 1), 1))
            return align;
            return align;
 
 
          while (((tree_low_cst (TREE_OPERAND (exp, 1), 1))
          while (((tree_low_cst (TREE_OPERAND (exp, 1), 1))
                  & (max_align / BITS_PER_UNIT - 1))
                  & (max_align / BITS_PER_UNIT - 1))
                 != 0)
                 != 0)
            max_align >>= 1;
            max_align >>= 1;
 
 
          exp = TREE_OPERAND (exp, 0);
          exp = TREE_OPERAND (exp, 0);
          break;
          break;
 
 
        case ADDR_EXPR:
        case ADDR_EXPR:
          /* See what we are pointing at and look at its alignment.  */
          /* See what we are pointing at and look at its alignment.  */
          return get_object_alignment (TREE_OPERAND (exp, 0), align, max_align);
          return get_object_alignment (TREE_OPERAND (exp, 0), align, max_align);
 
 
        default:
        default:
          return align;
          return align;
        }
        }
    }
    }
}
}
 
 
/* Compute the length of a C string.  TREE_STRING_LENGTH is not the right
/* Compute the length of a C string.  TREE_STRING_LENGTH is not the right
   way, because it could contain a zero byte in the middle.
   way, because it could contain a zero byte in the middle.
   TREE_STRING_LENGTH is the size of the character array, not the string.
   TREE_STRING_LENGTH is the size of the character array, not the string.
 
 
   ONLY_VALUE should be nonzero if the result is not going to be emitted
   ONLY_VALUE should be nonzero if the result is not going to be emitted
   into the instruction stream and zero if it is going to be expanded.
   into the instruction stream and zero if it is going to be expanded.
   E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3
   E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3
   is returned, otherwise NULL, since
   is returned, otherwise NULL, since
   len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not
   len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not
   evaluate the side-effects.
   evaluate the side-effects.
 
 
   The value returned is of type `ssizetype'.
   The value returned is of type `ssizetype'.
 
 
   Unfortunately, string_constant can't access the values of const char
   Unfortunately, string_constant can't access the values of const char
   arrays with initializers, so neither can we do so here.  */
   arrays with initializers, so neither can we do so here.  */
 
 
tree
tree
c_strlen (tree src, int only_value)
c_strlen (tree src, int only_value)
{
{
  tree offset_node;
  tree offset_node;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
  int max;
  int max;
  const char *ptr;
  const char *ptr;
  location_t loc;
  location_t loc;
 
 
  STRIP_NOPS (src);
  STRIP_NOPS (src);
  if (TREE_CODE (src) == COND_EXPR
  if (TREE_CODE (src) == COND_EXPR
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
    {
    {
      tree len1, len2;
      tree len1, len2;
 
 
      len1 = c_strlen (TREE_OPERAND (src, 1), only_value);
      len1 = c_strlen (TREE_OPERAND (src, 1), only_value);
      len2 = c_strlen (TREE_OPERAND (src, 2), only_value);
      len2 = c_strlen (TREE_OPERAND (src, 2), only_value);
      if (tree_int_cst_equal (len1, len2))
      if (tree_int_cst_equal (len1, len2))
        return len1;
        return len1;
    }
    }
 
 
  if (TREE_CODE (src) == COMPOUND_EXPR
  if (TREE_CODE (src) == COMPOUND_EXPR
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
    return c_strlen (TREE_OPERAND (src, 1), only_value);
    return c_strlen (TREE_OPERAND (src, 1), only_value);
 
 
  if (EXPR_HAS_LOCATION (src))
  if (EXPR_HAS_LOCATION (src))
    loc = EXPR_LOCATION (src);
    loc = EXPR_LOCATION (src);
  else
  else
    loc = input_location;
    loc = input_location;
 
 
  src = string_constant (src, &offset_node);
  src = string_constant (src, &offset_node);
  if (src == 0)
  if (src == 0)
    return NULL_TREE;
    return NULL_TREE;
 
 
  max = TREE_STRING_LENGTH (src) - 1;
  max = TREE_STRING_LENGTH (src) - 1;
  ptr = TREE_STRING_POINTER (src);
  ptr = TREE_STRING_POINTER (src);
 
 
  if (offset_node && TREE_CODE (offset_node) != INTEGER_CST)
  if (offset_node && TREE_CODE (offset_node) != INTEGER_CST)
    {
    {
      /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
      /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
         compute the offset to the following null if we don't know where to
         compute the offset to the following null if we don't know where to
         start searching for it.  */
         start searching for it.  */
      int i;
      int i;
 
 
      for (i = 0; i < max; i++)
      for (i = 0; i < max; i++)
        if (ptr[i] == 0)
        if (ptr[i] == 0)
          return NULL_TREE;
          return NULL_TREE;
 
 
      /* We don't know the starting offset, but we do know that the string
      /* We don't know the starting offset, but we do know that the string
         has no internal zero bytes.  We can assume that the offset falls
         has no internal zero bytes.  We can assume that the offset falls
         within the bounds of the string; otherwise, the programmer deserves
         within the bounds of the string; otherwise, the programmer deserves
         what he gets.  Subtract the offset from the length of the string,
         what he gets.  Subtract the offset from the length of the string,
         and return that.  This would perhaps not be valid if we were dealing
         and return that.  This would perhaps not be valid if we were dealing
         with named arrays in addition to literal string constants.  */
         with named arrays in addition to literal string constants.  */
 
 
      return size_diffop_loc (loc, size_int (max), offset_node);
      return size_diffop_loc (loc, size_int (max), offset_node);
    }
    }
 
 
  /* We have a known offset into the string.  Start searching there for
  /* We have a known offset into the string.  Start searching there for
     a null character if we can represent it as a single HOST_WIDE_INT.  */
     a null character if we can represent it as a single HOST_WIDE_INT.  */
  if (offset_node == 0)
  if (offset_node == 0)
    offset = 0;
    offset = 0;
  else if (! host_integerp (offset_node, 0))
  else if (! host_integerp (offset_node, 0))
    offset = -1;
    offset = -1;
  else
  else
    offset = tree_low_cst (offset_node, 0);
    offset = tree_low_cst (offset_node, 0);
 
 
  /* If the offset is known to be out of bounds, warn, and call strlen at
  /* If the offset is known to be out of bounds, warn, and call strlen at
     runtime.  */
     runtime.  */
  if (offset < 0 || offset > max)
  if (offset < 0 || offset > max)
    {
    {
     /* Suppress multiple warnings for propagated constant strings.  */
     /* Suppress multiple warnings for propagated constant strings.  */
      if (! TREE_NO_WARNING (src))
      if (! TREE_NO_WARNING (src))
        {
        {
          warning_at (loc, 0, "offset outside bounds of constant string");
          warning_at (loc, 0, "offset outside bounds of constant string");
          TREE_NO_WARNING (src) = 1;
          TREE_NO_WARNING (src) = 1;
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* Use strlen to search for the first zero byte.  Since any strings
  /* Use strlen to search for the first zero byte.  Since any strings
     constructed with build_string will have nulls appended, we win even
     constructed with build_string will have nulls appended, we win even
     if we get handed something like (char[4])"abcd".
     if we get handed something like (char[4])"abcd".
 
 
     Since OFFSET is our starting index into the string, no further
     Since OFFSET is our starting index into the string, no further
     calculation is needed.  */
     calculation is needed.  */
  return ssize_int (strlen (ptr + offset));
  return ssize_int (strlen (ptr + offset));
}
}
 
 
/* Return a char pointer for a C string if it is a string constant
/* Return a char pointer for a C string if it is a string constant
   or sum of string constant and integer constant.  */
   or sum of string constant and integer constant.  */
 
 
static const char *
static const char *
c_getstr (tree src)
c_getstr (tree src)
{
{
  tree offset_node;
  tree offset_node;
 
 
  src = string_constant (src, &offset_node);
  src = string_constant (src, &offset_node);
  if (src == 0)
  if (src == 0)
    return 0;
    return 0;
 
 
  if (offset_node == 0)
  if (offset_node == 0)
    return TREE_STRING_POINTER (src);
    return TREE_STRING_POINTER (src);
  else if (!host_integerp (offset_node, 1)
  else if (!host_integerp (offset_node, 1)
           || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
           || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
    return 0;
    return 0;
 
 
  return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1);
  return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1);
}
}
 
 
/* Return a CONST_INT or CONST_DOUBLE corresponding to target reading
/* Return a CONST_INT or CONST_DOUBLE corresponding to target reading
   GET_MODE_BITSIZE (MODE) bits from string constant STR.  */
   GET_MODE_BITSIZE (MODE) bits from string constant STR.  */
 
 
static rtx
static rtx
c_readstr (const char *str, enum machine_mode mode)
c_readstr (const char *str, enum machine_mode mode)
{
{
  HOST_WIDE_INT c[2];
  HOST_WIDE_INT c[2];
  HOST_WIDE_INT ch;
  HOST_WIDE_INT ch;
  unsigned int i, j;
  unsigned int i, j;
 
 
  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
 
 
  c[0] = 0;
  c[0] = 0;
  c[1] = 0;
  c[1] = 0;
  ch = 1;
  ch = 1;
  for (i = 0; i < GET_MODE_SIZE (mode); i++)
  for (i = 0; i < GET_MODE_SIZE (mode); i++)
    {
    {
      j = i;
      j = i;
      if (WORDS_BIG_ENDIAN)
      if (WORDS_BIG_ENDIAN)
        j = GET_MODE_SIZE (mode) - i - 1;
        j = GET_MODE_SIZE (mode) - i - 1;
      if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
      if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
          && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
          && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
        j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1;
        j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1;
      j *= BITS_PER_UNIT;
      j *= BITS_PER_UNIT;
      gcc_assert (j <= 2 * HOST_BITS_PER_WIDE_INT);
      gcc_assert (j <= 2 * HOST_BITS_PER_WIDE_INT);
 
 
      if (ch)
      if (ch)
        ch = (unsigned char) str[i];
        ch = (unsigned char) str[i];
      c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT);
      c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT);
    }
    }
  return immed_double_const (c[0], c[1], mode);
  return immed_double_const (c[0], c[1], mode);
}
}
 
 
/* Cast a target constant CST to target CHAR and if that value fits into
/* Cast a target constant CST to target CHAR and if that value fits into
   host char type, return zero and put that value into variable pointed to by
   host char type, return zero and put that value into variable pointed to by
   P.  */
   P.  */
 
 
static int
static int
target_char_cast (tree cst, char *p)
target_char_cast (tree cst, char *p)
{
{
  unsigned HOST_WIDE_INT val, hostval;
  unsigned HOST_WIDE_INT val, hostval;
 
 
  if (!host_integerp (cst, 1)
  if (!host_integerp (cst, 1)
      || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT)
      || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT)
    return 1;
    return 1;
 
 
  val = tree_low_cst (cst, 1);
  val = tree_low_cst (cst, 1);
  if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT)
  if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT)
    val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1;
    val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1;
 
 
  hostval = val;
  hostval = val;
  if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT)
  if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT)
    hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1;
    hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1;
 
 
  if (val != hostval)
  if (val != hostval)
    return 1;
    return 1;
 
 
  *p = hostval;
  *p = hostval;
  return 0;
  return 0;
}
}
 
 
/* Similar to save_expr, but assumes that arbitrary code is not executed
/* Similar to save_expr, but assumes that arbitrary code is not executed
   in between the multiple evaluations.  In particular, we assume that a
   in between the multiple evaluations.  In particular, we assume that a
   non-addressable local variable will not be modified.  */
   non-addressable local variable will not be modified.  */
 
 
static tree
static tree
builtin_save_expr (tree exp)
builtin_save_expr (tree exp)
{
{
  if (TREE_ADDRESSABLE (exp) == 0
  if (TREE_ADDRESSABLE (exp) == 0
      && (TREE_CODE (exp) == PARM_DECL
      && (TREE_CODE (exp) == PARM_DECL
          || (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))
          || (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))
    return exp;
    return exp;
 
 
  return save_expr (exp);
  return save_expr (exp);
}
}
 
 
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
   times to get the address of either a higher stack frame, or a return
   times to get the address of either a higher stack frame, or a return
   address located within it (depending on FNDECL_CODE).  */
   address located within it (depending on FNDECL_CODE).  */
 
 
static rtx
static rtx
expand_builtin_return_addr (enum built_in_function fndecl_code, int count)
expand_builtin_return_addr (enum built_in_function fndecl_code, int count)
{
{
  int i;
  int i;
 
 
#ifdef INITIAL_FRAME_ADDRESS_RTX
#ifdef INITIAL_FRAME_ADDRESS_RTX
  rtx tem = INITIAL_FRAME_ADDRESS_RTX;
  rtx tem = INITIAL_FRAME_ADDRESS_RTX;
#else
#else
  rtx tem;
  rtx tem;
 
 
  /* For a zero count with __builtin_return_address, we don't care what
  /* For a zero count with __builtin_return_address, we don't care what
     frame address we return, because target-specific definitions will
     frame address we return, because target-specific definitions will
     override us.  Therefore frame pointer elimination is OK, and using
     override us.  Therefore frame pointer elimination is OK, and using
     the soft frame pointer is OK.
     the soft frame pointer is OK.
 
 
     For a nonzero count, or a zero count with __builtin_frame_address,
     For a nonzero count, or a zero count with __builtin_frame_address,
     we require a stable offset from the current frame pointer to the
     we require a stable offset from the current frame pointer to the
     previous one, so we must use the hard frame pointer, and
     previous one, so we must use the hard frame pointer, and
     we must disable frame pointer elimination.  */
     we must disable frame pointer elimination.  */
  if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS)
  if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS)
    tem = frame_pointer_rtx;
    tem = frame_pointer_rtx;
  else
  else
    {
    {
      tem = hard_frame_pointer_rtx;
      tem = hard_frame_pointer_rtx;
 
 
      /* Tell reload not to eliminate the frame pointer.  */
      /* Tell reload not to eliminate the frame pointer.  */
      crtl->accesses_prior_frames = 1;
      crtl->accesses_prior_frames = 1;
    }
    }
#endif
#endif
 
 
  /* Some machines need special handling before we can access
  /* Some machines need special handling before we can access
     arbitrary frames.  For example, on the SPARC, we must first flush
     arbitrary frames.  For example, on the SPARC, we must first flush
     all register windows to the stack.  */
     all register windows to the stack.  */
#ifdef SETUP_FRAME_ADDRESSES
#ifdef SETUP_FRAME_ADDRESSES
  if (count > 0)
  if (count > 0)
    SETUP_FRAME_ADDRESSES ();
    SETUP_FRAME_ADDRESSES ();
#endif
#endif
 
 
  /* On the SPARC, the return address is not in the frame, it is in a
  /* On the SPARC, the return address is not in the frame, it is in a
     register.  There is no way to access it off of the current frame
     register.  There is no way to access it off of the current frame
     pointer, but it can be accessed off the previous frame pointer by
     pointer, but it can be accessed off the previous frame pointer by
     reading the value from the register window save area.  */
     reading the value from the register window save area.  */
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
  if (fndecl_code == BUILT_IN_RETURN_ADDRESS)
  if (fndecl_code == BUILT_IN_RETURN_ADDRESS)
    count--;
    count--;
#endif
#endif
 
 
  /* Scan back COUNT frames to the specified frame.  */
  /* Scan back COUNT frames to the specified frame.  */
  for (i = 0; i < count; i++)
  for (i = 0; i < count; i++)
    {
    {
      /* Assume the dynamic chain pointer is in the word that the
      /* Assume the dynamic chain pointer is in the word that the
         frame address points to, unless otherwise specified.  */
         frame address points to, unless otherwise specified.  */
#ifdef DYNAMIC_CHAIN_ADDRESS
#ifdef DYNAMIC_CHAIN_ADDRESS
      tem = DYNAMIC_CHAIN_ADDRESS (tem);
      tem = DYNAMIC_CHAIN_ADDRESS (tem);
#endif
#endif
      tem = memory_address (Pmode, tem);
      tem = memory_address (Pmode, tem);
      tem = gen_frame_mem (Pmode, tem);
      tem = gen_frame_mem (Pmode, tem);
      tem = copy_to_reg (tem);
      tem = copy_to_reg (tem);
    }
    }
 
 
  /* For __builtin_frame_address, return what we've got.  But, on
  /* For __builtin_frame_address, return what we've got.  But, on
     the SPARC for example, we may have to add a bias.  */
     the SPARC for example, we may have to add a bias.  */
  if (fndecl_code == BUILT_IN_FRAME_ADDRESS)
  if (fndecl_code == BUILT_IN_FRAME_ADDRESS)
#ifdef FRAME_ADDR_RTX
#ifdef FRAME_ADDR_RTX
    return FRAME_ADDR_RTX (tem);
    return FRAME_ADDR_RTX (tem);
#else
#else
    return tem;
    return tem;
#endif
#endif
 
 
  /* For __builtin_return_address, get the return address from that frame.  */
  /* For __builtin_return_address, get the return address from that frame.  */
#ifdef RETURN_ADDR_RTX
#ifdef RETURN_ADDR_RTX
  tem = RETURN_ADDR_RTX (count, tem);
  tem = RETURN_ADDR_RTX (count, tem);
#else
#else
  tem = memory_address (Pmode,
  tem = memory_address (Pmode,
                        plus_constant (tem, GET_MODE_SIZE (Pmode)));
                        plus_constant (tem, GET_MODE_SIZE (Pmode)));
  tem = gen_frame_mem (Pmode, tem);
  tem = gen_frame_mem (Pmode, tem);
#endif
#endif
  return tem;
  return tem;
}
}
 
 
/* Alias set used for setjmp buffer.  */
/* Alias set used for setjmp buffer.  */
static alias_set_type setjmp_alias_set = -1;
static alias_set_type setjmp_alias_set = -1;
 
 
/* Construct the leading half of a __builtin_setjmp call.  Control will
/* Construct the leading half of a __builtin_setjmp call.  Control will
   return to RECEIVER_LABEL.  This is also called directly by the SJLJ
   return to RECEIVER_LABEL.  This is also called directly by the SJLJ
   exception handling code.  */
   exception handling code.  */
 
 
void
void
expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label)
expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label)
{
{
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  rtx stack_save;
  rtx stack_save;
  rtx mem;
  rtx mem;
 
 
  if (setjmp_alias_set == -1)
  if (setjmp_alias_set == -1)
    setjmp_alias_set = new_alias_set ();
    setjmp_alias_set = new_alias_set ();
 
 
  buf_addr = convert_memory_address (Pmode, buf_addr);
  buf_addr = convert_memory_address (Pmode, buf_addr);
 
 
  buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX));
  buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX));
 
 
  /* We store the frame pointer and the address of receiver_label in
  /* We store the frame pointer and the address of receiver_label in
     the buffer and use the rest of it for the stack save area, which
     the buffer and use the rest of it for the stack save area, which
     is machine-dependent.  */
     is machine-dependent.  */
 
 
  mem = gen_rtx_MEM (Pmode, buf_addr);
  mem = gen_rtx_MEM (Pmode, buf_addr);
  set_mem_alias_set (mem, setjmp_alias_set);
  set_mem_alias_set (mem, setjmp_alias_set);
  emit_move_insn (mem, targetm.builtin_setjmp_frame_value ());
  emit_move_insn (mem, targetm.builtin_setjmp_frame_value ());
 
 
  mem = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))),
  mem = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))),
  set_mem_alias_set (mem, setjmp_alias_set);
  set_mem_alias_set (mem, setjmp_alias_set);
 
 
  emit_move_insn (validize_mem (mem),
  emit_move_insn (validize_mem (mem),
                  force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label)));
                  force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label)));
 
 
  stack_save = gen_rtx_MEM (sa_mode,
  stack_save = gen_rtx_MEM (sa_mode,
                            plus_constant (buf_addr,
                            plus_constant (buf_addr,
                                           2 * GET_MODE_SIZE (Pmode)));
                                           2 * GET_MODE_SIZE (Pmode)));
  set_mem_alias_set (stack_save, setjmp_alias_set);
  set_mem_alias_set (stack_save, setjmp_alias_set);
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
 
 
  /* If there is further processing to do, do it.  */
  /* If there is further processing to do, do it.  */
#ifdef HAVE_builtin_setjmp_setup
#ifdef HAVE_builtin_setjmp_setup
  if (HAVE_builtin_setjmp_setup)
  if (HAVE_builtin_setjmp_setup)
    emit_insn (gen_builtin_setjmp_setup (buf_addr));
    emit_insn (gen_builtin_setjmp_setup (buf_addr));
#endif
#endif
 
 
  /* Tell optimize_save_area_alloca that extra work is going to
  /* Tell optimize_save_area_alloca that extra work is going to
     need to go on during alloca.  */
     need to go on during alloca.  */
  cfun->calls_setjmp = 1;
  cfun->calls_setjmp = 1;
 
 
  /* We have a nonlocal label.   */
  /* We have a nonlocal label.   */
  cfun->has_nonlocal_label = 1;
  cfun->has_nonlocal_label = 1;
}
}
 
 
/* Construct the trailing part of a __builtin_setjmp call.  This is
/* Construct the trailing part of a __builtin_setjmp call.  This is
   also called directly by the SJLJ exception handling code.  */
   also called directly by the SJLJ exception handling code.  */
 
 
void
void
expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED)
expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED)
{
{
  rtx chain;
  rtx chain;
 
 
  /* Clobber the FP when we get here, so we have to make sure it's
  /* Clobber the FP when we get here, so we have to make sure it's
     marked as used by this function.  */
     marked as used by this function.  */
  emit_use (hard_frame_pointer_rtx);
  emit_use (hard_frame_pointer_rtx);
 
 
  /* Mark the static chain as clobbered here so life information
  /* Mark the static chain as clobbered here so life information
     doesn't get messed up for it.  */
     doesn't get messed up for it.  */
  chain = targetm.calls.static_chain (current_function_decl, true);
  chain = targetm.calls.static_chain (current_function_decl, true);
  if (chain && REG_P (chain))
  if (chain && REG_P (chain))
    emit_clobber (chain);
    emit_clobber (chain);
 
 
  /* Now put in the code to restore the frame pointer, and argument
  /* Now put in the code to restore the frame pointer, and argument
     pointer, if needed.  */
     pointer, if needed.  */
#ifdef HAVE_nonlocal_goto
#ifdef HAVE_nonlocal_goto
  if (! HAVE_nonlocal_goto)
  if (! HAVE_nonlocal_goto)
#endif
#endif
    {
    {
      emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
      emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
      /* This might change the hard frame pointer in ways that aren't
      /* This might change the hard frame pointer in ways that aren't
         apparent to early optimization passes, so force a clobber.  */
         apparent to early optimization passes, so force a clobber.  */
      emit_clobber (hard_frame_pointer_rtx);
      emit_clobber (hard_frame_pointer_rtx);
    }
    }
 
 
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
  if (fixed_regs[ARG_POINTER_REGNUM])
  if (fixed_regs[ARG_POINTER_REGNUM])
    {
    {
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
      size_t i;
      size_t i;
      static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
      static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
 
 
      for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
      for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
        if (elim_regs[i].from == ARG_POINTER_REGNUM
        if (elim_regs[i].from == ARG_POINTER_REGNUM
            && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
            && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
          break;
          break;
 
 
      if (i == ARRAY_SIZE (elim_regs))
      if (i == ARRAY_SIZE (elim_regs))
#endif
#endif
        {
        {
          /* Now restore our arg pointer from the address at which it
          /* Now restore our arg pointer from the address at which it
             was saved in our stack frame.  */
             was saved in our stack frame.  */
          emit_move_insn (crtl->args.internal_arg_pointer,
          emit_move_insn (crtl->args.internal_arg_pointer,
                          copy_to_reg (get_arg_pointer_save_area ()));
                          copy_to_reg (get_arg_pointer_save_area ()));
        }
        }
    }
    }
#endif
#endif
 
 
#ifdef HAVE_builtin_setjmp_receiver
#ifdef HAVE_builtin_setjmp_receiver
  if (HAVE_builtin_setjmp_receiver)
  if (HAVE_builtin_setjmp_receiver)
    emit_insn (gen_builtin_setjmp_receiver (receiver_label));
    emit_insn (gen_builtin_setjmp_receiver (receiver_label));
  else
  else
#endif
#endif
#ifdef HAVE_nonlocal_goto_receiver
#ifdef HAVE_nonlocal_goto_receiver
    if (HAVE_nonlocal_goto_receiver)
    if (HAVE_nonlocal_goto_receiver)
      emit_insn (gen_nonlocal_goto_receiver ());
      emit_insn (gen_nonlocal_goto_receiver ());
    else
    else
#endif
#endif
      { /* Nothing */ }
      { /* Nothing */ }
 
 
  /* We must not allow the code we just generated to be reordered by
  /* We must not allow the code we just generated to be reordered by
     scheduling.  Specifically, the update of the frame pointer must
     scheduling.  Specifically, the update of the frame pointer must
     happen immediately, not later.  */
     happen immediately, not later.  */
  emit_insn (gen_blockage ());
  emit_insn (gen_blockage ());
}
}
 
 
/* __builtin_longjmp is passed a pointer to an array of five words (not
/* __builtin_longjmp is passed a pointer to an array of five words (not
   all will be used on all machines).  It operates similarly to the C
   all will be used on all machines).  It operates similarly to the C
   library function of the same name, but is more efficient.  Much of
   library function of the same name, but is more efficient.  Much of
   the code below is copied from the handling of non-local gotos.  */
   the code below is copied from the handling of non-local gotos.  */
 
 
static void
static void
expand_builtin_longjmp (rtx buf_addr, rtx value)
expand_builtin_longjmp (rtx buf_addr, rtx value)
{
{
  rtx fp, lab, stack, insn, last;
  rtx fp, lab, stack, insn, last;
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
 
 
  /* DRAP is needed for stack realign if longjmp is expanded to current
  /* DRAP is needed for stack realign if longjmp is expanded to current
     function  */
     function  */
  if (SUPPORTS_STACK_ALIGNMENT)
  if (SUPPORTS_STACK_ALIGNMENT)
    crtl->need_drap = true;
    crtl->need_drap = true;
 
 
  if (setjmp_alias_set == -1)
  if (setjmp_alias_set == -1)
    setjmp_alias_set = new_alias_set ();
    setjmp_alias_set = new_alias_set ();
 
 
  buf_addr = convert_memory_address (Pmode, buf_addr);
  buf_addr = convert_memory_address (Pmode, buf_addr);
 
 
  buf_addr = force_reg (Pmode, buf_addr);
  buf_addr = force_reg (Pmode, buf_addr);
 
 
  /* We require that the user must pass a second argument of 1, because
  /* We require that the user must pass a second argument of 1, because
     that is what builtin_setjmp will return.  */
     that is what builtin_setjmp will return.  */
  gcc_assert (value == const1_rtx);
  gcc_assert (value == const1_rtx);
 
 
  last = get_last_insn ();
  last = get_last_insn ();
#ifdef HAVE_builtin_longjmp
#ifdef HAVE_builtin_longjmp
  if (HAVE_builtin_longjmp)
  if (HAVE_builtin_longjmp)
    emit_insn (gen_builtin_longjmp (buf_addr));
    emit_insn (gen_builtin_longjmp (buf_addr));
  else
  else
#endif
#endif
    {
    {
      fp = gen_rtx_MEM (Pmode, buf_addr);
      fp = gen_rtx_MEM (Pmode, buf_addr);
      lab = gen_rtx_MEM (Pmode, plus_constant (buf_addr,
      lab = gen_rtx_MEM (Pmode, plus_constant (buf_addr,
                                               GET_MODE_SIZE (Pmode)));
                                               GET_MODE_SIZE (Pmode)));
 
 
      stack = gen_rtx_MEM (sa_mode, plus_constant (buf_addr,
      stack = gen_rtx_MEM (sa_mode, plus_constant (buf_addr,
                                                   2 * GET_MODE_SIZE (Pmode)));
                                                   2 * GET_MODE_SIZE (Pmode)));
      set_mem_alias_set (fp, setjmp_alias_set);
      set_mem_alias_set (fp, setjmp_alias_set);
      set_mem_alias_set (lab, setjmp_alias_set);
      set_mem_alias_set (lab, setjmp_alias_set);
      set_mem_alias_set (stack, setjmp_alias_set);
      set_mem_alias_set (stack, setjmp_alias_set);
 
 
      /* Pick up FP, label, and SP from the block and jump.  This code is
      /* Pick up FP, label, and SP from the block and jump.  This code is
         from expand_goto in stmt.c; see there for detailed comments.  */
         from expand_goto in stmt.c; see there for detailed comments.  */
#ifdef HAVE_nonlocal_goto
#ifdef HAVE_nonlocal_goto
      if (HAVE_nonlocal_goto)
      if (HAVE_nonlocal_goto)
        /* We have to pass a value to the nonlocal_goto pattern that will
        /* We have to pass a value to the nonlocal_goto pattern that will
           get copied into the static_chain pointer, but it does not matter
           get copied into the static_chain pointer, but it does not matter
           what that value is, because builtin_setjmp does not use it.  */
           what that value is, because builtin_setjmp does not use it.  */
        emit_insn (gen_nonlocal_goto (value, lab, stack, fp));
        emit_insn (gen_nonlocal_goto (value, lab, stack, fp));
      else
      else
#endif
#endif
        {
        {
          lab = copy_to_reg (lab);
          lab = copy_to_reg (lab);
 
 
          emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
          emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
          emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
          emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
 
 
          emit_move_insn (hard_frame_pointer_rtx, fp);
          emit_move_insn (hard_frame_pointer_rtx, fp);
          emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
          emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
 
 
          emit_use (hard_frame_pointer_rtx);
          emit_use (hard_frame_pointer_rtx);
          emit_use (stack_pointer_rtx);
          emit_use (stack_pointer_rtx);
          emit_indirect_jump (lab);
          emit_indirect_jump (lab);
        }
        }
    }
    }
 
 
  /* Search backwards and mark the jump insn as a non-local goto.
  /* Search backwards and mark the jump insn as a non-local goto.
     Note that this precludes the use of __builtin_longjmp to a
     Note that this precludes the use of __builtin_longjmp to a
     __builtin_setjmp target in the same function.  However, we've
     __builtin_setjmp target in the same function.  However, we've
     already cautioned the user that these functions are for
     already cautioned the user that these functions are for
     internal exception handling use only.  */
     internal exception handling use only.  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
    {
      gcc_assert (insn != last);
      gcc_assert (insn != last);
 
 
      if (JUMP_P (insn))
      if (JUMP_P (insn))
        {
        {
          add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
          add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
          break;
          break;
        }
        }
      else if (CALL_P (insn))
      else if (CALL_P (insn))
        break;
        break;
    }
    }
}
}
 
 
/* Expand a call to __builtin_nonlocal_goto.  We're passed the target label
/* Expand a call to __builtin_nonlocal_goto.  We're passed the target label
   and the address of the save area.  */
   and the address of the save area.  */
 
 
static rtx
static rtx
expand_builtin_nonlocal_goto (tree exp)
expand_builtin_nonlocal_goto (tree exp)
{
{
  tree t_label, t_save_area;
  tree t_label, t_save_area;
  rtx r_label, r_save_area, r_fp, r_sp, insn;
  rtx r_label, r_save_area, r_fp, r_sp, insn;
 
 
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  t_label = CALL_EXPR_ARG (exp, 0);
  t_label = CALL_EXPR_ARG (exp, 0);
  t_save_area = CALL_EXPR_ARG (exp, 1);
  t_save_area = CALL_EXPR_ARG (exp, 1);
 
 
  r_label = expand_normal (t_label);
  r_label = expand_normal (t_label);
  r_label = convert_memory_address (Pmode, r_label);
  r_label = convert_memory_address (Pmode, r_label);
  r_save_area = expand_normal (t_save_area);
  r_save_area = expand_normal (t_save_area);
  r_save_area = convert_memory_address (Pmode, r_save_area);
  r_save_area = convert_memory_address (Pmode, r_save_area);
  /* Copy the address of the save location to a register just in case it was based
  /* Copy the address of the save location to a register just in case it was based
    on the frame pointer.   */
    on the frame pointer.   */
  r_save_area = copy_to_reg (r_save_area);
  r_save_area = copy_to_reg (r_save_area);
  r_fp = gen_rtx_MEM (Pmode, r_save_area);
  r_fp = gen_rtx_MEM (Pmode, r_save_area);
  r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL),
  r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL),
                      plus_constant (r_save_area, GET_MODE_SIZE (Pmode)));
                      plus_constant (r_save_area, GET_MODE_SIZE (Pmode)));
 
 
  crtl->has_nonlocal_goto = 1;
  crtl->has_nonlocal_goto = 1;
 
 
#ifdef HAVE_nonlocal_goto
#ifdef HAVE_nonlocal_goto
  /* ??? We no longer need to pass the static chain value, afaik.  */
  /* ??? We no longer need to pass the static chain value, afaik.  */
  if (HAVE_nonlocal_goto)
  if (HAVE_nonlocal_goto)
    emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp));
    emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp));
  else
  else
#endif
#endif
    {
    {
      r_label = copy_to_reg (r_label);
      r_label = copy_to_reg (r_label);
 
 
      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
      emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
      emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
 
 
      /* Restore frame pointer for containing function.
      /* Restore frame pointer for containing function.
         This sets the actual hard register used for the frame pointer
         This sets the actual hard register used for the frame pointer
         to the location of the function's incoming static chain info.
         to the location of the function's incoming static chain info.
         The non-local goto handler will then adjust it to contain the
         The non-local goto handler will then adjust it to contain the
         proper value and reload the argument pointer, if needed.  */
         proper value and reload the argument pointer, if needed.  */
      emit_move_insn (hard_frame_pointer_rtx, r_fp);
      emit_move_insn (hard_frame_pointer_rtx, r_fp);
      emit_stack_restore (SAVE_NONLOCAL, r_sp, NULL_RTX);
      emit_stack_restore (SAVE_NONLOCAL, r_sp, NULL_RTX);
 
 
      /* USE of hard_frame_pointer_rtx added for consistency;
      /* USE of hard_frame_pointer_rtx added for consistency;
         not clear if really needed.  */
         not clear if really needed.  */
      emit_use (hard_frame_pointer_rtx);
      emit_use (hard_frame_pointer_rtx);
      emit_use (stack_pointer_rtx);
      emit_use (stack_pointer_rtx);
 
 
      /* If the architecture is using a GP register, we must
      /* If the architecture is using a GP register, we must
         conservatively assume that the target function makes use of it.
         conservatively assume that the target function makes use of it.
         The prologue of functions with nonlocal gotos must therefore
         The prologue of functions with nonlocal gotos must therefore
         initialize the GP register to the appropriate value, and we
         initialize the GP register to the appropriate value, and we
         must then make sure that this value is live at the point
         must then make sure that this value is live at the point
         of the jump.  (Note that this doesn't necessarily apply
         of the jump.  (Note that this doesn't necessarily apply
         to targets with a nonlocal_goto pattern; they are free
         to targets with a nonlocal_goto pattern; they are free
         to implement it in their own way.  Note also that this is
         to implement it in their own way.  Note also that this is
         a no-op if the GP register is a global invariant.)  */
         a no-op if the GP register is a global invariant.)  */
      if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
      if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
          && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
          && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
        emit_use (pic_offset_table_rtx);
        emit_use (pic_offset_table_rtx);
 
 
      emit_indirect_jump (r_label);
      emit_indirect_jump (r_label);
    }
    }
 
 
  /* Search backwards to the jump insn and mark it as a
  /* Search backwards to the jump insn and mark it as a
     non-local goto.  */
     non-local goto.  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
    {
      if (JUMP_P (insn))
      if (JUMP_P (insn))
        {
        {
          add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
          add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
          break;
          break;
        }
        }
      else if (CALL_P (insn))
      else if (CALL_P (insn))
        break;
        break;
    }
    }
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* __builtin_update_setjmp_buf is passed a pointer to an array of five words
/* __builtin_update_setjmp_buf is passed a pointer to an array of five words
   (not all will be used on all machines) that was passed to __builtin_setjmp.
   (not all will be used on all machines) that was passed to __builtin_setjmp.
   It updates the stack pointer in that block to correspond to the current
   It updates the stack pointer in that block to correspond to the current
   stack pointer.  */
   stack pointer.  */
 
 
static void
static void
expand_builtin_update_setjmp_buf (rtx buf_addr)
expand_builtin_update_setjmp_buf (rtx buf_addr)
{
{
  enum machine_mode sa_mode = Pmode;
  enum machine_mode sa_mode = Pmode;
  rtx stack_save;
  rtx stack_save;
 
 
 
 
#ifdef HAVE_save_stack_nonlocal
#ifdef HAVE_save_stack_nonlocal
  if (HAVE_save_stack_nonlocal)
  if (HAVE_save_stack_nonlocal)
    sa_mode = insn_data[(int) CODE_FOR_save_stack_nonlocal].operand[0].mode;
    sa_mode = insn_data[(int) CODE_FOR_save_stack_nonlocal].operand[0].mode;
#endif
#endif
#ifdef STACK_SAVEAREA_MODE
#ifdef STACK_SAVEAREA_MODE
  sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
#endif
#endif
 
 
  stack_save
  stack_save
    = gen_rtx_MEM (sa_mode,
    = gen_rtx_MEM (sa_mode,
                   memory_address
                   memory_address
                   (sa_mode,
                   (sa_mode,
                    plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))));
                    plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))));
 
 
#ifdef HAVE_setjmp
#ifdef HAVE_setjmp
  if (HAVE_setjmp)
  if (HAVE_setjmp)
    emit_insn (gen_setjmp ());
    emit_insn (gen_setjmp ());
#endif
#endif
 
 
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
}
}
 
 
/* Expand a call to __builtin_prefetch.  For a target that does not support
/* Expand a call to __builtin_prefetch.  For a target that does not support
   data prefetch, evaluate the memory address argument in case it has side
   data prefetch, evaluate the memory address argument in case it has side
   effects.  */
   effects.  */
 
 
static void
static void
expand_builtin_prefetch (tree exp)
expand_builtin_prefetch (tree exp)
{
{
  tree arg0, arg1, arg2;
  tree arg0, arg1, arg2;
  int nargs;
  int nargs;
  rtx op0, op1, op2;
  rtx op0, op1, op2;
 
 
  if (!validate_arglist (exp, POINTER_TYPE, 0))
  if (!validate_arglist (exp, POINTER_TYPE, 0))
    return;
    return;
 
 
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg0 = CALL_EXPR_ARG (exp, 0);
 
 
  /* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to
  /* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to
     zero (read) and argument 2 (locality) defaults to 3 (high degree of
     zero (read) and argument 2 (locality) defaults to 3 (high degree of
     locality).  */
     locality).  */
  nargs = call_expr_nargs (exp);
  nargs = call_expr_nargs (exp);
  if (nargs > 1)
  if (nargs > 1)
    arg1 = CALL_EXPR_ARG (exp, 1);
    arg1 = CALL_EXPR_ARG (exp, 1);
  else
  else
    arg1 = integer_zero_node;
    arg1 = integer_zero_node;
  if (nargs > 2)
  if (nargs > 2)
    arg2 = CALL_EXPR_ARG (exp, 2);
    arg2 = CALL_EXPR_ARG (exp, 2);
  else
  else
    arg2 = build_int_cst (NULL_TREE, 3);
    arg2 = build_int_cst (NULL_TREE, 3);
 
 
  /* Argument 0 is an address.  */
  /* Argument 0 is an address.  */
  op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL);
  op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL);
 
 
  /* Argument 1 (read/write flag) must be a compile-time constant int.  */
  /* Argument 1 (read/write flag) must be a compile-time constant int.  */
  if (TREE_CODE (arg1) != INTEGER_CST)
  if (TREE_CODE (arg1) != INTEGER_CST)
    {
    {
      error ("second argument to %<__builtin_prefetch%> must be a constant");
      error ("second argument to %<__builtin_prefetch%> must be a constant");
      arg1 = integer_zero_node;
      arg1 = integer_zero_node;
    }
    }
  op1 = expand_normal (arg1);
  op1 = expand_normal (arg1);
  /* Argument 1 must be either zero or one.  */
  /* Argument 1 must be either zero or one.  */
  if (INTVAL (op1) != 0 && INTVAL (op1) != 1)
  if (INTVAL (op1) != 0 && INTVAL (op1) != 1)
    {
    {
      warning (0, "invalid second argument to %<__builtin_prefetch%>;"
      warning (0, "invalid second argument to %<__builtin_prefetch%>;"
               " using zero");
               " using zero");
      op1 = const0_rtx;
      op1 = const0_rtx;
    }
    }
 
 
  /* Argument 2 (locality) must be a compile-time constant int.  */
  /* Argument 2 (locality) must be a compile-time constant int.  */
  if (TREE_CODE (arg2) != INTEGER_CST)
  if (TREE_CODE (arg2) != INTEGER_CST)
    {
    {
      error ("third argument to %<__builtin_prefetch%> must be a constant");
      error ("third argument to %<__builtin_prefetch%> must be a constant");
      arg2 = integer_zero_node;
      arg2 = integer_zero_node;
    }
    }
  op2 = expand_normal (arg2);
  op2 = expand_normal (arg2);
  /* Argument 2 must be 0, 1, 2, or 3.  */
  /* Argument 2 must be 0, 1, 2, or 3.  */
  if (INTVAL (op2) < 0 || INTVAL (op2) > 3)
  if (INTVAL (op2) < 0 || INTVAL (op2) > 3)
    {
    {
      warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero");
      warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero");
      op2 = const0_rtx;
      op2 = const0_rtx;
    }
    }
 
 
#ifdef HAVE_prefetch
#ifdef HAVE_prefetch
  if (HAVE_prefetch)
  if (HAVE_prefetch)
    {
    {
      if ((! (*insn_data[(int) CODE_FOR_prefetch].operand[0].predicate)
      if ((! (*insn_data[(int) CODE_FOR_prefetch].operand[0].predicate)
             (op0,
             (op0,
              insn_data[(int) CODE_FOR_prefetch].operand[0].mode))
              insn_data[(int) CODE_FOR_prefetch].operand[0].mode))
          || (GET_MODE (op0) != Pmode))
          || (GET_MODE (op0) != Pmode))
        {
        {
          op0 = convert_memory_address (Pmode, op0);
          op0 = convert_memory_address (Pmode, op0);
          op0 = force_reg (Pmode, op0);
          op0 = force_reg (Pmode, op0);
        }
        }
      emit_insn (gen_prefetch (op0, op1, op2));
      emit_insn (gen_prefetch (op0, op1, op2));
    }
    }
#endif
#endif
 
 
  /* Don't do anything with direct references to volatile memory, but
  /* Don't do anything with direct references to volatile memory, but
     generate code to handle other side effects.  */
     generate code to handle other side effects.  */
  if (!MEM_P (op0) && side_effects_p (op0))
  if (!MEM_P (op0) && side_effects_p (op0))
    emit_insn (op0);
    emit_insn (op0);
}
}
 
 
/* Get a MEM rtx for expression EXP which is the address of an operand
/* Get a MEM rtx for expression EXP which is the address of an operand
   to be used in a string instruction (cmpstrsi, movmemsi, ..).  LEN is
   to be used in a string instruction (cmpstrsi, movmemsi, ..).  LEN is
   the maximum length of the block of memory that might be accessed or
   the maximum length of the block of memory that might be accessed or
   NULL if unknown.  */
   NULL if unknown.  */
 
 
static rtx
static rtx
get_memory_rtx (tree exp, tree len)
get_memory_rtx (tree exp, tree len)
{
{
  tree orig_exp = exp;
  tree orig_exp = exp;
  rtx addr, mem;
  rtx addr, mem;
  HOST_WIDE_INT off;
  HOST_WIDE_INT off;
 
 
  /* When EXP is not resolved SAVE_EXPR, MEM_ATTRS can be still derived
  /* When EXP is not resolved SAVE_EXPR, MEM_ATTRS can be still derived
     from its expression, for expr->a.b only <variable>.a.b is recorded.  */
     from its expression, for expr->a.b only <variable>.a.b is recorded.  */
  if (TREE_CODE (exp) == SAVE_EXPR && !SAVE_EXPR_RESOLVED_P (exp))
  if (TREE_CODE (exp) == SAVE_EXPR && !SAVE_EXPR_RESOLVED_P (exp))
    exp = TREE_OPERAND (exp, 0);
    exp = TREE_OPERAND (exp, 0);
 
 
  addr = expand_expr (orig_exp, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  addr = expand_expr (orig_exp, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr));
  mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr));
 
 
  /* Get an expression we can use to find the attributes to assign to MEM.
  /* Get an expression we can use to find the attributes to assign to MEM.
     If it is an ADDR_EXPR, use the operand.  Otherwise, dereference it if
     If it is an ADDR_EXPR, use the operand.  Otherwise, dereference it if
     we can.  First remove any nops.  */
     we can.  First remove any nops.  */
  while (CONVERT_EXPR_P (exp)
  while (CONVERT_EXPR_P (exp)
         && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
         && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
    exp = TREE_OPERAND (exp, 0);
    exp = TREE_OPERAND (exp, 0);
 
 
  off = 0;
  off = 0;
  if (TREE_CODE (exp) == POINTER_PLUS_EXPR
  if (TREE_CODE (exp) == POINTER_PLUS_EXPR
      && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
      && host_integerp (TREE_OPERAND (exp, 1), 0)
      && host_integerp (TREE_OPERAND (exp, 1), 0)
      && (off = tree_low_cst (TREE_OPERAND (exp, 1), 0)) > 0)
      && (off = tree_low_cst (TREE_OPERAND (exp, 1), 0)) > 0)
    exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
    exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
  else if (TREE_CODE (exp) == ADDR_EXPR)
  else if (TREE_CODE (exp) == ADDR_EXPR)
    exp = TREE_OPERAND (exp, 0);
    exp = TREE_OPERAND (exp, 0);
  else if (POINTER_TYPE_P (TREE_TYPE (exp)))
  else if (POINTER_TYPE_P (TREE_TYPE (exp)))
    exp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (exp)), exp);
    exp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (exp)), exp);
  else
  else
    exp = NULL;
    exp = NULL;
 
 
  /* Honor attributes derived from exp, except for the alias set
  /* Honor attributes derived from exp, except for the alias set
     (as builtin stringops may alias with anything) and the size
     (as builtin stringops may alias with anything) and the size
     (as stringops may access multiple array elements).  */
     (as stringops may access multiple array elements).  */
  if (exp)
  if (exp)
    {
    {
      set_mem_attributes (mem, exp, 0);
      set_mem_attributes (mem, exp, 0);
 
 
      if (off)
      if (off)
        mem = adjust_automodify_address_nv (mem, BLKmode, NULL, off);
        mem = adjust_automodify_address_nv (mem, BLKmode, NULL, off);
 
 
      /* Allow the string and memory builtins to overflow from one
      /* Allow the string and memory builtins to overflow from one
         field into another, see http://gcc.gnu.org/PR23561.
         field into another, see http://gcc.gnu.org/PR23561.
         Thus avoid COMPONENT_REFs in MEM_EXPR unless we know the whole
         Thus avoid COMPONENT_REFs in MEM_EXPR unless we know the whole
         memory accessed by the string or memory builtin will fit
         memory accessed by the string or memory builtin will fit
         within the field.  */
         within the field.  */
      if (MEM_EXPR (mem) && TREE_CODE (MEM_EXPR (mem)) == COMPONENT_REF)
      if (MEM_EXPR (mem) && TREE_CODE (MEM_EXPR (mem)) == COMPONENT_REF)
        {
        {
          tree mem_expr = MEM_EXPR (mem);
          tree mem_expr = MEM_EXPR (mem);
          HOST_WIDE_INT offset = -1, length = -1;
          HOST_WIDE_INT offset = -1, length = -1;
          tree inner = exp;
          tree inner = exp;
 
 
          while (TREE_CODE (inner) == ARRAY_REF
          while (TREE_CODE (inner) == ARRAY_REF
                 || CONVERT_EXPR_P (inner)
                 || CONVERT_EXPR_P (inner)
                 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
                 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
                 || TREE_CODE (inner) == SAVE_EXPR)
                 || TREE_CODE (inner) == SAVE_EXPR)
            inner = TREE_OPERAND (inner, 0);
            inner = TREE_OPERAND (inner, 0);
 
 
          gcc_assert (TREE_CODE (inner) == COMPONENT_REF);
          gcc_assert (TREE_CODE (inner) == COMPONENT_REF);
 
 
          if (MEM_OFFSET (mem)
          if (MEM_OFFSET (mem)
              && CONST_INT_P (MEM_OFFSET (mem)))
              && CONST_INT_P (MEM_OFFSET (mem)))
            offset = INTVAL (MEM_OFFSET (mem));
            offset = INTVAL (MEM_OFFSET (mem));
 
 
          if (offset >= 0 && len && host_integerp (len, 0))
          if (offset >= 0 && len && host_integerp (len, 0))
            length = tree_low_cst (len, 0);
            length = tree_low_cst (len, 0);
 
 
          while (TREE_CODE (inner) == COMPONENT_REF)
          while (TREE_CODE (inner) == COMPONENT_REF)
            {
            {
              tree field = TREE_OPERAND (inner, 1);
              tree field = TREE_OPERAND (inner, 1);
              gcc_assert (TREE_CODE (mem_expr) == COMPONENT_REF);
              gcc_assert (TREE_CODE (mem_expr) == COMPONENT_REF);
              gcc_assert (field == TREE_OPERAND (mem_expr, 1));
              gcc_assert (field == TREE_OPERAND (mem_expr, 1));
 
 
              /* Bitfields are generally not byte-addressable.  */
              /* Bitfields are generally not byte-addressable.  */
              gcc_assert (!DECL_BIT_FIELD (field)
              gcc_assert (!DECL_BIT_FIELD (field)
                          || ((tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
                          || ((tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
                               % BITS_PER_UNIT) == 0
                               % BITS_PER_UNIT) == 0
                              && host_integerp (DECL_SIZE (field), 0)
                              && host_integerp (DECL_SIZE (field), 0)
                              && (TREE_INT_CST_LOW (DECL_SIZE (field))
                              && (TREE_INT_CST_LOW (DECL_SIZE (field))
                                  % BITS_PER_UNIT) == 0));
                                  % BITS_PER_UNIT) == 0));
 
 
              /* If we can prove that the memory starting at XEXP (mem, 0) and
              /* If we can prove that the memory starting at XEXP (mem, 0) and
                 ending at XEXP (mem, 0) + LENGTH will fit into this field, we
                 ending at XEXP (mem, 0) + LENGTH will fit into this field, we
                 can keep the COMPONENT_REF in MEM_EXPR.  But be careful with
                 can keep the COMPONENT_REF in MEM_EXPR.  But be careful with
                 fields without DECL_SIZE_UNIT like flexible array members.  */
                 fields without DECL_SIZE_UNIT like flexible array members.  */
              if (length >= 0
              if (length >= 0
                  && DECL_SIZE_UNIT (field)
                  && DECL_SIZE_UNIT (field)
                  && host_integerp (DECL_SIZE_UNIT (field), 0))
                  && host_integerp (DECL_SIZE_UNIT (field), 0))
                {
                {
                  HOST_WIDE_INT size
                  HOST_WIDE_INT size
                    = TREE_INT_CST_LOW (DECL_SIZE_UNIT (field));
                    = TREE_INT_CST_LOW (DECL_SIZE_UNIT (field));
                  if (offset <= size
                  if (offset <= size
                      && length <= size
                      && length <= size
                      && offset + length <= size)
                      && offset + length <= size)
                    break;
                    break;
                }
                }
 
 
              if (offset >= 0
              if (offset >= 0
                  && host_integerp (DECL_FIELD_OFFSET (field), 0))
                  && host_integerp (DECL_FIELD_OFFSET (field), 0))
                offset += TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field))
                offset += TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field))
                          + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
                          + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
                            / BITS_PER_UNIT;
                            / BITS_PER_UNIT;
              else
              else
                {
                {
                  offset = -1;
                  offset = -1;
                  length = -1;
                  length = -1;
                }
                }
 
 
              mem_expr = TREE_OPERAND (mem_expr, 0);
              mem_expr = TREE_OPERAND (mem_expr, 0);
              inner = TREE_OPERAND (inner, 0);
              inner = TREE_OPERAND (inner, 0);
            }
            }
 
 
          if (mem_expr == NULL)
          if (mem_expr == NULL)
            offset = -1;
            offset = -1;
          if (mem_expr != MEM_EXPR (mem))
          if (mem_expr != MEM_EXPR (mem))
            {
            {
              set_mem_expr (mem, mem_expr);
              set_mem_expr (mem, mem_expr);
              set_mem_offset (mem, offset >= 0 ? GEN_INT (offset) : NULL_RTX);
              set_mem_offset (mem, offset >= 0 ? GEN_INT (offset) : NULL_RTX);
            }
            }
        }
        }
      set_mem_alias_set (mem, 0);
      set_mem_alias_set (mem, 0);
      set_mem_size (mem, NULL_RTX);
      set_mem_size (mem, NULL_RTX);
    }
    }
 
 
  return mem;
  return mem;
}
}


/* Built-in functions to perform an untyped call and return.  */
/* Built-in functions to perform an untyped call and return.  */
 
 
/* For each register that may be used for calling a function, this
/* For each register that may be used for calling a function, this
   gives a mode used to copy the register's value.  VOIDmode indicates
   gives a mode used to copy the register's value.  VOIDmode indicates
   the register is not used for calling a function.  If the machine
   the register is not used for calling a function.  If the machine
   has register windows, this gives only the outbound registers.
   has register windows, this gives only the outbound registers.
   INCOMING_REGNO gives the corresponding inbound register.  */
   INCOMING_REGNO gives the corresponding inbound register.  */
static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER];
static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER];
 
 
/* For each register that may be used for returning values, this gives
/* For each register that may be used for returning values, this gives
   a mode used to copy the register's value.  VOIDmode indicates the
   a mode used to copy the register's value.  VOIDmode indicates the
   register is not used for returning values.  If the machine has
   register is not used for returning values.  If the machine has
   register windows, this gives only the outbound registers.
   register windows, this gives only the outbound registers.
   INCOMING_REGNO gives the corresponding inbound register.  */
   INCOMING_REGNO gives the corresponding inbound register.  */
static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER];
static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER];
 
 
/* Return the size required for the block returned by __builtin_apply_args,
/* Return the size required for the block returned by __builtin_apply_args,
   and initialize apply_args_mode.  */
   and initialize apply_args_mode.  */
 
 
static int
static int
apply_args_size (void)
apply_args_size (void)
{
{
  static int size = -1;
  static int size = -1;
  int align;
  int align;
  unsigned int regno;
  unsigned int regno;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* The values computed by this function never change.  */
  /* The values computed by this function never change.  */
  if (size < 0)
  if (size < 0)
    {
    {
      /* The first value is the incoming arg-pointer.  */
      /* The first value is the incoming arg-pointer.  */
      size = GET_MODE_SIZE (Pmode);
      size = GET_MODE_SIZE (Pmode);
 
 
      /* The second value is the structure value address unless this is
      /* The second value is the structure value address unless this is
         passed as an "invisible" first argument.  */
         passed as an "invisible" first argument.  */
      if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
      if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
        size += GET_MODE_SIZE (Pmode);
        size += GET_MODE_SIZE (Pmode);
 
 
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        if (FUNCTION_ARG_REGNO_P (regno))
        if (FUNCTION_ARG_REGNO_P (regno))
          {
          {
            mode = reg_raw_mode[regno];
            mode = reg_raw_mode[regno];
 
 
            gcc_assert (mode != VOIDmode);
            gcc_assert (mode != VOIDmode);
 
 
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            if (size % align != 0)
            if (size % align != 0)
              size = CEIL (size, align) * align;
              size = CEIL (size, align) * align;
            size += GET_MODE_SIZE (mode);
            size += GET_MODE_SIZE (mode);
            apply_args_mode[regno] = mode;
            apply_args_mode[regno] = mode;
          }
          }
        else
        else
          {
          {
            apply_args_mode[regno] = VOIDmode;
            apply_args_mode[regno] = VOIDmode;
          }
          }
    }
    }
  return size;
  return size;
}
}
 
 
/* Return the size required for the block returned by __builtin_apply,
/* Return the size required for the block returned by __builtin_apply,
   and initialize apply_result_mode.  */
   and initialize apply_result_mode.  */
 
 
static int
static int
apply_result_size (void)
apply_result_size (void)
{
{
  static int size = -1;
  static int size = -1;
  int align, regno;
  int align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* The values computed by this function never change.  */
  /* The values computed by this function never change.  */
  if (size < 0)
  if (size < 0)
    {
    {
      size = 0;
      size = 0;
 
 
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        if (FUNCTION_VALUE_REGNO_P (regno))
        if (FUNCTION_VALUE_REGNO_P (regno))
          {
          {
            mode = reg_raw_mode[regno];
            mode = reg_raw_mode[regno];
 
 
            gcc_assert (mode != VOIDmode);
            gcc_assert (mode != VOIDmode);
 
 
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            if (size % align != 0)
            if (size % align != 0)
              size = CEIL (size, align) * align;
              size = CEIL (size, align) * align;
            size += GET_MODE_SIZE (mode);
            size += GET_MODE_SIZE (mode);
            apply_result_mode[regno] = mode;
            apply_result_mode[regno] = mode;
          }
          }
        else
        else
          apply_result_mode[regno] = VOIDmode;
          apply_result_mode[regno] = VOIDmode;
 
 
      /* Allow targets that use untyped_call and untyped_return to override
      /* Allow targets that use untyped_call and untyped_return to override
         the size so that machine-specific information can be stored here.  */
         the size so that machine-specific information can be stored here.  */
#ifdef APPLY_RESULT_SIZE
#ifdef APPLY_RESULT_SIZE
      size = APPLY_RESULT_SIZE;
      size = APPLY_RESULT_SIZE;
#endif
#endif
    }
    }
  return size;
  return size;
}
}
 
 
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
/* Create a vector describing the result block RESULT.  If SAVEP is true,
/* Create a vector describing the result block RESULT.  If SAVEP is true,
   the result block is used to save the values; otherwise it is used to
   the result block is used to save the values; otherwise it is used to
   restore the values.  */
   restore the values.  */
 
 
static rtx
static rtx
result_vector (int savep, rtx result)
result_vector (int savep, rtx result)
{
{
  int regno, size, align, nelts;
  int regno, size, align, nelts;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx reg, mem;
  rtx reg, mem;
  rtx *savevec = XALLOCAVEC (rtx, FIRST_PSEUDO_REGISTER);
  rtx *savevec = XALLOCAVEC (rtx, FIRST_PSEUDO_REGISTER);
 
 
  size = nelts = 0;
  size = nelts = 0;
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
        reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno));
        reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno));
        mem = adjust_address (result, mode, size);
        mem = adjust_address (result, mode, size);
        savevec[nelts++] = (savep
        savevec[nelts++] = (savep
                            ? gen_rtx_SET (VOIDmode, mem, reg)
                            ? gen_rtx_SET (VOIDmode, mem, reg)
                            : gen_rtx_SET (VOIDmode, reg, mem));
                            : gen_rtx_SET (VOIDmode, reg, mem));
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
  return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec));
  return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec));
}
}
#endif /* HAVE_untyped_call or HAVE_untyped_return */
#endif /* HAVE_untyped_call or HAVE_untyped_return */
 
 
/* Save the state required to perform an untyped call with the same
/* Save the state required to perform an untyped call with the same
   arguments as were passed to the current function.  */
   arguments as were passed to the current function.  */
 
 
static rtx
static rtx
expand_builtin_apply_args_1 (void)
expand_builtin_apply_args_1 (void)
{
{
  rtx registers, tem;
  rtx registers, tem;
  int size, align, regno;
  int size, align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1);
  rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1);
 
 
  /* Create a block where the arg-pointer, structure value address,
  /* Create a block where the arg-pointer, structure value address,
     and argument registers can be saved.  */
     and argument registers can be saved.  */
  registers = assign_stack_local (BLKmode, apply_args_size (), -1);
  registers = assign_stack_local (BLKmode, apply_args_size (), -1);
 
 
  /* Walk past the arg-pointer and structure value address.  */
  /* Walk past the arg-pointer and structure value address.  */
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
  if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
  if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
    size += GET_MODE_SIZE (Pmode);
    size += GET_MODE_SIZE (Pmode);
 
 
  /* Save each register used in calling a function to the block.  */
  /* Save each register used in calling a function to the block.  */
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
 
 
        tem = gen_rtx_REG (mode, INCOMING_REGNO (regno));
        tem = gen_rtx_REG (mode, INCOMING_REGNO (regno));
 
 
        emit_move_insn (adjust_address (registers, mode, size), tem);
        emit_move_insn (adjust_address (registers, mode, size), tem);
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
 
 
  /* Save the arg pointer to the block.  */
  /* Save the arg pointer to the block.  */
  tem = copy_to_reg (crtl->args.internal_arg_pointer);
  tem = copy_to_reg (crtl->args.internal_arg_pointer);
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
  /* We need the pointer as the caller actually passed them to us, not
  /* We need the pointer as the caller actually passed them to us, not
     as we might have pretended they were passed.  Make sure it's a valid
     as we might have pretended they were passed.  Make sure it's a valid
     operand, as emit_move_insn isn't expected to handle a PLUS.  */
     operand, as emit_move_insn isn't expected to handle a PLUS.  */
  tem
  tem
    = force_operand (plus_constant (tem, crtl->args.pretend_args_size),
    = force_operand (plus_constant (tem, crtl->args.pretend_args_size),
                     NULL_RTX);
                     NULL_RTX);
#endif
#endif
  emit_move_insn (adjust_address (registers, Pmode, 0), tem);
  emit_move_insn (adjust_address (registers, Pmode, 0), tem);
 
 
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
 
 
  /* Save the structure value address unless this is passed as an
  /* Save the structure value address unless this is passed as an
     "invisible" first argument.  */
     "invisible" first argument.  */
  if (struct_incoming_value)
  if (struct_incoming_value)
    {
    {
      emit_move_insn (adjust_address (registers, Pmode, size),
      emit_move_insn (adjust_address (registers, Pmode, size),
                      copy_to_reg (struct_incoming_value));
                      copy_to_reg (struct_incoming_value));
      size += GET_MODE_SIZE (Pmode);
      size += GET_MODE_SIZE (Pmode);
    }
    }
 
 
  /* Return the address of the block.  */
  /* Return the address of the block.  */
  return copy_addr_to_reg (XEXP (registers, 0));
  return copy_addr_to_reg (XEXP (registers, 0));
}
}
 
 
/* __builtin_apply_args returns block of memory allocated on
/* __builtin_apply_args returns block of memory allocated on
   the stack into which is stored the arg pointer, structure
   the stack into which is stored the arg pointer, structure
   value address, static chain, and all the registers that might
   value address, static chain, and all the registers that might
   possibly be used in performing a function call.  The code is
   possibly be used in performing a function call.  The code is
   moved to the start of the function so the incoming values are
   moved to the start of the function so the incoming values are
   saved.  */
   saved.  */
 
 
static rtx
static rtx
expand_builtin_apply_args (void)
expand_builtin_apply_args (void)
{
{
  /* Don't do __builtin_apply_args more than once in a function.
  /* Don't do __builtin_apply_args more than once in a function.
     Save the result of the first call and reuse it.  */
     Save the result of the first call and reuse it.  */
  if (apply_args_value != 0)
  if (apply_args_value != 0)
    return apply_args_value;
    return apply_args_value;
  {
  {
    /* When this function is called, it means that registers must be
    /* When this function is called, it means that registers must be
       saved on entry to this function.  So we migrate the
       saved on entry to this function.  So we migrate the
       call to the first insn of this function.  */
       call to the first insn of this function.  */
    rtx temp;
    rtx temp;
    rtx seq;
    rtx seq;
 
 
    start_sequence ();
    start_sequence ();
    temp = expand_builtin_apply_args_1 ();
    temp = expand_builtin_apply_args_1 ();
    seq = get_insns ();
    seq = get_insns ();
    end_sequence ();
    end_sequence ();
 
 
    apply_args_value = temp;
    apply_args_value = temp;
 
 
    /* Put the insns after the NOTE that starts the function.
    /* Put the insns after the NOTE that starts the function.
       If this is inside a start_sequence, make the outer-level insn
       If this is inside a start_sequence, make the outer-level insn
       chain current, so the code is placed at the start of the
       chain current, so the code is placed at the start of the
       function.  If internal_arg_pointer is a non-virtual pseudo,
       function.  If internal_arg_pointer is a non-virtual pseudo,
       it needs to be placed after the function that initializes
       it needs to be placed after the function that initializes
       that pseudo.  */
       that pseudo.  */
    push_topmost_sequence ();
    push_topmost_sequence ();
    if (REG_P (crtl->args.internal_arg_pointer)
    if (REG_P (crtl->args.internal_arg_pointer)
        && REGNO (crtl->args.internal_arg_pointer) > LAST_VIRTUAL_REGISTER)
        && REGNO (crtl->args.internal_arg_pointer) > LAST_VIRTUAL_REGISTER)
      emit_insn_before (seq, parm_birth_insn);
      emit_insn_before (seq, parm_birth_insn);
    else
    else
      emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
      emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
    pop_topmost_sequence ();
    pop_topmost_sequence ();
    return temp;
    return temp;
  }
  }
}
}
 
 
/* Perform an untyped call and save the state required to perform an
/* Perform an untyped call and save the state required to perform an
   untyped return of whatever value was returned by the given function.  */
   untyped return of whatever value was returned by the given function.  */
 
 
static rtx
static rtx
expand_builtin_apply (rtx function, rtx arguments, rtx argsize)
expand_builtin_apply (rtx function, rtx arguments, rtx argsize)
{
{
  int size, align, regno;
  int size, align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx incoming_args, result, reg, dest, src, call_insn;
  rtx incoming_args, result, reg, dest, src, call_insn;
  rtx old_stack_level = 0;
  rtx old_stack_level = 0;
  rtx call_fusage = 0;
  rtx call_fusage = 0;
  rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0);
  rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0);
 
 
  arguments = convert_memory_address (Pmode, arguments);
  arguments = convert_memory_address (Pmode, arguments);
 
 
  /* Create a block where the return registers can be saved.  */
  /* Create a block where the return registers can be saved.  */
  result = assign_stack_local (BLKmode, apply_result_size (), -1);
  result = assign_stack_local (BLKmode, apply_result_size (), -1);
 
 
  /* Fetch the arg pointer from the ARGUMENTS block.  */
  /* Fetch the arg pointer from the ARGUMENTS block.  */
  incoming_args = gen_reg_rtx (Pmode);
  incoming_args = gen_reg_rtx (Pmode);
  emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments));
  emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments));
#ifndef STACK_GROWS_DOWNWARD
#ifndef STACK_GROWS_DOWNWARD
  incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize,
  incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize,
                                       incoming_args, 0, OPTAB_LIB_WIDEN);
                                       incoming_args, 0, OPTAB_LIB_WIDEN);
#endif
#endif
 
 
  /* Push a new argument block and copy the arguments.  Do not allow
  /* Push a new argument block and copy the arguments.  Do not allow
     the (potential) memcpy call below to interfere with our stack
     the (potential) memcpy call below to interfere with our stack
     manipulations.  */
     manipulations.  */
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
  NO_DEFER_POP;
  NO_DEFER_POP;
 
 
  /* Save the stack with nonlocal if available.  */
  /* Save the stack with nonlocal if available.  */
#ifdef HAVE_save_stack_nonlocal
#ifdef HAVE_save_stack_nonlocal
  if (HAVE_save_stack_nonlocal)
  if (HAVE_save_stack_nonlocal)
    emit_stack_save (SAVE_NONLOCAL, &old_stack_level, NULL_RTX);
    emit_stack_save (SAVE_NONLOCAL, &old_stack_level, NULL_RTX);
  else
  else
#endif
#endif
    emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
    emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
 
 
  /* Allocate a block of memory onto the stack and copy the memory
  /* Allocate a block of memory onto the stack and copy the memory
     arguments to the outgoing arguments address.  */
     arguments to the outgoing arguments address.  */
  allocate_dynamic_stack_space (argsize, 0, BITS_PER_UNIT);
  allocate_dynamic_stack_space (argsize, 0, BITS_PER_UNIT);
 
 
  /* Set DRAP flag to true, even though allocate_dynamic_stack_space
  /* Set DRAP flag to true, even though allocate_dynamic_stack_space
     may have already set current_function_calls_alloca to true.
     may have already set current_function_calls_alloca to true.
     current_function_calls_alloca won't be set if argsize is zero,
     current_function_calls_alloca won't be set if argsize is zero,
     so we have to guarantee need_drap is true here.  */
     so we have to guarantee need_drap is true here.  */
  if (SUPPORTS_STACK_ALIGNMENT)
  if (SUPPORTS_STACK_ALIGNMENT)
    crtl->need_drap = true;
    crtl->need_drap = true;
 
 
  dest = virtual_outgoing_args_rtx;
  dest = virtual_outgoing_args_rtx;
#ifndef STACK_GROWS_DOWNWARD
#ifndef STACK_GROWS_DOWNWARD
  if (CONST_INT_P (argsize))
  if (CONST_INT_P (argsize))
    dest = plus_constant (dest, -INTVAL (argsize));
    dest = plus_constant (dest, -INTVAL (argsize));
  else
  else
    dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize));
    dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize));
#endif
#endif
  dest = gen_rtx_MEM (BLKmode, dest);
  dest = gen_rtx_MEM (BLKmode, dest);
  set_mem_align (dest, PARM_BOUNDARY);
  set_mem_align (dest, PARM_BOUNDARY);
  src = gen_rtx_MEM (BLKmode, incoming_args);
  src = gen_rtx_MEM (BLKmode, incoming_args);
  set_mem_align (src, PARM_BOUNDARY);
  set_mem_align (src, PARM_BOUNDARY);
  emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL);
  emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL);
 
 
  /* Refer to the argument block.  */
  /* Refer to the argument block.  */
  apply_args_size ();
  apply_args_size ();
  arguments = gen_rtx_MEM (BLKmode, arguments);
  arguments = gen_rtx_MEM (BLKmode, arguments);
  set_mem_align (arguments, PARM_BOUNDARY);
  set_mem_align (arguments, PARM_BOUNDARY);
 
 
  /* Walk past the arg-pointer and structure value address.  */
  /* Walk past the arg-pointer and structure value address.  */
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
  if (struct_value)
  if (struct_value)
    size += GET_MODE_SIZE (Pmode);
    size += GET_MODE_SIZE (Pmode);
 
 
  /* Restore each of the registers previously saved.  Make USE insns
  /* Restore each of the registers previously saved.  Make USE insns
     for each of these registers for use in making the call.  */
     for each of these registers for use in making the call.  */
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
        reg = gen_rtx_REG (mode, regno);
        reg = gen_rtx_REG (mode, regno);
        emit_move_insn (reg, adjust_address (arguments, mode, size));
        emit_move_insn (reg, adjust_address (arguments, mode, size));
        use_reg (&call_fusage, reg);
        use_reg (&call_fusage, reg);
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
 
 
  /* Restore the structure value address unless this is passed as an
  /* Restore the structure value address unless this is passed as an
     "invisible" first argument.  */
     "invisible" first argument.  */
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
  if (struct_value)
  if (struct_value)
    {
    {
      rtx value = gen_reg_rtx (Pmode);
      rtx value = gen_reg_rtx (Pmode);
      emit_move_insn (value, adjust_address (arguments, Pmode, size));
      emit_move_insn (value, adjust_address (arguments, Pmode, size));
      emit_move_insn (struct_value, value);
      emit_move_insn (struct_value, value);
      if (REG_P (struct_value))
      if (REG_P (struct_value))
        use_reg (&call_fusage, struct_value);
        use_reg (&call_fusage, struct_value);
      size += GET_MODE_SIZE (Pmode);
      size += GET_MODE_SIZE (Pmode);
    }
    }
 
 
  /* All arguments and registers used for the call are set up by now!  */
  /* All arguments and registers used for the call are set up by now!  */
  function = prepare_call_address (NULL, function, NULL, &call_fusage, 0, 0);
  function = prepare_call_address (NULL, function, NULL, &call_fusage, 0, 0);
 
 
  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
     and we don't want to load it into a register as an optimization,
     and we don't want to load it into a register as an optimization,
     because prepare_call_address already did it if it should be done.  */
     because prepare_call_address already did it if it should be done.  */
  if (GET_CODE (function) != SYMBOL_REF)
  if (GET_CODE (function) != SYMBOL_REF)
    function = memory_address (FUNCTION_MODE, function);
    function = memory_address (FUNCTION_MODE, function);
 
 
  /* Generate the actual call instruction and save the return value.  */
  /* Generate the actual call instruction and save the return value.  */
#ifdef HAVE_untyped_call
#ifdef HAVE_untyped_call
  if (HAVE_untyped_call)
  if (HAVE_untyped_call)
    emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function),
    emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function),
                                      result, result_vector (1, result)));
                                      result, result_vector (1, result)));
  else
  else
#endif
#endif
#ifdef HAVE_call_value
#ifdef HAVE_call_value
  if (HAVE_call_value)
  if (HAVE_call_value)
    {
    {
      rtx valreg = 0;
      rtx valreg = 0;
 
 
      /* Locate the unique return register.  It is not possible to
      /* Locate the unique return register.  It is not possible to
         express a call that sets more than one return register using
         express a call that sets more than one return register using
         call_value; use untyped_call for that.  In fact, untyped_call
         call_value; use untyped_call for that.  In fact, untyped_call
         only needs to save the return registers in the given block.  */
         only needs to save the return registers in the given block.  */
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        if ((mode = apply_result_mode[regno]) != VOIDmode)
        if ((mode = apply_result_mode[regno]) != VOIDmode)
          {
          {
            gcc_assert (!valreg); /* HAVE_untyped_call required.  */
            gcc_assert (!valreg); /* HAVE_untyped_call required.  */
 
 
            valreg = gen_rtx_REG (mode, regno);
            valreg = gen_rtx_REG (mode, regno);
          }
          }
 
 
      emit_call_insn (GEN_CALL_VALUE (valreg,
      emit_call_insn (GEN_CALL_VALUE (valreg,
                                      gen_rtx_MEM (FUNCTION_MODE, function),
                                      gen_rtx_MEM (FUNCTION_MODE, function),
                                      const0_rtx, NULL_RTX, const0_rtx));
                                      const0_rtx, NULL_RTX, const0_rtx));
 
 
      emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg);
      emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg);
    }
    }
  else
  else
#endif
#endif
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  /* Find the CALL insn we just emitted, and attach the register usage
  /* Find the CALL insn we just emitted, and attach the register usage
     information.  */
     information.  */
  call_insn = last_call_insn ();
  call_insn = last_call_insn ();
  add_function_usage_to (call_insn, call_fusage);
  add_function_usage_to (call_insn, call_fusage);
 
 
  /* Restore the stack.  */
  /* Restore the stack.  */
#ifdef HAVE_save_stack_nonlocal
#ifdef HAVE_save_stack_nonlocal
  if (HAVE_save_stack_nonlocal)
  if (HAVE_save_stack_nonlocal)
    emit_stack_restore (SAVE_NONLOCAL, old_stack_level, NULL_RTX);
    emit_stack_restore (SAVE_NONLOCAL, old_stack_level, NULL_RTX);
  else
  else
#endif
#endif
    emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
    emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
 
 
  OK_DEFER_POP;
  OK_DEFER_POP;
 
 
  /* Return the address of the result block.  */
  /* Return the address of the result block.  */
  result = copy_addr_to_reg (XEXP (result, 0));
  result = copy_addr_to_reg (XEXP (result, 0));
  return convert_memory_address (ptr_mode, result);
  return convert_memory_address (ptr_mode, result);
}
}
 
 
/* Perform an untyped return.  */
/* Perform an untyped return.  */
 
 
static void
static void
expand_builtin_return (rtx result)
expand_builtin_return (rtx result)
{
{
  int size, align, regno;
  int size, align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx reg;
  rtx reg;
  rtx call_fusage = 0;
  rtx call_fusage = 0;
 
 
  result = convert_memory_address (Pmode, result);
  result = convert_memory_address (Pmode, result);
 
 
  apply_result_size ();
  apply_result_size ();
  result = gen_rtx_MEM (BLKmode, result);
  result = gen_rtx_MEM (BLKmode, result);
 
 
#ifdef HAVE_untyped_return
#ifdef HAVE_untyped_return
  if (HAVE_untyped_return)
  if (HAVE_untyped_return)
    {
    {
      emit_jump_insn (gen_untyped_return (result, result_vector (0, result)));
      emit_jump_insn (gen_untyped_return (result, result_vector (0, result)));
      emit_barrier ();
      emit_barrier ();
      return;
      return;
    }
    }
#endif
#endif
 
 
  /* Restore the return value and note that each value is used.  */
  /* Restore the return value and note that each value is used.  */
  size = 0;
  size = 0;
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
        reg = gen_rtx_REG (mode, INCOMING_REGNO (regno));
        reg = gen_rtx_REG (mode, INCOMING_REGNO (regno));
        emit_move_insn (reg, adjust_address (result, mode, size));
        emit_move_insn (reg, adjust_address (result, mode, size));
 
 
        push_to_sequence (call_fusage);
        push_to_sequence (call_fusage);
        emit_use (reg);
        emit_use (reg);
        call_fusage = get_insns ();
        call_fusage = get_insns ();
        end_sequence ();
        end_sequence ();
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
 
 
  /* Put the USE insns before the return.  */
  /* Put the USE insns before the return.  */
  emit_insn (call_fusage);
  emit_insn (call_fusage);
 
 
  /* Return whatever values was restored by jumping directly to the end
  /* Return whatever values was restored by jumping directly to the end
     of the function.  */
     of the function.  */
  expand_naked_return ();
  expand_naked_return ();
}
}
 
 
/* Used by expand_builtin_classify_type and fold_builtin_classify_type.  */
/* Used by expand_builtin_classify_type and fold_builtin_classify_type.  */
 
 
static enum type_class
static enum type_class
type_to_class (tree type)
type_to_class (tree type)
{
{
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case VOID_TYPE:        return void_type_class;
    case VOID_TYPE:        return void_type_class;
    case INTEGER_TYPE:     return integer_type_class;
    case INTEGER_TYPE:     return integer_type_class;
    case ENUMERAL_TYPE:    return enumeral_type_class;
    case ENUMERAL_TYPE:    return enumeral_type_class;
    case BOOLEAN_TYPE:     return boolean_type_class;
    case BOOLEAN_TYPE:     return boolean_type_class;
    case POINTER_TYPE:     return pointer_type_class;
    case POINTER_TYPE:     return pointer_type_class;
    case REFERENCE_TYPE:   return reference_type_class;
    case REFERENCE_TYPE:   return reference_type_class;
    case OFFSET_TYPE:      return offset_type_class;
    case OFFSET_TYPE:      return offset_type_class;
    case REAL_TYPE:        return real_type_class;
    case REAL_TYPE:        return real_type_class;
    case COMPLEX_TYPE:     return complex_type_class;
    case COMPLEX_TYPE:     return complex_type_class;
    case FUNCTION_TYPE:    return function_type_class;
    case FUNCTION_TYPE:    return function_type_class;
    case METHOD_TYPE:      return method_type_class;
    case METHOD_TYPE:      return method_type_class;
    case RECORD_TYPE:      return record_type_class;
    case RECORD_TYPE:      return record_type_class;
    case UNION_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:  return union_type_class;
    case QUAL_UNION_TYPE:  return union_type_class;
    case ARRAY_TYPE:       return (TYPE_STRING_FLAG (type)
    case ARRAY_TYPE:       return (TYPE_STRING_FLAG (type)
                                   ? string_type_class : array_type_class);
                                   ? string_type_class : array_type_class);
    case LANG_TYPE:        return lang_type_class;
    case LANG_TYPE:        return lang_type_class;
    default:               return no_type_class;
    default:               return no_type_class;
    }
    }
}
}
 
 
/* Expand a call EXP to __builtin_classify_type.  */
/* Expand a call EXP to __builtin_classify_type.  */
 
 
static rtx
static rtx
expand_builtin_classify_type (tree exp)
expand_builtin_classify_type (tree exp)
{
{
  if (call_expr_nargs (exp))
  if (call_expr_nargs (exp))
    return GEN_INT (type_to_class (TREE_TYPE (CALL_EXPR_ARG (exp, 0))));
    return GEN_INT (type_to_class (TREE_TYPE (CALL_EXPR_ARG (exp, 0))));
  return GEN_INT (no_type_class);
  return GEN_INT (no_type_class);
}
}
 
 
/* This helper macro, meant to be used in mathfn_built_in below,
/* This helper macro, meant to be used in mathfn_built_in below,
   determines which among a set of three builtin math functions is
   determines which among a set of three builtin math functions is
   appropriate for a given type mode.  The `F' and `L' cases are
   appropriate for a given type mode.  The `F' and `L' cases are
   automatically generated from the `double' case.  */
   automatically generated from the `double' case.  */
#define CASE_MATHFN(BUILT_IN_MATHFN) \
#define CASE_MATHFN(BUILT_IN_MATHFN) \
  case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \
  case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \
  fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \
  fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \
  fcodel = BUILT_IN_MATHFN##L ; break;
  fcodel = BUILT_IN_MATHFN##L ; break;
/* Similar to above, but appends _R after any F/L suffix.  */
/* Similar to above, but appends _R after any F/L suffix.  */
#define CASE_MATHFN_REENT(BUILT_IN_MATHFN) \
#define CASE_MATHFN_REENT(BUILT_IN_MATHFN) \
  case BUILT_IN_MATHFN##_R: case BUILT_IN_MATHFN##F_R: case BUILT_IN_MATHFN##L_R: \
  case BUILT_IN_MATHFN##_R: case BUILT_IN_MATHFN##F_R: case BUILT_IN_MATHFN##L_R: \
  fcode = BUILT_IN_MATHFN##_R; fcodef = BUILT_IN_MATHFN##F_R ; \
  fcode = BUILT_IN_MATHFN##_R; fcodef = BUILT_IN_MATHFN##F_R ; \
  fcodel = BUILT_IN_MATHFN##L_R ; break;
  fcodel = BUILT_IN_MATHFN##L_R ; break;
 
 
/* Return mathematic function equivalent to FN but operating directly
/* Return mathematic function equivalent to FN but operating directly
   on TYPE, if available.  If IMPLICIT is true find the function in
   on TYPE, if available.  If IMPLICIT is true find the function in
   implicit_built_in_decls[], otherwise use built_in_decls[].  If we
   implicit_built_in_decls[], otherwise use built_in_decls[].  If we
   can't do the conversion, return zero.  */
   can't do the conversion, return zero.  */
 
 
static tree
static tree
mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit)
mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit)
{
{
  tree const *const fn_arr
  tree const *const fn_arr
    = implicit ? implicit_built_in_decls : built_in_decls;
    = implicit ? implicit_built_in_decls : built_in_decls;
  enum built_in_function fcode, fcodef, fcodel;
  enum built_in_function fcode, fcodef, fcodel;
 
 
  switch (fn)
  switch (fn)
    {
    {
      CASE_MATHFN (BUILT_IN_ACOS)
      CASE_MATHFN (BUILT_IN_ACOS)
      CASE_MATHFN (BUILT_IN_ACOSH)
      CASE_MATHFN (BUILT_IN_ACOSH)
      CASE_MATHFN (BUILT_IN_ASIN)
      CASE_MATHFN (BUILT_IN_ASIN)
      CASE_MATHFN (BUILT_IN_ASINH)
      CASE_MATHFN (BUILT_IN_ASINH)
      CASE_MATHFN (BUILT_IN_ATAN)
      CASE_MATHFN (BUILT_IN_ATAN)
      CASE_MATHFN (BUILT_IN_ATAN2)
      CASE_MATHFN (BUILT_IN_ATAN2)
      CASE_MATHFN (BUILT_IN_ATANH)
      CASE_MATHFN (BUILT_IN_ATANH)
      CASE_MATHFN (BUILT_IN_CBRT)
      CASE_MATHFN (BUILT_IN_CBRT)
      CASE_MATHFN (BUILT_IN_CEIL)
      CASE_MATHFN (BUILT_IN_CEIL)
      CASE_MATHFN (BUILT_IN_CEXPI)
      CASE_MATHFN (BUILT_IN_CEXPI)
      CASE_MATHFN (BUILT_IN_COPYSIGN)
      CASE_MATHFN (BUILT_IN_COPYSIGN)
      CASE_MATHFN (BUILT_IN_COS)
      CASE_MATHFN (BUILT_IN_COS)
      CASE_MATHFN (BUILT_IN_COSH)
      CASE_MATHFN (BUILT_IN_COSH)
      CASE_MATHFN (BUILT_IN_DREM)
      CASE_MATHFN (BUILT_IN_DREM)
      CASE_MATHFN (BUILT_IN_ERF)
      CASE_MATHFN (BUILT_IN_ERF)
      CASE_MATHFN (BUILT_IN_ERFC)
      CASE_MATHFN (BUILT_IN_ERFC)
      CASE_MATHFN (BUILT_IN_EXP)
      CASE_MATHFN (BUILT_IN_EXP)
      CASE_MATHFN (BUILT_IN_EXP10)
      CASE_MATHFN (BUILT_IN_EXP10)
      CASE_MATHFN (BUILT_IN_EXP2)
      CASE_MATHFN (BUILT_IN_EXP2)
      CASE_MATHFN (BUILT_IN_EXPM1)
      CASE_MATHFN (BUILT_IN_EXPM1)
      CASE_MATHFN (BUILT_IN_FABS)
      CASE_MATHFN (BUILT_IN_FABS)
      CASE_MATHFN (BUILT_IN_FDIM)
      CASE_MATHFN (BUILT_IN_FDIM)
      CASE_MATHFN (BUILT_IN_FLOOR)
      CASE_MATHFN (BUILT_IN_FLOOR)
      CASE_MATHFN (BUILT_IN_FMA)
      CASE_MATHFN (BUILT_IN_FMA)
      CASE_MATHFN (BUILT_IN_FMAX)
      CASE_MATHFN (BUILT_IN_FMAX)
      CASE_MATHFN (BUILT_IN_FMIN)
      CASE_MATHFN (BUILT_IN_FMIN)
      CASE_MATHFN (BUILT_IN_FMOD)
      CASE_MATHFN (BUILT_IN_FMOD)
      CASE_MATHFN (BUILT_IN_FREXP)
      CASE_MATHFN (BUILT_IN_FREXP)
      CASE_MATHFN (BUILT_IN_GAMMA)
      CASE_MATHFN (BUILT_IN_GAMMA)
      CASE_MATHFN_REENT (BUILT_IN_GAMMA) /* GAMMA_R */
      CASE_MATHFN_REENT (BUILT_IN_GAMMA) /* GAMMA_R */
      CASE_MATHFN (BUILT_IN_HUGE_VAL)
      CASE_MATHFN (BUILT_IN_HUGE_VAL)
      CASE_MATHFN (BUILT_IN_HYPOT)
      CASE_MATHFN (BUILT_IN_HYPOT)
      CASE_MATHFN (BUILT_IN_ILOGB)
      CASE_MATHFN (BUILT_IN_ILOGB)
      CASE_MATHFN (BUILT_IN_INF)
      CASE_MATHFN (BUILT_IN_INF)
      CASE_MATHFN (BUILT_IN_ISINF)
      CASE_MATHFN (BUILT_IN_ISINF)
      CASE_MATHFN (BUILT_IN_J0)
      CASE_MATHFN (BUILT_IN_J0)
      CASE_MATHFN (BUILT_IN_J1)
      CASE_MATHFN (BUILT_IN_J1)
      CASE_MATHFN (BUILT_IN_JN)
      CASE_MATHFN (BUILT_IN_JN)
      CASE_MATHFN (BUILT_IN_LCEIL)
      CASE_MATHFN (BUILT_IN_LCEIL)
      CASE_MATHFN (BUILT_IN_LDEXP)
      CASE_MATHFN (BUILT_IN_LDEXP)
      CASE_MATHFN (BUILT_IN_LFLOOR)
      CASE_MATHFN (BUILT_IN_LFLOOR)
      CASE_MATHFN (BUILT_IN_LGAMMA)
      CASE_MATHFN (BUILT_IN_LGAMMA)
      CASE_MATHFN_REENT (BUILT_IN_LGAMMA) /* LGAMMA_R */
      CASE_MATHFN_REENT (BUILT_IN_LGAMMA) /* LGAMMA_R */
      CASE_MATHFN (BUILT_IN_LLCEIL)
      CASE_MATHFN (BUILT_IN_LLCEIL)
      CASE_MATHFN (BUILT_IN_LLFLOOR)
      CASE_MATHFN (BUILT_IN_LLFLOOR)
      CASE_MATHFN (BUILT_IN_LLRINT)
      CASE_MATHFN (BUILT_IN_LLRINT)
      CASE_MATHFN (BUILT_IN_LLROUND)
      CASE_MATHFN (BUILT_IN_LLROUND)
      CASE_MATHFN (BUILT_IN_LOG)
      CASE_MATHFN (BUILT_IN_LOG)
      CASE_MATHFN (BUILT_IN_LOG10)
      CASE_MATHFN (BUILT_IN_LOG10)
      CASE_MATHFN (BUILT_IN_LOG1P)
      CASE_MATHFN (BUILT_IN_LOG1P)
      CASE_MATHFN (BUILT_IN_LOG2)
      CASE_MATHFN (BUILT_IN_LOG2)
      CASE_MATHFN (BUILT_IN_LOGB)
      CASE_MATHFN (BUILT_IN_LOGB)
      CASE_MATHFN (BUILT_IN_LRINT)
      CASE_MATHFN (BUILT_IN_LRINT)
      CASE_MATHFN (BUILT_IN_LROUND)
      CASE_MATHFN (BUILT_IN_LROUND)
      CASE_MATHFN (BUILT_IN_MODF)
      CASE_MATHFN (BUILT_IN_MODF)
      CASE_MATHFN (BUILT_IN_NAN)
      CASE_MATHFN (BUILT_IN_NAN)
      CASE_MATHFN (BUILT_IN_NANS)
      CASE_MATHFN (BUILT_IN_NANS)
      CASE_MATHFN (BUILT_IN_NEARBYINT)
      CASE_MATHFN (BUILT_IN_NEARBYINT)
      CASE_MATHFN (BUILT_IN_NEXTAFTER)
      CASE_MATHFN (BUILT_IN_NEXTAFTER)
      CASE_MATHFN (BUILT_IN_NEXTTOWARD)
      CASE_MATHFN (BUILT_IN_NEXTTOWARD)
      CASE_MATHFN (BUILT_IN_POW)
      CASE_MATHFN (BUILT_IN_POW)
      CASE_MATHFN (BUILT_IN_POWI)
      CASE_MATHFN (BUILT_IN_POWI)
      CASE_MATHFN (BUILT_IN_POW10)
      CASE_MATHFN (BUILT_IN_POW10)
      CASE_MATHFN (BUILT_IN_REMAINDER)
      CASE_MATHFN (BUILT_IN_REMAINDER)
      CASE_MATHFN (BUILT_IN_REMQUO)
      CASE_MATHFN (BUILT_IN_REMQUO)
      CASE_MATHFN (BUILT_IN_RINT)
      CASE_MATHFN (BUILT_IN_RINT)
      CASE_MATHFN (BUILT_IN_ROUND)
      CASE_MATHFN (BUILT_IN_ROUND)
      CASE_MATHFN (BUILT_IN_SCALB)
      CASE_MATHFN (BUILT_IN_SCALB)
      CASE_MATHFN (BUILT_IN_SCALBLN)
      CASE_MATHFN (BUILT_IN_SCALBLN)
      CASE_MATHFN (BUILT_IN_SCALBN)
      CASE_MATHFN (BUILT_IN_SCALBN)
      CASE_MATHFN (BUILT_IN_SIGNBIT)
      CASE_MATHFN (BUILT_IN_SIGNBIT)
      CASE_MATHFN (BUILT_IN_SIGNIFICAND)
      CASE_MATHFN (BUILT_IN_SIGNIFICAND)
      CASE_MATHFN (BUILT_IN_SIN)
      CASE_MATHFN (BUILT_IN_SIN)
      CASE_MATHFN (BUILT_IN_SINCOS)
      CASE_MATHFN (BUILT_IN_SINCOS)
      CASE_MATHFN (BUILT_IN_SINH)
      CASE_MATHFN (BUILT_IN_SINH)
      CASE_MATHFN (BUILT_IN_SQRT)
      CASE_MATHFN (BUILT_IN_SQRT)
      CASE_MATHFN (BUILT_IN_TAN)
      CASE_MATHFN (BUILT_IN_TAN)
      CASE_MATHFN (BUILT_IN_TANH)
      CASE_MATHFN (BUILT_IN_TANH)
      CASE_MATHFN (BUILT_IN_TGAMMA)
      CASE_MATHFN (BUILT_IN_TGAMMA)
      CASE_MATHFN (BUILT_IN_TRUNC)
      CASE_MATHFN (BUILT_IN_TRUNC)
      CASE_MATHFN (BUILT_IN_Y0)
      CASE_MATHFN (BUILT_IN_Y0)
      CASE_MATHFN (BUILT_IN_Y1)
      CASE_MATHFN (BUILT_IN_Y1)
      CASE_MATHFN (BUILT_IN_YN)
      CASE_MATHFN (BUILT_IN_YN)
 
 
      default:
      default:
        return NULL_TREE;
        return NULL_TREE;
      }
      }
 
 
  if (TYPE_MAIN_VARIANT (type) == double_type_node)
  if (TYPE_MAIN_VARIANT (type) == double_type_node)
    return fn_arr[fcode];
    return fn_arr[fcode];
  else if (TYPE_MAIN_VARIANT (type) == float_type_node)
  else if (TYPE_MAIN_VARIANT (type) == float_type_node)
    return fn_arr[fcodef];
    return fn_arr[fcodef];
  else if (TYPE_MAIN_VARIANT (type) == long_double_type_node)
  else if (TYPE_MAIN_VARIANT (type) == long_double_type_node)
    return fn_arr[fcodel];
    return fn_arr[fcodel];
  else
  else
    return NULL_TREE;
    return NULL_TREE;
}
}
 
 
/* Like mathfn_built_in_1(), but always use the implicit array.  */
/* Like mathfn_built_in_1(), but always use the implicit array.  */
 
 
tree
tree
mathfn_built_in (tree type, enum built_in_function fn)
mathfn_built_in (tree type, enum built_in_function fn)
{
{
  return mathfn_built_in_1 (type, fn, /*implicit=*/ 1);
  return mathfn_built_in_1 (type, fn, /*implicit=*/ 1);
}
}
 
 
/* If errno must be maintained, expand the RTL to check if the result,
/* If errno must be maintained, expand the RTL to check if the result,
   TARGET, of a built-in function call, EXP, is NaN, and if so set
   TARGET, of a built-in function call, EXP, is NaN, and if so set
   errno to EDOM.  */
   errno to EDOM.  */
 
 
static void
static void
expand_errno_check (tree exp, rtx target)
expand_errno_check (tree exp, rtx target)
{
{
  rtx lab = gen_label_rtx ();
  rtx lab = gen_label_rtx ();
 
 
  /* Test the result; if it is NaN, set errno=EDOM because
  /* Test the result; if it is NaN, set errno=EDOM because
     the argument was not in the domain.  */
     the argument was not in the domain.  */
  do_compare_rtx_and_jump (target, target, EQ, 0, GET_MODE (target),
  do_compare_rtx_and_jump (target, target, EQ, 0, GET_MODE (target),
                           NULL_RTX, NULL_RTX, lab,
                           NULL_RTX, NULL_RTX, lab,
                           /* The jump is very likely.  */
                           /* The jump is very likely.  */
                           REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1));
                           REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1));
 
 
#ifdef TARGET_EDOM
#ifdef TARGET_EDOM
  /* If this built-in doesn't throw an exception, set errno directly.  */
  /* If this built-in doesn't throw an exception, set errno directly.  */
  if (TREE_NOTHROW (TREE_OPERAND (CALL_EXPR_FN (exp), 0)))
  if (TREE_NOTHROW (TREE_OPERAND (CALL_EXPR_FN (exp), 0)))
    {
    {
#ifdef GEN_ERRNO_RTX
#ifdef GEN_ERRNO_RTX
      rtx errno_rtx = GEN_ERRNO_RTX;
      rtx errno_rtx = GEN_ERRNO_RTX;
#else
#else
      rtx errno_rtx
      rtx errno_rtx
          = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
          = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
#endif
#endif
      emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM));
      emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM));
      emit_label (lab);
      emit_label (lab);
      return;
      return;
    }
    }
#endif
#endif
 
 
  /* Make sure the library call isn't expanded as a tail call.  */
  /* Make sure the library call isn't expanded as a tail call.  */
  CALL_EXPR_TAILCALL (exp) = 0;
  CALL_EXPR_TAILCALL (exp) = 0;
 
 
  /* We can't set errno=EDOM directly; let the library call do it.
  /* We can't set errno=EDOM directly; let the library call do it.
     Pop the arguments right away in case the call gets deleted.  */
     Pop the arguments right away in case the call gets deleted.  */
  NO_DEFER_POP;
  NO_DEFER_POP;
  expand_call (exp, target, 0);
  expand_call (exp, target, 0);
  OK_DEFER_POP;
  OK_DEFER_POP;
  emit_label (lab);
  emit_label (lab);
}
}
 
 
/* Expand a call to one of the builtin math functions (sqrt, exp, or log).
/* Expand a call to one of the builtin math functions (sqrt, exp, or log).
   Return NULL_RTX if a normal call should be emitted rather than expanding
   Return NULL_RTX if a normal call should be emitted rather than expanding
   the function in-line.  EXP is the expression that is a call to the builtin
   the function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_mathfn (tree exp, rtx target, rtx subtarget)
expand_builtin_mathfn (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, insns;
  rtx op0, insns;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  enum machine_mode mode;
  enum machine_mode mode;
  bool errno_set = false;
  bool errno_set = false;
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
      errno_set = ! tree_expr_nonnegative_p (arg);
      errno_set = ! tree_expr_nonnegative_p (arg);
      builtin_optab = sqrt_optab;
      builtin_optab = sqrt_optab;
      break;
      break;
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
      errno_set = true; builtin_optab = exp_optab; break;
      errno_set = true; builtin_optab = exp_optab; break;
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
      errno_set = true; builtin_optab = exp10_optab; break;
      errno_set = true; builtin_optab = exp10_optab; break;
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
      errno_set = true; builtin_optab = exp2_optab; break;
      errno_set = true; builtin_optab = exp2_optab; break;
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_EXPM1):
      errno_set = true; builtin_optab = expm1_optab; break;
      errno_set = true; builtin_optab = expm1_optab; break;
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_LOGB):
      errno_set = true; builtin_optab = logb_optab; break;
      errno_set = true; builtin_optab = logb_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
      errno_set = true; builtin_optab = log_optab; break;
      errno_set = true; builtin_optab = log_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
      errno_set = true; builtin_optab = log10_optab; break;
      errno_set = true; builtin_optab = log10_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
      errno_set = true; builtin_optab = log2_optab; break;
      errno_set = true; builtin_optab = log2_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
      errno_set = true; builtin_optab = log1p_optab; break;
      errno_set = true; builtin_optab = log1p_optab; break;
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
      builtin_optab = asin_optab; break;
      builtin_optab = asin_optab; break;
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
      builtin_optab = acos_optab; break;
      builtin_optab = acos_optab; break;
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
      builtin_optab = tan_optab; break;
      builtin_optab = tan_optab; break;
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
      builtin_optab = atan_optab; break;
      builtin_optab = atan_optab; break;
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_FLOOR):
      builtin_optab = floor_optab; break;
      builtin_optab = floor_optab; break;
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_CEIL):
      builtin_optab = ceil_optab; break;
      builtin_optab = ceil_optab; break;
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_TRUNC):
      builtin_optab = btrunc_optab; break;
      builtin_optab = btrunc_optab; break;
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_ROUND):
      builtin_optab = round_optab; break;
      builtin_optab = round_optab; break;
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
      builtin_optab = nearbyint_optab;
      builtin_optab = nearbyint_optab;
      if (flag_trapping_math)
      if (flag_trapping_math)
        break;
        break;
      /* Else fallthrough and expand as rint.  */
      /* Else fallthrough and expand as rint.  */
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_RINT):
      builtin_optab = rint_optab; break;
      builtin_optab = rint_optab; break;
    CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
    CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
      builtin_optab = significand_optab; break;
      builtin_optab = significand_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  if (! flag_errno_math || ! HONOR_NANS (mode))
  if (! flag_errno_math || ! HONOR_NANS (mode))
    errno_set = false;
    errno_set = false;
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (optab_handler (builtin_optab, mode)->insn_code != CODE_FOR_nothing)
  if (optab_handler (builtin_optab, mode)->insn_code != CODE_FOR_nothing)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
 
 
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
         need to expand the argument again.  This way, we will not perform
         need to expand the argument again.  This way, we will not perform
         side-effects more the once.  */
         side-effects more the once.  */
      CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
      CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Compute into TARGET.
      /* Compute into TARGET.
         Set TARGET to wherever the result comes back.  */
         Set TARGET to wherever the result comes back.  */
      target = expand_unop (mode, builtin_optab, op0, target, 0);
      target = expand_unop (mode, builtin_optab, op0, target, 0);
 
 
      if (target != 0)
      if (target != 0)
        {
        {
          if (errno_set)
          if (errno_set)
            expand_errno_check (exp, target);
            expand_errno_check (exp, target);
 
 
          /* Output the entire sequence.  */
          /* Output the entire sequence.  */
          insns = get_insns ();
          insns = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (insns);
          emit_insn (insns);
          return target;
          return target;
        }
        }
 
 
      /* If we were unable to expand via the builtin, stop the sequence
      /* If we were unable to expand via the builtin, stop the sequence
         (without outputting the insns) and call to the library function
         (without outputting the insns) and call to the library function
         with the stabilized argument list.  */
         with the stabilized argument list.  */
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  return expand_call (exp, target, target == const0_rtx);
  return expand_call (exp, target, target == const0_rtx);
}
}
 
 
/* Expand a call to the builtin binary math functions (pow and atan2).
/* Expand a call to the builtin binary math functions (pow and atan2).
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's
   SUBTARGET may be used as the target for computing one of EXP's
   operands.  */
   operands.  */
 
 
static rtx
static rtx
expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget)
expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, op1, insns;
  rtx op0, op1, insns;
  int op1_type = REAL_TYPE;
  int op1_type = REAL_TYPE;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arg0, arg1;
  tree arg0, arg1;
  enum machine_mode mode;
  enum machine_mode mode;
  bool errno_set = true;
  bool errno_set = true;
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_LDEXP):
      op1_type = INTEGER_TYPE;
      op1_type = INTEGER_TYPE;
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (!validate_arglist (exp, REAL_TYPE, op1_type, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, op1_type, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg1 = CALL_EXPR_ARG (exp, 1);
  arg1 = CALL_EXPR_ARG (exp, 1);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_POW):
    CASE_FLT_FN (BUILT_IN_POW):
      builtin_optab = pow_optab; break;
      builtin_optab = pow_optab; break;
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_ATAN2):
      builtin_optab = atan2_optab; break;
      builtin_optab = atan2_optab; break;
    CASE_FLT_FN (BUILT_IN_SCALB):
    CASE_FLT_FN (BUILT_IN_SCALB):
      if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2)
      if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2)
        return 0;
        return 0;
      builtin_optab = scalb_optab; break;
      builtin_optab = scalb_optab; break;
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
      if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2)
      if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2)
        return 0;
        return 0;
    /* Fall through... */
    /* Fall through... */
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_LDEXP):
      builtin_optab = ldexp_optab; break;
      builtin_optab = ldexp_optab; break;
    CASE_FLT_FN (BUILT_IN_FMOD):
    CASE_FLT_FN (BUILT_IN_FMOD):
      builtin_optab = fmod_optab; break;
      builtin_optab = fmod_optab; break;
    CASE_FLT_FN (BUILT_IN_REMAINDER):
    CASE_FLT_FN (BUILT_IN_REMAINDER):
    CASE_FLT_FN (BUILT_IN_DREM):
    CASE_FLT_FN (BUILT_IN_DREM):
      builtin_optab = remainder_optab; break;
      builtin_optab = remainder_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (optab_handler (builtin_optab, mode)->insn_code == CODE_FOR_nothing)
  if (optab_handler (builtin_optab, mode)->insn_code == CODE_FOR_nothing)
    return NULL_RTX;
    return NULL_RTX;
 
 
  target = gen_reg_rtx (mode);
  target = gen_reg_rtx (mode);
 
 
  if (! flag_errno_math || ! HONOR_NANS (mode))
  if (! flag_errno_math || ! HONOR_NANS (mode))
    errno_set = false;
    errno_set = false;
 
 
  /* Always stabilize the argument list.  */
  /* Always stabilize the argument list.  */
  CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0);
  CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0);
  CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1);
  CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1);
 
 
  op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
  op1 = expand_normal (arg1);
  op1 = expand_normal (arg1);
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* Compute into TARGET.
  /* Compute into TARGET.
     Set TARGET to wherever the result comes back.  */
     Set TARGET to wherever the result comes back.  */
  target = expand_binop (mode, builtin_optab, op0, op1,
  target = expand_binop (mode, builtin_optab, op0, op1,
                         target, 0, OPTAB_DIRECT);
                         target, 0, OPTAB_DIRECT);
 
 
  /* If we were unable to expand via the builtin, stop the sequence
  /* If we were unable to expand via the builtin, stop the sequence
     (without outputting the insns) and call to the library function
     (without outputting the insns) and call to the library function
     with the stabilized argument list.  */
     with the stabilized argument list.  */
  if (target == 0)
  if (target == 0)
    {
    {
      end_sequence ();
      end_sequence ();
      return expand_call (exp, target, target == const0_rtx);
      return expand_call (exp, target, target == const0_rtx);
    }
    }
 
 
  if (errno_set)
  if (errno_set)
    expand_errno_check (exp, target);
    expand_errno_check (exp, target);
 
 
  /* Output the entire sequence.  */
  /* Output the entire sequence.  */
  insns = get_insns ();
  insns = get_insns ();
  end_sequence ();
  end_sequence ();
  emit_insn (insns);
  emit_insn (insns);
 
 
  return target;
  return target;
}
}
 
 
/* Expand a call to the builtin sin and cos math functions.
/* Expand a call to the builtin sin and cos math functions.
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's
   SUBTARGET may be used as the target for computing one of EXP's
   operands.  */
   operands.  */
 
 
static rtx
static rtx
expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget)
expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, insns;
  rtx op0, insns;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_COS):
    CASE_FLT_FN (BUILT_IN_COS):
      builtin_optab = sincos_optab; break;
      builtin_optab = sincos_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Check if sincos insn is available, otherwise fallback
  /* Check if sincos insn is available, otherwise fallback
     to sin or cos insn.  */
     to sin or cos insn.  */
  if (optab_handler (builtin_optab, mode)->insn_code == CODE_FOR_nothing)
  if (optab_handler (builtin_optab, mode)->insn_code == CODE_FOR_nothing)
    switch (DECL_FUNCTION_CODE (fndecl))
    switch (DECL_FUNCTION_CODE (fndecl))
      {
      {
      CASE_FLT_FN (BUILT_IN_SIN):
      CASE_FLT_FN (BUILT_IN_SIN):
        builtin_optab = sin_optab; break;
        builtin_optab = sin_optab; break;
      CASE_FLT_FN (BUILT_IN_COS):
      CASE_FLT_FN (BUILT_IN_COS):
        builtin_optab = cos_optab; break;
        builtin_optab = cos_optab; break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (optab_handler (builtin_optab, mode)->insn_code != CODE_FOR_nothing)
  if (optab_handler (builtin_optab, mode)->insn_code != CODE_FOR_nothing)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
 
 
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
         need to expand the argument again.  This way, we will not perform
         need to expand the argument again.  This way, we will not perform
         side-effects more the once.  */
         side-effects more the once.  */
      CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
      CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Compute into TARGET.
      /* Compute into TARGET.
         Set TARGET to wherever the result comes back.  */
         Set TARGET to wherever the result comes back.  */
      if (builtin_optab == sincos_optab)
      if (builtin_optab == sincos_optab)
        {
        {
          int result;
          int result;
 
 
          switch (DECL_FUNCTION_CODE (fndecl))
          switch (DECL_FUNCTION_CODE (fndecl))
            {
            {
            CASE_FLT_FN (BUILT_IN_SIN):
            CASE_FLT_FN (BUILT_IN_SIN):
              result = expand_twoval_unop (builtin_optab, op0, 0, target, 0);
              result = expand_twoval_unop (builtin_optab, op0, 0, target, 0);
              break;
              break;
            CASE_FLT_FN (BUILT_IN_COS):
            CASE_FLT_FN (BUILT_IN_COS):
              result = expand_twoval_unop (builtin_optab, op0, target, 0, 0);
              result = expand_twoval_unop (builtin_optab, op0, target, 0, 0);
              break;
              break;
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
          gcc_assert (result);
          gcc_assert (result);
        }
        }
      else
      else
        {
        {
          target = expand_unop (mode, builtin_optab, op0, target, 0);
          target = expand_unop (mode, builtin_optab, op0, target, 0);
        }
        }
 
 
      if (target != 0)
      if (target != 0)
        {
        {
          /* Output the entire sequence.  */
          /* Output the entire sequence.  */
          insns = get_insns ();
          insns = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (insns);
          emit_insn (insns);
          return target;
          return target;
        }
        }
 
 
      /* If we were unable to expand via the builtin, stop the sequence
      /* If we were unable to expand via the builtin, stop the sequence
         (without outputting the insns) and call to the library function
         (without outputting the insns) and call to the library function
         with the stabilized argument list.  */
         with the stabilized argument list.  */
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  target = expand_call (exp, target, target == const0_rtx);
  target = expand_call (exp, target, target == const0_rtx);
 
 
  return target;
  return target;
}
}
 
 
/* Given an interclass math builtin decl FNDECL and it's argument ARG
/* Given an interclass math builtin decl FNDECL and it's argument ARG
   return an RTL instruction code that implements the functionality.
   return an RTL instruction code that implements the functionality.
   If that isn't possible or available return CODE_FOR_nothing.  */
   If that isn't possible or available return CODE_FOR_nothing.  */
 
 
static enum insn_code
static enum insn_code
interclass_mathfn_icode (tree arg, tree fndecl)
interclass_mathfn_icode (tree arg, tree fndecl)
{
{
  bool errno_set = false;
  bool errno_set = false;
  optab builtin_optab = 0;
  optab builtin_optab = 0;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_ILOGB):
      errno_set = true; builtin_optab = ilogb_optab; break;
      errno_set = true; builtin_optab = ilogb_optab; break;
    CASE_FLT_FN (BUILT_IN_ISINF):
    CASE_FLT_FN (BUILT_IN_ISINF):
      builtin_optab = isinf_optab; break;
      builtin_optab = isinf_optab; break;
    case BUILT_IN_ISNORMAL:
    case BUILT_IN_ISNORMAL:
    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISFINITE:
    CASE_FLT_FN (BUILT_IN_FINITE):
    CASE_FLT_FN (BUILT_IN_FINITE):
    case BUILT_IN_FINITED32:
    case BUILT_IN_FINITED32:
    case BUILT_IN_FINITED64:
    case BUILT_IN_FINITED64:
    case BUILT_IN_FINITED128:
    case BUILT_IN_FINITED128:
    case BUILT_IN_ISINFD32:
    case BUILT_IN_ISINFD32:
    case BUILT_IN_ISINFD64:
    case BUILT_IN_ISINFD64:
    case BUILT_IN_ISINFD128:
    case BUILT_IN_ISINFD128:
      /* These builtins have no optabs (yet).  */
      /* These builtins have no optabs (yet).  */
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* There's no easy way to detect the case we need to set EDOM.  */
  /* There's no easy way to detect the case we need to set EDOM.  */
  if (flag_errno_math && errno_set)
  if (flag_errno_math && errno_set)
    return CODE_FOR_nothing;
    return CODE_FOR_nothing;
 
 
  /* Optab mode depends on the mode of the input argument.  */
  /* Optab mode depends on the mode of the input argument.  */
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
 
 
  if (builtin_optab)
  if (builtin_optab)
    return optab_handler (builtin_optab, mode)->insn_code;
    return optab_handler (builtin_optab, mode)->insn_code;
  return CODE_FOR_nothing;
  return CODE_FOR_nothing;
}
}
 
 
/* Expand a call to one of the builtin math functions that operate on
/* Expand a call to one of the builtin math functions that operate on
   floating point argument and output an integer result (ilogb, isinf,
   floating point argument and output an integer result (ilogb, isinf,
   isnan, etc).
   isnan, etc).
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_interclass_mathfn (tree exp, rtx target, rtx subtarget)
expand_builtin_interclass_mathfn (tree exp, rtx target, rtx subtarget)
{
{
  enum insn_code icode = CODE_FOR_nothing;
  enum insn_code icode = CODE_FOR_nothing;
  rtx op0;
  rtx op0;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  icode = interclass_mathfn_icode (arg, fndecl);
  icode = interclass_mathfn_icode (arg, fndecl);
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
 
 
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      rtx last = get_last_insn ();
      rtx last = get_last_insn ();
      tree orig_arg = arg;
      tree orig_arg = arg;
      /* Make a suitable register to place result in.  */
      /* Make a suitable register to place result in.  */
      if (!target
      if (!target
          || GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))
          || GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))
          || !insn_data[icode].operand[0].predicate (target, GET_MODE (target)))
          || !insn_data[icode].operand[0].predicate (target, GET_MODE (target)))
         target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
         target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
 
 
      gcc_assert (insn_data[icode].operand[0].predicate
      gcc_assert (insn_data[icode].operand[0].predicate
                  (target, GET_MODE (target)));
                  (target, GET_MODE (target)));
 
 
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
         need to expand the argument again.  This way, we will not perform
         need to expand the argument again.  This way, we will not perform
         side-effects more the once.  */
         side-effects more the once.  */
      CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
      CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
      if (mode != GET_MODE (op0))
      if (mode != GET_MODE (op0))
        op0 = convert_to_mode (mode, op0, 0);
        op0 = convert_to_mode (mode, op0, 0);
 
 
      /* Compute into TARGET.
      /* Compute into TARGET.
         Set TARGET to wherever the result comes back.  */
         Set TARGET to wherever the result comes back.  */
      if (maybe_emit_unop_insn (icode, target, op0, UNKNOWN))
      if (maybe_emit_unop_insn (icode, target, op0, UNKNOWN))
        return target;
        return target;
      delete_insns_since (last);
      delete_insns_since (last);
      CALL_EXPR_ARG (exp, 0) = orig_arg;
      CALL_EXPR_ARG (exp, 0) = orig_arg;
    }
    }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Expand a call to the builtin sincos math function.
/* Expand a call to the builtin sincos math function.
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function.  */
   function.  */
 
 
static rtx
static rtx
expand_builtin_sincos (tree exp)
expand_builtin_sincos (tree exp)
{
{
  rtx op0, op1, op2, target1, target2;
  rtx op0, op1, op2, target1, target2;
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg, sinp, cosp;
  tree arg, sinp, cosp;
  int result;
  int result;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp, REAL_TYPE,
  if (!validate_arglist (exp, REAL_TYPE,
                         POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  sinp = CALL_EXPR_ARG (exp, 1);
  sinp = CALL_EXPR_ARG (exp, 1);
  cosp = CALL_EXPR_ARG (exp, 2);
  cosp = CALL_EXPR_ARG (exp, 2);
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
 
 
  /* Check if sincos insn is available, otherwise emit the call.  */
  /* Check if sincos insn is available, otherwise emit the call.  */
  if (optab_handler (sincos_optab, mode)->insn_code == CODE_FOR_nothing)
  if (optab_handler (sincos_optab, mode)->insn_code == CODE_FOR_nothing)
    return NULL_RTX;
    return NULL_RTX;
 
 
  target1 = gen_reg_rtx (mode);
  target1 = gen_reg_rtx (mode);
  target2 = gen_reg_rtx (mode);
  target2 = gen_reg_rtx (mode);
 
 
  op0 = expand_normal (arg);
  op0 = expand_normal (arg);
  op1 = expand_normal (build_fold_indirect_ref_loc (loc, sinp));
  op1 = expand_normal (build_fold_indirect_ref_loc (loc, sinp));
  op2 = expand_normal (build_fold_indirect_ref_loc (loc, cosp));
  op2 = expand_normal (build_fold_indirect_ref_loc (loc, cosp));
 
 
  /* Compute into target1 and target2.
  /* Compute into target1 and target2.
     Set TARGET to wherever the result comes back.  */
     Set TARGET to wherever the result comes back.  */
  result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0);
  result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0);
  gcc_assert (result);
  gcc_assert (result);
 
 
  /* Move target1 and target2 to the memory locations indicated
  /* Move target1 and target2 to the memory locations indicated
     by op1 and op2.  */
     by op1 and op2.  */
  emit_move_insn (op1, target1);
  emit_move_insn (op1, target1);
  emit_move_insn (op2, target2);
  emit_move_insn (op2, target2);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to the internal cexpi builtin to the sincos math function.
/* Expand a call to the internal cexpi builtin to the sincos math function.
   EXP is the expression that is a call to the builtin function; if convenient,
   EXP is the expression that is a call to the builtin function; if convenient,
   the result should be placed in TARGET.  SUBTARGET may be used as the target
   the result should be placed in TARGET.  SUBTARGET may be used as the target
   for computing one of EXP's operands.  */
   for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_cexpi (tree exp, rtx target, rtx subtarget)
expand_builtin_cexpi (tree exp, rtx target, rtx subtarget)
{
{
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arg, type;
  tree arg, type;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx op0, op1, op2;
  rtx op0, op1, op2;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  type = TREE_TYPE (arg);
  type = TREE_TYPE (arg);
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
 
 
  /* Try expanding via a sincos optab, fall back to emitting a libcall
  /* Try expanding via a sincos optab, fall back to emitting a libcall
     to sincos or cexp.  We are sure we have sincos or cexp because cexpi
     to sincos or cexp.  We are sure we have sincos or cexp because cexpi
     is only generated from sincos, cexp or if we have either of them.  */
     is only generated from sincos, cexp or if we have either of them.  */
  if (optab_handler (sincos_optab, mode)->insn_code != CODE_FOR_nothing)
  if (optab_handler (sincos_optab, mode)->insn_code != CODE_FOR_nothing)
    {
    {
      op1 = gen_reg_rtx (mode);
      op1 = gen_reg_rtx (mode);
      op2 = gen_reg_rtx (mode);
      op2 = gen_reg_rtx (mode);
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
      op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
      /* Compute into op1 and op2.  */
      /* Compute into op1 and op2.  */
      expand_twoval_unop (sincos_optab, op0, op2, op1, 0);
      expand_twoval_unop (sincos_optab, op0, op2, op1, 0);
    }
    }
  else if (TARGET_HAS_SINCOS)
  else if (TARGET_HAS_SINCOS)
    {
    {
      tree call, fn = NULL_TREE;
      tree call, fn = NULL_TREE;
      tree top1, top2;
      tree top1, top2;
      rtx op1a, op2a;
      rtx op1a, op2a;
 
 
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
        fn = built_in_decls[BUILT_IN_SINCOSF];
        fn = built_in_decls[BUILT_IN_SINCOSF];
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
        fn = built_in_decls[BUILT_IN_SINCOS];
        fn = built_in_decls[BUILT_IN_SINCOS];
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
        fn = built_in_decls[BUILT_IN_SINCOSL];
        fn = built_in_decls[BUILT_IN_SINCOSL];
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
 
 
      op1 = assign_temp (TREE_TYPE (arg), 0, 1, 1);
      op1 = assign_temp (TREE_TYPE (arg), 0, 1, 1);
      op2 = assign_temp (TREE_TYPE (arg), 0, 1, 1);
      op2 = assign_temp (TREE_TYPE (arg), 0, 1, 1);
      op1a = copy_to_mode_reg (Pmode, XEXP (op1, 0));
      op1a = copy_to_mode_reg (Pmode, XEXP (op1, 0));
      op2a = copy_to_mode_reg (Pmode, XEXP (op2, 0));
      op2a = copy_to_mode_reg (Pmode, XEXP (op2, 0));
      top1 = make_tree (build_pointer_type (TREE_TYPE (arg)), op1a);
      top1 = make_tree (build_pointer_type (TREE_TYPE (arg)), op1a);
      top2 = make_tree (build_pointer_type (TREE_TYPE (arg)), op2a);
      top2 = make_tree (build_pointer_type (TREE_TYPE (arg)), op2a);
 
 
      /* Make sure not to fold the sincos call again.  */
      /* Make sure not to fold the sincos call again.  */
      call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
      call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
      expand_normal (build_call_nary (TREE_TYPE (TREE_TYPE (fn)),
      expand_normal (build_call_nary (TREE_TYPE (TREE_TYPE (fn)),
                                      call, 3, arg, top1, top2));
                                      call, 3, arg, top1, top2));
    }
    }
  else
  else
    {
    {
      tree call, fn = NULL_TREE, narg;
      tree call, fn = NULL_TREE, narg;
      tree ctype = build_complex_type (type);
      tree ctype = build_complex_type (type);
 
 
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
        fn = built_in_decls[BUILT_IN_CEXPF];
        fn = built_in_decls[BUILT_IN_CEXPF];
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
        fn = built_in_decls[BUILT_IN_CEXP];
        fn = built_in_decls[BUILT_IN_CEXP];
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
      else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
        fn = built_in_decls[BUILT_IN_CEXPL];
        fn = built_in_decls[BUILT_IN_CEXPL];
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
 
 
      /* If we don't have a decl for cexp create one.  This is the
      /* If we don't have a decl for cexp create one.  This is the
         friendliest fallback if the user calls __builtin_cexpi
         friendliest fallback if the user calls __builtin_cexpi
         without full target C99 function support.  */
         without full target C99 function support.  */
      if (fn == NULL_TREE)
      if (fn == NULL_TREE)
        {
        {
          tree fntype;
          tree fntype;
          const char *name = NULL;
          const char *name = NULL;
 
 
          if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
          if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
            name = "cexpf";
            name = "cexpf";
          else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
          else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
            name = "cexp";
            name = "cexp";
          else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
          else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
            name = "cexpl";
            name = "cexpl";
 
 
          fntype = build_function_type_list (ctype, ctype, NULL_TREE);
          fntype = build_function_type_list (ctype, ctype, NULL_TREE);
          fn = build_fn_decl (name, fntype);
          fn = build_fn_decl (name, fntype);
        }
        }
 
 
      narg = fold_build2_loc (loc, COMPLEX_EXPR, ctype,
      narg = fold_build2_loc (loc, COMPLEX_EXPR, ctype,
                          build_real (type, dconst0), arg);
                          build_real (type, dconst0), arg);
 
 
      /* Make sure not to fold the cexp call again.  */
      /* Make sure not to fold the cexp call again.  */
      call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
      call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
      return expand_expr (build_call_nary (ctype, call, 1, narg),
      return expand_expr (build_call_nary (ctype, call, 1, narg),
                          target, VOIDmode, EXPAND_NORMAL);
                          target, VOIDmode, EXPAND_NORMAL);
    }
    }
 
 
  /* Now build the proper return type.  */
  /* Now build the proper return type.  */
  return expand_expr (build2 (COMPLEX_EXPR, build_complex_type (type),
  return expand_expr (build2 (COMPLEX_EXPR, build_complex_type (type),
                              make_tree (TREE_TYPE (arg), op2),
                              make_tree (TREE_TYPE (arg), op2),
                              make_tree (TREE_TYPE (arg), op1)),
                              make_tree (TREE_TYPE (arg), op1)),
                      target, VOIDmode, EXPAND_NORMAL);
                      target, VOIDmode, EXPAND_NORMAL);
}
}
 
 
/* Conveniently construct a function call expression.  FNDECL names the
/* Conveniently construct a function call expression.  FNDECL names the
   function to be called, N is the number of arguments, and the "..."
   function to be called, N is the number of arguments, and the "..."
   parameters are the argument expressions.  Unlike build_call_exr
   parameters are the argument expressions.  Unlike build_call_exr
   this doesn't fold the call, hence it will always return a CALL_EXPR.  */
   this doesn't fold the call, hence it will always return a CALL_EXPR.  */
 
 
static tree
static tree
build_call_nofold_loc (location_t loc, tree fndecl, int n, ...)
build_call_nofold_loc (location_t loc, tree fndecl, int n, ...)
{
{
  va_list ap;
  va_list ap;
  tree fntype = TREE_TYPE (fndecl);
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
 
 
  va_start (ap, n);
  va_start (ap, n);
  fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap);
  fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap);
  va_end (ap);
  va_end (ap);
  SET_EXPR_LOCATION (fn, loc);
  SET_EXPR_LOCATION (fn, loc);
  return fn;
  return fn;
}
}
 
 
/* Expand a call to one of the builtin rounding functions gcc defines
/* Expand a call to one of the builtin rounding functions gcc defines
   as an extension (lfloor and lceil).  As these are gcc extensions we
   as an extension (lfloor and lceil).  As these are gcc extensions we
   do not need to worry about setting errno to EDOM.
   do not need to worry about setting errno to EDOM.
   If expanding via optab fails, lower expression to (int)(floor(x)).
   If expanding via optab fails, lower expression to (int)(floor(x)).
   EXP is the expression that is a call to the builtin function;
   EXP is the expression that is a call to the builtin function;
   if convenient, the result should be placed in TARGET.  */
   if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_int_roundingfn (tree exp, rtx target)
expand_builtin_int_roundingfn (tree exp, rtx target)
{
{
  convert_optab builtin_optab;
  convert_optab builtin_optab;
  rtx op0, insns, tmp;
  rtx op0, insns, tmp;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  enum built_in_function fallback_fn;
  enum built_in_function fallback_fn;
  tree fallback_fndecl;
  tree fallback_fndecl;
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
      builtin_optab = lceil_optab;
      builtin_optab = lceil_optab;
      fallback_fn = BUILT_IN_CEIL;
      fallback_fn = BUILT_IN_CEIL;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
      builtin_optab = lfloor_optab;
      builtin_optab = lfloor_optab;
      fallback_fn = BUILT_IN_FLOOR;
      fallback_fn = BUILT_IN_FLOOR;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  target = gen_reg_rtx (mode);
  target = gen_reg_rtx (mode);
 
 
  /* Wrap the computation of the argument in a SAVE_EXPR, as we may
  /* Wrap the computation of the argument in a SAVE_EXPR, as we may
     need to expand the argument again.  This way, we will not perform
     need to expand the argument again.  This way, we will not perform
     side-effects more the once.  */
     side-effects more the once.  */
  CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
  CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
 
 
  op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* Compute into TARGET.  */
  /* Compute into TARGET.  */
  if (expand_sfix_optab (target, op0, builtin_optab))
  if (expand_sfix_optab (target, op0, builtin_optab))
    {
    {
      /* Output the entire sequence.  */
      /* Output the entire sequence.  */
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
      emit_insn (insns);
      emit_insn (insns);
      return target;
      return target;
    }
    }
 
 
  /* If we were unable to expand via the builtin, stop the sequence
  /* If we were unable to expand via the builtin, stop the sequence
     (without outputting the insns).  */
     (without outputting the insns).  */
  end_sequence ();
  end_sequence ();
 
 
  /* Fall back to floating point rounding optab.  */
  /* Fall back to floating point rounding optab.  */
  fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn);
  fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn);
 
 
  /* For non-C99 targets we may end up without a fallback fndecl here
  /* For non-C99 targets we may end up without a fallback fndecl here
     if the user called __builtin_lfloor directly.  In this case emit
     if the user called __builtin_lfloor directly.  In this case emit
     a call to the floor/ceil variants nevertheless.  This should result
     a call to the floor/ceil variants nevertheless.  This should result
     in the best user experience for not full C99 targets.  */
     in the best user experience for not full C99 targets.  */
  if (fallback_fndecl == NULL_TREE)
  if (fallback_fndecl == NULL_TREE)
    {
    {
      tree fntype;
      tree fntype;
      const char *name = NULL;
      const char *name = NULL;
 
 
      switch (DECL_FUNCTION_CODE (fndecl))
      switch (DECL_FUNCTION_CODE (fndecl))
        {
        {
        case BUILT_IN_LCEIL:
        case BUILT_IN_LCEIL:
        case BUILT_IN_LLCEIL:
        case BUILT_IN_LLCEIL:
          name = "ceil";
          name = "ceil";
          break;
          break;
        case BUILT_IN_LCEILF:
        case BUILT_IN_LCEILF:
        case BUILT_IN_LLCEILF:
        case BUILT_IN_LLCEILF:
          name = "ceilf";
          name = "ceilf";
          break;
          break;
        case BUILT_IN_LCEILL:
        case BUILT_IN_LCEILL:
        case BUILT_IN_LLCEILL:
        case BUILT_IN_LLCEILL:
          name = "ceill";
          name = "ceill";
          break;
          break;
        case BUILT_IN_LFLOOR:
        case BUILT_IN_LFLOOR:
        case BUILT_IN_LLFLOOR:
        case BUILT_IN_LLFLOOR:
          name = "floor";
          name = "floor";
          break;
          break;
        case BUILT_IN_LFLOORF:
        case BUILT_IN_LFLOORF:
        case BUILT_IN_LLFLOORF:
        case BUILT_IN_LLFLOORF:
          name = "floorf";
          name = "floorf";
          break;
          break;
        case BUILT_IN_LFLOORL:
        case BUILT_IN_LFLOORL:
        case BUILT_IN_LLFLOORL:
        case BUILT_IN_LLFLOORL:
          name = "floorl";
          name = "floorl";
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      fntype = build_function_type_list (TREE_TYPE (arg),
      fntype = build_function_type_list (TREE_TYPE (arg),
                                         TREE_TYPE (arg), NULL_TREE);
                                         TREE_TYPE (arg), NULL_TREE);
      fallback_fndecl = build_fn_decl (name, fntype);
      fallback_fndecl = build_fn_decl (name, fntype);
    }
    }
 
 
  exp = build_call_nofold_loc (EXPR_LOCATION (exp), fallback_fndecl, 1, arg);
  exp = build_call_nofold_loc (EXPR_LOCATION (exp), fallback_fndecl, 1, arg);
 
 
  tmp = expand_normal (exp);
  tmp = expand_normal (exp);
 
 
  /* Truncate the result of floating point optab to integer
  /* Truncate the result of floating point optab to integer
     via expand_fix ().  */
     via expand_fix ().  */
  target = gen_reg_rtx (mode);
  target = gen_reg_rtx (mode);
  expand_fix (target, tmp, 0);
  expand_fix (target, tmp, 0);
 
 
  return target;
  return target;
}
}
 
 
/* Expand a call to one of the builtin math functions doing integer
/* Expand a call to one of the builtin math functions doing integer
   conversion (lrint).
   conversion (lrint).
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.  */
   function; if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_int_roundingfn_2 (tree exp, rtx target)
expand_builtin_int_roundingfn_2 (tree exp, rtx target)
{
{
  convert_optab builtin_optab;
  convert_optab builtin_optab;
  rtx op0, insns;
  rtx op0, insns;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arg;
  tree arg;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* There's no easy way to detect the case we need to set EDOM.  */
  /* There's no easy way to detect the case we need to set EDOM.  */
  if (flag_errno_math)
  if (flag_errno_math)
    return NULL_RTX;
    return NULL_RTX;
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
     gcc_unreachable ();
     gcc_unreachable ();
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
      builtin_optab = lrint_optab; break;
      builtin_optab = lrint_optab; break;
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
      builtin_optab = lround_optab; break;
      builtin_optab = lround_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  target = gen_reg_rtx (mode);
  target = gen_reg_rtx (mode);
 
 
  /* Wrap the computation of the argument in a SAVE_EXPR, as we may
  /* Wrap the computation of the argument in a SAVE_EXPR, as we may
     need to expand the argument again.  This way, we will not perform
     need to expand the argument again.  This way, we will not perform
     side-effects more the once.  */
     side-effects more the once.  */
  CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
  CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
 
 
  op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
 
 
  start_sequence ();
  start_sequence ();
 
 
  if (expand_sfix_optab (target, op0, builtin_optab))
  if (expand_sfix_optab (target, op0, builtin_optab))
    {
    {
      /* Output the entire sequence.  */
      /* Output the entire sequence.  */
      insns = get_insns ();
      insns = get_insns ();
      end_sequence ();
      end_sequence ();
      emit_insn (insns);
      emit_insn (insns);
      return target;
      return target;
    }
    }
 
 
  /* If we were unable to expand via the builtin, stop the sequence
  /* If we were unable to expand via the builtin, stop the sequence
     (without outputting the insns) and call to the library function
     (without outputting the insns) and call to the library function
     with the stabilized argument list.  */
     with the stabilized argument list.  */
  end_sequence ();
  end_sequence ();
 
 
  target = expand_call (exp, target, target == const0_rtx);
  target = expand_call (exp, target, target == const0_rtx);
 
 
  return target;
  return target;
}
}
 
 
/* To evaluate powi(x,n), the floating point value x raised to the
/* To evaluate powi(x,n), the floating point value x raised to the
   constant integer exponent n, we use a hybrid algorithm that
   constant integer exponent n, we use a hybrid algorithm that
   combines the "window method" with look-up tables.  For an
   combines the "window method" with look-up tables.  For an
   introduction to exponentiation algorithms and "addition chains",
   introduction to exponentiation algorithms and "addition chains",
   see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
   see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
   "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
   "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
   3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
   3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
   Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */
   Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */
 
 
/* Provide a default value for POWI_MAX_MULTS, the maximum number of
/* Provide a default value for POWI_MAX_MULTS, the maximum number of
   multiplications to inline before calling the system library's pow
   multiplications to inline before calling the system library's pow
   function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
   function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
   so this default never requires calling pow, powf or powl.  */
   so this default never requires calling pow, powf or powl.  */
 
 
#ifndef POWI_MAX_MULTS
#ifndef POWI_MAX_MULTS
#define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
#define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
#endif
#endif
 
 
/* The size of the "optimal power tree" lookup table.  All
/* The size of the "optimal power tree" lookup table.  All
   exponents less than this value are simply looked up in the
   exponents less than this value are simply looked up in the
   powi_table below.  This threshold is also used to size the
   powi_table below.  This threshold is also used to size the
   cache of pseudo registers that hold intermediate results.  */
   cache of pseudo registers that hold intermediate results.  */
#define POWI_TABLE_SIZE 256
#define POWI_TABLE_SIZE 256
 
 
/* The size, in bits of the window, used in the "window method"
/* The size, in bits of the window, used in the "window method"
   exponentiation algorithm.  This is equivalent to a radix of
   exponentiation algorithm.  This is equivalent to a radix of
   (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
   (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
#define POWI_WINDOW_SIZE 3
#define POWI_WINDOW_SIZE 3
 
 
/* The following table is an efficient representation of an
/* The following table is an efficient representation of an
   "optimal power tree".  For each value, i, the corresponding
   "optimal power tree".  For each value, i, the corresponding
   value, j, in the table states than an optimal evaluation
   value, j, in the table states than an optimal evaluation
   sequence for calculating pow(x,i) can be found by evaluating
   sequence for calculating pow(x,i) can be found by evaluating
   pow(x,j)*pow(x,i-j).  An optimal power tree for the first
   pow(x,j)*pow(x,i-j).  An optimal power tree for the first
   100 integers is given in Knuth's "Seminumerical algorithms".  */
   100 integers is given in Knuth's "Seminumerical algorithms".  */
 
 
static const unsigned char powi_table[POWI_TABLE_SIZE] =
static const unsigned char powi_table[POWI_TABLE_SIZE] =
  {
  {
      0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
      0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
      4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
      4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
      8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
      8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
     12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
     12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
     16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
     16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
     20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
     20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
     24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
     24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
     28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
     28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
     32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
     32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
     36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
     36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
     40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
     40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
     44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
     44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
     48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
     48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
     52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
     52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
     56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
     56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
     60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
     60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
     64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
     64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
     68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
     68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
     72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
     72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
     76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
     76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
     80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
     80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
     84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
     84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
     88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
     88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
     92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
     92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
     96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
     96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
    100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
    100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
    104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
    104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
    108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
    108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
    112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
    112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
    116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
    116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
    120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
    120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
    124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
    124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
  };
  };
 
 
 
 
/* Return the number of multiplications required to calculate
/* Return the number of multiplications required to calculate
   powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
   powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
   subroutine of powi_cost.  CACHE is an array indicating
   subroutine of powi_cost.  CACHE is an array indicating
   which exponents have already been calculated.  */
   which exponents have already been calculated.  */
 
 
static int
static int
powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
{
{
  /* If we've already calculated this exponent, then this evaluation
  /* If we've already calculated this exponent, then this evaluation
     doesn't require any additional multiplications.  */
     doesn't require any additional multiplications.  */
  if (cache[n])
  if (cache[n])
    return 0;
    return 0;
 
 
  cache[n] = true;
  cache[n] = true;
  return powi_lookup_cost (n - powi_table[n], cache)
  return powi_lookup_cost (n - powi_table[n], cache)
         + powi_lookup_cost (powi_table[n], cache) + 1;
         + powi_lookup_cost (powi_table[n], cache) + 1;
}
}
 
 
/* Return the number of multiplications required to calculate
/* Return the number of multiplications required to calculate
   powi(x,n) for an arbitrary x, given the exponent N.  This
   powi(x,n) for an arbitrary x, given the exponent N.  This
   function needs to be kept in sync with expand_powi below.  */
   function needs to be kept in sync with expand_powi below.  */
 
 
static int
static int
powi_cost (HOST_WIDE_INT n)
powi_cost (HOST_WIDE_INT n)
{
{
  bool cache[POWI_TABLE_SIZE];
  bool cache[POWI_TABLE_SIZE];
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT val;
  unsigned HOST_WIDE_INT val;
  int result;
  int result;
 
 
  if (n == 0)
  if (n == 0)
    return 0;
    return 0;
 
 
  /* Ignore the reciprocal when calculating the cost.  */
  /* Ignore the reciprocal when calculating the cost.  */
  val = (n < 0) ? -n : n;
  val = (n < 0) ? -n : n;
 
 
  /* Initialize the exponent cache.  */
  /* Initialize the exponent cache.  */
  memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
  memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
  cache[1] = true;
  cache[1] = true;
 
 
  result = 0;
  result = 0;
 
 
  while (val >= POWI_TABLE_SIZE)
  while (val >= POWI_TABLE_SIZE)
    {
    {
      if (val & 1)
      if (val & 1)
        {
        {
          digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
          digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
          result += powi_lookup_cost (digit, cache)
          result += powi_lookup_cost (digit, cache)
                    + POWI_WINDOW_SIZE + 1;
                    + POWI_WINDOW_SIZE + 1;
          val >>= POWI_WINDOW_SIZE;
          val >>= POWI_WINDOW_SIZE;
        }
        }
      else
      else
        {
        {
          val >>= 1;
          val >>= 1;
          result++;
          result++;
        }
        }
    }
    }
 
 
  return result + powi_lookup_cost (val, cache);
  return result + powi_lookup_cost (val, cache);
}
}
 
 
/* Recursive subroutine of expand_powi.  This function takes the array,
/* Recursive subroutine of expand_powi.  This function takes the array,
   CACHE, of already calculated exponents and an exponent N and returns
   CACHE, of already calculated exponents and an exponent N and returns
   an RTX that corresponds to CACHE[1]**N, as calculated in mode MODE.  */
   an RTX that corresponds to CACHE[1]**N, as calculated in mode MODE.  */
 
 
static rtx
static rtx
expand_powi_1 (enum machine_mode mode, unsigned HOST_WIDE_INT n, rtx *cache)
expand_powi_1 (enum machine_mode mode, unsigned HOST_WIDE_INT n, rtx *cache)
{
{
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT digit;
  rtx target, result;
  rtx target, result;
  rtx op0, op1;
  rtx op0, op1;
 
 
  if (n < POWI_TABLE_SIZE)
  if (n < POWI_TABLE_SIZE)
    {
    {
      if (cache[n])
      if (cache[n])
        return cache[n];
        return cache[n];
 
 
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      cache[n] = target;
      cache[n] = target;
 
 
      op0 = expand_powi_1 (mode, n - powi_table[n], cache);
      op0 = expand_powi_1 (mode, n - powi_table[n], cache);
      op1 = expand_powi_1 (mode, powi_table[n], cache);
      op1 = expand_powi_1 (mode, powi_table[n], cache);
    }
    }
  else if (n & 1)
  else if (n & 1)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
      digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
      op0 = expand_powi_1 (mode, n - digit, cache);
      op0 = expand_powi_1 (mode, n - digit, cache);
      op1 = expand_powi_1 (mode, digit, cache);
      op1 = expand_powi_1 (mode, digit, cache);
    }
    }
  else
  else
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      op0 = expand_powi_1 (mode, n >> 1, cache);
      op0 = expand_powi_1 (mode, n >> 1, cache);
      op1 = op0;
      op1 = op0;
    }
    }
 
 
  result = expand_mult (mode, op0, op1, target, 0);
  result = expand_mult (mode, op0, op1, target, 0);
  if (result != target)
  if (result != target)
    emit_move_insn (target, result);
    emit_move_insn (target, result);
  return target;
  return target;
}
}
 
 
/* Expand the RTL to evaluate powi(x,n) in mode MODE.  X is the
/* Expand the RTL to evaluate powi(x,n) in mode MODE.  X is the
   floating point operand in mode MODE, and N is the exponent.  This
   floating point operand in mode MODE, and N is the exponent.  This
   function needs to be kept in sync with powi_cost above.  */
   function needs to be kept in sync with powi_cost above.  */
 
 
static rtx
static rtx
expand_powi (rtx x, enum machine_mode mode, HOST_WIDE_INT n)
expand_powi (rtx x, enum machine_mode mode, HOST_WIDE_INT n)
{
{
  rtx cache[POWI_TABLE_SIZE];
  rtx cache[POWI_TABLE_SIZE];
  rtx result;
  rtx result;
 
 
  if (n == 0)
  if (n == 0)
    return CONST1_RTX (mode);
    return CONST1_RTX (mode);
 
 
  memset (cache, 0, sizeof (cache));
  memset (cache, 0, sizeof (cache));
  cache[1] = x;
  cache[1] = x;
 
 
  result = expand_powi_1 (mode, (n < 0) ? -n : n, cache);
  result = expand_powi_1 (mode, (n < 0) ? -n : n, cache);
 
 
  /* If the original exponent was negative, reciprocate the result.  */
  /* If the original exponent was negative, reciprocate the result.  */
  if (n < 0)
  if (n < 0)
    result = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
    result = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
                           result, NULL_RTX, 0, OPTAB_LIB_WIDEN);
                           result, NULL_RTX, 0, OPTAB_LIB_WIDEN);
 
 
  return result;
  return result;
}
}
 
 
/* Expand a call to the pow built-in mathematical function.  Return NULL_RTX if
/* Expand a call to the pow built-in mathematical function.  Return NULL_RTX if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   in-line.  EXP is the expression that is a call to the builtin
   in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.  */
   function; if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_pow (tree exp, rtx target, rtx subtarget)
expand_builtin_pow (tree exp, rtx target, rtx subtarget)
{
{
  tree arg0, arg1;
  tree arg0, arg1;
  tree fn, narg0;
  tree fn, narg0;
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
  REAL_VALUE_TYPE cint, c, c2;
  REAL_VALUE_TYPE cint, c, c2;
  HOST_WIDE_INT n;
  HOST_WIDE_INT n;
  rtx op, op2;
  rtx op, op2;
  enum machine_mode mode = TYPE_MODE (type);
  enum machine_mode mode = TYPE_MODE (type);
 
 
  if (! validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg1 = CALL_EXPR_ARG (exp, 1);
  arg1 = CALL_EXPR_ARG (exp, 1);
 
 
  if (TREE_CODE (arg1) != REAL_CST
  if (TREE_CODE (arg1) != REAL_CST
      || TREE_OVERFLOW (arg1))
      || TREE_OVERFLOW (arg1))
    return expand_builtin_mathfn_2 (exp, target, subtarget);
    return expand_builtin_mathfn_2 (exp, target, subtarget);
 
 
  /* Handle constant exponents.  */
  /* Handle constant exponents.  */
 
 
  /* For integer valued exponents we can expand to an optimal multiplication
  /* For integer valued exponents we can expand to an optimal multiplication
     sequence using expand_powi.  */
     sequence using expand_powi.  */
  c = TREE_REAL_CST (arg1);
  c = TREE_REAL_CST (arg1);
  n = real_to_integer (&c);
  n = real_to_integer (&c);
  real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
  real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
  if (real_identical (&c, &cint)
  if (real_identical (&c, &cint)
      && ((n >= -1 && n <= 2)
      && ((n >= -1 && n <= 2)
          || (flag_unsafe_math_optimizations
          || (flag_unsafe_math_optimizations
              && optimize_insn_for_speed_p ()
              && optimize_insn_for_speed_p ()
              && powi_cost (n) <= POWI_MAX_MULTS)))
              && powi_cost (n) <= POWI_MAX_MULTS)))
    {
    {
      op = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
      op = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
      if (n != 1)
      if (n != 1)
        {
        {
          op = force_reg (mode, op);
          op = force_reg (mode, op);
          op = expand_powi (op, mode, n);
          op = expand_powi (op, mode, n);
        }
        }
      return op;
      return op;
    }
    }
 
 
  narg0 = builtin_save_expr (arg0);
  narg0 = builtin_save_expr (arg0);
 
 
  /* If the exponent is not integer valued, check if it is half of an integer.
  /* If the exponent is not integer valued, check if it is half of an integer.
     In this case we can expand to sqrt (x) * x**(n/2).  */
     In this case we can expand to sqrt (x) * x**(n/2).  */
  fn = mathfn_built_in (type, BUILT_IN_SQRT);
  fn = mathfn_built_in (type, BUILT_IN_SQRT);
  if (fn != NULL_TREE)
  if (fn != NULL_TREE)
    {
    {
      real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
      real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
      n = real_to_integer (&c2);
      n = real_to_integer (&c2);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      if (real_identical (&c2, &cint)
      if (real_identical (&c2, &cint)
          && ((flag_unsafe_math_optimizations
          && ((flag_unsafe_math_optimizations
               && optimize_insn_for_speed_p ()
               && optimize_insn_for_speed_p ()
               && powi_cost (n/2) <= POWI_MAX_MULTS)
               && powi_cost (n/2) <= POWI_MAX_MULTS)
              /* Even the c == 0.5 case cannot be done unconditionally
              /* Even the c == 0.5 case cannot be done unconditionally
                 when we need to preserve signed zeros, as
                 when we need to preserve signed zeros, as
                 pow (-0, 0.5) is +0, while sqrt(-0) is -0.  */
                 pow (-0, 0.5) is +0, while sqrt(-0) is -0.  */
              || (!HONOR_SIGNED_ZEROS (mode) && n == 1)
              || (!HONOR_SIGNED_ZEROS (mode) && n == 1)
              /* For c == 1.5 we can assume that x * sqrt (x) is always
              /* For c == 1.5 we can assume that x * sqrt (x) is always
                 smaller than pow (x, 1.5) if sqrt will not be expanded
                 smaller than pow (x, 1.5) if sqrt will not be expanded
                 as a call.  */
                 as a call.  */
              || (n == 3
              || (n == 3
                  && (optab_handler (sqrt_optab, mode)->insn_code
                  && (optab_handler (sqrt_optab, mode)->insn_code
                      != CODE_FOR_nothing))))
                      != CODE_FOR_nothing))))
        {
        {
          tree call_expr = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 1,
          tree call_expr = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 1,
                                                  narg0);
                                                  narg0);
          /* Use expand_expr in case the newly built call expression
          /* Use expand_expr in case the newly built call expression
             was folded to a non-call.  */
             was folded to a non-call.  */
          op = expand_expr (call_expr, subtarget, mode, EXPAND_NORMAL);
          op = expand_expr (call_expr, subtarget, mode, EXPAND_NORMAL);
          if (n != 1)
          if (n != 1)
            {
            {
              op2 = expand_expr (narg0, subtarget, VOIDmode, EXPAND_NORMAL);
              op2 = expand_expr (narg0, subtarget, VOIDmode, EXPAND_NORMAL);
              op2 = force_reg (mode, op2);
              op2 = force_reg (mode, op2);
              op2 = expand_powi (op2, mode, abs (n / 2));
              op2 = expand_powi (op2, mode, abs (n / 2));
              op = expand_simple_binop (mode, MULT, op, op2, NULL_RTX,
              op = expand_simple_binop (mode, MULT, op, op2, NULL_RTX,
                                        0, OPTAB_LIB_WIDEN);
                                        0, OPTAB_LIB_WIDEN);
              /* If the original exponent was negative, reciprocate the
              /* If the original exponent was negative, reciprocate the
                 result.  */
                 result.  */
              if (n < 0)
              if (n < 0)
                op = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
                op = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
                                   op, NULL_RTX, 0, OPTAB_LIB_WIDEN);
                                   op, NULL_RTX, 0, OPTAB_LIB_WIDEN);
            }
            }
          return op;
          return op;
        }
        }
    }
    }
 
 
  /* Try if the exponent is a third of an integer.  In this case
  /* Try if the exponent is a third of an integer.  In this case
     we can expand to x**(n/3) * cbrt(x)**(n%3).  As cbrt (x) is
     we can expand to x**(n/3) * cbrt(x)**(n%3).  As cbrt (x) is
     different from pow (x, 1./3.) due to rounding and behavior
     different from pow (x, 1./3.) due to rounding and behavior
     with negative x we need to constrain this transformation to
     with negative x we need to constrain this transformation to
     unsafe math and positive x or finite math.  */
     unsafe math and positive x or finite math.  */
  fn = mathfn_built_in (type, BUILT_IN_CBRT);
  fn = mathfn_built_in (type, BUILT_IN_CBRT);
  if (fn != NULL_TREE
  if (fn != NULL_TREE
      && flag_unsafe_math_optimizations
      && flag_unsafe_math_optimizations
      && (tree_expr_nonnegative_p (arg0)
      && (tree_expr_nonnegative_p (arg0)
          || !HONOR_NANS (mode)))
          || !HONOR_NANS (mode)))
    {
    {
      REAL_VALUE_TYPE dconst3;
      REAL_VALUE_TYPE dconst3;
      real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
      real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
      real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
      real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
      real_round (&c2, mode, &c2);
      real_round (&c2, mode, &c2);
      n = real_to_integer (&c2);
      n = real_to_integer (&c2);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
      real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
      real_convert (&c2, mode, &c2);
      real_convert (&c2, mode, &c2);
      if (real_identical (&c2, &c)
      if (real_identical (&c2, &c)
          && ((optimize_insn_for_speed_p ()
          && ((optimize_insn_for_speed_p ()
               && powi_cost (n/3) <= POWI_MAX_MULTS)
               && powi_cost (n/3) <= POWI_MAX_MULTS)
              || n == 1))
              || n == 1))
        {
        {
          tree call_expr = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 1,
          tree call_expr = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 1,
                                                  narg0);
                                                  narg0);
          op = expand_builtin (call_expr, NULL_RTX, subtarget, mode, 0);
          op = expand_builtin (call_expr, NULL_RTX, subtarget, mode, 0);
          if (abs (n) % 3 == 2)
          if (abs (n) % 3 == 2)
            op = expand_simple_binop (mode, MULT, op, op, op,
            op = expand_simple_binop (mode, MULT, op, op, op,
                                      0, OPTAB_LIB_WIDEN);
                                      0, OPTAB_LIB_WIDEN);
          if (n != 1)
          if (n != 1)
            {
            {
              op2 = expand_expr (narg0, subtarget, VOIDmode, EXPAND_NORMAL);
              op2 = expand_expr (narg0, subtarget, VOIDmode, EXPAND_NORMAL);
              op2 = force_reg (mode, op2);
              op2 = force_reg (mode, op2);
              op2 = expand_powi (op2, mode, abs (n / 3));
              op2 = expand_powi (op2, mode, abs (n / 3));
              op = expand_simple_binop (mode, MULT, op, op2, NULL_RTX,
              op = expand_simple_binop (mode, MULT, op, op2, NULL_RTX,
                                        0, OPTAB_LIB_WIDEN);
                                        0, OPTAB_LIB_WIDEN);
              /* If the original exponent was negative, reciprocate the
              /* If the original exponent was negative, reciprocate the
                 result.  */
                 result.  */
              if (n < 0)
              if (n < 0)
                op = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
                op = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
                                   op, NULL_RTX, 0, OPTAB_LIB_WIDEN);
                                   op, NULL_RTX, 0, OPTAB_LIB_WIDEN);
            }
            }
          return op;
          return op;
        }
        }
    }
    }
 
 
  /* Fall back to optab expansion.  */
  /* Fall back to optab expansion.  */
  return expand_builtin_mathfn_2 (exp, target, subtarget);
  return expand_builtin_mathfn_2 (exp, target, subtarget);
}
}
 
 
/* Expand a call to the powi built-in mathematical function.  Return NULL_RTX if
/* Expand a call to the powi built-in mathematical function.  Return NULL_RTX if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   in-line.  EXP is the expression that is a call to the builtin
   in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.  */
   function; if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_powi (tree exp, rtx target, rtx subtarget)
expand_builtin_powi (tree exp, rtx target, rtx subtarget)
{
{
  tree arg0, arg1;
  tree arg0, arg1;
  rtx op0, op1;
  rtx op0, op1;
  enum machine_mode mode;
  enum machine_mode mode;
  enum machine_mode mode2;
  enum machine_mode mode2;
 
 
  if (! validate_arglist (exp, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (! validate_arglist (exp, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg0 = CALL_EXPR_ARG (exp, 0);
  arg1 = CALL_EXPR_ARG (exp, 1);
  arg1 = CALL_EXPR_ARG (exp, 1);
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Handle constant power.  */
  /* Handle constant power.  */
 
 
  if (TREE_CODE (arg1) == INTEGER_CST
  if (TREE_CODE (arg1) == INTEGER_CST
      && !TREE_OVERFLOW (arg1))
      && !TREE_OVERFLOW (arg1))
    {
    {
      HOST_WIDE_INT n = TREE_INT_CST_LOW (arg1);
      HOST_WIDE_INT n = TREE_INT_CST_LOW (arg1);
 
 
      /* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
      /* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
         Otherwise, check the number of multiplications required.  */
         Otherwise, check the number of multiplications required.  */
      if ((TREE_INT_CST_HIGH (arg1) == 0
      if ((TREE_INT_CST_HIGH (arg1) == 0
           || TREE_INT_CST_HIGH (arg1) == -1)
           || TREE_INT_CST_HIGH (arg1) == -1)
          && ((n >= -1 && n <= 2)
          && ((n >= -1 && n <= 2)
              || (optimize_insn_for_speed_p ()
              || (optimize_insn_for_speed_p ()
                  && powi_cost (n) <= POWI_MAX_MULTS)))
                  && powi_cost (n) <= POWI_MAX_MULTS)))
        {
        {
          op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
          op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
          op0 = force_reg (mode, op0);
          op0 = force_reg (mode, op0);
          return expand_powi (op0, mode, n);
          return expand_powi (op0, mode, n);
        }
        }
    }
    }
 
 
  /* Emit a libcall to libgcc.  */
  /* Emit a libcall to libgcc.  */
 
 
  /* Mode of the 2nd argument must match that of an int.  */
  /* Mode of the 2nd argument must match that of an int.  */
  mode2 = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
  mode2 = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
 
 
  if (target == NULL_RTX)
  if (target == NULL_RTX)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  op0 = expand_expr (arg0, subtarget, mode, EXPAND_NORMAL);
  op0 = expand_expr (arg0, subtarget, mode, EXPAND_NORMAL);
  if (GET_MODE (op0) != mode)
  if (GET_MODE (op0) != mode)
    op0 = convert_to_mode (mode, op0, 0);
    op0 = convert_to_mode (mode, op0, 0);
  op1 = expand_expr (arg1, NULL_RTX, mode2, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, mode2, EXPAND_NORMAL);
  if (GET_MODE (op1) != mode2)
  if (GET_MODE (op1) != mode2)
    op1 = convert_to_mode (mode2, op1, 0);
    op1 = convert_to_mode (mode2, op1, 0);
 
 
  target = emit_library_call_value (optab_libfunc (powi_optab, mode),
  target = emit_library_call_value (optab_libfunc (powi_optab, mode),
                                    target, LCT_CONST, mode, 2,
                                    target, LCT_CONST, mode, 2,
                                    op0, mode, op1, mode2);
                                    op0, mode, op1, mode2);
 
 
  return target;
  return target;
}
}
 
 
/* Expand expression EXP which is a call to the strlen builtin.  Return
/* Expand expression EXP which is a call to the strlen builtin.  Return
   NULL_RTX if we failed the caller should emit a normal call, otherwise
   NULL_RTX if we failed the caller should emit a normal call, otherwise
   try to get the result in TARGET, if convenient.  */
   try to get the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strlen (tree exp, rtx target,
expand_builtin_strlen (tree exp, rtx target,
                       enum machine_mode target_mode)
                       enum machine_mode target_mode)
{
{
  if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    {
    {
      rtx pat;
      rtx pat;
      tree len;
      tree len;
      tree src = CALL_EXPR_ARG (exp, 0);
      tree src = CALL_EXPR_ARG (exp, 0);
      rtx result, src_reg, char_rtx, before_strlen;
      rtx result, src_reg, char_rtx, before_strlen;
      enum machine_mode insn_mode = target_mode, char_mode;
      enum machine_mode insn_mode = target_mode, char_mode;
      enum insn_code icode = CODE_FOR_nothing;
      enum insn_code icode = CODE_FOR_nothing;
      int align;
      int align;
 
 
      /* If the length can be computed at compile-time, return it.  */
      /* If the length can be computed at compile-time, return it.  */
      len = c_strlen (src, 0);
      len = c_strlen (src, 0);
      if (len)
      if (len)
        return expand_expr (len, target, target_mode, EXPAND_NORMAL);
        return expand_expr (len, target, target_mode, EXPAND_NORMAL);
 
 
      /* If the length can be computed at compile-time and is constant
      /* If the length can be computed at compile-time and is constant
         integer, but there are side-effects in src, evaluate
         integer, but there are side-effects in src, evaluate
         src for side-effects, then return len.
         src for side-effects, then return len.
         E.g. x = strlen (i++ ? "xfoo" + 1 : "bar");
         E.g. x = strlen (i++ ? "xfoo" + 1 : "bar");
         can be optimized into: i++; x = 3;  */
         can be optimized into: i++; x = 3;  */
      len = c_strlen (src, 1);
      len = c_strlen (src, 1);
      if (len && TREE_CODE (len) == INTEGER_CST)
      if (len && TREE_CODE (len) == INTEGER_CST)
        {
        {
          expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL);
          expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL);
          return expand_expr (len, target, target_mode, EXPAND_NORMAL);
          return expand_expr (len, target, target_mode, EXPAND_NORMAL);
        }
        }
 
 
      align = get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      align = get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
 
 
      /* If SRC is not a pointer type, don't do this operation inline.  */
      /* If SRC is not a pointer type, don't do this operation inline.  */
      if (align == 0)
      if (align == 0)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* Bail out if we can't compute strlen in the right mode.  */
      /* Bail out if we can't compute strlen in the right mode.  */
      while (insn_mode != VOIDmode)
      while (insn_mode != VOIDmode)
        {
        {
          icode = optab_handler (strlen_optab, insn_mode)->insn_code;
          icode = optab_handler (strlen_optab, insn_mode)->insn_code;
          if (icode != CODE_FOR_nothing)
          if (icode != CODE_FOR_nothing)
            break;
            break;
 
 
          insn_mode = GET_MODE_WIDER_MODE (insn_mode);
          insn_mode = GET_MODE_WIDER_MODE (insn_mode);
        }
        }
      if (insn_mode == VOIDmode)
      if (insn_mode == VOIDmode)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* Make a place to write the result of the instruction.  */
      /* Make a place to write the result of the instruction.  */
      result = target;
      result = target;
      if (! (result != 0
      if (! (result != 0
             && REG_P (result)
             && REG_P (result)
             && GET_MODE (result) == insn_mode
             && GET_MODE (result) == insn_mode
             && REGNO (result) >= FIRST_PSEUDO_REGISTER))
             && REGNO (result) >= FIRST_PSEUDO_REGISTER))
        result = gen_reg_rtx (insn_mode);
        result = gen_reg_rtx (insn_mode);
 
 
      /* Make a place to hold the source address.  We will not expand
      /* Make a place to hold the source address.  We will not expand
         the actual source until we are sure that the expansion will
         the actual source until we are sure that the expansion will
         not fail -- there are trees that cannot be expanded twice.  */
         not fail -- there are trees that cannot be expanded twice.  */
      src_reg = gen_reg_rtx (Pmode);
      src_reg = gen_reg_rtx (Pmode);
 
 
      /* Mark the beginning of the strlen sequence so we can emit the
      /* Mark the beginning of the strlen sequence so we can emit the
         source operand later.  */
         source operand later.  */
      before_strlen = get_last_insn ();
      before_strlen = get_last_insn ();
 
 
      char_rtx = const0_rtx;
      char_rtx = const0_rtx;
      char_mode = insn_data[(int) icode].operand[2].mode;
      char_mode = insn_data[(int) icode].operand[2].mode;
      if (! (*insn_data[(int) icode].operand[2].predicate) (char_rtx,
      if (! (*insn_data[(int) icode].operand[2].predicate) (char_rtx,
                                                            char_mode))
                                                            char_mode))
        char_rtx = copy_to_mode_reg (char_mode, char_rtx);
        char_rtx = copy_to_mode_reg (char_mode, char_rtx);
 
 
      pat = GEN_FCN (icode) (result, gen_rtx_MEM (BLKmode, src_reg),
      pat = GEN_FCN (icode) (result, gen_rtx_MEM (BLKmode, src_reg),
                             char_rtx, GEN_INT (align));
                             char_rtx, GEN_INT (align));
      if (! pat)
      if (! pat)
        return NULL_RTX;
        return NULL_RTX;
      emit_insn (pat);
      emit_insn (pat);
 
 
      /* Now that we are assured of success, expand the source.  */
      /* Now that we are assured of success, expand the source.  */
      start_sequence ();
      start_sequence ();
      pat = expand_expr (src, src_reg, ptr_mode, EXPAND_NORMAL);
      pat = expand_expr (src, src_reg, ptr_mode, EXPAND_NORMAL);
      if (pat != src_reg)
      if (pat != src_reg)
        emit_move_insn (src_reg, pat);
        emit_move_insn (src_reg, pat);
      pat = get_insns ();
      pat = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (before_strlen)
      if (before_strlen)
        emit_insn_after (pat, before_strlen);
        emit_insn_after (pat, before_strlen);
      else
      else
        emit_insn_before (pat, get_insns ());
        emit_insn_before (pat, get_insns ());
 
 
      /* Return the value in the proper mode for this function.  */
      /* Return the value in the proper mode for this function.  */
      if (GET_MODE (result) == target_mode)
      if (GET_MODE (result) == target_mode)
        target = result;
        target = result;
      else if (target != 0)
      else if (target != 0)
        convert_move (target, result, 0);
        convert_move (target, result, 0);
      else
      else
        target = convert_to_mode (target_mode, result, 0);
        target = convert_to_mode (target_mode, result, 0);
 
 
      return target;
      return target;
    }
    }
}
}
 
 
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
   bytes from constant string DATA + OFFSET and return it as target
   bytes from constant string DATA + OFFSET and return it as target
   constant.  */
   constant.  */
 
 
static rtx
static rtx
builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset,
builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset,
                         enum machine_mode mode)
                         enum machine_mode mode)
{
{
  const char *str = (const char *) data;
  const char *str = (const char *) data;
 
 
  gcc_assert (offset >= 0
  gcc_assert (offset >= 0
              && ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
              && ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
                  <= strlen (str) + 1));
                  <= strlen (str) + 1));
 
 
  return c_readstr (str + offset, mode);
  return c_readstr (str + offset, mode);
}
}
 
 
/* Expand a call EXP to the memcpy builtin.
/* Expand a call EXP to the memcpy builtin.
   Return NULL_RTX if we failed, the caller should emit a normal call,
   Return NULL_RTX if we failed, the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  */
   mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_memcpy (tree exp, rtx target)
expand_builtin_memcpy (tree exp, rtx target)
{
{
  if (!validate_arglist (exp,
  if (!validate_arglist (exp,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    {
    {
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree src = CALL_EXPR_ARG (exp, 1);
      tree src = CALL_EXPR_ARG (exp, 1);
      tree len = CALL_EXPR_ARG (exp, 2);
      tree len = CALL_EXPR_ARG (exp, 2);
      const char *src_str;
      const char *src_str;
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      rtx dest_mem, src_mem, dest_addr, len_rtx;
      rtx dest_mem, src_mem, dest_addr, len_rtx;
      HOST_WIDE_INT expected_size = -1;
      HOST_WIDE_INT expected_size = -1;
      unsigned int expected_align = 0;
      unsigned int expected_align = 0;
 
 
      /* If DEST is not a pointer type, call the normal function.  */
      /* If DEST is not a pointer type, call the normal function.  */
      if (dest_align == 0)
      if (dest_align == 0)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* If either SRC is not a pointer type, don't do this
      /* If either SRC is not a pointer type, don't do this
         operation in-line.  */
         operation in-line.  */
      if (src_align == 0)
      if (src_align == 0)
        return NULL_RTX;
        return NULL_RTX;
 
 
      if (currently_expanding_gimple_stmt)
      if (currently_expanding_gimple_stmt)
        stringop_block_profile (currently_expanding_gimple_stmt,
        stringop_block_profile (currently_expanding_gimple_stmt,
                                &expected_align, &expected_size);
                                &expected_align, &expected_size);
 
 
      if (expected_align < dest_align)
      if (expected_align < dest_align)
        expected_align = dest_align;
        expected_align = dest_align;
      dest_mem = get_memory_rtx (dest, len);
      dest_mem = get_memory_rtx (dest, len);
      set_mem_align (dest_mem, dest_align);
      set_mem_align (dest_mem, dest_align);
      len_rtx = expand_normal (len);
      len_rtx = expand_normal (len);
      src_str = c_getstr (src);
      src_str = c_getstr (src);
 
 
      /* If SRC is a string constant and block move would be done
      /* If SRC is a string constant and block move would be done
         by pieces, we can avoid loading the string from memory
         by pieces, we can avoid loading the string from memory
         and only stored the computed constants.  */
         and only stored the computed constants.  */
      if (src_str
      if (src_str
          && CONST_INT_P (len_rtx)
          && CONST_INT_P (len_rtx)
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
                                  CONST_CAST (char *, src_str),
                                  CONST_CAST (char *, src_str),
                                  dest_align, false))
                                  dest_align, false))
        {
        {
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
                                      builtin_memcpy_read_str,
                                      builtin_memcpy_read_str,
                                      CONST_CAST (char *, src_str),
                                      CONST_CAST (char *, src_str),
                                      dest_align, false, 0);
                                      dest_align, false, 0);
          dest_mem = force_operand (XEXP (dest_mem, 0), target);
          dest_mem = force_operand (XEXP (dest_mem, 0), target);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      src_mem = get_memory_rtx (src, len);
      src_mem = get_memory_rtx (src, len);
      set_mem_align (src_mem, src_align);
      set_mem_align (src_mem, src_align);
 
 
      /* Copy word part most expediently.  */
      /* Copy word part most expediently.  */
      dest_addr = emit_block_move_hints (dest_mem, src_mem, len_rtx,
      dest_addr = emit_block_move_hints (dest_mem, src_mem, len_rtx,
                                         CALL_EXPR_TAILCALL (exp)
                                         CALL_EXPR_TAILCALL (exp)
                                         ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL,
                                         ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL,
                                         expected_align, expected_size);
                                         expected_align, expected_size);
 
 
      if (dest_addr == 0)
      if (dest_addr == 0)
        {
        {
          dest_addr = force_operand (XEXP (dest_mem, 0), target);
          dest_addr = force_operand (XEXP (dest_mem, 0), target);
          dest_addr = convert_memory_address (ptr_mode, dest_addr);
          dest_addr = convert_memory_address (ptr_mode, dest_addr);
        }
        }
      return dest_addr;
      return dest_addr;
    }
    }
}
}
 
 
/* Expand a call EXP to the mempcpy builtin.
/* Expand a call EXP to the mempcpy builtin.
   Return NULL_RTX if we failed; the caller should emit a normal call,
   Return NULL_RTX if we failed; the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  If ENDP is 0 return the
   mode MODE if that's convenient).  If ENDP is 0 return the
   destination pointer, if ENDP is 1 return the end pointer ala
   destination pointer, if ENDP is 1 return the end pointer ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   stpcpy.  */
   stpcpy.  */
 
 
static rtx
static rtx
expand_builtin_mempcpy (tree exp, rtx target, enum machine_mode mode)
expand_builtin_mempcpy (tree exp, rtx target, enum machine_mode mode)
{
{
  if (!validate_arglist (exp,
  if (!validate_arglist (exp,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    {
    {
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree src = CALL_EXPR_ARG (exp, 1);
      tree src = CALL_EXPR_ARG (exp, 1);
      tree len = CALL_EXPR_ARG (exp, 2);
      tree len = CALL_EXPR_ARG (exp, 2);
      return expand_builtin_mempcpy_args (dest, src, len,
      return expand_builtin_mempcpy_args (dest, src, len,
                                          target, mode, /*endp=*/ 1);
                                          target, mode, /*endp=*/ 1);
    }
    }
}
}
 
 
/* Helper function to do the actual work for expand_builtin_mempcpy.  The
/* Helper function to do the actual work for expand_builtin_mempcpy.  The
   arguments to the builtin_mempcpy call DEST, SRC, and LEN are broken out
   arguments to the builtin_mempcpy call DEST, SRC, and LEN are broken out
   so that this can also be called without constructing an actual CALL_EXPR.
   so that this can also be called without constructing an actual CALL_EXPR.
   The other arguments and return value are the same as for
   The other arguments and return value are the same as for
   expand_builtin_mempcpy.  */
   expand_builtin_mempcpy.  */
 
 
static rtx
static rtx
expand_builtin_mempcpy_args (tree dest, tree src, tree len,
expand_builtin_mempcpy_args (tree dest, tree src, tree len,
                             rtx target, enum machine_mode mode, int endp)
                             rtx target, enum machine_mode mode, int endp)
{
{
    /* If return value is ignored, transform mempcpy into memcpy.  */
    /* If return value is ignored, transform mempcpy into memcpy.  */
  if (target == const0_rtx && implicit_built_in_decls[BUILT_IN_MEMCPY])
  if (target == const0_rtx && implicit_built_in_decls[BUILT_IN_MEMCPY])
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
      tree result = build_call_nofold_loc (UNKNOWN_LOCATION, fn, 3,
      tree result = build_call_nofold_loc (UNKNOWN_LOCATION, fn, 3,
                                           dest, src, len);
                                           dest, src, len);
      return expand_expr (result, target, mode, EXPAND_NORMAL);
      return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  else
  else
    {
    {
      const char *src_str;
      const char *src_str;
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      rtx dest_mem, src_mem, len_rtx;
      rtx dest_mem, src_mem, len_rtx;
 
 
      /* If either SRC or DEST is not a pointer type, don't do this
      /* If either SRC or DEST is not a pointer type, don't do this
         operation in-line.  */
         operation in-line.  */
      if (dest_align == 0 || src_align == 0)
      if (dest_align == 0 || src_align == 0)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* If LEN is not constant, call the normal function.  */
      /* If LEN is not constant, call the normal function.  */
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        return NULL_RTX;
        return NULL_RTX;
 
 
      len_rtx = expand_normal (len);
      len_rtx = expand_normal (len);
      src_str = c_getstr (src);
      src_str = c_getstr (src);
 
 
      /* If SRC is a string constant and block move would be done
      /* If SRC is a string constant and block move would be done
         by pieces, we can avoid loading the string from memory
         by pieces, we can avoid loading the string from memory
         and only stored the computed constants.  */
         and only stored the computed constants.  */
      if (src_str
      if (src_str
          && CONST_INT_P (len_rtx)
          && CONST_INT_P (len_rtx)
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
                                  CONST_CAST (char *, src_str),
                                  CONST_CAST (char *, src_str),
                                  dest_align, false))
                                  dest_align, false))
        {
        {
          dest_mem = get_memory_rtx (dest, len);
          dest_mem = get_memory_rtx (dest, len);
          set_mem_align (dest_mem, dest_align);
          set_mem_align (dest_mem, dest_align);
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
                                      builtin_memcpy_read_str,
                                      builtin_memcpy_read_str,
                                      CONST_CAST (char *, src_str),
                                      CONST_CAST (char *, src_str),
                                      dest_align, false, endp);
                                      dest_align, false, endp);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      if (CONST_INT_P (len_rtx)
      if (CONST_INT_P (len_rtx)
          && can_move_by_pieces (INTVAL (len_rtx),
          && can_move_by_pieces (INTVAL (len_rtx),
                                 MIN (dest_align, src_align)))
                                 MIN (dest_align, src_align)))
        {
        {
          dest_mem = get_memory_rtx (dest, len);
          dest_mem = get_memory_rtx (dest, len);
          set_mem_align (dest_mem, dest_align);
          set_mem_align (dest_mem, dest_align);
          src_mem = get_memory_rtx (src, len);
          src_mem = get_memory_rtx (src, len);
          set_mem_align (src_mem, src_align);
          set_mem_align (src_mem, src_align);
          dest_mem = move_by_pieces (dest_mem, src_mem, INTVAL (len_rtx),
          dest_mem = move_by_pieces (dest_mem, src_mem, INTVAL (len_rtx),
                                     MIN (dest_align, src_align), endp);
                                     MIN (dest_align, src_align), endp);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      return NULL_RTX;
      return NULL_RTX;
    }
    }
}
}
 
 
#ifndef HAVE_movstr
#ifndef HAVE_movstr
# define HAVE_movstr 0
# define HAVE_movstr 0
# define CODE_FOR_movstr CODE_FOR_nothing
# define CODE_FOR_movstr CODE_FOR_nothing
#endif
#endif
 
 
/* Expand into a movstr instruction, if one is available.  Return NULL_RTX if
/* Expand into a movstr instruction, if one is available.  Return NULL_RTX if
   we failed, the caller should emit a normal call, otherwise try to
   we failed, the caller should emit a normal call, otherwise try to
   get the result in TARGET, if convenient.  If ENDP is 0 return the
   get the result in TARGET, if convenient.  If ENDP is 0 return the
   destination pointer, if ENDP is 1 return the end pointer ala
   destination pointer, if ENDP is 1 return the end pointer ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   stpcpy.  */
   stpcpy.  */
 
 
static rtx
static rtx
expand_movstr (tree dest, tree src, rtx target, int endp)
expand_movstr (tree dest, tree src, rtx target, int endp)
{
{
  rtx end;
  rtx end;
  rtx dest_mem;
  rtx dest_mem;
  rtx src_mem;
  rtx src_mem;
  rtx insn;
  rtx insn;
  const struct insn_data * data;
  const struct insn_data * data;
 
 
  if (!HAVE_movstr)
  if (!HAVE_movstr)
    return NULL_RTX;
    return NULL_RTX;
 
 
  dest_mem = get_memory_rtx (dest, NULL);
  dest_mem = get_memory_rtx (dest, NULL);
  src_mem = get_memory_rtx (src, NULL);
  src_mem = get_memory_rtx (src, NULL);
  data = insn_data + CODE_FOR_movstr;
  data = insn_data + CODE_FOR_movstr;
  if (!endp)
  if (!endp)
    {
    {
      target = force_reg (Pmode, XEXP (dest_mem, 0));
      target = force_reg (Pmode, XEXP (dest_mem, 0));
      dest_mem = replace_equiv_address (dest_mem, target);
      dest_mem = replace_equiv_address (dest_mem, target);
      end = gen_reg_rtx (Pmode);
      end = gen_reg_rtx (Pmode);
    }
    }
  else
  else
    {
    {
      if (target == 0
      if (target == 0
          || target == const0_rtx
          || target == const0_rtx
          || ! (*data->operand[0].predicate) (target, Pmode))
          || ! (*data->operand[0].predicate) (target, Pmode))
        {
        {
          end = gen_reg_rtx (Pmode);
          end = gen_reg_rtx (Pmode);
          if (target != const0_rtx)
          if (target != const0_rtx)
            target = end;
            target = end;
        }
        }
      else
      else
        end = target;
        end = target;
    }
    }
 
 
  if (data->operand[0].mode != VOIDmode)
  if (data->operand[0].mode != VOIDmode)
    end = gen_lowpart (data->operand[0].mode, end);
    end = gen_lowpart (data->operand[0].mode, end);
 
 
  insn = data->genfun (end, dest_mem, src_mem);
  insn = data->genfun (end, dest_mem, src_mem);
 
 
  gcc_assert (insn);
  gcc_assert (insn);
 
 
  emit_insn (insn);
  emit_insn (insn);
 
 
  /* movstr is supposed to set end to the address of the NUL
  /* movstr is supposed to set end to the address of the NUL
     terminator.  If the caller requested a mempcpy-like return value,
     terminator.  If the caller requested a mempcpy-like return value,
     adjust it.  */
     adjust it.  */
  if (endp == 1 && target != const0_rtx)
  if (endp == 1 && target != const0_rtx)
    {
    {
      rtx tem = plus_constant (gen_lowpart (GET_MODE (target), end), 1);
      rtx tem = plus_constant (gen_lowpart (GET_MODE (target), end), 1);
      emit_move_insn (target, force_operand (tem, NULL_RTX));
      emit_move_insn (target, force_operand (tem, NULL_RTX));
    }
    }
 
 
  return target;
  return target;
}
}
 
 
/* Expand expression EXP, which is a call to the strcpy builtin.  Return
/* Expand expression EXP, which is a call to the strcpy builtin.  Return
   NULL_RTX if we failed the caller should emit a normal call, otherwise
   NULL_RTX if we failed the caller should emit a normal call, otherwise
   try to get the result in TARGET, if convenient (and in mode MODE if that's
   try to get the result in TARGET, if convenient (and in mode MODE if that's
   convenient).  */
   convenient).  */
 
 
static rtx
static rtx
expand_builtin_strcpy (tree exp, rtx target)
expand_builtin_strcpy (tree exp, rtx target)
{
{
  if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
   {
   {
     tree dest = CALL_EXPR_ARG (exp, 0);
     tree dest = CALL_EXPR_ARG (exp, 0);
     tree src = CALL_EXPR_ARG (exp, 1);
     tree src = CALL_EXPR_ARG (exp, 1);
     return expand_builtin_strcpy_args (dest, src, target);
     return expand_builtin_strcpy_args (dest, src, target);
   }
   }
   return NULL_RTX;
   return NULL_RTX;
}
}
 
 
/* Helper function to do the actual work for expand_builtin_strcpy.  The
/* Helper function to do the actual work for expand_builtin_strcpy.  The
   arguments to the builtin_strcpy call DEST and SRC are broken out
   arguments to the builtin_strcpy call DEST and SRC are broken out
   so that this can also be called without constructing an actual CALL_EXPR.
   so that this can also be called without constructing an actual CALL_EXPR.
   The other arguments and return value are the same as for
   The other arguments and return value are the same as for
   expand_builtin_strcpy.  */
   expand_builtin_strcpy.  */
 
 
static rtx
static rtx
expand_builtin_strcpy_args (tree dest, tree src, rtx target)
expand_builtin_strcpy_args (tree dest, tree src, rtx target)
{
{
  return expand_movstr (dest, src, target, /*endp=*/0);
  return expand_movstr (dest, src, target, /*endp=*/0);
}
}
 
 
/* Expand a call EXP to the stpcpy builtin.
/* Expand a call EXP to the stpcpy builtin.
   Return NULL_RTX if we failed the caller should emit a normal call,
   Return NULL_RTX if we failed the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  */
   mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_stpcpy (tree exp, rtx target, enum machine_mode mode)
expand_builtin_stpcpy (tree exp, rtx target, enum machine_mode mode)
{
{
  tree dst, src;
  tree dst, src;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  dst = CALL_EXPR_ARG (exp, 0);
  dst = CALL_EXPR_ARG (exp, 0);
  src = CALL_EXPR_ARG (exp, 1);
  src = CALL_EXPR_ARG (exp, 1);
 
 
  /* If return value is ignored, transform stpcpy into strcpy.  */
  /* If return value is ignored, transform stpcpy into strcpy.  */
  if (target == const0_rtx && implicit_built_in_decls[BUILT_IN_STRCPY])
  if (target == const0_rtx && implicit_built_in_decls[BUILT_IN_STRCPY])
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree result = build_call_nofold_loc (loc, fn, 2, dst, src);
      tree result = build_call_nofold_loc (loc, fn, 2, dst, src);
      return expand_expr (result, target, mode, EXPAND_NORMAL);
      return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  else
  else
    {
    {
      tree len, lenp1;
      tree len, lenp1;
      rtx ret;
      rtx ret;
 
 
      /* Ensure we get an actual string whose length can be evaluated at
      /* Ensure we get an actual string whose length can be evaluated at
         compile-time, not an expression containing a string.  This is
         compile-time, not an expression containing a string.  This is
         because the latter will potentially produce pessimized code
         because the latter will potentially produce pessimized code
         when used to produce the return value.  */
         when used to produce the return value.  */
      if (! c_getstr (src) || ! (len = c_strlen (src, 0)))
      if (! c_getstr (src) || ! (len = c_strlen (src, 0)))
        return expand_movstr (dst, src, target, /*endp=*/2);
        return expand_movstr (dst, src, target, /*endp=*/2);
 
 
      lenp1 = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
      lenp1 = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
      ret = expand_builtin_mempcpy_args (dst, src, lenp1,
      ret = expand_builtin_mempcpy_args (dst, src, lenp1,
                                         target, mode, /*endp=*/2);
                                         target, mode, /*endp=*/2);
 
 
      if (ret)
      if (ret)
        return ret;
        return ret;
 
 
      if (TREE_CODE (len) == INTEGER_CST)
      if (TREE_CODE (len) == INTEGER_CST)
        {
        {
          rtx len_rtx = expand_normal (len);
          rtx len_rtx = expand_normal (len);
 
 
          if (CONST_INT_P (len_rtx))
          if (CONST_INT_P (len_rtx))
            {
            {
              ret = expand_builtin_strcpy_args (dst, src, target);
              ret = expand_builtin_strcpy_args (dst, src, target);
 
 
              if (ret)
              if (ret)
                {
                {
                  if (! target)
                  if (! target)
                    {
                    {
                      if (mode != VOIDmode)
                      if (mode != VOIDmode)
                        target = gen_reg_rtx (mode);
                        target = gen_reg_rtx (mode);
                      else
                      else
                        target = gen_reg_rtx (GET_MODE (ret));
                        target = gen_reg_rtx (GET_MODE (ret));
                    }
                    }
                  if (GET_MODE (target) != GET_MODE (ret))
                  if (GET_MODE (target) != GET_MODE (ret))
                    ret = gen_lowpart (GET_MODE (target), ret);
                    ret = gen_lowpart (GET_MODE (target), ret);
 
 
                  ret = plus_constant (ret, INTVAL (len_rtx));
                  ret = plus_constant (ret, INTVAL (len_rtx));
                  ret = emit_move_insn (target, force_operand (ret, NULL_RTX));
                  ret = emit_move_insn (target, force_operand (ret, NULL_RTX));
                  gcc_assert (ret);
                  gcc_assert (ret);
 
 
                  return target;
                  return target;
                }
                }
            }
            }
        }
        }
 
 
      return expand_movstr (dst, src, target, /*endp=*/2);
      return expand_movstr (dst, src, target, /*endp=*/2);
    }
    }
}
}
 
 
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
   bytes from constant string DATA + OFFSET and return it as target
   bytes from constant string DATA + OFFSET and return it as target
   constant.  */
   constant.  */
 
 
rtx
rtx
builtin_strncpy_read_str (void *data, HOST_WIDE_INT offset,
builtin_strncpy_read_str (void *data, HOST_WIDE_INT offset,
                          enum machine_mode mode)
                          enum machine_mode mode)
{
{
  const char *str = (const char *) data;
  const char *str = (const char *) data;
 
 
  if ((unsigned HOST_WIDE_INT) offset > strlen (str))
  if ((unsigned HOST_WIDE_INT) offset > strlen (str))
    return const0_rtx;
    return const0_rtx;
 
 
  return c_readstr (str + offset, mode);
  return c_readstr (str + offset, mode);
}
}
 
 
/* Expand expression EXP, which is a call to the strncpy builtin.  Return
/* Expand expression EXP, which is a call to the strncpy builtin.  Return
   NULL_RTX if we failed the caller should emit a normal call.  */
   NULL_RTX if we failed the caller should emit a normal call.  */
 
 
static rtx
static rtx
expand_builtin_strncpy (tree exp, rtx target)
expand_builtin_strncpy (tree exp, rtx target)
{
{
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (validate_arglist (exp,
  if (validate_arglist (exp,
                        POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                        POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree src = CALL_EXPR_ARG (exp, 1);
      tree src = CALL_EXPR_ARG (exp, 1);
      tree len = CALL_EXPR_ARG (exp, 2);
      tree len = CALL_EXPR_ARG (exp, 2);
      tree slen = c_strlen (src, 1);
      tree slen = c_strlen (src, 1);
 
 
      /* We must be passed a constant len and src parameter.  */
      /* We must be passed a constant len and src parameter.  */
      if (!host_integerp (len, 1) || !slen || !host_integerp (slen, 1))
      if (!host_integerp (len, 1) || !slen || !host_integerp (slen, 1))
        return NULL_RTX;
        return NULL_RTX;
 
 
      slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
      slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
 
 
      /* We're required to pad with trailing zeros if the requested
      /* We're required to pad with trailing zeros if the requested
         len is greater than strlen(s2)+1.  In that case try to
         len is greater than strlen(s2)+1.  In that case try to
         use store_by_pieces, if it fails, punt.  */
         use store_by_pieces, if it fails, punt.  */
      if (tree_int_cst_lt (slen, len))
      if (tree_int_cst_lt (slen, len))
        {
        {
          unsigned int dest_align
          unsigned int dest_align
            = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
            = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
          const char *p = c_getstr (src);
          const char *p = c_getstr (src);
          rtx dest_mem;
          rtx dest_mem;
 
 
          if (!p || dest_align == 0 || !host_integerp (len, 1)
          if (!p || dest_align == 0 || !host_integerp (len, 1)
              || !can_store_by_pieces (tree_low_cst (len, 1),
              || !can_store_by_pieces (tree_low_cst (len, 1),
                                       builtin_strncpy_read_str,
                                       builtin_strncpy_read_str,
                                       CONST_CAST (char *, p),
                                       CONST_CAST (char *, p),
                                       dest_align, false))
                                       dest_align, false))
            return NULL_RTX;
            return NULL_RTX;
 
 
          dest_mem = get_memory_rtx (dest, len);
          dest_mem = get_memory_rtx (dest, len);
          store_by_pieces (dest_mem, tree_low_cst (len, 1),
          store_by_pieces (dest_mem, tree_low_cst (len, 1),
                           builtin_strncpy_read_str,
                           builtin_strncpy_read_str,
                           CONST_CAST (char *, p), dest_align, false, 0);
                           CONST_CAST (char *, p), dest_align, false, 0);
          dest_mem = force_operand (XEXP (dest_mem, 0), target);
          dest_mem = force_operand (XEXP (dest_mem, 0), target);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
    }
    }
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
   bytes from constant string DATA + OFFSET and return it as target
   bytes from constant string DATA + OFFSET and return it as target
   constant.  */
   constant.  */
 
 
rtx
rtx
builtin_memset_read_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
builtin_memset_read_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
                         enum machine_mode mode)
                         enum machine_mode mode)
{
{
  const char *c = (const char *) data;
  const char *c = (const char *) data;
  char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
  char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
 
 
  memset (p, *c, GET_MODE_SIZE (mode));
  memset (p, *c, GET_MODE_SIZE (mode));
 
 
  return c_readstr (p, mode);
  return c_readstr (p, mode);
}
}
 
 
/* Callback routine for store_by_pieces.  Return the RTL of a register
/* Callback routine for store_by_pieces.  Return the RTL of a register
   containing GET_MODE_SIZE (MODE) consecutive copies of the unsigned
   containing GET_MODE_SIZE (MODE) consecutive copies of the unsigned
   char value given in the RTL register data.  For example, if mode is
   char value given in the RTL register data.  For example, if mode is
   4 bytes wide, return the RTL for 0x01010101*data.  */
   4 bytes wide, return the RTL for 0x01010101*data.  */
 
 
static rtx
static rtx
builtin_memset_gen_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
builtin_memset_gen_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
                        enum machine_mode mode)
                        enum machine_mode mode)
{
{
  rtx target, coeff;
  rtx target, coeff;
  size_t size;
  size_t size;
  char *p;
  char *p;
 
 
  size = GET_MODE_SIZE (mode);
  size = GET_MODE_SIZE (mode);
  if (size == 1)
  if (size == 1)
    return (rtx) data;
    return (rtx) data;
 
 
  p = XALLOCAVEC (char, size);
  p = XALLOCAVEC (char, size);
  memset (p, 1, size);
  memset (p, 1, size);
  coeff = c_readstr (p, mode);
  coeff = c_readstr (p, mode);
 
 
  target = convert_to_mode (mode, (rtx) data, 1);
  target = convert_to_mode (mode, (rtx) data, 1);
  target = expand_mult (mode, target, coeff, NULL_RTX, 1);
  target = expand_mult (mode, target, coeff, NULL_RTX, 1);
  return force_reg (mode, target);
  return force_reg (mode, target);
}
}
 
 
/* Expand expression EXP, which is a call to the memset builtin.  Return
/* Expand expression EXP, which is a call to the memset builtin.  Return
   NULL_RTX if we failed the caller should emit a normal call, otherwise
   NULL_RTX if we failed the caller should emit a normal call, otherwise
   try to get the result in TARGET, if convenient (and in mode MODE if that's
   try to get the result in TARGET, if convenient (and in mode MODE if that's
   convenient).  */
   convenient).  */
 
 
static rtx
static rtx
expand_builtin_memset (tree exp, rtx target, enum machine_mode mode)
expand_builtin_memset (tree exp, rtx target, enum machine_mode mode)
{
{
  if (!validate_arglist (exp,
  if (!validate_arglist (exp,
                         POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    {
    {
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree dest = CALL_EXPR_ARG (exp, 0);
      tree val = CALL_EXPR_ARG (exp, 1);
      tree val = CALL_EXPR_ARG (exp, 1);
      tree len = CALL_EXPR_ARG (exp, 2);
      tree len = CALL_EXPR_ARG (exp, 2);
      return expand_builtin_memset_args (dest, val, len, target, mode, exp);
      return expand_builtin_memset_args (dest, val, len, target, mode, exp);
    }
    }
}
}
 
 
/* Helper function to do the actual work for expand_builtin_memset.  The
/* Helper function to do the actual work for expand_builtin_memset.  The
   arguments to the builtin_memset call DEST, VAL, and LEN are broken out
   arguments to the builtin_memset call DEST, VAL, and LEN are broken out
   so that this can also be called without constructing an actual CALL_EXPR.
   so that this can also be called without constructing an actual CALL_EXPR.
   The other arguments and return value are the same as for
   The other arguments and return value are the same as for
   expand_builtin_memset.  */
   expand_builtin_memset.  */
 
 
static rtx
static rtx
expand_builtin_memset_args (tree dest, tree val, tree len,
expand_builtin_memset_args (tree dest, tree val, tree len,
                            rtx target, enum machine_mode mode, tree orig_exp)
                            rtx target, enum machine_mode mode, tree orig_exp)
{
{
  tree fndecl, fn;
  tree fndecl, fn;
  enum built_in_function fcode;
  enum built_in_function fcode;
  char c;
  char c;
  unsigned int dest_align;
  unsigned int dest_align;
  rtx dest_mem, dest_addr, len_rtx;
  rtx dest_mem, dest_addr, len_rtx;
  HOST_WIDE_INT expected_size = -1;
  HOST_WIDE_INT expected_size = -1;
  unsigned int expected_align = 0;
  unsigned int expected_align = 0;
 
 
  dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
  dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
 
 
  /* If DEST is not a pointer type, don't do this operation in-line.  */
  /* If DEST is not a pointer type, don't do this operation in-line.  */
  if (dest_align == 0)
  if (dest_align == 0)
    return NULL_RTX;
    return NULL_RTX;
 
 
  if (currently_expanding_gimple_stmt)
  if (currently_expanding_gimple_stmt)
    stringop_block_profile (currently_expanding_gimple_stmt,
    stringop_block_profile (currently_expanding_gimple_stmt,
                            &expected_align, &expected_size);
                            &expected_align, &expected_size);
 
 
  if (expected_align < dest_align)
  if (expected_align < dest_align)
    expected_align = dest_align;
    expected_align = dest_align;
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    {
    {
      /* Evaluate and ignore VAL in case it has side-effects.  */
      /* Evaluate and ignore VAL in case it has side-effects.  */
      expand_expr (val, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (val, const0_rtx, VOIDmode, EXPAND_NORMAL);
      return expand_expr (dest, target, mode, EXPAND_NORMAL);
      return expand_expr (dest, target, mode, EXPAND_NORMAL);
    }
    }
 
 
  /* Stabilize the arguments in case we fail.  */
  /* Stabilize the arguments in case we fail.  */
  dest = builtin_save_expr (dest);
  dest = builtin_save_expr (dest);
  val = builtin_save_expr (val);
  val = builtin_save_expr (val);
  len = builtin_save_expr (len);
  len = builtin_save_expr (len);
 
 
  len_rtx = expand_normal (len);
  len_rtx = expand_normal (len);
  dest_mem = get_memory_rtx (dest, len);
  dest_mem = get_memory_rtx (dest, len);
 
 
  if (TREE_CODE (val) != INTEGER_CST)
  if (TREE_CODE (val) != INTEGER_CST)
    {
    {
      rtx val_rtx;
      rtx val_rtx;
 
 
      val_rtx = expand_normal (val);
      val_rtx = expand_normal (val);
      val_rtx = convert_to_mode (TYPE_MODE (unsigned_char_type_node),
      val_rtx = convert_to_mode (TYPE_MODE (unsigned_char_type_node),
                                 val_rtx, 0);
                                 val_rtx, 0);
 
 
      /* Assume that we can memset by pieces if we can store
      /* Assume that we can memset by pieces if we can store
       * the coefficients by pieces (in the required modes).
       * the coefficients by pieces (in the required modes).
       * We can't pass builtin_memset_gen_str as that emits RTL.  */
       * We can't pass builtin_memset_gen_str as that emits RTL.  */
      c = 1;
      c = 1;
      if (host_integerp (len, 1)
      if (host_integerp (len, 1)
          && can_store_by_pieces (tree_low_cst (len, 1),
          && can_store_by_pieces (tree_low_cst (len, 1),
                                  builtin_memset_read_str, &c, dest_align,
                                  builtin_memset_read_str, &c, dest_align,
                                  true))
                                  true))
        {
        {
          val_rtx = force_reg (TYPE_MODE (unsigned_char_type_node),
          val_rtx = force_reg (TYPE_MODE (unsigned_char_type_node),
                               val_rtx);
                               val_rtx);
          store_by_pieces (dest_mem, tree_low_cst (len, 1),
          store_by_pieces (dest_mem, tree_low_cst (len, 1),
                           builtin_memset_gen_str, val_rtx, dest_align,
                           builtin_memset_gen_str, val_rtx, dest_align,
                           true, 0);
                           true, 0);
        }
        }
      else if (!set_storage_via_setmem (dest_mem, len_rtx, val_rtx,
      else if (!set_storage_via_setmem (dest_mem, len_rtx, val_rtx,
                                        dest_align, expected_align,
                                        dest_align, expected_align,
                                        expected_size))
                                        expected_size))
        goto do_libcall;
        goto do_libcall;
 
 
      dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
      dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
      dest_mem = convert_memory_address (ptr_mode, dest_mem);
      dest_mem = convert_memory_address (ptr_mode, dest_mem);
      return dest_mem;
      return dest_mem;
    }
    }
 
 
  if (target_char_cast (val, &c))
  if (target_char_cast (val, &c))
    goto do_libcall;
    goto do_libcall;
 
 
  if (c)
  if (c)
    {
    {
      if (host_integerp (len, 1)
      if (host_integerp (len, 1)
          && can_store_by_pieces (tree_low_cst (len, 1),
          && can_store_by_pieces (tree_low_cst (len, 1),
                                  builtin_memset_read_str, &c, dest_align,
                                  builtin_memset_read_str, &c, dest_align,
                                  true))
                                  true))
        store_by_pieces (dest_mem, tree_low_cst (len, 1),
        store_by_pieces (dest_mem, tree_low_cst (len, 1),
                         builtin_memset_read_str, &c, dest_align, true, 0);
                         builtin_memset_read_str, &c, dest_align, true, 0);
      else if (!set_storage_via_setmem (dest_mem, len_rtx, GEN_INT (c),
      else if (!set_storage_via_setmem (dest_mem, len_rtx, GEN_INT (c),
                                        dest_align, expected_align,
                                        dest_align, expected_align,
                                        expected_size))
                                        expected_size))
        goto do_libcall;
        goto do_libcall;
 
 
      dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
      dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
      dest_mem = convert_memory_address (ptr_mode, dest_mem);
      dest_mem = convert_memory_address (ptr_mode, dest_mem);
      return dest_mem;
      return dest_mem;
    }
    }
 
 
  set_mem_align (dest_mem, dest_align);
  set_mem_align (dest_mem, dest_align);
  dest_addr = clear_storage_hints (dest_mem, len_rtx,
  dest_addr = clear_storage_hints (dest_mem, len_rtx,
                                   CALL_EXPR_TAILCALL (orig_exp)
                                   CALL_EXPR_TAILCALL (orig_exp)
                                   ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL,
                                   ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL,
                                   expected_align, expected_size);
                                   expected_align, expected_size);
 
 
  if (dest_addr == 0)
  if (dest_addr == 0)
    {
    {
      dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
      dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
      dest_addr = convert_memory_address (ptr_mode, dest_addr);
      dest_addr = convert_memory_address (ptr_mode, dest_addr);
    }
    }
 
 
  return dest_addr;
  return dest_addr;
 
 
 do_libcall:
 do_libcall:
  fndecl = get_callee_fndecl (orig_exp);
  fndecl = get_callee_fndecl (orig_exp);
  fcode = DECL_FUNCTION_CODE (fndecl);
  fcode = DECL_FUNCTION_CODE (fndecl);
  if (fcode == BUILT_IN_MEMSET)
  if (fcode == BUILT_IN_MEMSET)
    fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 3,
    fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 3,
                                dest, val, len);
                                dest, val, len);
  else if (fcode == BUILT_IN_BZERO)
  else if (fcode == BUILT_IN_BZERO)
    fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 2,
    fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 2,
                                dest, len);
                                dest, len);
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
  gcc_assert (TREE_CODE (fn) == CALL_EXPR);
  gcc_assert (TREE_CODE (fn) == CALL_EXPR);
  CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
  CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
  return expand_call (fn, target, target == const0_rtx);
  return expand_call (fn, target, target == const0_rtx);
}
}
 
 
/* Expand expression EXP, which is a call to the bzero builtin.  Return
/* Expand expression EXP, which is a call to the bzero builtin.  Return
   NULL_RTX if we failed the caller should emit a normal call.  */
   NULL_RTX if we failed the caller should emit a normal call.  */
 
 
static rtx
static rtx
expand_builtin_bzero (tree exp)
expand_builtin_bzero (tree exp)
{
{
  tree dest, size;
  tree dest, size;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  dest = CALL_EXPR_ARG (exp, 0);
  dest = CALL_EXPR_ARG (exp, 0);
  size = CALL_EXPR_ARG (exp, 1);
  size = CALL_EXPR_ARG (exp, 1);
 
 
  /* New argument list transforming bzero(ptr x, int y) to
  /* New argument list transforming bzero(ptr x, int y) to
     memset(ptr x, int 0, size_t y).   This is done this way
     memset(ptr x, int 0, size_t y).   This is done this way
     so that if it isn't expanded inline, we fallback to
     so that if it isn't expanded inline, we fallback to
     calling bzero instead of memset.  */
     calling bzero instead of memset.  */
 
 
  return expand_builtin_memset_args (dest, integer_zero_node,
  return expand_builtin_memset_args (dest, integer_zero_node,
                                     fold_convert_loc (loc, sizetype, size),
                                     fold_convert_loc (loc, sizetype, size),
                                     const0_rtx, VOIDmode, exp);
                                     const0_rtx, VOIDmode, exp);
}
}
 
 
/* Expand expression EXP, which is a call to the memcmp built-in function.
/* Expand expression EXP, which is a call to the memcmp built-in function.
   Return NULL_RTX if we failed and the
   Return NULL_RTX if we failed and the
   caller should emit a normal call, otherwise try to get the result in
   caller should emit a normal call, otherwise try to get the result in
   TARGET, if convenient (and in mode MODE, if that's convenient).  */
   TARGET, if convenient (and in mode MODE, if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_memcmp (tree exp, ATTRIBUTE_UNUSED rtx target,
expand_builtin_memcmp (tree exp, ATTRIBUTE_UNUSED rtx target,
                       ATTRIBUTE_UNUSED enum machine_mode mode)
                       ATTRIBUTE_UNUSED enum machine_mode mode)
{
{
  location_t loc ATTRIBUTE_UNUSED = EXPR_LOCATION (exp);
  location_t loc ATTRIBUTE_UNUSED = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp,
  if (!validate_arglist (exp,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
#if defined HAVE_cmpmemsi || defined HAVE_cmpstrnsi
#if defined HAVE_cmpmemsi || defined HAVE_cmpstrnsi
  {
  {
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx result;
    rtx result;
    rtx insn;
    rtx insn;
    tree arg1 = CALL_EXPR_ARG (exp, 0);
    tree arg1 = CALL_EXPR_ARG (exp, 0);
    tree arg2 = CALL_EXPR_ARG (exp, 1);
    tree arg2 = CALL_EXPR_ARG (exp, 1);
    tree len = CALL_EXPR_ARG (exp, 2);
    tree len = CALL_EXPR_ARG (exp, 2);
 
 
    int arg1_align
    int arg1_align
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    int arg2_align
    int arg2_align
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    enum machine_mode insn_mode;
    enum machine_mode insn_mode;
 
 
#ifdef HAVE_cmpmemsi
#ifdef HAVE_cmpmemsi
    if (HAVE_cmpmemsi)
    if (HAVE_cmpmemsi)
      insn_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode;
      insn_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode;
    else
    else
#endif
#endif
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
    if (HAVE_cmpstrnsi)
    if (HAVE_cmpstrnsi)
      insn_mode = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
      insn_mode = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
    else
    else
#endif
#endif
      return NULL_RTX;
      return NULL_RTX;
 
 
    /* If we don't have POINTER_TYPE, call the function.  */
    /* If we don't have POINTER_TYPE, call the function.  */
    if (arg1_align == 0 || arg2_align == 0)
    if (arg1_align == 0 || arg2_align == 0)
      return NULL_RTX;
      return NULL_RTX;
 
 
    /* Make a place to write the result of the instruction.  */
    /* Make a place to write the result of the instruction.  */
    result = target;
    result = target;
    if (! (result != 0
    if (! (result != 0
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
      result = gen_reg_rtx (insn_mode);
      result = gen_reg_rtx (insn_mode);
 
 
    arg1_rtx = get_memory_rtx (arg1, len);
    arg1_rtx = get_memory_rtx (arg1, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg3_rtx = expand_normal (fold_convert_loc (loc, sizetype, len));
    arg3_rtx = expand_normal (fold_convert_loc (loc, sizetype, len));
 
 
    /* Set MEM_SIZE as appropriate.  */
    /* Set MEM_SIZE as appropriate.  */
    if (CONST_INT_P (arg3_rtx))
    if (CONST_INT_P (arg3_rtx))
      {
      {
        set_mem_size (arg1_rtx, arg3_rtx);
        set_mem_size (arg1_rtx, arg3_rtx);
        set_mem_size (arg2_rtx, arg3_rtx);
        set_mem_size (arg2_rtx, arg3_rtx);
      }
      }
 
 
#ifdef HAVE_cmpmemsi
#ifdef HAVE_cmpmemsi
    if (HAVE_cmpmemsi)
    if (HAVE_cmpmemsi)
      insn = gen_cmpmemsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
      insn = gen_cmpmemsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                           GEN_INT (MIN (arg1_align, arg2_align)));
                           GEN_INT (MIN (arg1_align, arg2_align)));
    else
    else
#endif
#endif
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
    if (HAVE_cmpstrnsi)
    if (HAVE_cmpstrnsi)
      insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
      insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                            GEN_INT (MIN (arg1_align, arg2_align)));
                            GEN_INT (MIN (arg1_align, arg2_align)));
    else
    else
#endif
#endif
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    if (insn)
    if (insn)
      emit_insn (insn);
      emit_insn (insn);
    else
    else
      emit_library_call_value (memcmp_libfunc, result, LCT_PURE,
      emit_library_call_value (memcmp_libfunc, result, LCT_PURE,
                               TYPE_MODE (integer_type_node), 3,
                               TYPE_MODE (integer_type_node), 3,
                               XEXP (arg1_rtx, 0), Pmode,
                               XEXP (arg1_rtx, 0), Pmode,
                               XEXP (arg2_rtx, 0), Pmode,
                               XEXP (arg2_rtx, 0), Pmode,
                               convert_to_mode (TYPE_MODE (sizetype), arg3_rtx,
                               convert_to_mode (TYPE_MODE (sizetype), arg3_rtx,
                                                TYPE_UNSIGNED (sizetype)),
                                                TYPE_UNSIGNED (sizetype)),
                               TYPE_MODE (sizetype));
                               TYPE_MODE (sizetype));
 
 
    /* Return the value in the proper mode for this function.  */
    /* Return the value in the proper mode for this function.  */
    mode = TYPE_MODE (TREE_TYPE (exp));
    mode = TYPE_MODE (TREE_TYPE (exp));
    if (GET_MODE (result) == mode)
    if (GET_MODE (result) == mode)
      return result;
      return result;
    else if (target != 0)
    else if (target != 0)
      {
      {
        convert_move (target, result, 0);
        convert_move (target, result, 0);
        return target;
        return target;
      }
      }
    else
    else
      return convert_to_mode (mode, result, 0);
      return convert_to_mode (mode, result, 0);
  }
  }
#endif
#endif
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Expand expression EXP, which is a call to the strcmp builtin.  Return NULL_RTX
/* Expand expression EXP, which is a call to the strcmp builtin.  Return NULL_RTX
   if we failed the caller should emit a normal call, otherwise try to get
   if we failed the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient.  */
   the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strcmp (tree exp, ATTRIBUTE_UNUSED rtx target)
expand_builtin_strcmp (tree exp, ATTRIBUTE_UNUSED rtx target)
{
{
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
#if defined HAVE_cmpstrsi || defined HAVE_cmpstrnsi
#if defined HAVE_cmpstrsi || defined HAVE_cmpstrnsi
  if (cmpstr_optab[SImode] != CODE_FOR_nothing
  if (cmpstr_optab[SImode] != CODE_FOR_nothing
      || cmpstrn_optab[SImode] != CODE_FOR_nothing)
      || cmpstrn_optab[SImode] != CODE_FOR_nothing)
    {
    {
      rtx arg1_rtx, arg2_rtx;
      rtx arg1_rtx, arg2_rtx;
      rtx result, insn = NULL_RTX;
      rtx result, insn = NULL_RTX;
      tree fndecl, fn;
      tree fndecl, fn;
      tree arg1 = CALL_EXPR_ARG (exp, 0);
      tree arg1 = CALL_EXPR_ARG (exp, 0);
      tree arg2 = CALL_EXPR_ARG (exp, 1);
      tree arg2 = CALL_EXPR_ARG (exp, 1);
 
 
      int arg1_align
      int arg1_align
        = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
        = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      int arg2_align
      int arg2_align
        = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
        = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
 
 
      /* If we don't have POINTER_TYPE, call the function.  */
      /* If we don't have POINTER_TYPE, call the function.  */
      if (arg1_align == 0 || arg2_align == 0)
      if (arg1_align == 0 || arg2_align == 0)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* Stabilize the arguments in case gen_cmpstr(n)si fail.  */
      /* Stabilize the arguments in case gen_cmpstr(n)si fail.  */
      arg1 = builtin_save_expr (arg1);
      arg1 = builtin_save_expr (arg1);
      arg2 = builtin_save_expr (arg2);
      arg2 = builtin_save_expr (arg2);
 
 
      arg1_rtx = get_memory_rtx (arg1, NULL);
      arg1_rtx = get_memory_rtx (arg1, NULL);
      arg2_rtx = get_memory_rtx (arg2, NULL);
      arg2_rtx = get_memory_rtx (arg2, NULL);
 
 
#ifdef HAVE_cmpstrsi
#ifdef HAVE_cmpstrsi
      /* Try to call cmpstrsi.  */
      /* Try to call cmpstrsi.  */
      if (HAVE_cmpstrsi)
      if (HAVE_cmpstrsi)
        {
        {
          enum machine_mode insn_mode
          enum machine_mode insn_mode
            = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
            = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
 
 
          /* Make a place to write the result of the instruction.  */
          /* Make a place to write the result of the instruction.  */
          result = target;
          result = target;
          if (! (result != 0
          if (! (result != 0
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
            result = gen_reg_rtx (insn_mode);
            result = gen_reg_rtx (insn_mode);
 
 
          insn = gen_cmpstrsi (result, arg1_rtx, arg2_rtx,
          insn = gen_cmpstrsi (result, arg1_rtx, arg2_rtx,
                               GEN_INT (MIN (arg1_align, arg2_align)));
                               GEN_INT (MIN (arg1_align, arg2_align)));
        }
        }
#endif
#endif
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
      /* Try to determine at least one length and call cmpstrnsi.  */
      /* Try to determine at least one length and call cmpstrnsi.  */
      if (!insn && HAVE_cmpstrnsi)
      if (!insn && HAVE_cmpstrnsi)
        {
        {
          tree len;
          tree len;
          rtx arg3_rtx;
          rtx arg3_rtx;
 
 
          enum machine_mode insn_mode
          enum machine_mode insn_mode
            = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
            = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
          tree len1 = c_strlen (arg1, 1);
          tree len1 = c_strlen (arg1, 1);
          tree len2 = c_strlen (arg2, 1);
          tree len2 = c_strlen (arg2, 1);
 
 
          if (len1)
          if (len1)
            len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
            len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
          if (len2)
          if (len2)
            len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
            len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
 
 
          /* If we don't have a constant length for the first, use the length
          /* If we don't have a constant length for the first, use the length
             of the second, if we know it.  We don't require a constant for
             of the second, if we know it.  We don't require a constant for
             this case; some cost analysis could be done if both are available
             this case; some cost analysis could be done if both are available
             but neither is constant.  For now, assume they're equally cheap,
             but neither is constant.  For now, assume they're equally cheap,
             unless one has side effects.  If both strings have constant lengths,
             unless one has side effects.  If both strings have constant lengths,
             use the smaller.  */
             use the smaller.  */
 
 
          if (!len1)
          if (!len1)
            len = len2;
            len = len2;
          else if (!len2)
          else if (!len2)
            len = len1;
            len = len1;
          else if (TREE_SIDE_EFFECTS (len1))
          else if (TREE_SIDE_EFFECTS (len1))
            len = len2;
            len = len2;
          else if (TREE_SIDE_EFFECTS (len2))
          else if (TREE_SIDE_EFFECTS (len2))
            len = len1;
            len = len1;
          else if (TREE_CODE (len1) != INTEGER_CST)
          else if (TREE_CODE (len1) != INTEGER_CST)
            len = len2;
            len = len2;
          else if (TREE_CODE (len2) != INTEGER_CST)
          else if (TREE_CODE (len2) != INTEGER_CST)
            len = len1;
            len = len1;
          else if (tree_int_cst_lt (len1, len2))
          else if (tree_int_cst_lt (len1, len2))
            len = len1;
            len = len1;
          else
          else
            len = len2;
            len = len2;
 
 
          /* If both arguments have side effects, we cannot optimize.  */
          /* If both arguments have side effects, we cannot optimize.  */
          if (!len || TREE_SIDE_EFFECTS (len))
          if (!len || TREE_SIDE_EFFECTS (len))
            goto do_libcall;
            goto do_libcall;
 
 
          arg3_rtx = expand_normal (len);
          arg3_rtx = expand_normal (len);
 
 
          /* Make a place to write the result of the instruction.  */
          /* Make a place to write the result of the instruction.  */
          result = target;
          result = target;
          if (! (result != 0
          if (! (result != 0
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
            result = gen_reg_rtx (insn_mode);
            result = gen_reg_rtx (insn_mode);
 
 
          insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
          insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                                GEN_INT (MIN (arg1_align, arg2_align)));
                                GEN_INT (MIN (arg1_align, arg2_align)));
        }
        }
#endif
#endif
 
 
      if (insn)
      if (insn)
        {
        {
          enum machine_mode mode;
          enum machine_mode mode;
          emit_insn (insn);
          emit_insn (insn);
 
 
          /* Return the value in the proper mode for this function.  */
          /* Return the value in the proper mode for this function.  */
          mode = TYPE_MODE (TREE_TYPE (exp));
          mode = TYPE_MODE (TREE_TYPE (exp));
          if (GET_MODE (result) == mode)
          if (GET_MODE (result) == mode)
            return result;
            return result;
          if (target == 0)
          if (target == 0)
            return convert_to_mode (mode, result, 0);
            return convert_to_mode (mode, result, 0);
          convert_move (target, result, 0);
          convert_move (target, result, 0);
          return target;
          return target;
        }
        }
 
 
      /* Expand the library call ourselves using a stabilized argument
      /* Expand the library call ourselves using a stabilized argument
         list to avoid re-evaluating the function's arguments twice.  */
         list to avoid re-evaluating the function's arguments twice.  */
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
    do_libcall:
    do_libcall:
#endif
#endif
      fndecl = get_callee_fndecl (exp);
      fndecl = get_callee_fndecl (exp);
      fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 2, arg1, arg2);
      fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 2, arg1, arg2);
      gcc_assert (TREE_CODE (fn) == CALL_EXPR);
      gcc_assert (TREE_CODE (fn) == CALL_EXPR);
      CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      return expand_call (fn, target, target == const0_rtx);
      return expand_call (fn, target, target == const0_rtx);
    }
    }
#endif
#endif
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Expand expression EXP, which is a call to the strncmp builtin. Return
/* Expand expression EXP, which is a call to the strncmp builtin. Return
   NULL_RTX if we failed the caller should emit a normal call, otherwise try to get
   NULL_RTX if we failed the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient.  */
   the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strncmp (tree exp, ATTRIBUTE_UNUSED rtx target,
expand_builtin_strncmp (tree exp, ATTRIBUTE_UNUSED rtx target,
                        ATTRIBUTE_UNUSED enum machine_mode mode)
                        ATTRIBUTE_UNUSED enum machine_mode mode)
{
{
  location_t loc ATTRIBUTE_UNUSED = EXPR_LOCATION (exp);
  location_t loc ATTRIBUTE_UNUSED = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp,
  if (!validate_arglist (exp,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* If c_strlen can determine an expression for one of the string
  /* If c_strlen can determine an expression for one of the string
     lengths, and it doesn't have side effects, then emit cmpstrnsi
     lengths, and it doesn't have side effects, then emit cmpstrnsi
     using length MIN(strlen(string)+1, arg3).  */
     using length MIN(strlen(string)+1, arg3).  */
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
  if (HAVE_cmpstrnsi)
  if (HAVE_cmpstrnsi)
  {
  {
    tree len, len1, len2;
    tree len, len1, len2;
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx result, insn;
    rtx result, insn;
    tree fndecl, fn;
    tree fndecl, fn;
    tree arg1 = CALL_EXPR_ARG (exp, 0);
    tree arg1 = CALL_EXPR_ARG (exp, 0);
    tree arg2 = CALL_EXPR_ARG (exp, 1);
    tree arg2 = CALL_EXPR_ARG (exp, 1);
    tree arg3 = CALL_EXPR_ARG (exp, 2);
    tree arg3 = CALL_EXPR_ARG (exp, 2);
 
 
    int arg1_align
    int arg1_align
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    int arg2_align
    int arg2_align
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    enum machine_mode insn_mode
    enum machine_mode insn_mode
      = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
      = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
 
 
    len1 = c_strlen (arg1, 1);
    len1 = c_strlen (arg1, 1);
    len2 = c_strlen (arg2, 1);
    len2 = c_strlen (arg2, 1);
 
 
    if (len1)
    if (len1)
      len1 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len1);
      len1 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len1);
    if (len2)
    if (len2)
      len2 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len2);
      len2 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len2);
 
 
    /* If we don't have a constant length for the first, use the length
    /* If we don't have a constant length for the first, use the length
       of the second, if we know it.  We don't require a constant for
       of the second, if we know it.  We don't require a constant for
       this case; some cost analysis could be done if both are available
       this case; some cost analysis could be done if both are available
       but neither is constant.  For now, assume they're equally cheap,
       but neither is constant.  For now, assume they're equally cheap,
       unless one has side effects.  If both strings have constant lengths,
       unless one has side effects.  If both strings have constant lengths,
       use the smaller.  */
       use the smaller.  */
 
 
    if (!len1)
    if (!len1)
      len = len2;
      len = len2;
    else if (!len2)
    else if (!len2)
      len = len1;
      len = len1;
    else if (TREE_SIDE_EFFECTS (len1))
    else if (TREE_SIDE_EFFECTS (len1))
      len = len2;
      len = len2;
    else if (TREE_SIDE_EFFECTS (len2))
    else if (TREE_SIDE_EFFECTS (len2))
      len = len1;
      len = len1;
    else if (TREE_CODE (len1) != INTEGER_CST)
    else if (TREE_CODE (len1) != INTEGER_CST)
      len = len2;
      len = len2;
    else if (TREE_CODE (len2) != INTEGER_CST)
    else if (TREE_CODE (len2) != INTEGER_CST)
      len = len1;
      len = len1;
    else if (tree_int_cst_lt (len1, len2))
    else if (tree_int_cst_lt (len1, len2))
      len = len1;
      len = len1;
    else
    else
      len = len2;
      len = len2;
 
 
    /* If both arguments have side effects, we cannot optimize.  */
    /* If both arguments have side effects, we cannot optimize.  */
    if (!len || TREE_SIDE_EFFECTS (len))
    if (!len || TREE_SIDE_EFFECTS (len))
      return NULL_RTX;
      return NULL_RTX;
 
 
    /* The actual new length parameter is MIN(len,arg3).  */
    /* The actual new length parameter is MIN(len,arg3).  */
    len = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (len), len,
    len = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (len), len,
                       fold_convert_loc (loc, TREE_TYPE (len), arg3));
                       fold_convert_loc (loc, TREE_TYPE (len), arg3));
 
 
    /* If we don't have POINTER_TYPE, call the function.  */
    /* If we don't have POINTER_TYPE, call the function.  */
    if (arg1_align == 0 || arg2_align == 0)
    if (arg1_align == 0 || arg2_align == 0)
      return NULL_RTX;
      return NULL_RTX;
 
 
    /* Make a place to write the result of the instruction.  */
    /* Make a place to write the result of the instruction.  */
    result = target;
    result = target;
    if (! (result != 0
    if (! (result != 0
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
      result = gen_reg_rtx (insn_mode);
      result = gen_reg_rtx (insn_mode);
 
 
    /* Stabilize the arguments in case gen_cmpstrnsi fails.  */
    /* Stabilize the arguments in case gen_cmpstrnsi fails.  */
    arg1 = builtin_save_expr (arg1);
    arg1 = builtin_save_expr (arg1);
    arg2 = builtin_save_expr (arg2);
    arg2 = builtin_save_expr (arg2);
    len = builtin_save_expr (len);
    len = builtin_save_expr (len);
 
 
    arg1_rtx = get_memory_rtx (arg1, len);
    arg1_rtx = get_memory_rtx (arg1, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg3_rtx = expand_normal (len);
    arg3_rtx = expand_normal (len);
    insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
    insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                          GEN_INT (MIN (arg1_align, arg2_align)));
                          GEN_INT (MIN (arg1_align, arg2_align)));
    if (insn)
    if (insn)
      {
      {
        emit_insn (insn);
        emit_insn (insn);
 
 
        /* Return the value in the proper mode for this function.  */
        /* Return the value in the proper mode for this function.  */
        mode = TYPE_MODE (TREE_TYPE (exp));
        mode = TYPE_MODE (TREE_TYPE (exp));
        if (GET_MODE (result) == mode)
        if (GET_MODE (result) == mode)
          return result;
          return result;
        if (target == 0)
        if (target == 0)
          return convert_to_mode (mode, result, 0);
          return convert_to_mode (mode, result, 0);
        convert_move (target, result, 0);
        convert_move (target, result, 0);
        return target;
        return target;
      }
      }
 
 
    /* Expand the library call ourselves using a stabilized argument
    /* Expand the library call ourselves using a stabilized argument
       list to avoid re-evaluating the function's arguments twice.  */
       list to avoid re-evaluating the function's arguments twice.  */
    fndecl = get_callee_fndecl (exp);
    fndecl = get_callee_fndecl (exp);
    fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 3,
    fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 3,
                                arg1, arg2, len);
                                arg1, arg2, len);
    gcc_assert (TREE_CODE (fn) == CALL_EXPR);
    gcc_assert (TREE_CODE (fn) == CALL_EXPR);
    CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
    CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
    return expand_call (fn, target, target == const0_rtx);
    return expand_call (fn, target, target == const0_rtx);
  }
  }
#endif
#endif
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Expand a call to __builtin_saveregs, generating the result in TARGET,
/* Expand a call to __builtin_saveregs, generating the result in TARGET,
   if that's convenient.  */
   if that's convenient.  */
 
 
rtx
rtx
expand_builtin_saveregs (void)
expand_builtin_saveregs (void)
{
{
  rtx val, seq;
  rtx val, seq;
 
 
  /* Don't do __builtin_saveregs more than once in a function.
  /* Don't do __builtin_saveregs more than once in a function.
     Save the result of the first call and reuse it.  */
     Save the result of the first call and reuse it.  */
  if (saveregs_value != 0)
  if (saveregs_value != 0)
    return saveregs_value;
    return saveregs_value;
 
 
  /* When this function is called, it means that registers must be
  /* When this function is called, it means that registers must be
     saved on entry to this function.  So we migrate the call to the
     saved on entry to this function.  So we migrate the call to the
     first insn of this function.  */
     first insn of this function.  */
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* Do whatever the machine needs done in this case.  */
  /* Do whatever the machine needs done in this case.  */
  val = targetm.calls.expand_builtin_saveregs ();
  val = targetm.calls.expand_builtin_saveregs ();
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  saveregs_value = val;
  saveregs_value = val;
 
 
  /* Put the insns after the NOTE that starts the function.  If this
  /* Put the insns after the NOTE that starts the function.  If this
     is inside a start_sequence, make the outer-level insn chain current, so
     is inside a start_sequence, make the outer-level insn chain current, so
     the code is placed at the start of the function.  */
     the code is placed at the start of the function.  */
  push_topmost_sequence ();
  push_topmost_sequence ();
  emit_insn_after (seq, entry_of_function ());
  emit_insn_after (seq, entry_of_function ());
  pop_topmost_sequence ();
  pop_topmost_sequence ();
 
 
  return val;
  return val;
}
}
 
 
/* __builtin_args_info (N) returns word N of the arg space info
/* __builtin_args_info (N) returns word N of the arg space info
   for the current function.  The number and meanings of words
   for the current function.  The number and meanings of words
   is controlled by the definition of CUMULATIVE_ARGS.  */
   is controlled by the definition of CUMULATIVE_ARGS.  */
 
 
static rtx
static rtx
expand_builtin_args_info (tree exp)
expand_builtin_args_info (tree exp)
{
{
  int nwords = sizeof (CUMULATIVE_ARGS) / sizeof (int);
  int nwords = sizeof (CUMULATIVE_ARGS) / sizeof (int);
  int *word_ptr = (int *) &crtl->args.info;
  int *word_ptr = (int *) &crtl->args.info;
 
 
  gcc_assert (sizeof (CUMULATIVE_ARGS) % sizeof (int) == 0);
  gcc_assert (sizeof (CUMULATIVE_ARGS) % sizeof (int) == 0);
 
 
  if (call_expr_nargs (exp) != 0)
  if (call_expr_nargs (exp) != 0)
    {
    {
      if (!host_integerp (CALL_EXPR_ARG (exp, 0), 0))
      if (!host_integerp (CALL_EXPR_ARG (exp, 0), 0))
        error ("argument of %<__builtin_args_info%> must be constant");
        error ("argument of %<__builtin_args_info%> must be constant");
      else
      else
        {
        {
          HOST_WIDE_INT wordnum = tree_low_cst (CALL_EXPR_ARG (exp, 0), 0);
          HOST_WIDE_INT wordnum = tree_low_cst (CALL_EXPR_ARG (exp, 0), 0);
 
 
          if (wordnum < 0 || wordnum >= nwords)
          if (wordnum < 0 || wordnum >= nwords)
            error ("argument of %<__builtin_args_info%> out of range");
            error ("argument of %<__builtin_args_info%> out of range");
          else
          else
            return GEN_INT (word_ptr[wordnum]);
            return GEN_INT (word_ptr[wordnum]);
        }
        }
    }
    }
  else
  else
    error ("missing argument in %<__builtin_args_info%>");
    error ("missing argument in %<__builtin_args_info%>");
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to __builtin_next_arg.  */
/* Expand a call to __builtin_next_arg.  */
 
 
static rtx
static rtx
expand_builtin_next_arg (void)
expand_builtin_next_arg (void)
{
{
  /* Checking arguments is already done in fold_builtin_next_arg
  /* Checking arguments is already done in fold_builtin_next_arg
     that must be called before this function.  */
     that must be called before this function.  */
  return expand_binop (ptr_mode, add_optab,
  return expand_binop (ptr_mode, add_optab,
                       crtl->args.internal_arg_pointer,
                       crtl->args.internal_arg_pointer,
                       crtl->args.arg_offset_rtx,
                       crtl->args.arg_offset_rtx,
                       NULL_RTX, 0, OPTAB_LIB_WIDEN);
                       NULL_RTX, 0, OPTAB_LIB_WIDEN);
}
}
 
 
/* Make it easier for the backends by protecting the valist argument
/* Make it easier for the backends by protecting the valist argument
   from multiple evaluations.  */
   from multiple evaluations.  */
 
 
static tree
static tree
stabilize_va_list_loc (location_t loc, tree valist, int needs_lvalue)
stabilize_va_list_loc (location_t loc, tree valist, int needs_lvalue)
{
{
  tree vatype = targetm.canonical_va_list_type (TREE_TYPE (valist));
  tree vatype = targetm.canonical_va_list_type (TREE_TYPE (valist));
 
 
  gcc_assert (vatype != NULL_TREE);
  gcc_assert (vatype != NULL_TREE);
 
 
  if (TREE_CODE (vatype) == ARRAY_TYPE)
  if (TREE_CODE (vatype) == ARRAY_TYPE)
    {
    {
      if (TREE_SIDE_EFFECTS (valist))
      if (TREE_SIDE_EFFECTS (valist))
        valist = save_expr (valist);
        valist = save_expr (valist);
 
 
      /* For this case, the backends will be expecting a pointer to
      /* For this case, the backends will be expecting a pointer to
         vatype, but it's possible we've actually been given an array
         vatype, but it's possible we've actually been given an array
         (an actual TARGET_CANONICAL_VA_LIST_TYPE (valist)).
         (an actual TARGET_CANONICAL_VA_LIST_TYPE (valist)).
         So fix it.  */
         So fix it.  */
      if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
      if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
        {
        {
          tree p1 = build_pointer_type (TREE_TYPE (vatype));
          tree p1 = build_pointer_type (TREE_TYPE (vatype));
          valist = build_fold_addr_expr_with_type_loc (loc, valist, p1);
          valist = build_fold_addr_expr_with_type_loc (loc, valist, p1);
        }
        }
    }
    }
  else
  else
    {
    {
      tree pt;
      tree pt;
 
 
      if (! needs_lvalue)
      if (! needs_lvalue)
        {
        {
          if (! TREE_SIDE_EFFECTS (valist))
          if (! TREE_SIDE_EFFECTS (valist))
            return valist;
            return valist;
 
 
          pt = build_pointer_type (vatype);
          pt = build_pointer_type (vatype);
          valist = fold_build1_loc (loc, ADDR_EXPR, pt, valist);
          valist = fold_build1_loc (loc, ADDR_EXPR, pt, valist);
          TREE_SIDE_EFFECTS (valist) = 1;
          TREE_SIDE_EFFECTS (valist) = 1;
        }
        }
 
 
      if (TREE_SIDE_EFFECTS (valist))
      if (TREE_SIDE_EFFECTS (valist))
        valist = save_expr (valist);
        valist = save_expr (valist);
      valist = build_fold_indirect_ref_loc (loc, valist);
      valist = build_fold_indirect_ref_loc (loc, valist);
    }
    }
 
 
  return valist;
  return valist;
}
}
 
 
/* The "standard" definition of va_list is void*.  */
/* The "standard" definition of va_list is void*.  */
 
 
tree
tree
std_build_builtin_va_list (void)
std_build_builtin_va_list (void)
{
{
  return ptr_type_node;
  return ptr_type_node;
}
}
 
 
/* The "standard" abi va_list is va_list_type_node.  */
/* The "standard" abi va_list is va_list_type_node.  */
 
 
tree
tree
std_fn_abi_va_list (tree fndecl ATTRIBUTE_UNUSED)
std_fn_abi_va_list (tree fndecl ATTRIBUTE_UNUSED)
{
{
  return va_list_type_node;
  return va_list_type_node;
}
}
 
 
/* The "standard" type of va_list is va_list_type_node.  */
/* The "standard" type of va_list is va_list_type_node.  */
 
 
tree
tree
std_canonical_va_list_type (tree type)
std_canonical_va_list_type (tree type)
{
{
  tree wtype, htype;
  tree wtype, htype;
 
 
  if (INDIRECT_REF_P (type))
  if (INDIRECT_REF_P (type))
    type = TREE_TYPE (type);
    type = TREE_TYPE (type);
  else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type)))
  else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type)))
    type = TREE_TYPE (type);
    type = TREE_TYPE (type);
  wtype = va_list_type_node;
  wtype = va_list_type_node;
  htype = type;
  htype = type;
  /* Treat structure va_list types.  */
  /* Treat structure va_list types.  */
  if (TREE_CODE (wtype) == RECORD_TYPE && POINTER_TYPE_P (htype))
  if (TREE_CODE (wtype) == RECORD_TYPE && POINTER_TYPE_P (htype))
    htype = TREE_TYPE (htype);
    htype = TREE_TYPE (htype);
  else if (TREE_CODE (wtype) == ARRAY_TYPE)
  else if (TREE_CODE (wtype) == ARRAY_TYPE)
    {
    {
      /* If va_list is an array type, the argument may have decayed
      /* If va_list is an array type, the argument may have decayed
         to a pointer type, e.g. by being passed to another function.
         to a pointer type, e.g. by being passed to another function.
         In that case, unwrap both types so that we can compare the
         In that case, unwrap both types so that we can compare the
         underlying records.  */
         underlying records.  */
      if (TREE_CODE (htype) == ARRAY_TYPE
      if (TREE_CODE (htype) == ARRAY_TYPE
          || POINTER_TYPE_P (htype))
          || POINTER_TYPE_P (htype))
        {
        {
          wtype = TREE_TYPE (wtype);
          wtype = TREE_TYPE (wtype);
          htype = TREE_TYPE (htype);
          htype = TREE_TYPE (htype);
        }
        }
    }
    }
  if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype))
  if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype))
    return va_list_type_node;
    return va_list_type_node;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* The "standard" implementation of va_start: just assign `nextarg' to
/* The "standard" implementation of va_start: just assign `nextarg' to
   the variable.  */
   the variable.  */
 
 
void
void
std_expand_builtin_va_start (tree valist, rtx nextarg)
std_expand_builtin_va_start (tree valist, rtx nextarg)
{
{
  rtx va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE);
  convert_move (va_r, nextarg, 0);
  convert_move (va_r, nextarg, 0);
}
}
 
 
/* Expand EXP, a call to __builtin_va_start.  */
/* Expand EXP, a call to __builtin_va_start.  */
 
 
static rtx
static rtx
expand_builtin_va_start (tree exp)
expand_builtin_va_start (tree exp)
{
{
  rtx nextarg;
  rtx nextarg;
  tree valist;
  tree valist;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (call_expr_nargs (exp) < 2)
  if (call_expr_nargs (exp) < 2)
    {
    {
      error_at (loc, "too few arguments to function %<va_start%>");
      error_at (loc, "too few arguments to function %<va_start%>");
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  if (fold_builtin_next_arg (exp, true))
  if (fold_builtin_next_arg (exp, true))
    return const0_rtx;
    return const0_rtx;
 
 
  nextarg = expand_builtin_next_arg ();
  nextarg = expand_builtin_next_arg ();
  valist = stabilize_va_list_loc (loc, CALL_EXPR_ARG (exp, 0), 1);
  valist = stabilize_va_list_loc (loc, CALL_EXPR_ARG (exp, 0), 1);
 
 
  if (targetm.expand_builtin_va_start)
  if (targetm.expand_builtin_va_start)
    targetm.expand_builtin_va_start (valist, nextarg);
    targetm.expand_builtin_va_start (valist, nextarg);
  else
  else
    std_expand_builtin_va_start (valist, nextarg);
    std_expand_builtin_va_start (valist, nextarg);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* The "standard" implementation of va_arg: read the value from the
/* The "standard" implementation of va_arg: read the value from the
   current (padded) address and increment by the (padded) size.  */
   current (padded) address and increment by the (padded) size.  */
 
 
tree
tree
std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
                          gimple_seq *post_p)
                          gimple_seq *post_p)
{
{
  tree addr, t, type_size, rounded_size, valist_tmp;
  tree addr, t, type_size, rounded_size, valist_tmp;
  unsigned HOST_WIDE_INT align, boundary;
  unsigned HOST_WIDE_INT align, boundary;
  bool indirect;
  bool indirect;
 
 
#ifdef ARGS_GROW_DOWNWARD
#ifdef ARGS_GROW_DOWNWARD
  /* All of the alignment and movement below is for args-grow-up machines.
  /* All of the alignment and movement below is for args-grow-up machines.
     As of 2004, there are only 3 ARGS_GROW_DOWNWARD targets, and they all
     As of 2004, there are only 3 ARGS_GROW_DOWNWARD targets, and they all
     implement their own specialized gimplify_va_arg_expr routines.  */
     implement their own specialized gimplify_va_arg_expr routines.  */
  gcc_unreachable ();
  gcc_unreachable ();
#endif
#endif
 
 
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  if (indirect)
  if (indirect)
    type = build_pointer_type (type);
    type = build_pointer_type (type);
 
 
  align = PARM_BOUNDARY / BITS_PER_UNIT;
  align = PARM_BOUNDARY / BITS_PER_UNIT;
  boundary = FUNCTION_ARG_BOUNDARY (TYPE_MODE (type), type);
  boundary = FUNCTION_ARG_BOUNDARY (TYPE_MODE (type), type);
 
 
  /* When we align parameter on stack for caller, if the parameter
  /* When we align parameter on stack for caller, if the parameter
     alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
     alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
     aligned at MAX_SUPPORTED_STACK_ALIGNMENT.  We will match callee
     aligned at MAX_SUPPORTED_STACK_ALIGNMENT.  We will match callee
     here with caller.  */
     here with caller.  */
  if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
  if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
    boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
    boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
 
 
  boundary /= BITS_PER_UNIT;
  boundary /= BITS_PER_UNIT;
 
 
  /* Hoist the valist value into a temporary for the moment.  */
  /* Hoist the valist value into a temporary for the moment.  */
  valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
  valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
 
 
  /* va_list pointer is aligned to PARM_BOUNDARY.  If argument actually
  /* va_list pointer is aligned to PARM_BOUNDARY.  If argument actually
     requires greater alignment, we must perform dynamic alignment.  */
     requires greater alignment, we must perform dynamic alignment.  */
  if (boundary > align
  if (boundary > align
      && !integer_zerop (TYPE_SIZE (type)))
      && !integer_zerop (TYPE_SIZE (type)))
    {
    {
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
                  fold_build2 (POINTER_PLUS_EXPR,
                  fold_build2 (POINTER_PLUS_EXPR,
                               TREE_TYPE (valist),
                               TREE_TYPE (valist),
                               valist_tmp, size_int (boundary - 1)));
                               valist_tmp, size_int (boundary - 1)));
      gimplify_and_add (t, pre_p);
      gimplify_and_add (t, pre_p);
 
 
      t = fold_convert (sizetype, valist_tmp);
      t = fold_convert (sizetype, valist_tmp);
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
                  fold_convert (TREE_TYPE (valist),
                  fold_convert (TREE_TYPE (valist),
                                fold_build2 (BIT_AND_EXPR, sizetype, t,
                                fold_build2 (BIT_AND_EXPR, sizetype, t,
                                             size_int (-boundary))));
                                             size_int (-boundary))));
      gimplify_and_add (t, pre_p);
      gimplify_and_add (t, pre_p);
    }
    }
  else
  else
    boundary = align;
    boundary = align;
 
 
  /* If the actual alignment is less than the alignment of the type,
  /* If the actual alignment is less than the alignment of the type,
     adjust the type accordingly so that we don't assume strict alignment
     adjust the type accordingly so that we don't assume strict alignment
     when dereferencing the pointer.  */
     when dereferencing the pointer.  */
  boundary *= BITS_PER_UNIT;
  boundary *= BITS_PER_UNIT;
  if (boundary < TYPE_ALIGN (type))
  if (boundary < TYPE_ALIGN (type))
    {
    {
      type = build_variant_type_copy (type);
      type = build_variant_type_copy (type);
      TYPE_ALIGN (type) = boundary;
      TYPE_ALIGN (type) = boundary;
    }
    }
 
 
  /* Compute the rounded size of the type.  */
  /* Compute the rounded size of the type.  */
  type_size = size_in_bytes (type);
  type_size = size_in_bytes (type);
  rounded_size = round_up (type_size, align);
  rounded_size = round_up (type_size, align);
 
 
  /* Reduce rounded_size so it's sharable with the postqueue.  */
  /* Reduce rounded_size so it's sharable with the postqueue.  */
  gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
  gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
 
 
  /* Get AP.  */
  /* Get AP.  */
  addr = valist_tmp;
  addr = valist_tmp;
  if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
  if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
    {
    {
      /* Small args are padded downward.  */
      /* Small args are padded downward.  */
      t = fold_build2_loc (input_location, GT_EXPR, sizetype,
      t = fold_build2_loc (input_location, GT_EXPR, sizetype,
                       rounded_size, size_int (align));
                       rounded_size, size_int (align));
      t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
      t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
                       size_binop (MINUS_EXPR, rounded_size, type_size));
                       size_binop (MINUS_EXPR, rounded_size, type_size));
      addr = fold_build2 (POINTER_PLUS_EXPR,
      addr = fold_build2 (POINTER_PLUS_EXPR,
                          TREE_TYPE (addr), addr, t);
                          TREE_TYPE (addr), addr, t);
    }
    }
 
 
  /* Compute new value for AP.  */
  /* Compute new value for AP.  */
  t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (valist), valist_tmp, rounded_size);
  t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (valist), valist_tmp, rounded_size);
  t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
  t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
  gimplify_and_add (t, pre_p);
  gimplify_and_add (t, pre_p);
 
 
  addr = fold_convert (build_pointer_type (type), addr);
  addr = fold_convert (build_pointer_type (type), addr);
 
 
  if (indirect)
  if (indirect)
    addr = build_va_arg_indirect_ref (addr);
    addr = build_va_arg_indirect_ref (addr);
 
 
  return build_va_arg_indirect_ref (addr);
  return build_va_arg_indirect_ref (addr);
}
}
 
 
/* Build an indirect-ref expression over the given TREE, which represents a
/* Build an indirect-ref expression over the given TREE, which represents a
   piece of a va_arg() expansion.  */
   piece of a va_arg() expansion.  */
tree
tree
build_va_arg_indirect_ref (tree addr)
build_va_arg_indirect_ref (tree addr)
{
{
  addr = build_fold_indirect_ref_loc (EXPR_LOCATION (addr), addr);
  addr = build_fold_indirect_ref_loc (EXPR_LOCATION (addr), addr);
 
 
  if (flag_mudflap) /* Don't instrument va_arg INDIRECT_REF.  */
  if (flag_mudflap) /* Don't instrument va_arg INDIRECT_REF.  */
    mf_mark (addr);
    mf_mark (addr);
 
 
  return addr;
  return addr;
}
}
 
 
/* Return a dummy expression of type TYPE in order to keep going after an
/* Return a dummy expression of type TYPE in order to keep going after an
   error.  */
   error.  */
 
 
static tree
static tree
dummy_object (tree type)
dummy_object (tree type)
{
{
  tree t = build_int_cst (build_pointer_type (type), 0);
  tree t = build_int_cst (build_pointer_type (type), 0);
  return build1 (INDIRECT_REF, type, t);
  return build1 (INDIRECT_REF, type, t);
}
}
 
 
/* Gimplify __builtin_va_arg, aka VA_ARG_EXPR, which is not really a
/* Gimplify __builtin_va_arg, aka VA_ARG_EXPR, which is not really a
   builtin function, but a very special sort of operator.  */
   builtin function, but a very special sort of operator.  */
 
 
enum gimplify_status
enum gimplify_status
gimplify_va_arg_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p)
gimplify_va_arg_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p)
{
{
  tree promoted_type, have_va_type;
  tree promoted_type, have_va_type;
  tree valist = TREE_OPERAND (*expr_p, 0);
  tree valist = TREE_OPERAND (*expr_p, 0);
  tree type = TREE_TYPE (*expr_p);
  tree type = TREE_TYPE (*expr_p);
  tree t;
  tree t;
  location_t loc = EXPR_LOCATION (*expr_p);
  location_t loc = EXPR_LOCATION (*expr_p);
 
 
  /* Verify that valist is of the proper type.  */
  /* Verify that valist is of the proper type.  */
  have_va_type = TREE_TYPE (valist);
  have_va_type = TREE_TYPE (valist);
  if (have_va_type == error_mark_node)
  if (have_va_type == error_mark_node)
    return GS_ERROR;
    return GS_ERROR;
  have_va_type = targetm.canonical_va_list_type (have_va_type);
  have_va_type = targetm.canonical_va_list_type (have_va_type);
 
 
  if (have_va_type == NULL_TREE)
  if (have_va_type == NULL_TREE)
    {
    {
      error_at (loc, "first argument to %<va_arg%> not of type %<va_list%>");
      error_at (loc, "first argument to %<va_arg%> not of type %<va_list%>");
      return GS_ERROR;
      return GS_ERROR;
    }
    }
 
 
  /* Generate a diagnostic for requesting data of a type that cannot
  /* Generate a diagnostic for requesting data of a type that cannot
     be passed through `...' due to type promotion at the call site.  */
     be passed through `...' due to type promotion at the call site.  */
  if ((promoted_type = lang_hooks.types.type_promotes_to (type))
  if ((promoted_type = lang_hooks.types.type_promotes_to (type))
           != type)
           != type)
    {
    {
      static bool gave_help;
      static bool gave_help;
      bool warned;
      bool warned;
 
 
      /* Unfortunately, this is merely undefined, rather than a constraint
      /* Unfortunately, this is merely undefined, rather than a constraint
         violation, so we cannot make this an error.  If this call is never
         violation, so we cannot make this an error.  If this call is never
         executed, the program is still strictly conforming.  */
         executed, the program is still strictly conforming.  */
      warned = warning_at (loc, 0,
      warned = warning_at (loc, 0,
                           "%qT is promoted to %qT when passed through %<...%>",
                           "%qT is promoted to %qT when passed through %<...%>",
                           type, promoted_type);
                           type, promoted_type);
      if (!gave_help && warned)
      if (!gave_help && warned)
        {
        {
          gave_help = true;
          gave_help = true;
          inform (loc, "(so you should pass %qT not %qT to %<va_arg%>)",
          inform (loc, "(so you should pass %qT not %qT to %<va_arg%>)",
                  promoted_type, type);
                  promoted_type, type);
        }
        }
 
 
      /* We can, however, treat "undefined" any way we please.
      /* We can, however, treat "undefined" any way we please.
         Call abort to encourage the user to fix the program.  */
         Call abort to encourage the user to fix the program.  */
      if (warned)
      if (warned)
        inform (loc, "if this code is reached, the program will abort");
        inform (loc, "if this code is reached, the program will abort");
      /* Before the abort, allow the evaluation of the va_list
      /* Before the abort, allow the evaluation of the va_list
         expression to exit or longjmp.  */
         expression to exit or longjmp.  */
      gimplify_and_add (valist, pre_p);
      gimplify_and_add (valist, pre_p);
      t = build_call_expr_loc (loc,
      t = build_call_expr_loc (loc,
                               implicit_built_in_decls[BUILT_IN_TRAP], 0);
                               implicit_built_in_decls[BUILT_IN_TRAP], 0);
      gimplify_and_add (t, pre_p);
      gimplify_and_add (t, pre_p);
 
 
      /* This is dead code, but go ahead and finish so that the
      /* This is dead code, but go ahead and finish so that the
         mode of the result comes out right.  */
         mode of the result comes out right.  */
      *expr_p = dummy_object (type);
      *expr_p = dummy_object (type);
      return GS_ALL_DONE;
      return GS_ALL_DONE;
    }
    }
  else
  else
    {
    {
      /* Make it easier for the backends by protecting the valist argument
      /* Make it easier for the backends by protecting the valist argument
         from multiple evaluations.  */
         from multiple evaluations.  */
      if (TREE_CODE (have_va_type) == ARRAY_TYPE)
      if (TREE_CODE (have_va_type) == ARRAY_TYPE)
        {
        {
          /* For this case, the backends will be expecting a pointer to
          /* For this case, the backends will be expecting a pointer to
             TREE_TYPE (abi), but it's possible we've
             TREE_TYPE (abi), but it's possible we've
             actually been given an array (an actual TARGET_FN_ABI_VA_LIST).
             actually been given an array (an actual TARGET_FN_ABI_VA_LIST).
             So fix it.  */
             So fix it.  */
          if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
          if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
            {
            {
              tree p1 = build_pointer_type (TREE_TYPE (have_va_type));
              tree p1 = build_pointer_type (TREE_TYPE (have_va_type));
              valist = fold_convert_loc (loc, p1,
              valist = fold_convert_loc (loc, p1,
                                         build_fold_addr_expr_loc (loc, valist));
                                         build_fold_addr_expr_loc (loc, valist));
            }
            }
 
 
          gimplify_expr (&valist, pre_p, post_p, is_gimple_val, fb_rvalue);
          gimplify_expr (&valist, pre_p, post_p, is_gimple_val, fb_rvalue);
        }
        }
      else
      else
        gimplify_expr (&valist, pre_p, post_p, is_gimple_min_lval, fb_lvalue);
        gimplify_expr (&valist, pre_p, post_p, is_gimple_min_lval, fb_lvalue);
 
 
      if (!targetm.gimplify_va_arg_expr)
      if (!targetm.gimplify_va_arg_expr)
        /* FIXME: Once most targets are converted we should merely
        /* FIXME: Once most targets are converted we should merely
           assert this is non-null.  */
           assert this is non-null.  */
        return GS_ALL_DONE;
        return GS_ALL_DONE;
 
 
      *expr_p = targetm.gimplify_va_arg_expr (valist, type, pre_p, post_p);
      *expr_p = targetm.gimplify_va_arg_expr (valist, type, pre_p, post_p);
      return GS_OK;
      return GS_OK;
    }
    }
}
}
 
 
/* Expand EXP, a call to __builtin_va_end.  */
/* Expand EXP, a call to __builtin_va_end.  */
 
 
static rtx
static rtx
expand_builtin_va_end (tree exp)
expand_builtin_va_end (tree exp)
{
{
  tree valist = CALL_EXPR_ARG (exp, 0);
  tree valist = CALL_EXPR_ARG (exp, 0);
 
 
  /* Evaluate for side effects, if needed.  I hate macros that don't
  /* Evaluate for side effects, if needed.  I hate macros that don't
     do that.  */
     do that.  */
  if (TREE_SIDE_EFFECTS (valist))
  if (TREE_SIDE_EFFECTS (valist))
    expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL);
    expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand EXP, a call to __builtin_va_copy.  We do this as a
/* Expand EXP, a call to __builtin_va_copy.  We do this as a
   builtin rather than just as an assignment in stdarg.h because of the
   builtin rather than just as an assignment in stdarg.h because of the
   nastiness of array-type va_list types.  */
   nastiness of array-type va_list types.  */
 
 
static rtx
static rtx
expand_builtin_va_copy (tree exp)
expand_builtin_va_copy (tree exp)
{
{
  tree dst, src, t;
  tree dst, src, t;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  dst = CALL_EXPR_ARG (exp, 0);
  dst = CALL_EXPR_ARG (exp, 0);
  src = CALL_EXPR_ARG (exp, 1);
  src = CALL_EXPR_ARG (exp, 1);
 
 
  dst = stabilize_va_list_loc (loc, dst, 1);
  dst = stabilize_va_list_loc (loc, dst, 1);
  src = stabilize_va_list_loc (loc, src, 0);
  src = stabilize_va_list_loc (loc, src, 0);
 
 
  gcc_assert (cfun != NULL && cfun->decl != NULL_TREE);
  gcc_assert (cfun != NULL && cfun->decl != NULL_TREE);
 
 
  if (TREE_CODE (targetm.fn_abi_va_list (cfun->decl)) != ARRAY_TYPE)
  if (TREE_CODE (targetm.fn_abi_va_list (cfun->decl)) != ARRAY_TYPE)
    {
    {
      t = build2 (MODIFY_EXPR, targetm.fn_abi_va_list (cfun->decl), dst, src);
      t = build2 (MODIFY_EXPR, targetm.fn_abi_va_list (cfun->decl), dst, src);
      TREE_SIDE_EFFECTS (t) = 1;
      TREE_SIDE_EFFECTS (t) = 1;
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
    }
    }
  else
  else
    {
    {
      rtx dstb, srcb, size;
      rtx dstb, srcb, size;
 
 
      /* Evaluate to pointers.  */
      /* Evaluate to pointers.  */
      dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL);
      dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL);
      srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL);
      srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL);
      size = expand_expr (TYPE_SIZE_UNIT (targetm.fn_abi_va_list (cfun->decl)),
      size = expand_expr (TYPE_SIZE_UNIT (targetm.fn_abi_va_list (cfun->decl)),
                  NULL_RTX, VOIDmode, EXPAND_NORMAL);
                  NULL_RTX, VOIDmode, EXPAND_NORMAL);
 
 
      dstb = convert_memory_address (Pmode, dstb);
      dstb = convert_memory_address (Pmode, dstb);
      srcb = convert_memory_address (Pmode, srcb);
      srcb = convert_memory_address (Pmode, srcb);
 
 
      /* "Dereference" to BLKmode memories.  */
      /* "Dereference" to BLKmode memories.  */
      dstb = gen_rtx_MEM (BLKmode, dstb);
      dstb = gen_rtx_MEM (BLKmode, dstb);
      set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst))));
      set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst))));
      set_mem_align (dstb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl)));
      set_mem_align (dstb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl)));
      srcb = gen_rtx_MEM (BLKmode, srcb);
      srcb = gen_rtx_MEM (BLKmode, srcb);
      set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src))));
      set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src))));
      set_mem_align (srcb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl)));
      set_mem_align (srcb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl)));
 
 
      /* Copy.  */
      /* Copy.  */
      emit_block_move (dstb, srcb, size, BLOCK_OP_NORMAL);
      emit_block_move (dstb, srcb, size, BLOCK_OP_NORMAL);
    }
    }
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to one of the builtin functions __builtin_frame_address or
/* Expand a call to one of the builtin functions __builtin_frame_address or
   __builtin_return_address.  */
   __builtin_return_address.  */
 
 
static rtx
static rtx
expand_builtin_frame_address (tree fndecl, tree exp)
expand_builtin_frame_address (tree fndecl, tree exp)
{
{
  /* The argument must be a nonnegative integer constant.
  /* The argument must be a nonnegative integer constant.
     It counts the number of frames to scan up the stack.
     It counts the number of frames to scan up the stack.
     The value is the return address saved in that frame.  */
     The value is the return address saved in that frame.  */
  if (call_expr_nargs (exp) == 0)
  if (call_expr_nargs (exp) == 0)
    /* Warning about missing arg was already issued.  */
    /* Warning about missing arg was already issued.  */
    return const0_rtx;
    return const0_rtx;
  else if (! host_integerp (CALL_EXPR_ARG (exp, 0), 1))
  else if (! host_integerp (CALL_EXPR_ARG (exp, 0), 1))
    {
    {
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
        error ("invalid argument to %<__builtin_frame_address%>");
        error ("invalid argument to %<__builtin_frame_address%>");
      else
      else
        error ("invalid argument to %<__builtin_return_address%>");
        error ("invalid argument to %<__builtin_return_address%>");
      return const0_rtx;
      return const0_rtx;
    }
    }
  else
  else
    {
    {
      rtx tem
      rtx tem
        = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl),
        = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl),
                                      tree_low_cst (CALL_EXPR_ARG (exp, 0), 1));
                                      tree_low_cst (CALL_EXPR_ARG (exp, 0), 1));
 
 
      /* Some ports cannot access arbitrary stack frames.  */
      /* Some ports cannot access arbitrary stack frames.  */
      if (tem == NULL)
      if (tem == NULL)
        {
        {
          if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
          if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
            warning (0, "unsupported argument to %<__builtin_frame_address%>");
            warning (0, "unsupported argument to %<__builtin_frame_address%>");
          else
          else
            warning (0, "unsupported argument to %<__builtin_return_address%>");
            warning (0, "unsupported argument to %<__builtin_return_address%>");
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      /* For __builtin_frame_address, return what we've got.  */
      /* For __builtin_frame_address, return what we've got.  */
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
        return tem;
        return tem;
 
 
      if (!REG_P (tem)
      if (!REG_P (tem)
          && ! CONSTANT_P (tem))
          && ! CONSTANT_P (tem))
        tem = copy_to_mode_reg (Pmode, tem);
        tem = copy_to_mode_reg (Pmode, tem);
      return tem;
      return tem;
    }
    }
}
}
 
 
/* Expand EXP, a call to the alloca builtin.  Return NULL_RTX if
/* Expand EXP, a call to the alloca builtin.  Return NULL_RTX if
   we failed and the caller should emit a normal call, otherwise try to get
   we failed and the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient.  */
   the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_alloca (tree exp, rtx target)
expand_builtin_alloca (tree exp, rtx target)
{
{
  rtx op0;
  rtx op0;
  rtx result;
  rtx result;
 
 
  /* Emit normal call if marked not-inlineable.  */
  /* Emit normal call if marked not-inlineable.  */
  if (CALL_CANNOT_INLINE_P (exp))
  if (CALL_CANNOT_INLINE_P (exp))
    return NULL_RTX;
    return NULL_RTX;
 
 
  if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* Compute the argument.  */
  /* Compute the argument.  */
  op0 = expand_normal (CALL_EXPR_ARG (exp, 0));
  op0 = expand_normal (CALL_EXPR_ARG (exp, 0));
 
 
  /* Allocate the desired space.  */
  /* Allocate the desired space.  */
  result = allocate_dynamic_stack_space (op0, target, BITS_PER_UNIT);
  result = allocate_dynamic_stack_space (op0, target, BITS_PER_UNIT);
  result = convert_memory_address (ptr_mode, result);
  result = convert_memory_address (ptr_mode, result);
 
 
  return result;
  return result;
}
}
 
 
/* Expand a call to a bswap builtin with argument ARG0.  MODE
/* Expand a call to a bswap builtin with argument ARG0.  MODE
   is the mode to expand with.  */
   is the mode to expand with.  */
 
 
static rtx
static rtx
expand_builtin_bswap (tree exp, rtx target, rtx subtarget)
expand_builtin_bswap (tree exp, rtx target, rtx subtarget)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg;
  tree arg;
  rtx op0;
  rtx op0;
 
 
  if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
  target = expand_unop (mode, bswap_optab, op0, target, 1);
  target = expand_unop (mode, bswap_optab, op0, target, 1);
 
 
  gcc_assert (target);
  gcc_assert (target);
 
 
  return convert_to_mode (mode, target, 0);
  return convert_to_mode (mode, target, 0);
}
}
 
 
/* Expand a call to a unary builtin in EXP.
/* Expand a call to a unary builtin in EXP.
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   Return NULL_RTX if a normal call should be emitted rather than expanding the
   function in-line.  If convenient, the result should be placed in TARGET.
   function in-line.  If convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_unop (enum machine_mode target_mode, tree exp, rtx target,
expand_builtin_unop (enum machine_mode target_mode, tree exp, rtx target,
                     rtx subtarget, optab op_optab)
                     rtx subtarget, optab op_optab)
{
{
  rtx op0;
  rtx op0;
 
 
  if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* Compute the argument.  */
  /* Compute the argument.  */
  op0 = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
  op0 = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
                     VOIDmode, EXPAND_NORMAL);
                     VOIDmode, EXPAND_NORMAL);
  /* Compute op, into TARGET if possible.
  /* Compute op, into TARGET if possible.
     Set TARGET to wherever the result comes back.  */
     Set TARGET to wherever the result comes back.  */
  target = expand_unop (TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 0))),
  target = expand_unop (TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 0))),
                        op_optab, op0, target, 1);
                        op_optab, op0, target, 1);
  gcc_assert (target);
  gcc_assert (target);
 
 
  return convert_to_mode (target_mode, target, 0);
  return convert_to_mode (target_mode, target, 0);
}
}
 
 
/* Expand a call to __builtin_expect.  We just return our argument
/* Expand a call to __builtin_expect.  We just return our argument
   as the builtin_expect semantic should've been already executed by
   as the builtin_expect semantic should've been already executed by
   tree branch prediction pass. */
   tree branch prediction pass. */
 
 
static rtx
static rtx
expand_builtin_expect (tree exp, rtx target)
expand_builtin_expect (tree exp, rtx target)
{
{
  tree arg;
  tree arg;
 
 
  if (call_expr_nargs (exp) < 2)
  if (call_expr_nargs (exp) < 2)
    return const0_rtx;
    return const0_rtx;
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
 
 
  target = expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
  target = expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
  /* When guessing was done, the hints should be already stripped away.  */
  /* When guessing was done, the hints should be already stripped away.  */
  gcc_assert (!flag_guess_branch_prob
  gcc_assert (!flag_guess_branch_prob
              || optimize == 0 || errorcount || sorrycount);
              || optimize == 0 || errorcount || sorrycount);
  return target;
  return target;
}
}
 
 
void
void
expand_builtin_trap (void)
expand_builtin_trap (void)
{
{
#ifdef HAVE_trap
#ifdef HAVE_trap
  if (HAVE_trap)
  if (HAVE_trap)
    emit_insn (gen_trap ());
    emit_insn (gen_trap ());
  else
  else
#endif
#endif
    emit_library_call (abort_libfunc, LCT_NORETURN, VOIDmode, 0);
    emit_library_call (abort_libfunc, LCT_NORETURN, VOIDmode, 0);
  emit_barrier ();
  emit_barrier ();
}
}
 
 
/* Expand a call to __builtin_unreachable.  We do nothing except emit
/* Expand a call to __builtin_unreachable.  We do nothing except emit
   a barrier saying that control flow will not pass here.
   a barrier saying that control flow will not pass here.
 
 
   It is the responsibility of the program being compiled to ensure
   It is the responsibility of the program being compiled to ensure
   that control flow does never reach __builtin_unreachable.  */
   that control flow does never reach __builtin_unreachable.  */
static void
static void
expand_builtin_unreachable (void)
expand_builtin_unreachable (void)
{
{
  emit_barrier ();
  emit_barrier ();
}
}
 
 
/* Expand EXP, a call to fabs, fabsf or fabsl.
/* Expand EXP, a call to fabs, fabsf or fabsl.
   Return NULL_RTX if a normal call should be emitted rather than expanding
   Return NULL_RTX if a normal call should be emitted rather than expanding
   the function inline.  If convenient, the result should be placed
   the function inline.  If convenient, the result should be placed
   in TARGET.  SUBTARGET may be used as the target for computing
   in TARGET.  SUBTARGET may be used as the target for computing
   the operand.  */
   the operand.  */
 
 
static rtx
static rtx
expand_builtin_fabs (tree exp, rtx target, rtx subtarget)
expand_builtin_fabs (tree exp, rtx target, rtx subtarget)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg;
  tree arg;
  rtx op0;
  rtx op0;
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
  CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
  return expand_abs (mode, op0, target, 0, safe_from_p (target, arg, 1));
  return expand_abs (mode, op0, target, 0, safe_from_p (target, arg, 1));
}
}
 
 
/* Expand EXP, a call to copysign, copysignf, or copysignl.
/* Expand EXP, a call to copysign, copysignf, or copysignl.
   Return NULL is a normal call should be emitted rather than expanding the
   Return NULL is a normal call should be emitted rather than expanding the
   function inline.  If convenient, the result should be placed in TARGET.
   function inline.  If convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing the operand.  */
   SUBTARGET may be used as the target for computing the operand.  */
 
 
static rtx
static rtx
expand_builtin_copysign (tree exp, rtx target, rtx subtarget)
expand_builtin_copysign (tree exp, rtx target, rtx subtarget)
{
{
  rtx op0, op1;
  rtx op0, op1;
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
  arg = CALL_EXPR_ARG (exp, 1);
  arg = CALL_EXPR_ARG (exp, 1);
  op1 = expand_normal (arg);
  op1 = expand_normal (arg);
 
 
  return expand_copysign (op0, op1, target);
  return expand_copysign (op0, op1, target);
}
}
 
 
/* Create a new constant string literal and return a char* pointer to it.
/* Create a new constant string literal and return a char* pointer to it.
   The STRING_CST value is the LEN characters at STR.  */
   The STRING_CST value is the LEN characters at STR.  */
tree
tree
build_string_literal (int len, const char *str)
build_string_literal (int len, const char *str)
{
{
  tree t, elem, index, type;
  tree t, elem, index, type;
 
 
  t = build_string (len, str);
  t = build_string (len, str);
  elem = build_type_variant (char_type_node, 1, 0);
  elem = build_type_variant (char_type_node, 1, 0);
  index = build_index_type (size_int (len - 1));
  index = build_index_type (size_int (len - 1));
  type = build_array_type (elem, index);
  type = build_array_type (elem, index);
  TREE_TYPE (t) = type;
  TREE_TYPE (t) = type;
  TREE_CONSTANT (t) = 1;
  TREE_CONSTANT (t) = 1;
  TREE_READONLY (t) = 1;
  TREE_READONLY (t) = 1;
  TREE_STATIC (t) = 1;
  TREE_STATIC (t) = 1;
 
 
  type = build_pointer_type (elem);
  type = build_pointer_type (elem);
  t = build1 (ADDR_EXPR, type,
  t = build1 (ADDR_EXPR, type,
              build4 (ARRAY_REF, elem,
              build4 (ARRAY_REF, elem,
                      t, integer_zero_node, NULL_TREE, NULL_TREE));
                      t, integer_zero_node, NULL_TREE, NULL_TREE));
  return t;
  return t;
}
}
 
 
/* Expand a call to either the entry or exit function profiler.  */
/* Expand a call to either the entry or exit function profiler.  */
 
 
static rtx
static rtx
expand_builtin_profile_func (bool exitp)
expand_builtin_profile_func (bool exitp)
{
{
  rtx this_rtx, which;
  rtx this_rtx, which;
 
 
  this_rtx = DECL_RTL (current_function_decl);
  this_rtx = DECL_RTL (current_function_decl);
  gcc_assert (MEM_P (this_rtx));
  gcc_assert (MEM_P (this_rtx));
  this_rtx = XEXP (this_rtx, 0);
  this_rtx = XEXP (this_rtx, 0);
 
 
  if (exitp)
  if (exitp)
    which = profile_function_exit_libfunc;
    which = profile_function_exit_libfunc;
  else
  else
    which = profile_function_entry_libfunc;
    which = profile_function_entry_libfunc;
 
 
  emit_library_call (which, LCT_NORMAL, VOIDmode, 2, this_rtx, Pmode,
  emit_library_call (which, LCT_NORMAL, VOIDmode, 2, this_rtx, Pmode,
                     expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
                     expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
                                                 0),
                                                 0),
                     Pmode);
                     Pmode);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to __builtin___clear_cache.  */
/* Expand a call to __builtin___clear_cache.  */
 
 
static rtx
static rtx
expand_builtin___clear_cache (tree exp ATTRIBUTE_UNUSED)
expand_builtin___clear_cache (tree exp ATTRIBUTE_UNUSED)
{
{
#ifndef HAVE_clear_cache
#ifndef HAVE_clear_cache
#ifdef CLEAR_INSN_CACHE
#ifdef CLEAR_INSN_CACHE
  /* There is no "clear_cache" insn, and __clear_cache() in libgcc
  /* There is no "clear_cache" insn, and __clear_cache() in libgcc
     does something.  Just do the default expansion to a call to
     does something.  Just do the default expansion to a call to
     __clear_cache().  */
     __clear_cache().  */
  return NULL_RTX;
  return NULL_RTX;
#else
#else
  /* There is no "clear_cache" insn, and __clear_cache() in libgcc
  /* There is no "clear_cache" insn, and __clear_cache() in libgcc
     does nothing.  There is no need to call it.  Do nothing.  */
     does nothing.  There is no need to call it.  Do nothing.  */
  return const0_rtx;
  return const0_rtx;
#endif /* CLEAR_INSN_CACHE */
#endif /* CLEAR_INSN_CACHE */
#else
#else
  /* We have a "clear_cache" insn, and it will handle everything.  */
  /* We have a "clear_cache" insn, and it will handle everything.  */
  tree begin, end;
  tree begin, end;
  rtx begin_rtx, end_rtx;
  rtx begin_rtx, end_rtx;
  enum insn_code icode;
  enum insn_code icode;
 
 
  /* We must not expand to a library call.  If we did, any
  /* We must not expand to a library call.  If we did, any
     fallback library function in libgcc that might contain a call to
     fallback library function in libgcc that might contain a call to
     __builtin___clear_cache() would recurse infinitely.  */
     __builtin___clear_cache() would recurse infinitely.  */
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      error ("both arguments to %<__builtin___clear_cache%> must be pointers");
      error ("both arguments to %<__builtin___clear_cache%> must be pointers");
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  if (HAVE_clear_cache)
  if (HAVE_clear_cache)
    {
    {
      icode = CODE_FOR_clear_cache;
      icode = CODE_FOR_clear_cache;
 
 
      begin = CALL_EXPR_ARG (exp, 0);
      begin = CALL_EXPR_ARG (exp, 0);
      begin_rtx = expand_expr (begin, NULL_RTX, Pmode, EXPAND_NORMAL);
      begin_rtx = expand_expr (begin, NULL_RTX, Pmode, EXPAND_NORMAL);
      begin_rtx = convert_memory_address (Pmode, begin_rtx);
      begin_rtx = convert_memory_address (Pmode, begin_rtx);
      if (!insn_data[icode].operand[0].predicate (begin_rtx, Pmode))
      if (!insn_data[icode].operand[0].predicate (begin_rtx, Pmode))
        begin_rtx = copy_to_mode_reg (Pmode, begin_rtx);
        begin_rtx = copy_to_mode_reg (Pmode, begin_rtx);
 
 
      end = CALL_EXPR_ARG (exp, 1);
      end = CALL_EXPR_ARG (exp, 1);
      end_rtx = expand_expr (end, NULL_RTX, Pmode, EXPAND_NORMAL);
      end_rtx = expand_expr (end, NULL_RTX, Pmode, EXPAND_NORMAL);
      end_rtx = convert_memory_address (Pmode, end_rtx);
      end_rtx = convert_memory_address (Pmode, end_rtx);
      if (!insn_data[icode].operand[1].predicate (end_rtx, Pmode))
      if (!insn_data[icode].operand[1].predicate (end_rtx, Pmode))
        end_rtx = copy_to_mode_reg (Pmode, end_rtx);
        end_rtx = copy_to_mode_reg (Pmode, end_rtx);
 
 
      emit_insn (gen_clear_cache (begin_rtx, end_rtx));
      emit_insn (gen_clear_cache (begin_rtx, end_rtx));
    }
    }
  return const0_rtx;
  return const0_rtx;
#endif /* HAVE_clear_cache */
#endif /* HAVE_clear_cache */
}
}
 
 
/* Given a trampoline address, make sure it satisfies TRAMPOLINE_ALIGNMENT.  */
/* Given a trampoline address, make sure it satisfies TRAMPOLINE_ALIGNMENT.  */
 
 
static rtx
static rtx
round_trampoline_addr (rtx tramp)
round_trampoline_addr (rtx tramp)
{
{
  rtx temp, addend, mask;
  rtx temp, addend, mask;
 
 
  /* If we don't need too much alignment, we'll have been guaranteed
  /* If we don't need too much alignment, we'll have been guaranteed
     proper alignment by get_trampoline_type.  */
     proper alignment by get_trampoline_type.  */
  if (TRAMPOLINE_ALIGNMENT <= STACK_BOUNDARY)
  if (TRAMPOLINE_ALIGNMENT <= STACK_BOUNDARY)
    return tramp;
    return tramp;
 
 
  /* Round address up to desired boundary.  */
  /* Round address up to desired boundary.  */
  temp = gen_reg_rtx (Pmode);
  temp = gen_reg_rtx (Pmode);
  addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
  addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
  mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
  mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
 
 
  temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
  temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
                               temp, 0, OPTAB_LIB_WIDEN);
                               temp, 0, OPTAB_LIB_WIDEN);
  tramp = expand_simple_binop (Pmode, AND, temp, mask,
  tramp = expand_simple_binop (Pmode, AND, temp, mask,
                               temp, 0, OPTAB_LIB_WIDEN);
                               temp, 0, OPTAB_LIB_WIDEN);
 
 
  return tramp;
  return tramp;
}
}
 
 
static rtx
static rtx
expand_builtin_init_trampoline (tree exp)
expand_builtin_init_trampoline (tree exp)
{
{
  tree t_tramp, t_func, t_chain;
  tree t_tramp, t_func, t_chain;
  rtx m_tramp, r_tramp, r_chain, tmp;
  rtx m_tramp, r_tramp, r_chain, tmp;
 
 
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE,
  if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE,
                         POINTER_TYPE, VOID_TYPE))
                         POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  t_tramp = CALL_EXPR_ARG (exp, 0);
  t_tramp = CALL_EXPR_ARG (exp, 0);
  t_func = CALL_EXPR_ARG (exp, 1);
  t_func = CALL_EXPR_ARG (exp, 1);
  t_chain = CALL_EXPR_ARG (exp, 2);
  t_chain = CALL_EXPR_ARG (exp, 2);
 
 
  r_tramp = expand_normal (t_tramp);
  r_tramp = expand_normal (t_tramp);
  m_tramp = gen_rtx_MEM (BLKmode, r_tramp);
  m_tramp = gen_rtx_MEM (BLKmode, r_tramp);
  MEM_NOTRAP_P (m_tramp) = 1;
  MEM_NOTRAP_P (m_tramp) = 1;
 
 
  /* The TRAMP argument should be the address of a field within the
  /* The TRAMP argument should be the address of a field within the
     local function's FRAME decl.  Let's see if we can fill in the
     local function's FRAME decl.  Let's see if we can fill in the
     to fill in the MEM_ATTRs for this memory.  */
     to fill in the MEM_ATTRs for this memory.  */
  if (TREE_CODE (t_tramp) == ADDR_EXPR)
  if (TREE_CODE (t_tramp) == ADDR_EXPR)
    set_mem_attributes_minus_bitpos (m_tramp, TREE_OPERAND (t_tramp, 0),
    set_mem_attributes_minus_bitpos (m_tramp, TREE_OPERAND (t_tramp, 0),
                                     true, 0);
                                     true, 0);
 
 
  tmp = round_trampoline_addr (r_tramp);
  tmp = round_trampoline_addr (r_tramp);
  if (tmp != r_tramp)
  if (tmp != r_tramp)
    {
    {
      m_tramp = change_address (m_tramp, BLKmode, tmp);
      m_tramp = change_address (m_tramp, BLKmode, tmp);
      set_mem_align (m_tramp, TRAMPOLINE_ALIGNMENT);
      set_mem_align (m_tramp, TRAMPOLINE_ALIGNMENT);
      set_mem_size (m_tramp, GEN_INT (TRAMPOLINE_SIZE));
      set_mem_size (m_tramp, GEN_INT (TRAMPOLINE_SIZE));
    }
    }
 
 
  /* The FUNC argument should be the address of the nested function.
  /* The FUNC argument should be the address of the nested function.
     Extract the actual function decl to pass to the hook.  */
     Extract the actual function decl to pass to the hook.  */
  gcc_assert (TREE_CODE (t_func) == ADDR_EXPR);
  gcc_assert (TREE_CODE (t_func) == ADDR_EXPR);
  t_func = TREE_OPERAND (t_func, 0);
  t_func = TREE_OPERAND (t_func, 0);
  gcc_assert (TREE_CODE (t_func) == FUNCTION_DECL);
  gcc_assert (TREE_CODE (t_func) == FUNCTION_DECL);
 
 
  r_chain = expand_normal (t_chain);
  r_chain = expand_normal (t_chain);
 
 
  /* Generate insns to initialize the trampoline.  */
  /* Generate insns to initialize the trampoline.  */
  targetm.calls.trampoline_init (m_tramp, t_func, r_chain);
  targetm.calls.trampoline_init (m_tramp, t_func, r_chain);
 
 
  trampolines_created = 1;
  trampolines_created = 1;
  return const0_rtx;
  return const0_rtx;
}
}
 
 
static rtx
static rtx
expand_builtin_adjust_trampoline (tree exp)
expand_builtin_adjust_trampoline (tree exp)
{
{
  rtx tramp;
  rtx tramp;
 
 
  if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  tramp = expand_normal (CALL_EXPR_ARG (exp, 0));
  tramp = expand_normal (CALL_EXPR_ARG (exp, 0));
  tramp = round_trampoline_addr (tramp);
  tramp = round_trampoline_addr (tramp);
  if (targetm.calls.trampoline_adjust_address)
  if (targetm.calls.trampoline_adjust_address)
    tramp = targetm.calls.trampoline_adjust_address (tramp);
    tramp = targetm.calls.trampoline_adjust_address (tramp);
 
 
  return tramp;
  return tramp;
}
}
 
 
/* Expand the call EXP to the built-in signbit, signbitf or signbitl
/* Expand the call EXP to the built-in signbit, signbitf or signbitl
   function.  The function first checks whether the back end provides
   function.  The function first checks whether the back end provides
   an insn to implement signbit for the respective mode.  If not, it
   an insn to implement signbit for the respective mode.  If not, it
   checks whether the floating point format of the value is such that
   checks whether the floating point format of the value is such that
   the sign bit can be extracted.  If that is not the case, the
   the sign bit can be extracted.  If that is not the case, the
   function returns NULL_RTX to indicate that a normal call should be
   function returns NULL_RTX to indicate that a normal call should be
   emitted rather than expanding the function in-line.  EXP is the
   emitted rather than expanding the function in-line.  EXP is the
   expression that is a call to the builtin function; if convenient,
   expression that is a call to the builtin function; if convenient,
   the result should be placed in TARGET.  */
   the result should be placed in TARGET.  */
static rtx
static rtx
expand_builtin_signbit (tree exp, rtx target)
expand_builtin_signbit (tree exp, rtx target)
{
{
  const struct real_format *fmt;
  const struct real_format *fmt;
  enum machine_mode fmode, imode, rmode;
  enum machine_mode fmode, imode, rmode;
  HOST_WIDE_INT hi, lo;
  HOST_WIDE_INT hi, lo;
  tree arg;
  tree arg;
  int word, bitpos;
  int word, bitpos;
  enum insn_code icode;
  enum insn_code icode;
  rtx temp;
  rtx temp;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  arg = CALL_EXPR_ARG (exp, 0);
  arg = CALL_EXPR_ARG (exp, 0);
  fmode = TYPE_MODE (TREE_TYPE (arg));
  fmode = TYPE_MODE (TREE_TYPE (arg));
  rmode = TYPE_MODE (TREE_TYPE (exp));
  rmode = TYPE_MODE (TREE_TYPE (exp));
  fmt = REAL_MODE_FORMAT (fmode);
  fmt = REAL_MODE_FORMAT (fmode);
 
 
  arg = builtin_save_expr (arg);
  arg = builtin_save_expr (arg);
 
 
  /* Expand the argument yielding a RTX expression. */
  /* Expand the argument yielding a RTX expression. */
  temp = expand_normal (arg);
  temp = expand_normal (arg);
 
 
  /* Check if the back end provides an insn that handles signbit for the
  /* Check if the back end provides an insn that handles signbit for the
     argument's mode. */
     argument's mode. */
  icode = signbit_optab->handlers [(int) fmode].insn_code;
  icode = signbit_optab->handlers [(int) fmode].insn_code;
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      rtx last = get_last_insn ();
      rtx last = get_last_insn ();
      target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
      target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
      if (maybe_emit_unop_insn (icode, target, temp, UNKNOWN))
      if (maybe_emit_unop_insn (icode, target, temp, UNKNOWN))
        return target;
        return target;
      delete_insns_since (last);
      delete_insns_since (last);
    }
    }
 
 
  /* For floating point formats without a sign bit, implement signbit
  /* For floating point formats without a sign bit, implement signbit
     as "ARG < 0.0".  */
     as "ARG < 0.0".  */
  bitpos = fmt->signbit_ro;
  bitpos = fmt->signbit_ro;
  if (bitpos < 0)
  if (bitpos < 0)
  {
  {
    /* But we can't do this if the format supports signed zero.  */
    /* But we can't do this if the format supports signed zero.  */
    if (fmt->has_signed_zero && HONOR_SIGNED_ZEROS (fmode))
    if (fmt->has_signed_zero && HONOR_SIGNED_ZEROS (fmode))
      return NULL_RTX;
      return NULL_RTX;
 
 
    arg = fold_build2_loc (loc, LT_EXPR, TREE_TYPE (exp), arg,
    arg = fold_build2_loc (loc, LT_EXPR, TREE_TYPE (exp), arg,
                       build_real (TREE_TYPE (arg), dconst0));
                       build_real (TREE_TYPE (arg), dconst0));
    return expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
    return expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
  }
  }
 
 
  if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD)
  if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD)
    {
    {
      imode = int_mode_for_mode (fmode);
      imode = int_mode_for_mode (fmode);
      if (imode == BLKmode)
      if (imode == BLKmode)
        return NULL_RTX;
        return NULL_RTX;
      temp = gen_lowpart (imode, temp);
      temp = gen_lowpart (imode, temp);
    }
    }
  else
  else
    {
    {
      imode = word_mode;
      imode = word_mode;
      /* Handle targets with different FP word orders.  */
      /* Handle targets with different FP word orders.  */
      if (FLOAT_WORDS_BIG_ENDIAN)
      if (FLOAT_WORDS_BIG_ENDIAN)
        word = (GET_MODE_BITSIZE (fmode) - bitpos) / BITS_PER_WORD;
        word = (GET_MODE_BITSIZE (fmode) - bitpos) / BITS_PER_WORD;
      else
      else
        word = bitpos / BITS_PER_WORD;
        word = bitpos / BITS_PER_WORD;
      temp = operand_subword_force (temp, word, fmode);
      temp = operand_subword_force (temp, word, fmode);
      bitpos = bitpos % BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
    }
    }
 
 
  /* Force the intermediate word_mode (or narrower) result into a
  /* Force the intermediate word_mode (or narrower) result into a
     register.  This avoids attempting to create paradoxical SUBREGs
     register.  This avoids attempting to create paradoxical SUBREGs
     of floating point modes below.  */
     of floating point modes below.  */
  temp = force_reg (imode, temp);
  temp = force_reg (imode, temp);
 
 
  /* If the bitpos is within the "result mode" lowpart, the operation
  /* If the bitpos is within the "result mode" lowpart, the operation
     can be implement with a single bitwise AND.  Otherwise, we need
     can be implement with a single bitwise AND.  Otherwise, we need
     a right shift and an AND.  */
     a right shift and an AND.  */
 
 
  if (bitpos < GET_MODE_BITSIZE (rmode))
  if (bitpos < GET_MODE_BITSIZE (rmode))
    {
    {
      if (bitpos < HOST_BITS_PER_WIDE_INT)
      if (bitpos < HOST_BITS_PER_WIDE_INT)
        {
        {
          hi = 0;
          hi = 0;
          lo = (HOST_WIDE_INT) 1 << bitpos;
          lo = (HOST_WIDE_INT) 1 << bitpos;
        }
        }
      else
      else
        {
        {
          hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
          hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
          lo = 0;
          lo = 0;
        }
        }
 
 
      if (GET_MODE_SIZE (imode) > GET_MODE_SIZE (rmode))
      if (GET_MODE_SIZE (imode) > GET_MODE_SIZE (rmode))
        temp = gen_lowpart (rmode, temp);
        temp = gen_lowpart (rmode, temp);
      temp = expand_binop (rmode, and_optab, temp,
      temp = expand_binop (rmode, and_optab, temp,
                           immed_double_const (lo, hi, rmode),
                           immed_double_const (lo, hi, rmode),
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
    }
    }
  else
  else
    {
    {
      /* Perform a logical right shift to place the signbit in the least
      /* Perform a logical right shift to place the signbit in the least
         significant bit, then truncate the result to the desired mode
         significant bit, then truncate the result to the desired mode
         and mask just this bit.  */
         and mask just this bit.  */
      temp = expand_shift (RSHIFT_EXPR, imode, temp,
      temp = expand_shift (RSHIFT_EXPR, imode, temp,
                           build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
                           build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
      temp = gen_lowpart (rmode, temp);
      temp = gen_lowpart (rmode, temp);
      temp = expand_binop (rmode, and_optab, temp, const1_rtx,
      temp = expand_binop (rmode, and_optab, temp, const1_rtx,
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
    }
    }
 
 
  return temp;
  return temp;
}
}
 
 
/* Expand fork or exec calls.  TARGET is the desired target of the
/* Expand fork or exec calls.  TARGET is the desired target of the
   call.  EXP is the call. FN is the
   call.  EXP is the call. FN is the
   identificator of the actual function.  IGNORE is nonzero if the
   identificator of the actual function.  IGNORE is nonzero if the
   value is to be ignored.  */
   value is to be ignored.  */
 
 
static rtx
static rtx
expand_builtin_fork_or_exec (tree fn, tree exp, rtx target, int ignore)
expand_builtin_fork_or_exec (tree fn, tree exp, rtx target, int ignore)
{
{
  tree id, decl;
  tree id, decl;
  tree call;
  tree call;
 
 
  /* If we are not profiling, just call the function.  */
  /* If we are not profiling, just call the function.  */
  if (!profile_arc_flag)
  if (!profile_arc_flag)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* Otherwise call the wrapper.  This should be equivalent for the rest of
  /* Otherwise call the wrapper.  This should be equivalent for the rest of
     compiler, so the code does not diverge, and the wrapper may run the
     compiler, so the code does not diverge, and the wrapper may run the
     code necessary for keeping the profiling sane.  */
     code necessary for keeping the profiling sane.  */
 
 
  switch (DECL_FUNCTION_CODE (fn))
  switch (DECL_FUNCTION_CODE (fn))
    {
    {
    case BUILT_IN_FORK:
    case BUILT_IN_FORK:
      id = get_identifier ("__gcov_fork");
      id = get_identifier ("__gcov_fork");
      break;
      break;
 
 
    case BUILT_IN_EXECL:
    case BUILT_IN_EXECL:
      id = get_identifier ("__gcov_execl");
      id = get_identifier ("__gcov_execl");
      break;
      break;
 
 
    case BUILT_IN_EXECV:
    case BUILT_IN_EXECV:
      id = get_identifier ("__gcov_execv");
      id = get_identifier ("__gcov_execv");
      break;
      break;
 
 
    case BUILT_IN_EXECLP:
    case BUILT_IN_EXECLP:
      id = get_identifier ("__gcov_execlp");
      id = get_identifier ("__gcov_execlp");
      break;
      break;
 
 
    case BUILT_IN_EXECLE:
    case BUILT_IN_EXECLE:
      id = get_identifier ("__gcov_execle");
      id = get_identifier ("__gcov_execle");
      break;
      break;
 
 
    case BUILT_IN_EXECVP:
    case BUILT_IN_EXECVP:
      id = get_identifier ("__gcov_execvp");
      id = get_identifier ("__gcov_execvp");
      break;
      break;
 
 
    case BUILT_IN_EXECVE:
    case BUILT_IN_EXECVE:
      id = get_identifier ("__gcov_execve");
      id = get_identifier ("__gcov_execve");
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  decl = build_decl (DECL_SOURCE_LOCATION (fn),
  decl = build_decl (DECL_SOURCE_LOCATION (fn),
                     FUNCTION_DECL, id, TREE_TYPE (fn));
                     FUNCTION_DECL, id, TREE_TYPE (fn));
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  TREE_NOTHROW (decl) = 1;
  TREE_NOTHROW (decl) = 1;
  DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
  call = rewrite_call_expr (EXPR_LOCATION (exp), exp, 0, decl, 0);
  call = rewrite_call_expr (EXPR_LOCATION (exp), exp, 0, decl, 0);
  return expand_call (call, target, ignore);
  return expand_call (call, target, ignore);
 }
 }
 
 
 
 


/* Reconstitute a mode for a __sync intrinsic operation.  Since the type of
/* Reconstitute a mode for a __sync intrinsic operation.  Since the type of
   the pointer in these functions is void*, the tree optimizers may remove
   the pointer in these functions is void*, the tree optimizers may remove
   casts.  The mode computed in expand_builtin isn't reliable either, due
   casts.  The mode computed in expand_builtin isn't reliable either, due
   to __sync_bool_compare_and_swap.
   to __sync_bool_compare_and_swap.
 
 
   FCODE_DIFF should be fcode - base, where base is the FOO_1 code for the
   FCODE_DIFF should be fcode - base, where base is the FOO_1 code for the
   group of builtins.  This gives us log2 of the mode size.  */
   group of builtins.  This gives us log2 of the mode size.  */
 
 
static inline enum machine_mode
static inline enum machine_mode
get_builtin_sync_mode (int fcode_diff)
get_builtin_sync_mode (int fcode_diff)
{
{
  /* The size is not negotiable, so ask not to get BLKmode in return
  /* The size is not negotiable, so ask not to get BLKmode in return
     if the target indicates that a smaller size would be better.  */
     if the target indicates that a smaller size would be better.  */
  return mode_for_size (BITS_PER_UNIT << fcode_diff, MODE_INT, 0);
  return mode_for_size (BITS_PER_UNIT << fcode_diff, MODE_INT, 0);
}
}
 
 
/* Expand the memory expression LOC and return the appropriate memory operand
/* Expand the memory expression LOC and return the appropriate memory operand
   for the builtin_sync operations.  */
   for the builtin_sync operations.  */
 
 
static rtx
static rtx
get_builtin_sync_mem (tree loc, enum machine_mode mode)
get_builtin_sync_mem (tree loc, enum machine_mode mode)
{
{
  rtx addr, mem;
  rtx addr, mem;
 
 
  addr = expand_expr (loc, NULL_RTX, ptr_mode, EXPAND_SUM);
  addr = expand_expr (loc, NULL_RTX, ptr_mode, EXPAND_SUM);
  addr = convert_memory_address (Pmode, addr);
  addr = convert_memory_address (Pmode, addr);
 
 
  /* Note that we explicitly do not want any alias information for this
  /* Note that we explicitly do not want any alias information for this
     memory, so that we kill all other live memories.  Otherwise we don't
     memory, so that we kill all other live memories.  Otherwise we don't
     satisfy the full barrier semantics of the intrinsic.  */
     satisfy the full barrier semantics of the intrinsic.  */
  mem = validize_mem (gen_rtx_MEM (mode, addr));
  mem = validize_mem (gen_rtx_MEM (mode, addr));
 
 
  set_mem_align (mem, get_pointer_alignment (loc, BIGGEST_ALIGNMENT));
  set_mem_align (mem, get_pointer_alignment (loc, BIGGEST_ALIGNMENT));
  set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
  set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
  MEM_VOLATILE_P (mem) = 1;
  MEM_VOLATILE_P (mem) = 1;
 
 
  return mem;
  return mem;
}
}
 
 
/* Expand the __sync_xxx_and_fetch and __sync_fetch_and_xxx intrinsics.
/* Expand the __sync_xxx_and_fetch and __sync_fetch_and_xxx intrinsics.
   EXP is the CALL_EXPR.  CODE is the rtx code
   EXP is the CALL_EXPR.  CODE is the rtx code
   that corresponds to the arithmetic or logical operation from the name;
   that corresponds to the arithmetic or logical operation from the name;
   an exception here is that NOT actually means NAND.  TARGET is an optional
   an exception here is that NOT actually means NAND.  TARGET is an optional
   place for us to store the results; AFTER is true if this is the
   place for us to store the results; AFTER is true if this is the
   fetch_and_xxx form.  IGNORE is true if we don't actually care about
   fetch_and_xxx form.  IGNORE is true if we don't actually care about
   the result of the operation at all.  */
   the result of the operation at all.  */
 
 
static rtx
static rtx
expand_builtin_sync_operation (enum machine_mode mode, tree exp,
expand_builtin_sync_operation (enum machine_mode mode, tree exp,
                               enum rtx_code code, bool after,
                               enum rtx_code code, bool after,
                               rtx target, bool ignore)
                               rtx target, bool ignore)
{
{
  rtx val, mem;
  rtx val, mem;
  enum machine_mode old_mode;
  enum machine_mode old_mode;
  location_t loc = EXPR_LOCATION (exp);
  location_t loc = EXPR_LOCATION (exp);
 
 
  if (code == NOT && warn_sync_nand)
  if (code == NOT && warn_sync_nand)
    {
    {
      tree fndecl = get_callee_fndecl (exp);
      tree fndecl = get_callee_fndecl (exp);
      enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
      enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
 
 
      static bool warned_f_a_n, warned_n_a_f;
      static bool warned_f_a_n, warned_n_a_f;
 
 
      switch (fcode)
      switch (fcode)
        {
        {
        case BUILT_IN_FETCH_AND_NAND_1:
        case BUILT_IN_FETCH_AND_NAND_1:
        case BUILT_IN_FETCH_AND_NAND_2:
        case BUILT_IN_FETCH_AND_NAND_2:
        case BUILT_IN_FETCH_AND_NAND_4:
        case BUILT_IN_FETCH_AND_NAND_4:
        case BUILT_IN_FETCH_AND_NAND_8:
        case BUILT_IN_FETCH_AND_NAND_8:
        case BUILT_IN_FETCH_AND_NAND_16:
        case BUILT_IN_FETCH_AND_NAND_16:
 
 
          if (warned_f_a_n)
          if (warned_f_a_n)
            break;
            break;
 
 
          fndecl = implicit_built_in_decls[BUILT_IN_FETCH_AND_NAND_N];
          fndecl = implicit_built_in_decls[BUILT_IN_FETCH_AND_NAND_N];
          inform (loc, "%qD changed semantics in GCC 4.4", fndecl);
          inform (loc, "%qD changed semantics in GCC 4.4", fndecl);
          warned_f_a_n = true;
          warned_f_a_n = true;
          break;
          break;
 
 
        case BUILT_IN_NAND_AND_FETCH_1:
        case BUILT_IN_NAND_AND_FETCH_1:
        case BUILT_IN_NAND_AND_FETCH_2:
        case BUILT_IN_NAND_AND_FETCH_2:
        case BUILT_IN_NAND_AND_FETCH_4:
        case BUILT_IN_NAND_AND_FETCH_4:
        case BUILT_IN_NAND_AND_FETCH_8:
        case BUILT_IN_NAND_AND_FETCH_8:
        case BUILT_IN_NAND_AND_FETCH_16:
        case BUILT_IN_NAND_AND_FETCH_16:
 
 
          if (warned_n_a_f)
          if (warned_n_a_f)
            break;
            break;
 
 
          fndecl = implicit_built_in_decls[BUILT_IN_NAND_AND_FETCH_N];
          fndecl = implicit_built_in_decls[BUILT_IN_NAND_AND_FETCH_N];
          inform (loc, "%qD changed semantics in GCC 4.4", fndecl);
          inform (loc, "%qD changed semantics in GCC 4.4", fndecl);
          warned_n_a_f = true;
          warned_n_a_f = true;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
 
 
  val = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX, mode, EXPAND_NORMAL);
  val = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX, mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (val);
  old_mode = GET_MODE (val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 1)));
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 1)));
  val = convert_modes (mode, old_mode, val, 1);
  val = convert_modes (mode, old_mode, val, 1);
 
 
  if (ignore)
  if (ignore)
    return expand_sync_operation (mem, val, code);
    return expand_sync_operation (mem, val, code);
  else
  else
    return expand_sync_fetch_operation (mem, val, code, after, target);
    return expand_sync_fetch_operation (mem, val, code, after, target);
}
}
 
 
/* Expand the __sync_val_compare_and_swap and __sync_bool_compare_and_swap
/* Expand the __sync_val_compare_and_swap and __sync_bool_compare_and_swap
   intrinsics. EXP is the CALL_EXPR.  IS_BOOL is
   intrinsics. EXP is the CALL_EXPR.  IS_BOOL is
   true if this is the boolean form.  TARGET is a place for us to store the
   true if this is the boolean form.  TARGET is a place for us to store the
   results; this is NOT optional if IS_BOOL is true.  */
   results; this is NOT optional if IS_BOOL is true.  */
 
 
static rtx
static rtx
expand_builtin_compare_and_swap (enum machine_mode mode, tree exp,
expand_builtin_compare_and_swap (enum machine_mode mode, tree exp,
                                 bool is_bool, rtx target)
                                 bool is_bool, rtx target)
{
{
  rtx old_val, new_val, mem;
  rtx old_val, new_val, mem;
  enum machine_mode old_mode;
  enum machine_mode old_mode;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
 
 
 
 
  old_val = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX,
  old_val = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX,
                         mode, EXPAND_NORMAL);
                         mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (old_val);
  old_mode = GET_MODE (old_val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 1)));
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 1)));
  old_val = convert_modes (mode, old_mode, old_val, 1);
  old_val = convert_modes (mode, old_mode, old_val, 1);
 
 
  new_val = expand_expr (CALL_EXPR_ARG (exp, 2), NULL_RTX,
  new_val = expand_expr (CALL_EXPR_ARG (exp, 2), NULL_RTX,
                         mode, EXPAND_NORMAL);
                         mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (new_val);
  old_mode = GET_MODE (new_val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 2)));
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 2)));
  new_val = convert_modes (mode, old_mode, new_val, 1);
  new_val = convert_modes (mode, old_mode, new_val, 1);
 
 
  if (is_bool)
  if (is_bool)
    return expand_bool_compare_and_swap (mem, old_val, new_val, target);
    return expand_bool_compare_and_swap (mem, old_val, new_val, target);
  else
  else
    return expand_val_compare_and_swap (mem, old_val, new_val, target);
    return expand_val_compare_and_swap (mem, old_val, new_val, target);
}
}
 
 
/* Expand the __sync_lock_test_and_set intrinsic.  Note that the most
/* Expand the __sync_lock_test_and_set intrinsic.  Note that the most
   general form is actually an atomic exchange, and some targets only
   general form is actually an atomic exchange, and some targets only
   support a reduced form with the second argument being a constant 1.
   support a reduced form with the second argument being a constant 1.
   EXP is the CALL_EXPR; TARGET is an optional place for us to store
   EXP is the CALL_EXPR; TARGET is an optional place for us to store
   the results.  */
   the results.  */
 
 
static rtx
static rtx
expand_builtin_lock_test_and_set (enum machine_mode mode, tree exp,
expand_builtin_lock_test_and_set (enum machine_mode mode, tree exp,
                                  rtx target)
                                  rtx target)
{
{
  rtx val, mem;
  rtx val, mem;
  enum machine_mode old_mode;
  enum machine_mode old_mode;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
  val = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX, mode, EXPAND_NORMAL);
  val = expand_expr (CALL_EXPR_ARG (exp, 1), NULL_RTX, mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (val);
  old_mode = GET_MODE (val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 1)));
    old_mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 1)));
  val = convert_modes (mode, old_mode, val, 1);
  val = convert_modes (mode, old_mode, val, 1);
 
 
  return expand_sync_lock_test_and_set (mem, val, target);
  return expand_sync_lock_test_and_set (mem, val, target);
}
}
 
 
/* Expand the __sync_synchronize intrinsic.  */
/* Expand the __sync_synchronize intrinsic.  */
 
 
static void
static void
expand_builtin_synchronize (void)
expand_builtin_synchronize (void)
{
{
  gimple x;
  gimple x;
  VEC (tree, gc) *v_clobbers;
  VEC (tree, gc) *v_clobbers;
 
 
#ifdef HAVE_memory_barrier
#ifdef HAVE_memory_barrier
  if (HAVE_memory_barrier)
  if (HAVE_memory_barrier)
    {
    {
      emit_insn (gen_memory_barrier ());
      emit_insn (gen_memory_barrier ());
      return;
      return;
    }
    }
#endif
#endif
 
 
  if (synchronize_libfunc != NULL_RTX)
  if (synchronize_libfunc != NULL_RTX)
    {
    {
      emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
      emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
      return;
      return;
    }
    }
 
 
  /* If no explicit memory barrier instruction is available, create an
  /* If no explicit memory barrier instruction is available, create an
     empty asm stmt with a memory clobber.  */
     empty asm stmt with a memory clobber.  */
  v_clobbers = VEC_alloc (tree, gc, 1);
  v_clobbers = VEC_alloc (tree, gc, 1);
  VEC_quick_push (tree, v_clobbers,
  VEC_quick_push (tree, v_clobbers,
                  tree_cons (NULL, build_string (6, "memory"), NULL));
                  tree_cons (NULL, build_string (6, "memory"), NULL));
  x = gimple_build_asm_vec ("", NULL, NULL, v_clobbers, NULL);
  x = gimple_build_asm_vec ("", NULL, NULL, v_clobbers, NULL);
  gimple_asm_set_volatile (x, true);
  gimple_asm_set_volatile (x, true);
  expand_asm_stmt (x);
  expand_asm_stmt (x);
}
}
 
 
/* Expand the __sync_lock_release intrinsic.  EXP is the CALL_EXPR.  */
/* Expand the __sync_lock_release intrinsic.  EXP is the CALL_EXPR.  */
 
 
static void
static void
expand_builtin_lock_release (enum machine_mode mode, tree exp)
expand_builtin_lock_release (enum machine_mode mode, tree exp)
{
{
  enum insn_code icode;
  enum insn_code icode;
  rtx mem, insn;
  rtx mem, insn;
  rtx val = const0_rtx;
  rtx val = const0_rtx;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
  mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
 
 
  /* If there is an explicit operation in the md file, use it.  */
  /* If there is an explicit operation in the md file, use it.  */
  icode = sync_lock_release[mode];
  icode = sync_lock_release[mode];
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      if (!insn_data[icode].operand[1].predicate (val, mode))
      if (!insn_data[icode].operand[1].predicate (val, mode))
        val = force_reg (mode, val);
        val = force_reg (mode, val);
 
 
      insn = GEN_FCN (icode) (mem, val);
      insn = GEN_FCN (icode) (mem, val);
      if (insn)
      if (insn)
        {
        {
          emit_insn (insn);
          emit_insn (insn);
          return;
          return;
        }
        }
    }
    }
 
 
  /* Otherwise we can implement this operation by emitting a barrier
  /* Otherwise we can implement this operation by emitting a barrier
     followed by a store of zero.  */
     followed by a store of zero.  */
  expand_builtin_synchronize ();
  expand_builtin_synchronize ();
  emit_move_insn (mem, val);
  emit_move_insn (mem, val);
}
}


/* Expand an expression EXP that calls a built-in function,
/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */
   IGNORE is nonzero if the value is to be ignored.  */
 
 
rtx
rtx
expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode,
expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode,
                int ignore)
                int ignore)
{
{
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp));
  enum machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
    return targetm.expand_builtin (exp, target, subtarget, mode, ignore);
    return targetm.expand_builtin (exp, target, subtarget, mode, ignore);
 
 
  /* When not optimizing, generate calls to library functions for a certain
  /* When not optimizing, generate calls to library functions for a certain
     set of builtins.  */
     set of builtins.  */
  if (!optimize
  if (!optimize
      && !called_as_built_in (fndecl)
      && !called_as_built_in (fndecl)
      && DECL_ASSEMBLER_NAME_SET_P (fndecl)
      && DECL_ASSEMBLER_NAME_SET_P (fndecl)
      && fcode != BUILT_IN_ALLOCA
      && fcode != BUILT_IN_ALLOCA
      && fcode != BUILT_IN_FREE)
      && fcode != BUILT_IN_FREE)
    return expand_call (exp, target, ignore);
    return expand_call (exp, target, ignore);
 
 
  /* The built-in function expanders test for target == const0_rtx
  /* The built-in function expanders test for target == const0_rtx
     to determine whether the function's result will be ignored.  */
     to determine whether the function's result will be ignored.  */
  if (ignore)
  if (ignore)
    target = const0_rtx;
    target = const0_rtx;
 
 
  /* If the result of a pure or const built-in function is ignored, and
  /* If the result of a pure or const built-in function is ignored, and
     none of its arguments are volatile, we can avoid expanding the
     none of its arguments are volatile, we can avoid expanding the
     built-in call and just evaluate the arguments for side-effects.  */
     built-in call and just evaluate the arguments for side-effects.  */
  if (target == const0_rtx
  if (target == const0_rtx
      && (DECL_PURE_P (fndecl) || TREE_READONLY (fndecl)))
      && (DECL_PURE_P (fndecl) || TREE_READONLY (fndecl)))
    {
    {
      bool volatilep = false;
      bool volatilep = false;
      tree arg;
      tree arg;
      call_expr_arg_iterator iter;
      call_expr_arg_iterator iter;
 
 
      FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
      FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
        if (TREE_THIS_VOLATILE (arg))
        if (TREE_THIS_VOLATILE (arg))
          {
          {
            volatilep = true;
            volatilep = true;
            break;
            break;
          }
          }
 
 
      if (! volatilep)
      if (! volatilep)
        {
        {
          FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
          FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
            expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
            expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
          return const0_rtx;
          return const0_rtx;
        }
        }
    }
    }
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    CASE_FLT_FN (BUILT_IN_FABS):
    CASE_FLT_FN (BUILT_IN_FABS):
      target = expand_builtin_fabs (exp, target, subtarget);
      target = expand_builtin_fabs (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
      target = expand_builtin_copysign (exp, target, subtarget);
      target = expand_builtin_copysign (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
      /* Just do a normal library call if we were unable to fold
      /* Just do a normal library call if we were unable to fold
         the values.  */
         the values.  */
    CASE_FLT_FN (BUILT_IN_CABS):
    CASE_FLT_FN (BUILT_IN_CABS):
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
    CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
      /* Treat these like sqrt only if unsafe math optimizations are allowed,
      /* Treat these like sqrt only if unsafe math optimizations are allowed,
         because of possible accuracy problems.  */
         because of possible accuracy problems.  */
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_RINT):
      target = expand_builtin_mathfn (exp, target, subtarget);
      target = expand_builtin_mathfn (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_ILOGB):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
    CASE_FLT_FN (BUILT_IN_ISINF):
    CASE_FLT_FN (BUILT_IN_ISINF):
    CASE_FLT_FN (BUILT_IN_FINITE):
    CASE_FLT_FN (BUILT_IN_FINITE):
    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISNORMAL:
    case BUILT_IN_ISNORMAL:
      target = expand_builtin_interclass_mathfn (exp, target, subtarget);
      target = expand_builtin_interclass_mathfn (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
      target = expand_builtin_int_roundingfn (exp, target);
      target = expand_builtin_int_roundingfn (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
      target = expand_builtin_int_roundingfn_2 (exp, target);
      target = expand_builtin_int_roundingfn_2 (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_POW):
    CASE_FLT_FN (BUILT_IN_POW):
      target = expand_builtin_pow (exp, target, subtarget);
      target = expand_builtin_pow (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_POWI):
    CASE_FLT_FN (BUILT_IN_POWI):
      target = expand_builtin_powi (exp, target, subtarget);
      target = expand_builtin_powi (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_SCALB):
    CASE_FLT_FN (BUILT_IN_SCALB):
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
 
 
    CASE_FLT_FN (BUILT_IN_FMOD):
    CASE_FLT_FN (BUILT_IN_FMOD):
    CASE_FLT_FN (BUILT_IN_REMAINDER):
    CASE_FLT_FN (BUILT_IN_REMAINDER):
    CASE_FLT_FN (BUILT_IN_DREM):
    CASE_FLT_FN (BUILT_IN_DREM):
      target = expand_builtin_mathfn_2 (exp, target, subtarget);
      target = expand_builtin_mathfn_2 (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_CEXPI):
    CASE_FLT_FN (BUILT_IN_CEXPI):
      target = expand_builtin_cexpi (exp, target, subtarget);
      target = expand_builtin_cexpi (exp, target, subtarget);
      gcc_assert (target);
      gcc_assert (target);
      return target;
      return target;
 
 
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_COS):
    CASE_FLT_FN (BUILT_IN_COS):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
      target = expand_builtin_mathfn_3 (exp, target, subtarget);
      target = expand_builtin_mathfn_3 (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_SINCOS):
    CASE_FLT_FN (BUILT_IN_SINCOS):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
      target = expand_builtin_sincos (exp);
      target = expand_builtin_sincos (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_APPLY_ARGS:
    case BUILT_IN_APPLY_ARGS:
      return expand_builtin_apply_args ();
      return expand_builtin_apply_args ();
 
 
      /* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
      /* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
         FUNCTION with a copy of the parameters described by
         FUNCTION with a copy of the parameters described by
         ARGUMENTS, and ARGSIZE.  It returns a block of memory
         ARGUMENTS, and ARGSIZE.  It returns a block of memory
         allocated on the stack into which is stored all the registers
         allocated on the stack into which is stored all the registers
         that might possibly be used for returning the result of a
         that might possibly be used for returning the result of a
         function.  ARGUMENTS is the value returned by
         function.  ARGUMENTS is the value returned by
         __builtin_apply_args.  ARGSIZE is the number of bytes of
         __builtin_apply_args.  ARGSIZE is the number of bytes of
         arguments that must be copied.  ??? How should this value be
         arguments that must be copied.  ??? How should this value be
         computed?  We'll also need a safe worst case value for varargs
         computed?  We'll also need a safe worst case value for varargs
         functions.  */
         functions.  */
    case BUILT_IN_APPLY:
    case BUILT_IN_APPLY:
      if (!validate_arglist (exp, POINTER_TYPE,
      if (!validate_arglist (exp, POINTER_TYPE,
                             POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
                             POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
          && !validate_arglist (exp, REFERENCE_TYPE,
          && !validate_arglist (exp, REFERENCE_TYPE,
                                POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                                POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
        return const0_rtx;
        return const0_rtx;
      else
      else
        {
        {
          rtx ops[3];
          rtx ops[3];
 
 
          ops[0] = expand_normal (CALL_EXPR_ARG (exp, 0));
          ops[0] = expand_normal (CALL_EXPR_ARG (exp, 0));
          ops[1] = expand_normal (CALL_EXPR_ARG (exp, 1));
          ops[1] = expand_normal (CALL_EXPR_ARG (exp, 1));
          ops[2] = expand_normal (CALL_EXPR_ARG (exp, 2));
          ops[2] = expand_normal (CALL_EXPR_ARG (exp, 2));
 
 
          return expand_builtin_apply (ops[0], ops[1], ops[2]);
          return expand_builtin_apply (ops[0], ops[1], ops[2]);
        }
        }
 
 
      /* __builtin_return (RESULT) causes the function to return the
      /* __builtin_return (RESULT) causes the function to return the
         value described by RESULT.  RESULT is address of the block of
         value described by RESULT.  RESULT is address of the block of
         memory returned by __builtin_apply.  */
         memory returned by __builtin_apply.  */
    case BUILT_IN_RETURN:
    case BUILT_IN_RETURN:
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
        expand_builtin_return (expand_normal (CALL_EXPR_ARG (exp, 0)));
        expand_builtin_return (expand_normal (CALL_EXPR_ARG (exp, 0)));
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_SAVEREGS:
    case BUILT_IN_SAVEREGS:
      return expand_builtin_saveregs ();
      return expand_builtin_saveregs ();
 
 
    case BUILT_IN_ARGS_INFO:
    case BUILT_IN_ARGS_INFO:
      return expand_builtin_args_info (exp);
      return expand_builtin_args_info (exp);
 
 
    case BUILT_IN_VA_ARG_PACK:
    case BUILT_IN_VA_ARG_PACK:
      /* All valid uses of __builtin_va_arg_pack () are removed during
      /* All valid uses of __builtin_va_arg_pack () are removed during
         inlining.  */
         inlining.  */
      error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
      error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_VA_ARG_PACK_LEN:
    case BUILT_IN_VA_ARG_PACK_LEN:
      /* All valid uses of __builtin_va_arg_pack_len () are removed during
      /* All valid uses of __builtin_va_arg_pack_len () are removed during
         inlining.  */
         inlining.  */
      error ("%Kinvalid use of %<__builtin_va_arg_pack_len ()%>", exp);
      error ("%Kinvalid use of %<__builtin_va_arg_pack_len ()%>", exp);
      return const0_rtx;
      return const0_rtx;
 
 
      /* Return the address of the first anonymous stack arg.  */
      /* Return the address of the first anonymous stack arg.  */
    case BUILT_IN_NEXT_ARG:
    case BUILT_IN_NEXT_ARG:
      if (fold_builtin_next_arg (exp, false))
      if (fold_builtin_next_arg (exp, false))
        return const0_rtx;
        return const0_rtx;
      return expand_builtin_next_arg ();
      return expand_builtin_next_arg ();
 
 
    case BUILT_IN_CLEAR_CACHE:
    case BUILT_IN_CLEAR_CACHE:
      target = expand_builtin___clear_cache (exp);
      target = expand_builtin___clear_cache (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_CLASSIFY_TYPE:
    case BUILT_IN_CLASSIFY_TYPE:
      return expand_builtin_classify_type (exp);
      return expand_builtin_classify_type (exp);
 
 
    case BUILT_IN_CONSTANT_P:
    case BUILT_IN_CONSTANT_P:
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_FRAME_ADDRESS:
    case BUILT_IN_FRAME_ADDRESS:
    case BUILT_IN_RETURN_ADDRESS:
    case BUILT_IN_RETURN_ADDRESS:
      return expand_builtin_frame_address (fndecl, exp);
      return expand_builtin_frame_address (fndecl, exp);
 
 
    /* Returns the address of the area where the structure is returned.
    /* Returns the address of the area where the structure is returned.
       0 otherwise.  */
       0 otherwise.  */
    case BUILT_IN_AGGREGATE_INCOMING_ADDRESS:
    case BUILT_IN_AGGREGATE_INCOMING_ADDRESS:
      if (call_expr_nargs (exp) != 0
      if (call_expr_nargs (exp) != 0
          || ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))
          || ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))
          || !MEM_P (DECL_RTL (DECL_RESULT (current_function_decl))))
          || !MEM_P (DECL_RTL (DECL_RESULT (current_function_decl))))
        return const0_rtx;
        return const0_rtx;
      else
      else
        return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
        return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
 
 
    case BUILT_IN_ALLOCA:
    case BUILT_IN_ALLOCA:
      target = expand_builtin_alloca (exp, target);
      target = expand_builtin_alloca (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STACK_SAVE:
    case BUILT_IN_STACK_SAVE:
      return expand_stack_save ();
      return expand_stack_save ();
 
 
    case BUILT_IN_STACK_RESTORE:
    case BUILT_IN_STACK_RESTORE:
      expand_stack_restore (CALL_EXPR_ARG (exp, 0));
      expand_stack_restore (CALL_EXPR_ARG (exp, 0));
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_BSWAP32:
    case BUILT_IN_BSWAP32:
    case BUILT_IN_BSWAP64:
    case BUILT_IN_BSWAP64:
      target = expand_builtin_bswap (exp, target, subtarget);
      target = expand_builtin_bswap (exp, target, subtarget);
 
 
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_FFS):
    CASE_INT_FN (BUILT_IN_FFS):
    case BUILT_IN_FFSIMAX:
    case BUILT_IN_FFSIMAX:
      target = expand_builtin_unop (target_mode, exp, target,
      target = expand_builtin_unop (target_mode, exp, target,
                                    subtarget, ffs_optab);
                                    subtarget, ffs_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_CLZ):
    CASE_INT_FN (BUILT_IN_CLZ):
    case BUILT_IN_CLZIMAX:
    case BUILT_IN_CLZIMAX:
      target = expand_builtin_unop (target_mode, exp, target,
      target = expand_builtin_unop (target_mode, exp, target,
                                    subtarget, clz_optab);
                                    subtarget, clz_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_CTZ):
    CASE_INT_FN (BUILT_IN_CTZ):
    case BUILT_IN_CTZIMAX:
    case BUILT_IN_CTZIMAX:
      target = expand_builtin_unop (target_mode, exp, target,
      target = expand_builtin_unop (target_mode, exp, target,
                                    subtarget, ctz_optab);
                                    subtarget, ctz_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    case BUILT_IN_POPCOUNTIMAX:
    case BUILT_IN_POPCOUNTIMAX:
      target = expand_builtin_unop (target_mode, exp, target,
      target = expand_builtin_unop (target_mode, exp, target,
                                    subtarget, popcount_optab);
                                    subtarget, popcount_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_PARITY):
    CASE_INT_FN (BUILT_IN_PARITY):
    case BUILT_IN_PARITYIMAX:
    case BUILT_IN_PARITYIMAX:
      target = expand_builtin_unop (target_mode, exp, target,
      target = expand_builtin_unop (target_mode, exp, target,
                                    subtarget, parity_optab);
                                    subtarget, parity_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRLEN:
    case BUILT_IN_STRLEN:
      target = expand_builtin_strlen (exp, target, target_mode);
      target = expand_builtin_strlen (exp, target, target_mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCPY:
    case BUILT_IN_STRCPY:
      target = expand_builtin_strcpy (exp, target);
      target = expand_builtin_strcpy (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRNCPY:
    case BUILT_IN_STRNCPY:
      target = expand_builtin_strncpy (exp, target);
      target = expand_builtin_strncpy (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STPCPY:
    case BUILT_IN_STPCPY:
      target = expand_builtin_stpcpy (exp, target, mode);
      target = expand_builtin_stpcpy (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY:
      target = expand_builtin_memcpy (exp, target);
      target = expand_builtin_memcpy (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMPCPY:
      target = expand_builtin_mempcpy (exp, target, mode);
      target = expand_builtin_mempcpy (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET:
      target = expand_builtin_memset (exp, target, mode);
      target = expand_builtin_memset (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BZERO:
    case BUILT_IN_BZERO:
      target = expand_builtin_bzero (exp);
      target = expand_builtin_bzero (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCMP:
    case BUILT_IN_STRCMP:
      target = expand_builtin_strcmp (exp, target);
      target = expand_builtin_strcmp (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRNCMP:
    case BUILT_IN_STRNCMP:
      target = expand_builtin_strncmp (exp, target, mode);
      target = expand_builtin_strncmp (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BCMP:
    case BUILT_IN_BCMP:
    case BUILT_IN_MEMCMP:
    case BUILT_IN_MEMCMP:
      target = expand_builtin_memcmp (exp, target, mode);
      target = expand_builtin_memcmp (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_SETJMP:
    case BUILT_IN_SETJMP:
      /* This should have been lowered to the builtins below.  */
      /* This should have been lowered to the builtins below.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case BUILT_IN_SETJMP_SETUP:
    case BUILT_IN_SETJMP_SETUP:
      /* __builtin_setjmp_setup is passed a pointer to an array of five words
      /* __builtin_setjmp_setup is passed a pointer to an array of five words
          and the receiver label.  */
          and the receiver label.  */
      if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
        {
        {
          rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
          rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
                                      VOIDmode, EXPAND_NORMAL);
                                      VOIDmode, EXPAND_NORMAL);
          tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 1), 0);
          tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 1), 0);
          rtx label_r = label_rtx (label);
          rtx label_r = label_rtx (label);
 
 
          /* This is copied from the handling of non-local gotos.  */
          /* This is copied from the handling of non-local gotos.  */
          expand_builtin_setjmp_setup (buf_addr, label_r);
          expand_builtin_setjmp_setup (buf_addr, label_r);
          nonlocal_goto_handler_labels
          nonlocal_goto_handler_labels
            = gen_rtx_EXPR_LIST (VOIDmode, label_r,
            = gen_rtx_EXPR_LIST (VOIDmode, label_r,
                                 nonlocal_goto_handler_labels);
                                 nonlocal_goto_handler_labels);
          /* ??? Do not let expand_label treat us as such since we would
          /* ??? Do not let expand_label treat us as such since we would
             not want to be both on the list of non-local labels and on
             not want to be both on the list of non-local labels and on
             the list of forced labels.  */
             the list of forced labels.  */
          FORCED_LABEL (label) = 0;
          FORCED_LABEL (label) = 0;
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_SETJMP_DISPATCHER:
    case BUILT_IN_SETJMP_DISPATCHER:
       /* __builtin_setjmp_dispatcher is passed the dispatcher label.  */
       /* __builtin_setjmp_dispatcher is passed the dispatcher label.  */
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
        {
        {
          tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
          tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
          rtx label_r = label_rtx (label);
          rtx label_r = label_rtx (label);
 
 
          /* Remove the dispatcher label from the list of non-local labels
          /* Remove the dispatcher label from the list of non-local labels
             since the receiver labels have been added to it above.  */
             since the receiver labels have been added to it above.  */
          remove_node_from_expr_list (label_r, &nonlocal_goto_handler_labels);
          remove_node_from_expr_list (label_r, &nonlocal_goto_handler_labels);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_SETJMP_RECEIVER:
    case BUILT_IN_SETJMP_RECEIVER:
       /* __builtin_setjmp_receiver is passed the receiver label.  */
       /* __builtin_setjmp_receiver is passed the receiver label.  */
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
        {
        {
          tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
          tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
          rtx label_r = label_rtx (label);
          rtx label_r = label_rtx (label);
 
 
          expand_builtin_setjmp_receiver (label_r);
          expand_builtin_setjmp_receiver (label_r);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
      /* __builtin_longjmp is passed a pointer to an array of five words.
      /* __builtin_longjmp is passed a pointer to an array of five words.
         It's similar to the C library longjmp function but works with
         It's similar to the C library longjmp function but works with
         __builtin_setjmp above.  */
         __builtin_setjmp above.  */
    case BUILT_IN_LONGJMP:
    case BUILT_IN_LONGJMP:
      if (validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
      if (validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
        {
        {
          rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
          rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
                                      VOIDmode, EXPAND_NORMAL);
                                      VOIDmode, EXPAND_NORMAL);
          rtx value = expand_normal (CALL_EXPR_ARG (exp, 1));
          rtx value = expand_normal (CALL_EXPR_ARG (exp, 1));
 
 
          if (value != const1_rtx)
          if (value != const1_rtx)
            {
            {
              error ("%<__builtin_longjmp%> second argument must be 1");
              error ("%<__builtin_longjmp%> second argument must be 1");
              return const0_rtx;
              return const0_rtx;
            }
            }
 
 
          expand_builtin_longjmp (buf_addr, value);
          expand_builtin_longjmp (buf_addr, value);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_NONLOCAL_GOTO:
    case BUILT_IN_NONLOCAL_GOTO:
      target = expand_builtin_nonlocal_goto (exp);
      target = expand_builtin_nonlocal_goto (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
      /* This updates the setjmp buffer that is its argument with the value
      /* This updates the setjmp buffer that is its argument with the value
         of the current stack pointer.  */
         of the current stack pointer.  */
    case BUILT_IN_UPDATE_SETJMP_BUF:
    case BUILT_IN_UPDATE_SETJMP_BUF:
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
        {
        {
          rtx buf_addr
          rtx buf_addr
            = expand_normal (CALL_EXPR_ARG (exp, 0));
            = expand_normal (CALL_EXPR_ARG (exp, 0));
 
 
          expand_builtin_update_setjmp_buf (buf_addr);
          expand_builtin_update_setjmp_buf (buf_addr);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_TRAP:
    case BUILT_IN_TRAP:
      expand_builtin_trap ();
      expand_builtin_trap ();
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_UNREACHABLE:
    case BUILT_IN_UNREACHABLE:
      expand_builtin_unreachable ();
      expand_builtin_unreachable ();
      return const0_rtx;
      return const0_rtx;
 
 
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
    case BUILT_IN_SIGNBITD32:
    case BUILT_IN_SIGNBITD32:
    case BUILT_IN_SIGNBITD64:
    case BUILT_IN_SIGNBITD64:
    case BUILT_IN_SIGNBITD128:
    case BUILT_IN_SIGNBITD128:
      target = expand_builtin_signbit (exp, target);
      target = expand_builtin_signbit (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
      /* Various hooks for the DWARF 2 __throw routine.  */
      /* Various hooks for the DWARF 2 __throw routine.  */
    case BUILT_IN_UNWIND_INIT:
    case BUILT_IN_UNWIND_INIT:
      expand_builtin_unwind_init ();
      expand_builtin_unwind_init ();
      return const0_rtx;
      return const0_rtx;
    case BUILT_IN_DWARF_CFA:
    case BUILT_IN_DWARF_CFA:
      return virtual_cfa_rtx;
      return virtual_cfa_rtx;
#ifdef DWARF2_UNWIND_INFO
#ifdef DWARF2_UNWIND_INFO
    case BUILT_IN_DWARF_SP_COLUMN:
    case BUILT_IN_DWARF_SP_COLUMN:
      return expand_builtin_dwarf_sp_column ();
      return expand_builtin_dwarf_sp_column ();
    case BUILT_IN_INIT_DWARF_REG_SIZES:
    case BUILT_IN_INIT_DWARF_REG_SIZES:
      expand_builtin_init_dwarf_reg_sizes (CALL_EXPR_ARG (exp, 0));
      expand_builtin_init_dwarf_reg_sizes (CALL_EXPR_ARG (exp, 0));
      return const0_rtx;
      return const0_rtx;
#endif
#endif
    case BUILT_IN_FROB_RETURN_ADDR:
    case BUILT_IN_FROB_RETURN_ADDR:
      return expand_builtin_frob_return_addr (CALL_EXPR_ARG (exp, 0));
      return expand_builtin_frob_return_addr (CALL_EXPR_ARG (exp, 0));
    case BUILT_IN_EXTRACT_RETURN_ADDR:
    case BUILT_IN_EXTRACT_RETURN_ADDR:
      return expand_builtin_extract_return_addr (CALL_EXPR_ARG (exp, 0));
      return expand_builtin_extract_return_addr (CALL_EXPR_ARG (exp, 0));
    case BUILT_IN_EH_RETURN:
    case BUILT_IN_EH_RETURN:
      expand_builtin_eh_return (CALL_EXPR_ARG (exp, 0),
      expand_builtin_eh_return (CALL_EXPR_ARG (exp, 0),
                                CALL_EXPR_ARG (exp, 1));
                                CALL_EXPR_ARG (exp, 1));
      return const0_rtx;
      return const0_rtx;
#ifdef EH_RETURN_DATA_REGNO
#ifdef EH_RETURN_DATA_REGNO
    case BUILT_IN_EH_RETURN_DATA_REGNO:
    case BUILT_IN_EH_RETURN_DATA_REGNO:
      return expand_builtin_eh_return_data_regno (exp);
      return expand_builtin_eh_return_data_regno (exp);
#endif
#endif
    case BUILT_IN_EXTEND_POINTER:
    case BUILT_IN_EXTEND_POINTER:
      return expand_builtin_extend_pointer (CALL_EXPR_ARG (exp, 0));
      return expand_builtin_extend_pointer (CALL_EXPR_ARG (exp, 0));
    case BUILT_IN_EH_POINTER:
    case BUILT_IN_EH_POINTER:
      return expand_builtin_eh_pointer (exp);
      return expand_builtin_eh_pointer (exp);
    case BUILT_IN_EH_FILTER:
    case BUILT_IN_EH_FILTER:
      return expand_builtin_eh_filter (exp);
      return expand_builtin_eh_filter (exp);
    case BUILT_IN_EH_COPY_VALUES:
    case BUILT_IN_EH_COPY_VALUES:
      return expand_builtin_eh_copy_values (exp);
      return expand_builtin_eh_copy_values (exp);
 
 
    case BUILT_IN_VA_START:
    case BUILT_IN_VA_START:
      return expand_builtin_va_start (exp);
      return expand_builtin_va_start (exp);
    case BUILT_IN_VA_END:
    case BUILT_IN_VA_END:
      return expand_builtin_va_end (exp);
      return expand_builtin_va_end (exp);
    case BUILT_IN_VA_COPY:
    case BUILT_IN_VA_COPY:
      return expand_builtin_va_copy (exp);
      return expand_builtin_va_copy (exp);
    case BUILT_IN_EXPECT:
    case BUILT_IN_EXPECT:
      return expand_builtin_expect (exp, target);
      return expand_builtin_expect (exp, target);
    case BUILT_IN_PREFETCH:
    case BUILT_IN_PREFETCH:
      expand_builtin_prefetch (exp);
      expand_builtin_prefetch (exp);
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_PROFILE_FUNC_ENTER:
    case BUILT_IN_PROFILE_FUNC_ENTER:
      return expand_builtin_profile_func (false);
      return expand_builtin_profile_func (false);
    case BUILT_IN_PROFILE_FUNC_EXIT:
    case BUILT_IN_PROFILE_FUNC_EXIT:
      return expand_builtin_profile_func (true);
      return expand_builtin_profile_func (true);
 
 
    case BUILT_IN_INIT_TRAMPOLINE:
    case BUILT_IN_INIT_TRAMPOLINE:
      return expand_builtin_init_trampoline (exp);
      return expand_builtin_init_trampoline (exp);
    case BUILT_IN_ADJUST_TRAMPOLINE:
    case BUILT_IN_ADJUST_TRAMPOLINE:
      return expand_builtin_adjust_trampoline (exp);
      return expand_builtin_adjust_trampoline (exp);
 
 
    case BUILT_IN_FORK:
    case BUILT_IN_FORK:
    case BUILT_IN_EXECL:
    case BUILT_IN_EXECL:
    case BUILT_IN_EXECV:
    case BUILT_IN_EXECV:
    case BUILT_IN_EXECLP:
    case BUILT_IN_EXECLP:
    case BUILT_IN_EXECLE:
    case BUILT_IN_EXECLE:
    case BUILT_IN_EXECVP:
    case BUILT_IN_EXECVP:
    case BUILT_IN_EXECVE:
    case BUILT_IN_EXECVE:
      target = expand_builtin_fork_or_exec (fndecl, exp, target, ignore);
      target = expand_builtin_fork_or_exec (fndecl, exp, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_ADD_1:
    case BUILT_IN_FETCH_AND_ADD_1:
    case BUILT_IN_FETCH_AND_ADD_2:
    case BUILT_IN_FETCH_AND_ADD_2:
    case BUILT_IN_FETCH_AND_ADD_4:
    case BUILT_IN_FETCH_AND_ADD_4:
    case BUILT_IN_FETCH_AND_ADD_8:
    case BUILT_IN_FETCH_AND_ADD_8:
    case BUILT_IN_FETCH_AND_ADD_16:
    case BUILT_IN_FETCH_AND_ADD_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_ADD_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_ADD_1);
      target = expand_builtin_sync_operation (mode, exp, PLUS,
      target = expand_builtin_sync_operation (mode, exp, PLUS,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_SUB_1:
    case BUILT_IN_FETCH_AND_SUB_1:
    case BUILT_IN_FETCH_AND_SUB_2:
    case BUILT_IN_FETCH_AND_SUB_2:
    case BUILT_IN_FETCH_AND_SUB_4:
    case BUILT_IN_FETCH_AND_SUB_4:
    case BUILT_IN_FETCH_AND_SUB_8:
    case BUILT_IN_FETCH_AND_SUB_8:
    case BUILT_IN_FETCH_AND_SUB_16:
    case BUILT_IN_FETCH_AND_SUB_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_SUB_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_SUB_1);
      target = expand_builtin_sync_operation (mode, exp, MINUS,
      target = expand_builtin_sync_operation (mode, exp, MINUS,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_OR_1:
    case BUILT_IN_FETCH_AND_OR_1:
    case BUILT_IN_FETCH_AND_OR_2:
    case BUILT_IN_FETCH_AND_OR_2:
    case BUILT_IN_FETCH_AND_OR_4:
    case BUILT_IN_FETCH_AND_OR_4:
    case BUILT_IN_FETCH_AND_OR_8:
    case BUILT_IN_FETCH_AND_OR_8:
    case BUILT_IN_FETCH_AND_OR_16:
    case BUILT_IN_FETCH_AND_OR_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_OR_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_OR_1);
      target = expand_builtin_sync_operation (mode, exp, IOR,
      target = expand_builtin_sync_operation (mode, exp, IOR,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_AND_1:
    case BUILT_IN_FETCH_AND_AND_1:
    case BUILT_IN_FETCH_AND_AND_2:
    case BUILT_IN_FETCH_AND_AND_2:
    case BUILT_IN_FETCH_AND_AND_4:
    case BUILT_IN_FETCH_AND_AND_4:
    case BUILT_IN_FETCH_AND_AND_8:
    case BUILT_IN_FETCH_AND_AND_8:
    case BUILT_IN_FETCH_AND_AND_16:
    case BUILT_IN_FETCH_AND_AND_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_AND_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_AND_1);
      target = expand_builtin_sync_operation (mode, exp, AND,
      target = expand_builtin_sync_operation (mode, exp, AND,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_XOR_1:
    case BUILT_IN_FETCH_AND_XOR_1:
    case BUILT_IN_FETCH_AND_XOR_2:
    case BUILT_IN_FETCH_AND_XOR_2:
    case BUILT_IN_FETCH_AND_XOR_4:
    case BUILT_IN_FETCH_AND_XOR_4:
    case BUILT_IN_FETCH_AND_XOR_8:
    case BUILT_IN_FETCH_AND_XOR_8:
    case BUILT_IN_FETCH_AND_XOR_16:
    case BUILT_IN_FETCH_AND_XOR_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_XOR_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_XOR_1);
      target = expand_builtin_sync_operation (mode, exp, XOR,
      target = expand_builtin_sync_operation (mode, exp, XOR,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_NAND_1:
    case BUILT_IN_FETCH_AND_NAND_1:
    case BUILT_IN_FETCH_AND_NAND_2:
    case BUILT_IN_FETCH_AND_NAND_2:
    case BUILT_IN_FETCH_AND_NAND_4:
    case BUILT_IN_FETCH_AND_NAND_4:
    case BUILT_IN_FETCH_AND_NAND_8:
    case BUILT_IN_FETCH_AND_NAND_8:
    case BUILT_IN_FETCH_AND_NAND_16:
    case BUILT_IN_FETCH_AND_NAND_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_NAND_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_NAND_1);
      target = expand_builtin_sync_operation (mode, exp, NOT,
      target = expand_builtin_sync_operation (mode, exp, NOT,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_ADD_AND_FETCH_1:
    case BUILT_IN_ADD_AND_FETCH_1:
    case BUILT_IN_ADD_AND_FETCH_2:
    case BUILT_IN_ADD_AND_FETCH_2:
    case BUILT_IN_ADD_AND_FETCH_4:
    case BUILT_IN_ADD_AND_FETCH_4:
    case BUILT_IN_ADD_AND_FETCH_8:
    case BUILT_IN_ADD_AND_FETCH_8:
    case BUILT_IN_ADD_AND_FETCH_16:
    case BUILT_IN_ADD_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_ADD_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_ADD_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, exp, PLUS,
      target = expand_builtin_sync_operation (mode, exp, PLUS,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_SUB_AND_FETCH_1:
    case BUILT_IN_SUB_AND_FETCH_1:
    case BUILT_IN_SUB_AND_FETCH_2:
    case BUILT_IN_SUB_AND_FETCH_2:
    case BUILT_IN_SUB_AND_FETCH_4:
    case BUILT_IN_SUB_AND_FETCH_4:
    case BUILT_IN_SUB_AND_FETCH_8:
    case BUILT_IN_SUB_AND_FETCH_8:
    case BUILT_IN_SUB_AND_FETCH_16:
    case BUILT_IN_SUB_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_SUB_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_SUB_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, exp, MINUS,
      target = expand_builtin_sync_operation (mode, exp, MINUS,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_OR_AND_FETCH_1:
    case BUILT_IN_OR_AND_FETCH_1:
    case BUILT_IN_OR_AND_FETCH_2:
    case BUILT_IN_OR_AND_FETCH_2:
    case BUILT_IN_OR_AND_FETCH_4:
    case BUILT_IN_OR_AND_FETCH_4:
    case BUILT_IN_OR_AND_FETCH_8:
    case BUILT_IN_OR_AND_FETCH_8:
    case BUILT_IN_OR_AND_FETCH_16:
    case BUILT_IN_OR_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_OR_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_OR_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, exp, IOR,
      target = expand_builtin_sync_operation (mode, exp, IOR,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_AND_AND_FETCH_1:
    case BUILT_IN_AND_AND_FETCH_1:
    case BUILT_IN_AND_AND_FETCH_2:
    case BUILT_IN_AND_AND_FETCH_2:
    case BUILT_IN_AND_AND_FETCH_4:
    case BUILT_IN_AND_AND_FETCH_4:
    case BUILT_IN_AND_AND_FETCH_8:
    case BUILT_IN_AND_AND_FETCH_8:
    case BUILT_IN_AND_AND_FETCH_16:
    case BUILT_IN_AND_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_AND_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_AND_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, exp, AND,
      target = expand_builtin_sync_operation (mode, exp, AND,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_XOR_AND_FETCH_1:
    case BUILT_IN_XOR_AND_FETCH_1:
    case BUILT_IN_XOR_AND_FETCH_2:
    case BUILT_IN_XOR_AND_FETCH_2:
    case BUILT_IN_XOR_AND_FETCH_4:
    case BUILT_IN_XOR_AND_FETCH_4:
    case BUILT_IN_XOR_AND_FETCH_8:
    case BUILT_IN_XOR_AND_FETCH_8:
    case BUILT_IN_XOR_AND_FETCH_16:
    case BUILT_IN_XOR_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_XOR_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_XOR_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, exp, XOR,
      target = expand_builtin_sync_operation (mode, exp, XOR,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_NAND_AND_FETCH_1:
    case BUILT_IN_NAND_AND_FETCH_1:
    case BUILT_IN_NAND_AND_FETCH_2:
    case BUILT_IN_NAND_AND_FETCH_2:
    case BUILT_IN_NAND_AND_FETCH_4:
    case BUILT_IN_NAND_AND_FETCH_4:
    case BUILT_IN_NAND_AND_FETCH_8:
    case BUILT_IN_NAND_AND_FETCH_8:
    case BUILT_IN_NAND_AND_FETCH_16:
    case BUILT_IN_NAND_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_NAND_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_NAND_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, exp, NOT,
      target = expand_builtin_sync_operation (mode, exp, NOT,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_1:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_1:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_2:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_2:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_4:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_4:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_8:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_8:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_16:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_16:
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        mode = TYPE_MODE (boolean_type_node);
        mode = TYPE_MODE (boolean_type_node);
      if (!target || !register_operand (target, mode))
      if (!target || !register_operand (target, mode))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      mode = get_builtin_sync_mode (fcode - BUILT_IN_BOOL_COMPARE_AND_SWAP_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_BOOL_COMPARE_AND_SWAP_1);
      target = expand_builtin_compare_and_swap (mode, exp, true, target);
      target = expand_builtin_compare_and_swap (mode, exp, true, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_VAL_COMPARE_AND_SWAP_1:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_1:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_2:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_2:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_4:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_4:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_8:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_8:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_16:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_VAL_COMPARE_AND_SWAP_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_VAL_COMPARE_AND_SWAP_1);
      target = expand_builtin_compare_and_swap (mode, exp, false, target);
      target = expand_builtin_compare_and_swap (mode, exp, false, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_LOCK_TEST_AND_SET_1:
    case BUILT_IN_LOCK_TEST_AND_SET_1:
    case BUILT_IN_LOCK_TEST_AND_SET_2:
    case BUILT_IN_LOCK_TEST_AND_SET_2:
    case BUILT_IN_LOCK_TEST_AND_SET_4:
    case BUILT_IN_LOCK_TEST_AND_SET_4:
    case BUILT_IN_LOCK_TEST_AND_SET_8:
    case BUILT_IN_LOCK_TEST_AND_SET_8:
    case BUILT_IN_LOCK_TEST_AND_SET_16:
    case BUILT_IN_LOCK_TEST_AND_SET_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_TEST_AND_SET_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_TEST_AND_SET_1);
      target = expand_builtin_lock_test_and_set (mode, exp, target);
      target = expand_builtin_lock_test_and_set (mode, exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_LOCK_RELEASE_1:
    case BUILT_IN_LOCK_RELEASE_1:
    case BUILT_IN_LOCK_RELEASE_2:
    case BUILT_IN_LOCK_RELEASE_2:
    case BUILT_IN_LOCK_RELEASE_4:
    case BUILT_IN_LOCK_RELEASE_4:
    case BUILT_IN_LOCK_RELEASE_8:
    case BUILT_IN_LOCK_RELEASE_8:
    case BUILT_IN_LOCK_RELEASE_16:
    case BUILT_IN_LOCK_RELEASE_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_RELEASE_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_RELEASE_1);
      expand_builtin_lock_release (mode, exp);
      expand_builtin_lock_release (mode, exp);
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_SYNCHRONIZE:
    case BUILT_IN_SYNCHRONIZE:
      expand_builtin_synchronize ();
      expand_builtin_synchronize ();
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_OBJECT_SIZE:
    case BUILT_IN_OBJECT_SIZE:
      return expand_builtin_object_size (exp);
      return expand_builtin_object_size (exp);
 
 
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_MEMSET_CHK:
      target = expand_builtin_memory_chk (exp, target, mode, fcode);
      target = expand_builtin_memory_chk (exp, target, mode, fcode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRNCAT_CHK:
    case BUILT_IN_STRNCAT_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      maybe_emit_chk_warning (exp, fcode);
      maybe_emit_chk_warning (exp, fcode);
      break;
      break;
 
 
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
      maybe_emit_sprintf_chk_warning (exp, fcode);
      maybe_emit_sprintf_chk_warning (exp, fcode);
      break;
      break;
 
 
    case BUILT_IN_FREE:
    case BUILT_IN_FREE:
      maybe_emit_free_warning (exp);
      maybe_emit_free_warning (exp);
      break;
      break;
 
 
    default:    /* just do library call, if unknown builtin */
    default:    /* just do library call, if unknown builtin */
      break;
      break;
    }
    }
 
 
  /* The switch statement above can drop through to cause the function
  /* The switch statement above can drop through to cause the function
     to be called normally.  */
     to be called normally.  */
  return expand_call (exp, target, ignore);
  return expand_call (exp, target, ignore);
}
}
 
 
/* Determine whether a tree node represents a call to a built-in
/* Determine whether a tree node represents a call to a built-in
   function.  If the tree T is a call to a built-in function with
   function.  If the tree T is a call to a built-in function with
   the right number of arguments of the appropriate types, return
   the right number of arguments of the appropriate types, return
   the DECL_FUNCTION_CODE of the call, e.g. BUILT_IN_SQRT.
   the DECL_FUNCTION_CODE of the call, e.g. BUILT_IN_SQRT.
   Otherwise the return value is END_BUILTINS.  */
   Otherwise the return value is END_BUILTINS.  */
 
 
enum built_in_function
enum built_in_function
builtin_mathfn_code (const_tree t)
builtin_mathfn_code (const_tree t)
{
{
  const_tree fndecl, arg, parmlist;
  const_tree fndecl, arg, parmlist;
  const_tree argtype, parmtype;
  const_tree argtype, parmtype;
  const_call_expr_arg_iterator iter;
  const_call_expr_arg_iterator iter;
 
 
  if (TREE_CODE (t) != CALL_EXPR
  if (TREE_CODE (t) != CALL_EXPR
      || TREE_CODE (CALL_EXPR_FN (t)) != ADDR_EXPR)
      || TREE_CODE (CALL_EXPR_FN (t)) != ADDR_EXPR)
    return END_BUILTINS;
    return END_BUILTINS;
 
 
  fndecl = get_callee_fndecl (t);
  fndecl = get_callee_fndecl (t);
  if (fndecl == NULL_TREE
  if (fndecl == NULL_TREE
      || TREE_CODE (fndecl) != FUNCTION_DECL
      || TREE_CODE (fndecl) != FUNCTION_DECL
      || ! DECL_BUILT_IN (fndecl)
      || ! DECL_BUILT_IN (fndecl)
      || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
      || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
    return END_BUILTINS;
    return END_BUILTINS;
 
 
  parmlist = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  parmlist = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  init_const_call_expr_arg_iterator (t, &iter);
  init_const_call_expr_arg_iterator (t, &iter);
  for (; parmlist; parmlist = TREE_CHAIN (parmlist))
  for (; parmlist; parmlist = TREE_CHAIN (parmlist))
    {
    {
      /* If a function doesn't take a variable number of arguments,
      /* If a function doesn't take a variable number of arguments,
         the last element in the list will have type `void'.  */
         the last element in the list will have type `void'.  */
      parmtype = TREE_VALUE (parmlist);
      parmtype = TREE_VALUE (parmlist);
      if (VOID_TYPE_P (parmtype))
      if (VOID_TYPE_P (parmtype))
        {
        {
          if (more_const_call_expr_args_p (&iter))
          if (more_const_call_expr_args_p (&iter))
            return END_BUILTINS;
            return END_BUILTINS;
          return DECL_FUNCTION_CODE (fndecl);
          return DECL_FUNCTION_CODE (fndecl);
        }
        }
 
 
      if (! more_const_call_expr_args_p (&iter))
      if (! more_const_call_expr_args_p (&iter))
        return END_BUILTINS;
        return END_BUILTINS;
 
 
      arg = next_const_call_expr_arg (&iter);
      arg = next_const_call_expr_arg (&iter);
      argtype = TREE_TYPE (arg);
      argtype = TREE_TYPE (arg);
 
 
      if (SCALAR_FLOAT_TYPE_P (parmtype))
      if (SCALAR_FLOAT_TYPE_P (parmtype))
        {
        {
          if (! SCALAR_FLOAT_TYPE_P (argtype))
          if (! SCALAR_FLOAT_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else if (COMPLEX_FLOAT_TYPE_P (parmtype))
      else if (COMPLEX_FLOAT_TYPE_P (parmtype))
        {
        {
          if (! COMPLEX_FLOAT_TYPE_P (argtype))
          if (! COMPLEX_FLOAT_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else if (POINTER_TYPE_P (parmtype))
      else if (POINTER_TYPE_P (parmtype))
        {
        {
          if (! POINTER_TYPE_P (argtype))
          if (! POINTER_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else if (INTEGRAL_TYPE_P (parmtype))
      else if (INTEGRAL_TYPE_P (parmtype))
        {
        {
          if (! INTEGRAL_TYPE_P (argtype))
          if (! INTEGRAL_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else
      else
        return END_BUILTINS;
        return END_BUILTINS;
    }
    }
 
 
  /* Variable-length argument list.  */
  /* Variable-length argument list.  */
  return DECL_FUNCTION_CODE (fndecl);
  return DECL_FUNCTION_CODE (fndecl);
}
}
 
 
/* Fold a call to __builtin_constant_p, if we know its argument ARG will
/* Fold a call to __builtin_constant_p, if we know its argument ARG will
   evaluate to a constant.  */
   evaluate to a constant.  */
 
 
static tree
static tree
fold_builtin_constant_p (tree arg)
fold_builtin_constant_p (tree arg)
{
{
  /* We return 1 for a numeric type that's known to be a constant
  /* We return 1 for a numeric type that's known to be a constant
     value at compile-time or for an aggregate type that's a
     value at compile-time or for an aggregate type that's a
     literal constant.  */
     literal constant.  */
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  /* If we know this is a constant, emit the constant of one.  */
  /* If we know this is a constant, emit the constant of one.  */
  if (CONSTANT_CLASS_P (arg)
  if (CONSTANT_CLASS_P (arg)
      || (TREE_CODE (arg) == CONSTRUCTOR
      || (TREE_CODE (arg) == CONSTRUCTOR
          && TREE_CONSTANT (arg)))
          && TREE_CONSTANT (arg)))
    return integer_one_node;
    return integer_one_node;
  if (TREE_CODE (arg) == ADDR_EXPR)
  if (TREE_CODE (arg) == ADDR_EXPR)
    {
    {
       tree op = TREE_OPERAND (arg, 0);
       tree op = TREE_OPERAND (arg, 0);
       if (TREE_CODE (op) == STRING_CST
       if (TREE_CODE (op) == STRING_CST
           || (TREE_CODE (op) == ARRAY_REF
           || (TREE_CODE (op) == ARRAY_REF
               && integer_zerop (TREE_OPERAND (op, 1))
               && integer_zerop (TREE_OPERAND (op, 1))
               && TREE_CODE (TREE_OPERAND (op, 0)) == STRING_CST))
               && TREE_CODE (TREE_OPERAND (op, 0)) == STRING_CST))
         return integer_one_node;
         return integer_one_node;
    }
    }
 
 
  /* If this expression has side effects, show we don't know it to be a
  /* If this expression has side effects, show we don't know it to be a
     constant.  Likewise if it's a pointer or aggregate type since in
     constant.  Likewise if it's a pointer or aggregate type since in
     those case we only want literals, since those are only optimized
     those case we only want literals, since those are only optimized
     when generating RTL, not later.
     when generating RTL, not later.
     And finally, if we are compiling an initializer, not code, we
     And finally, if we are compiling an initializer, not code, we
     need to return a definite result now; there's not going to be any
     need to return a definite result now; there's not going to be any
     more optimization done.  */
     more optimization done.  */
  if (TREE_SIDE_EFFECTS (arg)
  if (TREE_SIDE_EFFECTS (arg)
      || AGGREGATE_TYPE_P (TREE_TYPE (arg))
      || AGGREGATE_TYPE_P (TREE_TYPE (arg))
      || POINTER_TYPE_P (TREE_TYPE (arg))
      || POINTER_TYPE_P (TREE_TYPE (arg))
      || cfun == 0
      || cfun == 0
      || folding_initializer)
      || folding_initializer)
    return integer_zero_node;
    return integer_zero_node;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Create builtin_expect with PRED and EXPECTED as its arguments and
/* Create builtin_expect with PRED and EXPECTED as its arguments and
   return it as a truthvalue.  */
   return it as a truthvalue.  */
 
 
static tree
static tree
build_builtin_expect_predicate (location_t loc, tree pred, tree expected)
build_builtin_expect_predicate (location_t loc, tree pred, tree expected)
{
{
  tree fn, arg_types, pred_type, expected_type, call_expr, ret_type;
  tree fn, arg_types, pred_type, expected_type, call_expr, ret_type;
 
 
  fn = built_in_decls[BUILT_IN_EXPECT];
  fn = built_in_decls[BUILT_IN_EXPECT];
  arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn));
  arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn));
  ret_type = TREE_TYPE (TREE_TYPE (fn));
  ret_type = TREE_TYPE (TREE_TYPE (fn));
  pred_type = TREE_VALUE (arg_types);
  pred_type = TREE_VALUE (arg_types);
  expected_type = TREE_VALUE (TREE_CHAIN (arg_types));
  expected_type = TREE_VALUE (TREE_CHAIN (arg_types));
 
 
  pred = fold_convert_loc (loc, pred_type, pred);
  pred = fold_convert_loc (loc, pred_type, pred);
  expected = fold_convert_loc (loc, expected_type, expected);
  expected = fold_convert_loc (loc, expected_type, expected);
  call_expr = build_call_expr_loc (loc, fn, 2, pred, expected);
  call_expr = build_call_expr_loc (loc, fn, 2, pred, expected);
 
 
  return build2 (NE_EXPR, TREE_TYPE (pred), call_expr,
  return build2 (NE_EXPR, TREE_TYPE (pred), call_expr,
                 build_int_cst (ret_type, 0));
                 build_int_cst (ret_type, 0));
}
}
 
 
/* Fold a call to builtin_expect with arguments ARG0 and ARG1.  Return
/* Fold a call to builtin_expect with arguments ARG0 and ARG1.  Return
   NULL_TREE if no simplification is possible.  */
   NULL_TREE if no simplification is possible.  */
 
 
static tree
static tree
fold_builtin_expect (location_t loc, tree arg0, tree arg1)
fold_builtin_expect (location_t loc, tree arg0, tree arg1)
{
{
  tree inner, fndecl;
  tree inner, fndecl;
  enum tree_code code;
  enum tree_code code;
 
 
  /* If this is a builtin_expect within a builtin_expect keep the
  /* If this is a builtin_expect within a builtin_expect keep the
     inner one.  See through a comparison against a constant.  It
     inner one.  See through a comparison against a constant.  It
     might have been added to create a thruthvalue.  */
     might have been added to create a thruthvalue.  */
  inner = arg0;
  inner = arg0;
  if (COMPARISON_CLASS_P (inner)
  if (COMPARISON_CLASS_P (inner)
      && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST)
      && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST)
    inner = TREE_OPERAND (inner, 0);
    inner = TREE_OPERAND (inner, 0);
 
 
  if (TREE_CODE (inner) == CALL_EXPR
  if (TREE_CODE (inner) == CALL_EXPR
      && (fndecl = get_callee_fndecl (inner))
      && (fndecl = get_callee_fndecl (inner))
      && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
      && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
      && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT)
      && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT)
    return arg0;
    return arg0;
 
 
  /* Distribute the expected value over short-circuiting operators.
  /* Distribute the expected value over short-circuiting operators.
     See through the cast from truthvalue_type_node to long.  */
     See through the cast from truthvalue_type_node to long.  */
  inner = arg0;
  inner = arg0;
  while (TREE_CODE (inner) == NOP_EXPR
  while (TREE_CODE (inner) == NOP_EXPR
         && INTEGRAL_TYPE_P (TREE_TYPE (inner))
         && INTEGRAL_TYPE_P (TREE_TYPE (inner))
         && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (inner, 0))))
         && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (inner, 0))))
    inner = TREE_OPERAND (inner, 0);
    inner = TREE_OPERAND (inner, 0);
 
 
  code = TREE_CODE (inner);
  code = TREE_CODE (inner);
  if (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
  if (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
    {
    {
      tree op0 = TREE_OPERAND (inner, 0);
      tree op0 = TREE_OPERAND (inner, 0);
      tree op1 = TREE_OPERAND (inner, 1);
      tree op1 = TREE_OPERAND (inner, 1);
 
 
      op0 = build_builtin_expect_predicate (loc, op0, arg1);
      op0 = build_builtin_expect_predicate (loc, op0, arg1);
      op1 = build_builtin_expect_predicate (loc, op1, arg1);
      op1 = build_builtin_expect_predicate (loc, op1, arg1);
      inner = build2 (code, TREE_TYPE (inner), op0, op1);
      inner = build2 (code, TREE_TYPE (inner), op0, op1);
 
 
      return fold_convert_loc (loc, TREE_TYPE (arg0), inner);
      return fold_convert_loc (loc, TREE_TYPE (arg0), inner);
    }
    }
 
 
  /* If the argument isn't invariant then there's nothing else we can do.  */
  /* If the argument isn't invariant then there's nothing else we can do.  */
  if (!TREE_CONSTANT (arg0))
  if (!TREE_CONSTANT (arg0))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If we expect that a comparison against the argument will fold to
  /* If we expect that a comparison against the argument will fold to
     a constant return the constant.  In practice, this means a true
     a constant return the constant.  In practice, this means a true
     constant or the address of a non-weak symbol.  */
     constant or the address of a non-weak symbol.  */
  inner = arg0;
  inner = arg0;
  STRIP_NOPS (inner);
  STRIP_NOPS (inner);
  if (TREE_CODE (inner) == ADDR_EXPR)
  if (TREE_CODE (inner) == ADDR_EXPR)
    {
    {
      do
      do
        {
        {
          inner = TREE_OPERAND (inner, 0);
          inner = TREE_OPERAND (inner, 0);
        }
        }
      while (TREE_CODE (inner) == COMPONENT_REF
      while (TREE_CODE (inner) == COMPONENT_REF
             || TREE_CODE (inner) == ARRAY_REF);
             || TREE_CODE (inner) == ARRAY_REF);
      if ((TREE_CODE (inner) == VAR_DECL
      if ((TREE_CODE (inner) == VAR_DECL
           || TREE_CODE (inner) == FUNCTION_DECL)
           || TREE_CODE (inner) == FUNCTION_DECL)
          && DECL_WEAK (inner))
          && DECL_WEAK (inner))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* Otherwise, ARG0 already has the proper type for the return value.  */
  /* Otherwise, ARG0 already has the proper type for the return value.  */
  return arg0;
  return arg0;
}
}
 
 
/* Fold a call to __builtin_classify_type with argument ARG.  */
/* Fold a call to __builtin_classify_type with argument ARG.  */
 
 
static tree
static tree
fold_builtin_classify_type (tree arg)
fold_builtin_classify_type (tree arg)
{
{
  if (arg == 0)
  if (arg == 0)
    return build_int_cst (NULL_TREE, no_type_class);
    return build_int_cst (NULL_TREE, no_type_class);
 
 
  return build_int_cst (NULL_TREE, type_to_class (TREE_TYPE (arg)));
  return build_int_cst (NULL_TREE, type_to_class (TREE_TYPE (arg)));
}
}
 
 
/* Fold a call to __builtin_strlen with argument ARG.  */
/* Fold a call to __builtin_strlen with argument ARG.  */
 
 
static tree
static tree
fold_builtin_strlen (location_t loc, tree type, tree arg)
fold_builtin_strlen (location_t loc, tree type, tree arg)
{
{
  if (!validate_arg (arg, POINTER_TYPE))
  if (!validate_arg (arg, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      tree len = c_strlen (arg, 0);
      tree len = c_strlen (arg, 0);
 
 
      if (len)
      if (len)
        return fold_convert_loc (loc, type, len);
        return fold_convert_loc (loc, type, len);
 
 
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Fold a call to __builtin_inf or __builtin_huge_val.  */
/* Fold a call to __builtin_inf or __builtin_huge_val.  */
 
 
static tree
static tree
fold_builtin_inf (location_t loc, tree type, int warn)
fold_builtin_inf (location_t loc, tree type, int warn)
{
{
  REAL_VALUE_TYPE real;
  REAL_VALUE_TYPE real;
 
 
  /* __builtin_inff is intended to be usable to define INFINITY on all
  /* __builtin_inff is intended to be usable to define INFINITY on all
     targets.  If an infinity is not available, INFINITY expands "to a
     targets.  If an infinity is not available, INFINITY expands "to a
     positive constant of type float that overflows at translation
     positive constant of type float that overflows at translation
     time", footnote "In this case, using INFINITY will violate the
     time", footnote "In this case, using INFINITY will violate the
     constraint in 6.4.4 and thus require a diagnostic." (C99 7.12#4).
     constraint in 6.4.4 and thus require a diagnostic." (C99 7.12#4).
     Thus we pedwarn to ensure this constraint violation is
     Thus we pedwarn to ensure this constraint violation is
     diagnosed.  */
     diagnosed.  */
  if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) && warn)
  if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) && warn)
    pedwarn (loc, 0, "target format does not support infinity");
    pedwarn (loc, 0, "target format does not support infinity");
 
 
  real_inf (&real);
  real_inf (&real);
  return build_real (type, real);
  return build_real (type, real);
}
}
 
 
/* Fold a call to __builtin_nan or __builtin_nans with argument ARG.  */
/* Fold a call to __builtin_nan or __builtin_nans with argument ARG.  */
 
 
static tree
static tree
fold_builtin_nan (tree arg, tree type, int quiet)
fold_builtin_nan (tree arg, tree type, int quiet)
{
{
  REAL_VALUE_TYPE real;
  REAL_VALUE_TYPE real;
  const char *str;
  const char *str;
 
 
  if (!validate_arg (arg, POINTER_TYPE))
  if (!validate_arg (arg, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  str = c_getstr (arg);
  str = c_getstr (arg);
  if (!str)
  if (!str)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (!real_nan (&real, str, quiet, TYPE_MODE (type)))
  if (!real_nan (&real, str, quiet, TYPE_MODE (type)))
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_real (type, real);
  return build_real (type, real);
}
}
 
 
/* Return true if the floating point expression T has an integer value.
/* Return true if the floating point expression T has an integer value.
   We also allow +Inf, -Inf and NaN to be considered integer values.  */
   We also allow +Inf, -Inf and NaN to be considered integer values.  */
 
 
static bool
static bool
integer_valued_real_p (tree t)
integer_valued_real_p (tree t)
{
{
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case FLOAT_EXPR:
    case FLOAT_EXPR:
      return true;
      return true;
 
 
    case ABS_EXPR:
    case ABS_EXPR:
    case SAVE_EXPR:
    case SAVE_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 0));
      return integer_valued_real_p (TREE_OPERAND (t, 0));
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
    case MODIFY_EXPR:
    case MODIFY_EXPR:
    case BIND_EXPR:
    case BIND_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 1));
      return integer_valued_real_p (TREE_OPERAND (t, 1));
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case MULT_EXPR:
    case MIN_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case MAX_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 0))
      return integer_valued_real_p (TREE_OPERAND (t, 0))
             && integer_valued_real_p (TREE_OPERAND (t, 1));
             && integer_valued_real_p (TREE_OPERAND (t, 1));
 
 
    case COND_EXPR:
    case COND_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 1))
      return integer_valued_real_p (TREE_OPERAND (t, 1))
             && integer_valued_real_p (TREE_OPERAND (t, 2));
             && integer_valued_real_p (TREE_OPERAND (t, 2));
 
 
    case REAL_CST:
    case REAL_CST:
      return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
      return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      {
      {
        tree type = TREE_TYPE (TREE_OPERAND (t, 0));
        tree type = TREE_TYPE (TREE_OPERAND (t, 0));
        if (TREE_CODE (type) == INTEGER_TYPE)
        if (TREE_CODE (type) == INTEGER_TYPE)
          return true;
          return true;
        if (TREE_CODE (type) == REAL_TYPE)
        if (TREE_CODE (type) == REAL_TYPE)
          return integer_valued_real_p (TREE_OPERAND (t, 0));
          return integer_valued_real_p (TREE_OPERAND (t, 0));
        break;
        break;
      }
      }
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      switch (builtin_mathfn_code (t))
      switch (builtin_mathfn_code (t))
        {
        {
        CASE_FLT_FN (BUILT_IN_CEIL):
        CASE_FLT_FN (BUILT_IN_CEIL):
        CASE_FLT_FN (BUILT_IN_FLOOR):
        CASE_FLT_FN (BUILT_IN_FLOOR):
        CASE_FLT_FN (BUILT_IN_NEARBYINT):
        CASE_FLT_FN (BUILT_IN_NEARBYINT):
        CASE_FLT_FN (BUILT_IN_RINT):
        CASE_FLT_FN (BUILT_IN_RINT):
        CASE_FLT_FN (BUILT_IN_ROUND):
        CASE_FLT_FN (BUILT_IN_ROUND):
        CASE_FLT_FN (BUILT_IN_TRUNC):
        CASE_FLT_FN (BUILT_IN_TRUNC):
          return true;
          return true;
 
 
        CASE_FLT_FN (BUILT_IN_FMIN):
        CASE_FLT_FN (BUILT_IN_FMIN):
        CASE_FLT_FN (BUILT_IN_FMAX):
        CASE_FLT_FN (BUILT_IN_FMAX):
          return integer_valued_real_p (CALL_EXPR_ARG (t, 0))
          return integer_valued_real_p (CALL_EXPR_ARG (t, 0))
            && integer_valued_real_p (CALL_EXPR_ARG (t, 1));
            && integer_valued_real_p (CALL_EXPR_ARG (t, 1));
 
 
        default:
        default:
          break;
          break;
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return false;
  return false;
}
}
 
 
/* FNDECL is assumed to be a builtin where truncation can be propagated
/* FNDECL is assumed to be a builtin where truncation can be propagated
   across (for instance floor((double)f) == (double)floorf (f).
   across (for instance floor((double)f) == (double)floorf (f).
   Do the transformation for a call with argument ARG.  */
   Do the transformation for a call with argument ARG.  */
 
 
static tree
static tree
fold_trunc_transparent_mathfn (location_t loc, tree fndecl, tree arg)
fold_trunc_transparent_mathfn (location_t loc, tree fndecl, tree arg)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Integer rounding functions are idempotent.  */
  /* Integer rounding functions are idempotent.  */
  if (fcode == builtin_mathfn_code (arg))
  if (fcode == builtin_mathfn_code (arg))
    return arg;
    return arg;
 
 
  /* If argument is already integer valued, and we don't need to worry
  /* If argument is already integer valued, and we don't need to worry
     about setting errno, there's no need to perform rounding.  */
     about setting errno, there's no need to perform rounding.  */
  if (! flag_errno_math && integer_valued_real_p (arg))
  if (! flag_errno_math && integer_valued_real_p (arg))
    return arg;
    return arg;
 
 
  if (optimize)
  if (optimize)
    {
    {
      tree arg0 = strip_float_extensions (arg);
      tree arg0 = strip_float_extensions (arg);
      tree ftype = TREE_TYPE (TREE_TYPE (fndecl));
      tree ftype = TREE_TYPE (TREE_TYPE (fndecl));
      tree newtype = TREE_TYPE (arg0);
      tree newtype = TREE_TYPE (arg0);
      tree decl;
      tree decl;
 
 
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
          && (decl = mathfn_built_in (newtype, fcode)))
          && (decl = mathfn_built_in (newtype, fcode)))
        return fold_convert_loc (loc, ftype,
        return fold_convert_loc (loc, ftype,
                                 build_call_expr_loc (loc, decl, 1,
                                 build_call_expr_loc (loc, decl, 1,
                                                  fold_convert_loc (loc,
                                                  fold_convert_loc (loc,
                                                                    newtype,
                                                                    newtype,
                                                                    arg0)));
                                                                    arg0)));
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* FNDECL is assumed to be builtin which can narrow the FP type of
/* FNDECL is assumed to be builtin which can narrow the FP type of
   the argument, for instance lround((double)f) -> lroundf (f).
   the argument, for instance lround((double)f) -> lroundf (f).
   Do the transformation for a call with argument ARG.  */
   Do the transformation for a call with argument ARG.  */
 
 
static tree
static tree
fold_fixed_mathfn (location_t loc, tree fndecl, tree arg)
fold_fixed_mathfn (location_t loc, tree fndecl, tree arg)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If argument is already integer valued, and we don't need to worry
  /* If argument is already integer valued, and we don't need to worry
     about setting errno, there's no need to perform rounding.  */
     about setting errno, there's no need to perform rounding.  */
  if (! flag_errno_math && integer_valued_real_p (arg))
  if (! flag_errno_math && integer_valued_real_p (arg))
    return fold_build1_loc (loc, FIX_TRUNC_EXPR,
    return fold_build1_loc (loc, FIX_TRUNC_EXPR,
                        TREE_TYPE (TREE_TYPE (fndecl)), arg);
                        TREE_TYPE (TREE_TYPE (fndecl)), arg);
 
 
  if (optimize)
  if (optimize)
    {
    {
      tree ftype = TREE_TYPE (arg);
      tree ftype = TREE_TYPE (arg);
      tree arg0 = strip_float_extensions (arg);
      tree arg0 = strip_float_extensions (arg);
      tree newtype = TREE_TYPE (arg0);
      tree newtype = TREE_TYPE (arg0);
      tree decl;
      tree decl;
 
 
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
          && (decl = mathfn_built_in (newtype, fcode)))
          && (decl = mathfn_built_in (newtype, fcode)))
        return build_call_expr_loc (loc, decl, 1,
        return build_call_expr_loc (loc, decl, 1,
                                fold_convert_loc (loc, newtype, arg0));
                                fold_convert_loc (loc, newtype, arg0));
    }
    }
 
 
  /* Canonicalize llround (x) to lround (x) on LP64 targets where
  /* Canonicalize llround (x) to lround (x) on LP64 targets where
     sizeof (long long) == sizeof (long).  */
     sizeof (long long) == sizeof (long).  */
  if (TYPE_PRECISION (long_long_integer_type_node)
  if (TYPE_PRECISION (long_long_integer_type_node)
      == TYPE_PRECISION (long_integer_type_node))
      == TYPE_PRECISION (long_integer_type_node))
    {
    {
      tree newfn = NULL_TREE;
      tree newfn = NULL_TREE;
      switch (fcode)
      switch (fcode)
        {
        {
        CASE_FLT_FN (BUILT_IN_LLCEIL):
        CASE_FLT_FN (BUILT_IN_LLCEIL):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LCEIL);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LCEIL);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_LLFLOOR):
        CASE_FLT_FN (BUILT_IN_LLFLOOR):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LFLOOR);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LFLOOR);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_LLROUND):
        CASE_FLT_FN (BUILT_IN_LLROUND):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LROUND);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LROUND);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_LLRINT):
        CASE_FLT_FN (BUILT_IN_LLRINT):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LRINT);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LRINT);
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (newfn)
      if (newfn)
        {
        {
          tree newcall = build_call_expr_loc (loc, newfn, 1, arg);
          tree newcall = build_call_expr_loc (loc, newfn, 1, arg);
          return fold_convert_loc (loc,
          return fold_convert_loc (loc,
                                   TREE_TYPE (TREE_TYPE (fndecl)), newcall);
                                   TREE_TYPE (TREE_TYPE (fndecl)), newcall);
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold call to builtin cabs, cabsf or cabsl with argument ARG.  TYPE is the
/* Fold call to builtin cabs, cabsf or cabsl with argument ARG.  TYPE is the
   return type.  Return NULL_TREE if no simplification can be made.  */
   return type.  Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_cabs (location_t loc, tree arg, tree type, tree fndecl)
fold_builtin_cabs (location_t loc, tree arg, tree type, tree fndecl)
{
{
  tree res;
  tree res;
 
 
  if (!validate_arg (arg, COMPLEX_TYPE)
  if (!validate_arg (arg, COMPLEX_TYPE)
      || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != REAL_TYPE)
      || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != REAL_TYPE)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if (TREE_CODE (arg) == COMPLEX_CST
  if (TREE_CODE (arg) == COMPLEX_CST
      && (res = do_mpfr_arg2 (TREE_REALPART (arg), TREE_IMAGPART (arg),
      && (res = do_mpfr_arg2 (TREE_REALPART (arg), TREE_IMAGPART (arg),
                              type, mpfr_hypot)))
                              type, mpfr_hypot)))
    return res;
    return res;
 
 
  if (TREE_CODE (arg) == COMPLEX_EXPR)
  if (TREE_CODE (arg) == COMPLEX_EXPR)
    {
    {
      tree real = TREE_OPERAND (arg, 0);
      tree real = TREE_OPERAND (arg, 0);
      tree imag = TREE_OPERAND (arg, 1);
      tree imag = TREE_OPERAND (arg, 1);
 
 
      /* If either part is zero, cabs is fabs of the other.  */
      /* If either part is zero, cabs is fabs of the other.  */
      if (real_zerop (real))
      if (real_zerop (real))
        return fold_build1_loc (loc, ABS_EXPR, type, imag);
        return fold_build1_loc (loc, ABS_EXPR, type, imag);
      if (real_zerop (imag))
      if (real_zerop (imag))
        return fold_build1_loc (loc, ABS_EXPR, type, real);
        return fold_build1_loc (loc, ABS_EXPR, type, real);
 
 
      /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
      /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && operand_equal_p (real, imag, OEP_PURE_SAME))
          && operand_equal_p (real, imag, OEP_PURE_SAME))
        {
        {
          const REAL_VALUE_TYPE sqrt2_trunc
          const REAL_VALUE_TYPE sqrt2_trunc
            = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ());
            = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ());
          STRIP_NOPS (real);
          STRIP_NOPS (real);
          return fold_build2_loc (loc, MULT_EXPR, type,
          return fold_build2_loc (loc, MULT_EXPR, type,
                              fold_build1_loc (loc, ABS_EXPR, type, real),
                              fold_build1_loc (loc, ABS_EXPR, type, real),
                              build_real (type, sqrt2_trunc));
                              build_real (type, sqrt2_trunc));
        }
        }
    }
    }
 
 
  /* Optimize cabs(-z) and cabs(conj(z)) as cabs(z).  */
  /* Optimize cabs(-z) and cabs(conj(z)) as cabs(z).  */
  if (TREE_CODE (arg) == NEGATE_EXPR
  if (TREE_CODE (arg) == NEGATE_EXPR
      || TREE_CODE (arg) == CONJ_EXPR)
      || TREE_CODE (arg) == CONJ_EXPR)
    return build_call_expr_loc (loc, fndecl, 1, TREE_OPERAND (arg, 0));
    return build_call_expr_loc (loc, fndecl, 1, TREE_OPERAND (arg, 0));
 
 
  /* Don't do this when optimizing for size.  */
  /* Don't do this when optimizing for size.  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && optimize && optimize_function_for_speed_p (cfun))
      && optimize && optimize_function_for_speed_p (cfun))
    {
    {
      tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
      tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
 
 
      if (sqrtfn != NULL_TREE)
      if (sqrtfn != NULL_TREE)
        {
        {
          tree rpart, ipart, result;
          tree rpart, ipart, result;
 
 
          arg = builtin_save_expr (arg);
          arg = builtin_save_expr (arg);
 
 
          rpart = fold_build1_loc (loc, REALPART_EXPR, type, arg);
          rpart = fold_build1_loc (loc, REALPART_EXPR, type, arg);
          ipart = fold_build1_loc (loc, IMAGPART_EXPR, type, arg);
          ipart = fold_build1_loc (loc, IMAGPART_EXPR, type, arg);
 
 
          rpart = builtin_save_expr (rpart);
          rpart = builtin_save_expr (rpart);
          ipart = builtin_save_expr (ipart);
          ipart = builtin_save_expr (ipart);
 
 
          result = fold_build2_loc (loc, PLUS_EXPR, type,
          result = fold_build2_loc (loc, PLUS_EXPR, type,
                                fold_build2_loc (loc, MULT_EXPR, type,
                                fold_build2_loc (loc, MULT_EXPR, type,
                                             rpart, rpart),
                                             rpart, rpart),
                                fold_build2_loc (loc, MULT_EXPR, type,
                                fold_build2_loc (loc, MULT_EXPR, type,
                                             ipart, ipart));
                                             ipart, ipart));
 
 
          return build_call_expr_loc (loc, sqrtfn, 1, result);
          return build_call_expr_loc (loc, sqrtfn, 1, result);
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to sqrt, sqrtf, or sqrtl with argument ARG.
/* Fold a builtin function call to sqrt, sqrtf, or sqrtl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_sqrt (location_t loc, tree arg, tree type)
fold_builtin_sqrt (location_t loc, tree arg, tree type)
{
{
 
 
  enum built_in_function fcode;
  enum built_in_function fcode;
  tree res;
  tree res;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_arg1 (arg, type, mpfr_sqrt, &dconst0, NULL, true)))
  if ((res = do_mpfr_arg1 (arg, type, mpfr_sqrt, &dconst0, NULL, true)))
    return res;
    return res;
 
 
  /* Optimize sqrt(expN(x)) = expN(x*0.5).  */
  /* Optimize sqrt(expN(x)) = expN(x*0.5).  */
  fcode = builtin_mathfn_code (arg);
  fcode = builtin_mathfn_code (arg);
  if (flag_unsafe_math_optimizations && BUILTIN_EXPONENT_P (fcode))
  if (flag_unsafe_math_optimizations && BUILTIN_EXPONENT_P (fcode))
    {
    {
      tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
      tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
      arg = fold_build2_loc (loc, MULT_EXPR, type,
      arg = fold_build2_loc (loc, MULT_EXPR, type,
                         CALL_EXPR_ARG (arg, 0),
                         CALL_EXPR_ARG (arg, 0),
                         build_real (type, dconsthalf));
                         build_real (type, dconsthalf));
      return build_call_expr_loc (loc, expfn, 1, arg);
      return build_call_expr_loc (loc, expfn, 1, arg);
    }
    }
 
 
  /* Optimize sqrt(Nroot(x)) -> pow(x,1/(2*N)).  */
  /* Optimize sqrt(Nroot(x)) -> pow(x,1/(2*N)).  */
  if (flag_unsafe_math_optimizations && BUILTIN_ROOT_P (fcode))
  if (flag_unsafe_math_optimizations && BUILTIN_ROOT_P (fcode))
    {
    {
      tree powfn = mathfn_built_in (type, BUILT_IN_POW);
      tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
      if (powfn)
      if (powfn)
        {
        {
          tree arg0 = CALL_EXPR_ARG (arg, 0);
          tree arg0 = CALL_EXPR_ARG (arg, 0);
          tree tree_root;
          tree tree_root;
          /* The inner root was either sqrt or cbrt.  */
          /* The inner root was either sqrt or cbrt.  */
          /* This was a conditional expression but it triggered a bug
          /* This was a conditional expression but it triggered a bug
             in Sun C 5.5.  */
             in Sun C 5.5.  */
          REAL_VALUE_TYPE dconstroot;
          REAL_VALUE_TYPE dconstroot;
          if (BUILTIN_SQRT_P (fcode))
          if (BUILTIN_SQRT_P (fcode))
            dconstroot = dconsthalf;
            dconstroot = dconsthalf;
          else
          else
            dconstroot = dconst_third ();
            dconstroot = dconst_third ();
 
 
          /* Adjust for the outer root.  */
          /* Adjust for the outer root.  */
          SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
          SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
          dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
          dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
          tree_root = build_real (type, dconstroot);
          tree_root = build_real (type, dconstroot);
          return build_call_expr_loc (loc, powfn, 2, arg0, tree_root);
          return build_call_expr_loc (loc, powfn, 2, arg0, tree_root);
        }
        }
    }
    }
 
 
  /* Optimize sqrt(pow(x,y)) = pow(|x|,y*0.5).  */
  /* Optimize sqrt(pow(x,y)) = pow(|x|,y*0.5).  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && (fcode == BUILT_IN_POW
      && (fcode == BUILT_IN_POW
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWL))
          || fcode == BUILT_IN_POWL))
    {
    {
      tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
      tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
      tree arg0 = CALL_EXPR_ARG (arg, 0);
      tree arg0 = CALL_EXPR_ARG (arg, 0);
      tree arg1 = CALL_EXPR_ARG (arg, 1);
      tree arg1 = CALL_EXPR_ARG (arg, 1);
      tree narg1;
      tree narg1;
      if (!tree_expr_nonnegative_p (arg0))
      if (!tree_expr_nonnegative_p (arg0))
        arg0 = build1 (ABS_EXPR, type, arg0);
        arg0 = build1 (ABS_EXPR, type, arg0);
      narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1,
      narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1,
                           build_real (type, dconsthalf));
                           build_real (type, dconsthalf));
      return build_call_expr_loc (loc, powfn, 2, arg0, narg1);
      return build_call_expr_loc (loc, powfn, 2, arg0, narg1);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to cbrt, cbrtf, or cbrtl with argument ARG.
/* Fold a builtin function call to cbrt, cbrtf, or cbrtl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_cbrt (location_t loc, tree arg, tree type)
fold_builtin_cbrt (location_t loc, tree arg, tree type)
{
{
  const enum built_in_function fcode = builtin_mathfn_code (arg);
  const enum built_in_function fcode = builtin_mathfn_code (arg);
  tree res;
  tree res;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_arg1 (arg, type, mpfr_cbrt, NULL, NULL, 0)))
  if ((res = do_mpfr_arg1 (arg, type, mpfr_cbrt, NULL, NULL, 0)))
    return res;
    return res;
 
 
  if (flag_unsafe_math_optimizations)
  if (flag_unsafe_math_optimizations)
    {
    {
      /* Optimize cbrt(expN(x)) -> expN(x/3).  */
      /* Optimize cbrt(expN(x)) -> expN(x/3).  */
      if (BUILTIN_EXPONENT_P (fcode))
      if (BUILTIN_EXPONENT_P (fcode))
        {
        {
          tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
          tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
          const REAL_VALUE_TYPE third_trunc =
          const REAL_VALUE_TYPE third_trunc =
            real_value_truncate (TYPE_MODE (type), dconst_third ());
            real_value_truncate (TYPE_MODE (type), dconst_third ());
          arg = fold_build2_loc (loc, MULT_EXPR, type,
          arg = fold_build2_loc (loc, MULT_EXPR, type,
                             CALL_EXPR_ARG (arg, 0),
                             CALL_EXPR_ARG (arg, 0),
                             build_real (type, third_trunc));
                             build_real (type, third_trunc));
          return build_call_expr_loc (loc, expfn, 1, arg);
          return build_call_expr_loc (loc, expfn, 1, arg);
        }
        }
 
 
      /* Optimize cbrt(sqrt(x)) -> pow(x,1/6).  */
      /* Optimize cbrt(sqrt(x)) -> pow(x,1/6).  */
      if (BUILTIN_SQRT_P (fcode))
      if (BUILTIN_SQRT_P (fcode))
        {
        {
          tree powfn = mathfn_built_in (type, BUILT_IN_POW);
          tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
          if (powfn)
          if (powfn)
            {
            {
              tree arg0 = CALL_EXPR_ARG (arg, 0);
              tree arg0 = CALL_EXPR_ARG (arg, 0);
              tree tree_root;
              tree tree_root;
              REAL_VALUE_TYPE dconstroot = dconst_third ();
              REAL_VALUE_TYPE dconstroot = dconst_third ();
 
 
              SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
              SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
              dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
              dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
              tree_root = build_real (type, dconstroot);
              tree_root = build_real (type, dconstroot);
              return build_call_expr_loc (loc, powfn, 2, arg0, tree_root);
              return build_call_expr_loc (loc, powfn, 2, arg0, tree_root);
            }
            }
        }
        }
 
 
      /* Optimize cbrt(cbrt(x)) -> pow(x,1/9) iff x is nonnegative.  */
      /* Optimize cbrt(cbrt(x)) -> pow(x,1/9) iff x is nonnegative.  */
      if (BUILTIN_CBRT_P (fcode))
      if (BUILTIN_CBRT_P (fcode))
        {
        {
          tree arg0 = CALL_EXPR_ARG (arg, 0);
          tree arg0 = CALL_EXPR_ARG (arg, 0);
          if (tree_expr_nonnegative_p (arg0))
          if (tree_expr_nonnegative_p (arg0))
            {
            {
              tree powfn = mathfn_built_in (type, BUILT_IN_POW);
              tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
              if (powfn)
              if (powfn)
                {
                {
                  tree tree_root;
                  tree tree_root;
                  REAL_VALUE_TYPE dconstroot;
                  REAL_VALUE_TYPE dconstroot;
 
 
                  real_arithmetic (&dconstroot, MULT_EXPR,
                  real_arithmetic (&dconstroot, MULT_EXPR,
                                   dconst_third_ptr (), dconst_third_ptr ());
                                   dconst_third_ptr (), dconst_third_ptr ());
                  dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
                  dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
                  tree_root = build_real (type, dconstroot);
                  tree_root = build_real (type, dconstroot);
                  return build_call_expr_loc (loc, powfn, 2, arg0, tree_root);
                  return build_call_expr_loc (loc, powfn, 2, arg0, tree_root);
                }
                }
            }
            }
        }
        }
 
 
      /* Optimize cbrt(pow(x,y)) -> pow(x,y/3) iff x is nonnegative.  */
      /* Optimize cbrt(pow(x,y)) -> pow(x,y/3) iff x is nonnegative.  */
      if (fcode == BUILT_IN_POW
      if (fcode == BUILT_IN_POW
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWL)
          || fcode == BUILT_IN_POWL)
        {
        {
          tree arg00 = CALL_EXPR_ARG (arg, 0);
          tree arg00 = CALL_EXPR_ARG (arg, 0);
          tree arg01 = CALL_EXPR_ARG (arg, 1);
          tree arg01 = CALL_EXPR_ARG (arg, 1);
          if (tree_expr_nonnegative_p (arg00))
          if (tree_expr_nonnegative_p (arg00))
            {
            {
              tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
              tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
              const REAL_VALUE_TYPE dconstroot
              const REAL_VALUE_TYPE dconstroot
                = real_value_truncate (TYPE_MODE (type), dconst_third ());
                = real_value_truncate (TYPE_MODE (type), dconst_third ());
              tree narg01 = fold_build2_loc (loc, MULT_EXPR, type, arg01,
              tree narg01 = fold_build2_loc (loc, MULT_EXPR, type, arg01,
                                         build_real (type, dconstroot));
                                         build_real (type, dconstroot));
              return build_call_expr_loc (loc, powfn, 2, arg00, narg01);
              return build_call_expr_loc (loc, powfn, 2, arg00, narg01);
            }
            }
        }
        }
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin cos, cosf, or cosl with argument ARG.
/* Fold function call to builtin cos, cosf, or cosl with argument ARG.
   TYPE is the type of the return value.  Return NULL_TREE if no
   TYPE is the type of the return value.  Return NULL_TREE if no
   simplification can be made.  */
   simplification can be made.  */
 
 
static tree
static tree
fold_builtin_cos (location_t loc,
fold_builtin_cos (location_t loc,
                  tree arg, tree type, tree fndecl)
                  tree arg, tree type, tree fndecl)
{
{
  tree res, narg;
  tree res, narg;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_arg1 (arg, type, mpfr_cos, NULL, NULL, 0)))
  if ((res = do_mpfr_arg1 (arg, type, mpfr_cos, NULL, NULL, 0)))
    return res;
    return res;
 
 
  /* Optimize cos(-x) into cos (x).  */
  /* Optimize cos(-x) into cos (x).  */
  if ((narg = fold_strip_sign_ops (arg)))
  if ((narg = fold_strip_sign_ops (arg)))
    return build_call_expr_loc (loc, fndecl, 1, narg);
    return build_call_expr_loc (loc, fndecl, 1, narg);
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin cosh, coshf, or coshl with argument ARG.
/* Fold function call to builtin cosh, coshf, or coshl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_cosh (location_t loc, tree arg, tree type, tree fndecl)
fold_builtin_cosh (location_t loc, tree arg, tree type, tree fndecl)
{
{
  if (validate_arg (arg, REAL_TYPE))
  if (validate_arg (arg, REAL_TYPE))
    {
    {
      tree res, narg;
      tree res, narg;
 
 
      /* Calculate the result when the argument is a constant.  */
      /* Calculate the result when the argument is a constant.  */
      if ((res = do_mpfr_arg1 (arg, type, mpfr_cosh, NULL, NULL, 0)))
      if ((res = do_mpfr_arg1 (arg, type, mpfr_cosh, NULL, NULL, 0)))
        return res;
        return res;
 
 
      /* Optimize cosh(-x) into cosh (x).  */
      /* Optimize cosh(-x) into cosh (x).  */
      if ((narg = fold_strip_sign_ops (arg)))
      if ((narg = fold_strip_sign_ops (arg)))
        return build_call_expr_loc (loc, fndecl, 1, narg);
        return build_call_expr_loc (loc, fndecl, 1, narg);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin ccos (or ccosh if HYPER is TRUE) with
/* Fold function call to builtin ccos (or ccosh if HYPER is TRUE) with
   argument ARG.  TYPE is the type of the return value.  Return
   argument ARG.  TYPE is the type of the return value.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_ccos (location_t loc, tree arg, tree type, tree fndecl,
fold_builtin_ccos (location_t loc, tree arg, tree type, tree fndecl,
                   bool hyper)
                   bool hyper)
{
{
  if (validate_arg (arg, COMPLEX_TYPE)
  if (validate_arg (arg, COMPLEX_TYPE)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE)
    {
    {
      tree tmp;
      tree tmp;
 
 
      /* Calculate the result when the argument is a constant.  */
      /* Calculate the result when the argument is a constant.  */
      if ((tmp = do_mpc_arg1 (arg, type, (hyper ? mpc_cosh : mpc_cos))))
      if ((tmp = do_mpc_arg1 (arg, type, (hyper ? mpc_cosh : mpc_cos))))
        return tmp;
        return tmp;
 
 
      /* Optimize fn(-x) into fn(x).  */
      /* Optimize fn(-x) into fn(x).  */
      if ((tmp = fold_strip_sign_ops (arg)))
      if ((tmp = fold_strip_sign_ops (arg)))
        return build_call_expr_loc (loc, fndecl, 1, tmp);
        return build_call_expr_loc (loc, fndecl, 1, tmp);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin tan, tanf, or tanl with argument ARG.
/* Fold function call to builtin tan, tanf, or tanl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_tan (tree arg, tree type)
fold_builtin_tan (tree arg, tree type)
{
{
  enum built_in_function fcode;
  enum built_in_function fcode;
  tree res;
  tree res;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_arg1 (arg, type, mpfr_tan, NULL, NULL, 0)))
  if ((res = do_mpfr_arg1 (arg, type, mpfr_tan, NULL, NULL, 0)))
    return res;
    return res;
 
 
  /* Optimize tan(atan(x)) = x.  */
  /* Optimize tan(atan(x)) = x.  */
  fcode = builtin_mathfn_code (arg);
  fcode = builtin_mathfn_code (arg);
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && (fcode == BUILT_IN_ATAN
      && (fcode == BUILT_IN_ATAN
          || fcode == BUILT_IN_ATANF
          || fcode == BUILT_IN_ATANF
          || fcode == BUILT_IN_ATANL))
          || fcode == BUILT_IN_ATANL))
    return CALL_EXPR_ARG (arg, 0);
    return CALL_EXPR_ARG (arg, 0);
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin sincos, sincosf, or sincosl.  Return
/* Fold function call to builtin sincos, sincosf, or sincosl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_sincos (location_t loc,
fold_builtin_sincos (location_t loc,
                     tree arg0, tree arg1, tree arg2)
                     tree arg0, tree arg1, tree arg2)
{
{
  tree type;
  tree type;
  tree res, fn, call;
  tree res, fn, call;
 
 
  if (!validate_arg (arg0, REAL_TYPE)
  if (!validate_arg (arg0, REAL_TYPE)
      || !validate_arg (arg1, POINTER_TYPE)
      || !validate_arg (arg1, POINTER_TYPE)
      || !validate_arg (arg2, POINTER_TYPE))
      || !validate_arg (arg2, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  type = TREE_TYPE (arg0);
  type = TREE_TYPE (arg0);
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_sincos (arg0, arg1, arg2)))
  if ((res = do_mpfr_sincos (arg0, arg1, arg2)))
    return res;
    return res;
 
 
  /* Canonicalize sincos to cexpi.  */
  /* Canonicalize sincos to cexpi.  */
  if (!TARGET_C99_FUNCTIONS)
  if (!TARGET_C99_FUNCTIONS)
    return NULL_TREE;
    return NULL_TREE;
  fn = mathfn_built_in (type, BUILT_IN_CEXPI);
  fn = mathfn_built_in (type, BUILT_IN_CEXPI);
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  call = build_call_expr_loc (loc, fn, 1, arg0);
  call = build_call_expr_loc (loc, fn, 1, arg0);
  call = builtin_save_expr (call);
  call = builtin_save_expr (call);
 
 
  return build2 (COMPOUND_EXPR, void_type_node,
  return build2 (COMPOUND_EXPR, void_type_node,
                 build2 (MODIFY_EXPR, void_type_node,
                 build2 (MODIFY_EXPR, void_type_node,
                         build_fold_indirect_ref_loc (loc, arg1),
                         build_fold_indirect_ref_loc (loc, arg1),
                         build1 (IMAGPART_EXPR, type, call)),
                         build1 (IMAGPART_EXPR, type, call)),
                 build2 (MODIFY_EXPR, void_type_node,
                 build2 (MODIFY_EXPR, void_type_node,
                         build_fold_indirect_ref_loc (loc, arg2),
                         build_fold_indirect_ref_loc (loc, arg2),
                         build1 (REALPART_EXPR, type, call)));
                         build1 (REALPART_EXPR, type, call)));
}
}
 
 
/* Fold function call to builtin cexp, cexpf, or cexpl.  Return
/* Fold function call to builtin cexp, cexpf, or cexpl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_cexp (location_t loc, tree arg0, tree type)
fold_builtin_cexp (location_t loc, tree arg0, tree type)
{
{
  tree rtype;
  tree rtype;
  tree realp, imagp, ifn;
  tree realp, imagp, ifn;
  tree res;
  tree res;
 
 
  if (!validate_arg (arg0, COMPLEX_TYPE)
  if (!validate_arg (arg0, COMPLEX_TYPE)
      || TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) != REAL_TYPE)
      || TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) != REAL_TYPE)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpc_arg1 (arg0, type, mpc_exp)))
  if ((res = do_mpc_arg1 (arg0, type, mpc_exp)))
    return res;
    return res;
 
 
  rtype = TREE_TYPE (TREE_TYPE (arg0));
  rtype = TREE_TYPE (TREE_TYPE (arg0));
 
 
  /* In case we can figure out the real part of arg0 and it is constant zero
  /* In case we can figure out the real part of arg0 and it is constant zero
     fold to cexpi.  */
     fold to cexpi.  */
  if (!TARGET_C99_FUNCTIONS)
  if (!TARGET_C99_FUNCTIONS)
    return NULL_TREE;
    return NULL_TREE;
  ifn = mathfn_built_in (rtype, BUILT_IN_CEXPI);
  ifn = mathfn_built_in (rtype, BUILT_IN_CEXPI);
  if (!ifn)
  if (!ifn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if ((realp = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0))
  if ((realp = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0))
      && real_zerop (realp))
      && real_zerop (realp))
    {
    {
      tree narg = fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0);
      tree narg = fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0);
      return build_call_expr_loc (loc, ifn, 1, narg);
      return build_call_expr_loc (loc, ifn, 1, narg);
    }
    }
 
 
  /* In case we can easily decompose real and imaginary parts split cexp
  /* In case we can easily decompose real and imaginary parts split cexp
     to exp (r) * cexpi (i).  */
     to exp (r) * cexpi (i).  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && realp)
      && realp)
    {
    {
      tree rfn, rcall, icall;
      tree rfn, rcall, icall;
 
 
      rfn = mathfn_built_in (rtype, BUILT_IN_EXP);
      rfn = mathfn_built_in (rtype, BUILT_IN_EXP);
      if (!rfn)
      if (!rfn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      imagp = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
      imagp = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
      if (!imagp)
      if (!imagp)
        return NULL_TREE;
        return NULL_TREE;
 
 
      icall = build_call_expr_loc (loc, ifn, 1, imagp);
      icall = build_call_expr_loc (loc, ifn, 1, imagp);
      icall = builtin_save_expr (icall);
      icall = builtin_save_expr (icall);
      rcall = build_call_expr_loc (loc, rfn, 1, realp);
      rcall = build_call_expr_loc (loc, rfn, 1, realp);
      rcall = builtin_save_expr (rcall);
      rcall = builtin_save_expr (rcall);
      return fold_build2_loc (loc, COMPLEX_EXPR, type,
      return fold_build2_loc (loc, COMPLEX_EXPR, type,
                          fold_build2_loc (loc, MULT_EXPR, rtype,
                          fold_build2_loc (loc, MULT_EXPR, rtype,
                                       rcall,
                                       rcall,
                                       fold_build1_loc (loc, REALPART_EXPR,
                                       fold_build1_loc (loc, REALPART_EXPR,
                                                    rtype, icall)),
                                                    rtype, icall)),
                          fold_build2_loc (loc, MULT_EXPR, rtype,
                          fold_build2_loc (loc, MULT_EXPR, rtype,
                                       rcall,
                                       rcall,
                                       fold_build1_loc (loc, IMAGPART_EXPR,
                                       fold_build1_loc (loc, IMAGPART_EXPR,
                                                    rtype, icall)));
                                                    rtype, icall)));
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin trunc, truncf or truncl with argument ARG.
/* Fold function call to builtin trunc, truncf or truncl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_trunc (location_t loc, tree fndecl, tree arg)
fold_builtin_trunc (location_t loc, tree fndecl, tree arg)
{
{
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize trunc of constant value.  */
  /* Optimize trunc of constant value.  */
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE r, x;
      REAL_VALUE_TYPE r, x;
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      real_trunc (&r, TYPE_MODE (type), &x);
      real_trunc (&r, TYPE_MODE (type), &x);
      return build_real (type, r);
      return build_real (type, r);
    }
    }
 
 
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
}
}
 
 
/* Fold function call to builtin floor, floorf or floorl with argument ARG.
/* Fold function call to builtin floor, floorf or floorl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_floor (location_t loc, tree fndecl, tree arg)
fold_builtin_floor (location_t loc, tree fndecl, tree arg)
{
{
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize floor of constant value.  */
  /* Optimize floor of constant value.  */
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE x;
      REAL_VALUE_TYPE x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
        {
        {
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          real_floor (&r, TYPE_MODE (type), &x);
          real_floor (&r, TYPE_MODE (type), &x);
          return build_real (type, r);
          return build_real (type, r);
        }
        }
    }
    }
 
 
  /* Fold floor (x) where x is nonnegative to trunc (x).  */
  /* Fold floor (x) where x is nonnegative to trunc (x).  */
  if (tree_expr_nonnegative_p (arg))
  if (tree_expr_nonnegative_p (arg))
    {
    {
      tree truncfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_TRUNC);
      tree truncfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_TRUNC);
      if (truncfn)
      if (truncfn)
        return build_call_expr_loc (loc, truncfn, 1, arg);
        return build_call_expr_loc (loc, truncfn, 1, arg);
    }
    }
 
 
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
}
}
 
 
/* Fold function call to builtin ceil, ceilf or ceill with argument ARG.
/* Fold function call to builtin ceil, ceilf or ceill with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_ceil (location_t loc, tree fndecl, tree arg)
fold_builtin_ceil (location_t loc, tree fndecl, tree arg)
{
{
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize ceil of constant value.  */
  /* Optimize ceil of constant value.  */
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE x;
      REAL_VALUE_TYPE x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
        {
        {
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          real_ceil (&r, TYPE_MODE (type), &x);
          real_ceil (&r, TYPE_MODE (type), &x);
          return build_real (type, r);
          return build_real (type, r);
        }
        }
    }
    }
 
 
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
}
}
 
 
/* Fold function call to builtin round, roundf or roundl with argument ARG.
/* Fold function call to builtin round, roundf or roundl with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_round (location_t loc, tree fndecl, tree arg)
fold_builtin_round (location_t loc, tree fndecl, tree arg)
{
{
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize round of constant value.  */
  /* Optimize round of constant value.  */
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE x;
      REAL_VALUE_TYPE x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
        {
        {
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          real_round (&r, TYPE_MODE (type), &x);
          real_round (&r, TYPE_MODE (type), &x);
          return build_real (type, r);
          return build_real (type, r);
        }
        }
    }
    }
 
 
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
  return fold_trunc_transparent_mathfn (loc, fndecl, arg);
}
}
 
 
/* Fold function call to builtin lround, lroundf or lroundl (or the
/* Fold function call to builtin lround, lroundf or lroundl (or the
   corresponding long long versions) and other rounding functions.  ARG
   corresponding long long versions) and other rounding functions.  ARG
   is the argument to the call.  Return NULL_TREE if no simplification
   is the argument to the call.  Return NULL_TREE if no simplification
   can be made.  */
   can be made.  */
 
 
static tree
static tree
fold_builtin_int_roundingfn (location_t loc, tree fndecl, tree arg)
fold_builtin_int_roundingfn (location_t loc, tree fndecl, tree arg)
{
{
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize lround of constant value.  */
  /* Optimize lround of constant value.  */
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
    {
    {
      const REAL_VALUE_TYPE x = TREE_REAL_CST (arg);
      const REAL_VALUE_TYPE x = TREE_REAL_CST (arg);
 
 
      if (real_isfinite (&x))
      if (real_isfinite (&x))
        {
        {
          tree itype = TREE_TYPE (TREE_TYPE (fndecl));
          tree itype = TREE_TYPE (TREE_TYPE (fndecl));
          tree ftype = TREE_TYPE (arg);
          tree ftype = TREE_TYPE (arg);
          unsigned HOST_WIDE_INT lo2;
          unsigned HOST_WIDE_INT lo2;
          HOST_WIDE_INT hi, lo;
          HOST_WIDE_INT hi, lo;
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          switch (DECL_FUNCTION_CODE (fndecl))
          switch (DECL_FUNCTION_CODE (fndecl))
            {
            {
            CASE_FLT_FN (BUILT_IN_LFLOOR):
            CASE_FLT_FN (BUILT_IN_LFLOOR):
            CASE_FLT_FN (BUILT_IN_LLFLOOR):
            CASE_FLT_FN (BUILT_IN_LLFLOOR):
              real_floor (&r, TYPE_MODE (ftype), &x);
              real_floor (&r, TYPE_MODE (ftype), &x);
              break;
              break;
 
 
            CASE_FLT_FN (BUILT_IN_LCEIL):
            CASE_FLT_FN (BUILT_IN_LCEIL):
            CASE_FLT_FN (BUILT_IN_LLCEIL):
            CASE_FLT_FN (BUILT_IN_LLCEIL):
              real_ceil (&r, TYPE_MODE (ftype), &x);
              real_ceil (&r, TYPE_MODE (ftype), &x);
              break;
              break;
 
 
            CASE_FLT_FN (BUILT_IN_LROUND):
            CASE_FLT_FN (BUILT_IN_LROUND):
            CASE_FLT_FN (BUILT_IN_LLROUND):
            CASE_FLT_FN (BUILT_IN_LLROUND):
              real_round (&r, TYPE_MODE (ftype), &x);
              real_round (&r, TYPE_MODE (ftype), &x);
              break;
              break;
 
 
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
 
 
          REAL_VALUE_TO_INT (&lo, &hi, r);
          REAL_VALUE_TO_INT (&lo, &hi, r);
          if (!fit_double_type (lo, hi, &lo2, &hi, itype))
          if (!fit_double_type (lo, hi, &lo2, &hi, itype))
            return build_int_cst_wide (itype, lo2, hi);
            return build_int_cst_wide (itype, lo2, hi);
        }
        }
    }
    }
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
      /* Fold lfloor (x) where x is nonnegative to FIX_TRUNC (x).  */
      /* Fold lfloor (x) where x is nonnegative to FIX_TRUNC (x).  */
      if (tree_expr_nonnegative_p (arg))
      if (tree_expr_nonnegative_p (arg))
        return fold_build1_loc (loc, FIX_TRUNC_EXPR,
        return fold_build1_loc (loc, FIX_TRUNC_EXPR,
                            TREE_TYPE (TREE_TYPE (fndecl)), arg);
                            TREE_TYPE (TREE_TYPE (fndecl)), arg);
      break;
      break;
    default:;
    default:;
    }
    }
 
 
  return fold_fixed_mathfn (loc, fndecl, arg);
  return fold_fixed_mathfn (loc, fndecl, arg);
}
}
 
 
/* Fold function call to builtin ffs, clz, ctz, popcount and parity
/* Fold function call to builtin ffs, clz, ctz, popcount and parity
   and their long and long long variants (i.e. ffsl and ffsll).  ARG is
   and their long and long long variants (i.e. ffsl and ffsll).  ARG is
   the argument to the call.  Return NULL_TREE if no simplification can
   the argument to the call.  Return NULL_TREE if no simplification can
   be made.  */
   be made.  */
 
 
static tree
static tree
fold_builtin_bitop (tree fndecl, tree arg)
fold_builtin_bitop (tree fndecl, tree arg)
{
{
  if (!validate_arg (arg, INTEGER_TYPE))
  if (!validate_arg (arg, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize for constant argument.  */
  /* Optimize for constant argument.  */
  if (TREE_CODE (arg) == INTEGER_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == INTEGER_CST && !TREE_OVERFLOW (arg))
    {
    {
      HOST_WIDE_INT hi, width, result;
      HOST_WIDE_INT hi, width, result;
      unsigned HOST_WIDE_INT lo;
      unsigned HOST_WIDE_INT lo;
      tree type;
      tree type;
 
 
      type = TREE_TYPE (arg);
      type = TREE_TYPE (arg);
      width = TYPE_PRECISION (type);
      width = TYPE_PRECISION (type);
      lo = TREE_INT_CST_LOW (arg);
      lo = TREE_INT_CST_LOW (arg);
 
 
      /* Clear all the bits that are beyond the type's precision.  */
      /* Clear all the bits that are beyond the type's precision.  */
      if (width > HOST_BITS_PER_WIDE_INT)
      if (width > HOST_BITS_PER_WIDE_INT)
        {
        {
          hi = TREE_INT_CST_HIGH (arg);
          hi = TREE_INT_CST_HIGH (arg);
          if (width < 2 * HOST_BITS_PER_WIDE_INT)
          if (width < 2 * HOST_BITS_PER_WIDE_INT)
            hi &= ~((HOST_WIDE_INT) (-1) >> (width - HOST_BITS_PER_WIDE_INT));
            hi &= ~((HOST_WIDE_INT) (-1) >> (width - HOST_BITS_PER_WIDE_INT));
        }
        }
      else
      else
        {
        {
          hi = 0;
          hi = 0;
          if (width < HOST_BITS_PER_WIDE_INT)
          if (width < HOST_BITS_PER_WIDE_INT)
            lo &= ~((unsigned HOST_WIDE_INT) (-1) << width);
            lo &= ~((unsigned HOST_WIDE_INT) (-1) << width);
        }
        }
 
 
      switch (DECL_FUNCTION_CODE (fndecl))
      switch (DECL_FUNCTION_CODE (fndecl))
        {
        {
        CASE_INT_FN (BUILT_IN_FFS):
        CASE_INT_FN (BUILT_IN_FFS):
          if (lo != 0)
          if (lo != 0)
            result = exact_log2 (lo & -lo) + 1;
            result = exact_log2 (lo & -lo) + 1;
          else if (hi != 0)
          else if (hi != 0)
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi) + 1;
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi) + 1;
          else
          else
            result = 0;
            result = 0;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_CLZ):
        CASE_INT_FN (BUILT_IN_CLZ):
          if (hi != 0)
          if (hi != 0)
            result = width - floor_log2 (hi) - 1 - HOST_BITS_PER_WIDE_INT;
            result = width - floor_log2 (hi) - 1 - HOST_BITS_PER_WIDE_INT;
          else if (lo != 0)
          else if (lo != 0)
            result = width - floor_log2 (lo) - 1;
            result = width - floor_log2 (lo) - 1;
          else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
          else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
            result = width;
            result = width;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_CTZ):
        CASE_INT_FN (BUILT_IN_CTZ):
          if (lo != 0)
          if (lo != 0)
            result = exact_log2 (lo & -lo);
            result = exact_log2 (lo & -lo);
          else if (hi != 0)
          else if (hi != 0)
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi);
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi);
          else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
          else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
            result = width;
            result = width;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_POPCOUNT):
        CASE_INT_FN (BUILT_IN_POPCOUNT):
          result = 0;
          result = 0;
          while (lo)
          while (lo)
            result++, lo &= lo - 1;
            result++, lo &= lo - 1;
          while (hi)
          while (hi)
            result++, hi &= hi - 1;
            result++, hi &= hi - 1;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_PARITY):
        CASE_INT_FN (BUILT_IN_PARITY):
          result = 0;
          result = 0;
          while (lo)
          while (lo)
            result++, lo &= lo - 1;
            result++, lo &= lo - 1;
          while (hi)
          while (hi)
            result++, hi &= hi - 1;
            result++, hi &= hi - 1;
          result &= 1;
          result &= 1;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), result);
      return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), result);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin_bswap and the long and long long
/* Fold function call to builtin_bswap and the long and long long
   variants.  Return NULL_TREE if no simplification can be made.  */
   variants.  Return NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_bswap (tree fndecl, tree arg)
fold_builtin_bswap (tree fndecl, tree arg)
{
{
  if (! validate_arg (arg, INTEGER_TYPE))
  if (! validate_arg (arg, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize constant value.  */
  /* Optimize constant value.  */
  if (TREE_CODE (arg) == INTEGER_CST && !TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == INTEGER_CST && !TREE_OVERFLOW (arg))
    {
    {
      HOST_WIDE_INT hi, width, r_hi = 0;
      HOST_WIDE_INT hi, width, r_hi = 0;
      unsigned HOST_WIDE_INT lo, r_lo = 0;
      unsigned HOST_WIDE_INT lo, r_lo = 0;
      tree type;
      tree type;
 
 
      type = TREE_TYPE (arg);
      type = TREE_TYPE (arg);
      width = TYPE_PRECISION (type);
      width = TYPE_PRECISION (type);
      lo = TREE_INT_CST_LOW (arg);
      lo = TREE_INT_CST_LOW (arg);
      hi = TREE_INT_CST_HIGH (arg);
      hi = TREE_INT_CST_HIGH (arg);
 
 
      switch (DECL_FUNCTION_CODE (fndecl))
      switch (DECL_FUNCTION_CODE (fndecl))
        {
        {
          case BUILT_IN_BSWAP32:
          case BUILT_IN_BSWAP32:
          case BUILT_IN_BSWAP64:
          case BUILT_IN_BSWAP64:
            {
            {
              int s;
              int s;
 
 
              for (s = 0; s < width; s += 8)
              for (s = 0; s < width; s += 8)
                {
                {
                  int d = width - s - 8;
                  int d = width - s - 8;
                  unsigned HOST_WIDE_INT byte;
                  unsigned HOST_WIDE_INT byte;
 
 
                  if (s < HOST_BITS_PER_WIDE_INT)
                  if (s < HOST_BITS_PER_WIDE_INT)
                    byte = (lo >> s) & 0xff;
                    byte = (lo >> s) & 0xff;
                  else
                  else
                    byte = (hi >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff;
                    byte = (hi >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff;
 
 
                  if (d < HOST_BITS_PER_WIDE_INT)
                  if (d < HOST_BITS_PER_WIDE_INT)
                    r_lo |= byte << d;
                    r_lo |= byte << d;
                  else
                  else
                    r_hi |= byte << (d - HOST_BITS_PER_WIDE_INT);
                    r_hi |= byte << (d - HOST_BITS_PER_WIDE_INT);
                }
                }
            }
            }
 
 
            break;
            break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      if (width < HOST_BITS_PER_WIDE_INT)
      if (width < HOST_BITS_PER_WIDE_INT)
        return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), r_lo);
        return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), r_lo);
      else
      else
        return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), r_lo, r_hi);
        return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), r_lo, r_hi);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* A subroutine of fold_builtin to fold the various logarithmic
/* A subroutine of fold_builtin to fold the various logarithmic
   functions.  Return NULL_TREE if no simplification can me made.
   functions.  Return NULL_TREE if no simplification can me made.
   FUNC is the corresponding MPFR logarithm function.  */
   FUNC is the corresponding MPFR logarithm function.  */
 
 
static tree
static tree
fold_builtin_logarithm (location_t loc, tree fndecl, tree arg,
fold_builtin_logarithm (location_t loc, tree fndecl, tree arg,
                        int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t))
                        int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t))
{
{
  if (validate_arg (arg, REAL_TYPE))
  if (validate_arg (arg, REAL_TYPE))
    {
    {
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree res;
      tree res;
      const enum built_in_function fcode = builtin_mathfn_code (arg);
      const enum built_in_function fcode = builtin_mathfn_code (arg);
 
 
      /* Calculate the result when the argument is a constant.  */
      /* Calculate the result when the argument is a constant.  */
      if ((res = do_mpfr_arg1 (arg, type, func, &dconst0, NULL, false)))
      if ((res = do_mpfr_arg1 (arg, type, func, &dconst0, NULL, false)))
        return res;
        return res;
 
 
      /* Special case, optimize logN(expN(x)) = x.  */
      /* Special case, optimize logN(expN(x)) = x.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && ((func == mpfr_log
          && ((func == mpfr_log
               && (fcode == BUILT_IN_EXP
               && (fcode == BUILT_IN_EXP
                   || fcode == BUILT_IN_EXPF
                   || fcode == BUILT_IN_EXPF
                   || fcode == BUILT_IN_EXPL))
                   || fcode == BUILT_IN_EXPL))
              || (func == mpfr_log2
              || (func == mpfr_log2
                  && (fcode == BUILT_IN_EXP2
                  && (fcode == BUILT_IN_EXP2
                      || fcode == BUILT_IN_EXP2F
                      || fcode == BUILT_IN_EXP2F
                      || fcode == BUILT_IN_EXP2L))
                      || fcode == BUILT_IN_EXP2L))
              || (func == mpfr_log10 && (BUILTIN_EXP10_P (fcode)))))
              || (func == mpfr_log10 && (BUILTIN_EXP10_P (fcode)))))
        return fold_convert_loc (loc, type, CALL_EXPR_ARG (arg, 0));
        return fold_convert_loc (loc, type, CALL_EXPR_ARG (arg, 0));
 
 
      /* Optimize logN(func()) for various exponential functions.  We
      /* Optimize logN(func()) for various exponential functions.  We
         want to determine the value "x" and the power "exponent" in
         want to determine the value "x" and the power "exponent" in
         order to transform logN(x**exponent) into exponent*logN(x).  */
         order to transform logN(x**exponent) into exponent*logN(x).  */
      if (flag_unsafe_math_optimizations)
      if (flag_unsafe_math_optimizations)
        {
        {
          tree exponent = 0, x = 0;
          tree exponent = 0, x = 0;
 
 
          switch (fcode)
          switch (fcode)
          {
          {
          CASE_FLT_FN (BUILT_IN_EXP):
          CASE_FLT_FN (BUILT_IN_EXP):
            /* Prepare to do logN(exp(exponent) -> exponent*logN(e).  */
            /* Prepare to do logN(exp(exponent) -> exponent*logN(e).  */
            x = build_real (type, real_value_truncate (TYPE_MODE (type),
            x = build_real (type, real_value_truncate (TYPE_MODE (type),
                                                       dconst_e ()));
                                                       dconst_e ()));
            exponent = CALL_EXPR_ARG (arg, 0);
            exponent = CALL_EXPR_ARG (arg, 0);
            break;
            break;
          CASE_FLT_FN (BUILT_IN_EXP2):
          CASE_FLT_FN (BUILT_IN_EXP2):
            /* Prepare to do logN(exp2(exponent) -> exponent*logN(2).  */
            /* Prepare to do logN(exp2(exponent) -> exponent*logN(2).  */
            x = build_real (type, dconst2);
            x = build_real (type, dconst2);
            exponent = CALL_EXPR_ARG (arg, 0);
            exponent = CALL_EXPR_ARG (arg, 0);
            break;
            break;
          CASE_FLT_FN (BUILT_IN_EXP10):
          CASE_FLT_FN (BUILT_IN_EXP10):
          CASE_FLT_FN (BUILT_IN_POW10):
          CASE_FLT_FN (BUILT_IN_POW10):
            /* Prepare to do logN(exp10(exponent) -> exponent*logN(10).  */
            /* Prepare to do logN(exp10(exponent) -> exponent*logN(10).  */
            {
            {
              REAL_VALUE_TYPE dconst10;
              REAL_VALUE_TYPE dconst10;
              real_from_integer (&dconst10, VOIDmode, 10, 0, 0);
              real_from_integer (&dconst10, VOIDmode, 10, 0, 0);
              x = build_real (type, dconst10);
              x = build_real (type, dconst10);
            }
            }
            exponent = CALL_EXPR_ARG (arg, 0);
            exponent = CALL_EXPR_ARG (arg, 0);
            break;
            break;
          CASE_FLT_FN (BUILT_IN_SQRT):
          CASE_FLT_FN (BUILT_IN_SQRT):
            /* Prepare to do logN(sqrt(x) -> 0.5*logN(x).  */
            /* Prepare to do logN(sqrt(x) -> 0.5*logN(x).  */
            x = CALL_EXPR_ARG (arg, 0);
            x = CALL_EXPR_ARG (arg, 0);
            exponent = build_real (type, dconsthalf);
            exponent = build_real (type, dconsthalf);
            break;
            break;
          CASE_FLT_FN (BUILT_IN_CBRT):
          CASE_FLT_FN (BUILT_IN_CBRT):
            /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x).  */
            /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x).  */
            x = CALL_EXPR_ARG (arg, 0);
            x = CALL_EXPR_ARG (arg, 0);
            exponent = build_real (type, real_value_truncate (TYPE_MODE (type),
            exponent = build_real (type, real_value_truncate (TYPE_MODE (type),
                                                              dconst_third ()));
                                                              dconst_third ()));
            break;
            break;
          CASE_FLT_FN (BUILT_IN_POW):
          CASE_FLT_FN (BUILT_IN_POW):
            /* Prepare to do logN(pow(x,exponent) -> exponent*logN(x).  */
            /* Prepare to do logN(pow(x,exponent) -> exponent*logN(x).  */
            x = CALL_EXPR_ARG (arg, 0);
            x = CALL_EXPR_ARG (arg, 0);
            exponent = CALL_EXPR_ARG (arg, 1);
            exponent = CALL_EXPR_ARG (arg, 1);
            break;
            break;
          default:
          default:
            break;
            break;
          }
          }
 
 
          /* Now perform the optimization.  */
          /* Now perform the optimization.  */
          if (x && exponent)
          if (x && exponent)
            {
            {
              tree logfn = build_call_expr_loc (loc, fndecl, 1, x);
              tree logfn = build_call_expr_loc (loc, fndecl, 1, x);
              return fold_build2_loc (loc, MULT_EXPR, type, exponent, logfn);
              return fold_build2_loc (loc, MULT_EXPR, type, exponent, logfn);
            }
            }
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to hypot, hypotf, or hypotl.  Return
/* Fold a builtin function call to hypot, hypotf, or hypotl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_hypot (location_t loc, tree fndecl,
fold_builtin_hypot (location_t loc, tree fndecl,
                    tree arg0, tree arg1, tree type)
                    tree arg0, tree arg1, tree type)
{
{
  tree res, narg0, narg1;
  tree res, narg0, narg1;
 
 
  if (!validate_arg (arg0, REAL_TYPE)
  if (!validate_arg (arg0, REAL_TYPE)
      || !validate_arg (arg1, REAL_TYPE))
      || !validate_arg (arg1, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_hypot)))
  if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_hypot)))
    return res;
    return res;
 
 
  /* If either argument to hypot has a negate or abs, strip that off.
  /* If either argument to hypot has a negate or abs, strip that off.
     E.g. hypot(-x,fabs(y)) -> hypot(x,y).  */
     E.g. hypot(-x,fabs(y)) -> hypot(x,y).  */
  narg0 = fold_strip_sign_ops (arg0);
  narg0 = fold_strip_sign_ops (arg0);
  narg1 = fold_strip_sign_ops (arg1);
  narg1 = fold_strip_sign_ops (arg1);
  if (narg0 || narg1)
  if (narg0 || narg1)
    {
    {
      return build_call_expr_loc (loc, fndecl, 2, narg0 ? narg0 : arg0,
      return build_call_expr_loc (loc, fndecl, 2, narg0 ? narg0 : arg0,
                              narg1 ? narg1 : arg1);
                              narg1 ? narg1 : arg1);
    }
    }
 
 
  /* If either argument is zero, hypot is fabs of the other.  */
  /* If either argument is zero, hypot is fabs of the other.  */
  if (real_zerop (arg0))
  if (real_zerop (arg0))
    return fold_build1_loc (loc, ABS_EXPR, type, arg1);
    return fold_build1_loc (loc, ABS_EXPR, type, arg1);
  else if (real_zerop (arg1))
  else if (real_zerop (arg1))
    return fold_build1_loc (loc, ABS_EXPR, type, arg0);
    return fold_build1_loc (loc, ABS_EXPR, type, arg0);
 
 
  /* hypot(x,x) -> fabs(x)*sqrt(2).  */
  /* hypot(x,x) -> fabs(x)*sqrt(2).  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && operand_equal_p (arg0, arg1, OEP_PURE_SAME))
      && operand_equal_p (arg0, arg1, OEP_PURE_SAME))
    {
    {
      const REAL_VALUE_TYPE sqrt2_trunc
      const REAL_VALUE_TYPE sqrt2_trunc
        = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ());
        = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ());
      return fold_build2_loc (loc, MULT_EXPR, type,
      return fold_build2_loc (loc, MULT_EXPR, type,
                          fold_build1_loc (loc, ABS_EXPR, type, arg0),
                          fold_build1_loc (loc, ABS_EXPR, type, arg0),
                          build_real (type, sqrt2_trunc));
                          build_real (type, sqrt2_trunc));
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Fold a builtin function call to pow, powf, or powl.  Return
/* Fold a builtin function call to pow, powf, or powl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_pow (location_t loc, tree fndecl, tree arg0, tree arg1, tree type)
fold_builtin_pow (location_t loc, tree fndecl, tree arg0, tree arg1, tree type)
{
{
  tree res;
  tree res;
 
 
  if (!validate_arg (arg0, REAL_TYPE)
  if (!validate_arg (arg0, REAL_TYPE)
       || !validate_arg (arg1, REAL_TYPE))
       || !validate_arg (arg1, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Calculate the result when the argument is a constant.  */
  /* Calculate the result when the argument is a constant.  */
  if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_pow)))
  if ((res = do_mpfr_arg2 (arg0, arg1, type, mpfr_pow)))
    return res;
    return res;
 
 
  /* Optimize pow(1.0,y) = 1.0.  */
  /* Optimize pow(1.0,y) = 1.0.  */
  if (real_onep (arg0))
  if (real_onep (arg0))
    return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg1);
    return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg1);
 
 
  if (TREE_CODE (arg1) == REAL_CST
  if (TREE_CODE (arg1) == REAL_CST
      && !TREE_OVERFLOW (arg1))
      && !TREE_OVERFLOW (arg1))
    {
    {
      REAL_VALUE_TYPE cint;
      REAL_VALUE_TYPE cint;
      REAL_VALUE_TYPE c;
      REAL_VALUE_TYPE c;
      HOST_WIDE_INT n;
      HOST_WIDE_INT n;
 
 
      c = TREE_REAL_CST (arg1);
      c = TREE_REAL_CST (arg1);
 
 
      /* Optimize pow(x,0.0) = 1.0.  */
      /* Optimize pow(x,0.0) = 1.0.  */
      if (REAL_VALUES_EQUAL (c, dconst0))
      if (REAL_VALUES_EQUAL (c, dconst0))
        return omit_one_operand_loc (loc, type, build_real (type, dconst1),
        return omit_one_operand_loc (loc, type, build_real (type, dconst1),
                                 arg0);
                                 arg0);
 
 
      /* Optimize pow(x,1.0) = x.  */
      /* Optimize pow(x,1.0) = x.  */
      if (REAL_VALUES_EQUAL (c, dconst1))
      if (REAL_VALUES_EQUAL (c, dconst1))
        return arg0;
        return arg0;
 
 
      /* Optimize pow(x,-1.0) = 1.0/x.  */
      /* Optimize pow(x,-1.0) = 1.0/x.  */
      if (REAL_VALUES_EQUAL (c, dconstm1))
      if (REAL_VALUES_EQUAL (c, dconstm1))
        return fold_build2_loc (loc, RDIV_EXPR, type,
        return fold_build2_loc (loc, RDIV_EXPR, type,
                            build_real (type, dconst1), arg0);
                            build_real (type, dconst1), arg0);
 
 
      /* Optimize pow(x,0.5) = sqrt(x).  */
      /* Optimize pow(x,0.5) = sqrt(x).  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && REAL_VALUES_EQUAL (c, dconsthalf))
          && REAL_VALUES_EQUAL (c, dconsthalf))
        {
        {
          tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
          tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
 
 
          if (sqrtfn != NULL_TREE)
          if (sqrtfn != NULL_TREE)
            return build_call_expr_loc (loc, sqrtfn, 1, arg0);
            return build_call_expr_loc (loc, sqrtfn, 1, arg0);
        }
        }
 
 
      /* Optimize pow(x,1.0/3.0) = cbrt(x).  */
      /* Optimize pow(x,1.0/3.0) = cbrt(x).  */
      if (flag_unsafe_math_optimizations)
      if (flag_unsafe_math_optimizations)
        {
        {
          const REAL_VALUE_TYPE dconstroot
          const REAL_VALUE_TYPE dconstroot
            = real_value_truncate (TYPE_MODE (type), dconst_third ());
            = real_value_truncate (TYPE_MODE (type), dconst_third ());
 
 
          if (REAL_VALUES_EQUAL (c, dconstroot))
          if (REAL_VALUES_EQUAL (c, dconstroot))
            {
            {
              tree cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
              tree cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
              if (cbrtfn != NULL_TREE)
              if (cbrtfn != NULL_TREE)
                return build_call_expr_loc (loc, cbrtfn, 1, arg0);
                return build_call_expr_loc (loc, cbrtfn, 1, arg0);
            }
            }
        }
        }
 
 
      /* Check for an integer exponent.  */
      /* Check for an integer exponent.  */
      n = real_to_integer (&c);
      n = real_to_integer (&c);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      if (real_identical (&c, &cint))
      if (real_identical (&c, &cint))
        {
        {
          /* Attempt to evaluate pow at compile-time, unless this should
          /* Attempt to evaluate pow at compile-time, unless this should
             raise an exception.  */
             raise an exception.  */
          if (TREE_CODE (arg0) == REAL_CST
          if (TREE_CODE (arg0) == REAL_CST
              && !TREE_OVERFLOW (arg0)
              && !TREE_OVERFLOW (arg0)
              && (n > 0
              && (n > 0
                  || (!flag_trapping_math && !flag_errno_math)
                  || (!flag_trapping_math && !flag_errno_math)
                  || !REAL_VALUES_EQUAL (TREE_REAL_CST (arg0), dconst0)))
                  || !REAL_VALUES_EQUAL (TREE_REAL_CST (arg0), dconst0)))
            {
            {
              REAL_VALUE_TYPE x;
              REAL_VALUE_TYPE x;
              bool inexact;
              bool inexact;
 
 
              x = TREE_REAL_CST (arg0);
              x = TREE_REAL_CST (arg0);
              inexact = real_powi (&x, TYPE_MODE (type), &x, n);
              inexact = real_powi (&x, TYPE_MODE (type), &x, n);
              if (flag_unsafe_math_optimizations || !inexact)
              if (flag_unsafe_math_optimizations || !inexact)
                return build_real (type, x);
                return build_real (type, x);
            }
            }
 
 
          /* Strip sign ops from even integer powers.  */
          /* Strip sign ops from even integer powers.  */
          if ((n & 1) == 0 && flag_unsafe_math_optimizations)
          if ((n & 1) == 0 && flag_unsafe_math_optimizations)
            {
            {
              tree narg0 = fold_strip_sign_ops (arg0);
              tree narg0 = fold_strip_sign_ops (arg0);
              if (narg0)
              if (narg0)
                return build_call_expr_loc (loc, fndecl, 2, narg0, arg1);
                return build_call_expr_loc (loc, fndecl, 2, narg0, arg1);
            }
            }
        }
        }
    }
    }
 
 
  if (flag_unsafe_math_optimizations)
  if (flag_unsafe_math_optimizations)
    {
    {
      const enum built_in_function fcode = builtin_mathfn_code (arg0);
      const enum built_in_function fcode = builtin_mathfn_code (arg0);
 
 
      /* Optimize pow(expN(x),y) = expN(x*y).  */
      /* Optimize pow(expN(x),y) = expN(x*y).  */
      if (BUILTIN_EXPONENT_P (fcode))
      if (BUILTIN_EXPONENT_P (fcode))
        {
        {
          tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
          tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
          tree arg = CALL_EXPR_ARG (arg0, 0);
          tree arg = CALL_EXPR_ARG (arg0, 0);
          arg = fold_build2_loc (loc, MULT_EXPR, type, arg, arg1);
          arg = fold_build2_loc (loc, MULT_EXPR, type, arg, arg1);
          return build_call_expr_loc (loc, expfn, 1, arg);
          return build_call_expr_loc (loc, expfn, 1, arg);
        }
        }
 
 
      /* Optimize pow(sqrt(x),y) = pow(x,y*0.5).  */
      /* Optimize pow(sqrt(x),y) = pow(x,y*0.5).  */
      if (BUILTIN_SQRT_P (fcode))
      if (BUILTIN_SQRT_P (fcode))
        {
        {
          tree narg0 = CALL_EXPR_ARG (arg0, 0);
          tree narg0 = CALL_EXPR_ARG (arg0, 0);
          tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1,
          tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1,
                                    build_real (type, dconsthalf));
                                    build_real (type, dconsthalf));
          return build_call_expr_loc (loc, fndecl, 2, narg0, narg1);
          return build_call_expr_loc (loc, fndecl, 2, narg0, narg1);
        }
        }
 
 
      /* Optimize pow(cbrt(x),y) = pow(x,y/3) iff x is nonnegative.  */
      /* Optimize pow(cbrt(x),y) = pow(x,y/3) iff x is nonnegative.  */
      if (BUILTIN_CBRT_P (fcode))
      if (BUILTIN_CBRT_P (fcode))
        {
        {
          tree arg = CALL_EXPR_ARG (arg0, 0);
          tree arg = CALL_EXPR_ARG (arg0, 0);
          if (tree_expr_nonnegative_p (arg))
          if (tree_expr_nonnegative_p (arg))
            {
            {
              const REAL_VALUE_TYPE dconstroot
              const REAL_VALUE_TYPE dconstroot
                = real_value_truncate (TYPE_MODE (type), dconst_third ());
                = real_value_truncate (TYPE_MODE (type), dconst_third ());
              tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1,
              tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg1,
                                        build_real (type, dconstroot));
                                        build_real (type, dconstroot));
              return build_call_expr_loc (loc, fndecl, 2, arg, narg1);
              return build_call_expr_loc (loc, fndecl, 2, arg, narg1);
            }
            }
        }
        }
 
 
      /* Optimize pow(pow(x,y),z) = pow(x,y*z) iff x is nonnegative.  */
      /* Optimize pow(pow(x,y),z) = pow(x,y*z) iff x is nonnegative.  */
      if (fcode == BUILT_IN_POW
      if (fcode == BUILT_IN_POW
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWL)
          || fcode == BUILT_IN_POWL)
        {
        {
          tree arg00 = CALL_EXPR_ARG (arg0, 0);
          tree arg00 = CALL_EXPR_ARG (arg0, 0);
          if (tree_expr_nonnegative_p (arg00))
          if (tree_expr_nonnegative_p (arg00))
            {
            {
              tree arg01 = CALL_EXPR_ARG (arg0, 1);
              tree arg01 = CALL_EXPR_ARG (arg0, 1);
              tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg01, arg1);
              tree narg1 = fold_build2_loc (loc, MULT_EXPR, type, arg01, arg1);
              return build_call_expr_loc (loc, fndecl, 2, arg00, narg1);
              return build_call_expr_loc (loc, fndecl, 2, arg00, narg1);
            }
            }
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to powi, powif, or powil with argument ARG.
/* Fold a builtin function call to powi, powif, or powil with argument ARG.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_powi (location_t loc, tree fndecl ATTRIBUTE_UNUSED,
fold_builtin_powi (location_t loc, tree fndecl ATTRIBUTE_UNUSED,
                   tree arg0, tree arg1, tree type)
                   tree arg0, tree arg1, tree type)
{
{
  if (!validate_arg (arg0, REAL_TYPE)
  if (!validate_arg (arg0, REAL_TYPE)
      || !validate_arg (arg1, INTEGER_TYPE))
      || !validate_arg (arg1, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize pow(1.0,y) = 1.0.  */
  /* Optimize pow(1.0,y) = 1.0.  */
  if (real_onep (arg0))
  if (real_onep (arg0))
    return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg1);
    return omit_one_operand_loc (loc, type, build_real (type, dconst1), arg1);
 
 
  if (host_integerp (arg1, 0))
  if (host_integerp (arg1, 0))
    {
    {
      HOST_WIDE_INT c = TREE_INT_CST_LOW (arg1);
      HOST_WIDE_INT c = TREE_INT_CST_LOW (arg1);
 
 
      /* Evaluate powi at compile-time.  */
      /* Evaluate powi at compile-time.  */
      if (TREE_CODE (arg0) == REAL_CST
      if (TREE_CODE (arg0) == REAL_CST
          && !TREE_OVERFLOW (arg0))
          && !TREE_OVERFLOW (arg0))
        {
        {
          REAL_VALUE_TYPE x;
          REAL_VALUE_TYPE x;
          x = TREE_REAL_CST (arg0);
          x = TREE_REAL_CST (arg0);
          real_powi (&x, TYPE_MODE (type), &x, c);
          real_powi (&x, TYPE_MODE (type), &x, c);
          return build_real (type, x);
          return build_real (type, x);
        }
        }
 
 
      /* Optimize pow(x,0) = 1.0.  */
      /* Optimize pow(x,0) = 1.0.  */
      if (c == 0)
      if (c == 0)
        return omit_one_operand_loc (loc, type, build_real (type, dconst1),
        return omit_one_operand_loc (loc, type, build_real (type, dconst1),
                                 arg0);
                                 arg0);
 
 
      /* Optimize pow(x,1) = x.  */
      /* Optimize pow(x,1) = x.  */
      if (c == 1)
      if (c == 1)
        return arg0;
        return arg0;
 
 
      /* Optimize pow(x,-1) = 1.0/x.  */
      /* Optimize pow(x,-1) = 1.0/x.  */
      if (c == -1)
      if (c == -1)
        return fold_build2_loc (loc, RDIV_EXPR, type,
        return fold_build2_loc (loc, RDIV_EXPR, type,
                           build_real (type, dconst1), arg0);
                           build_real (type, dconst1), arg0);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* A subroutine of fold_builtin to fold the various exponent
/* A subroutine of fold_builtin to fold the various exponent
   functions.  Return NULL_TREE if no simplification can be made.
   functions.  Return NULL_TREE if no simplification can be made.
   FUNC is the corresponding MPFR exponent function.  */
   FUNC is the corresponding MPFR exponent function.  */
 
 
static tree
static tree
fold_builtin_exponent (location_t loc, tree fndecl, tree arg,
fold_builtin_exponent (location_t loc, tree fndecl, tree arg,
                       int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t))
                       int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t))
{
{
  if (validate_arg (arg, REAL_TYPE))
  if (validate_arg (arg, REAL_TYPE))
    {
    {
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree res;
      tree res;
 
 
      /* Calculate the result when the argument is a constant.  */
      /* Calculate the result when the argument is a constant.  */
      if ((res = do_mpfr_arg1 (arg, type, func, NULL, NULL, 0)))
      if ((res = do_mpfr_arg1 (arg, type, func, NULL, NULL, 0)))
        return res;
        return res;
 
 
      /* Optimize expN(logN(x)) = x.  */
      /* Optimize expN(logN(x)) = x.  */
      if (flag_unsafe_math_optimizations)
      if (flag_unsafe_math_optimizations)
        {
        {
          const enum built_in_function fcode = builtin_mathfn_code (arg);
          const enum built_in_function fcode = builtin_mathfn_code (arg);
 
 
          if ((func == mpfr_exp
          if ((func == mpfr_exp
               && (fcode == BUILT_IN_LOG
               && (fcode == BUILT_IN_LOG
                   || fcode == BUILT_IN_LOGF
                   || fcode == BUILT_IN_LOGF
                   || fcode == BUILT_IN_LOGL))
                   || fcode == BUILT_IN_LOGL))
              || (func == mpfr_exp2
              || (func == mpfr_exp2
                  && (fcode == BUILT_IN_LOG2
                  && (fcode == BUILT_IN_LOG2
                      || fcode == BUILT_IN_LOG2F
                      || fcode == BUILT_IN_LOG2F
                      || fcode == BUILT_IN_LOG2L))
                      || fcode == BUILT_IN_LOG2L))
              || (func == mpfr_exp10
              || (func == mpfr_exp10
                  && (fcode == BUILT_IN_LOG10
                  && (fcode == BUILT_IN_LOG10
                      || fcode == BUILT_IN_LOG10F
                      || fcode == BUILT_IN_LOG10F
                      || fcode == BUILT_IN_LOG10L)))
                      || fcode == BUILT_IN_LOG10L)))
            return fold_convert_loc (loc, type, CALL_EXPR_ARG (arg, 0));
            return fold_convert_loc (loc, type, CALL_EXPR_ARG (arg, 0));
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Return true if VAR is a VAR_DECL or a component thereof.  */
/* Return true if VAR is a VAR_DECL or a component thereof.  */
 
 
static bool
static bool
var_decl_component_p (tree var)
var_decl_component_p (tree var)
{
{
  tree inner = var;
  tree inner = var;
  while (handled_component_p (inner))
  while (handled_component_p (inner))
    inner = TREE_OPERAND (inner, 0);
    inner = TREE_OPERAND (inner, 0);
  return SSA_VAR_P (inner);
  return SSA_VAR_P (inner);
}
}
 
 
/* Fold function call to builtin memset.  Return
/* Fold function call to builtin memset.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_memset (location_t loc, tree dest, tree c, tree len,
fold_builtin_memset (location_t loc, tree dest, tree c, tree len,
                     tree type, bool ignore)
                     tree type, bool ignore)
{
{
  tree var, ret, etype;
  tree var, ret, etype;
  unsigned HOST_WIDE_INT length, cval;
  unsigned HOST_WIDE_INT length, cval;
 
 
  if (! validate_arg (dest, POINTER_TYPE)
  if (! validate_arg (dest, POINTER_TYPE)
      || ! validate_arg (c, INTEGER_TYPE)
      || ! validate_arg (c, INTEGER_TYPE)
      || ! validate_arg (len, INTEGER_TYPE))
      || ! validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! host_integerp (len, 1))
  if (! host_integerp (len, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_one_operand_loc (loc, type, dest, c);
    return omit_one_operand_loc (loc, type, dest, c);
 
 
  if (! host_integerp (c, 1) || TREE_SIDE_EFFECTS (dest))
  if (! host_integerp (c, 1) || TREE_SIDE_EFFECTS (dest))
    return NULL_TREE;
    return NULL_TREE;
 
 
  var = dest;
  var = dest;
  STRIP_NOPS (var);
  STRIP_NOPS (var);
  if (TREE_CODE (var) != ADDR_EXPR)
  if (TREE_CODE (var) != ADDR_EXPR)
    return NULL_TREE;
    return NULL_TREE;
 
 
  var = TREE_OPERAND (var, 0);
  var = TREE_OPERAND (var, 0);
  if (TREE_THIS_VOLATILE (var))
  if (TREE_THIS_VOLATILE (var))
    return NULL_TREE;
    return NULL_TREE;
 
 
  etype = TREE_TYPE (var);
  etype = TREE_TYPE (var);
  if (TREE_CODE (etype) == ARRAY_TYPE)
  if (TREE_CODE (etype) == ARRAY_TYPE)
    etype = TREE_TYPE (etype);
    etype = TREE_TYPE (etype);
 
 
  if (!INTEGRAL_TYPE_P (etype)
  if (!INTEGRAL_TYPE_P (etype)
      && !POINTER_TYPE_P (etype))
      && !POINTER_TYPE_P (etype))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! var_decl_component_p (var))
  if (! var_decl_component_p (var))
    return NULL_TREE;
    return NULL_TREE;
 
 
  length = tree_low_cst (len, 1);
  length = tree_low_cst (len, 1);
  if (GET_MODE_SIZE (TYPE_MODE (etype)) != length
  if (GET_MODE_SIZE (TYPE_MODE (etype)) != length
      || get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
      || get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
         < (int) length)
         < (int) length)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
  if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (integer_zerop (c))
  if (integer_zerop (c))
    cval = 0;
    cval = 0;
  else
  else
    {
    {
      if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
      if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
        return NULL_TREE;
        return NULL_TREE;
 
 
      cval = tree_low_cst (c, 1);
      cval = tree_low_cst (c, 1);
      cval &= 0xff;
      cval &= 0xff;
      cval |= cval << 8;
      cval |= cval << 8;
      cval |= cval << 16;
      cval |= cval << 16;
      cval |= (cval << 31) << 1;
      cval |= (cval << 31) << 1;
    }
    }
 
 
  ret = build_int_cst_type (etype, cval);
  ret = build_int_cst_type (etype, cval);
  var = build_fold_indirect_ref_loc (loc,
  var = build_fold_indirect_ref_loc (loc,
                                 fold_convert_loc (loc,
                                 fold_convert_loc (loc,
                                                   build_pointer_type (etype),
                                                   build_pointer_type (etype),
                                                   dest));
                                                   dest));
  ret = build2 (MODIFY_EXPR, etype, var, ret);
  ret = build2 (MODIFY_EXPR, etype, var, ret);
  if (ignore)
  if (ignore)
    return ret;
    return ret;
 
 
  return omit_one_operand_loc (loc, type, dest, ret);
  return omit_one_operand_loc (loc, type, dest, ret);
}
}
 
 
/* Fold function call to builtin memset.  Return
/* Fold function call to builtin memset.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_bzero (location_t loc, tree dest, tree size, bool ignore)
fold_builtin_bzero (location_t loc, tree dest, tree size, bool ignore)
{
{
  if (! validate_arg (dest, POINTER_TYPE)
  if (! validate_arg (dest, POINTER_TYPE)
      || ! validate_arg (size, INTEGER_TYPE))
      || ! validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (!ignore)
  if (!ignore)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* New argument list transforming bzero(ptr x, int y) to
  /* New argument list transforming bzero(ptr x, int y) to
     memset(ptr x, int 0, size_t y).   This is done this way
     memset(ptr x, int 0, size_t y).   This is done this way
     so that if it isn't expanded inline, we fallback to
     so that if it isn't expanded inline, we fallback to
     calling bzero instead of memset.  */
     calling bzero instead of memset.  */
 
 
  return fold_builtin_memset (loc, dest, integer_zero_node,
  return fold_builtin_memset (loc, dest, integer_zero_node,
                              fold_convert_loc (loc, sizetype, size),
                              fold_convert_loc (loc, sizetype, size),
                              void_type_node, ignore);
                              void_type_node, ignore);
}
}
 
 
/* Fold function call to builtin mem{{,p}cpy,move}.  Return
/* Fold function call to builtin mem{{,p}cpy,move}.  Return
   NULL_TREE if no simplification can be made.
   NULL_TREE if no simplification can be made.
   If ENDP is 0, return DEST (like memcpy).
   If ENDP is 0, return DEST (like memcpy).
   If ENDP is 1, return DEST+LEN (like mempcpy).
   If ENDP is 1, return DEST+LEN (like mempcpy).
   If ENDP is 2, return DEST+LEN-1 (like stpcpy).
   If ENDP is 2, return DEST+LEN-1 (like stpcpy).
   If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap
   If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap
   (memmove).   */
   (memmove).   */
 
 
static tree
static tree
fold_builtin_memory_op (location_t loc, tree dest, tree src,
fold_builtin_memory_op (location_t loc, tree dest, tree src,
                        tree len, tree type, bool ignore, int endp)
                        tree len, tree type, bool ignore, int endp)
{
{
  tree destvar, srcvar, expr;
  tree destvar, srcvar, expr;
 
 
  if (! validate_arg (dest, POINTER_TYPE)
  if (! validate_arg (dest, POINTER_TYPE)
      || ! validate_arg (src, POINTER_TYPE)
      || ! validate_arg (src, POINTER_TYPE)
      || ! validate_arg (len, INTEGER_TYPE))
      || ! validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_one_operand_loc (loc, type, dest, src);
    return omit_one_operand_loc (loc, type, dest, src);
 
 
  /* If SRC and DEST are the same (and not volatile), return
  /* If SRC and DEST are the same (and not volatile), return
     DEST{,+LEN,+LEN-1}.  */
     DEST{,+LEN,+LEN-1}.  */
  if (operand_equal_p (src, dest, 0))
  if (operand_equal_p (src, dest, 0))
    expr = len;
    expr = len;
  else
  else
    {
    {
      tree srctype, desttype;
      tree srctype, desttype;
      int src_align, dest_align;
      int src_align, dest_align;
 
 
      if (endp == 3)
      if (endp == 3)
        {
        {
          src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
          src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
          dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
          dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
 
 
          /* Both DEST and SRC must be pointer types.
          /* Both DEST and SRC must be pointer types.
             ??? This is what old code did.  Is the testing for pointer types
             ??? This is what old code did.  Is the testing for pointer types
             really mandatory?
             really mandatory?
 
 
             If either SRC is readonly or length is 1, we can use memcpy.  */
             If either SRC is readonly or length is 1, we can use memcpy.  */
          if (!dest_align || !src_align)
          if (!dest_align || !src_align)
            return NULL_TREE;
            return NULL_TREE;
          if (readonly_data_expr (src)
          if (readonly_data_expr (src)
              || (host_integerp (len, 1)
              || (host_integerp (len, 1)
                  && (MIN (src_align, dest_align) / BITS_PER_UNIT
                  && (MIN (src_align, dest_align) / BITS_PER_UNIT
                      >= tree_low_cst (len, 1))))
                      >= tree_low_cst (len, 1))))
            {
            {
              tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
              tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
              if (!fn)
              if (!fn)
                return NULL_TREE;
                return NULL_TREE;
              return build_call_expr_loc (loc, fn, 3, dest, src, len);
              return build_call_expr_loc (loc, fn, 3, dest, src, len);
            }
            }
 
 
          /* If *src and *dest can't overlap, optimize into memcpy as well.  */
          /* If *src and *dest can't overlap, optimize into memcpy as well.  */
          srcvar = build_fold_indirect_ref_loc (loc, src);
          srcvar = build_fold_indirect_ref_loc (loc, src);
          destvar = build_fold_indirect_ref_loc (loc, dest);
          destvar = build_fold_indirect_ref_loc (loc, dest);
          if (srcvar
          if (srcvar
              && !TREE_THIS_VOLATILE (srcvar)
              && !TREE_THIS_VOLATILE (srcvar)
              && destvar
              && destvar
              && !TREE_THIS_VOLATILE (destvar))
              && !TREE_THIS_VOLATILE (destvar))
            {
            {
              tree src_base, dest_base, fn;
              tree src_base, dest_base, fn;
              HOST_WIDE_INT src_offset = 0, dest_offset = 0;
              HOST_WIDE_INT src_offset = 0, dest_offset = 0;
              HOST_WIDE_INT size = -1;
              HOST_WIDE_INT size = -1;
              HOST_WIDE_INT maxsize = -1;
              HOST_WIDE_INT maxsize = -1;
 
 
              src_base = srcvar;
              src_base = srcvar;
              if (handled_component_p (src_base))
              if (handled_component_p (src_base))
                src_base = get_ref_base_and_extent (src_base, &src_offset,
                src_base = get_ref_base_and_extent (src_base, &src_offset,
                                                    &size, &maxsize);
                                                    &size, &maxsize);
              dest_base = destvar;
              dest_base = destvar;
              if (handled_component_p (dest_base))
              if (handled_component_p (dest_base))
                dest_base = get_ref_base_and_extent (dest_base, &dest_offset,
                dest_base = get_ref_base_and_extent (dest_base, &dest_offset,
                                                     &size, &maxsize);
                                                     &size, &maxsize);
              if (host_integerp (len, 1))
              if (host_integerp (len, 1))
                {
                {
                  maxsize = tree_low_cst (len, 1);
                  maxsize = tree_low_cst (len, 1);
                  if (maxsize
                  if (maxsize
                      > INTTYPE_MAXIMUM (HOST_WIDE_INT) / BITS_PER_UNIT)
                      > INTTYPE_MAXIMUM (HOST_WIDE_INT) / BITS_PER_UNIT)
                    maxsize = -1;
                    maxsize = -1;
                  else
                  else
                    maxsize *= BITS_PER_UNIT;
                    maxsize *= BITS_PER_UNIT;
                }
                }
              else
              else
                maxsize = -1;
                maxsize = -1;
              if (SSA_VAR_P (src_base)
              if (SSA_VAR_P (src_base)
                  && SSA_VAR_P (dest_base))
                  && SSA_VAR_P (dest_base))
                {
                {
                  if (operand_equal_p (src_base, dest_base, 0)
                  if (operand_equal_p (src_base, dest_base, 0)
                      && ranges_overlap_p (src_offset, maxsize,
                      && ranges_overlap_p (src_offset, maxsize,
                                           dest_offset, maxsize))
                                           dest_offset, maxsize))
                    return NULL_TREE;
                    return NULL_TREE;
                }
                }
              else if (TREE_CODE (src_base) == INDIRECT_REF
              else if (TREE_CODE (src_base) == INDIRECT_REF
                       && TREE_CODE (dest_base) == INDIRECT_REF)
                       && TREE_CODE (dest_base) == INDIRECT_REF)
                {
                {
                  if (! operand_equal_p (TREE_OPERAND (src_base, 0),
                  if (! operand_equal_p (TREE_OPERAND (src_base, 0),
                                         TREE_OPERAND (dest_base, 0), 0)
                                         TREE_OPERAND (dest_base, 0), 0)
                      || ranges_overlap_p (src_offset, maxsize,
                      || ranges_overlap_p (src_offset, maxsize,
                                           dest_offset, maxsize))
                                           dest_offset, maxsize))
                    return NULL_TREE;
                    return NULL_TREE;
                }
                }
              else
              else
                return NULL_TREE;
                return NULL_TREE;
 
 
              fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
              fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
              if (!fn)
              if (!fn)
                return NULL_TREE;
                return NULL_TREE;
              return build_call_expr_loc (loc, fn, 3, dest, src, len);
              return build_call_expr_loc (loc, fn, 3, dest, src, len);
            }
            }
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      if (!host_integerp (len, 0))
      if (!host_integerp (len, 0))
        return NULL_TREE;
        return NULL_TREE;
      /* FIXME:
      /* FIXME:
         This logic lose for arguments like (type *)malloc (sizeof (type)),
         This logic lose for arguments like (type *)malloc (sizeof (type)),
         since we strip the casts of up to VOID return value from malloc.
         since we strip the casts of up to VOID return value from malloc.
         Perhaps we ought to inherit type from non-VOID argument here?  */
         Perhaps we ought to inherit type from non-VOID argument here?  */
      STRIP_NOPS (src);
      STRIP_NOPS (src);
      STRIP_NOPS (dest);
      STRIP_NOPS (dest);
      /* As we fold (void *)(p + CST) to (void *)p + CST undo this here.  */
      /* As we fold (void *)(p + CST) to (void *)p + CST undo this here.  */
      if (TREE_CODE (src) == POINTER_PLUS_EXPR)
      if (TREE_CODE (src) == POINTER_PLUS_EXPR)
        {
        {
          tree tem = TREE_OPERAND (src, 0);
          tree tem = TREE_OPERAND (src, 0);
          STRIP_NOPS (tem);
          STRIP_NOPS (tem);
          if (tem != TREE_OPERAND (src, 0))
          if (tem != TREE_OPERAND (src, 0))
            src = build1 (NOP_EXPR, TREE_TYPE (tem), src);
            src = build1 (NOP_EXPR, TREE_TYPE (tem), src);
        }
        }
      if (TREE_CODE (dest) == POINTER_PLUS_EXPR)
      if (TREE_CODE (dest) == POINTER_PLUS_EXPR)
        {
        {
          tree tem = TREE_OPERAND (dest, 0);
          tree tem = TREE_OPERAND (dest, 0);
          STRIP_NOPS (tem);
          STRIP_NOPS (tem);
          if (tem != TREE_OPERAND (dest, 0))
          if (tem != TREE_OPERAND (dest, 0))
            dest = build1 (NOP_EXPR, TREE_TYPE (tem), dest);
            dest = build1 (NOP_EXPR, TREE_TYPE (tem), dest);
        }
        }
      srctype = TREE_TYPE (TREE_TYPE (src));
      srctype = TREE_TYPE (TREE_TYPE (src));
      if (srctype
      if (srctype
          && TREE_CODE (srctype) == ARRAY_TYPE
          && TREE_CODE (srctype) == ARRAY_TYPE
          && !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
          && !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
        {
        {
          srctype = TREE_TYPE (srctype);
          srctype = TREE_TYPE (srctype);
          STRIP_NOPS (src);
          STRIP_NOPS (src);
          src = build1 (NOP_EXPR, build_pointer_type (srctype), src);
          src = build1 (NOP_EXPR, build_pointer_type (srctype), src);
        }
        }
      desttype = TREE_TYPE (TREE_TYPE (dest));
      desttype = TREE_TYPE (TREE_TYPE (dest));
      if (desttype
      if (desttype
          && TREE_CODE (desttype) == ARRAY_TYPE
          && TREE_CODE (desttype) == ARRAY_TYPE
          && !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
          && !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
        {
        {
          desttype = TREE_TYPE (desttype);
          desttype = TREE_TYPE (desttype);
          STRIP_NOPS (dest);
          STRIP_NOPS (dest);
          dest = build1 (NOP_EXPR, build_pointer_type (desttype), dest);
          dest = build1 (NOP_EXPR, build_pointer_type (desttype), dest);
        }
        }
      if (!srctype || !desttype
      if (!srctype || !desttype
          || !TYPE_SIZE_UNIT (srctype)
          || !TYPE_SIZE_UNIT (srctype)
          || !TYPE_SIZE_UNIT (desttype)
          || !TYPE_SIZE_UNIT (desttype)
          || TREE_CODE (TYPE_SIZE_UNIT (srctype)) != INTEGER_CST
          || TREE_CODE (TYPE_SIZE_UNIT (srctype)) != INTEGER_CST
          || TREE_CODE (TYPE_SIZE_UNIT (desttype)) != INTEGER_CST
          || TREE_CODE (TYPE_SIZE_UNIT (desttype)) != INTEGER_CST
          || TYPE_VOLATILE (srctype)
          || TYPE_VOLATILE (srctype)
          || TYPE_VOLATILE (desttype))
          || TYPE_VOLATILE (desttype))
        return NULL_TREE;
        return NULL_TREE;
 
 
      src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      if (dest_align < (int) TYPE_ALIGN (desttype)
      if (dest_align < (int) TYPE_ALIGN (desttype)
          || src_align < (int) TYPE_ALIGN (srctype))
          || src_align < (int) TYPE_ALIGN (srctype))
        return NULL_TREE;
        return NULL_TREE;
 
 
      if (!ignore)
      if (!ignore)
        dest = builtin_save_expr (dest);
        dest = builtin_save_expr (dest);
 
 
      srcvar = NULL_TREE;
      srcvar = NULL_TREE;
      if (tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
      if (tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
        {
        {
          srcvar = build_fold_indirect_ref_loc (loc, src);
          srcvar = build_fold_indirect_ref_loc (loc, src);
          if (TREE_THIS_VOLATILE (srcvar))
          if (TREE_THIS_VOLATILE (srcvar))
            return NULL_TREE;
            return NULL_TREE;
          else if (!tree_int_cst_equal (tree_expr_size (srcvar), len))
          else if (!tree_int_cst_equal (tree_expr_size (srcvar), len))
            srcvar = NULL_TREE;
            srcvar = NULL_TREE;
          /* With memcpy, it is possible to bypass aliasing rules, so without
          /* With memcpy, it is possible to bypass aliasing rules, so without
             this check i.e. execute/20060930-2.c would be misoptimized,
             this check i.e. execute/20060930-2.c would be misoptimized,
             because it use conflicting alias set to hold argument for the
             because it use conflicting alias set to hold argument for the
             memcpy call.  This check is probably unnecessary with
             memcpy call.  This check is probably unnecessary with
             -fno-strict-aliasing.  Similarly for destvar.  See also
             -fno-strict-aliasing.  Similarly for destvar.  See also
             PR29286.  */
             PR29286.  */
          else if (!var_decl_component_p (srcvar))
          else if (!var_decl_component_p (srcvar))
            srcvar = NULL_TREE;
            srcvar = NULL_TREE;
        }
        }
 
 
      destvar = NULL_TREE;
      destvar = NULL_TREE;
      if (tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
      if (tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
        {
        {
          destvar = build_fold_indirect_ref_loc (loc, dest);
          destvar = build_fold_indirect_ref_loc (loc, dest);
          if (TREE_THIS_VOLATILE (destvar))
          if (TREE_THIS_VOLATILE (destvar))
            return NULL_TREE;
            return NULL_TREE;
          else if (!tree_int_cst_equal (tree_expr_size (destvar), len))
          else if (!tree_int_cst_equal (tree_expr_size (destvar), len))
            destvar = NULL_TREE;
            destvar = NULL_TREE;
          else if (!var_decl_component_p (destvar))
          else if (!var_decl_component_p (destvar))
            destvar = NULL_TREE;
            destvar = NULL_TREE;
        }
        }
 
 
      if (srcvar == NULL_TREE && destvar == NULL_TREE)
      if (srcvar == NULL_TREE && destvar == NULL_TREE)
        return NULL_TREE;
        return NULL_TREE;
 
 
      if (srcvar == NULL_TREE)
      if (srcvar == NULL_TREE)
        {
        {
          tree srcptype;
          tree srcptype;
          if (TREE_ADDRESSABLE (TREE_TYPE (destvar)))
          if (TREE_ADDRESSABLE (TREE_TYPE (destvar)))
            return NULL_TREE;
            return NULL_TREE;
 
 
          srctype = build_qualified_type (desttype, 0);
          srctype = build_qualified_type (desttype, 0);
          if (src_align < (int) TYPE_ALIGN (srctype))
          if (src_align < (int) TYPE_ALIGN (srctype))
            {
            {
              if (AGGREGATE_TYPE_P (srctype)
              if (AGGREGATE_TYPE_P (srctype)
                  || SLOW_UNALIGNED_ACCESS (TYPE_MODE (srctype), src_align))
                  || SLOW_UNALIGNED_ACCESS (TYPE_MODE (srctype), src_align))
                return NULL_TREE;
                return NULL_TREE;
 
 
              srctype = build_variant_type_copy (srctype);
              srctype = build_variant_type_copy (srctype);
              TYPE_ALIGN (srctype) = src_align;
              TYPE_ALIGN (srctype) = src_align;
              TYPE_USER_ALIGN (srctype) = 1;
              TYPE_USER_ALIGN (srctype) = 1;
              TYPE_PACKED (srctype) = 1;
              TYPE_PACKED (srctype) = 1;
            }
            }
          srcptype = build_pointer_type_for_mode (srctype, ptr_mode, true);
          srcptype = build_pointer_type_for_mode (srctype, ptr_mode, true);
          src = fold_convert_loc (loc, srcptype, src);
          src = fold_convert_loc (loc, srcptype, src);
          srcvar = build_fold_indirect_ref_loc (loc, src);
          srcvar = build_fold_indirect_ref_loc (loc, src);
        }
        }
      else if (destvar == NULL_TREE)
      else if (destvar == NULL_TREE)
        {
        {
          tree destptype;
          tree destptype;
          if (TREE_ADDRESSABLE (TREE_TYPE (srcvar)))
          if (TREE_ADDRESSABLE (TREE_TYPE (srcvar)))
            return NULL_TREE;
            return NULL_TREE;
 
 
          desttype = build_qualified_type (srctype, 0);
          desttype = build_qualified_type (srctype, 0);
          if (dest_align < (int) TYPE_ALIGN (desttype))
          if (dest_align < (int) TYPE_ALIGN (desttype))
            {
            {
              if (AGGREGATE_TYPE_P (desttype)
              if (AGGREGATE_TYPE_P (desttype)
                  || SLOW_UNALIGNED_ACCESS (TYPE_MODE (desttype), dest_align))
                  || SLOW_UNALIGNED_ACCESS (TYPE_MODE (desttype), dest_align))
                return NULL_TREE;
                return NULL_TREE;
 
 
              desttype = build_variant_type_copy (desttype);
              desttype = build_variant_type_copy (desttype);
              TYPE_ALIGN (desttype) = dest_align;
              TYPE_ALIGN (desttype) = dest_align;
              TYPE_USER_ALIGN (desttype) = 1;
              TYPE_USER_ALIGN (desttype) = 1;
              TYPE_PACKED (desttype) = 1;
              TYPE_PACKED (desttype) = 1;
            }
            }
          destptype = build_pointer_type_for_mode (desttype, ptr_mode, true);
          destptype = build_pointer_type_for_mode (desttype, ptr_mode, true);
          dest = fold_convert_loc (loc, destptype, dest);
          dest = fold_convert_loc (loc, destptype, dest);
          destvar = build_fold_indirect_ref_loc (loc, dest);
          destvar = build_fold_indirect_ref_loc (loc, dest);
        }
        }
 
 
      if (srctype == desttype
      if (srctype == desttype
          || (gimple_in_ssa_p (cfun)
          || (gimple_in_ssa_p (cfun)
              && useless_type_conversion_p (desttype, srctype)))
              && useless_type_conversion_p (desttype, srctype)))
        expr = srcvar;
        expr = srcvar;
      else if ((INTEGRAL_TYPE_P (TREE_TYPE (srcvar))
      else if ((INTEGRAL_TYPE_P (TREE_TYPE (srcvar))
           || POINTER_TYPE_P (TREE_TYPE (srcvar)))
           || POINTER_TYPE_P (TREE_TYPE (srcvar)))
          && (INTEGRAL_TYPE_P (TREE_TYPE (destvar))
          && (INTEGRAL_TYPE_P (TREE_TYPE (destvar))
              || POINTER_TYPE_P (TREE_TYPE (destvar))))
              || POINTER_TYPE_P (TREE_TYPE (destvar))))
        expr = fold_convert_loc (loc, TREE_TYPE (destvar), srcvar);
        expr = fold_convert_loc (loc, TREE_TYPE (destvar), srcvar);
      else
      else
        expr = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
        expr = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
                            TREE_TYPE (destvar), srcvar);
                            TREE_TYPE (destvar), srcvar);
      expr = build2 (MODIFY_EXPR, TREE_TYPE (destvar), destvar, expr);
      expr = build2 (MODIFY_EXPR, TREE_TYPE (destvar), destvar, expr);
    }
    }
 
 
  if (ignore)
  if (ignore)
    return expr;
    return expr;
 
 
  if (endp == 0 || endp == 3)
  if (endp == 0 || endp == 3)
    return omit_one_operand_loc (loc, type, dest, expr);
    return omit_one_operand_loc (loc, type, dest, expr);
 
 
  if (expr == len)
  if (expr == len)
    expr = NULL_TREE;
    expr = NULL_TREE;
 
 
  if (endp == 2)
  if (endp == 2)
    len = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (len), len,
    len = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (len), len,
                       ssize_int (1));
                       ssize_int (1));
 
 
  len = fold_convert_loc (loc, sizetype, len);
  len = fold_convert_loc (loc, sizetype, len);
  dest = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len);
  dest = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len);
  dest = fold_convert_loc (loc, type, dest);
  dest = fold_convert_loc (loc, type, dest);
  if (expr)
  if (expr)
    dest = omit_one_operand_loc (loc, type, dest, expr);
    dest = omit_one_operand_loc (loc, type, dest, expr);
  return dest;
  return dest;
}
}
 
 
/* Fold function call to builtin strcpy with arguments DEST and SRC.
/* Fold function call to builtin strcpy with arguments DEST and SRC.
   If LEN is not NULL, it represents the length of the string to be
   If LEN is not NULL, it represents the length of the string to be
   copied.  Return NULL_TREE if no simplification can be made.  */
   copied.  Return NULL_TREE if no simplification can be made.  */
 
 
tree
tree
fold_builtin_strcpy (location_t loc, tree fndecl, tree dest, tree src, tree len)
fold_builtin_strcpy (location_t loc, tree fndecl, tree dest, tree src, tree len)
{
{
  tree fn;
  tree fn;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE))
      || !validate_arg (src, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  if (operand_equal_p (src, dest, 0))
  if (operand_equal_p (src, dest, 0))
    return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest);
    return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest);
 
 
  if (optimize_function_for_size_p (cfun))
  if (optimize_function_for_size_p (cfun))
    return NULL_TREE;
    return NULL_TREE;
 
 
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (!len)
  if (!len)
    {
    {
      len = c_strlen (src, 1);
      len = c_strlen (src, 1);
      if (! len || TREE_SIDE_EFFECTS (len))
      if (! len || TREE_SIDE_EFFECTS (len))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  len = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
  len = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
                           build_call_expr_loc (loc, fn, 3, dest, src, len));
                           build_call_expr_loc (loc, fn, 3, dest, src, len));
}
}
 
 
/* Fold function call to builtin stpcpy with arguments DEST and SRC.
/* Fold function call to builtin stpcpy with arguments DEST and SRC.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_stpcpy (location_t loc, tree fndecl, tree dest, tree src)
fold_builtin_stpcpy (location_t loc, tree fndecl, tree dest, tree src)
{
{
  tree fn, len, lenp1, call, type;
  tree fn, len, lenp1, call, type;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE))
      || !validate_arg (src, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  len = c_strlen (src, 1);
  len = c_strlen (src, 1);
  if (!len
  if (!len
      || TREE_CODE (len) != INTEGER_CST)
      || TREE_CODE (len) != INTEGER_CST)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (optimize_function_for_size_p (cfun)
  if (optimize_function_for_size_p (cfun)
      /* If length is zero it's small enough.  */
      /* If length is zero it's small enough.  */
      && !integer_zerop (len))
      && !integer_zerop (len))
    return NULL_TREE;
    return NULL_TREE;
 
 
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  lenp1 = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
  lenp1 = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
  /* We use dest twice in building our expression.  Save it from
  /* We use dest twice in building our expression.  Save it from
     multiple expansions.  */
     multiple expansions.  */
  dest = builtin_save_expr (dest);
  dest = builtin_save_expr (dest);
  call = build_call_expr_loc (loc, fn, 3, dest, src, lenp1);
  call = build_call_expr_loc (loc, fn, 3, dest, src, lenp1);
 
 
  type = TREE_TYPE (TREE_TYPE (fndecl));
  type = TREE_TYPE (TREE_TYPE (fndecl));
  len = fold_convert_loc (loc, sizetype, len);
  len = fold_convert_loc (loc, sizetype, len);
  dest = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len);
  dest = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len);
  dest = fold_convert_loc (loc, type, dest);
  dest = fold_convert_loc (loc, type, dest);
  dest = omit_one_operand_loc (loc, type, dest, call);
  dest = omit_one_operand_loc (loc, type, dest, call);
  return dest;
  return dest;
}
}
 
 
/* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN.
/* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN.
   If SLEN is not NULL, it represents the length of the source string.
   If SLEN is not NULL, it represents the length of the source string.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
tree
tree
fold_builtin_strncpy (location_t loc, tree fndecl, tree dest,
fold_builtin_strncpy (location_t loc, tree fndecl, tree dest,
                      tree src, tree len, tree slen)
                      tree src, tree len, tree slen)
{
{
  tree fn;
  tree fn;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (len, INTEGER_TYPE))
      || !validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
 
 
  /* We can't compare slen with len as constants below if len is not a
  /* We can't compare slen with len as constants below if len is not a
     constant.  */
     constant.  */
  if (len == 0 || TREE_CODE (len) != INTEGER_CST)
  if (len == 0 || TREE_CODE (len) != INTEGER_CST)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (!slen)
  if (!slen)
    slen = c_strlen (src, 1);
    slen = c_strlen (src, 1);
 
 
  /* Now, we must be passed a constant src ptr parameter.  */
  /* Now, we must be passed a constant src ptr parameter.  */
  if (slen == 0 || TREE_CODE (slen) != INTEGER_CST)
  if (slen == 0 || TREE_CODE (slen) != INTEGER_CST)
    return NULL_TREE;
    return NULL_TREE;
 
 
  slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
  slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
 
 
  /* We do not support simplification of this case, though we do
  /* We do not support simplification of this case, though we do
     support it when expanding trees into RTL.  */
     support it when expanding trees into RTL.  */
  /* FIXME: generate a call to __builtin_memset.  */
  /* FIXME: generate a call to __builtin_memset.  */
  if (tree_int_cst_lt (slen, len))
  if (tree_int_cst_lt (slen, len))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* OK transform into builtin memcpy.  */
  /* OK transform into builtin memcpy.  */
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
                           build_call_expr_loc (loc, fn, 3, dest, src, len));
                           build_call_expr_loc (loc, fn, 3, dest, src, len));
}
}
 
 
/* Fold function call to builtin memchr.  ARG1, ARG2 and LEN are the
/* Fold function call to builtin memchr.  ARG1, ARG2 and LEN are the
   arguments to the call, and TYPE is its return type.
   arguments to the call, and TYPE is its return type.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_memchr (location_t loc, tree arg1, tree arg2, tree len, tree type)
fold_builtin_memchr (location_t loc, tree arg1, tree arg2, tree len, tree type)
{
{
  if (!validate_arg (arg1, POINTER_TYPE)
  if (!validate_arg (arg1, POINTER_TYPE)
      || !validate_arg (arg2, INTEGER_TYPE)
      || !validate_arg (arg2, INTEGER_TYPE)
      || !validate_arg (len, INTEGER_TYPE))
      || !validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      const char *p1;
      const char *p1;
 
 
      if (TREE_CODE (arg2) != INTEGER_CST
      if (TREE_CODE (arg2) != INTEGER_CST
          || !host_integerp (len, 1))
          || !host_integerp (len, 1))
        return NULL_TREE;
        return NULL_TREE;
 
 
      p1 = c_getstr (arg1);
      p1 = c_getstr (arg1);
      if (p1 && compare_tree_int (len, strlen (p1) + 1) <= 0)
      if (p1 && compare_tree_int (len, strlen (p1) + 1) <= 0)
        {
        {
          char c;
          char c;
          const char *r;
          const char *r;
          tree tem;
          tree tem;
 
 
          if (target_char_cast (arg2, &c))
          if (target_char_cast (arg2, &c))
            return NULL_TREE;
            return NULL_TREE;
 
 
          r = (char *) memchr (p1, c, tree_low_cst (len, 1));
          r = (char *) memchr (p1, c, tree_low_cst (len, 1));
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (arg1), 0);
            return build_int_cst (TREE_TYPE (arg1), 0);
 
 
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (arg1), arg1,
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (arg1), arg1,
                             size_int (r - p1));
                             size_int (r - p1));
          return fold_convert_loc (loc, type, tem);
          return fold_convert_loc (loc, type, tem);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Fold function call to builtin memcmp with arguments ARG1 and ARG2.
/* Fold function call to builtin memcmp with arguments ARG1 and ARG2.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_memcmp (location_t loc, tree arg1, tree arg2, tree len)
fold_builtin_memcmp (location_t loc, tree arg1, tree arg2, tree len)
{
{
  const char *p1, *p2;
  const char *p1, *p2;
 
 
  if (!validate_arg (arg1, POINTER_TYPE)
  if (!validate_arg (arg1, POINTER_TYPE)
      || !validate_arg (arg2, POINTER_TYPE)
      || !validate_arg (arg2, POINTER_TYPE)
      || !validate_arg (len, INTEGER_TYPE))
      || !validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the LEN parameter is zero, return zero.  */
  /* If the LEN parameter is zero, return zero.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_two_operands_loc (loc, integer_type_node, integer_zero_node,
    return omit_two_operands_loc (loc, integer_type_node, integer_zero_node,
                              arg1, arg2);
                              arg1, arg2);
 
 
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len);
    return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len);
 
 
  p1 = c_getstr (arg1);
  p1 = c_getstr (arg1);
  p2 = c_getstr (arg2);
  p2 = c_getstr (arg2);
 
 
  /* If all arguments are constant, and the value of len is not greater
  /* If all arguments are constant, and the value of len is not greater
     than the lengths of arg1 and arg2, evaluate at compile-time.  */
     than the lengths of arg1 and arg2, evaluate at compile-time.  */
  if (host_integerp (len, 1) && p1 && p2
  if (host_integerp (len, 1) && p1 && p2
      && compare_tree_int (len, strlen (p1) + 1) <= 0
      && compare_tree_int (len, strlen (p1) + 1) <= 0
      && compare_tree_int (len, strlen (p2) + 1) <= 0)
      && compare_tree_int (len, strlen (p2) + 1) <= 0)
    {
    {
      const int r = memcmp (p1, p2, tree_low_cst (len, 1));
      const int r = memcmp (p1, p2, tree_low_cst (len, 1));
 
 
      if (r > 0)
      if (r > 0)
        return integer_one_node;
        return integer_one_node;
      else if (r < 0)
      else if (r < 0)
        return integer_minus_one_node;
        return integer_minus_one_node;
      else
      else
        return integer_zero_node;
        return integer_zero_node;
    }
    }
 
 
  /* If len parameter is one, return an expression corresponding to
  /* If len parameter is one, return an expression corresponding to
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree ind1
      tree ind1
        = fold_convert_loc (loc, integer_type_node,
        = fold_convert_loc (loc, integer_type_node,
                            build1 (INDIRECT_REF, cst_uchar_node,
                            build1 (INDIRECT_REF, cst_uchar_node,
                                    fold_convert_loc (loc,
                                    fold_convert_loc (loc,
                                                      cst_uchar_ptr_node,
                                                      cst_uchar_ptr_node,
                                                      arg1)));
                                                      arg1)));
      tree ind2
      tree ind2
        = fold_convert_loc (loc, integer_type_node,
        = fold_convert_loc (loc, integer_type_node,
                            build1 (INDIRECT_REF, cst_uchar_node,
                            build1 (INDIRECT_REF, cst_uchar_node,
                                    fold_convert_loc (loc,
                                    fold_convert_loc (loc,
                                                      cst_uchar_ptr_node,
                                                      cst_uchar_ptr_node,
                                                      arg2)));
                                                      arg2)));
      return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2);
      return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin strcmp with arguments ARG1 and ARG2.
/* Fold function call to builtin strcmp with arguments ARG1 and ARG2.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_strcmp (location_t loc, tree arg1, tree arg2)
fold_builtin_strcmp (location_t loc, tree arg1, tree arg2)
{
{
  const char *p1, *p2;
  const char *p1, *p2;
 
 
  if (!validate_arg (arg1, POINTER_TYPE)
  if (!validate_arg (arg1, POINTER_TYPE)
      || !validate_arg (arg2, POINTER_TYPE))
      || !validate_arg (arg2, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return integer_zero_node;
    return integer_zero_node;
 
 
  p1 = c_getstr (arg1);
  p1 = c_getstr (arg1);
  p2 = c_getstr (arg2);
  p2 = c_getstr (arg2);
 
 
  if (p1 && p2)
  if (p1 && p2)
    {
    {
      const int i = strcmp (p1, p2);
      const int i = strcmp (p1, p2);
      if (i < 0)
      if (i < 0)
        return integer_minus_one_node;
        return integer_minus_one_node;
      else if (i > 0)
      else if (i > 0)
        return integer_one_node;
        return integer_one_node;
      else
      else
        return integer_zero_node;
        return integer_zero_node;
    }
    }
 
 
  /* If the second arg is "", return *(const unsigned char*)arg1.  */
  /* If the second arg is "", return *(const unsigned char*)arg1.  */
  if (p2 && *p2 == '\0')
  if (p2 && *p2 == '\0')
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      return fold_convert_loc (loc, integer_type_node,
      return fold_convert_loc (loc, integer_type_node,
                               build1 (INDIRECT_REF, cst_uchar_node,
                               build1 (INDIRECT_REF, cst_uchar_node,
                                       fold_convert_loc (loc,
                                       fold_convert_loc (loc,
                                                         cst_uchar_ptr_node,
                                                         cst_uchar_ptr_node,
                                                         arg1)));
                                                         arg1)));
    }
    }
 
 
  /* If the first arg is "", return -*(const unsigned char*)arg2.  */
  /* If the first arg is "", return -*(const unsigned char*)arg2.  */
  if (p1 && *p1 == '\0')
  if (p1 && *p1 == '\0')
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree temp
      tree temp
        = fold_convert_loc (loc, integer_type_node,
        = fold_convert_loc (loc, integer_type_node,
                            build1 (INDIRECT_REF, cst_uchar_node,
                            build1 (INDIRECT_REF, cst_uchar_node,
                                    fold_convert_loc (loc,
                                    fold_convert_loc (loc,
                                                      cst_uchar_ptr_node,
                                                      cst_uchar_ptr_node,
                                                      arg2)));
                                                      arg2)));
      return fold_build1_loc (loc, NEGATE_EXPR, integer_type_node, temp);
      return fold_build1_loc (loc, NEGATE_EXPR, integer_type_node, temp);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin strncmp with arguments ARG1, ARG2, and LEN.
/* Fold function call to builtin strncmp with arguments ARG1, ARG2, and LEN.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_strncmp (location_t loc, tree arg1, tree arg2, tree len)
fold_builtin_strncmp (location_t loc, tree arg1, tree arg2, tree len)
{
{
  const char *p1, *p2;
  const char *p1, *p2;
 
 
  if (!validate_arg (arg1, POINTER_TYPE)
  if (!validate_arg (arg1, POINTER_TYPE)
      || !validate_arg (arg2, POINTER_TYPE)
      || !validate_arg (arg2, POINTER_TYPE)
      || !validate_arg (len, INTEGER_TYPE))
      || !validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the LEN parameter is zero, return zero.  */
  /* If the LEN parameter is zero, return zero.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_two_operands_loc (loc, integer_type_node, integer_zero_node,
    return omit_two_operands_loc (loc, integer_type_node, integer_zero_node,
                              arg1, arg2);
                              arg1, arg2);
 
 
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len);
    return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len);
 
 
  p1 = c_getstr (arg1);
  p1 = c_getstr (arg1);
  p2 = c_getstr (arg2);
  p2 = c_getstr (arg2);
 
 
  if (host_integerp (len, 1) && p1 && p2)
  if (host_integerp (len, 1) && p1 && p2)
    {
    {
      const int i = strncmp (p1, p2, tree_low_cst (len, 1));
      const int i = strncmp (p1, p2, tree_low_cst (len, 1));
      if (i > 0)
      if (i > 0)
        return integer_one_node;
        return integer_one_node;
      else if (i < 0)
      else if (i < 0)
        return integer_minus_one_node;
        return integer_minus_one_node;
      else
      else
        return integer_zero_node;
        return integer_zero_node;
    }
    }
 
 
  /* If the second arg is "", and the length is greater than zero,
  /* If the second arg is "", and the length is greater than zero,
     return *(const unsigned char*)arg1.  */
     return *(const unsigned char*)arg1.  */
  if (p2 && *p2 == '\0'
  if (p2 && *p2 == '\0'
      && TREE_CODE (len) == INTEGER_CST
      && TREE_CODE (len) == INTEGER_CST
      && tree_int_cst_sgn (len) == 1)
      && tree_int_cst_sgn (len) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      return fold_convert_loc (loc, integer_type_node,
      return fold_convert_loc (loc, integer_type_node,
                               build1 (INDIRECT_REF, cst_uchar_node,
                               build1 (INDIRECT_REF, cst_uchar_node,
                                       fold_convert_loc (loc,
                                       fold_convert_loc (loc,
                                                         cst_uchar_ptr_node,
                                                         cst_uchar_ptr_node,
                                                         arg1)));
                                                         arg1)));
    }
    }
 
 
  /* If the first arg is "", and the length is greater than zero,
  /* If the first arg is "", and the length is greater than zero,
     return -*(const unsigned char*)arg2.  */
     return -*(const unsigned char*)arg2.  */
  if (p1 && *p1 == '\0'
  if (p1 && *p1 == '\0'
      && TREE_CODE (len) == INTEGER_CST
      && TREE_CODE (len) == INTEGER_CST
      && tree_int_cst_sgn (len) == 1)
      && tree_int_cst_sgn (len) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree temp = fold_convert_loc (loc, integer_type_node,
      tree temp = fold_convert_loc (loc, integer_type_node,
                                    build1 (INDIRECT_REF, cst_uchar_node,
                                    build1 (INDIRECT_REF, cst_uchar_node,
                                            fold_convert_loc (loc,
                                            fold_convert_loc (loc,
                                                              cst_uchar_ptr_node,
                                                              cst_uchar_ptr_node,
                                                              arg2)));
                                                              arg2)));
      return fold_build1_loc (loc, NEGATE_EXPR, integer_type_node, temp);
      return fold_build1_loc (loc, NEGATE_EXPR, integer_type_node, temp);
    }
    }
 
 
  /* If len parameter is one, return an expression corresponding to
  /* If len parameter is one, return an expression corresponding to
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree ind1 = fold_convert_loc (loc, integer_type_node,
      tree ind1 = fold_convert_loc (loc, integer_type_node,
                                    build1 (INDIRECT_REF, cst_uchar_node,
                                    build1 (INDIRECT_REF, cst_uchar_node,
                                            fold_convert_loc (loc,
                                            fold_convert_loc (loc,
                                                              cst_uchar_ptr_node,
                                                              cst_uchar_ptr_node,
                                                              arg1)));
                                                              arg1)));
      tree ind2 = fold_convert_loc (loc, integer_type_node,
      tree ind2 = fold_convert_loc (loc, integer_type_node,
                                    build1 (INDIRECT_REF, cst_uchar_node,
                                    build1 (INDIRECT_REF, cst_uchar_node,
                                            fold_convert_loc (loc,
                                            fold_convert_loc (loc,
                                                              cst_uchar_ptr_node,
                                                              cst_uchar_ptr_node,
                                                              arg2)));
                                                              arg2)));
      return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2);
      return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin signbit, signbitf or signbitl with argument
/* Fold function call to builtin signbit, signbitf or signbitl with argument
   ARG.  Return NULL_TREE if no simplification can be made.  */
   ARG.  Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_signbit (location_t loc, tree arg, tree type)
fold_builtin_signbit (location_t loc, tree arg, tree type)
{
{
  tree temp;
  tree temp;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If ARG is a compile-time constant, determine the result.  */
  /* If ARG is a compile-time constant, determine the result.  */
  if (TREE_CODE (arg) == REAL_CST
  if (TREE_CODE (arg) == REAL_CST
      && !TREE_OVERFLOW (arg))
      && !TREE_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE c;
      REAL_VALUE_TYPE c;
 
 
      c = TREE_REAL_CST (arg);
      c = TREE_REAL_CST (arg);
      temp = REAL_VALUE_NEGATIVE (c) ? integer_one_node : integer_zero_node;
      temp = REAL_VALUE_NEGATIVE (c) ? integer_one_node : integer_zero_node;
      return fold_convert_loc (loc, type, temp);
      return fold_convert_loc (loc, type, temp);
    }
    }
 
 
  /* If ARG is non-negative, the result is always zero.  */
  /* If ARG is non-negative, the result is always zero.  */
  if (tree_expr_nonnegative_p (arg))
  if (tree_expr_nonnegative_p (arg))
    return omit_one_operand_loc (loc, type, integer_zero_node, arg);
    return omit_one_operand_loc (loc, type, integer_zero_node, arg);
 
 
  /* If ARG's format doesn't have signed zeros, return "arg < 0.0".  */
  /* If ARG's format doesn't have signed zeros, return "arg < 0.0".  */
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg))))
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg))))
    return fold_build2_loc (loc, LT_EXPR, type, arg,
    return fold_build2_loc (loc, LT_EXPR, type, arg,
                        build_real (TREE_TYPE (arg), dconst0));
                        build_real (TREE_TYPE (arg), dconst0));
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin copysign, copysignf or copysignl with
/* Fold function call to builtin copysign, copysignf or copysignl with
   arguments ARG1 and ARG2.  Return NULL_TREE if no simplification can
   arguments ARG1 and ARG2.  Return NULL_TREE if no simplification can
   be made.  */
   be made.  */
 
 
static tree
static tree
fold_builtin_copysign (location_t loc, tree fndecl,
fold_builtin_copysign (location_t loc, tree fndecl,
                       tree arg1, tree arg2, tree type)
                       tree arg1, tree arg2, tree type)
{
{
  tree tem;
  tree tem;
 
 
  if (!validate_arg (arg1, REAL_TYPE)
  if (!validate_arg (arg1, REAL_TYPE)
      || !validate_arg (arg2, REAL_TYPE))
      || !validate_arg (arg2, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* copysign(X,X) is X.  */
  /* copysign(X,X) is X.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return fold_convert_loc (loc, type, arg1);
    return fold_convert_loc (loc, type, arg1);
 
 
  /* If ARG1 and ARG2 are compile-time constants, determine the result.  */
  /* If ARG1 and ARG2 are compile-time constants, determine the result.  */
  if (TREE_CODE (arg1) == REAL_CST
  if (TREE_CODE (arg1) == REAL_CST
      && TREE_CODE (arg2) == REAL_CST
      && TREE_CODE (arg2) == REAL_CST
      && !TREE_OVERFLOW (arg1)
      && !TREE_OVERFLOW (arg1)
      && !TREE_OVERFLOW (arg2))
      && !TREE_OVERFLOW (arg2))
    {
    {
      REAL_VALUE_TYPE c1, c2;
      REAL_VALUE_TYPE c1, c2;
 
 
      c1 = TREE_REAL_CST (arg1);
      c1 = TREE_REAL_CST (arg1);
      c2 = TREE_REAL_CST (arg2);
      c2 = TREE_REAL_CST (arg2);
      /* c1.sign := c2.sign.  */
      /* c1.sign := c2.sign.  */
      real_copysign (&c1, &c2);
      real_copysign (&c1, &c2);
      return build_real (type, c1);
      return build_real (type, c1);
    }
    }
 
 
  /* copysign(X, Y) is fabs(X) when Y is always non-negative.
  /* copysign(X, Y) is fabs(X) when Y is always non-negative.
     Remember to evaluate Y for side-effects.  */
     Remember to evaluate Y for side-effects.  */
  if (tree_expr_nonnegative_p (arg2))
  if (tree_expr_nonnegative_p (arg2))
    return omit_one_operand_loc (loc, type,
    return omit_one_operand_loc (loc, type,
                             fold_build1_loc (loc, ABS_EXPR, type, arg1),
                             fold_build1_loc (loc, ABS_EXPR, type, arg1),
                             arg2);
                             arg2);
 
 
  /* Strip sign changing operations for the first argument.  */
  /* Strip sign changing operations for the first argument.  */
  tem = fold_strip_sign_ops (arg1);
  tem = fold_strip_sign_ops (arg1);
  if (tem)
  if (tem)
    return build_call_expr_loc (loc, fndecl, 2, tem, arg2);
    return build_call_expr_loc (loc, fndecl, 2, tem, arg2);
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin isascii with argument ARG.  */
/* Fold a call to builtin isascii with argument ARG.  */
 
 
static tree
static tree
fold_builtin_isascii (location_t loc, tree arg)
fold_builtin_isascii (location_t loc, tree arg)
{
{
  if (!validate_arg (arg, INTEGER_TYPE))
  if (!validate_arg (arg, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      /* Transform isascii(c) -> ((c & ~0x7f) == 0).  */
      /* Transform isascii(c) -> ((c & ~0x7f) == 0).  */
      arg = fold_build2 (BIT_AND_EXPR, integer_type_node, arg,
      arg = fold_build2 (BIT_AND_EXPR, integer_type_node, arg,
                         build_int_cst (NULL_TREE,
                         build_int_cst (NULL_TREE,
                                        ~ (unsigned HOST_WIDE_INT) 0x7f));
                                        ~ (unsigned HOST_WIDE_INT) 0x7f));
      return fold_build2_loc (loc, EQ_EXPR, integer_type_node,
      return fold_build2_loc (loc, EQ_EXPR, integer_type_node,
                          arg, integer_zero_node);
                          arg, integer_zero_node);
    }
    }
}
}
 
 
/* Fold a call to builtin toascii with argument ARG.  */
/* Fold a call to builtin toascii with argument ARG.  */
 
 
static tree
static tree
fold_builtin_toascii (location_t loc, tree arg)
fold_builtin_toascii (location_t loc, tree arg)
{
{
  if (!validate_arg (arg, INTEGER_TYPE))
  if (!validate_arg (arg, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Transform toascii(c) -> (c & 0x7f).  */
  /* Transform toascii(c) -> (c & 0x7f).  */
  return fold_build2_loc (loc, BIT_AND_EXPR, integer_type_node, arg,
  return fold_build2_loc (loc, BIT_AND_EXPR, integer_type_node, arg,
                      build_int_cst (NULL_TREE, 0x7f));
                      build_int_cst (NULL_TREE, 0x7f));
}
}
 
 
/* Fold a call to builtin isdigit with argument ARG.  */
/* Fold a call to builtin isdigit with argument ARG.  */
 
 
static tree
static tree
fold_builtin_isdigit (location_t loc, tree arg)
fold_builtin_isdigit (location_t loc, tree arg)
{
{
  if (!validate_arg (arg, INTEGER_TYPE))
  if (!validate_arg (arg, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      /* Transform isdigit(c) -> (unsigned)(c) - '0' <= 9.  */
      /* Transform isdigit(c) -> (unsigned)(c) - '0' <= 9.  */
      /* According to the C standard, isdigit is unaffected by locale.
      /* According to the C standard, isdigit is unaffected by locale.
         However, it definitely is affected by the target character set.  */
         However, it definitely is affected by the target character set.  */
      unsigned HOST_WIDE_INT target_digit0
      unsigned HOST_WIDE_INT target_digit0
        = lang_hooks.to_target_charset ('0');
        = lang_hooks.to_target_charset ('0');
 
 
      if (target_digit0 == 0)
      if (target_digit0 == 0)
        return NULL_TREE;
        return NULL_TREE;
 
 
      arg = fold_convert_loc (loc, unsigned_type_node, arg);
      arg = fold_convert_loc (loc, unsigned_type_node, arg);
      arg = fold_build2 (MINUS_EXPR, unsigned_type_node, arg,
      arg = fold_build2 (MINUS_EXPR, unsigned_type_node, arg,
                         build_int_cst (unsigned_type_node, target_digit0));
                         build_int_cst (unsigned_type_node, target_digit0));
      return fold_build2_loc (loc, LE_EXPR, integer_type_node, arg,
      return fold_build2_loc (loc, LE_EXPR, integer_type_node, arg,
                          build_int_cst (unsigned_type_node, 9));
                          build_int_cst (unsigned_type_node, 9));
    }
    }
}
}
 
 
/* Fold a call to fabs, fabsf or fabsl with argument ARG.  */
/* Fold a call to fabs, fabsf or fabsl with argument ARG.  */
 
 
static tree
static tree
fold_builtin_fabs (location_t loc, tree arg, tree type)
fold_builtin_fabs (location_t loc, tree arg, tree type)
{
{
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg = fold_convert_loc (loc, type, arg);
  arg = fold_convert_loc (loc, type, arg);
  if (TREE_CODE (arg) == REAL_CST)
  if (TREE_CODE (arg) == REAL_CST)
    return fold_abs_const (arg, type);
    return fold_abs_const (arg, type);
  return fold_build1_loc (loc, ABS_EXPR, type, arg);
  return fold_build1_loc (loc, ABS_EXPR, type, arg);
}
}
 
 
/* Fold a call to abs, labs, llabs or imaxabs with argument ARG.  */
/* Fold a call to abs, labs, llabs or imaxabs with argument ARG.  */
 
 
static tree
static tree
fold_builtin_abs (location_t loc, tree arg, tree type)
fold_builtin_abs (location_t loc, tree arg, tree type)
{
{
  if (!validate_arg (arg, INTEGER_TYPE))
  if (!validate_arg (arg, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg = fold_convert_loc (loc, type, arg);
  arg = fold_convert_loc (loc, type, arg);
  if (TREE_CODE (arg) == INTEGER_CST)
  if (TREE_CODE (arg) == INTEGER_CST)
    return fold_abs_const (arg, type);
    return fold_abs_const (arg, type);
  return fold_build1_loc (loc, ABS_EXPR, type, arg);
  return fold_build1_loc (loc, ABS_EXPR, type, arg);
}
}
 
 
/* Fold a call to builtin fmin or fmax.  */
/* Fold a call to builtin fmin or fmax.  */
 
 
static tree
static tree
fold_builtin_fmin_fmax (location_t loc, tree arg0, tree arg1,
fold_builtin_fmin_fmax (location_t loc, tree arg0, tree arg1,
                        tree type, bool max)
                        tree type, bool max)
{
{
  if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, REAL_TYPE))
  if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, REAL_TYPE))
    {
    {
      /* Calculate the result when the argument is a constant.  */
      /* Calculate the result when the argument is a constant.  */
      tree res = do_mpfr_arg2 (arg0, arg1, type, (max ? mpfr_max : mpfr_min));
      tree res = do_mpfr_arg2 (arg0, arg1, type, (max ? mpfr_max : mpfr_min));
 
 
      if (res)
      if (res)
        return res;
        return res;
 
 
      /* If either argument is NaN, return the other one.  Avoid the
      /* If either argument is NaN, return the other one.  Avoid the
         transformation if we get (and honor) a signalling NaN.  Using
         transformation if we get (and honor) a signalling NaN.  Using
         omit_one_operand() ensures we create a non-lvalue.  */
         omit_one_operand() ensures we create a non-lvalue.  */
      if (TREE_CODE (arg0) == REAL_CST
      if (TREE_CODE (arg0) == REAL_CST
          && real_isnan (&TREE_REAL_CST (arg0))
          && real_isnan (&TREE_REAL_CST (arg0))
          && (! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
          && (! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
              || ! TREE_REAL_CST (arg0).signalling))
              || ! TREE_REAL_CST (arg0).signalling))
        return omit_one_operand_loc (loc, type, arg1, arg0);
        return omit_one_operand_loc (loc, type, arg1, arg0);
      if (TREE_CODE (arg1) == REAL_CST
      if (TREE_CODE (arg1) == REAL_CST
          && real_isnan (&TREE_REAL_CST (arg1))
          && real_isnan (&TREE_REAL_CST (arg1))
          && (! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
          && (! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
              || ! TREE_REAL_CST (arg1).signalling))
              || ! TREE_REAL_CST (arg1).signalling))
        return omit_one_operand_loc (loc, type, arg0, arg1);
        return omit_one_operand_loc (loc, type, arg0, arg1);
 
 
      /* Transform fmin/fmax(x,x) -> x.  */
      /* Transform fmin/fmax(x,x) -> x.  */
      if (operand_equal_p (arg0, arg1, OEP_PURE_SAME))
      if (operand_equal_p (arg0, arg1, OEP_PURE_SAME))
        return omit_one_operand_loc (loc, type, arg0, arg1);
        return omit_one_operand_loc (loc, type, arg0, arg1);
 
 
      /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
      /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
         functions to return the numeric arg if the other one is NaN.
         functions to return the numeric arg if the other one is NaN.
         These tree codes don't honor that, so only transform if
         These tree codes don't honor that, so only transform if
         -ffinite-math-only is set.  C99 doesn't require -0.0 to be
         -ffinite-math-only is set.  C99 doesn't require -0.0 to be
         handled, so we don't have to worry about it either.  */
         handled, so we don't have to worry about it either.  */
      if (flag_finite_math_only)
      if (flag_finite_math_only)
        return fold_build2_loc (loc, (max ? MAX_EXPR : MIN_EXPR), type,
        return fold_build2_loc (loc, (max ? MAX_EXPR : MIN_EXPR), type,
                            fold_convert_loc (loc, type, arg0),
                            fold_convert_loc (loc, type, arg0),
                            fold_convert_loc (loc, type, arg1));
                            fold_convert_loc (loc, type, arg1));
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin carg(a+bi) -> atan2(b,a).  */
/* Fold a call to builtin carg(a+bi) -> atan2(b,a).  */
 
 
static tree
static tree
fold_builtin_carg (location_t loc, tree arg, tree type)
fold_builtin_carg (location_t loc, tree arg, tree type)
{
{
  if (validate_arg (arg, COMPLEX_TYPE)
  if (validate_arg (arg, COMPLEX_TYPE)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE)
    {
    {
      tree atan2_fn = mathfn_built_in (type, BUILT_IN_ATAN2);
      tree atan2_fn = mathfn_built_in (type, BUILT_IN_ATAN2);
 
 
      if (atan2_fn)
      if (atan2_fn)
        {
        {
          tree new_arg = builtin_save_expr (arg);
          tree new_arg = builtin_save_expr (arg);
          tree r_arg = fold_build1_loc (loc, REALPART_EXPR, type, new_arg);
          tree r_arg = fold_build1_loc (loc, REALPART_EXPR, type, new_arg);
          tree i_arg = fold_build1_loc (loc, IMAGPART_EXPR, type, new_arg);
          tree i_arg = fold_build1_loc (loc, IMAGPART_EXPR, type, new_arg);
          return build_call_expr_loc (loc, atan2_fn, 2, i_arg, r_arg);
          return build_call_expr_loc (loc, atan2_fn, 2, i_arg, r_arg);
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin logb/ilogb.  */
/* Fold a call to builtin logb/ilogb.  */
 
 
static tree
static tree
fold_builtin_logb (location_t loc, tree arg, tree rettype)
fold_builtin_logb (location_t loc, tree arg, tree rettype)
{
{
  if (! validate_arg (arg, REAL_TYPE))
  if (! validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg))
    {
    {
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg);
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg);
 
 
      switch (value->cl)
      switch (value->cl)
      {
      {
      case rvc_nan:
      case rvc_nan:
      case rvc_inf:
      case rvc_inf:
        /* If arg is Inf or NaN and we're logb, return it.  */
        /* If arg is Inf or NaN and we're logb, return it.  */
        if (TREE_CODE (rettype) == REAL_TYPE)
        if (TREE_CODE (rettype) == REAL_TYPE)
          return fold_convert_loc (loc, rettype, arg);
          return fold_convert_loc (loc, rettype, arg);
        /* Fall through... */
        /* Fall through... */
      case rvc_zero:
      case rvc_zero:
        /* Zero may set errno and/or raise an exception for logb, also
        /* Zero may set errno and/or raise an exception for logb, also
           for ilogb we don't know FP_ILOGB0.  */
           for ilogb we don't know FP_ILOGB0.  */
        return NULL_TREE;
        return NULL_TREE;
      case rvc_normal:
      case rvc_normal:
        /* For normal numbers, proceed iff radix == 2.  In GCC,
        /* For normal numbers, proceed iff radix == 2.  In GCC,
           normalized significands are in the range [0.5, 1.0).  We
           normalized significands are in the range [0.5, 1.0).  We
           want the exponent as if they were [1.0, 2.0) so get the
           want the exponent as if they were [1.0, 2.0) so get the
           exponent and subtract 1.  */
           exponent and subtract 1.  */
        if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2)
        if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2)
          return fold_convert_loc (loc, rettype,
          return fold_convert_loc (loc, rettype,
                                   build_int_cst (NULL_TREE,
                                   build_int_cst (NULL_TREE,
                                                  REAL_EXP (value)-1));
                                                  REAL_EXP (value)-1));
        break;
        break;
      }
      }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin significand, if radix == 2.  */
/* Fold a call to builtin significand, if radix == 2.  */
 
 
static tree
static tree
fold_builtin_significand (location_t loc, tree arg, tree rettype)
fold_builtin_significand (location_t loc, tree arg, tree rettype)
{
{
  if (! validate_arg (arg, REAL_TYPE))
  if (! validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_OVERFLOW (arg))
    {
    {
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg);
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg);
 
 
      switch (value->cl)
      switch (value->cl)
      {
      {
      case rvc_zero:
      case rvc_zero:
      case rvc_nan:
      case rvc_nan:
      case rvc_inf:
      case rvc_inf:
        /* If arg is +-0, +-Inf or +-NaN, then return it.  */
        /* If arg is +-0, +-Inf or +-NaN, then return it.  */
        return fold_convert_loc (loc, rettype, arg);
        return fold_convert_loc (loc, rettype, arg);
      case rvc_normal:
      case rvc_normal:
        /* For normal numbers, proceed iff radix == 2.  */
        /* For normal numbers, proceed iff radix == 2.  */
        if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2)
        if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (arg)))->b == 2)
          {
          {
            REAL_VALUE_TYPE result = *value;
            REAL_VALUE_TYPE result = *value;
            /* In GCC, normalized significands are in the range [0.5,
            /* In GCC, normalized significands are in the range [0.5,
               1.0).  We want them to be [1.0, 2.0) so set the
               1.0).  We want them to be [1.0, 2.0) so set the
               exponent to 1.  */
               exponent to 1.  */
            SET_REAL_EXP (&result, 1);
            SET_REAL_EXP (&result, 1);
            return build_real (rettype, result);
            return build_real (rettype, result);
          }
          }
        break;
        break;
      }
      }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin frexp, we can assume the base is 2.  */
/* Fold a call to builtin frexp, we can assume the base is 2.  */
 
 
static tree
static tree
fold_builtin_frexp (location_t loc, tree arg0, tree arg1, tree rettype)
fold_builtin_frexp (location_t loc, tree arg0, tree arg1, tree rettype)
{
{
  if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE))
  if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg0);
 
 
  if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0)))
  if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0)))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg1 = build_fold_indirect_ref_loc (loc, arg1);
  arg1 = build_fold_indirect_ref_loc (loc, arg1);
 
 
  /* Proceed if a valid pointer type was passed in.  */
  /* Proceed if a valid pointer type was passed in.  */
  if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == integer_type_node)
  if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == integer_type_node)
    {
    {
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0);
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0);
      tree frac, exp;
      tree frac, exp;
 
 
      switch (value->cl)
      switch (value->cl)
      {
      {
      case rvc_zero:
      case rvc_zero:
        /* For +-0, return (*exp = 0, +-0).  */
        /* For +-0, return (*exp = 0, +-0).  */
        exp = integer_zero_node;
        exp = integer_zero_node;
        frac = arg0;
        frac = arg0;
        break;
        break;
      case rvc_nan:
      case rvc_nan:
      case rvc_inf:
      case rvc_inf:
        /* For +-NaN or +-Inf, *exp is unspecified, return arg0.  */
        /* For +-NaN or +-Inf, *exp is unspecified, return arg0.  */
        return omit_one_operand_loc (loc, rettype, arg0, arg1);
        return omit_one_operand_loc (loc, rettype, arg0, arg1);
      case rvc_normal:
      case rvc_normal:
        {
        {
          /* Since the frexp function always expects base 2, and in
          /* Since the frexp function always expects base 2, and in
             GCC normalized significands are already in the range
             GCC normalized significands are already in the range
             [0.5, 1.0), we have exactly what frexp wants.  */
             [0.5, 1.0), we have exactly what frexp wants.  */
          REAL_VALUE_TYPE frac_rvt = *value;
          REAL_VALUE_TYPE frac_rvt = *value;
          SET_REAL_EXP (&frac_rvt, 0);
          SET_REAL_EXP (&frac_rvt, 0);
          frac = build_real (rettype, frac_rvt);
          frac = build_real (rettype, frac_rvt);
          exp = build_int_cst (NULL_TREE, REAL_EXP (value));
          exp = build_int_cst (NULL_TREE, REAL_EXP (value));
        }
        }
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
 
 
      /* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */
      /* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */
      arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1, exp);
      arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1, exp);
      TREE_SIDE_EFFECTS (arg1) = 1;
      TREE_SIDE_EFFECTS (arg1) = 1;
      return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1, frac);
      return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1, frac);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin ldexp or scalbn/scalbln.  If LDEXP is true
/* Fold a call to builtin ldexp or scalbn/scalbln.  If LDEXP is true
   then we can assume the base is two.  If it's false, then we have to
   then we can assume the base is two.  If it's false, then we have to
   check the mode of the TYPE parameter in certain cases.  */
   check the mode of the TYPE parameter in certain cases.  */
 
 
static tree
static tree
fold_builtin_load_exponent (location_t loc, tree arg0, tree arg1,
fold_builtin_load_exponent (location_t loc, tree arg0, tree arg1,
                            tree type, bool ldexp)
                            tree type, bool ldexp)
{
{
  if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, INTEGER_TYPE))
  if (validate_arg (arg0, REAL_TYPE) && validate_arg (arg1, INTEGER_TYPE))
    {
    {
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);
      STRIP_NOPS (arg1);
 
 
      /* If arg0 is 0, Inf or NaN, or if arg1 is 0, then return arg0.  */
      /* If arg0 is 0, Inf or NaN, or if arg1 is 0, then return arg0.  */
      if (real_zerop (arg0) || integer_zerop (arg1)
      if (real_zerop (arg0) || integer_zerop (arg1)
          || (TREE_CODE (arg0) == REAL_CST
          || (TREE_CODE (arg0) == REAL_CST
              && !real_isfinite (&TREE_REAL_CST (arg0))))
              && !real_isfinite (&TREE_REAL_CST (arg0))))
        return omit_one_operand_loc (loc, type, arg0, arg1);
        return omit_one_operand_loc (loc, type, arg0, arg1);
 
 
      /* If both arguments are constant, then try to evaluate it.  */
      /* If both arguments are constant, then try to evaluate it.  */
      if ((ldexp || REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2)
      if ((ldexp || REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2)
          && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)
          && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)
          && host_integerp (arg1, 0))
          && host_integerp (arg1, 0))
        {
        {
          /* Bound the maximum adjustment to twice the range of the
          /* Bound the maximum adjustment to twice the range of the
             mode's valid exponents.  Use abs to ensure the range is
             mode's valid exponents.  Use abs to ensure the range is
             positive as a sanity check.  */
             positive as a sanity check.  */
          const long max_exp_adj = 2 *
          const long max_exp_adj = 2 *
            labs (REAL_MODE_FORMAT (TYPE_MODE (type))->emax
            labs (REAL_MODE_FORMAT (TYPE_MODE (type))->emax
                 - REAL_MODE_FORMAT (TYPE_MODE (type))->emin);
                 - REAL_MODE_FORMAT (TYPE_MODE (type))->emin);
 
 
          /* Get the user-requested adjustment.  */
          /* Get the user-requested adjustment.  */
          const HOST_WIDE_INT req_exp_adj = tree_low_cst (arg1, 0);
          const HOST_WIDE_INT req_exp_adj = tree_low_cst (arg1, 0);
 
 
          /* The requested adjustment must be inside this range.  This
          /* The requested adjustment must be inside this range.  This
             is a preliminary cap to avoid things like overflow, we
             is a preliminary cap to avoid things like overflow, we
             may still fail to compute the result for other reasons.  */
             may still fail to compute the result for other reasons.  */
          if (-max_exp_adj < req_exp_adj && req_exp_adj < max_exp_adj)
          if (-max_exp_adj < req_exp_adj && req_exp_adj < max_exp_adj)
            {
            {
              REAL_VALUE_TYPE initial_result;
              REAL_VALUE_TYPE initial_result;
 
 
              real_ldexp (&initial_result, &TREE_REAL_CST (arg0), req_exp_adj);
              real_ldexp (&initial_result, &TREE_REAL_CST (arg0), req_exp_adj);
 
 
              /* Ensure we didn't overflow.  */
              /* Ensure we didn't overflow.  */
              if (! real_isinf (&initial_result))
              if (! real_isinf (&initial_result))
                {
                {
                  const REAL_VALUE_TYPE trunc_result
                  const REAL_VALUE_TYPE trunc_result
                    = real_value_truncate (TYPE_MODE (type), initial_result);
                    = real_value_truncate (TYPE_MODE (type), initial_result);
 
 
                  /* Only proceed if the target mode can hold the
                  /* Only proceed if the target mode can hold the
                     resulting value.  */
                     resulting value.  */
                  if (REAL_VALUES_EQUAL (initial_result, trunc_result))
                  if (REAL_VALUES_EQUAL (initial_result, trunc_result))
                    return build_real (type, trunc_result);
                    return build_real (type, trunc_result);
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin modf.  */
/* Fold a call to builtin modf.  */
 
 
static tree
static tree
fold_builtin_modf (location_t loc, tree arg0, tree arg1, tree rettype)
fold_builtin_modf (location_t loc, tree arg0, tree arg1, tree rettype)
{
{
  if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE))
  if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg0);
 
 
  if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0)))
  if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0)))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg1 = build_fold_indirect_ref_loc (loc, arg1);
  arg1 = build_fold_indirect_ref_loc (loc, arg1);
 
 
  /* Proceed if a valid pointer type was passed in.  */
  /* Proceed if a valid pointer type was passed in.  */
  if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == TYPE_MAIN_VARIANT (rettype))
  if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == TYPE_MAIN_VARIANT (rettype))
    {
    {
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0);
      const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0);
      REAL_VALUE_TYPE trunc, frac;
      REAL_VALUE_TYPE trunc, frac;
 
 
      switch (value->cl)
      switch (value->cl)
      {
      {
      case rvc_nan:
      case rvc_nan:
      case rvc_zero:
      case rvc_zero:
        /* For +-NaN or +-0, return (*arg1 = arg0, arg0).  */
        /* For +-NaN or +-0, return (*arg1 = arg0, arg0).  */
        trunc = frac = *value;
        trunc = frac = *value;
        break;
        break;
      case rvc_inf:
      case rvc_inf:
        /* For +-Inf, return (*arg1 = arg0, +-0).  */
        /* For +-Inf, return (*arg1 = arg0, +-0).  */
        frac = dconst0;
        frac = dconst0;
        frac.sign = value->sign;
        frac.sign = value->sign;
        trunc = *value;
        trunc = *value;
        break;
        break;
      case rvc_normal:
      case rvc_normal:
        /* Return (*arg1 = trunc(arg0), arg0-trunc(arg0)).  */
        /* Return (*arg1 = trunc(arg0), arg0-trunc(arg0)).  */
        real_trunc (&trunc, VOIDmode, value);
        real_trunc (&trunc, VOIDmode, value);
        real_arithmetic (&frac, MINUS_EXPR, value, &trunc);
        real_arithmetic (&frac, MINUS_EXPR, value, &trunc);
        /* If the original number was negative and already
        /* If the original number was negative and already
           integral, then the fractional part is -0.0.  */
           integral, then the fractional part is -0.0.  */
        if (value->sign && frac.cl == rvc_zero)
        if (value->sign && frac.cl == rvc_zero)
          frac.sign = value->sign;
          frac.sign = value->sign;
        break;
        break;
      }
      }
 
 
      /* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */
      /* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */
      arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1,
      arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1,
                          build_real (rettype, trunc));
                          build_real (rettype, trunc));
      TREE_SIDE_EFFECTS (arg1) = 1;
      TREE_SIDE_EFFECTS (arg1) = 1;
      return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1,
      return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1,
                          build_real (rettype, frac));
                          build_real (rettype, frac));
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Given a location LOC, an interclass builtin function decl FNDECL
/* Given a location LOC, an interclass builtin function decl FNDECL
   and its single argument ARG, return an folded expression computing
   and its single argument ARG, return an folded expression computing
   the same, or NULL_TREE if we either couldn't or didn't want to fold
   the same, or NULL_TREE if we either couldn't or didn't want to fold
   (the latter happen if there's an RTL instruction available).  */
   (the latter happen if there's an RTL instruction available).  */
 
 
static tree
static tree
fold_builtin_interclass_mathfn (location_t loc, tree fndecl, tree arg)
fold_builtin_interclass_mathfn (location_t loc, tree fndecl, tree arg)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (interclass_mathfn_icode (arg, fndecl) != CODE_FOR_nothing)
  if (interclass_mathfn_icode (arg, fndecl) != CODE_FOR_nothing)
    return NULL_TREE;
    return NULL_TREE;
 
 
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
 
 
  /* If there is no optab, try generic code.  */
  /* If there is no optab, try generic code.  */
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
      tree result;
      tree result;
 
 
    CASE_FLT_FN (BUILT_IN_ISINF):
    CASE_FLT_FN (BUILT_IN_ISINF):
      {
      {
        /* isinf(x) -> isgreater(fabs(x),DBL_MAX).  */
        /* isinf(x) -> isgreater(fabs(x),DBL_MAX).  */
        tree const isgr_fn = built_in_decls[BUILT_IN_ISGREATER];
        tree const isgr_fn = built_in_decls[BUILT_IN_ISGREATER];
        tree const type = TREE_TYPE (arg);
        tree const type = TREE_TYPE (arg);
        REAL_VALUE_TYPE r;
        REAL_VALUE_TYPE r;
        char buf[128];
        char buf[128];
 
 
        get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
        get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
        real_from_string (&r, buf);
        real_from_string (&r, buf);
        result = build_call_expr (isgr_fn, 2,
        result = build_call_expr (isgr_fn, 2,
                                  fold_build1_loc (loc, ABS_EXPR, type, arg),
                                  fold_build1_loc (loc, ABS_EXPR, type, arg),
                                  build_real (type, r));
                                  build_real (type, r));
        return result;
        return result;
      }
      }
    CASE_FLT_FN (BUILT_IN_FINITE):
    CASE_FLT_FN (BUILT_IN_FINITE):
    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISFINITE:
      {
      {
        /* isfinite(x) -> islessequal(fabs(x),DBL_MAX).  */
        /* isfinite(x) -> islessequal(fabs(x),DBL_MAX).  */
        tree const isle_fn = built_in_decls[BUILT_IN_ISLESSEQUAL];
        tree const isle_fn = built_in_decls[BUILT_IN_ISLESSEQUAL];
        tree const type = TREE_TYPE (arg);
        tree const type = TREE_TYPE (arg);
        REAL_VALUE_TYPE r;
        REAL_VALUE_TYPE r;
        char buf[128];
        char buf[128];
 
 
        get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
        get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
        real_from_string (&r, buf);
        real_from_string (&r, buf);
        result = build_call_expr (isle_fn, 2,
        result = build_call_expr (isle_fn, 2,
                                  fold_build1_loc (loc, ABS_EXPR, type, arg),
                                  fold_build1_loc (loc, ABS_EXPR, type, arg),
                                  build_real (type, r));
                                  build_real (type, r));
        /*result = fold_build2_loc (loc, UNGT_EXPR,
        /*result = fold_build2_loc (loc, UNGT_EXPR,
                                  TREE_TYPE (TREE_TYPE (fndecl)),
                                  TREE_TYPE (TREE_TYPE (fndecl)),
                                  fold_build1_loc (loc, ABS_EXPR, type, arg),
                                  fold_build1_loc (loc, ABS_EXPR, type, arg),
                                  build_real (type, r));
                                  build_real (type, r));
        result = fold_build1_loc (loc, TRUTH_NOT_EXPR,
        result = fold_build1_loc (loc, TRUTH_NOT_EXPR,
                                  TREE_TYPE (TREE_TYPE (fndecl)),
                                  TREE_TYPE (TREE_TYPE (fndecl)),
                                  result);*/
                                  result);*/
        return result;
        return result;
      }
      }
    case BUILT_IN_ISNORMAL:
    case BUILT_IN_ISNORMAL:
      {
      {
        /* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) &
        /* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) &
           islessequal(fabs(x),DBL_MAX).  */
           islessequal(fabs(x),DBL_MAX).  */
        tree const isle_fn = built_in_decls[BUILT_IN_ISLESSEQUAL];
        tree const isle_fn = built_in_decls[BUILT_IN_ISLESSEQUAL];
        tree const isge_fn = built_in_decls[BUILT_IN_ISGREATEREQUAL];
        tree const isge_fn = built_in_decls[BUILT_IN_ISGREATEREQUAL];
        tree const type = TREE_TYPE (arg);
        tree const type = TREE_TYPE (arg);
        REAL_VALUE_TYPE rmax, rmin;
        REAL_VALUE_TYPE rmax, rmin;
        char buf[128];
        char buf[128];
 
 
        get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
        get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
        real_from_string (&rmax, buf);
        real_from_string (&rmax, buf);
        sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
        sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
        real_from_string (&rmin, buf);
        real_from_string (&rmin, buf);
        arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg));
        arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg));
        result = build_call_expr (isle_fn, 2, arg,
        result = build_call_expr (isle_fn, 2, arg,
                                  build_real (type, rmax));
                                  build_real (type, rmax));
        result = fold_build2 (BIT_AND_EXPR, integer_type_node, result,
        result = fold_build2 (BIT_AND_EXPR, integer_type_node, result,
                              build_call_expr (isge_fn, 2, arg,
                              build_call_expr (isge_fn, 2, arg,
                                               build_real (type, rmin)));
                                               build_real (type, rmin)));
        return result;
        return result;
      }
      }
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite.
/* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite.
   ARG is the argument for the call.  */
   ARG is the argument for the call.  */
 
 
static tree
static tree
fold_builtin_classify (location_t loc, tree fndecl, tree arg, int builtin_index)
fold_builtin_classify (location_t loc, tree fndecl, tree arg, int builtin_index)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
 
 
  if (!validate_arg (arg, REAL_TYPE))
  if (!validate_arg (arg, REAL_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  switch (builtin_index)
  switch (builtin_index)
    {
    {
    case BUILT_IN_ISINF:
    case BUILT_IN_ISINF:
      if (!HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
      if (!HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
        return omit_one_operand_loc (loc, type, integer_zero_node, arg);
        return omit_one_operand_loc (loc, type, integer_zero_node, arg);
 
 
      if (TREE_CODE (arg) == REAL_CST)
      if (TREE_CODE (arg) == REAL_CST)
        {
        {
          r = TREE_REAL_CST (arg);
          r = TREE_REAL_CST (arg);
          if (real_isinf (&r))
          if (real_isinf (&r))
            return real_compare (GT_EXPR, &r, &dconst0)
            return real_compare (GT_EXPR, &r, &dconst0)
                   ? integer_one_node : integer_minus_one_node;
                   ? integer_one_node : integer_minus_one_node;
          else
          else
            return integer_zero_node;
            return integer_zero_node;
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case BUILT_IN_ISINF_SIGN:
    case BUILT_IN_ISINF_SIGN:
      {
      {
        /* isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 */
        /* isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 */
        /* In a boolean context, GCC will fold the inner COND_EXPR to
        /* In a boolean context, GCC will fold the inner COND_EXPR to
           1.  So e.g. "if (isinf_sign(x))" would be folded to just
           1.  So e.g. "if (isinf_sign(x))" would be folded to just
           "if (isinf(x) ? 1 : 0)" which becomes "if (isinf(x))". */
           "if (isinf(x) ? 1 : 0)" which becomes "if (isinf(x))". */
        tree signbit_fn = mathfn_built_in_1 (TREE_TYPE (arg), BUILT_IN_SIGNBIT, 0);
        tree signbit_fn = mathfn_built_in_1 (TREE_TYPE (arg), BUILT_IN_SIGNBIT, 0);
        tree isinf_fn = built_in_decls[BUILT_IN_ISINF];
        tree isinf_fn = built_in_decls[BUILT_IN_ISINF];
        tree tmp = NULL_TREE;
        tree tmp = NULL_TREE;
 
 
        arg = builtin_save_expr (arg);
        arg = builtin_save_expr (arg);
 
 
        if (signbit_fn && isinf_fn)
        if (signbit_fn && isinf_fn)
          {
          {
            tree signbit_call = build_call_expr_loc (loc, signbit_fn, 1, arg);
            tree signbit_call = build_call_expr_loc (loc, signbit_fn, 1, arg);
            tree isinf_call = build_call_expr_loc (loc, isinf_fn, 1, arg);
            tree isinf_call = build_call_expr_loc (loc, isinf_fn, 1, arg);
 
 
            signbit_call = fold_build2_loc (loc, NE_EXPR, integer_type_node,
            signbit_call = fold_build2_loc (loc, NE_EXPR, integer_type_node,
                                        signbit_call, integer_zero_node);
                                        signbit_call, integer_zero_node);
            isinf_call = fold_build2_loc (loc, NE_EXPR, integer_type_node,
            isinf_call = fold_build2_loc (loc, NE_EXPR, integer_type_node,
                                      isinf_call, integer_zero_node);
                                      isinf_call, integer_zero_node);
 
 
            tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node, signbit_call,
            tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node, signbit_call,
                               integer_minus_one_node, integer_one_node);
                               integer_minus_one_node, integer_one_node);
            tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node,
            tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node,
                               isinf_call, tmp,
                               isinf_call, tmp,
                               integer_zero_node);
                               integer_zero_node);
          }
          }
 
 
        return tmp;
        return tmp;
      }
      }
 
 
    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISFINITE:
      if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg)))
      if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg)))
          && !HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
          && !HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
        return omit_one_operand_loc (loc, type, integer_one_node, arg);
        return omit_one_operand_loc (loc, type, integer_one_node, arg);
 
 
      if (TREE_CODE (arg) == REAL_CST)
      if (TREE_CODE (arg) == REAL_CST)
        {
        {
          r = TREE_REAL_CST (arg);
          r = TREE_REAL_CST (arg);
          return real_isfinite (&r) ? integer_one_node : integer_zero_node;
          return real_isfinite (&r) ? integer_one_node : integer_zero_node;
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case BUILT_IN_ISNAN:
    case BUILT_IN_ISNAN:
      if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg))))
      if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg))))
        return omit_one_operand_loc (loc, type, integer_zero_node, arg);
        return omit_one_operand_loc (loc, type, integer_zero_node, arg);
 
 
      if (TREE_CODE (arg) == REAL_CST)
      if (TREE_CODE (arg) == REAL_CST)
        {
        {
          r = TREE_REAL_CST (arg);
          r = TREE_REAL_CST (arg);
          return real_isnan (&r) ? integer_one_node : integer_zero_node;
          return real_isnan (&r) ? integer_one_node : integer_zero_node;
        }
        }
 
 
      arg = builtin_save_expr (arg);
      arg = builtin_save_expr (arg);
      return fold_build2_loc (loc, UNORDERED_EXPR, type, arg, arg);
      return fold_build2_loc (loc, UNORDERED_EXPR, type, arg, arg);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Fold a call to __builtin_fpclassify(int, int, int, int, int, ...).
/* Fold a call to __builtin_fpclassify(int, int, int, int, int, ...).
   This builtin will generate code to return the appropriate floating
   This builtin will generate code to return the appropriate floating
   point classification depending on the value of the floating point
   point classification depending on the value of the floating point
   number passed in.  The possible return values must be supplied as
   number passed in.  The possible return values must be supplied as
   int arguments to the call in the following order: FP_NAN, FP_INFINITE,
   int arguments to the call in the following order: FP_NAN, FP_INFINITE,
   FP_NORMAL, FP_SUBNORMAL and FP_ZERO.  The ellipses is for exactly
   FP_NORMAL, FP_SUBNORMAL and FP_ZERO.  The ellipses is for exactly
   one floating point argument which is "type generic".  */
   one floating point argument which is "type generic".  */
 
 
static tree
static tree
fold_builtin_fpclassify (location_t loc, tree exp)
fold_builtin_fpclassify (location_t loc, tree exp)
{
{
  tree fp_nan, fp_infinite, fp_normal, fp_subnormal, fp_zero,
  tree fp_nan, fp_infinite, fp_normal, fp_subnormal, fp_zero,
    arg, type, res, tmp;
    arg, type, res, tmp;
  enum machine_mode mode;
  enum machine_mode mode;
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
  char buf[128];
  char buf[128];
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (!validate_arglist (exp, INTEGER_TYPE, INTEGER_TYPE,
  if (!validate_arglist (exp, INTEGER_TYPE, INTEGER_TYPE,
                         INTEGER_TYPE, INTEGER_TYPE,
                         INTEGER_TYPE, INTEGER_TYPE,
                         INTEGER_TYPE, REAL_TYPE, VOID_TYPE))
                         INTEGER_TYPE, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  fp_nan = CALL_EXPR_ARG (exp, 0);
  fp_nan = CALL_EXPR_ARG (exp, 0);
  fp_infinite = CALL_EXPR_ARG (exp, 1);
  fp_infinite = CALL_EXPR_ARG (exp, 1);
  fp_normal = CALL_EXPR_ARG (exp, 2);
  fp_normal = CALL_EXPR_ARG (exp, 2);
  fp_subnormal = CALL_EXPR_ARG (exp, 3);
  fp_subnormal = CALL_EXPR_ARG (exp, 3);
  fp_zero = CALL_EXPR_ARG (exp, 4);
  fp_zero = CALL_EXPR_ARG (exp, 4);
  arg = CALL_EXPR_ARG (exp, 5);
  arg = CALL_EXPR_ARG (exp, 5);
  type = TREE_TYPE (arg);
  type = TREE_TYPE (arg);
  mode = TYPE_MODE (type);
  mode = TYPE_MODE (type);
  arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg));
  arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg));
 
 
  /* fpclassify(x) ->
  /* fpclassify(x) ->
       isnan(x) ? FP_NAN :
       isnan(x) ? FP_NAN :
         (fabs(x) == Inf ? FP_INFINITE :
         (fabs(x) == Inf ? FP_INFINITE :
           (fabs(x) >= DBL_MIN ? FP_NORMAL :
           (fabs(x) >= DBL_MIN ? FP_NORMAL :
             (x == 0 ? FP_ZERO : FP_SUBNORMAL))).  */
             (x == 0 ? FP_ZERO : FP_SUBNORMAL))).  */
 
 
  tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
  tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
                     build_real (type, dconst0));
                     build_real (type, dconst0));
  res = fold_build3_loc (loc, COND_EXPR, integer_type_node,
  res = fold_build3_loc (loc, COND_EXPR, integer_type_node,
                     tmp, fp_zero, fp_subnormal);
                     tmp, fp_zero, fp_subnormal);
 
 
  sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
  sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
  real_from_string (&r, buf);
  real_from_string (&r, buf);
  tmp = fold_build2_loc (loc, GE_EXPR, integer_type_node,
  tmp = fold_build2_loc (loc, GE_EXPR, integer_type_node,
                     arg, build_real (type, r));
                     arg, build_real (type, r));
  res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_normal, res);
  res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_normal, res);
 
 
  if (HONOR_INFINITIES (mode))
  if (HONOR_INFINITIES (mode))
    {
    {
      real_inf (&r);
      real_inf (&r);
      tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
      tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
                         build_real (type, r));
                         build_real (type, r));
      res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp,
      res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp,
                         fp_infinite, res);
                         fp_infinite, res);
    }
    }
 
 
  if (HONOR_NANS (mode))
  if (HONOR_NANS (mode))
    {
    {
      tmp = fold_build2_loc (loc, ORDERED_EXPR, integer_type_node, arg, arg);
      tmp = fold_build2_loc (loc, ORDERED_EXPR, integer_type_node, arg, arg);
      res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, res, fp_nan);
      res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, res, fp_nan);
    }
    }
 
 
  return res;
  return res;
}
}
 
 
/* Fold a call to an unordered comparison function such as
/* Fold a call to an unordered comparison function such as
   __builtin_isgreater().  FNDECL is the FUNCTION_DECL for the function
   __builtin_isgreater().  FNDECL is the FUNCTION_DECL for the function
   being called and ARG0 and ARG1 are the arguments for the call.
   being called and ARG0 and ARG1 are the arguments for the call.
   UNORDERED_CODE and ORDERED_CODE are comparison codes that give
   UNORDERED_CODE and ORDERED_CODE are comparison codes that give
   the opposite of the desired result.  UNORDERED_CODE is used
   the opposite of the desired result.  UNORDERED_CODE is used
   for modes that can hold NaNs and ORDERED_CODE is used for
   for modes that can hold NaNs and ORDERED_CODE is used for
   the rest.  */
   the rest.  */
 
 
static tree
static tree
fold_builtin_unordered_cmp (location_t loc, tree fndecl, tree arg0, tree arg1,
fold_builtin_unordered_cmp (location_t loc, tree fndecl, tree arg0, tree arg1,
                            enum tree_code unordered_code,
                            enum tree_code unordered_code,
                            enum tree_code ordered_code)
                            enum tree_code ordered_code)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum tree_code code;
  enum tree_code code;
  tree type0, type1;
  tree type0, type1;
  enum tree_code code0, code1;
  enum tree_code code0, code1;
  tree cmp_type = NULL_TREE;
  tree cmp_type = NULL_TREE;
 
 
  type0 = TREE_TYPE (arg0);
  type0 = TREE_TYPE (arg0);
  type1 = TREE_TYPE (arg1);
  type1 = TREE_TYPE (arg1);
 
 
  code0 = TREE_CODE (type0);
  code0 = TREE_CODE (type0);
  code1 = TREE_CODE (type1);
  code1 = TREE_CODE (type1);
 
 
  if (code0 == REAL_TYPE && code1 == REAL_TYPE)
  if (code0 == REAL_TYPE && code1 == REAL_TYPE)
    /* Choose the wider of two real types.  */
    /* Choose the wider of two real types.  */
    cmp_type = TYPE_PRECISION (type0) >= TYPE_PRECISION (type1)
    cmp_type = TYPE_PRECISION (type0) >= TYPE_PRECISION (type1)
      ? type0 : type1;
      ? type0 : type1;
  else if (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
  else if (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
    cmp_type = type0;
    cmp_type = type0;
  else if (code0 == INTEGER_TYPE && code1 == REAL_TYPE)
  else if (code0 == INTEGER_TYPE && code1 == REAL_TYPE)
    cmp_type = type1;
    cmp_type = type1;
 
 
  arg0 = fold_convert_loc (loc, cmp_type, arg0);
  arg0 = fold_convert_loc (loc, cmp_type, arg0);
  arg1 = fold_convert_loc (loc, cmp_type, arg1);
  arg1 = fold_convert_loc (loc, cmp_type, arg1);
 
 
  if (unordered_code == UNORDERED_EXPR)
  if (unordered_code == UNORDERED_EXPR)
    {
    {
      if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
      if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
        return omit_two_operands_loc (loc, type, integer_zero_node, arg0, arg1);
        return omit_two_operands_loc (loc, type, integer_zero_node, arg0, arg1);
      return fold_build2_loc (loc, UNORDERED_EXPR, type, arg0, arg1);
      return fold_build2_loc (loc, UNORDERED_EXPR, type, arg0, arg1);
    }
    }
 
 
  code = HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))) ? unordered_code
  code = HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))) ? unordered_code
                                                   : ordered_code;
                                                   : ordered_code;
  return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
  return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
                      fold_build2_loc (loc, code, type, arg0, arg1));
                      fold_build2_loc (loc, code, type, arg0, arg1));
}
}
 
 
/* Fold a call to built-in function FNDECL with 0 arguments.
/* Fold a call to built-in function FNDECL with 0 arguments.
   IGNORE is true if the result of the function call is ignored.  This
   IGNORE is true if the result of the function call is ignored.  This
   function returns NULL_TREE if no simplification was possible.  */
   function returns NULL_TREE if no simplification was possible.  */
 
 
static tree
static tree
fold_builtin_0 (location_t loc, tree fndecl, bool ignore ATTRIBUTE_UNUSED)
fold_builtin_0 (location_t loc, tree fndecl, bool ignore ATTRIBUTE_UNUSED)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  switch (fcode)
  switch (fcode)
    {
    {
    CASE_FLT_FN (BUILT_IN_INF):
    CASE_FLT_FN (BUILT_IN_INF):
    case BUILT_IN_INFD32:
    case BUILT_IN_INFD32:
    case BUILT_IN_INFD64:
    case BUILT_IN_INFD64:
    case BUILT_IN_INFD128:
    case BUILT_IN_INFD128:
      return fold_builtin_inf (loc, type, true);
      return fold_builtin_inf (loc, type, true);
 
 
    CASE_FLT_FN (BUILT_IN_HUGE_VAL):
    CASE_FLT_FN (BUILT_IN_HUGE_VAL):
      return fold_builtin_inf (loc, type, false);
      return fold_builtin_inf (loc, type, false);
 
 
    case BUILT_IN_CLASSIFY_TYPE:
    case BUILT_IN_CLASSIFY_TYPE:
      return fold_builtin_classify_type (NULL_TREE);
      return fold_builtin_classify_type (NULL_TREE);
 
 
    default:
    default:
      break;
      break;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to built-in function FNDECL with 1 argument, ARG0.
/* Fold a call to built-in function FNDECL with 1 argument, ARG0.
   IGNORE is true if the result of the function call is ignored.  This
   IGNORE is true if the result of the function call is ignored.  This
   function returns NULL_TREE if no simplification was possible.  */
   function returns NULL_TREE if no simplification was possible.  */
 
 
static tree
static tree
fold_builtin_1 (location_t loc, tree fndecl, tree arg0, bool ignore)
fold_builtin_1 (location_t loc, tree fndecl, tree arg0, bool ignore)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  switch (fcode)
  switch (fcode)
    {
    {
 
 
    case BUILT_IN_CONSTANT_P:
    case BUILT_IN_CONSTANT_P:
      {
      {
        tree val = fold_builtin_constant_p (arg0);
        tree val = fold_builtin_constant_p (arg0);
 
 
        /* Gimplification will pull the CALL_EXPR for the builtin out of
        /* Gimplification will pull the CALL_EXPR for the builtin out of
           an if condition.  When not optimizing, we'll not CSE it back.
           an if condition.  When not optimizing, we'll not CSE it back.
           To avoid link error types of regressions, return false now.  */
           To avoid link error types of regressions, return false now.  */
        if (!val && !optimize)
        if (!val && !optimize)
          val = integer_zero_node;
          val = integer_zero_node;
 
 
        return val;
        return val;
      }
      }
 
 
    case BUILT_IN_CLASSIFY_TYPE:
    case BUILT_IN_CLASSIFY_TYPE:
      return fold_builtin_classify_type (arg0);
      return fold_builtin_classify_type (arg0);
 
 
    case BUILT_IN_STRLEN:
    case BUILT_IN_STRLEN:
      return fold_builtin_strlen (loc, type, arg0);
      return fold_builtin_strlen (loc, type, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_FABS):
    CASE_FLT_FN (BUILT_IN_FABS):
      return fold_builtin_fabs (loc, arg0, type);
      return fold_builtin_fabs (loc, arg0, type);
 
 
    case BUILT_IN_ABS:
    case BUILT_IN_ABS:
    case BUILT_IN_LABS:
    case BUILT_IN_LABS:
    case BUILT_IN_LLABS:
    case BUILT_IN_LLABS:
    case BUILT_IN_IMAXABS:
    case BUILT_IN_IMAXABS:
      return fold_builtin_abs (loc, arg0, type);
      return fold_builtin_abs (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_CONJ):
    CASE_FLT_FN (BUILT_IN_CONJ):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
        && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return fold_build1_loc (loc, CONJ_EXPR, type, arg0);
        return fold_build1_loc (loc, CONJ_EXPR, type, arg0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CREAL):
    CASE_FLT_FN (BUILT_IN_CREAL):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
        && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return non_lvalue_loc (loc, fold_build1_loc (loc, REALPART_EXPR, type, arg0));;
        return non_lvalue_loc (loc, fold_build1_loc (loc, REALPART_EXPR, type, arg0));;
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CIMAG):
    CASE_FLT_FN (BUILT_IN_CIMAG):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return non_lvalue_loc (loc, fold_build1_loc (loc, IMAGPART_EXPR, type, arg0));
        return non_lvalue_loc (loc, fold_build1_loc (loc, IMAGPART_EXPR, type, arg0));
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CCOS):
    CASE_FLT_FN (BUILT_IN_CCOS):
      return fold_builtin_ccos(loc, arg0, type, fndecl, /*hyper=*/ false);
      return fold_builtin_ccos(loc, arg0, type, fndecl, /*hyper=*/ false);
 
 
    CASE_FLT_FN (BUILT_IN_CCOSH):
    CASE_FLT_FN (BUILT_IN_CCOSH):
      return fold_builtin_ccos(loc, arg0, type, fndecl, /*hyper=*/ true);
      return fold_builtin_ccos(loc, arg0, type, fndecl, /*hyper=*/ true);
 
 
    CASE_FLT_FN (BUILT_IN_CSIN):
    CASE_FLT_FN (BUILT_IN_CSIN):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_sin);
        return do_mpc_arg1 (arg0, type, mpc_sin);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CSINH):
    CASE_FLT_FN (BUILT_IN_CSINH):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_sinh);
        return do_mpc_arg1 (arg0, type, mpc_sinh);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CTAN):
    CASE_FLT_FN (BUILT_IN_CTAN):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_tan);
        return do_mpc_arg1 (arg0, type, mpc_tan);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CTANH):
    CASE_FLT_FN (BUILT_IN_CTANH):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_tanh);
        return do_mpc_arg1 (arg0, type, mpc_tanh);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CLOG):
    CASE_FLT_FN (BUILT_IN_CLOG):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_log);
        return do_mpc_arg1 (arg0, type, mpc_log);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CSQRT):
    CASE_FLT_FN (BUILT_IN_CSQRT):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_sqrt);
        return do_mpc_arg1 (arg0, type, mpc_sqrt);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CASIN):
    CASE_FLT_FN (BUILT_IN_CASIN):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_asin);
        return do_mpc_arg1 (arg0, type, mpc_asin);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CACOS):
    CASE_FLT_FN (BUILT_IN_CACOS):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_acos);
        return do_mpc_arg1 (arg0, type, mpc_acos);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CATAN):
    CASE_FLT_FN (BUILT_IN_CATAN):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_atan);
        return do_mpc_arg1 (arg0, type, mpc_atan);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CASINH):
    CASE_FLT_FN (BUILT_IN_CASINH):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_asinh);
        return do_mpc_arg1 (arg0, type, mpc_asinh);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CACOSH):
    CASE_FLT_FN (BUILT_IN_CACOSH):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_acosh);
        return do_mpc_arg1 (arg0, type, mpc_acosh);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CATANH):
    CASE_FLT_FN (BUILT_IN_CATANH):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
        return do_mpc_arg1 (arg0, type, mpc_atanh);
        return do_mpc_arg1 (arg0, type, mpc_atanh);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_CABS):
    CASE_FLT_FN (BUILT_IN_CABS):
      return fold_builtin_cabs (loc, arg0, type, fndecl);
      return fold_builtin_cabs (loc, arg0, type, fndecl);
 
 
    CASE_FLT_FN (BUILT_IN_CARG):
    CASE_FLT_FN (BUILT_IN_CARG):
      return fold_builtin_carg (loc, arg0, type);
      return fold_builtin_carg (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
      return fold_builtin_sqrt (loc, arg0, type);
      return fold_builtin_sqrt (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_CBRT):
    CASE_FLT_FN (BUILT_IN_CBRT):
      return fold_builtin_cbrt (loc, arg0, type);
      return fold_builtin_cbrt (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_asin,
        return do_mpfr_arg1 (arg0, type, mpfr_asin,
                             &dconstm1, &dconst1, true);
                             &dconstm1, &dconst1, true);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_acos,
        return do_mpfr_arg1 (arg0, type, mpfr_acos,
                             &dconstm1, &dconst1, true);
                             &dconstm1, &dconst1, true);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_atan, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_atan, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ASINH):
    CASE_FLT_FN (BUILT_IN_ASINH):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_asinh, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_asinh, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ACOSH):
    CASE_FLT_FN (BUILT_IN_ACOSH):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_acosh,
        return do_mpfr_arg1 (arg0, type, mpfr_acosh,
                             &dconst1, NULL, true);
                             &dconst1, NULL, true);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_ATANH):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_atanh,
        return do_mpfr_arg1 (arg0, type, mpfr_atanh,
                             &dconstm1, &dconst1, false);
                             &dconstm1, &dconst1, false);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_sin, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_sin, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_COS):
    CASE_FLT_FN (BUILT_IN_COS):
      return fold_builtin_cos (loc, arg0, type, fndecl);
      return fold_builtin_cos (loc, arg0, type, fndecl);
 
 
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
      return fold_builtin_tan (arg0, type);
      return fold_builtin_tan (arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_CEXP):
    CASE_FLT_FN (BUILT_IN_CEXP):
      return fold_builtin_cexp (loc, arg0, type);
      return fold_builtin_cexp (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_CEXPI):
    CASE_FLT_FN (BUILT_IN_CEXPI):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_sincos (arg0, NULL_TREE, NULL_TREE);
        return do_mpfr_sincos (arg0, NULL_TREE, NULL_TREE);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_SINH):
    CASE_FLT_FN (BUILT_IN_SINH):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_sinh, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_sinh, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_COSH):
    CASE_FLT_FN (BUILT_IN_COSH):
      return fold_builtin_cosh (loc, arg0, type, fndecl);
      return fold_builtin_cosh (loc, arg0, type, fndecl);
 
 
    CASE_FLT_FN (BUILT_IN_TANH):
    CASE_FLT_FN (BUILT_IN_TANH):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_tanh, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_tanh, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ERF):
    CASE_FLT_FN (BUILT_IN_ERF):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_erf, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_erf, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ERFC):
    CASE_FLT_FN (BUILT_IN_ERFC):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_erfc, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_erfc, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_TGAMMA):
    CASE_FLT_FN (BUILT_IN_TGAMMA):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_gamma, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_gamma, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
      return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp);
      return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp);
 
 
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
      return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp2);
      return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp2);
 
 
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
      return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp10);
      return fold_builtin_exponent (loc, fndecl, arg0, mpfr_exp10);
 
 
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_EXPM1):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_expm1, NULL, NULL, 0);
        return do_mpfr_arg1 (arg0, type, mpfr_expm1, NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
    return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log);
    return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log);
 
 
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
      return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log2);
      return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log2);
 
 
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
      return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log10);
      return fold_builtin_logarithm (loc, fndecl, arg0, mpfr_log10);
 
 
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_log1p,
        return do_mpfr_arg1 (arg0, type, mpfr_log1p,
                             &dconstm1, NULL, false);
                             &dconstm1, NULL, false);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_J0):
    CASE_FLT_FN (BUILT_IN_J0):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_j0,
        return do_mpfr_arg1 (arg0, type, mpfr_j0,
                             NULL, NULL, 0);
                             NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_J1):
    CASE_FLT_FN (BUILT_IN_J1):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_j1,
        return do_mpfr_arg1 (arg0, type, mpfr_j1,
                             NULL, NULL, 0);
                             NULL, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_Y0):
    CASE_FLT_FN (BUILT_IN_Y0):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_y0,
        return do_mpfr_arg1 (arg0, type, mpfr_y0,
                             &dconst0, NULL, false);
                             &dconst0, NULL, false);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_Y1):
    CASE_FLT_FN (BUILT_IN_Y1):
      if (validate_arg (arg0, REAL_TYPE))
      if (validate_arg (arg0, REAL_TYPE))
        return do_mpfr_arg1 (arg0, type, mpfr_y1,
        return do_mpfr_arg1 (arg0, type, mpfr_y1,
                             &dconst0, NULL, false);
                             &dconst0, NULL, false);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_NAN):
    CASE_FLT_FN (BUILT_IN_NAN):
    case BUILT_IN_NAND32:
    case BUILT_IN_NAND32:
    case BUILT_IN_NAND64:
    case BUILT_IN_NAND64:
    case BUILT_IN_NAND128:
    case BUILT_IN_NAND128:
      return fold_builtin_nan (arg0, type, true);
      return fold_builtin_nan (arg0, type, true);
 
 
    CASE_FLT_FN (BUILT_IN_NANS):
    CASE_FLT_FN (BUILT_IN_NANS):
      return fold_builtin_nan (arg0, type, false);
      return fold_builtin_nan (arg0, type, false);
 
 
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_FLOOR):
      return fold_builtin_floor (loc, fndecl, arg0);
      return fold_builtin_floor (loc, fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_CEIL):
      return fold_builtin_ceil (loc, fndecl, arg0);
      return fold_builtin_ceil (loc, fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_TRUNC):
      return fold_builtin_trunc (loc, fndecl, arg0);
      return fold_builtin_trunc (loc, fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_ROUND):
      return fold_builtin_round (loc, fndecl, arg0);
      return fold_builtin_round (loc, fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_RINT):
      return fold_trunc_transparent_mathfn (loc, fndecl, arg0);
      return fold_trunc_transparent_mathfn (loc, fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
      return fold_builtin_int_roundingfn (loc, fndecl, arg0);
      return fold_builtin_int_roundingfn (loc, fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
      return fold_fixed_mathfn (loc, fndecl, arg0);
      return fold_fixed_mathfn (loc, fndecl, arg0);
 
 
    case BUILT_IN_BSWAP32:
    case BUILT_IN_BSWAP32:
    case BUILT_IN_BSWAP64:
    case BUILT_IN_BSWAP64:
      return fold_builtin_bswap (fndecl, arg0);
      return fold_builtin_bswap (fndecl, arg0);
 
 
    CASE_INT_FN (BUILT_IN_FFS):
    CASE_INT_FN (BUILT_IN_FFS):
    CASE_INT_FN (BUILT_IN_CLZ):
    CASE_INT_FN (BUILT_IN_CLZ):
    CASE_INT_FN (BUILT_IN_CTZ):
    CASE_INT_FN (BUILT_IN_CTZ):
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    CASE_INT_FN (BUILT_IN_PARITY):
    CASE_INT_FN (BUILT_IN_PARITY):
      return fold_builtin_bitop (fndecl, arg0);
      return fold_builtin_bitop (fndecl, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
      return fold_builtin_signbit (loc, arg0, type);
      return fold_builtin_signbit (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
    CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
      return fold_builtin_significand (loc, arg0, type);
      return fold_builtin_significand (loc, arg0, type);
 
 
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_LOGB):
      return fold_builtin_logb (loc, arg0, type);
      return fold_builtin_logb (loc, arg0, type);
 
 
    case BUILT_IN_ISASCII:
    case BUILT_IN_ISASCII:
      return fold_builtin_isascii (loc, arg0);
      return fold_builtin_isascii (loc, arg0);
 
 
    case BUILT_IN_TOASCII:
    case BUILT_IN_TOASCII:
      return fold_builtin_toascii (loc, arg0);
      return fold_builtin_toascii (loc, arg0);
 
 
    case BUILT_IN_ISDIGIT:
    case BUILT_IN_ISDIGIT:
      return fold_builtin_isdigit (loc, arg0);
      return fold_builtin_isdigit (loc, arg0);
 
 
    CASE_FLT_FN (BUILT_IN_FINITE):
    CASE_FLT_FN (BUILT_IN_FINITE):
    case BUILT_IN_FINITED32:
    case BUILT_IN_FINITED32:
    case BUILT_IN_FINITED64:
    case BUILT_IN_FINITED64:
    case BUILT_IN_FINITED128:
    case BUILT_IN_FINITED128:
    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISFINITE:
      {
      {
        tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE);
        tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE);
        if (ret)
        if (ret)
          return ret;
          return ret;
        return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
        return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
      }
      }
 
 
    CASE_FLT_FN (BUILT_IN_ISINF):
    CASE_FLT_FN (BUILT_IN_ISINF):
    case BUILT_IN_ISINFD32:
    case BUILT_IN_ISINFD32:
    case BUILT_IN_ISINFD64:
    case BUILT_IN_ISINFD64:
    case BUILT_IN_ISINFD128:
    case BUILT_IN_ISINFD128:
      {
      {
        tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF);
        tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF);
        if (ret)
        if (ret)
          return ret;
          return ret;
        return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
        return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
      }
      }
 
 
    case BUILT_IN_ISNORMAL:
    case BUILT_IN_ISNORMAL:
      return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
      return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
 
 
    case BUILT_IN_ISINF_SIGN:
    case BUILT_IN_ISINF_SIGN:
      return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN);
      return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN);
 
 
    CASE_FLT_FN (BUILT_IN_ISNAN):
    CASE_FLT_FN (BUILT_IN_ISNAN):
    case BUILT_IN_ISNAND32:
    case BUILT_IN_ISNAND32:
    case BUILT_IN_ISNAND64:
    case BUILT_IN_ISNAND64:
    case BUILT_IN_ISNAND128:
    case BUILT_IN_ISNAND128:
      return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN);
      return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN);
 
 
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_VPRINTF:
    case BUILT_IN_VPRINTF:
      return fold_builtin_printf (loc, fndecl, arg0, NULL_TREE, ignore, fcode);
      return fold_builtin_printf (loc, fndecl, arg0, NULL_TREE, ignore, fcode);
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
 
 
}
}
 
 
/* Fold a call to built-in function FNDECL with 2 arguments, ARG0 and ARG1.
/* Fold a call to built-in function FNDECL with 2 arguments, ARG0 and ARG1.
   IGNORE is true if the result of the function call is ignored.  This
   IGNORE is true if the result of the function call is ignored.  This
   function returns NULL_TREE if no simplification was possible.  */
   function returns NULL_TREE if no simplification was possible.  */
 
 
static tree
static tree
fold_builtin_2 (location_t loc, tree fndecl, tree arg0, tree arg1, bool ignore)
fold_builtin_2 (location_t loc, tree fndecl, tree arg0, tree arg1, bool ignore)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    CASE_FLT_FN (BUILT_IN_JN):
    CASE_FLT_FN (BUILT_IN_JN):
      if (validate_arg (arg0, INTEGER_TYPE)
      if (validate_arg (arg0, INTEGER_TYPE)
          && validate_arg (arg1, REAL_TYPE))
          && validate_arg (arg1, REAL_TYPE))
        return do_mpfr_bessel_n (arg0, arg1, type, mpfr_jn, NULL, 0);
        return do_mpfr_bessel_n (arg0, arg1, type, mpfr_jn, NULL, 0);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_YN):
    CASE_FLT_FN (BUILT_IN_YN):
      if (validate_arg (arg0, INTEGER_TYPE)
      if (validate_arg (arg0, INTEGER_TYPE)
          && validate_arg (arg1, REAL_TYPE))
          && validate_arg (arg1, REAL_TYPE))
        return do_mpfr_bessel_n (arg0, arg1, type, mpfr_yn,
        return do_mpfr_bessel_n (arg0, arg1, type, mpfr_yn,
                                 &dconst0, false);
                                 &dconst0, false);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_DREM):
    CASE_FLT_FN (BUILT_IN_DREM):
    CASE_FLT_FN (BUILT_IN_REMAINDER):
    CASE_FLT_FN (BUILT_IN_REMAINDER):
      if (validate_arg (arg0, REAL_TYPE)
      if (validate_arg (arg0, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE))
          && validate_arg(arg1, REAL_TYPE))
        return do_mpfr_arg2 (arg0, arg1, type, mpfr_remainder);
        return do_mpfr_arg2 (arg0, arg1, type, mpfr_remainder);
    break;
    break;
 
 
    CASE_FLT_FN_REENT (BUILT_IN_GAMMA): /* GAMMA_R */
    CASE_FLT_FN_REENT (BUILT_IN_GAMMA): /* GAMMA_R */
    CASE_FLT_FN_REENT (BUILT_IN_LGAMMA): /* LGAMMA_R */
    CASE_FLT_FN_REENT (BUILT_IN_LGAMMA): /* LGAMMA_R */
      if (validate_arg (arg0, REAL_TYPE)
      if (validate_arg (arg0, REAL_TYPE)
          && validate_arg(arg1, POINTER_TYPE))
          && validate_arg(arg1, POINTER_TYPE))
        return do_mpfr_lgamma_r (arg0, arg1, type);
        return do_mpfr_lgamma_r (arg0, arg1, type);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_ATAN2):
      if (validate_arg (arg0, REAL_TYPE)
      if (validate_arg (arg0, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE))
          && validate_arg(arg1, REAL_TYPE))
        return do_mpfr_arg2 (arg0, arg1, type, mpfr_atan2);
        return do_mpfr_arg2 (arg0, arg1, type, mpfr_atan2);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_FDIM):
    CASE_FLT_FN (BUILT_IN_FDIM):
      if (validate_arg (arg0, REAL_TYPE)
      if (validate_arg (arg0, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE))
          && validate_arg(arg1, REAL_TYPE))
        return do_mpfr_arg2 (arg0, arg1, type, mpfr_dim);
        return do_mpfr_arg2 (arg0, arg1, type, mpfr_dim);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_HYPOT):
    CASE_FLT_FN (BUILT_IN_HYPOT):
      return fold_builtin_hypot (loc, fndecl, arg0, arg1, type);
      return fold_builtin_hypot (loc, fndecl, arg0, arg1, type);
 
 
    CASE_FLT_FN (BUILT_IN_CPOW):
    CASE_FLT_FN (BUILT_IN_CPOW):
      if (validate_arg (arg0, COMPLEX_TYPE)
      if (validate_arg (arg0, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE
          && validate_arg (arg1, COMPLEX_TYPE)
          && validate_arg (arg1, COMPLEX_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE)
        return do_mpc_arg2 (arg0, arg1, type, /*do_nonfinite=*/ 0, mpc_pow);
        return do_mpc_arg2 (arg0, arg1, type, /*do_nonfinite=*/ 0, mpc_pow);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_LDEXP):
      return fold_builtin_load_exponent (loc, arg0, arg1, type, /*ldexp=*/true);
      return fold_builtin_load_exponent (loc, arg0, arg1, type, /*ldexp=*/true);
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
    CASE_FLT_FN (BUILT_IN_SCALBLN):
      return fold_builtin_load_exponent (loc, arg0, arg1,
      return fold_builtin_load_exponent (loc, arg0, arg1,
                                         type, /*ldexp=*/false);
                                         type, /*ldexp=*/false);
 
 
    CASE_FLT_FN (BUILT_IN_FREXP):
    CASE_FLT_FN (BUILT_IN_FREXP):
      return fold_builtin_frexp (loc, arg0, arg1, type);
      return fold_builtin_frexp (loc, arg0, arg1, type);
 
 
    CASE_FLT_FN (BUILT_IN_MODF):
    CASE_FLT_FN (BUILT_IN_MODF):
      return fold_builtin_modf (loc, arg0, arg1, type);
      return fold_builtin_modf (loc, arg0, arg1, type);
 
 
    case BUILT_IN_BZERO:
    case BUILT_IN_BZERO:
      return fold_builtin_bzero (loc, arg0, arg1, ignore);
      return fold_builtin_bzero (loc, arg0, arg1, ignore);
 
 
    case BUILT_IN_FPUTS:
    case BUILT_IN_FPUTS:
      return fold_builtin_fputs (loc, arg0, arg1, ignore, false, NULL_TREE);
      return fold_builtin_fputs (loc, arg0, arg1, ignore, false, NULL_TREE);
 
 
    case BUILT_IN_FPUTS_UNLOCKED:
    case BUILT_IN_FPUTS_UNLOCKED:
      return fold_builtin_fputs (loc, arg0, arg1, ignore, true, NULL_TREE);
      return fold_builtin_fputs (loc, arg0, arg1, ignore, true, NULL_TREE);
 
 
    case BUILT_IN_STRSTR:
    case BUILT_IN_STRSTR:
      return fold_builtin_strstr (loc, arg0, arg1, type);
      return fold_builtin_strstr (loc, arg0, arg1, type);
 
 
    case BUILT_IN_STRCAT:
    case BUILT_IN_STRCAT:
      return fold_builtin_strcat (loc, arg0, arg1);
      return fold_builtin_strcat (loc, arg0, arg1);
 
 
    case BUILT_IN_STRSPN:
    case BUILT_IN_STRSPN:
      return fold_builtin_strspn (loc, arg0, arg1);
      return fold_builtin_strspn (loc, arg0, arg1);
 
 
    case BUILT_IN_STRCSPN:
    case BUILT_IN_STRCSPN:
      return fold_builtin_strcspn (loc, arg0, arg1);
      return fold_builtin_strcspn (loc, arg0, arg1);
 
 
    case BUILT_IN_STRCHR:
    case BUILT_IN_STRCHR:
    case BUILT_IN_INDEX:
    case BUILT_IN_INDEX:
      return fold_builtin_strchr (loc, arg0, arg1, type);
      return fold_builtin_strchr (loc, arg0, arg1, type);
 
 
    case BUILT_IN_STRRCHR:
    case BUILT_IN_STRRCHR:
    case BUILT_IN_RINDEX:
    case BUILT_IN_RINDEX:
      return fold_builtin_strrchr (loc, arg0, arg1, type);
      return fold_builtin_strrchr (loc, arg0, arg1, type);
 
 
    case BUILT_IN_STRCPY:
    case BUILT_IN_STRCPY:
      return fold_builtin_strcpy (loc, fndecl, arg0, arg1, NULL_TREE);
      return fold_builtin_strcpy (loc, fndecl, arg0, arg1, NULL_TREE);
 
 
    case BUILT_IN_STPCPY:
    case BUILT_IN_STPCPY:
      if (ignore)
      if (ignore)
        {
        {
          tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
          tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
          if (!fn)
          if (!fn)
            break;
            break;
 
 
          return build_call_expr_loc (loc, fn, 2, arg0, arg1);
          return build_call_expr_loc (loc, fn, 2, arg0, arg1);
        }
        }
      else
      else
        return fold_builtin_stpcpy (loc, fndecl, arg0, arg1);
        return fold_builtin_stpcpy (loc, fndecl, arg0, arg1);
      break;
      break;
 
 
    case BUILT_IN_STRCMP:
    case BUILT_IN_STRCMP:
      return fold_builtin_strcmp (loc, arg0, arg1);
      return fold_builtin_strcmp (loc, arg0, arg1);
 
 
    case BUILT_IN_STRPBRK:
    case BUILT_IN_STRPBRK:
      return fold_builtin_strpbrk (loc, arg0, arg1, type);
      return fold_builtin_strpbrk (loc, arg0, arg1, type);
 
 
    case BUILT_IN_EXPECT:
    case BUILT_IN_EXPECT:
      return fold_builtin_expect (loc, arg0, arg1);
      return fold_builtin_expect (loc, arg0, arg1);
 
 
    CASE_FLT_FN (BUILT_IN_POW):
    CASE_FLT_FN (BUILT_IN_POW):
      return fold_builtin_pow (loc, fndecl, arg0, arg1, type);
      return fold_builtin_pow (loc, fndecl, arg0, arg1, type);
 
 
    CASE_FLT_FN (BUILT_IN_POWI):
    CASE_FLT_FN (BUILT_IN_POWI):
      return fold_builtin_powi (loc, fndecl, arg0, arg1, type);
      return fold_builtin_powi (loc, fndecl, arg0, arg1, type);
 
 
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
      return fold_builtin_copysign (loc, fndecl, arg0, arg1, type);
      return fold_builtin_copysign (loc, fndecl, arg0, arg1, type);
 
 
    CASE_FLT_FN (BUILT_IN_FMIN):
    CASE_FLT_FN (BUILT_IN_FMIN):
      return fold_builtin_fmin_fmax (loc, arg0, arg1, type, /*max=*/false);
      return fold_builtin_fmin_fmax (loc, arg0, arg1, type, /*max=*/false);
 
 
    CASE_FLT_FN (BUILT_IN_FMAX):
    CASE_FLT_FN (BUILT_IN_FMAX):
      return fold_builtin_fmin_fmax (loc, arg0, arg1, type, /*max=*/true);
      return fold_builtin_fmin_fmax (loc, arg0, arg1, type, /*max=*/true);
 
 
    case BUILT_IN_ISGREATER:
    case BUILT_IN_ISGREATER:
      return fold_builtin_unordered_cmp (loc, fndecl,
      return fold_builtin_unordered_cmp (loc, fndecl,
                                         arg0, arg1, UNLE_EXPR, LE_EXPR);
                                         arg0, arg1, UNLE_EXPR, LE_EXPR);
    case BUILT_IN_ISGREATEREQUAL:
    case BUILT_IN_ISGREATEREQUAL:
      return fold_builtin_unordered_cmp (loc, fndecl,
      return fold_builtin_unordered_cmp (loc, fndecl,
                                         arg0, arg1, UNLT_EXPR, LT_EXPR);
                                         arg0, arg1, UNLT_EXPR, LT_EXPR);
    case BUILT_IN_ISLESS:
    case BUILT_IN_ISLESS:
      return fold_builtin_unordered_cmp (loc, fndecl,
      return fold_builtin_unordered_cmp (loc, fndecl,
                                         arg0, arg1, UNGE_EXPR, GE_EXPR);
                                         arg0, arg1, UNGE_EXPR, GE_EXPR);
    case BUILT_IN_ISLESSEQUAL:
    case BUILT_IN_ISLESSEQUAL:
      return fold_builtin_unordered_cmp (loc, fndecl,
      return fold_builtin_unordered_cmp (loc, fndecl,
                                         arg0, arg1, UNGT_EXPR, GT_EXPR);
                                         arg0, arg1, UNGT_EXPR, GT_EXPR);
    case BUILT_IN_ISLESSGREATER:
    case BUILT_IN_ISLESSGREATER:
      return fold_builtin_unordered_cmp (loc, fndecl,
      return fold_builtin_unordered_cmp (loc, fndecl,
                                         arg0, arg1, UNEQ_EXPR, EQ_EXPR);
                                         arg0, arg1, UNEQ_EXPR, EQ_EXPR);
    case BUILT_IN_ISUNORDERED:
    case BUILT_IN_ISUNORDERED:
      return fold_builtin_unordered_cmp (loc, fndecl,
      return fold_builtin_unordered_cmp (loc, fndecl,
                                         arg0, arg1, UNORDERED_EXPR,
                                         arg0, arg1, UNORDERED_EXPR,
                                         NOP_EXPR);
                                         NOP_EXPR);
 
 
      /* We do the folding for va_start in the expander.  */
      /* We do the folding for va_start in the expander.  */
    case BUILT_IN_VA_START:
    case BUILT_IN_VA_START:
      break;
      break;
 
 
    case BUILT_IN_SPRINTF:
    case BUILT_IN_SPRINTF:
      return fold_builtin_sprintf (loc, arg0, arg1, NULL_TREE, ignore);
      return fold_builtin_sprintf (loc, arg0, arg1, NULL_TREE, ignore);
 
 
    case BUILT_IN_OBJECT_SIZE:
    case BUILT_IN_OBJECT_SIZE:
      return fold_builtin_object_size (arg0, arg1);
      return fold_builtin_object_size (arg0, arg1);
 
 
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_VPRINTF:
    case BUILT_IN_VPRINTF:
      return fold_builtin_printf (loc, fndecl, arg0, arg1, ignore, fcode);
      return fold_builtin_printf (loc, fndecl, arg0, arg1, ignore, fcode);
 
 
    case BUILT_IN_PRINTF_CHK:
    case BUILT_IN_PRINTF_CHK:
    case BUILT_IN_VPRINTF_CHK:
    case BUILT_IN_VPRINTF_CHK:
      if (!validate_arg (arg0, INTEGER_TYPE)
      if (!validate_arg (arg0, INTEGER_TYPE)
          || TREE_SIDE_EFFECTS (arg0))
          || TREE_SIDE_EFFECTS (arg0))
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        return fold_builtin_printf (loc, fndecl,
        return fold_builtin_printf (loc, fndecl,
                                    arg1, NULL_TREE, ignore, fcode);
                                    arg1, NULL_TREE, ignore, fcode);
    break;
    break;
 
 
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_VFPRINTF:
    case BUILT_IN_VFPRINTF:
      return fold_builtin_fprintf (loc, fndecl, arg0, arg1, NULL_TREE,
      return fold_builtin_fprintf (loc, fndecl, arg0, arg1, NULL_TREE,
                                   ignore, fcode);
                                   ignore, fcode);
 
 
    default:
    default:
      break;
      break;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to built-in function FNDECL with 3 arguments, ARG0, ARG1,
/* Fold a call to built-in function FNDECL with 3 arguments, ARG0, ARG1,
   and ARG2.  IGNORE is true if the result of the function call is ignored.
   and ARG2.  IGNORE is true if the result of the function call is ignored.
   This function returns NULL_TREE if no simplification was possible.  */
   This function returns NULL_TREE if no simplification was possible.  */
 
 
static tree
static tree
fold_builtin_3 (location_t loc, tree fndecl,
fold_builtin_3 (location_t loc, tree fndecl,
                tree arg0, tree arg1, tree arg2, bool ignore)
                tree arg0, tree arg1, tree arg2, bool ignore)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  switch (fcode)
  switch (fcode)
    {
    {
 
 
    CASE_FLT_FN (BUILT_IN_SINCOS):
    CASE_FLT_FN (BUILT_IN_SINCOS):
      return fold_builtin_sincos (loc, arg0, arg1, arg2);
      return fold_builtin_sincos (loc, arg0, arg1, arg2);
 
 
    CASE_FLT_FN (BUILT_IN_FMA):
    CASE_FLT_FN (BUILT_IN_FMA):
      if (validate_arg (arg0, REAL_TYPE)
      if (validate_arg (arg0, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE)
          && validate_arg(arg2, REAL_TYPE))
          && validate_arg(arg2, REAL_TYPE))
        return do_mpfr_arg3 (arg0, arg1, arg2, type, mpfr_fma);
        return do_mpfr_arg3 (arg0, arg1, arg2, type, mpfr_fma);
    break;
    break;
 
 
    CASE_FLT_FN (BUILT_IN_REMQUO):
    CASE_FLT_FN (BUILT_IN_REMQUO):
      if (validate_arg (arg0, REAL_TYPE)
      if (validate_arg (arg0, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE)
          && validate_arg(arg1, REAL_TYPE)
          && validate_arg(arg2, POINTER_TYPE))
          && validate_arg(arg2, POINTER_TYPE))
        return do_mpfr_remquo (arg0, arg1, arg2);
        return do_mpfr_remquo (arg0, arg1, arg2);
    break;
    break;
 
 
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET:
      return fold_builtin_memset (loc, arg0, arg1, arg2, type, ignore);
      return fold_builtin_memset (loc, arg0, arg1, arg2, type, ignore);
 
 
    case BUILT_IN_BCOPY:
    case BUILT_IN_BCOPY:
      return fold_builtin_memory_op (loc, arg1, arg0, arg2,
      return fold_builtin_memory_op (loc, arg1, arg0, arg2,
                                     void_type_node, true, /*endp=*/3);
                                     void_type_node, true, /*endp=*/3);
 
 
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY:
      return fold_builtin_memory_op (loc, arg0, arg1, arg2,
      return fold_builtin_memory_op (loc, arg0, arg1, arg2,
                                     type, ignore, /*endp=*/0);
                                     type, ignore, /*endp=*/0);
 
 
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMPCPY:
      return fold_builtin_memory_op (loc, arg0, arg1, arg2,
      return fold_builtin_memory_op (loc, arg0, arg1, arg2,
                                     type, ignore, /*endp=*/1);
                                     type, ignore, /*endp=*/1);
 
 
    case BUILT_IN_MEMMOVE:
    case BUILT_IN_MEMMOVE:
      return fold_builtin_memory_op (loc, arg0, arg1, arg2,
      return fold_builtin_memory_op (loc, arg0, arg1, arg2,
                                     type, ignore, /*endp=*/3);
                                     type, ignore, /*endp=*/3);
 
 
    case BUILT_IN_STRNCAT:
    case BUILT_IN_STRNCAT:
      return fold_builtin_strncat (loc, arg0, arg1, arg2);
      return fold_builtin_strncat (loc, arg0, arg1, arg2);
 
 
    case BUILT_IN_STRNCPY:
    case BUILT_IN_STRNCPY:
      return fold_builtin_strncpy (loc, fndecl, arg0, arg1, arg2, NULL_TREE);
      return fold_builtin_strncpy (loc, fndecl, arg0, arg1, arg2, NULL_TREE);
 
 
    case BUILT_IN_STRNCMP:
    case BUILT_IN_STRNCMP:
      return fold_builtin_strncmp (loc, arg0, arg1, arg2);
      return fold_builtin_strncmp (loc, arg0, arg1, arg2);
 
 
    case BUILT_IN_MEMCHR:
    case BUILT_IN_MEMCHR:
      return fold_builtin_memchr (loc, arg0, arg1, arg2, type);
      return fold_builtin_memchr (loc, arg0, arg1, arg2, type);
 
 
    case BUILT_IN_BCMP:
    case BUILT_IN_BCMP:
    case BUILT_IN_MEMCMP:
    case BUILT_IN_MEMCMP:
      return fold_builtin_memcmp (loc, arg0, arg1, arg2);;
      return fold_builtin_memcmp (loc, arg0, arg1, arg2);;
 
 
    case BUILT_IN_SPRINTF:
    case BUILT_IN_SPRINTF:
      return fold_builtin_sprintf (loc, arg0, arg1, arg2, ignore);
      return fold_builtin_sprintf (loc, arg0, arg1, arg2, ignore);
 
 
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
      return fold_builtin_stxcpy_chk (loc, fndecl, arg0, arg1, arg2, NULL_TREE,
      return fold_builtin_stxcpy_chk (loc, fndecl, arg0, arg1, arg2, NULL_TREE,
                                      ignore, fcode);
                                      ignore, fcode);
 
 
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRCAT_CHK:
      return fold_builtin_strcat_chk (loc, fndecl, arg0, arg1, arg2);
      return fold_builtin_strcat_chk (loc, fndecl, arg0, arg1, arg2);
 
 
    case BUILT_IN_PRINTF_CHK:
    case BUILT_IN_PRINTF_CHK:
    case BUILT_IN_VPRINTF_CHK:
    case BUILT_IN_VPRINTF_CHK:
      if (!validate_arg (arg0, INTEGER_TYPE)
      if (!validate_arg (arg0, INTEGER_TYPE)
          || TREE_SIDE_EFFECTS (arg0))
          || TREE_SIDE_EFFECTS (arg0))
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        return fold_builtin_printf (loc, fndecl, arg1, arg2, ignore, fcode);
        return fold_builtin_printf (loc, fndecl, arg1, arg2, ignore, fcode);
    break;
    break;
 
 
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_VFPRINTF:
    case BUILT_IN_VFPRINTF:
      return fold_builtin_fprintf (loc, fndecl, arg0, arg1, arg2,
      return fold_builtin_fprintf (loc, fndecl, arg0, arg1, arg2,
                                   ignore, fcode);
                                   ignore, fcode);
 
 
    case BUILT_IN_FPRINTF_CHK:
    case BUILT_IN_FPRINTF_CHK:
    case BUILT_IN_VFPRINTF_CHK:
    case BUILT_IN_VFPRINTF_CHK:
      if (!validate_arg (arg1, INTEGER_TYPE)
      if (!validate_arg (arg1, INTEGER_TYPE)
          || TREE_SIDE_EFFECTS (arg1))
          || TREE_SIDE_EFFECTS (arg1))
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        return fold_builtin_fprintf (loc, fndecl, arg0, arg2, NULL_TREE,
        return fold_builtin_fprintf (loc, fndecl, arg0, arg2, NULL_TREE,
                                     ignore, fcode);
                                     ignore, fcode);
 
 
    default:
    default:
      break;
      break;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to built-in function FNDECL with 4 arguments, ARG0, ARG1,
/* Fold a call to built-in function FNDECL with 4 arguments, ARG0, ARG1,
   ARG2, and ARG3.  IGNORE is true if the result of the function call is
   ARG2, and ARG3.  IGNORE is true if the result of the function call is
   ignored.  This function returns NULL_TREE if no simplification was
   ignored.  This function returns NULL_TREE if no simplification was
   possible.  */
   possible.  */
 
 
static tree
static tree
fold_builtin_4 (location_t loc, tree fndecl,
fold_builtin_4 (location_t loc, tree fndecl,
                tree arg0, tree arg1, tree arg2, tree arg3, bool ignore)
                tree arg0, tree arg1, tree arg2, tree arg3, bool ignore)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_MEMSET_CHK:
      return fold_builtin_memory_chk (loc, fndecl, arg0, arg1, arg2, arg3,
      return fold_builtin_memory_chk (loc, fndecl, arg0, arg1, arg2, arg3,
                                      NULL_TREE, ignore,
                                      NULL_TREE, ignore,
                                      DECL_FUNCTION_CODE (fndecl));
                                      DECL_FUNCTION_CODE (fndecl));
 
 
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
      return fold_builtin_strncpy_chk (loc, arg0, arg1, arg2, arg3, NULL_TREE);
      return fold_builtin_strncpy_chk (loc, arg0, arg1, arg2, arg3, NULL_TREE);
 
 
    case BUILT_IN_STRNCAT_CHK:
    case BUILT_IN_STRNCAT_CHK:
      return fold_builtin_strncat_chk (loc, fndecl, arg0, arg1, arg2, arg3);
      return fold_builtin_strncat_chk (loc, fndecl, arg0, arg1, arg2, arg3);
 
 
    case BUILT_IN_FPRINTF_CHK:
    case BUILT_IN_FPRINTF_CHK:
    case BUILT_IN_VFPRINTF_CHK:
    case BUILT_IN_VFPRINTF_CHK:
      if (!validate_arg (arg1, INTEGER_TYPE)
      if (!validate_arg (arg1, INTEGER_TYPE)
          || TREE_SIDE_EFFECTS (arg1))
          || TREE_SIDE_EFFECTS (arg1))
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        return fold_builtin_fprintf (loc, fndecl, arg0, arg2, arg3,
        return fold_builtin_fprintf (loc, fndecl, arg0, arg2, arg3,
                                     ignore, fcode);
                                     ignore, fcode);
    break;
    break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to built-in function FNDECL.  ARGS is an array of NARGS
/* Fold a call to built-in function FNDECL.  ARGS is an array of NARGS
    arguments, where NARGS <= 4.  IGNORE is true if the result of the
    arguments, where NARGS <= 4.  IGNORE is true if the result of the
    function call is ignored.  This function returns NULL_TREE if no
    function call is ignored.  This function returns NULL_TREE if no
    simplification was possible.  Note that this only folds builtins with
    simplification was possible.  Note that this only folds builtins with
    fixed argument patterns.  Foldings that do varargs-to-varargs
    fixed argument patterns.  Foldings that do varargs-to-varargs
    transformations, or that match calls with more than 4 arguments,
    transformations, or that match calls with more than 4 arguments,
    need to be handled with fold_builtin_varargs instead.  */
    need to be handled with fold_builtin_varargs instead.  */
 
 
#define MAX_ARGS_TO_FOLD_BUILTIN 4
#define MAX_ARGS_TO_FOLD_BUILTIN 4
 
 
static tree
static tree
fold_builtin_n (location_t loc, tree fndecl, tree *args, int nargs, bool ignore)
fold_builtin_n (location_t loc, tree fndecl, tree *args, int nargs, bool ignore)
{
{
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
 
 
  switch (nargs)
  switch (nargs)
    {
    {
    case 0:
    case 0:
      ret = fold_builtin_0 (loc, fndecl, ignore);
      ret = fold_builtin_0 (loc, fndecl, ignore);
      break;
      break;
    case 1:
    case 1:
      ret = fold_builtin_1 (loc, fndecl, args[0], ignore);
      ret = fold_builtin_1 (loc, fndecl, args[0], ignore);
      break;
      break;
    case 2:
    case 2:
      ret = fold_builtin_2 (loc, fndecl, args[0], args[1], ignore);
      ret = fold_builtin_2 (loc, fndecl, args[0], args[1], ignore);
      break;
      break;
    case 3:
    case 3:
      ret = fold_builtin_3 (loc, fndecl, args[0], args[1], args[2], ignore);
      ret = fold_builtin_3 (loc, fndecl, args[0], args[1], args[2], ignore);
      break;
      break;
    case 4:
    case 4:
      ret = fold_builtin_4 (loc, fndecl, args[0], args[1], args[2], args[3],
      ret = fold_builtin_4 (loc, fndecl, args[0], args[1], args[2], args[3],
                            ignore);
                            ignore);
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
  if (ret)
  if (ret)
    {
    {
      ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
      ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
      SET_EXPR_LOCATION (ret, loc);
      SET_EXPR_LOCATION (ret, loc);
      TREE_NO_WARNING (ret) = 1;
      TREE_NO_WARNING (ret) = 1;
      return ret;
      return ret;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Builtins with folding operations that operate on "..." arguments
/* Builtins with folding operations that operate on "..." arguments
   need special handling; we need to store the arguments in a convenient
   need special handling; we need to store the arguments in a convenient
   data structure before attempting any folding.  Fortunately there are
   data structure before attempting any folding.  Fortunately there are
   only a few builtins that fall into this category.  FNDECL is the
   only a few builtins that fall into this category.  FNDECL is the
   function, EXP is the CALL_EXPR for the call, and IGNORE is true if the
   function, EXP is the CALL_EXPR for the call, and IGNORE is true if the
   result of the function call is ignored.  */
   result of the function call is ignored.  */
 
 
static tree
static tree
fold_builtin_varargs (location_t loc, tree fndecl, tree exp,
fold_builtin_varargs (location_t loc, tree fndecl, tree exp,
                      bool ignore ATTRIBUTE_UNUSED)
                      bool ignore ATTRIBUTE_UNUSED)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
      ret = fold_builtin_sprintf_chk (loc, exp, fcode);
      ret = fold_builtin_sprintf_chk (loc, exp, fcode);
      break;
      break;
 
 
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      ret = fold_builtin_snprintf_chk (loc, exp, NULL_TREE, fcode);
      ret = fold_builtin_snprintf_chk (loc, exp, NULL_TREE, fcode);
      break;
      break;
 
 
    case BUILT_IN_FPCLASSIFY:
    case BUILT_IN_FPCLASSIFY:
      ret = fold_builtin_fpclassify (loc, exp);
      ret = fold_builtin_fpclassify (loc, exp);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  if (ret)
  if (ret)
    {
    {
      ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
      ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
      SET_EXPR_LOCATION (ret, loc);
      SET_EXPR_LOCATION (ret, loc);
      TREE_NO_WARNING (ret) = 1;
      TREE_NO_WARNING (ret) = 1;
      return ret;
      return ret;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Return true if FNDECL shouldn't be folded right now.
/* Return true if FNDECL shouldn't be folded right now.
   If a built-in function has an inline attribute always_inline
   If a built-in function has an inline attribute always_inline
   wrapper, defer folding it after always_inline functions have
   wrapper, defer folding it after always_inline functions have
   been inlined, otherwise e.g. -D_FORTIFY_SOURCE checking
   been inlined, otherwise e.g. -D_FORTIFY_SOURCE checking
   might not be performed.  */
   might not be performed.  */
 
 
static bool
static bool
avoid_folding_inline_builtin (tree fndecl)
avoid_folding_inline_builtin (tree fndecl)
{
{
  return (DECL_DECLARED_INLINE_P (fndecl)
  return (DECL_DECLARED_INLINE_P (fndecl)
          && DECL_DISREGARD_INLINE_LIMITS (fndecl)
          && DECL_DISREGARD_INLINE_LIMITS (fndecl)
          && cfun
          && cfun
          && !cfun->always_inline_functions_inlined
          && !cfun->always_inline_functions_inlined
          && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fndecl)));
          && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fndecl)));
}
}
 
 
/* A wrapper function for builtin folding that prevents warnings for
/* A wrapper function for builtin folding that prevents warnings for
   "statement without effect" and the like, caused by removing the
   "statement without effect" and the like, caused by removing the
   call node earlier than the warning is generated.  */
   call node earlier than the warning is generated.  */
 
 
tree
tree
fold_call_expr (location_t loc, tree exp, bool ignore)
fold_call_expr (location_t loc, tree exp, bool ignore)
{
{
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  if (fndecl
  if (fndecl
      && TREE_CODE (fndecl) == FUNCTION_DECL
      && TREE_CODE (fndecl) == FUNCTION_DECL
      && DECL_BUILT_IN (fndecl)
      && DECL_BUILT_IN (fndecl)
      /* If CALL_EXPR_VA_ARG_PACK is set, the arguments aren't finalized
      /* If CALL_EXPR_VA_ARG_PACK is set, the arguments aren't finalized
         yet.  Defer folding until we see all the arguments
         yet.  Defer folding until we see all the arguments
         (after inlining).  */
         (after inlining).  */
      && !CALL_EXPR_VA_ARG_PACK (exp))
      && !CALL_EXPR_VA_ARG_PACK (exp))
    {
    {
      int nargs = call_expr_nargs (exp);
      int nargs = call_expr_nargs (exp);
 
 
      /* Before gimplification CALL_EXPR_VA_ARG_PACK is not set, but
      /* Before gimplification CALL_EXPR_VA_ARG_PACK is not set, but
         instead last argument is __builtin_va_arg_pack ().  Defer folding
         instead last argument is __builtin_va_arg_pack ().  Defer folding
         even in that case, until arguments are finalized.  */
         even in that case, until arguments are finalized.  */
      if (nargs && TREE_CODE (CALL_EXPR_ARG (exp, nargs - 1)) == CALL_EXPR)
      if (nargs && TREE_CODE (CALL_EXPR_ARG (exp, nargs - 1)) == CALL_EXPR)
        {
        {
          tree fndecl2 = get_callee_fndecl (CALL_EXPR_ARG (exp, nargs - 1));
          tree fndecl2 = get_callee_fndecl (CALL_EXPR_ARG (exp, nargs - 1));
          if (fndecl2
          if (fndecl2
              && TREE_CODE (fndecl2) == FUNCTION_DECL
              && TREE_CODE (fndecl2) == FUNCTION_DECL
              && DECL_BUILT_IN_CLASS (fndecl2) == BUILT_IN_NORMAL
              && DECL_BUILT_IN_CLASS (fndecl2) == BUILT_IN_NORMAL
              && DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_VA_ARG_PACK)
              && DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_VA_ARG_PACK)
            return NULL_TREE;
            return NULL_TREE;
        }
        }
 
 
      if (avoid_folding_inline_builtin (fndecl))
      if (avoid_folding_inline_builtin (fndecl))
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* FIXME: Don't use a list in this interface.  */
      /* FIXME: Don't use a list in this interface.  */
      if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
      if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
          return targetm.fold_builtin (fndecl, CALL_EXPR_ARGS (exp), ignore);
          return targetm.fold_builtin (fndecl, CALL_EXPR_ARGS (exp), ignore);
      else
      else
        {
        {
          if (nargs <= MAX_ARGS_TO_FOLD_BUILTIN)
          if (nargs <= MAX_ARGS_TO_FOLD_BUILTIN)
            {
            {
              tree *args = CALL_EXPR_ARGP (exp);
              tree *args = CALL_EXPR_ARGP (exp);
              ret = fold_builtin_n (loc, fndecl, args, nargs, ignore);
              ret = fold_builtin_n (loc, fndecl, args, nargs, ignore);
            }
            }
          if (!ret)
          if (!ret)
            ret = fold_builtin_varargs (loc, fndecl, exp, ignore);
            ret = fold_builtin_varargs (loc, fndecl, exp, ignore);
          if (ret)
          if (ret)
            return ret;
            return ret;
        }
        }
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Conveniently construct a function call expression.  FNDECL names the
/* Conveniently construct a function call expression.  FNDECL names the
    function to be called and ARGLIST is a TREE_LIST of arguments.  */
    function to be called and ARGLIST is a TREE_LIST of arguments.  */
 
 
tree
tree
build_function_call_expr (location_t loc, tree fndecl, tree arglist)
build_function_call_expr (location_t loc, tree fndecl, tree arglist)
{
{
  tree fntype = TREE_TYPE (fndecl);
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  int n = list_length (arglist);
  int n = list_length (arglist);
  tree *argarray = (tree *) alloca (n * sizeof (tree));
  tree *argarray = (tree *) alloca (n * sizeof (tree));
  int i;
  int i;
 
 
  for (i = 0; i < n; i++, arglist = TREE_CHAIN (arglist))
  for (i = 0; i < n; i++, arglist = TREE_CHAIN (arglist))
    argarray[i] = TREE_VALUE (arglist);
    argarray[i] = TREE_VALUE (arglist);
  return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
  return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
}
}
 
 
/* Conveniently construct a function call expression.  FNDECL names the
/* Conveniently construct a function call expression.  FNDECL names the
   function to be called, N is the number of arguments, and the "..."
   function to be called, N is the number of arguments, and the "..."
   parameters are the argument expressions.  */
   parameters are the argument expressions.  */
 
 
tree
tree
build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
{
{
  va_list ap;
  va_list ap;
  tree fntype = TREE_TYPE (fndecl);
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree *argarray = (tree *) alloca (n * sizeof (tree));
  tree *argarray = (tree *) alloca (n * sizeof (tree));
  int i;
  int i;
 
 
  va_start (ap, n);
  va_start (ap, n);
  for (i = 0; i < n; i++)
  for (i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
    argarray[i] = va_arg (ap, tree);
  va_end (ap);
  va_end (ap);
  return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
  return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
}
}
 
 
/* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
/* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
   varargs macros aren't supported by all bootstrap compilers.  */
   varargs macros aren't supported by all bootstrap compilers.  */
 
 
tree
tree
build_call_expr (tree fndecl, int n, ...)
build_call_expr (tree fndecl, int n, ...)
{
{
  va_list ap;
  va_list ap;
  tree fntype = TREE_TYPE (fndecl);
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree *argarray = (tree *) alloca (n * sizeof (tree));
  tree *argarray = (tree *) alloca (n * sizeof (tree));
  int i;
  int i;
 
 
  va_start (ap, n);
  va_start (ap, n);
  for (i = 0; i < n; i++)
  for (i = 0; i < n; i++)
    argarray[i] = va_arg (ap, tree);
    argarray[i] = va_arg (ap, tree);
  va_end (ap);
  va_end (ap);
  return fold_builtin_call_array (UNKNOWN_LOCATION, TREE_TYPE (fntype),
  return fold_builtin_call_array (UNKNOWN_LOCATION, TREE_TYPE (fntype),
                                  fn, n, argarray);
                                  fn, n, argarray);
}
}
 
 
/* Construct a CALL_EXPR with type TYPE with FN as the function expression.
/* Construct a CALL_EXPR with type TYPE with FN as the function expression.
   N arguments are passed in the array ARGARRAY.  */
   N arguments are passed in the array ARGARRAY.  */
 
 
tree
tree
fold_builtin_call_array (location_t loc, tree type,
fold_builtin_call_array (location_t loc, tree type,
                         tree fn,
                         tree fn,
                         int n,
                         int n,
                         tree *argarray)
                         tree *argarray)
{
{
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
  int i;
  int i;
   tree exp;
   tree exp;
 
 
  if (TREE_CODE (fn) == ADDR_EXPR)
  if (TREE_CODE (fn) == ADDR_EXPR)
  {
  {
    tree fndecl = TREE_OPERAND (fn, 0);
    tree fndecl = TREE_OPERAND (fn, 0);
    if (TREE_CODE (fndecl) == FUNCTION_DECL
    if (TREE_CODE (fndecl) == FUNCTION_DECL
        && DECL_BUILT_IN (fndecl))
        && DECL_BUILT_IN (fndecl))
      {
      {
        /* If last argument is __builtin_va_arg_pack (), arguments to this
        /* If last argument is __builtin_va_arg_pack (), arguments to this
           function are not finalized yet.  Defer folding until they are.  */
           function are not finalized yet.  Defer folding until they are.  */
        if (n && TREE_CODE (argarray[n - 1]) == CALL_EXPR)
        if (n && TREE_CODE (argarray[n - 1]) == CALL_EXPR)
          {
          {
            tree fndecl2 = get_callee_fndecl (argarray[n - 1]);
            tree fndecl2 = get_callee_fndecl (argarray[n - 1]);
            if (fndecl2
            if (fndecl2
                && TREE_CODE (fndecl2) == FUNCTION_DECL
                && TREE_CODE (fndecl2) == FUNCTION_DECL
                && DECL_BUILT_IN_CLASS (fndecl2) == BUILT_IN_NORMAL
                && DECL_BUILT_IN_CLASS (fndecl2) == BUILT_IN_NORMAL
                && DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_VA_ARG_PACK)
                && DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_VA_ARG_PACK)
              return build_call_array_loc (loc, type, fn, n, argarray);
              return build_call_array_loc (loc, type, fn, n, argarray);
          }
          }
        if (avoid_folding_inline_builtin (fndecl))
        if (avoid_folding_inline_builtin (fndecl))
          return build_call_array_loc (loc, type, fn, n, argarray);
          return build_call_array_loc (loc, type, fn, n, argarray);
        if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
        if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
          {
          {
            tree arglist = NULL_TREE;
            tree arglist = NULL_TREE;
            for (i = n - 1; i >= 0; i--)
            for (i = n - 1; i >= 0; i--)
              arglist = tree_cons (NULL_TREE, argarray[i], arglist);
              arglist = tree_cons (NULL_TREE, argarray[i], arglist);
            ret = targetm.fold_builtin (fndecl, arglist, false);
            ret = targetm.fold_builtin (fndecl, arglist, false);
            if (ret)
            if (ret)
              return ret;
              return ret;
            return build_call_array_loc (loc, type, fn, n, argarray);
            return build_call_array_loc (loc, type, fn, n, argarray);
          }
          }
        else if (n <= MAX_ARGS_TO_FOLD_BUILTIN)
        else if (n <= MAX_ARGS_TO_FOLD_BUILTIN)
          {
          {
            /* First try the transformations that don't require consing up
            /* First try the transformations that don't require consing up
               an exp.  */
               an exp.  */
            ret = fold_builtin_n (loc, fndecl, argarray, n, false);
            ret = fold_builtin_n (loc, fndecl, argarray, n, false);
            if (ret)
            if (ret)
              return ret;
              return ret;
          }
          }
 
 
        /* If we got this far, we need to build an exp.  */
        /* If we got this far, we need to build an exp.  */
        exp = build_call_array_loc (loc, type, fn, n, argarray);
        exp = build_call_array_loc (loc, type, fn, n, argarray);
        ret = fold_builtin_varargs (loc, fndecl, exp, false);
        ret = fold_builtin_varargs (loc, fndecl, exp, false);
        return ret ? ret : exp;
        return ret ? ret : exp;
      }
      }
  }
  }
 
 
  return build_call_array_loc (loc, type, fn, n, argarray);
  return build_call_array_loc (loc, type, fn, n, argarray);
}
}
 
 
/* Construct a new CALL_EXPR using the tail of the argument list of EXP
/* Construct a new CALL_EXPR using the tail of the argument list of EXP
   along with N new arguments specified as the "..." parameters.  SKIP
   along with N new arguments specified as the "..." parameters.  SKIP
   is the number of arguments in EXP to be omitted.  This function is used
   is the number of arguments in EXP to be omitted.  This function is used
   to do varargs-to-varargs transformations.  */
   to do varargs-to-varargs transformations.  */
 
 
static tree
static tree
rewrite_call_expr (location_t loc, tree exp, int skip, tree fndecl, int n, ...)
rewrite_call_expr (location_t loc, tree exp, int skip, tree fndecl, int n, ...)
{
{
  int oldnargs = call_expr_nargs (exp);
  int oldnargs = call_expr_nargs (exp);
  int nargs = oldnargs - skip + n;
  int nargs = oldnargs - skip + n;
  tree fntype = TREE_TYPE (fndecl);
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree *buffer;
  tree *buffer;
 
 
  if (n > 0)
  if (n > 0)
    {
    {
      int i, j;
      int i, j;
      va_list ap;
      va_list ap;
 
 
      buffer = XALLOCAVEC (tree, nargs);
      buffer = XALLOCAVEC (tree, nargs);
      va_start (ap, n);
      va_start (ap, n);
      for (i = 0; i < n; i++)
      for (i = 0; i < n; i++)
        buffer[i] = va_arg (ap, tree);
        buffer[i] = va_arg (ap, tree);
      va_end (ap);
      va_end (ap);
      for (j = skip; j < oldnargs; j++, i++)
      for (j = skip; j < oldnargs; j++, i++)
        buffer[i] = CALL_EXPR_ARG (exp, j);
        buffer[i] = CALL_EXPR_ARG (exp, j);
    }
    }
  else
  else
    buffer = CALL_EXPR_ARGP (exp) + skip;
    buffer = CALL_EXPR_ARGP (exp) + skip;
 
 
  return fold (build_call_array_loc (loc, TREE_TYPE (exp), fn, nargs, buffer));
  return fold (build_call_array_loc (loc, TREE_TYPE (exp), fn, nargs, buffer));
}
}
 
 
/* Validate a single argument ARG against a tree code CODE representing
/* Validate a single argument ARG against a tree code CODE representing
   a type.  */
   a type.  */
 
 
static bool
static bool
validate_arg (const_tree arg, enum tree_code code)
validate_arg (const_tree arg, enum tree_code code)
{
{
  if (!arg)
  if (!arg)
    return false;
    return false;
  else if (code == POINTER_TYPE)
  else if (code == POINTER_TYPE)
    return POINTER_TYPE_P (TREE_TYPE (arg));
    return POINTER_TYPE_P (TREE_TYPE (arg));
  else if (code == INTEGER_TYPE)
  else if (code == INTEGER_TYPE)
    return INTEGRAL_TYPE_P (TREE_TYPE (arg));
    return INTEGRAL_TYPE_P (TREE_TYPE (arg));
  return code == TREE_CODE (TREE_TYPE (arg));
  return code == TREE_CODE (TREE_TYPE (arg));
}
}
 
 
/* This function validates the types of a function call argument list
/* This function validates the types of a function call argument list
   against a specified list of tree_codes.  If the last specifier is a 0,
   against a specified list of tree_codes.  If the last specifier is a 0,
   that represents an ellipses, otherwise the last specifier must be a
   that represents an ellipses, otherwise the last specifier must be a
   VOID_TYPE.
   VOID_TYPE.
 
 
   This is the GIMPLE version of validate_arglist.  Eventually we want to
   This is the GIMPLE version of validate_arglist.  Eventually we want to
   completely convert builtins.c to work from GIMPLEs and the tree based
   completely convert builtins.c to work from GIMPLEs and the tree based
   validate_arglist will then be removed.  */
   validate_arglist will then be removed.  */
 
 
bool
bool
validate_gimple_arglist (const_gimple call, ...)
validate_gimple_arglist (const_gimple call, ...)
{
{
  enum tree_code code;
  enum tree_code code;
  bool res = 0;
  bool res = 0;
  va_list ap;
  va_list ap;
  const_tree arg;
  const_tree arg;
  size_t i;
  size_t i;
 
 
  va_start (ap, call);
  va_start (ap, call);
  i = 0;
  i = 0;
 
 
  do
  do
    {
    {
      code = (enum tree_code) va_arg (ap, int);
      code = (enum tree_code) va_arg (ap, int);
      switch (code)
      switch (code)
        {
        {
        case 0:
        case 0:
          /* This signifies an ellipses, any further arguments are all ok.  */
          /* This signifies an ellipses, any further arguments are all ok.  */
          res = true;
          res = true;
          goto end;
          goto end;
        case VOID_TYPE:
        case VOID_TYPE:
          /* This signifies an endlink, if no arguments remain, return
          /* This signifies an endlink, if no arguments remain, return
             true, otherwise return false.  */
             true, otherwise return false.  */
          res = (i == gimple_call_num_args (call));
          res = (i == gimple_call_num_args (call));
          goto end;
          goto end;
        default:
        default:
          /* If no parameters remain or the parameter's code does not
          /* If no parameters remain or the parameter's code does not
             match the specified code, return false.  Otherwise continue
             match the specified code, return false.  Otherwise continue
             checking any remaining arguments.  */
             checking any remaining arguments.  */
          arg = gimple_call_arg (call, i++);
          arg = gimple_call_arg (call, i++);
          if (!validate_arg (arg, code))
          if (!validate_arg (arg, code))
            goto end;
            goto end;
          break;
          break;
        }
        }
    }
    }
  while (1);
  while (1);
 
 
  /* We need gotos here since we can only have one VA_CLOSE in a
  /* We need gotos here since we can only have one VA_CLOSE in a
     function.  */
     function.  */
 end: ;
 end: ;
  va_end (ap);
  va_end (ap);
 
 
  return res;
  return res;
}
}
 
 
/* This function validates the types of a function call argument list
/* This function validates the types of a function call argument list
   against a specified list of tree_codes.  If the last specifier is a 0,
   against a specified list of tree_codes.  If the last specifier is a 0,
   that represents an ellipses, otherwise the last specifier must be a
   that represents an ellipses, otherwise the last specifier must be a
   VOID_TYPE.  */
   VOID_TYPE.  */
 
 
bool
bool
validate_arglist (const_tree callexpr, ...)
validate_arglist (const_tree callexpr, ...)
{
{
  enum tree_code code;
  enum tree_code code;
  bool res = 0;
  bool res = 0;
  va_list ap;
  va_list ap;
  const_call_expr_arg_iterator iter;
  const_call_expr_arg_iterator iter;
  const_tree arg;
  const_tree arg;
 
 
  va_start (ap, callexpr);
  va_start (ap, callexpr);
  init_const_call_expr_arg_iterator (callexpr, &iter);
  init_const_call_expr_arg_iterator (callexpr, &iter);
 
 
  do
  do
    {
    {
      code = (enum tree_code) va_arg (ap, int);
      code = (enum tree_code) va_arg (ap, int);
      switch (code)
      switch (code)
        {
        {
        case 0:
        case 0:
          /* This signifies an ellipses, any further arguments are all ok.  */
          /* This signifies an ellipses, any further arguments are all ok.  */
          res = true;
          res = true;
          goto end;
          goto end;
        case VOID_TYPE:
        case VOID_TYPE:
          /* This signifies an endlink, if no arguments remain, return
          /* This signifies an endlink, if no arguments remain, return
             true, otherwise return false.  */
             true, otherwise return false.  */
          res = !more_const_call_expr_args_p (&iter);
          res = !more_const_call_expr_args_p (&iter);
          goto end;
          goto end;
        default:
        default:
          /* If no parameters remain or the parameter's code does not
          /* If no parameters remain or the parameter's code does not
             match the specified code, return false.  Otherwise continue
             match the specified code, return false.  Otherwise continue
             checking any remaining arguments.  */
             checking any remaining arguments.  */
          arg = next_const_call_expr_arg (&iter);
          arg = next_const_call_expr_arg (&iter);
          if (!validate_arg (arg, code))
          if (!validate_arg (arg, code))
            goto end;
            goto end;
          break;
          break;
        }
        }
    }
    }
  while (1);
  while (1);
 
 
  /* We need gotos here since we can only have one VA_CLOSE in a
  /* We need gotos here since we can only have one VA_CLOSE in a
     function.  */
     function.  */
 end: ;
 end: ;
  va_end (ap);
  va_end (ap);
 
 
  return res;
  return res;
}
}
 
 
/* Default target-specific builtin expander that does nothing.  */
/* Default target-specific builtin expander that does nothing.  */
 
 
rtx
rtx
default_expand_builtin (tree exp ATTRIBUTE_UNUSED,
default_expand_builtin (tree exp ATTRIBUTE_UNUSED,
                        rtx target ATTRIBUTE_UNUSED,
                        rtx target ATTRIBUTE_UNUSED,
                        rtx subtarget ATTRIBUTE_UNUSED,
                        rtx subtarget ATTRIBUTE_UNUSED,
                        enum machine_mode mode ATTRIBUTE_UNUSED,
                        enum machine_mode mode ATTRIBUTE_UNUSED,
                        int ignore ATTRIBUTE_UNUSED)
                        int ignore ATTRIBUTE_UNUSED)
{
{
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Returns true is EXP represents data that would potentially reside
/* Returns true is EXP represents data that would potentially reside
   in a readonly section.  */
   in a readonly section.  */
 
 
static bool
static bool
readonly_data_expr (tree exp)
readonly_data_expr (tree exp)
{
{
  STRIP_NOPS (exp);
  STRIP_NOPS (exp);
 
 
  if (TREE_CODE (exp) != ADDR_EXPR)
  if (TREE_CODE (exp) != ADDR_EXPR)
    return false;
    return false;
 
 
  exp = get_base_address (TREE_OPERAND (exp, 0));
  exp = get_base_address (TREE_OPERAND (exp, 0));
  if (!exp)
  if (!exp)
    return false;
    return false;
 
 
  /* Make sure we call decl_readonly_section only for trees it
  /* Make sure we call decl_readonly_section only for trees it
     can handle (since it returns true for everything it doesn't
     can handle (since it returns true for everything it doesn't
     understand).  */
     understand).  */
  if (TREE_CODE (exp) == STRING_CST
  if (TREE_CODE (exp) == STRING_CST
      || TREE_CODE (exp) == CONSTRUCTOR
      || TREE_CODE (exp) == CONSTRUCTOR
      || (TREE_CODE (exp) == VAR_DECL && TREE_STATIC (exp)))
      || (TREE_CODE (exp) == VAR_DECL && TREE_STATIC (exp)))
    return decl_readonly_section (exp, 0);
    return decl_readonly_section (exp, 0);
  else
  else
    return false;
    return false;
}
}
 
 
/* Simplify a call to the strstr builtin.  S1 and S2 are the arguments
/* Simplify a call to the strstr builtin.  S1 and S2 are the arguments
   to the call, and TYPE is its return type.
   to the call, and TYPE is its return type.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strstr (location_t loc, tree s1, tree s2, tree type)
fold_builtin_strstr (location_t loc, tree s1, tree s2, tree type)
{
{
  if (!validate_arg (s1, POINTER_TYPE)
  if (!validate_arg (s1, POINTER_TYPE)
      || !validate_arg (s2, POINTER_TYPE))
      || !validate_arg (s2, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      tree fn;
      tree fn;
      const char *p1, *p2;
      const char *p1, *p2;
 
 
      p2 = c_getstr (s2);
      p2 = c_getstr (s2);
      if (p2 == NULL)
      if (p2 == NULL)
        return NULL_TREE;
        return NULL_TREE;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          const char *r = strstr (p1, p2);
          const char *r = strstr (p1, p2);
          tree tem;
          tree tem;
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
                             s1, size_int (r - p1));
                             s1, size_int (r - p1));
          return fold_convert_loc (loc, type, tem);
          return fold_convert_loc (loc, type, tem);
        }
        }
 
 
      /* The argument is const char *, and the result is char *, so we need
      /* The argument is const char *, and the result is char *, so we need
         a type conversion here to avoid a warning.  */
         a type conversion here to avoid a warning.  */
      if (p2[0] == '\0')
      if (p2[0] == '\0')
        return fold_convert_loc (loc, type, s1);
        return fold_convert_loc (loc, type, s1);
 
 
      if (p2[1] != '\0')
      if (p2[1] != '\0')
        return NULL_TREE;
        return NULL_TREE;
 
 
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* New argument list transforming strstr(s1, s2) to
      /* New argument list transforming strstr(s1, s2) to
         strchr(s1, s2[0]).  */
         strchr(s1, s2[0]).  */
      return build_call_expr_loc (loc, fn, 2, s1, build_int_cst (NULL_TREE, p2[0]));
      return build_call_expr_loc (loc, fn, 2, s1, build_int_cst (NULL_TREE, p2[0]));
    }
    }
}
}
 
 
/* Simplify a call to the strchr builtin.  S1 and S2 are the arguments to
/* Simplify a call to the strchr builtin.  S1 and S2 are the arguments to
   the call, and TYPE is its return type.
   the call, and TYPE is its return type.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strchr (location_t loc, tree s1, tree s2, tree type)
fold_builtin_strchr (location_t loc, tree s1, tree s2, tree type)
{
{
  if (!validate_arg (s1, POINTER_TYPE)
  if (!validate_arg (s1, POINTER_TYPE)
      || !validate_arg (s2, INTEGER_TYPE))
      || !validate_arg (s2, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      const char *p1;
      const char *p1;
 
 
      if (TREE_CODE (s2) != INTEGER_CST)
      if (TREE_CODE (s2) != INTEGER_CST)
        return NULL_TREE;
        return NULL_TREE;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          char c;
          char c;
          const char *r;
          const char *r;
          tree tem;
          tree tem;
 
 
          if (target_char_cast (s2, &c))
          if (target_char_cast (s2, &c))
            return NULL_TREE;
            return NULL_TREE;
 
 
          r = strchr (p1, c);
          r = strchr (p1, c);
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
                             s1, size_int (r - p1));
                             s1, size_int (r - p1));
          return fold_convert_loc (loc, type, tem);
          return fold_convert_loc (loc, type, tem);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Simplify a call to the strrchr builtin.  S1 and S2 are the arguments to
/* Simplify a call to the strrchr builtin.  S1 and S2 are the arguments to
   the call, and TYPE is its return type.
   the call, and TYPE is its return type.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strrchr (location_t loc, tree s1, tree s2, tree type)
fold_builtin_strrchr (location_t loc, tree s1, tree s2, tree type)
{
{
  if (!validate_arg (s1, POINTER_TYPE)
  if (!validate_arg (s1, POINTER_TYPE)
      || !validate_arg (s2, INTEGER_TYPE))
      || !validate_arg (s2, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      tree fn;
      tree fn;
      const char *p1;
      const char *p1;
 
 
      if (TREE_CODE (s2) != INTEGER_CST)
      if (TREE_CODE (s2) != INTEGER_CST)
        return NULL_TREE;
        return NULL_TREE;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          char c;
          char c;
          const char *r;
          const char *r;
          tree tem;
          tree tem;
 
 
          if (target_char_cast (s2, &c))
          if (target_char_cast (s2, &c))
            return NULL_TREE;
            return NULL_TREE;
 
 
          r = strrchr (p1, c);
          r = strrchr (p1, c);
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
                             s1, size_int (r - p1));
                             s1, size_int (r - p1));
          return fold_convert_loc (loc, type, tem);
          return fold_convert_loc (loc, type, tem);
        }
        }
 
 
      if (! integer_zerop (s2))
      if (! integer_zerop (s2))
        return NULL_TREE;
        return NULL_TREE;
 
 
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Transform strrchr(s1, '\0') to strchr(s1, '\0').  */
      /* Transform strrchr(s1, '\0') to strchr(s1, '\0').  */
      return build_call_expr_loc (loc, fn, 2, s1, s2);
      return build_call_expr_loc (loc, fn, 2, s1, s2);
    }
    }
}
}
 
 
/* Simplify a call to the strpbrk builtin.  S1 and S2 are the arguments
/* Simplify a call to the strpbrk builtin.  S1 and S2 are the arguments
   to the call, and TYPE is its return type.
   to the call, and TYPE is its return type.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strpbrk (location_t loc, tree s1, tree s2, tree type)
fold_builtin_strpbrk (location_t loc, tree s1, tree s2, tree type)
{
{
  if (!validate_arg (s1, POINTER_TYPE)
  if (!validate_arg (s1, POINTER_TYPE)
      || !validate_arg (s2, POINTER_TYPE))
      || !validate_arg (s2, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      tree fn;
      tree fn;
      const char *p1, *p2;
      const char *p1, *p2;
 
 
      p2 = c_getstr (s2);
      p2 = c_getstr (s2);
      if (p2 == NULL)
      if (p2 == NULL)
        return NULL_TREE;
        return NULL_TREE;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          const char *r = strpbrk (p1, p2);
          const char *r = strpbrk (p1, p2);
          tree tem;
          tree tem;
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (s1),
                             s1, size_int (r - p1));
                             s1, size_int (r - p1));
          return fold_convert_loc (loc, type, tem);
          return fold_convert_loc (loc, type, tem);
        }
        }
 
 
      if (p2[0] == '\0')
      if (p2[0] == '\0')
        /* strpbrk(x, "") == NULL.
        /* strpbrk(x, "") == NULL.
           Evaluate and ignore s1 in case it had side-effects.  */
           Evaluate and ignore s1 in case it had side-effects.  */
        return omit_one_operand_loc (loc, TREE_TYPE (s1), integer_zero_node, s1);
        return omit_one_operand_loc (loc, TREE_TYPE (s1), integer_zero_node, s1);
 
 
      if (p2[1] != '\0')
      if (p2[1] != '\0')
        return NULL_TREE;  /* Really call strpbrk.  */
        return NULL_TREE;  /* Really call strpbrk.  */
 
 
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* New argument list transforming strpbrk(s1, s2) to
      /* New argument list transforming strpbrk(s1, s2) to
         strchr(s1, s2[0]).  */
         strchr(s1, s2[0]).  */
      return build_call_expr_loc (loc, fn, 2, s1, build_int_cst (NULL_TREE, p2[0]));
      return build_call_expr_loc (loc, fn, 2, s1, build_int_cst (NULL_TREE, p2[0]));
    }
    }
}
}
 
 
/* Simplify a call to the strcat builtin.  DST and SRC are the arguments
/* Simplify a call to the strcat builtin.  DST and SRC are the arguments
   to the call.
   to the call.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strcat (location_t loc ATTRIBUTE_UNUSED, tree dst, tree src)
fold_builtin_strcat (location_t loc ATTRIBUTE_UNUSED, tree dst, tree src)
{
{
  if (!validate_arg (dst, POINTER_TYPE)
  if (!validate_arg (dst, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE))
      || !validate_arg (src, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      const char *p = c_getstr (src);
      const char *p = c_getstr (src);
 
 
      /* If the string length is zero, return the dst parameter.  */
      /* If the string length is zero, return the dst parameter.  */
      if (p && *p == '\0')
      if (p && *p == '\0')
        return dst;
        return dst;
 
 
      if (optimize_insn_for_speed_p ())
      if (optimize_insn_for_speed_p ())
        {
        {
          /* See if we can store by pieces into (dst + strlen(dst)).  */
          /* See if we can store by pieces into (dst + strlen(dst)).  */
          tree newdst, call;
          tree newdst, call;
          tree strlen_fn = implicit_built_in_decls[BUILT_IN_STRLEN];
          tree strlen_fn = implicit_built_in_decls[BUILT_IN_STRLEN];
          tree strcpy_fn = implicit_built_in_decls[BUILT_IN_STRCPY];
          tree strcpy_fn = implicit_built_in_decls[BUILT_IN_STRCPY];
 
 
          if (!strlen_fn || !strcpy_fn)
          if (!strlen_fn || !strcpy_fn)
            return NULL_TREE;
            return NULL_TREE;
 
 
          /* If we don't have a movstr we don't want to emit an strcpy
          /* If we don't have a movstr we don't want to emit an strcpy
             call.  We have to do that if the length of the source string
             call.  We have to do that if the length of the source string
             isn't computable (in that case we can use memcpy probably
             isn't computable (in that case we can use memcpy probably
             later expanding to a sequence of mov instructions).  If we
             later expanding to a sequence of mov instructions).  If we
             have movstr instructions we can emit strcpy calls.  */
             have movstr instructions we can emit strcpy calls.  */
          if (!HAVE_movstr)
          if (!HAVE_movstr)
            {
            {
              tree len = c_strlen (src, 1);
              tree len = c_strlen (src, 1);
              if (! len || TREE_SIDE_EFFECTS (len))
              if (! len || TREE_SIDE_EFFECTS (len))
                return NULL_TREE;
                return NULL_TREE;
            }
            }
 
 
          /* Stabilize the argument list.  */
          /* Stabilize the argument list.  */
          dst = builtin_save_expr (dst);
          dst = builtin_save_expr (dst);
 
 
          /* Create strlen (dst).  */
          /* Create strlen (dst).  */
          newdst = build_call_expr_loc (loc, strlen_fn, 1, dst);
          newdst = build_call_expr_loc (loc, strlen_fn, 1, dst);
          /* Create (dst p+ strlen (dst)).  */
          /* Create (dst p+ strlen (dst)).  */
 
 
          newdst = fold_build2_loc (loc, POINTER_PLUS_EXPR,
          newdst = fold_build2_loc (loc, POINTER_PLUS_EXPR,
                                TREE_TYPE (dst), dst, newdst);
                                TREE_TYPE (dst), dst, newdst);
          newdst = builtin_save_expr (newdst);
          newdst = builtin_save_expr (newdst);
 
 
          call = build_call_expr_loc (loc, strcpy_fn, 2, newdst, src);
          call = build_call_expr_loc (loc, strcpy_fn, 2, newdst, src);
          return build2 (COMPOUND_EXPR, TREE_TYPE (dst), call, dst);
          return build2 (COMPOUND_EXPR, TREE_TYPE (dst), call, dst);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Simplify a call to the strncat builtin.  DST, SRC, and LEN are the
/* Simplify a call to the strncat builtin.  DST, SRC, and LEN are the
   arguments to the call.
   arguments to the call.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strncat (location_t loc, tree dst, tree src, tree len)
fold_builtin_strncat (location_t loc, tree dst, tree src, tree len)
{
{
  if (!validate_arg (dst, POINTER_TYPE)
  if (!validate_arg (dst, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (len, INTEGER_TYPE))
      || !validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      const char *p = c_getstr (src);
      const char *p = c_getstr (src);
 
 
      /* If the requested length is zero, or the src parameter string
      /* If the requested length is zero, or the src parameter string
         length is zero, return the dst parameter.  */
         length is zero, return the dst parameter.  */
      if (integer_zerop (len) || (p && *p == '\0'))
      if (integer_zerop (len) || (p && *p == '\0'))
        return omit_two_operands_loc (loc, TREE_TYPE (dst), dst, src, len);
        return omit_two_operands_loc (loc, TREE_TYPE (dst), dst, src, len);
 
 
      /* If the requested len is greater than or equal to the string
      /* If the requested len is greater than or equal to the string
         length, call strcat.  */
         length, call strcat.  */
      if (TREE_CODE (len) == INTEGER_CST && p
      if (TREE_CODE (len) == INTEGER_CST && p
          && compare_tree_int (len, strlen (p)) >= 0)
          && compare_tree_int (len, strlen (p)) >= 0)
        {
        {
          tree fn = implicit_built_in_decls[BUILT_IN_STRCAT];
          tree fn = implicit_built_in_decls[BUILT_IN_STRCAT];
 
 
          /* If the replacement _DECL isn't initialized, don't do the
          /* If the replacement _DECL isn't initialized, don't do the
             transformation.  */
             transformation.  */
          if (!fn)
          if (!fn)
            return NULL_TREE;
            return NULL_TREE;
 
 
          return build_call_expr_loc (loc, fn, 2, dst, src);
          return build_call_expr_loc (loc, fn, 2, dst, src);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Simplify a call to the strspn builtin.  S1 and S2 are the arguments
/* Simplify a call to the strspn builtin.  S1 and S2 are the arguments
   to the call.
   to the call.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strspn (location_t loc, tree s1, tree s2)
fold_builtin_strspn (location_t loc, tree s1, tree s2)
{
{
  if (!validate_arg (s1, POINTER_TYPE)
  if (!validate_arg (s1, POINTER_TYPE)
      || !validate_arg (s2, POINTER_TYPE))
      || !validate_arg (s2, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
 
 
      /* If both arguments are constants, evaluate at compile-time.  */
      /* If both arguments are constants, evaluate at compile-time.  */
      if (p1 && p2)
      if (p1 && p2)
        {
        {
          const size_t r = strspn (p1, p2);
          const size_t r = strspn (p1, p2);
          return size_int (r);
          return size_int (r);
        }
        }
 
 
      /* If either argument is "", return NULL_TREE.  */
      /* If either argument is "", return NULL_TREE.  */
      if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0'))
      if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0'))
        /* Evaluate and ignore both arguments in case either one has
        /* Evaluate and ignore both arguments in case either one has
           side-effects.  */
           side-effects.  */
        return omit_two_operands_loc (loc, size_type_node, size_zero_node,
        return omit_two_operands_loc (loc, size_type_node, size_zero_node,
                                  s1, s2);
                                  s1, s2);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Simplify a call to the strcspn builtin.  S1 and S2 are the arguments
/* Simplify a call to the strcspn builtin.  S1 and S2 are the arguments
   to the call.
   to the call.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strcspn (location_t loc, tree s1, tree s2)
fold_builtin_strcspn (location_t loc, tree s1, tree s2)
{
{
  if (!validate_arg (s1, POINTER_TYPE)
  if (!validate_arg (s1, POINTER_TYPE)
      || !validate_arg (s2, POINTER_TYPE))
      || !validate_arg (s2, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
 
 
      /* If both arguments are constants, evaluate at compile-time.  */
      /* If both arguments are constants, evaluate at compile-time.  */
      if (p1 && p2)
      if (p1 && p2)
        {
        {
          const size_t r = strcspn (p1, p2);
          const size_t r = strcspn (p1, p2);
          return size_int (r);
          return size_int (r);
        }
        }
 
 
      /* If the first argument is "", return NULL_TREE.  */
      /* If the first argument is "", return NULL_TREE.  */
      if (p1 && *p1 == '\0')
      if (p1 && *p1 == '\0')
        {
        {
          /* Evaluate and ignore argument s2 in case it has
          /* Evaluate and ignore argument s2 in case it has
             side-effects.  */
             side-effects.  */
          return omit_one_operand_loc (loc, size_type_node,
          return omit_one_operand_loc (loc, size_type_node,
                                   size_zero_node, s2);
                                   size_zero_node, s2);
        }
        }
 
 
      /* If the second argument is "", return __builtin_strlen(s1).  */
      /* If the second argument is "", return __builtin_strlen(s1).  */
      if (p2 && *p2 == '\0')
      if (p2 && *p2 == '\0')
        {
        {
          tree fn = implicit_built_in_decls[BUILT_IN_STRLEN];
          tree fn = implicit_built_in_decls[BUILT_IN_STRLEN];
 
 
          /* If the replacement _DECL isn't initialized, don't do the
          /* If the replacement _DECL isn't initialized, don't do the
             transformation.  */
             transformation.  */
          if (!fn)
          if (!fn)
            return NULL_TREE;
            return NULL_TREE;
 
 
          return build_call_expr_loc (loc, fn, 1, s1);
          return build_call_expr_loc (loc, fn, 1, s1);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Fold a call to the fputs builtin.  ARG0 and ARG1 are the arguments
/* Fold a call to the fputs builtin.  ARG0 and ARG1 are the arguments
   to the call.  IGNORE is true if the value returned
   to the call.  IGNORE is true if the value returned
   by the builtin will be ignored.  UNLOCKED is true is true if this
   by the builtin will be ignored.  UNLOCKED is true is true if this
   actually a call to fputs_unlocked.  If LEN in non-NULL, it represents
   actually a call to fputs_unlocked.  If LEN in non-NULL, it represents
   the known length of the string.  Return NULL_TREE if no simplification
   the known length of the string.  Return NULL_TREE if no simplification
   was possible.  */
   was possible.  */
 
 
tree
tree
fold_builtin_fputs (location_t loc, tree arg0, tree arg1,
fold_builtin_fputs (location_t loc, tree arg0, tree arg1,
                    bool ignore, bool unlocked, tree len)
                    bool ignore, bool unlocked, tree len)
{
{
  /* If we're using an unlocked function, assume the other unlocked
  /* If we're using an unlocked function, assume the other unlocked
     functions exist explicitly.  */
     functions exist explicitly.  */
  tree const fn_fputc = unlocked ? built_in_decls[BUILT_IN_FPUTC_UNLOCKED]
  tree const fn_fputc = unlocked ? built_in_decls[BUILT_IN_FPUTC_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_FPUTC];
    : implicit_built_in_decls[BUILT_IN_FPUTC];
  tree const fn_fwrite = unlocked ? built_in_decls[BUILT_IN_FWRITE_UNLOCKED]
  tree const fn_fwrite = unlocked ? built_in_decls[BUILT_IN_FWRITE_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_FWRITE];
    : implicit_built_in_decls[BUILT_IN_FWRITE];
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (!ignore)
  if (!ignore)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Verify the arguments in the original call.  */
  /* Verify the arguments in the original call.  */
  if (!validate_arg (arg0, POINTER_TYPE)
  if (!validate_arg (arg0, POINTER_TYPE)
      || !validate_arg (arg1, POINTER_TYPE))
      || !validate_arg (arg1, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! len)
  if (! len)
    len = c_strlen (arg0, 0);
    len = c_strlen (arg0, 0);
 
 
  /* Get the length of the string passed to fputs.  If the length
  /* Get the length of the string passed to fputs.  If the length
     can't be determined, punt.  */
     can't be determined, punt.  */
  if (!len
  if (!len
      || TREE_CODE (len) != INTEGER_CST)
      || TREE_CODE (len) != INTEGER_CST)
    return NULL_TREE;
    return NULL_TREE;
 
 
  switch (compare_tree_int (len, 1))
  switch (compare_tree_int (len, 1))
    {
    {
    case -1: /* length is 0, delete the call entirely .  */
    case -1: /* length is 0, delete the call entirely .  */
      return omit_one_operand_loc (loc, integer_type_node,
      return omit_one_operand_loc (loc, integer_type_node,
                               integer_zero_node, arg1);;
                               integer_zero_node, arg1);;
 
 
    case 0: /* length is 1, call fputc.  */
    case 0: /* length is 1, call fputc.  */
      {
      {
        const char *p = c_getstr (arg0);
        const char *p = c_getstr (arg0);
 
 
        if (p != NULL)
        if (p != NULL)
          {
          {
            if (fn_fputc)
            if (fn_fputc)
              return build_call_expr_loc (loc, fn_fputc, 2,
              return build_call_expr_loc (loc, fn_fputc, 2,
                                      build_int_cst (NULL_TREE, p[0]), arg1);
                                      build_int_cst (NULL_TREE, p[0]), arg1);
            else
            else
              return NULL_TREE;
              return NULL_TREE;
          }
          }
      }
      }
      /* FALLTHROUGH */
      /* FALLTHROUGH */
    case 1: /* length is greater than 1, call fwrite.  */
    case 1: /* length is greater than 1, call fwrite.  */
      {
      {
        /* If optimizing for size keep fputs.  */
        /* If optimizing for size keep fputs.  */
        if (optimize_function_for_size_p (cfun))
        if (optimize_function_for_size_p (cfun))
          return NULL_TREE;
          return NULL_TREE;
        /* New argument list transforming fputs(string, stream) to
        /* New argument list transforming fputs(string, stream) to
           fwrite(string, 1, len, stream).  */
           fwrite(string, 1, len, stream).  */
        if (fn_fwrite)
        if (fn_fwrite)
          return build_call_expr_loc (loc, fn_fwrite, 4, arg0,
          return build_call_expr_loc (loc, fn_fwrite, 4, arg0,
                                  size_one_node, len, arg1);
                                  size_one_node, len, arg1);
        else
        else
          return NULL_TREE;
          return NULL_TREE;
      }
      }
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold the next_arg or va_start call EXP. Returns true if there was an error
/* Fold the next_arg or va_start call EXP. Returns true if there was an error
   produced.  False otherwise.  This is done so that we don't output the error
   produced.  False otherwise.  This is done so that we don't output the error
   or warning twice or three times.  */
   or warning twice or three times.  */
 
 
bool
bool
fold_builtin_next_arg (tree exp, bool va_start_p)
fold_builtin_next_arg (tree exp, bool va_start_p)
{
{
  tree fntype = TREE_TYPE (current_function_decl);
  tree fntype = TREE_TYPE (current_function_decl);
  int nargs = call_expr_nargs (exp);
  int nargs = call_expr_nargs (exp);
  tree arg;
  tree arg;
 
 
  if (TYPE_ARG_TYPES (fntype) == 0
  if (TYPE_ARG_TYPES (fntype) == 0
      || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
      || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
          == void_type_node))
          == void_type_node))
    {
    {
      error ("%<va_start%> used in function with fixed args");
      error ("%<va_start%> used in function with fixed args");
      return true;
      return true;
    }
    }
 
 
  if (va_start_p)
  if (va_start_p)
    {
    {
      if (va_start_p && (nargs != 2))
      if (va_start_p && (nargs != 2))
        {
        {
          error ("wrong number of arguments to function %<va_start%>");
          error ("wrong number of arguments to function %<va_start%>");
          return true;
          return true;
        }
        }
      arg = CALL_EXPR_ARG (exp, 1);
      arg = CALL_EXPR_ARG (exp, 1);
    }
    }
  /* We use __builtin_va_start (ap, 0, 0) or __builtin_next_arg (0, 0)
  /* We use __builtin_va_start (ap, 0, 0) or __builtin_next_arg (0, 0)
     when we checked the arguments and if needed issued a warning.  */
     when we checked the arguments and if needed issued a warning.  */
  else
  else
    {
    {
      if (nargs == 0)
      if (nargs == 0)
        {
        {
          /* Evidently an out of date version of <stdarg.h>; can't validate
          /* Evidently an out of date version of <stdarg.h>; can't validate
             va_start's second argument, but can still work as intended.  */
             va_start's second argument, but can still work as intended.  */
          warning (0, "%<__builtin_next_arg%> called without an argument");
          warning (0, "%<__builtin_next_arg%> called without an argument");
          return true;
          return true;
        }
        }
      else if (nargs > 1)
      else if (nargs > 1)
        {
        {
          error ("wrong number of arguments to function %<__builtin_next_arg%>");
          error ("wrong number of arguments to function %<__builtin_next_arg%>");
          return true;
          return true;
        }
        }
      arg = CALL_EXPR_ARG (exp, 0);
      arg = CALL_EXPR_ARG (exp, 0);
    }
    }
 
 
  if (TREE_CODE (arg) == SSA_NAME)
  if (TREE_CODE (arg) == SSA_NAME)
    arg = SSA_NAME_VAR (arg);
    arg = SSA_NAME_VAR (arg);
 
 
  /* We destructively modify the call to be __builtin_va_start (ap, 0)
  /* We destructively modify the call to be __builtin_va_start (ap, 0)
     or __builtin_next_arg (0) the first time we see it, after checking
     or __builtin_next_arg (0) the first time we see it, after checking
     the arguments and if needed issuing a warning.  */
     the arguments and if needed issuing a warning.  */
  if (!integer_zerop (arg))
  if (!integer_zerop (arg))
    {
    {
      tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl));
      tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl));
 
 
      /* Strip off all nops for the sake of the comparison.  This
      /* Strip off all nops for the sake of the comparison.  This
         is not quite the same as STRIP_NOPS.  It does more.
         is not quite the same as STRIP_NOPS.  It does more.
         We must also strip off INDIRECT_EXPR for C++ reference
         We must also strip off INDIRECT_EXPR for C++ reference
         parameters.  */
         parameters.  */
      while (CONVERT_EXPR_P (arg)
      while (CONVERT_EXPR_P (arg)
             || TREE_CODE (arg) == INDIRECT_REF)
             || TREE_CODE (arg) == INDIRECT_REF)
        arg = TREE_OPERAND (arg, 0);
        arg = TREE_OPERAND (arg, 0);
      if (arg != last_parm)
      if (arg != last_parm)
        {
        {
          /* FIXME: Sometimes with the tree optimizers we can get the
          /* FIXME: Sometimes with the tree optimizers we can get the
             not the last argument even though the user used the last
             not the last argument even though the user used the last
             argument.  We just warn and set the arg to be the last
             argument.  We just warn and set the arg to be the last
             argument so that we will get wrong-code because of
             argument so that we will get wrong-code because of
             it.  */
             it.  */
          warning (0, "second parameter of %<va_start%> not last named argument");
          warning (0, "second parameter of %<va_start%> not last named argument");
        }
        }
 
 
      /* Undefined by C99 7.15.1.4p4 (va_start):
      /* Undefined by C99 7.15.1.4p4 (va_start):
         "If the parameter parmN is declared with the register storage
         "If the parameter parmN is declared with the register storage
         class, with a function or array type, or with a type that is
         class, with a function or array type, or with a type that is
         not compatible with the type that results after application of
         not compatible with the type that results after application of
         the default argument promotions, the behavior is undefined."
         the default argument promotions, the behavior is undefined."
      */
      */
      else if (DECL_REGISTER (arg))
      else if (DECL_REGISTER (arg))
        warning (0, "undefined behaviour when second parameter of "
        warning (0, "undefined behaviour when second parameter of "
                 "%<va_start%> is declared with %<register%> storage");
                 "%<va_start%> is declared with %<register%> storage");
 
 
      /* We want to verify the second parameter just once before the tree
      /* We want to verify the second parameter just once before the tree
         optimizers are run and then avoid keeping it in the tree,
         optimizers are run and then avoid keeping it in the tree,
         as otherwise we could warn even for correct code like:
         as otherwise we could warn even for correct code like:
         void foo (int i, ...)
         void foo (int i, ...)
         { va_list ap; i++; va_start (ap, i); va_end (ap); }  */
         { va_list ap; i++; va_start (ap, i); va_end (ap); }  */
      if (va_start_p)
      if (va_start_p)
        CALL_EXPR_ARG (exp, 1) = integer_zero_node;
        CALL_EXPR_ARG (exp, 1) = integer_zero_node;
      else
      else
        CALL_EXPR_ARG (exp, 0) = integer_zero_node;
        CALL_EXPR_ARG (exp, 0) = integer_zero_node;
    }
    }
  return false;
  return false;
}
}
 
 
 
 
/* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG.
/* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG.
   ORIG may be null if this is a 2-argument call.  We don't attempt to
   ORIG may be null if this is a 2-argument call.  We don't attempt to
   simplify calls with more than 3 arguments.
   simplify calls with more than 3 arguments.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.  If IGNORED is true, it means that
   simplified form of the call as a tree.  If IGNORED is true, it means that
   the caller does not use the returned value of the function.  */
   the caller does not use the returned value of the function.  */
 
 
static tree
static tree
fold_builtin_sprintf (location_t loc, tree dest, tree fmt,
fold_builtin_sprintf (location_t loc, tree dest, tree fmt,
                      tree orig, int ignored)
                      tree orig, int ignored)
{
{
  tree call, retval;
  tree call, retval;
  const char *fmt_str = NULL;
  const char *fmt_str = NULL;
 
 
  /* Verify the required arguments in the original call.  We deal with two
  /* Verify the required arguments in the original call.  We deal with two
     types of sprintf() calls: 'sprintf (str, fmt)' and
     types of sprintf() calls: 'sprintf (str, fmt)' and
     'sprintf (dest, "%s", orig)'.  */
     'sprintf (dest, "%s", orig)'.  */
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (fmt, POINTER_TYPE))
      || !validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  if (orig && !validate_arg (orig, POINTER_TYPE))
  if (orig && !validate_arg (orig, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  call = NULL_TREE;
  call = NULL_TREE;
  retval = NULL_TREE;
  retval = NULL_TREE;
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the format doesn't contain % args or %%, use strcpy.  */
  /* If the format doesn't contain % args or %%, use strcpy.  */
  if (strchr (fmt_str, target_percent) == NULL)
  if (strchr (fmt_str, target_percent) == NULL)
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
 
 
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Don't optimize sprintf (buf, "abc", ptr++).  */
      /* Don't optimize sprintf (buf, "abc", ptr++).  */
      if (orig)
      if (orig)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Convert sprintf (str, fmt) into strcpy (str, fmt) when
      /* Convert sprintf (str, fmt) into strcpy (str, fmt) when
         'format' is known to contain no % formats.  */
         'format' is known to contain no % formats.  */
      call = build_call_expr_loc (loc, fn, 2, dest, fmt);
      call = build_call_expr_loc (loc, fn, 2, dest, fmt);
      if (!ignored)
      if (!ignored)
        retval = build_int_cst (NULL_TREE, strlen (fmt_str));
        retval = build_int_cst (NULL_TREE, strlen (fmt_str));
    }
    }
 
 
  /* If the format is "%s", use strcpy if the result isn't used.  */
  /* If the format is "%s", use strcpy if the result isn't used.  */
  else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
  else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      tree fn;
      tree fn;
      fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      fn = implicit_built_in_decls[BUILT_IN_STRCPY];
 
 
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Don't crash on sprintf (str1, "%s").  */
      /* Don't crash on sprintf (str1, "%s").  */
      if (!orig)
      if (!orig)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2).  */
      /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2).  */
      if (!ignored)
      if (!ignored)
        {
        {
          retval = c_strlen (orig, 1);
          retval = c_strlen (orig, 1);
          if (!retval || TREE_CODE (retval) != INTEGER_CST)
          if (!retval || TREE_CODE (retval) != INTEGER_CST)
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      call = build_call_expr_loc (loc, fn, 2, dest, orig);
      call = build_call_expr_loc (loc, fn, 2, dest, orig);
    }
    }
 
 
  if (call && retval)
  if (call && retval)
    {
    {
      retval = fold_convert_loc
      retval = fold_convert_loc
        (loc, TREE_TYPE (TREE_TYPE (implicit_built_in_decls[BUILT_IN_SPRINTF])),
        (loc, TREE_TYPE (TREE_TYPE (implicit_built_in_decls[BUILT_IN_SPRINTF])),
         retval);
         retval);
      return build2 (COMPOUND_EXPR, TREE_TYPE (retval), call, retval);
      return build2 (COMPOUND_EXPR, TREE_TYPE (retval), call, retval);
    }
    }
  else
  else
    return call;
    return call;
}
}
 
 
/* Expand a call EXP to __builtin_object_size.  */
/* Expand a call EXP to __builtin_object_size.  */
 
 
rtx
rtx
expand_builtin_object_size (tree exp)
expand_builtin_object_size (tree exp)
{
{
  tree ost;
  tree ost;
  int object_size_type;
  int object_size_type;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
 
 
  if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      error ("%Kfirst argument of %D must be a pointer, second integer constant",
      error ("%Kfirst argument of %D must be a pointer, second integer constant",
             exp, fndecl);
             exp, fndecl);
      expand_builtin_trap ();
      expand_builtin_trap ();
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  ost = CALL_EXPR_ARG (exp, 1);
  ost = CALL_EXPR_ARG (exp, 1);
  STRIP_NOPS (ost);
  STRIP_NOPS (ost);
 
 
  if (TREE_CODE (ost) != INTEGER_CST
  if (TREE_CODE (ost) != INTEGER_CST
      || tree_int_cst_sgn (ost) < 0
      || tree_int_cst_sgn (ost) < 0
      || compare_tree_int (ost, 3) > 0)
      || compare_tree_int (ost, 3) > 0)
    {
    {
      error ("%Klast argument of %D is not integer constant between 0 and 3",
      error ("%Klast argument of %D is not integer constant between 0 and 3",
             exp, fndecl);
             exp, fndecl);
      expand_builtin_trap ();
      expand_builtin_trap ();
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  object_size_type = tree_low_cst (ost, 0);
  object_size_type = tree_low_cst (ost, 0);
 
 
  return object_size_type < 2 ? constm1_rtx : const0_rtx;
  return object_size_type < 2 ? constm1_rtx : const0_rtx;
}
}
 
 
/* Expand EXP, a call to the __mem{cpy,pcpy,move,set}_chk builtin.
/* Expand EXP, a call to the __mem{cpy,pcpy,move,set}_chk builtin.
   FCODE is the BUILT_IN_* to use.
   FCODE is the BUILT_IN_* to use.
   Return NULL_RTX if we failed; the caller should emit a normal call,
   Return NULL_RTX if we failed; the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  */
   mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_memory_chk (tree exp, rtx target, enum machine_mode mode,
expand_builtin_memory_chk (tree exp, rtx target, enum machine_mode mode,
                           enum built_in_function fcode)
                           enum built_in_function fcode)
{
{
  tree dest, src, len, size;
  tree dest, src, len, size;
 
 
  if (!validate_arglist (exp,
  if (!validate_arglist (exp,
                         POINTER_TYPE,
                         POINTER_TYPE,
                         fcode == BUILT_IN_MEMSET_CHK
                         fcode == BUILT_IN_MEMSET_CHK
                         ? INTEGER_TYPE : POINTER_TYPE,
                         ? INTEGER_TYPE : POINTER_TYPE,
                         INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  dest = CALL_EXPR_ARG (exp, 0);
  dest = CALL_EXPR_ARG (exp, 0);
  src = CALL_EXPR_ARG (exp, 1);
  src = CALL_EXPR_ARG (exp, 1);
  len = CALL_EXPR_ARG (exp, 2);
  len = CALL_EXPR_ARG (exp, 2);
  size = CALL_EXPR_ARG (exp, 3);
  size = CALL_EXPR_ARG (exp, 3);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_RTX;
    return NULL_RTX;
 
 
  if (host_integerp (len, 1) || integer_all_onesp (size))
  if (host_integerp (len, 1) || integer_all_onesp (size))
    {
    {
      tree fn;
      tree fn;
 
 
      if (! integer_all_onesp (size) && tree_int_cst_lt (size, len))
      if (! integer_all_onesp (size) && tree_int_cst_lt (size, len))
        {
        {
          warning_at (tree_nonartificial_location (exp),
          warning_at (tree_nonartificial_location (exp),
                      0, "%Kcall to %D will always overflow destination buffer",
                      0, "%Kcall to %D will always overflow destination buffer",
                      exp, get_callee_fndecl (exp));
                      exp, get_callee_fndecl (exp));
          return NULL_RTX;
          return NULL_RTX;
        }
        }
 
 
      fn = NULL_TREE;
      fn = NULL_TREE;
      /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
      /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
         mem{cpy,pcpy,move,set} is available.  */
         mem{cpy,pcpy,move,set} is available.  */
      switch (fcode)
      switch (fcode)
        {
        {
        case BUILT_IN_MEMCPY_CHK:
        case BUILT_IN_MEMCPY_CHK:
          fn = built_in_decls[BUILT_IN_MEMCPY];
          fn = built_in_decls[BUILT_IN_MEMCPY];
          break;
          break;
        case BUILT_IN_MEMPCPY_CHK:
        case BUILT_IN_MEMPCPY_CHK:
          fn = built_in_decls[BUILT_IN_MEMPCPY];
          fn = built_in_decls[BUILT_IN_MEMPCPY];
          break;
          break;
        case BUILT_IN_MEMMOVE_CHK:
        case BUILT_IN_MEMMOVE_CHK:
          fn = built_in_decls[BUILT_IN_MEMMOVE];
          fn = built_in_decls[BUILT_IN_MEMMOVE];
          break;
          break;
        case BUILT_IN_MEMSET_CHK:
        case BUILT_IN_MEMSET_CHK:
          fn = built_in_decls[BUILT_IN_MEMSET];
          fn = built_in_decls[BUILT_IN_MEMSET];
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (! fn)
      if (! fn)
        return NULL_RTX;
        return NULL_RTX;
 
 
      fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 3, dest, src, len);
      fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 3, dest, src, len);
      gcc_assert (TREE_CODE (fn) == CALL_EXPR);
      gcc_assert (TREE_CODE (fn) == CALL_EXPR);
      CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      return expand_expr (fn, target, mode, EXPAND_NORMAL);
      return expand_expr (fn, target, mode, EXPAND_NORMAL);
    }
    }
  else if (fcode == BUILT_IN_MEMSET_CHK)
  else if (fcode == BUILT_IN_MEMSET_CHK)
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    {
    {
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
 
 
      /* If DEST is not a pointer type, call the normal function.  */
      /* If DEST is not a pointer type, call the normal function.  */
      if (dest_align == 0)
      if (dest_align == 0)
        return NULL_RTX;
        return NULL_RTX;
 
 
      /* If SRC and DEST are the same (and not volatile), do nothing.  */
      /* If SRC and DEST are the same (and not volatile), do nothing.  */
      if (operand_equal_p (src, dest, 0))
      if (operand_equal_p (src, dest, 0))
        {
        {
          tree expr;
          tree expr;
 
 
          if (fcode != BUILT_IN_MEMPCPY_CHK)
          if (fcode != BUILT_IN_MEMPCPY_CHK)
            {
            {
              /* Evaluate and ignore LEN in case it has side-effects.  */
              /* Evaluate and ignore LEN in case it has side-effects.  */
              expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL);
              expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL);
              return expand_expr (dest, target, mode, EXPAND_NORMAL);
              return expand_expr (dest, target, mode, EXPAND_NORMAL);
            }
            }
 
 
          expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len);
          expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len);
          return expand_expr (expr, target, mode, EXPAND_NORMAL);
          return expand_expr (expr, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* __memmove_chk special case.  */
      /* __memmove_chk special case.  */
      if (fcode == BUILT_IN_MEMMOVE_CHK)
      if (fcode == BUILT_IN_MEMMOVE_CHK)
        {
        {
          unsigned int src_align
          unsigned int src_align
            = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
            = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
 
 
          if (src_align == 0)
          if (src_align == 0)
            return NULL_RTX;
            return NULL_RTX;
 
 
          /* If src is categorized for a readonly section we can use
          /* If src is categorized for a readonly section we can use
             normal __memcpy_chk.  */
             normal __memcpy_chk.  */
          if (readonly_data_expr (src))
          if (readonly_data_expr (src))
            {
            {
              tree fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              tree fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              if (!fn)
              if (!fn)
                return NULL_RTX;
                return NULL_RTX;
              fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 4,
              fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 4,
                                          dest, src, len, size);
                                          dest, src, len, size);
              gcc_assert (TREE_CODE (fn) == CALL_EXPR);
              gcc_assert (TREE_CODE (fn) == CALL_EXPR);
              CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
              CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
              return expand_expr (fn, target, mode, EXPAND_NORMAL);
              return expand_expr (fn, target, mode, EXPAND_NORMAL);
            }
            }
        }
        }
      return NULL_RTX;
      return NULL_RTX;
    }
    }
}
}
 
 
/* Emit warning if a buffer overflow is detected at compile time.  */
/* Emit warning if a buffer overflow is detected at compile time.  */
 
 
static void
static void
maybe_emit_chk_warning (tree exp, enum built_in_function fcode)
maybe_emit_chk_warning (tree exp, enum built_in_function fcode)
{
{
  int is_strlen = 0;
  int is_strlen = 0;
  tree len, size;
  tree len, size;
  location_t loc = tree_nonartificial_location (exp);
  location_t loc = tree_nonartificial_location (exp);
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    /* For __strcat_chk the warning will be emitted only if overflowing
    /* For __strcat_chk the warning will be emitted only if overflowing
       by at least strlen (dest) + 1 bytes.  */
       by at least strlen (dest) + 1 bytes.  */
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRCAT_CHK:
      len = CALL_EXPR_ARG (exp, 1);
      len = CALL_EXPR_ARG (exp, 1);
      size = CALL_EXPR_ARG (exp, 2);
      size = CALL_EXPR_ARG (exp, 2);
      is_strlen = 1;
      is_strlen = 1;
      break;
      break;
    case BUILT_IN_STRNCAT_CHK:
    case BUILT_IN_STRNCAT_CHK:
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
      len = CALL_EXPR_ARG (exp, 2);
      len = CALL_EXPR_ARG (exp, 2);
      size = CALL_EXPR_ARG (exp, 3);
      size = CALL_EXPR_ARG (exp, 3);
      break;
      break;
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      len = CALL_EXPR_ARG (exp, 1);
      len = CALL_EXPR_ARG (exp, 1);
      size = CALL_EXPR_ARG (exp, 3);
      size = CALL_EXPR_ARG (exp, 3);
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (!len || !size)
  if (!len || !size)
    return;
    return;
 
 
  if (! host_integerp (size, 1) || integer_all_onesp (size))
  if (! host_integerp (size, 1) || integer_all_onesp (size))
    return;
    return;
 
 
  if (is_strlen)
  if (is_strlen)
    {
    {
      len = c_strlen (len, 1);
      len = c_strlen (len, 1);
      if (! len || ! host_integerp (len, 1) || tree_int_cst_lt (len, size))
      if (! len || ! host_integerp (len, 1) || tree_int_cst_lt (len, size))
        return;
        return;
    }
    }
  else if (fcode == BUILT_IN_STRNCAT_CHK)
  else if (fcode == BUILT_IN_STRNCAT_CHK)
    {
    {
      tree src = CALL_EXPR_ARG (exp, 1);
      tree src = CALL_EXPR_ARG (exp, 1);
      if (! src || ! host_integerp (len, 1) || tree_int_cst_lt (len, size))
      if (! src || ! host_integerp (len, 1) || tree_int_cst_lt (len, size))
        return;
        return;
      src = c_strlen (src, 1);
      src = c_strlen (src, 1);
      if (! src || ! host_integerp (src, 1))
      if (! src || ! host_integerp (src, 1))
        {
        {
          warning_at (loc, 0, "%Kcall to %D might overflow destination buffer",
          warning_at (loc, 0, "%Kcall to %D might overflow destination buffer",
                      exp, get_callee_fndecl (exp));
                      exp, get_callee_fndecl (exp));
          return;
          return;
        }
        }
      else if (tree_int_cst_lt (src, size))
      else if (tree_int_cst_lt (src, size))
        return;
        return;
    }
    }
  else if (! host_integerp (len, 1) || ! tree_int_cst_lt (size, len))
  else if (! host_integerp (len, 1) || ! tree_int_cst_lt (size, len))
    return;
    return;
 
 
  warning_at (loc, 0, "%Kcall to %D will always overflow destination buffer",
  warning_at (loc, 0, "%Kcall to %D will always overflow destination buffer",
              exp, get_callee_fndecl (exp));
              exp, get_callee_fndecl (exp));
}
}
 
 
/* Emit warning if a buffer overflow is detected at compile time
/* Emit warning if a buffer overflow is detected at compile time
   in __sprintf_chk/__vsprintf_chk calls.  */
   in __sprintf_chk/__vsprintf_chk calls.  */
 
 
static void
static void
maybe_emit_sprintf_chk_warning (tree exp, enum built_in_function fcode)
maybe_emit_sprintf_chk_warning (tree exp, enum built_in_function fcode)
{
{
  tree size, len, fmt;
  tree size, len, fmt;
  const char *fmt_str;
  const char *fmt_str;
  int nargs = call_expr_nargs (exp);
  int nargs = call_expr_nargs (exp);
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
 
 
  if (nargs < 4)
  if (nargs < 4)
    return;
    return;
  size = CALL_EXPR_ARG (exp, 2);
  size = CALL_EXPR_ARG (exp, 2);
  fmt = CALL_EXPR_ARG (exp, 3);
  fmt = CALL_EXPR_ARG (exp, 3);
 
 
  if (! host_integerp (size, 1) || integer_all_onesp (size))
  if (! host_integerp (size, 1) || integer_all_onesp (size))
    return;
    return;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return;
    return;
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return;
    return;
 
 
  /* If the format doesn't contain % args or %%, we know its size.  */
  /* If the format doesn't contain % args or %%, we know its size.  */
  if (strchr (fmt_str, target_percent) == 0)
  if (strchr (fmt_str, target_percent) == 0)
    len = build_int_cstu (size_type_node, strlen (fmt_str));
    len = build_int_cstu (size_type_node, strlen (fmt_str));
  /* If the format is "%s" and first ... argument is a string literal,
  /* If the format is "%s" and first ... argument is a string literal,
     we know it too.  */
     we know it too.  */
  else if (fcode == BUILT_IN_SPRINTF_CHK
  else if (fcode == BUILT_IN_SPRINTF_CHK
           && strcmp (fmt_str, target_percent_s) == 0)
           && strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      tree arg;
      tree arg;
 
 
      if (nargs < 5)
      if (nargs < 5)
        return;
        return;
      arg = CALL_EXPR_ARG (exp, 4);
      arg = CALL_EXPR_ARG (exp, 4);
      if (! POINTER_TYPE_P (TREE_TYPE (arg)))
      if (! POINTER_TYPE_P (TREE_TYPE (arg)))
        return;
        return;
 
 
      len = c_strlen (arg, 1);
      len = c_strlen (arg, 1);
      if (!len || ! host_integerp (len, 1))
      if (!len || ! host_integerp (len, 1))
        return;
        return;
    }
    }
  else
  else
    return;
    return;
 
 
  if (! tree_int_cst_lt (len, size))
  if (! tree_int_cst_lt (len, size))
    warning_at (tree_nonartificial_location (exp),
    warning_at (tree_nonartificial_location (exp),
                0, "%Kcall to %D will always overflow destination buffer",
                0, "%Kcall to %D will always overflow destination buffer",
                exp, get_callee_fndecl (exp));
                exp, get_callee_fndecl (exp));
}
}
 
 
/* Emit warning if a free is called with address of a variable.  */
/* Emit warning if a free is called with address of a variable.  */
 
 
static void
static void
maybe_emit_free_warning (tree exp)
maybe_emit_free_warning (tree exp)
{
{
  tree arg = CALL_EXPR_ARG (exp, 0);
  tree arg = CALL_EXPR_ARG (exp, 0);
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
  if (TREE_CODE (arg) != ADDR_EXPR)
  if (TREE_CODE (arg) != ADDR_EXPR)
    return;
    return;
 
 
  arg = get_base_address (TREE_OPERAND (arg, 0));
  arg = get_base_address (TREE_OPERAND (arg, 0));
  if (arg == NULL || INDIRECT_REF_P (arg))
  if (arg == NULL || INDIRECT_REF_P (arg))
    return;
    return;
 
 
  if (SSA_VAR_P (arg))
  if (SSA_VAR_P (arg))
    warning_at (tree_nonartificial_location (exp),
    warning_at (tree_nonartificial_location (exp),
                0, "%Kattempt to free a non-heap object %qD", exp, arg);
                0, "%Kattempt to free a non-heap object %qD", exp, arg);
  else
  else
    warning_at (tree_nonartificial_location (exp),
    warning_at (tree_nonartificial_location (exp),
                0, "%Kattempt to free a non-heap object", exp);
                0, "%Kattempt to free a non-heap object", exp);
}
}
 
 
/* Fold a call to __builtin_object_size with arguments PTR and OST,
/* Fold a call to __builtin_object_size with arguments PTR and OST,
   if possible.  */
   if possible.  */
 
 
tree
tree
fold_builtin_object_size (tree ptr, tree ost)
fold_builtin_object_size (tree ptr, tree ost)
{
{
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
  int object_size_type;
  int object_size_type;
 
 
  if (!validate_arg (ptr, POINTER_TYPE)
  if (!validate_arg (ptr, POINTER_TYPE)
      || !validate_arg (ost, INTEGER_TYPE))
      || !validate_arg (ost, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  STRIP_NOPS (ost);
  STRIP_NOPS (ost);
 
 
  if (TREE_CODE (ost) != INTEGER_CST
  if (TREE_CODE (ost) != INTEGER_CST
      || tree_int_cst_sgn (ost) < 0
      || tree_int_cst_sgn (ost) < 0
      || compare_tree_int (ost, 3) > 0)
      || compare_tree_int (ost, 3) > 0)
    return NULL_TREE;
    return NULL_TREE;
 
 
  object_size_type = tree_low_cst (ost, 0);
  object_size_type = tree_low_cst (ost, 0);
 
 
  /* __builtin_object_size doesn't evaluate side-effects in its arguments;
  /* __builtin_object_size doesn't evaluate side-effects in its arguments;
     if there are any side-effects, it returns (size_t) -1 for types 0 and 1
     if there are any side-effects, it returns (size_t) -1 for types 0 and 1
     and (size_t) 0 for types 2 and 3.  */
     and (size_t) 0 for types 2 and 3.  */
  if (TREE_SIDE_EFFECTS (ptr))
  if (TREE_SIDE_EFFECTS (ptr))
    return build_int_cst_type (size_type_node, object_size_type < 2 ? -1 : 0);
    return build_int_cst_type (size_type_node, object_size_type < 2 ? -1 : 0);
 
 
  if (TREE_CODE (ptr) == ADDR_EXPR)
  if (TREE_CODE (ptr) == ADDR_EXPR)
    ret = build_int_cstu (size_type_node,
    ret = build_int_cstu (size_type_node,
                          compute_builtin_object_size (ptr, object_size_type));
                          compute_builtin_object_size (ptr, object_size_type));
 
 
  else if (TREE_CODE (ptr) == SSA_NAME)
  else if (TREE_CODE (ptr) == SSA_NAME)
    {
    {
      unsigned HOST_WIDE_INT bytes;
      unsigned HOST_WIDE_INT bytes;
 
 
      /* If object size is not known yet, delay folding until
      /* If object size is not known yet, delay folding until
       later.  Maybe subsequent passes will help determining
       later.  Maybe subsequent passes will help determining
       it.  */
       it.  */
      bytes = compute_builtin_object_size (ptr, object_size_type);
      bytes = compute_builtin_object_size (ptr, object_size_type);
      if (bytes != (unsigned HOST_WIDE_INT) (object_size_type < 2
      if (bytes != (unsigned HOST_WIDE_INT) (object_size_type < 2
                                             ? -1 : 0))
                                             ? -1 : 0))
        ret = build_int_cstu (size_type_node, bytes);
        ret = build_int_cstu (size_type_node, bytes);
    }
    }
 
 
  if (ret)
  if (ret)
    {
    {
      unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (ret);
      unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (ret);
      HOST_WIDE_INT high = TREE_INT_CST_HIGH (ret);
      HOST_WIDE_INT high = TREE_INT_CST_HIGH (ret);
      if (fit_double_type (low, high, &low, &high, TREE_TYPE (ret)))
      if (fit_double_type (low, high, &low, &high, TREE_TYPE (ret)))
        ret = NULL_TREE;
        ret = NULL_TREE;
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
   DEST, SRC, LEN, and SIZE are the arguments to the call.
   DEST, SRC, LEN, and SIZE are the arguments to the call.
   IGNORE is true, if return value can be ignored.  FCODE is the BUILT_IN_*
   IGNORE is true, if return value can be ignored.  FCODE is the BUILT_IN_*
   code of the builtin.  If MAXLEN is not NULL, it is maximum length
   code of the builtin.  If MAXLEN is not NULL, it is maximum length
   passed as third argument.  */
   passed as third argument.  */
 
 
tree
tree
fold_builtin_memory_chk (location_t loc, tree fndecl,
fold_builtin_memory_chk (location_t loc, tree fndecl,
                         tree dest, tree src, tree len, tree size,
                         tree dest, tree src, tree len, tree size,
                         tree maxlen, bool ignore,
                         tree maxlen, bool ignore,
                         enum built_in_function fcode)
                         enum built_in_function fcode)
{
{
  tree fn;
  tree fn;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src,
      || !validate_arg (src,
                        (fcode == BUILT_IN_MEMSET_CHK
                        (fcode == BUILT_IN_MEMSET_CHK
                         ? INTEGER_TYPE : POINTER_TYPE))
                         ? INTEGER_TYPE : POINTER_TYPE))
      || !validate_arg (len, INTEGER_TYPE)
      || !validate_arg (len, INTEGER_TYPE)
      || !validate_arg (size, INTEGER_TYPE))
      || !validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If SRC and DEST are the same (and not volatile), return DEST
  /* If SRC and DEST are the same (and not volatile), return DEST
     (resp. DEST+LEN for __mempcpy_chk).  */
     (resp. DEST+LEN for __mempcpy_chk).  */
  if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
  if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
    {
    {
      if (fcode != BUILT_IN_MEMPCPY_CHK)
      if (fcode != BUILT_IN_MEMPCPY_CHK)
        return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
        return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
                                 dest, len);
                                 dest, len);
      else
      else
        {
        {
          tree temp = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (dest),
          tree temp = fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (dest),
                                   dest, len);
                                   dest, len);
          return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), temp);
          return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), temp);
        }
        }
    }
    }
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            {
            {
              if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
              if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
                {
                {
                  /* (void) __mempcpy_chk () can be optimized into
                  /* (void) __mempcpy_chk () can be optimized into
                     (void) __memcpy_chk ().  */
                     (void) __memcpy_chk ().  */
                  fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
                  fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
                  if (!fn)
                  if (!fn)
                    return NULL_TREE;
                    return NULL_TREE;
 
 
                  return build_call_expr_loc (loc, fn, 4, dest, src, len, size);
                  return build_call_expr_loc (loc, fn, 4, dest, src, len, size);
                }
                }
              return NULL_TREE;
              return NULL_TREE;
            }
            }
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  fn = NULL_TREE;
  fn = NULL_TREE;
  /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
  /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
     mem{cpy,pcpy,move,set} is available.  */
     mem{cpy,pcpy,move,set} is available.  */
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMCPY_CHK:
      fn = built_in_decls[BUILT_IN_MEMCPY];
      fn = built_in_decls[BUILT_IN_MEMCPY];
      break;
      break;
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
      fn = built_in_decls[BUILT_IN_MEMPCPY];
      fn = built_in_decls[BUILT_IN_MEMPCPY];
      break;
      break;
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMMOVE_CHK:
      fn = built_in_decls[BUILT_IN_MEMMOVE];
      fn = built_in_decls[BUILT_IN_MEMMOVE];
      break;
      break;
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_MEMSET_CHK:
      fn = built_in_decls[BUILT_IN_MEMSET];
      fn = built_in_decls[BUILT_IN_MEMSET];
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_call_expr_loc (loc, fn, 3, dest, src, len);
  return build_call_expr_loc (loc, fn, 3, dest, src, len);
}
}
 
 
/* Fold a call to the __st[rp]cpy_chk builtin.
/* Fold a call to the __st[rp]cpy_chk builtin.
   DEST, SRC, and SIZE are the arguments to the call.
   DEST, SRC, and SIZE are the arguments to the call.
   IGNORE is true if return value can be ignored.  FCODE is the BUILT_IN_*
   IGNORE is true if return value can be ignored.  FCODE is the BUILT_IN_*
   code of the builtin.  If MAXLEN is not NULL, it is maximum length of
   code of the builtin.  If MAXLEN is not NULL, it is maximum length of
   strings passed as second argument.  */
   strings passed as second argument.  */
 
 
tree
tree
fold_builtin_stxcpy_chk (location_t loc, tree fndecl, tree dest,
fold_builtin_stxcpy_chk (location_t loc, tree fndecl, tree dest,
                         tree src, tree size,
                         tree src, tree size,
                         tree maxlen, bool ignore,
                         tree maxlen, bool ignore,
                         enum built_in_function fcode)
                         enum built_in_function fcode)
{
{
  tree len, fn;
  tree len, fn;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (size, INTEGER_TYPE))
      || !validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
  if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
    return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest);
    return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      len = c_strlen (src, 1);
      len = c_strlen (src, 1);
      if (! len || ! host_integerp (len, 1))
      if (! len || ! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            {
            {
              if (fcode == BUILT_IN_STPCPY_CHK)
              if (fcode == BUILT_IN_STPCPY_CHK)
                {
                {
                  if (! ignore)
                  if (! ignore)
                    return NULL_TREE;
                    return NULL_TREE;
 
 
                  /* If return value of __stpcpy_chk is ignored,
                  /* If return value of __stpcpy_chk is ignored,
                     optimize into __strcpy_chk.  */
                     optimize into __strcpy_chk.  */
                  fn = built_in_decls[BUILT_IN_STRCPY_CHK];
                  fn = built_in_decls[BUILT_IN_STRCPY_CHK];
                  if (!fn)
                  if (!fn)
                    return NULL_TREE;
                    return NULL_TREE;
 
 
                  return build_call_expr_loc (loc, fn, 3, dest, src, size);
                  return build_call_expr_loc (loc, fn, 3, dest, src, size);
                }
                }
 
 
              if (! len || TREE_SIDE_EFFECTS (len))
              if (! len || TREE_SIDE_EFFECTS (len))
                return NULL_TREE;
                return NULL_TREE;
 
 
              /* If c_strlen returned something, but not a constant,
              /* If c_strlen returned something, but not a constant,
                 transform __strcpy_chk into __memcpy_chk.  */
                 transform __strcpy_chk into __memcpy_chk.  */
              fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              if (!fn)
              if (!fn)
                return NULL_TREE;
                return NULL_TREE;
 
 
              len = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
              len = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
              return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
              return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)),
                                       build_call_expr_loc (loc, fn, 4,
                                       build_call_expr_loc (loc, fn, 4,
                                                        dest, src, len, size));
                                                        dest, src, len, size));
            }
            }
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (! tree_int_cst_lt (maxlen, size))
      if (! tree_int_cst_lt (maxlen, size))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available.  */
  /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available.  */
  fn = built_in_decls[fcode == BUILT_IN_STPCPY_CHK
  fn = built_in_decls[fcode == BUILT_IN_STPCPY_CHK
                      ? BUILT_IN_STPCPY : BUILT_IN_STRCPY];
                      ? BUILT_IN_STPCPY : BUILT_IN_STRCPY];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_call_expr_loc (loc, fn, 2, dest, src);
  return build_call_expr_loc (loc, fn, 2, dest, src);
}
}
 
 
/* Fold a call to the __strncpy_chk builtin.  DEST, SRC, LEN, and SIZE
/* Fold a call to the __strncpy_chk builtin.  DEST, SRC, LEN, and SIZE
   are the arguments to the call.  If MAXLEN is not NULL, it is maximum
   are the arguments to the call.  If MAXLEN is not NULL, it is maximum
   length passed as third argument.  */
   length passed as third argument.  */
 
 
tree
tree
fold_builtin_strncpy_chk (location_t loc, tree dest, tree src,
fold_builtin_strncpy_chk (location_t loc, tree dest, tree src,
                          tree len, tree size, tree maxlen)
                          tree len, tree size, tree maxlen)
{
{
  tree fn;
  tree fn;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (len, INTEGER_TYPE)
      || !validate_arg (len, INTEGER_TYPE)
      || !validate_arg (size, INTEGER_TYPE))
      || !validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* If __builtin_strncpy_chk is used, assume strncpy is available.  */
  /* If __builtin_strncpy_chk is used, assume strncpy is available.  */
  fn = built_in_decls[BUILT_IN_STRNCPY];
  fn = built_in_decls[BUILT_IN_STRNCPY];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_call_expr_loc (loc, fn, 3, dest, src, len);
  return build_call_expr_loc (loc, fn, 3, dest, src, len);
}
}
 
 
/* Fold a call to the __strcat_chk builtin FNDECL.  DEST, SRC, and SIZE
/* Fold a call to the __strcat_chk builtin FNDECL.  DEST, SRC, and SIZE
   are the arguments to the call.  */
   are the arguments to the call.  */
 
 
static tree
static tree
fold_builtin_strcat_chk (location_t loc, tree fndecl, tree dest,
fold_builtin_strcat_chk (location_t loc, tree fndecl, tree dest,
                         tree src, tree size)
                         tree src, tree size)
{
{
  tree fn;
  tree fn;
  const char *p;
  const char *p;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (size, INTEGER_TYPE))
      || !validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  p = c_getstr (src);
  p = c_getstr (src);
  /* If the SRC parameter is "", return DEST.  */
  /* If the SRC parameter is "", return DEST.  */
  if (p && *p == '\0')
  if (p && *p == '\0')
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
 
 
  if (! host_integerp (size, 1) || ! integer_all_onesp (size))
  if (! host_integerp (size, 1) || ! integer_all_onesp (size))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If __builtin_strcat_chk is used, assume strcat is available.  */
  /* If __builtin_strcat_chk is used, assume strcat is available.  */
  fn = built_in_decls[BUILT_IN_STRCAT];
  fn = built_in_decls[BUILT_IN_STRCAT];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_call_expr_loc (loc, fn, 2, dest, src);
  return build_call_expr_loc (loc, fn, 2, dest, src);
}
}
 
 
/* Fold a call to the __strncat_chk builtin with arguments DEST, SRC,
/* Fold a call to the __strncat_chk builtin with arguments DEST, SRC,
   LEN, and SIZE.  */
   LEN, and SIZE.  */
 
 
static tree
static tree
fold_builtin_strncat_chk (location_t loc, tree fndecl,
fold_builtin_strncat_chk (location_t loc, tree fndecl,
                          tree dest, tree src, tree len, tree size)
                          tree dest, tree src, tree len, tree size)
{
{
  tree fn;
  tree fn;
  const char *p;
  const char *p;
 
 
  if (!validate_arg (dest, POINTER_TYPE)
  if (!validate_arg (dest, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (src, POINTER_TYPE)
      || !validate_arg (size, INTEGER_TYPE)
      || !validate_arg (size, INTEGER_TYPE)
      || !validate_arg (size, INTEGER_TYPE))
      || !validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  p = c_getstr (src);
  p = c_getstr (src);
  /* If the SRC parameter is "" or if LEN is 0, return DEST.  */
  /* If the SRC parameter is "" or if LEN is 0, return DEST.  */
  if (p && *p == '\0')
  if (p && *p == '\0')
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, len);
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, len);
  else if (integer_zerop (len))
  else if (integer_zerop (len))
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
    return omit_one_operand_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      tree src_len = c_strlen (src, 1);
      tree src_len = c_strlen (src, 1);
      if (src_len
      if (src_len
          && host_integerp (src_len, 1)
          && host_integerp (src_len, 1)
          && host_integerp (len, 1)
          && host_integerp (len, 1)
          && ! tree_int_cst_lt (len, src_len))
          && ! tree_int_cst_lt (len, src_len))
        {
        {
          /* If LEN >= strlen (SRC), optimize into __strcat_chk.  */
          /* If LEN >= strlen (SRC), optimize into __strcat_chk.  */
          fn = built_in_decls[BUILT_IN_STRCAT_CHK];
          fn = built_in_decls[BUILT_IN_STRCAT_CHK];
          if (!fn)
          if (!fn)
            return NULL_TREE;
            return NULL_TREE;
 
 
          return build_call_expr_loc (loc, fn, 3, dest, src, size);
          return build_call_expr_loc (loc, fn, 3, dest, src, size);
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* If __builtin_strncat_chk is used, assume strncat is available.  */
  /* If __builtin_strncat_chk is used, assume strncat is available.  */
  fn = built_in_decls[BUILT_IN_STRNCAT];
  fn = built_in_decls[BUILT_IN_STRNCAT];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return build_call_expr_loc (loc, fn, 3, dest, src, len);
  return build_call_expr_loc (loc, fn, 3, dest, src, len);
}
}
 
 
/* Fold a call EXP to __{,v}sprintf_chk.  Return NULL_TREE if
/* Fold a call EXP to __{,v}sprintf_chk.  Return NULL_TREE if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK.  */
   inline.  FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK.  */
 
 
static tree
static tree
fold_builtin_sprintf_chk (location_t loc, tree exp,
fold_builtin_sprintf_chk (location_t loc, tree exp,
                          enum built_in_function fcode)
                          enum built_in_function fcode)
{
{
  tree dest, size, len, fn, fmt, flag;
  tree dest, size, len, fn, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
  int nargs = call_expr_nargs (exp);
  int nargs = call_expr_nargs (exp);
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (nargs < 4)
  if (nargs < 4)
    return NULL_TREE;
    return NULL_TREE;
  dest = CALL_EXPR_ARG (exp, 0);
  dest = CALL_EXPR_ARG (exp, 0);
  if (!validate_arg (dest, POINTER_TYPE))
  if (!validate_arg (dest, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  flag = CALL_EXPR_ARG (exp, 1);
  flag = CALL_EXPR_ARG (exp, 1);
  if (!validate_arg (flag, INTEGER_TYPE))
  if (!validate_arg (flag, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  size = CALL_EXPR_ARG (exp, 2);
  size = CALL_EXPR_ARG (exp, 2);
  if (!validate_arg (size, INTEGER_TYPE))
  if (!validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  fmt = CALL_EXPR_ARG (exp, 3);
  fmt = CALL_EXPR_ARG (exp, 3);
  if (!validate_arg (fmt, POINTER_TYPE))
  if (!validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  len = NULL_TREE;
  len = NULL_TREE;
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str != NULL)
  if (fmt_str != NULL)
    {
    {
      /* If the format doesn't contain % args or %%, we know the size.  */
      /* If the format doesn't contain % args or %%, we know the size.  */
      if (strchr (fmt_str, target_percent) == 0)
      if (strchr (fmt_str, target_percent) == 0)
        {
        {
          if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
          if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
            len = build_int_cstu (size_type_node, strlen (fmt_str));
            len = build_int_cstu (size_type_node, strlen (fmt_str));
        }
        }
      /* If the format is "%s" and first ... argument is a string literal,
      /* If the format is "%s" and first ... argument is a string literal,
         we know the size too.  */
         we know the size too.  */
      else if (fcode == BUILT_IN_SPRINTF_CHK
      else if (fcode == BUILT_IN_SPRINTF_CHK
               && strcmp (fmt_str, target_percent_s) == 0)
               && strcmp (fmt_str, target_percent_s) == 0)
        {
        {
          tree arg;
          tree arg;
 
 
          if (nargs == 5)
          if (nargs == 5)
            {
            {
              arg = CALL_EXPR_ARG (exp, 4);
              arg = CALL_EXPR_ARG (exp, 4);
              if (validate_arg (arg, POINTER_TYPE))
              if (validate_arg (arg, POINTER_TYPE))
                {
                {
                  len = c_strlen (arg, 1);
                  len = c_strlen (arg, 1);
                  if (! len || ! host_integerp (len, 1))
                  if (! len || ! host_integerp (len, 1))
                    len = NULL_TREE;
                    len = NULL_TREE;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! len || ! tree_int_cst_lt (len, size))
      if (! len || ! tree_int_cst_lt (len, size))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
  /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
     or if format doesn't contain % chars or is "%s".  */
     or if format doesn't contain % chars or is "%s".  */
  if (! integer_zerop (flag))
  if (! integer_zerop (flag))
    {
    {
      if (fmt_str == NULL)
      if (fmt_str == NULL)
        return NULL_TREE;
        return NULL_TREE;
      if (strchr (fmt_str, target_percent) != NULL
      if (strchr (fmt_str, target_percent) != NULL
          && strcmp (fmt_str, target_percent_s))
          && strcmp (fmt_str, target_percent_s))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available.  */
  /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available.  */
  fn = built_in_decls[fcode == BUILT_IN_VSPRINTF_CHK
  fn = built_in_decls[fcode == BUILT_IN_VSPRINTF_CHK
                      ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF];
                      ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return rewrite_call_expr (loc, exp, 4, fn, 2, dest, fmt);
  return rewrite_call_expr (loc, exp, 4, fn, 2, dest, fmt);
}
}
 
 
/* Fold a call EXP to {,v}snprintf.  Return NULL_TREE if
/* Fold a call EXP to {,v}snprintf.  Return NULL_TREE if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  FCODE is either BUILT_IN_SNPRINTF_CHK or
   inline.  FCODE is either BUILT_IN_SNPRINTF_CHK or
   BUILT_IN_VSNPRINTF_CHK.  If MAXLEN is not NULL, it is maximum length
   BUILT_IN_VSNPRINTF_CHK.  If MAXLEN is not NULL, it is maximum length
   passed as second argument.  */
   passed as second argument.  */
 
 
tree
tree
fold_builtin_snprintf_chk (location_t loc, tree exp, tree maxlen,
fold_builtin_snprintf_chk (location_t loc, tree exp, tree maxlen,
                           enum built_in_function fcode)
                           enum built_in_function fcode)
{
{
  tree dest, size, len, fn, fmt, flag;
  tree dest, size, len, fn, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (call_expr_nargs (exp) < 5)
  if (call_expr_nargs (exp) < 5)
    return NULL_TREE;
    return NULL_TREE;
  dest = CALL_EXPR_ARG (exp, 0);
  dest = CALL_EXPR_ARG (exp, 0);
  if (!validate_arg (dest, POINTER_TYPE))
  if (!validate_arg (dest, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  len = CALL_EXPR_ARG (exp, 1);
  len = CALL_EXPR_ARG (exp, 1);
  if (!validate_arg (len, INTEGER_TYPE))
  if (!validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  flag = CALL_EXPR_ARG (exp, 2);
  flag = CALL_EXPR_ARG (exp, 2);
  if (!validate_arg (flag, INTEGER_TYPE))
  if (!validate_arg (flag, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  size = CALL_EXPR_ARG (exp, 3);
  size = CALL_EXPR_ARG (exp, 3);
  if (!validate_arg (size, INTEGER_TYPE))
  if (!validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  fmt = CALL_EXPR_ARG (exp, 4);
  fmt = CALL_EXPR_ARG (exp, 4);
  if (!validate_arg (fmt, POINTER_TYPE))
  if (!validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
  /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
     or if format doesn't contain % chars or is "%s".  */
     or if format doesn't contain % chars or is "%s".  */
  if (! integer_zerop (flag))
  if (! integer_zerop (flag))
    {
    {
      fmt_str = c_getstr (fmt);
      fmt_str = c_getstr (fmt);
      if (fmt_str == NULL)
      if (fmt_str == NULL)
        return NULL_TREE;
        return NULL_TREE;
      if (strchr (fmt_str, target_percent) != NULL
      if (strchr (fmt_str, target_percent) != NULL
          && strcmp (fmt_str, target_percent_s))
          && strcmp (fmt_str, target_percent_s))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
  /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
     available.  */
     available.  */
  fn = built_in_decls[fcode == BUILT_IN_VSNPRINTF_CHK
  fn = built_in_decls[fcode == BUILT_IN_VSNPRINTF_CHK
                      ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF];
                      ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return rewrite_call_expr (loc, exp, 5, fn, 3, dest, len, fmt);
  return rewrite_call_expr (loc, exp, 5, fn, 3, dest, len, fmt);
}
}
 
 
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
   FMT and ARG are the arguments to the call; we don't fold cases with
   FMT and ARG are the arguments to the call; we don't fold cases with
   more than 2 arguments, and ARG may be null if this is a 1-argument case.
   more than 2 arguments, and ARG may be null if this is a 1-argument case.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   code of the function to be simplified.  */
   code of the function to be simplified.  */
 
 
static tree
static tree
fold_builtin_printf (location_t loc, tree fndecl, tree fmt,
fold_builtin_printf (location_t loc, tree fndecl, tree fmt,
                     tree arg, bool ignore,
                     tree arg, bool ignore,
                     enum built_in_function fcode)
                     enum built_in_function fcode)
{
{
  tree fn_putchar, fn_puts, newarg, call = NULL_TREE;
  tree fn_putchar, fn_puts, newarg, call = NULL_TREE;
  const char *fmt_str = NULL;
  const char *fmt_str = NULL;
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (! ignore)
  if (! ignore)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (!validate_arg (fmt, POINTER_TYPE))
  if (!validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (fcode == BUILT_IN_PRINTF_UNLOCKED)
  if (fcode == BUILT_IN_PRINTF_UNLOCKED)
    {
    {
      /* If we're using an unlocked function, assume the other
      /* If we're using an unlocked function, assume the other
         unlocked functions exist explicitly.  */
         unlocked functions exist explicitly.  */
      fn_putchar = built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED];
      fn_putchar = built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED];
      fn_puts = built_in_decls[BUILT_IN_PUTS_UNLOCKED];
      fn_puts = built_in_decls[BUILT_IN_PUTS_UNLOCKED];
    }
    }
  else
  else
    {
    {
      fn_putchar = implicit_built_in_decls[BUILT_IN_PUTCHAR];
      fn_putchar = implicit_built_in_decls[BUILT_IN_PUTCHAR];
      fn_puts = implicit_built_in_decls[BUILT_IN_PUTS];
      fn_puts = implicit_built_in_decls[BUILT_IN_PUTS];
    }
    }
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (strcmp (fmt_str, target_percent_s) == 0
  if (strcmp (fmt_str, target_percent_s) == 0
      || strchr (fmt_str, target_percent) == NULL)
      || strchr (fmt_str, target_percent) == NULL)
    {
    {
      const char *str;
      const char *str;
 
 
      if (strcmp (fmt_str, target_percent_s) == 0)
      if (strcmp (fmt_str, target_percent_s) == 0)
        {
        {
          if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
          if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
            return NULL_TREE;
            return NULL_TREE;
 
 
          if (!arg || !validate_arg (arg, POINTER_TYPE))
          if (!arg || !validate_arg (arg, POINTER_TYPE))
            return NULL_TREE;
            return NULL_TREE;
 
 
          str = c_getstr (arg);
          str = c_getstr (arg);
          if (str == NULL)
          if (str == NULL)
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      else
      else
        {
        {
          /* The format specifier doesn't contain any '%' characters.  */
          /* The format specifier doesn't contain any '%' characters.  */
          if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
          if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
              && arg)
              && arg)
            return NULL_TREE;
            return NULL_TREE;
          str = fmt_str;
          str = fmt_str;
        }
        }
 
 
      /* If the string was "", printf does nothing.  */
      /* If the string was "", printf does nothing.  */
      if (str[0] == '\0')
      if (str[0] == '\0')
        return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
        return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
 
 
      /* If the string has length of 1, call putchar.  */
      /* If the string has length of 1, call putchar.  */
      if (str[1] == '\0')
      if (str[1] == '\0')
        {
        {
          /* Given printf("c"), (where c is any one character,)
          /* Given printf("c"), (where c is any one character,)
             convert "c"[0] to an int and pass that to the replacement
             convert "c"[0] to an int and pass that to the replacement
             function.  */
             function.  */
          newarg = build_int_cst (NULL_TREE, str[0]);
          newarg = build_int_cst (NULL_TREE, str[0]);
          if (fn_putchar)
          if (fn_putchar)
            call = build_call_expr_loc (loc, fn_putchar, 1, newarg);
            call = build_call_expr_loc (loc, fn_putchar, 1, newarg);
        }
        }
      else
      else
        {
        {
          /* If the string was "string\n", call puts("string").  */
          /* If the string was "string\n", call puts("string").  */
          size_t len = strlen (str);
          size_t len = strlen (str);
          if ((unsigned char)str[len - 1] == target_newline)
          if ((unsigned char)str[len - 1] == target_newline)
            {
            {
              /* Create a NUL-terminated string that's one char shorter
              /* Create a NUL-terminated string that's one char shorter
                 than the original, stripping off the trailing '\n'.  */
                 than the original, stripping off the trailing '\n'.  */
              char *newstr = XALLOCAVEC (char, len);
              char *newstr = XALLOCAVEC (char, len);
              memcpy (newstr, str, len - 1);
              memcpy (newstr, str, len - 1);
              newstr[len - 1] = 0;
              newstr[len - 1] = 0;
 
 
              newarg = build_string_literal (len, newstr);
              newarg = build_string_literal (len, newstr);
              if (fn_puts)
              if (fn_puts)
                call = build_call_expr_loc (loc, fn_puts, 1, newarg);
                call = build_call_expr_loc (loc, fn_puts, 1, newarg);
            }
            }
          else
          else
            /* We'd like to arrange to call fputs(string,stdout) here,
            /* We'd like to arrange to call fputs(string,stdout) here,
               but we need stdout and don't have a way to get it yet.  */
               but we need stdout and don't have a way to get it yet.  */
            return NULL_TREE;
            return NULL_TREE;
        }
        }
    }
    }
 
 
  /* The other optimizations can be done only on the non-va_list variants.  */
  /* The other optimizations can be done only on the non-va_list variants.  */
  else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
  else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the format specifier was "%s\n", call __builtin_puts(arg).  */
  /* If the format specifier was "%s\n", call __builtin_puts(arg).  */
  else if (strcmp (fmt_str, target_percent_s_newline) == 0)
  else if (strcmp (fmt_str, target_percent_s_newline) == 0)
    {
    {
      if (!arg || !validate_arg (arg, POINTER_TYPE))
      if (!arg || !validate_arg (arg, POINTER_TYPE))
        return NULL_TREE;
        return NULL_TREE;
      if (fn_puts)
      if (fn_puts)
        call = build_call_expr_loc (loc, fn_puts, 1, arg);
        call = build_call_expr_loc (loc, fn_puts, 1, arg);
    }
    }
 
 
  /* If the format specifier was "%c", call __builtin_putchar(arg).  */
  /* If the format specifier was "%c", call __builtin_putchar(arg).  */
  else if (strcmp (fmt_str, target_percent_c) == 0)
  else if (strcmp (fmt_str, target_percent_c) == 0)
    {
    {
      if (!arg || !validate_arg (arg, INTEGER_TYPE))
      if (!arg || !validate_arg (arg, INTEGER_TYPE))
        return NULL_TREE;
        return NULL_TREE;
      if (fn_putchar)
      if (fn_putchar)
        call = build_call_expr_loc (loc, fn_putchar, 1, arg);
        call = build_call_expr_loc (loc, fn_putchar, 1, arg);
    }
    }
 
 
  if (!call)
  if (!call)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), call);
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), call);
}
}
 
 
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
   FP, FMT, and ARG are the arguments to the call.  We don't fold calls with
   FP, FMT, and ARG are the arguments to the call.  We don't fold calls with
   more than 3 arguments, and ARG may be null in the 2-argument case.
   more than 3 arguments, and ARG may be null in the 2-argument case.
 
 
   Return NULL_TREE if no simplification was possible, otherwise return the
   Return NULL_TREE if no simplification was possible, otherwise return the
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   code of the function to be simplified.  */
   code of the function to be simplified.  */
 
 
static tree
static tree
fold_builtin_fprintf (location_t loc, tree fndecl, tree fp,
fold_builtin_fprintf (location_t loc, tree fndecl, tree fp,
                      tree fmt, tree arg, bool ignore,
                      tree fmt, tree arg, bool ignore,
                      enum built_in_function fcode)
                      enum built_in_function fcode)
{
{
  tree fn_fputc, fn_fputs, call = NULL_TREE;
  tree fn_fputc, fn_fputs, call = NULL_TREE;
  const char *fmt_str = NULL;
  const char *fmt_str = NULL;
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (! ignore)
  if (! ignore)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (!validate_arg (fp, POINTER_TYPE))
  if (!validate_arg (fp, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  if (!validate_arg (fmt, POINTER_TYPE))
  if (!validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
  if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
    {
    {
      /* If we're using an unlocked function, assume the other
      /* If we're using an unlocked function, assume the other
         unlocked functions exist explicitly.  */
         unlocked functions exist explicitly.  */
      fn_fputc = built_in_decls[BUILT_IN_FPUTC_UNLOCKED];
      fn_fputc = built_in_decls[BUILT_IN_FPUTC_UNLOCKED];
      fn_fputs = built_in_decls[BUILT_IN_FPUTS_UNLOCKED];
      fn_fputs = built_in_decls[BUILT_IN_FPUTS_UNLOCKED];
    }
    }
  else
  else
    {
    {
      fn_fputc = implicit_built_in_decls[BUILT_IN_FPUTC];
      fn_fputc = implicit_built_in_decls[BUILT_IN_FPUTC];
      fn_fputs = implicit_built_in_decls[BUILT_IN_FPUTS];
      fn_fputs = implicit_built_in_decls[BUILT_IN_FPUTS];
    }
    }
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the format doesn't contain % args or %%, use strcpy.  */
  /* If the format doesn't contain % args or %%, use strcpy.  */
  if (strchr (fmt_str, target_percent) == NULL)
  if (strchr (fmt_str, target_percent) == NULL)
    {
    {
      if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
      if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
          && arg)
          && arg)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* If the format specifier was "", fprintf does nothing.  */
      /* If the format specifier was "", fprintf does nothing.  */
      if (fmt_str[0] == '\0')
      if (fmt_str[0] == '\0')
        {
        {
          /* If FP has side-effects, just wait until gimplification is
          /* If FP has side-effects, just wait until gimplification is
             done.  */
             done.  */
          if (TREE_SIDE_EFFECTS (fp))
          if (TREE_SIDE_EFFECTS (fp))
            return NULL_TREE;
            return NULL_TREE;
 
 
          return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
          return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
        }
        }
 
 
      /* When "string" doesn't contain %, replace all cases of
      /* When "string" doesn't contain %, replace all cases of
         fprintf (fp, string) with fputs (string, fp).  The fputs
         fprintf (fp, string) with fputs (string, fp).  The fputs
         builtin will take care of special cases like length == 1.  */
         builtin will take care of special cases like length == 1.  */
      if (fn_fputs)
      if (fn_fputs)
        call = build_call_expr_loc (loc, fn_fputs, 2, fmt, fp);
        call = build_call_expr_loc (loc, fn_fputs, 2, fmt, fp);
    }
    }
 
 
  /* The other optimizations can be done only on the non-va_list variants.  */
  /* The other optimizations can be done only on the non-va_list variants.  */
  else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
  else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If the format specifier was "%s", call __builtin_fputs (arg, fp).  */
  /* If the format specifier was "%s", call __builtin_fputs (arg, fp).  */
  else if (strcmp (fmt_str, target_percent_s) == 0)
  else if (strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      if (!arg || !validate_arg (arg, POINTER_TYPE))
      if (!arg || !validate_arg (arg, POINTER_TYPE))
        return NULL_TREE;
        return NULL_TREE;
      if (fn_fputs)
      if (fn_fputs)
        call = build_call_expr_loc (loc, fn_fputs, 2, arg, fp);
        call = build_call_expr_loc (loc, fn_fputs, 2, arg, fp);
    }
    }
 
 
  /* If the format specifier was "%c", call __builtin_fputc (arg, fp).  */
  /* If the format specifier was "%c", call __builtin_fputc (arg, fp).  */
  else if (strcmp (fmt_str, target_percent_c) == 0)
  else if (strcmp (fmt_str, target_percent_c) == 0)
    {
    {
      if (!arg || !validate_arg (arg, INTEGER_TYPE))
      if (!arg || !validate_arg (arg, INTEGER_TYPE))
        return NULL_TREE;
        return NULL_TREE;
      if (fn_fputc)
      if (fn_fputc)
        call = build_call_expr_loc (loc, fn_fputc, 2, arg, fp);
        call = build_call_expr_loc (loc, fn_fputc, 2, arg, fp);
    }
    }
 
 
  if (!call)
  if (!call)
    return NULL_TREE;
    return NULL_TREE;
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), call);
  return fold_convert_loc (loc, TREE_TYPE (TREE_TYPE (fndecl)), call);
}
}
 
 
/* Initialize format string characters in the target charset.  */
/* Initialize format string characters in the target charset.  */
 
 
static bool
static bool
init_target_chars (void)
init_target_chars (void)
{
{
  static bool init;
  static bool init;
  if (!init)
  if (!init)
    {
    {
      target_newline = lang_hooks.to_target_charset ('\n');
      target_newline = lang_hooks.to_target_charset ('\n');
      target_percent = lang_hooks.to_target_charset ('%');
      target_percent = lang_hooks.to_target_charset ('%');
      target_c = lang_hooks.to_target_charset ('c');
      target_c = lang_hooks.to_target_charset ('c');
      target_s = lang_hooks.to_target_charset ('s');
      target_s = lang_hooks.to_target_charset ('s');
      if (target_newline == 0 || target_percent == 0 || target_c == 0
      if (target_newline == 0 || target_percent == 0 || target_c == 0
          || target_s == 0)
          || target_s == 0)
        return false;
        return false;
 
 
      target_percent_c[0] = target_percent;
      target_percent_c[0] = target_percent;
      target_percent_c[1] = target_c;
      target_percent_c[1] = target_c;
      target_percent_c[2] = '\0';
      target_percent_c[2] = '\0';
 
 
      target_percent_s[0] = target_percent;
      target_percent_s[0] = target_percent;
      target_percent_s[1] = target_s;
      target_percent_s[1] = target_s;
      target_percent_s[2] = '\0';
      target_percent_s[2] = '\0';
 
 
      target_percent_s_newline[0] = target_percent;
      target_percent_s_newline[0] = target_percent;
      target_percent_s_newline[1] = target_s;
      target_percent_s_newline[1] = target_s;
      target_percent_s_newline[2] = target_newline;
      target_percent_s_newline[2] = target_newline;
      target_percent_s_newline[3] = '\0';
      target_percent_s_newline[3] = '\0';
 
 
      init = true;
      init = true;
    }
    }
  return true;
  return true;
}
}
 
 
/* Helper function for do_mpfr_arg*().  Ensure M is a normal number
/* Helper function for do_mpfr_arg*().  Ensure M is a normal number
   and no overflow/underflow occurred.  INEXACT is true if M was not
   and no overflow/underflow occurred.  INEXACT is true if M was not
   exactly calculated.  TYPE is the tree type for the result.  This
   exactly calculated.  TYPE is the tree type for the result.  This
   function assumes that you cleared the MPFR flags and then
   function assumes that you cleared the MPFR flags and then
   calculated M to see if anything subsequently set a flag prior to
   calculated M to see if anything subsequently set a flag prior to
   entering this function.  Return NULL_TREE if any checks fail.  */
   entering this function.  Return NULL_TREE if any checks fail.  */
 
 
static tree
static tree
do_mpfr_ckconv (mpfr_srcptr m, tree type, int inexact)
do_mpfr_ckconv (mpfr_srcptr m, tree type, int inexact)
{
{
  /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
  /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
     overflow/underflow occurred.  If -frounding-math, proceed iff the
     overflow/underflow occurred.  If -frounding-math, proceed iff the
     result of calling FUNC was exact.  */
     result of calling FUNC was exact.  */
  if (mpfr_number_p (m) && !mpfr_overflow_p () && !mpfr_underflow_p ()
  if (mpfr_number_p (m) && !mpfr_overflow_p () && !mpfr_underflow_p ()
      && (!flag_rounding_math || !inexact))
      && (!flag_rounding_math || !inexact))
    {
    {
      REAL_VALUE_TYPE rr;
      REAL_VALUE_TYPE rr;
 
 
      real_from_mpfr (&rr, m, type, GMP_RNDN);
      real_from_mpfr (&rr, m, type, GMP_RNDN);
      /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR value,
      /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR value,
         check for overflow/underflow.  If the REAL_VALUE_TYPE is zero
         check for overflow/underflow.  If the REAL_VALUE_TYPE is zero
         but the mpft_t is not, then we underflowed in the
         but the mpft_t is not, then we underflowed in the
         conversion.  */
         conversion.  */
      if (real_isfinite (&rr)
      if (real_isfinite (&rr)
          && (rr.cl == rvc_zero) == (mpfr_zero_p (m) != 0))
          && (rr.cl == rvc_zero) == (mpfr_zero_p (m) != 0))
        {
        {
          REAL_VALUE_TYPE rmode;
          REAL_VALUE_TYPE rmode;
 
 
          real_convert (&rmode, TYPE_MODE (type), &rr);
          real_convert (&rmode, TYPE_MODE (type), &rr);
          /* Proceed iff the specified mode can hold the value.  */
          /* Proceed iff the specified mode can hold the value.  */
          if (real_identical (&rmode, &rr))
          if (real_identical (&rmode, &rr))
            return build_real (type, rmode);
            return build_real (type, rmode);
        }
        }
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Helper function for do_mpc_arg*().  Ensure M is a normal complex
/* Helper function for do_mpc_arg*().  Ensure M is a normal complex
   number and no overflow/underflow occurred.  INEXACT is true if M
   number and no overflow/underflow occurred.  INEXACT is true if M
   was not exactly calculated.  TYPE is the tree type for the result.
   was not exactly calculated.  TYPE is the tree type for the result.
   This function assumes that you cleared the MPFR flags and then
   This function assumes that you cleared the MPFR flags and then
   calculated M to see if anything subsequently set a flag prior to
   calculated M to see if anything subsequently set a flag prior to
   entering this function.  Return NULL_TREE if any checks fail, if
   entering this function.  Return NULL_TREE if any checks fail, if
   FORCE_CONVERT is true, then bypass the checks.  */
   FORCE_CONVERT is true, then bypass the checks.  */
 
 
static tree
static tree
do_mpc_ckconv (mpc_srcptr m, tree type, int inexact, int force_convert)
do_mpc_ckconv (mpc_srcptr m, tree type, int inexact, int force_convert)
{
{
  /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
  /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
     overflow/underflow occurred.  If -frounding-math, proceed iff the
     overflow/underflow occurred.  If -frounding-math, proceed iff the
     result of calling FUNC was exact.  */
     result of calling FUNC was exact.  */
  if (force_convert
  if (force_convert
      || (mpfr_number_p (mpc_realref (m)) && mpfr_number_p (mpc_imagref (m))
      || (mpfr_number_p (mpc_realref (m)) && mpfr_number_p (mpc_imagref (m))
          && !mpfr_overflow_p () && !mpfr_underflow_p ()
          && !mpfr_overflow_p () && !mpfr_underflow_p ()
          && (!flag_rounding_math || !inexact)))
          && (!flag_rounding_math || !inexact)))
    {
    {
      REAL_VALUE_TYPE re, im;
      REAL_VALUE_TYPE re, im;
 
 
      real_from_mpfr (&re, mpc_realref (m), TREE_TYPE (type), GMP_RNDN);
      real_from_mpfr (&re, mpc_realref (m), TREE_TYPE (type), GMP_RNDN);
      real_from_mpfr (&im, mpc_imagref (m), TREE_TYPE (type), GMP_RNDN);
      real_from_mpfr (&im, mpc_imagref (m), TREE_TYPE (type), GMP_RNDN);
      /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values,
      /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values,
         check for overflow/underflow.  If the REAL_VALUE_TYPE is zero
         check for overflow/underflow.  If the REAL_VALUE_TYPE is zero
         but the mpft_t is not, then we underflowed in the
         but the mpft_t is not, then we underflowed in the
         conversion.  */
         conversion.  */
      if (force_convert
      if (force_convert
          || (real_isfinite (&re) && real_isfinite (&im)
          || (real_isfinite (&re) && real_isfinite (&im)
              && (re.cl == rvc_zero) == (mpfr_zero_p (mpc_realref (m)) != 0)
              && (re.cl == rvc_zero) == (mpfr_zero_p (mpc_realref (m)) != 0)
              && (im.cl == rvc_zero) == (mpfr_zero_p (mpc_imagref (m)) != 0)))
              && (im.cl == rvc_zero) == (mpfr_zero_p (mpc_imagref (m)) != 0)))
        {
        {
          REAL_VALUE_TYPE re_mode, im_mode;
          REAL_VALUE_TYPE re_mode, im_mode;
 
 
          real_convert (&re_mode, TYPE_MODE (TREE_TYPE (type)), &re);
          real_convert (&re_mode, TYPE_MODE (TREE_TYPE (type)), &re);
          real_convert (&im_mode, TYPE_MODE (TREE_TYPE (type)), &im);
          real_convert (&im_mode, TYPE_MODE (TREE_TYPE (type)), &im);
          /* Proceed iff the specified mode can hold the value.  */
          /* Proceed iff the specified mode can hold the value.  */
          if (force_convert
          if (force_convert
              || (real_identical (&re_mode, &re)
              || (real_identical (&re_mode, &re)
                  && real_identical (&im_mode, &im)))
                  && real_identical (&im_mode, &im)))
            return build_complex (type, build_real (TREE_TYPE (type), re_mode),
            return build_complex (type, build_real (TREE_TYPE (type), re_mode),
                                  build_real (TREE_TYPE (type), im_mode));
                                  build_real (TREE_TYPE (type), im_mode));
        }
        }
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* If argument ARG is a REAL_CST, call the one-argument mpfr function
/* If argument ARG is a REAL_CST, call the one-argument mpfr function
   FUNC on it and return the resulting value as a tree with type TYPE.
   FUNC on it and return the resulting value as a tree with type TYPE.
   If MIN and/or MAX are not NULL, then the supplied ARG must be
   If MIN and/or MAX are not NULL, then the supplied ARG must be
   within those bounds.  If INCLUSIVE is true, then MIN/MAX are
   within those bounds.  If INCLUSIVE is true, then MIN/MAX are
   acceptable values, otherwise they are not.  The mpfr precision is
   acceptable values, otherwise they are not.  The mpfr precision is
   set to the precision of TYPE.  We assume that function FUNC returns
   set to the precision of TYPE.  We assume that function FUNC returns
   zero if the result could be calculated exactly within the requested
   zero if the result could be calculated exactly within the requested
   precision.  */
   precision.  */
 
 
static tree
static tree
do_mpfr_arg1 (tree arg, tree type, int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
do_mpfr_arg1 (tree arg, tree type, int (*func)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
              const REAL_VALUE_TYPE *min, const REAL_VALUE_TYPE *max,
              const REAL_VALUE_TYPE *min, const REAL_VALUE_TYPE *max,
              bool inclusive)
              bool inclusive)
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
      && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg))
    {
    {
      const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg);
      const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg);
 
 
      if (real_isfinite (ra)
      if (real_isfinite (ra)
          && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min))
          && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min))
          && (!max || real_compare (inclusive ? LE_EXPR: LT_EXPR , ra, max)))
          && (!max || real_compare (inclusive ? LE_EXPR: LT_EXPR , ra, max)))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          int inexact;
          int inexact;
          mpfr_t m;
          mpfr_t m;
 
 
          mpfr_init2 (m, prec);
          mpfr_init2 (m, prec);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = func (m, m, rnd);
          inexact = func (m, m, rnd);
          result = do_mpfr_ckconv (m, type, inexact);
          result = do_mpfr_ckconv (m, type, inexact);
          mpfr_clear (m);
          mpfr_clear (m);
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* If argument ARG is a REAL_CST, call the two-argument mpfr function
/* If argument ARG is a REAL_CST, call the two-argument mpfr function
   FUNC on it and return the resulting value as a tree with type TYPE.
   FUNC on it and return the resulting value as a tree with type TYPE.
   The mpfr precision is set to the precision of TYPE.  We assume that
   The mpfr precision is set to the precision of TYPE.  We assume that
   function FUNC returns zero if the result could be calculated
   function FUNC returns zero if the result could be calculated
   exactly within the requested precision.  */
   exactly within the requested precision.  */
 
 
static tree
static tree
do_mpfr_arg2 (tree arg1, tree arg2, tree type,
do_mpfr_arg2 (tree arg1, tree arg2, tree type,
              int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t))
              int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t))
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);
  STRIP_NOPS (arg2);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)
      && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)
      && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2))
      && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2))
    {
    {
      const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1);
      const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1);
      const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2);
      const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2);
 
 
      if (real_isfinite (ra1) && real_isfinite (ra2))
      if (real_isfinite (ra1) && real_isfinite (ra2))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          int inexact;
          int inexact;
          mpfr_t m1, m2;
          mpfr_t m1, m2;
 
 
          mpfr_inits2 (prec, m1, m2, NULL);
          mpfr_inits2 (prec, m1, m2, NULL);
          mpfr_from_real (m1, ra1, GMP_RNDN);
          mpfr_from_real (m1, ra1, GMP_RNDN);
          mpfr_from_real (m2, ra2, GMP_RNDN);
          mpfr_from_real (m2, ra2, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = func (m1, m1, m2, rnd);
          inexact = func (m1, m1, m2, rnd);
          result = do_mpfr_ckconv (m1, type, inexact);
          result = do_mpfr_ckconv (m1, type, inexact);
          mpfr_clears (m1, m2, NULL);
          mpfr_clears (m1, m2, NULL);
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* If argument ARG is a REAL_CST, call the three-argument mpfr function
/* If argument ARG is a REAL_CST, call the three-argument mpfr function
   FUNC on it and return the resulting value as a tree with type TYPE.
   FUNC on it and return the resulting value as a tree with type TYPE.
   The mpfr precision is set to the precision of TYPE.  We assume that
   The mpfr precision is set to the precision of TYPE.  We assume that
   function FUNC returns zero if the result could be calculated
   function FUNC returns zero if the result could be calculated
   exactly within the requested precision.  */
   exactly within the requested precision.  */
 
 
static tree
static tree
do_mpfr_arg3 (tree arg1, tree arg2, tree arg3, tree type,
do_mpfr_arg3 (tree arg1, tree arg2, tree arg3, tree type,
              int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t))
              int (*func)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t))
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);
  STRIP_NOPS (arg2);
  STRIP_NOPS (arg3);
  STRIP_NOPS (arg3);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)
      && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1)
      && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2)
      && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2)
      && TREE_CODE (arg3) == REAL_CST && !TREE_OVERFLOW (arg3))
      && TREE_CODE (arg3) == REAL_CST && !TREE_OVERFLOW (arg3))
    {
    {
      const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1);
      const REAL_VALUE_TYPE *const ra1 = &TREE_REAL_CST (arg1);
      const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2);
      const REAL_VALUE_TYPE *const ra2 = &TREE_REAL_CST (arg2);
      const REAL_VALUE_TYPE *const ra3 = &TREE_REAL_CST (arg3);
      const REAL_VALUE_TYPE *const ra3 = &TREE_REAL_CST (arg3);
 
 
      if (real_isfinite (ra1) && real_isfinite (ra2) && real_isfinite (ra3))
      if (real_isfinite (ra1) && real_isfinite (ra2) && real_isfinite (ra3))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          int inexact;
          int inexact;
          mpfr_t m1, m2, m3;
          mpfr_t m1, m2, m3;
 
 
          mpfr_inits2 (prec, m1, m2, m3, NULL);
          mpfr_inits2 (prec, m1, m2, m3, NULL);
          mpfr_from_real (m1, ra1, GMP_RNDN);
          mpfr_from_real (m1, ra1, GMP_RNDN);
          mpfr_from_real (m2, ra2, GMP_RNDN);
          mpfr_from_real (m2, ra2, GMP_RNDN);
          mpfr_from_real (m3, ra3, GMP_RNDN);
          mpfr_from_real (m3, ra3, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = func (m1, m1, m2, m3, rnd);
          inexact = func (m1, m1, m2, m3, rnd);
          result = do_mpfr_ckconv (m1, type, inexact);
          result = do_mpfr_ckconv (m1, type, inexact);
          mpfr_clears (m1, m2, m3, NULL);
          mpfr_clears (m1, m2, m3, NULL);
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* If argument ARG is a REAL_CST, call mpfr_sin_cos() on it and set
/* If argument ARG is a REAL_CST, call mpfr_sin_cos() on it and set
   the pointers *(ARG_SINP) and *(ARG_COSP) to the resulting values.
   the pointers *(ARG_SINP) and *(ARG_COSP) to the resulting values.
   If ARG_SINP and ARG_COSP are NULL then the result is returned
   If ARG_SINP and ARG_COSP are NULL then the result is returned
   as a complex value.
   as a complex value.
   The type is taken from the type of ARG and is used for setting the
   The type is taken from the type of ARG and is used for setting the
   precision of the calculation and results.  */
   precision of the calculation and results.  */
 
 
static tree
static tree
do_mpfr_sincos (tree arg, tree arg_sinp, tree arg_cosp)
do_mpfr_sincos (tree arg, tree arg_sinp, tree arg_cosp)
{
{
  tree const type = TREE_TYPE (arg);
  tree const type = TREE_TYPE (arg);
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && TREE_CODE (arg) == REAL_CST
      && TREE_CODE (arg) == REAL_CST
      && !TREE_OVERFLOW (arg))
      && !TREE_OVERFLOW (arg))
    {
    {
      const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg);
      const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg);
 
 
      if (real_isfinite (ra))
      if (real_isfinite (ra))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          tree result_s, result_c;
          tree result_s, result_c;
          int inexact;
          int inexact;
          mpfr_t m, ms, mc;
          mpfr_t m, ms, mc;
 
 
          mpfr_inits2 (prec, m, ms, mc, NULL);
          mpfr_inits2 (prec, m, ms, mc, NULL);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = mpfr_sin_cos (ms, mc, m, rnd);
          inexact = mpfr_sin_cos (ms, mc, m, rnd);
          result_s = do_mpfr_ckconv (ms, type, inexact);
          result_s = do_mpfr_ckconv (ms, type, inexact);
          result_c = do_mpfr_ckconv (mc, type, inexact);
          result_c = do_mpfr_ckconv (mc, type, inexact);
          mpfr_clears (m, ms, mc, NULL);
          mpfr_clears (m, ms, mc, NULL);
          if (result_s && result_c)
          if (result_s && result_c)
            {
            {
              /* If we are to return in a complex value do so.  */
              /* If we are to return in a complex value do so.  */
              if (!arg_sinp && !arg_cosp)
              if (!arg_sinp && !arg_cosp)
                return build_complex (build_complex_type (type),
                return build_complex (build_complex_type (type),
                                      result_c, result_s);
                                      result_c, result_s);
 
 
              /* Dereference the sin/cos pointer arguments.  */
              /* Dereference the sin/cos pointer arguments.  */
              arg_sinp = build_fold_indirect_ref (arg_sinp);
              arg_sinp = build_fold_indirect_ref (arg_sinp);
              arg_cosp = build_fold_indirect_ref (arg_cosp);
              arg_cosp = build_fold_indirect_ref (arg_cosp);
              /* Proceed if valid pointer type were passed in.  */
              /* Proceed if valid pointer type were passed in.  */
              if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_sinp)) == TYPE_MAIN_VARIANT (type)
              if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_sinp)) == TYPE_MAIN_VARIANT (type)
                  && TYPE_MAIN_VARIANT (TREE_TYPE (arg_cosp)) == TYPE_MAIN_VARIANT (type))
                  && TYPE_MAIN_VARIANT (TREE_TYPE (arg_cosp)) == TYPE_MAIN_VARIANT (type))
                {
                {
                  /* Set the values. */
                  /* Set the values. */
                  result_s = fold_build2 (MODIFY_EXPR, type, arg_sinp,
                  result_s = fold_build2 (MODIFY_EXPR, type, arg_sinp,
                                          result_s);
                                          result_s);
                  TREE_SIDE_EFFECTS (result_s) = 1;
                  TREE_SIDE_EFFECTS (result_s) = 1;
                  result_c = fold_build2 (MODIFY_EXPR, type, arg_cosp,
                  result_c = fold_build2 (MODIFY_EXPR, type, arg_cosp,
                                          result_c);
                                          result_c);
                  TREE_SIDE_EFFECTS (result_c) = 1;
                  TREE_SIDE_EFFECTS (result_c) = 1;
                  /* Combine the assignments into a compound expr.  */
                  /* Combine the assignments into a compound expr.  */
                  result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
                  result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
                                                    result_s, result_c));
                                                    result_s, result_c));
                }
                }
            }
            }
        }
        }
    }
    }
  return result;
  return result;
}
}
 
 
/* If argument ARG1 is an INTEGER_CST and ARG2 is a REAL_CST, call the
/* If argument ARG1 is an INTEGER_CST and ARG2 is a REAL_CST, call the
   two-argument mpfr order N Bessel function FUNC on them and return
   two-argument mpfr order N Bessel function FUNC on them and return
   the resulting value as a tree with type TYPE.  The mpfr precision
   the resulting value as a tree with type TYPE.  The mpfr precision
   is set to the precision of TYPE.  We assume that function FUNC
   is set to the precision of TYPE.  We assume that function FUNC
   returns zero if the result could be calculated exactly within the
   returns zero if the result could be calculated exactly within the
   requested precision.  */
   requested precision.  */
static tree
static tree
do_mpfr_bessel_n (tree arg1, tree arg2, tree type,
do_mpfr_bessel_n (tree arg1, tree arg2, tree type,
                  int (*func)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
                  int (*func)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
                  const REAL_VALUE_TYPE *min, bool inclusive)
                  const REAL_VALUE_TYPE *min, bool inclusive)
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);
  STRIP_NOPS (arg2);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && host_integerp (arg1, 0)
      && host_integerp (arg1, 0)
      && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2))
      && TREE_CODE (arg2) == REAL_CST && !TREE_OVERFLOW (arg2))
    {
    {
      const HOST_WIDE_INT n = tree_low_cst(arg1, 0);
      const HOST_WIDE_INT n = tree_low_cst(arg1, 0);
      const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg2);
      const REAL_VALUE_TYPE *const ra = &TREE_REAL_CST (arg2);
 
 
      if (n == (long)n
      if (n == (long)n
          && real_isfinite (ra)
          && real_isfinite (ra)
          && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min)))
          && (!min || real_compare (inclusive ? GE_EXPR: GT_EXPR , ra, min)))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          int inexact;
          int inexact;
          mpfr_t m;
          mpfr_t m;
 
 
          mpfr_init2 (m, prec);
          mpfr_init2 (m, prec);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = func (m, n, m, rnd);
          inexact = func (m, n, m, rnd);
          result = do_mpfr_ckconv (m, type, inexact);
          result = do_mpfr_ckconv (m, type, inexact);
          mpfr_clear (m);
          mpfr_clear (m);
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* If arguments ARG0 and ARG1 are REAL_CSTs, call mpfr_remquo() to set
/* If arguments ARG0 and ARG1 are REAL_CSTs, call mpfr_remquo() to set
   the pointer *(ARG_QUO) and return the result.  The type is taken
   the pointer *(ARG_QUO) and return the result.  The type is taken
   from the type of ARG0 and is used for setting the precision of the
   from the type of ARG0 and is used for setting the precision of the
   calculation and results.  */
   calculation and results.  */
 
 
static tree
static tree
do_mpfr_remquo (tree arg0, tree arg1, tree arg_quo)
do_mpfr_remquo (tree arg0, tree arg1, tree arg_quo)
{
{
  tree const type = TREE_TYPE (arg0);
  tree const type = TREE_TYPE (arg0);
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)
      && TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)
      && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1))
      && TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1))
    {
    {
      const REAL_VALUE_TYPE *const ra0 = TREE_REAL_CST_PTR (arg0);
      const REAL_VALUE_TYPE *const ra0 = TREE_REAL_CST_PTR (arg0);
      const REAL_VALUE_TYPE *const ra1 = TREE_REAL_CST_PTR (arg1);
      const REAL_VALUE_TYPE *const ra1 = TREE_REAL_CST_PTR (arg1);
 
 
      if (real_isfinite (ra0) && real_isfinite (ra1))
      if (real_isfinite (ra0) && real_isfinite (ra1))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          tree result_rem;
          tree result_rem;
          long integer_quo;
          long integer_quo;
          mpfr_t m0, m1;
          mpfr_t m0, m1;
 
 
          mpfr_inits2 (prec, m0, m1, NULL);
          mpfr_inits2 (prec, m0, m1, NULL);
          mpfr_from_real (m0, ra0, GMP_RNDN);
          mpfr_from_real (m0, ra0, GMP_RNDN);
          mpfr_from_real (m1, ra1, GMP_RNDN);
          mpfr_from_real (m1, ra1, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          mpfr_remquo (m0, &integer_quo, m0, m1, rnd);
          mpfr_remquo (m0, &integer_quo, m0, m1, rnd);
          /* Remquo is independent of the rounding mode, so pass
          /* Remquo is independent of the rounding mode, so pass
             inexact=0 to do_mpfr_ckconv().  */
             inexact=0 to do_mpfr_ckconv().  */
          result_rem = do_mpfr_ckconv (m0, type, /*inexact=*/ 0);
          result_rem = do_mpfr_ckconv (m0, type, /*inexact=*/ 0);
          mpfr_clears (m0, m1, NULL);
          mpfr_clears (m0, m1, NULL);
          if (result_rem)
          if (result_rem)
            {
            {
              /* MPFR calculates quo in the host's long so it may
              /* MPFR calculates quo in the host's long so it may
                 return more bits in quo than the target int can hold
                 return more bits in quo than the target int can hold
                 if sizeof(host long) > sizeof(target int).  This can
                 if sizeof(host long) > sizeof(target int).  This can
                 happen even for native compilers in LP64 mode.  In
                 happen even for native compilers in LP64 mode.  In
                 these cases, modulo the quo value with the largest
                 these cases, modulo the quo value with the largest
                 number that the target int can hold while leaving one
                 number that the target int can hold while leaving one
                 bit for the sign.  */
                 bit for the sign.  */
              if (sizeof (integer_quo) * CHAR_BIT > INT_TYPE_SIZE)
              if (sizeof (integer_quo) * CHAR_BIT > INT_TYPE_SIZE)
                integer_quo %= (long)(1UL << (INT_TYPE_SIZE - 1));
                integer_quo %= (long)(1UL << (INT_TYPE_SIZE - 1));
 
 
              /* Dereference the quo pointer argument.  */
              /* Dereference the quo pointer argument.  */
              arg_quo = build_fold_indirect_ref (arg_quo);
              arg_quo = build_fold_indirect_ref (arg_quo);
              /* Proceed iff a valid pointer type was passed in.  */
              /* Proceed iff a valid pointer type was passed in.  */
              if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_quo)) == integer_type_node)
              if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_quo)) == integer_type_node)
                {
                {
                  /* Set the value. */
                  /* Set the value. */
                  tree result_quo = fold_build2 (MODIFY_EXPR,
                  tree result_quo = fold_build2 (MODIFY_EXPR,
                                                 TREE_TYPE (arg_quo), arg_quo,
                                                 TREE_TYPE (arg_quo), arg_quo,
                                                 build_int_cst (NULL, integer_quo));
                                                 build_int_cst (NULL, integer_quo));
                  TREE_SIDE_EFFECTS (result_quo) = 1;
                  TREE_SIDE_EFFECTS (result_quo) = 1;
                  /* Combine the quo assignment with the rem.  */
                  /* Combine the quo assignment with the rem.  */
                  result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
                  result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
                                                    result_quo, result_rem));
                                                    result_quo, result_rem));
                }
                }
            }
            }
        }
        }
    }
    }
  return result;
  return result;
}
}
 
 
/* If ARG is a REAL_CST, call mpfr_lgamma() on it and return the
/* If ARG is a REAL_CST, call mpfr_lgamma() on it and return the
   resulting value as a tree with type TYPE.  The mpfr precision is
   resulting value as a tree with type TYPE.  The mpfr precision is
   set to the precision of TYPE.  We assume that this mpfr function
   set to the precision of TYPE.  We assume that this mpfr function
   returns zero if the result could be calculated exactly within the
   returns zero if the result could be calculated exactly within the
   requested precision.  In addition, the integer pointer represented
   requested precision.  In addition, the integer pointer represented
   by ARG_SG will be dereferenced and set to the appropriate signgam
   by ARG_SG will be dereferenced and set to the appropriate signgam
   (-1,1) value.  */
   (-1,1) value.  */
 
 
static tree
static tree
do_mpfr_lgamma_r (tree arg, tree arg_sg, tree type)
do_mpfr_lgamma_r (tree arg, tree arg_sg, tree type)
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  Also
     format, which only happens when the target base equals two.  Also
     verify ARG is a constant and that ARG_SG is an int pointer.  */
     verify ARG is a constant and that ARG_SG is an int pointer.  */
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
  if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
      && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)
      && TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)
      && TREE_CODE (TREE_TYPE (arg_sg)) == POINTER_TYPE
      && TREE_CODE (TREE_TYPE (arg_sg)) == POINTER_TYPE
      && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (arg_sg))) == integer_type_node)
      && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (arg_sg))) == integer_type_node)
    {
    {
      const REAL_VALUE_TYPE *const ra = TREE_REAL_CST_PTR (arg);
      const REAL_VALUE_TYPE *const ra = TREE_REAL_CST_PTR (arg);
 
 
      /* In addition to NaN and Inf, the argument cannot be zero or a
      /* In addition to NaN and Inf, the argument cannot be zero or a
         negative integer.  */
         negative integer.  */
      if (real_isfinite (ra)
      if (real_isfinite (ra)
          && ra->cl != rvc_zero
          && ra->cl != rvc_zero
          && !(real_isneg(ra) && real_isinteger(ra, TYPE_MODE (type))))
          && !(real_isneg(ra) && real_isinteger(ra, TYPE_MODE (type))))
        {
        {
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
          int inexact, sg;
          int inexact, sg;
          mpfr_t m;
          mpfr_t m;
          tree result_lg;
          tree result_lg;
 
 
          mpfr_init2 (m, prec);
          mpfr_init2 (m, prec);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_from_real (m, ra, GMP_RNDN);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = mpfr_lgamma (m, &sg, m, rnd);
          inexact = mpfr_lgamma (m, &sg, m, rnd);
          result_lg = do_mpfr_ckconv (m, type, inexact);
          result_lg = do_mpfr_ckconv (m, type, inexact);
          mpfr_clear (m);
          mpfr_clear (m);
          if (result_lg)
          if (result_lg)
            {
            {
              tree result_sg;
              tree result_sg;
 
 
              /* Dereference the arg_sg pointer argument.  */
              /* Dereference the arg_sg pointer argument.  */
              arg_sg = build_fold_indirect_ref (arg_sg);
              arg_sg = build_fold_indirect_ref (arg_sg);
              /* Assign the signgam value into *arg_sg. */
              /* Assign the signgam value into *arg_sg. */
              result_sg = fold_build2 (MODIFY_EXPR,
              result_sg = fold_build2 (MODIFY_EXPR,
                                       TREE_TYPE (arg_sg), arg_sg,
                                       TREE_TYPE (arg_sg), arg_sg,
                                       build_int_cst (NULL, sg));
                                       build_int_cst (NULL, sg));
              TREE_SIDE_EFFECTS (result_sg) = 1;
              TREE_SIDE_EFFECTS (result_sg) = 1;
              /* Combine the signgam assignment with the lgamma result.  */
              /* Combine the signgam assignment with the lgamma result.  */
              result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
              result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
                                                result_sg, result_lg));
                                                result_sg, result_lg));
            }
            }
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* If argument ARG is a COMPLEX_CST, call the one-argument mpc
/* If argument ARG is a COMPLEX_CST, call the one-argument mpc
   function FUNC on it and return the resulting value as a tree with
   function FUNC on it and return the resulting value as a tree with
   type TYPE.  The mpfr precision is set to the precision of TYPE.  We
   type TYPE.  The mpfr precision is set to the precision of TYPE.  We
   assume that function FUNC returns zero if the result could be
   assume that function FUNC returns zero if the result could be
   calculated exactly within the requested precision.  */
   calculated exactly within the requested precision.  */
 
 
static tree
static tree
do_mpc_arg1 (tree arg, tree type, int (*func)(mpc_ptr, mpc_srcptr, mpc_rnd_t))
do_mpc_arg1 (tree arg, tree type, int (*func)(mpc_ptr, mpc_srcptr, mpc_rnd_t))
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg);
  STRIP_NOPS (arg);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (TREE_CODE (arg) == COMPLEX_CST && !TREE_OVERFLOW (arg)
  if (TREE_CODE (arg) == COMPLEX_CST && !TREE_OVERFLOW (arg)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE
      && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg))))->b == 2)
      && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg))))->b == 2)
    {
    {
      const REAL_VALUE_TYPE *const re = TREE_REAL_CST_PTR (TREE_REALPART (arg));
      const REAL_VALUE_TYPE *const re = TREE_REAL_CST_PTR (TREE_REALPART (arg));
      const REAL_VALUE_TYPE *const im = TREE_REAL_CST_PTR (TREE_IMAGPART (arg));
      const REAL_VALUE_TYPE *const im = TREE_REAL_CST_PTR (TREE_IMAGPART (arg));
 
 
      if (real_isfinite (re) && real_isfinite (im))
      if (real_isfinite (re) && real_isfinite (im))
        {
        {
          const struct real_format *const fmt =
          const struct real_format *const fmt =
            REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type)));
            REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type)));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
          const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
          const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
          int inexact;
          int inexact;
          mpc_t m;
          mpc_t m;
 
 
          mpc_init2 (m, prec);
          mpc_init2 (m, prec);
          mpfr_from_real (mpc_realref(m), re, rnd);
          mpfr_from_real (mpc_realref(m), re, rnd);
          mpfr_from_real (mpc_imagref(m), im, rnd);
          mpfr_from_real (mpc_imagref(m), im, rnd);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = func (m, m, crnd);
          inexact = func (m, m, crnd);
          result = do_mpc_ckconv (m, type, inexact, /*force_convert=*/ 0);
          result = do_mpc_ckconv (m, type, inexact, /*force_convert=*/ 0);
          mpc_clear (m);
          mpc_clear (m);
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* If arguments ARG0 and ARG1 are a COMPLEX_CST, call the two-argument
/* If arguments ARG0 and ARG1 are a COMPLEX_CST, call the two-argument
   mpc function FUNC on it and return the resulting value as a tree
   mpc function FUNC on it and return the resulting value as a tree
   with type TYPE.  The mpfr precision is set to the precision of
   with type TYPE.  The mpfr precision is set to the precision of
   TYPE.  We assume that function FUNC returns zero if the result
   TYPE.  We assume that function FUNC returns zero if the result
   could be calculated exactly within the requested precision.  If
   could be calculated exactly within the requested precision.  If
   DO_NONFINITE is true, then fold expressions containing Inf or NaN
   DO_NONFINITE is true, then fold expressions containing Inf or NaN
   in the arguments and/or results.  */
   in the arguments and/or results.  */
 
 
tree
tree
do_mpc_arg2 (tree arg0, tree arg1, tree type, int do_nonfinite,
do_mpc_arg2 (tree arg0, tree arg1, tree type, int do_nonfinite,
             int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t))
             int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t))
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
 
 
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg1);
 
 
  /* To proceed, MPFR must exactly represent the target floating point
  /* To proceed, MPFR must exactly represent the target floating point
     format, which only happens when the target base equals two.  */
     format, which only happens when the target base equals two.  */
  if (TREE_CODE (arg0) == COMPLEX_CST && !TREE_OVERFLOW (arg0)
  if (TREE_CODE (arg0) == COMPLEX_CST && !TREE_OVERFLOW (arg0)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE
      && TREE_CODE (arg1) == COMPLEX_CST && !TREE_OVERFLOW (arg1)
      && TREE_CODE (arg1) == COMPLEX_CST && !TREE_OVERFLOW (arg1)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE
      && TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE
      && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))))->b == 2)
      && REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))))->b == 2)
    {
    {
      const REAL_VALUE_TYPE *const re0 = TREE_REAL_CST_PTR (TREE_REALPART (arg0));
      const REAL_VALUE_TYPE *const re0 = TREE_REAL_CST_PTR (TREE_REALPART (arg0));
      const REAL_VALUE_TYPE *const im0 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg0));
      const REAL_VALUE_TYPE *const im0 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg0));
      const REAL_VALUE_TYPE *const re1 = TREE_REAL_CST_PTR (TREE_REALPART (arg1));
      const REAL_VALUE_TYPE *const re1 = TREE_REAL_CST_PTR (TREE_REALPART (arg1));
      const REAL_VALUE_TYPE *const im1 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg1));
      const REAL_VALUE_TYPE *const im1 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg1));
 
 
      if (do_nonfinite
      if (do_nonfinite
          || (real_isfinite (re0) && real_isfinite (im0)
          || (real_isfinite (re0) && real_isfinite (im0)
              && real_isfinite (re1) && real_isfinite (im1)))
              && real_isfinite (re1) && real_isfinite (im1)))
        {
        {
          const struct real_format *const fmt =
          const struct real_format *const fmt =
            REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type)));
            REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type)));
          const int prec = fmt->p;
          const int prec = fmt->p;
          const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
          const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
          const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
          const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
          int inexact;
          int inexact;
          mpc_t m0, m1;
          mpc_t m0, m1;
 
 
          mpc_init2 (m0, prec);
          mpc_init2 (m0, prec);
          mpc_init2 (m1, prec);
          mpc_init2 (m1, prec);
          mpfr_from_real (mpc_realref(m0), re0, rnd);
          mpfr_from_real (mpc_realref(m0), re0, rnd);
          mpfr_from_real (mpc_imagref(m0), im0, rnd);
          mpfr_from_real (mpc_imagref(m0), im0, rnd);
          mpfr_from_real (mpc_realref(m1), re1, rnd);
          mpfr_from_real (mpc_realref(m1), re1, rnd);
          mpfr_from_real (mpc_imagref(m1), im1, rnd);
          mpfr_from_real (mpc_imagref(m1), im1, rnd);
          mpfr_clear_flags ();
          mpfr_clear_flags ();
          inexact = func (m0, m0, m1, crnd);
          inexact = func (m0, m0, m1, crnd);
          result = do_mpc_ckconv (m0, type, inexact, do_nonfinite);
          result = do_mpc_ckconv (m0, type, inexact, do_nonfinite);
          mpc_clear (m0);
          mpc_clear (m0);
          mpc_clear (m1);
          mpc_clear (m1);
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* FIXME tuples.
/* FIXME tuples.
   The functions below provide an alternate interface for folding
   The functions below provide an alternate interface for folding
   builtin function calls presented as GIMPLE_CALL statements rather
   builtin function calls presented as GIMPLE_CALL statements rather
   than as CALL_EXPRs.  The folded result is still expressed as a
   than as CALL_EXPRs.  The folded result is still expressed as a
   tree.  There is too much code duplication in the handling of
   tree.  There is too much code duplication in the handling of
   varargs functions, and a more intrusive re-factoring would permit
   varargs functions, and a more intrusive re-factoring would permit
   better sharing of code between the tree and statement-based
   better sharing of code between the tree and statement-based
   versions of these functions.  */
   versions of these functions.  */
 
 
/* Construct a new CALL_EXPR using the tail of the argument list of STMT
/* Construct a new CALL_EXPR using the tail of the argument list of STMT
   along with N new arguments specified as the "..." parameters.  SKIP
   along with N new arguments specified as the "..." parameters.  SKIP
   is the number of arguments in STMT to be omitted.  This function is used
   is the number of arguments in STMT to be omitted.  This function is used
   to do varargs-to-varargs transformations.  */
   to do varargs-to-varargs transformations.  */
 
 
static tree
static tree
gimple_rewrite_call_expr (gimple stmt, int skip, tree fndecl, int n, ...)
gimple_rewrite_call_expr (gimple stmt, int skip, tree fndecl, int n, ...)
{
{
  int oldnargs = gimple_call_num_args (stmt);
  int oldnargs = gimple_call_num_args (stmt);
  int nargs = oldnargs - skip + n;
  int nargs = oldnargs - skip + n;
  tree fntype = TREE_TYPE (fndecl);
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
  tree *buffer;
  tree *buffer;
  int i, j;
  int i, j;
  va_list ap;
  va_list ap;
  location_t loc = gimple_location (stmt);
  location_t loc = gimple_location (stmt);
 
 
  buffer = XALLOCAVEC (tree, nargs);
  buffer = XALLOCAVEC (tree, nargs);
  va_start (ap, n);
  va_start (ap, n);
  for (i = 0; i < n; i++)
  for (i = 0; i < n; i++)
    buffer[i] = va_arg (ap, tree);
    buffer[i] = va_arg (ap, tree);
  va_end (ap);
  va_end (ap);
  for (j = skip; j < oldnargs; j++, i++)
  for (j = skip; j < oldnargs; j++, i++)
    buffer[i] = gimple_call_arg (stmt, j);
    buffer[i] = gimple_call_arg (stmt, j);
 
 
  return fold (build_call_array_loc (loc, TREE_TYPE (fntype), fn, nargs, buffer));
  return fold (build_call_array_loc (loc, TREE_TYPE (fntype), fn, nargs, buffer));
}
}
 
 
/* Fold a call STMT to __{,v}sprintf_chk.  Return NULL_TREE if
/* Fold a call STMT to __{,v}sprintf_chk.  Return NULL_TREE if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK.  */
   inline.  FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK.  */
 
 
static tree
static tree
gimple_fold_builtin_sprintf_chk (gimple stmt, enum built_in_function fcode)
gimple_fold_builtin_sprintf_chk (gimple stmt, enum built_in_function fcode)
{
{
  tree dest, size, len, fn, fmt, flag;
  tree dest, size, len, fn, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
  int nargs = gimple_call_num_args (stmt);
  int nargs = gimple_call_num_args (stmt);
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (nargs < 4)
  if (nargs < 4)
    return NULL_TREE;
    return NULL_TREE;
  dest = gimple_call_arg (stmt, 0);
  dest = gimple_call_arg (stmt, 0);
  if (!validate_arg (dest, POINTER_TYPE))
  if (!validate_arg (dest, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  flag = gimple_call_arg (stmt, 1);
  flag = gimple_call_arg (stmt, 1);
  if (!validate_arg (flag, INTEGER_TYPE))
  if (!validate_arg (flag, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  size = gimple_call_arg (stmt, 2);
  size = gimple_call_arg (stmt, 2);
  if (!validate_arg (size, INTEGER_TYPE))
  if (!validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  fmt = gimple_call_arg (stmt, 3);
  fmt = gimple_call_arg (stmt, 3);
  if (!validate_arg (fmt, POINTER_TYPE))
  if (!validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  len = NULL_TREE;
  len = NULL_TREE;
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str != NULL)
  if (fmt_str != NULL)
    {
    {
      /* If the format doesn't contain % args or %%, we know the size.  */
      /* If the format doesn't contain % args or %%, we know the size.  */
      if (strchr (fmt_str, target_percent) == 0)
      if (strchr (fmt_str, target_percent) == 0)
        {
        {
          if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
          if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
            len = build_int_cstu (size_type_node, strlen (fmt_str));
            len = build_int_cstu (size_type_node, strlen (fmt_str));
        }
        }
      /* If the format is "%s" and first ... argument is a string literal,
      /* If the format is "%s" and first ... argument is a string literal,
         we know the size too.  */
         we know the size too.  */
      else if (fcode == BUILT_IN_SPRINTF_CHK
      else if (fcode == BUILT_IN_SPRINTF_CHK
               && strcmp (fmt_str, target_percent_s) == 0)
               && strcmp (fmt_str, target_percent_s) == 0)
        {
        {
          tree arg;
          tree arg;
 
 
          if (nargs == 5)
          if (nargs == 5)
            {
            {
              arg = gimple_call_arg (stmt, 4);
              arg = gimple_call_arg (stmt, 4);
              if (validate_arg (arg, POINTER_TYPE))
              if (validate_arg (arg, POINTER_TYPE))
                {
                {
                  len = c_strlen (arg, 1);
                  len = c_strlen (arg, 1);
                  if (! len || ! host_integerp (len, 1))
                  if (! len || ! host_integerp (len, 1))
                    len = NULL_TREE;
                    len = NULL_TREE;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! len || ! tree_int_cst_lt (len, size))
      if (! len || ! tree_int_cst_lt (len, size))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
  /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
     or if format doesn't contain % chars or is "%s".  */
     or if format doesn't contain % chars or is "%s".  */
  if (! integer_zerop (flag))
  if (! integer_zerop (flag))
    {
    {
      if (fmt_str == NULL)
      if (fmt_str == NULL)
        return NULL_TREE;
        return NULL_TREE;
      if (strchr (fmt_str, target_percent) != NULL
      if (strchr (fmt_str, target_percent) != NULL
          && strcmp (fmt_str, target_percent_s))
          && strcmp (fmt_str, target_percent_s))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available.  */
  /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available.  */
  fn = built_in_decls[fcode == BUILT_IN_VSPRINTF_CHK
  fn = built_in_decls[fcode == BUILT_IN_VSPRINTF_CHK
                      ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF];
                      ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return gimple_rewrite_call_expr (stmt, 4, fn, 2, dest, fmt);
  return gimple_rewrite_call_expr (stmt, 4, fn, 2, dest, fmt);
}
}
 
 
/* Fold a call STMT to {,v}snprintf.  Return NULL_TREE if
/* Fold a call STMT to {,v}snprintf.  Return NULL_TREE if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  FCODE is either BUILT_IN_SNPRINTF_CHK or
   inline.  FCODE is either BUILT_IN_SNPRINTF_CHK or
   BUILT_IN_VSNPRINTF_CHK.  If MAXLEN is not NULL, it is maximum length
   BUILT_IN_VSNPRINTF_CHK.  If MAXLEN is not NULL, it is maximum length
   passed as second argument.  */
   passed as second argument.  */
 
 
tree
tree
gimple_fold_builtin_snprintf_chk (gimple stmt, tree maxlen,
gimple_fold_builtin_snprintf_chk (gimple stmt, tree maxlen,
                                  enum built_in_function fcode)
                                  enum built_in_function fcode)
{
{
  tree dest, size, len, fn, fmt, flag;
  tree dest, size, len, fn, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (gimple_call_num_args (stmt) < 5)
  if (gimple_call_num_args (stmt) < 5)
    return NULL_TREE;
    return NULL_TREE;
  dest = gimple_call_arg (stmt, 0);
  dest = gimple_call_arg (stmt, 0);
  if (!validate_arg (dest, POINTER_TYPE))
  if (!validate_arg (dest, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  len = gimple_call_arg (stmt, 1);
  len = gimple_call_arg (stmt, 1);
  if (!validate_arg (len, INTEGER_TYPE))
  if (!validate_arg (len, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  flag = gimple_call_arg (stmt, 2);
  flag = gimple_call_arg (stmt, 2);
  if (!validate_arg (flag, INTEGER_TYPE))
  if (!validate_arg (flag, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  size = gimple_call_arg (stmt, 3);
  size = gimple_call_arg (stmt, 3);
  if (!validate_arg (size, INTEGER_TYPE))
  if (!validate_arg (size, INTEGER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  fmt = gimple_call_arg (stmt, 4);
  fmt = gimple_call_arg (stmt, 4);
  if (!validate_arg (fmt, POINTER_TYPE))
  if (!validate_arg (fmt, POINTER_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  if (!init_target_chars ())
  if (!init_target_chars ())
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
  /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
     or if format doesn't contain % chars or is "%s".  */
     or if format doesn't contain % chars or is "%s".  */
  if (! integer_zerop (flag))
  if (! integer_zerop (flag))
    {
    {
      fmt_str = c_getstr (fmt);
      fmt_str = c_getstr (fmt);
      if (fmt_str == NULL)
      if (fmt_str == NULL)
        return NULL_TREE;
        return NULL_TREE;
      if (strchr (fmt_str, target_percent) != NULL
      if (strchr (fmt_str, target_percent) != NULL
          && strcmp (fmt_str, target_percent_s))
          && strcmp (fmt_str, target_percent_s))
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
  /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
     available.  */
     available.  */
  fn = built_in_decls[fcode == BUILT_IN_VSNPRINTF_CHK
  fn = built_in_decls[fcode == BUILT_IN_VSNPRINTF_CHK
                      ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF];
                      ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF];
  if (!fn)
  if (!fn)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return gimple_rewrite_call_expr (stmt, 5, fn, 3, dest, len, fmt);
  return gimple_rewrite_call_expr (stmt, 5, fn, 3, dest, len, fmt);
}
}
 
 
/* Builtins with folding operations that operate on "..." arguments
/* Builtins with folding operations that operate on "..." arguments
   need special handling; we need to store the arguments in a convenient
   need special handling; we need to store the arguments in a convenient
   data structure before attempting any folding.  Fortunately there are
   data structure before attempting any folding.  Fortunately there are
   only a few builtins that fall into this category.  FNDECL is the
   only a few builtins that fall into this category.  FNDECL is the
   function, EXP is the CALL_EXPR for the call, and IGNORE is true if the
   function, EXP is the CALL_EXPR for the call, and IGNORE is true if the
   result of the function call is ignored.  */
   result of the function call is ignored.  */
 
 
static tree
static tree
gimple_fold_builtin_varargs (tree fndecl, gimple stmt,
gimple_fold_builtin_varargs (tree fndecl, gimple stmt,
                             bool ignore ATTRIBUTE_UNUSED)
                             bool ignore ATTRIBUTE_UNUSED)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
      ret = gimple_fold_builtin_sprintf_chk (stmt, fcode);
      ret = gimple_fold_builtin_sprintf_chk (stmt, fcode);
      break;
      break;
 
 
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      ret = gimple_fold_builtin_snprintf_chk (stmt, NULL_TREE, fcode);
      ret = gimple_fold_builtin_snprintf_chk (stmt, NULL_TREE, fcode);
 
 
    default:
    default:
      break;
      break;
    }
    }
  if (ret)
  if (ret)
    {
    {
      ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
      ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
      TREE_NO_WARNING (ret) = 1;
      TREE_NO_WARNING (ret) = 1;
      return ret;
      return ret;
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* A wrapper function for builtin folding that prevents warnings for
/* A wrapper function for builtin folding that prevents warnings for
   "statement without effect" and the like, caused by removing the
   "statement without effect" and the like, caused by removing the
   call node earlier than the warning is generated.  */
   call node earlier than the warning is generated.  */
 
 
tree
tree
fold_call_stmt (gimple stmt, bool ignore)
fold_call_stmt (gimple stmt, bool ignore)
{
{
  tree ret = NULL_TREE;
  tree ret = NULL_TREE;
  tree fndecl = gimple_call_fndecl (stmt);
  tree fndecl = gimple_call_fndecl (stmt);
  location_t loc = gimple_location (stmt);
  location_t loc = gimple_location (stmt);
  if (fndecl
  if (fndecl
      && TREE_CODE (fndecl) == FUNCTION_DECL
      && TREE_CODE (fndecl) == FUNCTION_DECL
      && DECL_BUILT_IN (fndecl)
      && DECL_BUILT_IN (fndecl)
      && !gimple_call_va_arg_pack_p (stmt))
      && !gimple_call_va_arg_pack_p (stmt))
    {
    {
      int nargs = gimple_call_num_args (stmt);
      int nargs = gimple_call_num_args (stmt);
 
 
      if (avoid_folding_inline_builtin (fndecl))
      if (avoid_folding_inline_builtin (fndecl))
        return NULL_TREE;
        return NULL_TREE;
      /* FIXME: Don't use a list in this interface.  */
      /* FIXME: Don't use a list in this interface.  */
      if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
      if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
        {
        {
          tree arglist = NULL_TREE;
          tree arglist = NULL_TREE;
          int i;
          int i;
          for (i = nargs - 1; i >= 0; i--)
          for (i = nargs - 1; i >= 0; i--)
            arglist = tree_cons (NULL_TREE, gimple_call_arg (stmt, i), arglist);
            arglist = tree_cons (NULL_TREE, gimple_call_arg (stmt, i), arglist);
          return targetm.fold_builtin (fndecl, arglist, ignore);
          return targetm.fold_builtin (fndecl, arglist, ignore);
        }
        }
      else
      else
        {
        {
          if (nargs <= MAX_ARGS_TO_FOLD_BUILTIN)
          if (nargs <= MAX_ARGS_TO_FOLD_BUILTIN)
            {
            {
              tree args[MAX_ARGS_TO_FOLD_BUILTIN];
              tree args[MAX_ARGS_TO_FOLD_BUILTIN];
              int i;
              int i;
              for (i = 0; i < nargs; i++)
              for (i = 0; i < nargs; i++)
                args[i] = gimple_call_arg (stmt, i);
                args[i] = gimple_call_arg (stmt, i);
              ret = fold_builtin_n (loc, fndecl, args, nargs, ignore);
              ret = fold_builtin_n (loc, fndecl, args, nargs, ignore);
            }
            }
          if (!ret)
          if (!ret)
            ret = gimple_fold_builtin_varargs (fndecl, stmt, ignore);
            ret = gimple_fold_builtin_varargs (fndecl, stmt, ignore);
          if (ret)
          if (ret)
            {
            {
              /* Propagate location information from original call to
              /* Propagate location information from original call to
                 expansion of builtin.  Otherwise things like
                 expansion of builtin.  Otherwise things like
                 maybe_emit_chk_warning, that operate on the expansion
                 maybe_emit_chk_warning, that operate on the expansion
                 of a builtin, will use the wrong location information.  */
                 of a builtin, will use the wrong location information.  */
              if (gimple_has_location (stmt))
              if (gimple_has_location (stmt))
                {
                {
                  tree realret = ret;
                  tree realret = ret;
                  if (TREE_CODE (ret) == NOP_EXPR)
                  if (TREE_CODE (ret) == NOP_EXPR)
                    realret = TREE_OPERAND (ret, 0);
                    realret = TREE_OPERAND (ret, 0);
                  if (CAN_HAVE_LOCATION_P (realret)
                  if (CAN_HAVE_LOCATION_P (realret)
                      && !EXPR_HAS_LOCATION (realret))
                      && !EXPR_HAS_LOCATION (realret))
                    SET_EXPR_LOCATION (realret, loc);
                    SET_EXPR_LOCATION (realret, loc);
                  return realret;
                  return realret;
                }
                }
              return ret;
              return ret;
            }
            }
        }
        }
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Look up the function in built_in_decls that corresponds to DECL
/* Look up the function in built_in_decls that corresponds to DECL
   and set ASMSPEC as its user assembler name.  DECL must be a
   and set ASMSPEC as its user assembler name.  DECL must be a
   function decl that declares a builtin.  */
   function decl that declares a builtin.  */
 
 
void
void
set_builtin_user_assembler_name (tree decl, const char *asmspec)
set_builtin_user_assembler_name (tree decl, const char *asmspec)
{
{
  tree builtin;
  tree builtin;
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
              && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
              && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
              && asmspec != 0);
              && asmspec != 0);
 
 
  builtin = built_in_decls [DECL_FUNCTION_CODE (decl)];
  builtin = built_in_decls [DECL_FUNCTION_CODE (decl)];
  set_user_assembler_name (builtin, asmspec);
  set_user_assembler_name (builtin, asmspec);
  switch (DECL_FUNCTION_CODE (decl))
  switch (DECL_FUNCTION_CODE (decl))
    {
    {
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY:
      init_block_move_fn (asmspec);
      init_block_move_fn (asmspec);
      memcpy_libfunc = set_user_assembler_libfunc ("memcpy", asmspec);
      memcpy_libfunc = set_user_assembler_libfunc ("memcpy", asmspec);
      break;
      break;
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET:
      init_block_clear_fn (asmspec);
      init_block_clear_fn (asmspec);
      memset_libfunc = set_user_assembler_libfunc ("memset", asmspec);
      memset_libfunc = set_user_assembler_libfunc ("memset", asmspec);
      break;
      break;
    case BUILT_IN_MEMMOVE:
    case BUILT_IN_MEMMOVE:
      memmove_libfunc = set_user_assembler_libfunc ("memmove", asmspec);
      memmove_libfunc = set_user_assembler_libfunc ("memmove", asmspec);
      break;
      break;
    case BUILT_IN_MEMCMP:
    case BUILT_IN_MEMCMP:
      memcmp_libfunc = set_user_assembler_libfunc ("memcmp", asmspec);
      memcmp_libfunc = set_user_assembler_libfunc ("memcmp", asmspec);
      break;
      break;
    case BUILT_IN_ABORT:
    case BUILT_IN_ABORT:
      abort_libfunc = set_user_assembler_libfunc ("abort", asmspec);
      abort_libfunc = set_user_assembler_libfunc ("abort", asmspec);
      break;
      break;
    case BUILT_IN_FFS:
    case BUILT_IN_FFS:
      if (INT_TYPE_SIZE < BITS_PER_WORD)
      if (INT_TYPE_SIZE < BITS_PER_WORD)
        {
        {
          set_user_assembler_libfunc ("ffs", asmspec);
          set_user_assembler_libfunc ("ffs", asmspec);
          set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE,
          set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE,
                                                       MODE_INT, 0), "ffs");
                                                       MODE_INT, 0), "ffs");
        }
        }
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.