OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [cfg.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Control flow graph manipulation code for GNU compiler.
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This file contains low level functions to manipulate the CFG and
/* This file contains low level functions to manipulate the CFG and
   analyze it.  All other modules should not transform the data structure
   analyze it.  All other modules should not transform the data structure
   directly and use abstraction instead.  The file is supposed to be
   directly and use abstraction instead.  The file is supposed to be
   ordered bottom-up and should not contain any code dependent on a
   ordered bottom-up and should not contain any code dependent on a
   particular intermediate language (RTL or trees).
   particular intermediate language (RTL or trees).
 
 
   Available functionality:
   Available functionality:
     - Initialization/deallocation
     - Initialization/deallocation
         init_flow, clear_edges
         init_flow, clear_edges
     - Low level basic block manipulation
     - Low level basic block manipulation
         alloc_block, expunge_block
         alloc_block, expunge_block
     - Edge manipulation
     - Edge manipulation
         make_edge, make_single_succ_edge, cached_make_edge, remove_edge
         make_edge, make_single_succ_edge, cached_make_edge, remove_edge
         - Low level edge redirection (without updating instruction chain)
         - Low level edge redirection (without updating instruction chain)
             redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
             redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
     - Dumping and debugging
     - Dumping and debugging
         dump_flow_info, debug_flow_info, dump_edge_info
         dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
     - Allocation of AUX fields for basic blocks
         alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
         alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
     - clear_bb_flags
     - clear_bb_flags
     - Consistency checking
     - Consistency checking
         verify_flow_info
         verify_flow_info
     - Dumping and debugging
     - Dumping and debugging
         print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
         print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
 */
 */


#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "regs.h"
#include "flags.h"
#include "flags.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "except.h"
#include "except.h"
#include "toplev.h"
#include "toplev.h"
#include "tm_p.h"
#include "tm_p.h"
#include "obstack.h"
#include "obstack.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "ggc.h"
#include "ggc.h"
#include "hashtab.h"
#include "hashtab.h"
#include "alloc-pool.h"
#include "alloc-pool.h"
#include "df.h"
#include "df.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "tree-flow.h"
#include "tree-flow.h"
 
 
/* The obstack on which the flow graph components are allocated.  */
/* The obstack on which the flow graph components are allocated.  */
 
 
struct bitmap_obstack reg_obstack;
struct bitmap_obstack reg_obstack;
 
 
void debug_flow_info (void);
void debug_flow_info (void);
static void free_edge (edge);
static void free_edge (edge);


#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
 
 
/* Called once at initialization time.  */
/* Called once at initialization time.  */
 
 
void
void
init_flow (struct function *the_fun)
init_flow (struct function *the_fun)
{
{
  if (!the_fun->cfg)
  if (!the_fun->cfg)
    the_fun->cfg = GGC_CNEW (struct control_flow_graph);
    the_fun->cfg = GGC_CNEW (struct control_flow_graph);
  n_edges_for_function (the_fun) = 0;
  n_edges_for_function (the_fun) = 0;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
    = GGC_CNEW (struct basic_block_def);
    = GGC_CNEW (struct basic_block_def);
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
    = GGC_CNEW (struct basic_block_def);
    = GGC_CNEW (struct basic_block_def);
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
    = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
    = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
}
}


/* Helper function for remove_edge and clear_edges.  Frees edge structure
/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */
   without actually unlinking it from the pred/succ lists.  */
 
 
static void
static void
free_edge (edge e ATTRIBUTE_UNUSED)
free_edge (edge e ATTRIBUTE_UNUSED)
{
{
  n_edges--;
  n_edges--;
  ggc_free (e);
  ggc_free (e);
}
}
 
 
/* Free the memory associated with the edge structures.  */
/* Free the memory associated with the edge structures.  */
 
 
void
void
clear_edges (void)
clear_edges (void)
{
{
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        free_edge (e);
        free_edge (e);
      VEC_truncate (edge, bb->succs, 0);
      VEC_truncate (edge, bb->succs, 0);
      VEC_truncate (edge, bb->preds, 0);
      VEC_truncate (edge, bb->preds, 0);
    }
    }
 
 
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    free_edge (e);
    free_edge (e);
  VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
  VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
  VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
  VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
 
 
  gcc_assert (!n_edges);
  gcc_assert (!n_edges);
}
}


/* Allocate memory for basic_block.  */
/* Allocate memory for basic_block.  */
 
 
basic_block
basic_block
alloc_block (void)
alloc_block (void)
{
{
  basic_block bb;
  basic_block bb;
  bb = GGC_CNEW (struct basic_block_def);
  bb = GGC_CNEW (struct basic_block_def);
  return bb;
  return bb;
}
}
 
 
/* Link block B to chain after AFTER.  */
/* Link block B to chain after AFTER.  */
void
void
link_block (basic_block b, basic_block after)
link_block (basic_block b, basic_block after)
{
{
  b->next_bb = after->next_bb;
  b->next_bb = after->next_bb;
  b->prev_bb = after;
  b->prev_bb = after;
  after->next_bb = b;
  after->next_bb = b;
  b->next_bb->prev_bb = b;
  b->next_bb->prev_bb = b;
}
}
 
 
/* Unlink block B from chain.  */
/* Unlink block B from chain.  */
void
void
unlink_block (basic_block b)
unlink_block (basic_block b)
{
{
  b->next_bb->prev_bb = b->prev_bb;
  b->next_bb->prev_bb = b->prev_bb;
  b->prev_bb->next_bb = b->next_bb;
  b->prev_bb->next_bb = b->next_bb;
  b->prev_bb = NULL;
  b->prev_bb = NULL;
  b->next_bb = NULL;
  b->next_bb = NULL;
}
}
 
 
/* Sequentially order blocks and compact the arrays.  */
/* Sequentially order blocks and compact the arrays.  */
void
void
compact_blocks (void)
compact_blocks (void)
{
{
  int i;
  int i;
 
 
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
 
 
  if (df)
  if (df)
    df_compact_blocks ();
    df_compact_blocks ();
  else
  else
    {
    {
      basic_block bb;
      basic_block bb;
 
 
      i = NUM_FIXED_BLOCKS;
      i = NUM_FIXED_BLOCKS;
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          SET_BASIC_BLOCK (i, bb);
          SET_BASIC_BLOCK (i, bb);
          bb->index = i;
          bb->index = i;
          i++;
          i++;
        }
        }
      gcc_assert (i == n_basic_blocks);
      gcc_assert (i == n_basic_blocks);
 
 
      for (; i < last_basic_block; i++)
      for (; i < last_basic_block; i++)
        SET_BASIC_BLOCK (i, NULL);
        SET_BASIC_BLOCK (i, NULL);
    }
    }
  last_basic_block = n_basic_blocks;
  last_basic_block = n_basic_blocks;
}
}
 
 
/* Remove block B from the basic block array.  */
/* Remove block B from the basic block array.  */
 
 
void
void
expunge_block (basic_block b)
expunge_block (basic_block b)
{
{
  unlink_block (b);
  unlink_block (b);
  SET_BASIC_BLOCK (b->index, NULL);
  SET_BASIC_BLOCK (b->index, NULL);
  n_basic_blocks--;
  n_basic_blocks--;
  /* We should be able to ggc_free here, but we are not.
  /* We should be able to ggc_free here, but we are not.
     The dead SSA_NAMES are left pointing to dead statements that are pointing
     The dead SSA_NAMES are left pointing to dead statements that are pointing
     to dead basic blocks making garbage collector to die.
     to dead basic blocks making garbage collector to die.
     We should be able to release all dead SSA_NAMES and at the same time we should
     We should be able to release all dead SSA_NAMES and at the same time we should
     clear out BB pointer of dead statements consistently.  */
     clear out BB pointer of dead statements consistently.  */
}
}


/* Connect E to E->src.  */
/* Connect E to E->src.  */
 
 
static inline void
static inline void
connect_src (edge e)
connect_src (edge e)
{
{
  VEC_safe_push (edge, gc, e->src->succs, e);
  VEC_safe_push (edge, gc, e->src->succs, e);
  df_mark_solutions_dirty ();
  df_mark_solutions_dirty ();
}
}
 
 
/* Connect E to E->dest.  */
/* Connect E to E->dest.  */
 
 
static inline void
static inline void
connect_dest (edge e)
connect_dest (edge e)
{
{
  basic_block dest = e->dest;
  basic_block dest = e->dest;
  VEC_safe_push (edge, gc, dest->preds, e);
  VEC_safe_push (edge, gc, dest->preds, e);
  e->dest_idx = EDGE_COUNT (dest->preds) - 1;
  e->dest_idx = EDGE_COUNT (dest->preds) - 1;
  df_mark_solutions_dirty ();
  df_mark_solutions_dirty ();
}
}
 
 
/* Disconnect edge E from E->src.  */
/* Disconnect edge E from E->src.  */
 
 
static inline void
static inline void
disconnect_src (edge e)
disconnect_src (edge e)
{
{
  basic_block src = e->src;
  basic_block src = e->src;
  edge_iterator ei;
  edge_iterator ei;
  edge tmp;
  edge tmp;
 
 
  for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
  for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
    {
    {
      if (tmp == e)
      if (tmp == e)
        {
        {
          VEC_unordered_remove (edge, src->succs, ei.index);
          VEC_unordered_remove (edge, src->succs, ei.index);
          return;
          return;
        }
        }
      else
      else
        ei_next (&ei);
        ei_next (&ei);
    }
    }
 
 
  df_mark_solutions_dirty ();
  df_mark_solutions_dirty ();
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* Disconnect edge E from E->dest.  */
/* Disconnect edge E from E->dest.  */
 
 
static inline void
static inline void
disconnect_dest (edge e)
disconnect_dest (edge e)
{
{
  basic_block dest = e->dest;
  basic_block dest = e->dest;
  unsigned int dest_idx = e->dest_idx;
  unsigned int dest_idx = e->dest_idx;
 
 
  VEC_unordered_remove (edge, dest->preds, dest_idx);
  VEC_unordered_remove (edge, dest->preds, dest_idx);
 
 
  /* If we removed an edge in the middle of the edge vector, we need
  /* If we removed an edge in the middle of the edge vector, we need
     to update dest_idx of the edge that moved into the "hole".  */
     to update dest_idx of the edge that moved into the "hole".  */
  if (dest_idx < EDGE_COUNT (dest->preds))
  if (dest_idx < EDGE_COUNT (dest->preds))
    EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
    EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
  df_mark_solutions_dirty ();
  df_mark_solutions_dirty ();
}
}
 
 
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge.  Use this only if you are sure that this edge can't
   created edge.  Use this only if you are sure that this edge can't
   possibly already exist.  */
   possibly already exist.  */
 
 
edge
edge
unchecked_make_edge (basic_block src, basic_block dst, int flags)
unchecked_make_edge (basic_block src, basic_block dst, int flags)
{
{
  edge e;
  edge e;
  e = GGC_CNEW (struct edge_def);
  e = GGC_CNEW (struct edge_def);
  n_edges++;
  n_edges++;
 
 
  e->src = src;
  e->src = src;
  e->dest = dst;
  e->dest = dst;
  e->flags = flags;
  e->flags = flags;
 
 
  connect_src (e);
  connect_src (e);
  connect_dest (e);
  connect_dest (e);
 
 
  execute_on_growing_pred (e);
  execute_on_growing_pred (e);
  return e;
  return e;
}
}
 
 
/* Create an edge connecting SRC and DST with FLAGS optionally using
/* Create an edge connecting SRC and DST with FLAGS optionally using
   edge cache CACHE.  Return the new edge, NULL if already exist.  */
   edge cache CACHE.  Return the new edge, NULL if already exist.  */
 
 
edge
edge
cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
{
{
  if (edge_cache == NULL
  if (edge_cache == NULL
      || src == ENTRY_BLOCK_PTR
      || src == ENTRY_BLOCK_PTR
      || dst == EXIT_BLOCK_PTR)
      || dst == EXIT_BLOCK_PTR)
    return make_edge (src, dst, flags);
    return make_edge (src, dst, flags);
 
 
  /* Does the requested edge already exist?  */
  /* Does the requested edge already exist?  */
  if (! TEST_BIT (edge_cache, dst->index))
  if (! TEST_BIT (edge_cache, dst->index))
    {
    {
      /* The edge does not exist.  Create one and update the
      /* The edge does not exist.  Create one and update the
         cache.  */
         cache.  */
      SET_BIT (edge_cache, dst->index);
      SET_BIT (edge_cache, dst->index);
      return unchecked_make_edge (src, dst, flags);
      return unchecked_make_edge (src, dst, flags);
    }
    }
 
 
  /* At this point, we know that the requested edge exists.  Adjust
  /* At this point, we know that the requested edge exists.  Adjust
     flags if necessary.  */
     flags if necessary.  */
  if (flags)
  if (flags)
    {
    {
      edge e = find_edge (src, dst);
      edge e = find_edge (src, dst);
      e->flags |= flags;
      e->flags |= flags;
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */
   created edge or NULL if already exist.  */
 
 
edge
edge
make_edge (basic_block src, basic_block dest, int flags)
make_edge (basic_block src, basic_block dest, int flags)
{
{
  edge e = find_edge (src, dest);
  edge e = find_edge (src, dest);
 
 
  /* Make sure we don't add duplicate edges.  */
  /* Make sure we don't add duplicate edges.  */
  if (e)
  if (e)
    {
    {
      e->flags |= flags;
      e->flags |= flags;
      return NULL;
      return NULL;
    }
    }
 
 
  return unchecked_make_edge (src, dest, flags);
  return unchecked_make_edge (src, dest, flags);
}
}
 
 
/* Create an edge connecting SRC to DEST and set probability by knowing
/* Create an edge connecting SRC to DEST and set probability by knowing
   that it is the single edge leaving SRC.  */
   that it is the single edge leaving SRC.  */
 
 
edge
edge
make_single_succ_edge (basic_block src, basic_block dest, int flags)
make_single_succ_edge (basic_block src, basic_block dest, int flags)
{
{
  edge e = make_edge (src, dest, flags);
  edge e = make_edge (src, dest, flags);
 
 
  e->probability = REG_BR_PROB_BASE;
  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  e->count = src->count;
  return e;
  return e;
}
}
 
 
/* This function will remove an edge from the flow graph.  */
/* This function will remove an edge from the flow graph.  */
 
 
void
void
remove_edge_raw (edge e)
remove_edge_raw (edge e)
{
{
  remove_predictions_associated_with_edge (e);
  remove_predictions_associated_with_edge (e);
  execute_on_shrinking_pred (e);
  execute_on_shrinking_pred (e);
 
 
  disconnect_src (e);
  disconnect_src (e);
  disconnect_dest (e);
  disconnect_dest (e);
 
 
  /* This is probably not needed, but it doesn't hurt.  */
  /* This is probably not needed, but it doesn't hurt.  */
  redirect_edge_var_map_clear (e);
  redirect_edge_var_map_clear (e);
 
 
  free_edge (e);
  free_edge (e);
}
}
 
 
/* Redirect an edge's successor from one block to another.  */
/* Redirect an edge's successor from one block to another.  */
 
 
void
void
redirect_edge_succ (edge e, basic_block new_succ)
redirect_edge_succ (edge e, basic_block new_succ)
{
{
  execute_on_shrinking_pred (e);
  execute_on_shrinking_pred (e);
 
 
  disconnect_dest (e);
  disconnect_dest (e);
 
 
  e->dest = new_succ;
  e->dest = new_succ;
 
 
  /* Reconnect the edge to the new successor block.  */
  /* Reconnect the edge to the new successor block.  */
  connect_dest (e);
  connect_dest (e);
 
 
  execute_on_growing_pred (e);
  execute_on_growing_pred (e);
}
}
 
 
/* Like previous but avoid possible duplicate edge.  */
/* Like previous but avoid possible duplicate edge.  */
 
 
edge
edge
redirect_edge_succ_nodup (edge e, basic_block new_succ)
redirect_edge_succ_nodup (edge e, basic_block new_succ)
{
{
  edge s;
  edge s;
 
 
  s = find_edge (e->src, new_succ);
  s = find_edge (e->src, new_succ);
  if (s && s != e)
  if (s && s != e)
    {
    {
      s->flags |= e->flags;
      s->flags |= e->flags;
      s->probability += e->probability;
      s->probability += e->probability;
      if (s->probability > REG_BR_PROB_BASE)
      if (s->probability > REG_BR_PROB_BASE)
        s->probability = REG_BR_PROB_BASE;
        s->probability = REG_BR_PROB_BASE;
      s->count += e->count;
      s->count += e->count;
      remove_edge (e);
      remove_edge (e);
      redirect_edge_var_map_dup (s, e);
      redirect_edge_var_map_dup (s, e);
      e = s;
      e = s;
    }
    }
  else
  else
    redirect_edge_succ (e, new_succ);
    redirect_edge_succ (e, new_succ);
 
 
  return e;
  return e;
}
}
 
 
/* Redirect an edge's predecessor from one block to another.  */
/* Redirect an edge's predecessor from one block to another.  */
 
 
void
void
redirect_edge_pred (edge e, basic_block new_pred)
redirect_edge_pred (edge e, basic_block new_pred)
{
{
  disconnect_src (e);
  disconnect_src (e);
 
 
  e->src = new_pred;
  e->src = new_pred;
 
 
  /* Reconnect the edge to the new predecessor block.  */
  /* Reconnect the edge to the new predecessor block.  */
  connect_src (e);
  connect_src (e);
}
}
 
 
/* Clear all basic block flags, with the exception of partitioning and
/* Clear all basic block flags, with the exception of partitioning and
   setjmp_target.  */
   setjmp_target.  */
void
void
clear_bb_flags (void)
clear_bb_flags (void)
{
{
  basic_block bb;
  basic_block bb;
 
 
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->flags = (BB_PARTITION (bb)
    bb->flags = (BB_PARTITION (bb)
                 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
                 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
}
}


/* Check the consistency of profile information.  We can't do that
/* Check the consistency of profile information.  We can't do that
   in verify_flow_info, as the counts may get invalid for incompletely
   in verify_flow_info, as the counts may get invalid for incompletely
   solved graphs, later eliminating of conditionals or roundoff errors.
   solved graphs, later eliminating of conditionals or roundoff errors.
   It is still practical to have them reported for debugging of simple
   It is still practical to have them reported for debugging of simple
   testcases.  */
   testcases.  */
void
void
check_bb_profile (basic_block bb, FILE * file)
check_bb_profile (basic_block bb, FILE * file)
{
{
  edge e;
  edge e;
  int sum = 0;
  int sum = 0;
  gcov_type lsum;
  gcov_type lsum;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (profile_status == PROFILE_ABSENT)
  if (profile_status == PROFILE_ABSENT)
    return;
    return;
 
 
  if (bb != EXIT_BLOCK_PTR)
  if (bb != EXIT_BLOCK_PTR)
    {
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        sum += e->probability;
        sum += e->probability;
      if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
      if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
        fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
        fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
                 sum * 100.0 / REG_BR_PROB_BASE);
                 sum * 100.0 / REG_BR_PROB_BASE);
      lsum = 0;
      lsum = 0;
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        lsum += e->count;
        lsum += e->count;
      if (EDGE_COUNT (bb->succs)
      if (EDGE_COUNT (bb->succs)
          && (lsum - bb->count > 100 || lsum - bb->count < -100))
          && (lsum - bb->count > 100 || lsum - bb->count < -100))
        fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
        fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
                 (int) lsum, (int) bb->count);
                 (int) lsum, (int) bb->count);
    }
    }
  if (bb != ENTRY_BLOCK_PTR)
  if (bb != ENTRY_BLOCK_PTR)
    {
    {
      sum = 0;
      sum = 0;
      FOR_EACH_EDGE (e, ei, bb->preds)
      FOR_EACH_EDGE (e, ei, bb->preds)
        sum += EDGE_FREQUENCY (e);
        sum += EDGE_FREQUENCY (e);
      if (abs (sum - bb->frequency) > 100)
      if (abs (sum - bb->frequency) > 100)
        fprintf (file,
        fprintf (file,
                 "Invalid sum of incoming frequencies %i, should be %i\n",
                 "Invalid sum of incoming frequencies %i, should be %i\n",
                 sum, bb->frequency);
                 sum, bb->frequency);
      lsum = 0;
      lsum = 0;
      FOR_EACH_EDGE (e, ei, bb->preds)
      FOR_EACH_EDGE (e, ei, bb->preds)
        lsum += e->count;
        lsum += e->count;
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
        fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
        fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
                 (int) lsum, (int) bb->count);
                 (int) lsum, (int) bb->count);
    }
    }
}
}


/* Write information about registers and basic blocks into FILE.
/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */
   This is part of making a debugging dump.  */
 
 
void
void
dump_regset (regset r, FILE *outf)
dump_regset (regset r, FILE *outf)
{
{
  unsigned i;
  unsigned i;
  reg_set_iterator rsi;
  reg_set_iterator rsi;
 
 
  if (r == NULL)
  if (r == NULL)
    {
    {
      fputs (" (nil)", outf);
      fputs (" (nil)", outf);
      return;
      return;
    }
    }
 
 
  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
    {
    {
      fprintf (outf, " %d", i);
      fprintf (outf, " %d", i);
      if (i < FIRST_PSEUDO_REGISTER)
      if (i < FIRST_PSEUDO_REGISTER)
        fprintf (outf, " [%s]",
        fprintf (outf, " [%s]",
                 reg_names[i]);
                 reg_names[i]);
    }
    }
}
}
 
 
/* Print a human-readable representation of R on the standard error
/* Print a human-readable representation of R on the standard error
   stream.  This function is designed to be used from within the
   stream.  This function is designed to be used from within the
   debugger.  */
   debugger.  */
 
 
void
void
debug_regset (regset r)
debug_regset (regset r)
{
{
  dump_regset (r, stderr);
  dump_regset (r, stderr);
  putc ('\n', stderr);
  putc ('\n', stderr);
}
}
 
 
/* Emit basic block information for BB.  HEADER is true if the user wants
/* Emit basic block information for BB.  HEADER is true if the user wants
   the generic information and the predecessors, FOOTER is true if they want
   the generic information and the predecessors, FOOTER is true if they want
   the successors.  FLAGS is the dump flags of interest; TDF_DETAILS emit
   the successors.  FLAGS is the dump flags of interest; TDF_DETAILS emit
   global register liveness information.  PREFIX is put in front of every
   global register liveness information.  PREFIX is put in front of every
   line.  The output is emitted to FILE.  */
   line.  The output is emitted to FILE.  */
void
void
dump_bb_info (basic_block bb, bool header, bool footer, int flags,
dump_bb_info (basic_block bb, bool header, bool footer, int flags,
              const char *prefix, FILE *file)
              const char *prefix, FILE *file)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (header)
  if (header)
    {
    {
      fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
      fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
      if (bb->prev_bb)
      if (bb->prev_bb)
        fprintf (file, ", prev %d", bb->prev_bb->index);
        fprintf (file, ", prev %d", bb->prev_bb->index);
      if (bb->next_bb)
      if (bb->next_bb)
        fprintf (file, ", next %d", bb->next_bb->index);
        fprintf (file, ", next %d", bb->next_bb->index);
      fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
      fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      fprintf (file, ", freq %i", bb->frequency);
      fprintf (file, ", freq %i", bb->frequency);
      /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
      /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
         crash without cfun. */
         crash without cfun. */
      if (cfun && maybe_hot_bb_p (bb))
      if (cfun && maybe_hot_bb_p (bb))
        fputs (", maybe hot", file);
        fputs (", maybe hot", file);
      if (cfun && probably_never_executed_bb_p (bb))
      if (cfun && probably_never_executed_bb_p (bb))
        fputs (", probably never executed", file);
        fputs (", probably never executed", file);
      fputs (".\n", file);
      fputs (".\n", file);
 
 
      fprintf (file, "%sPredecessors: ", prefix);
      fprintf (file, "%sPredecessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->preds)
      FOR_EACH_EDGE (e, ei, bb->preds)
        dump_edge_info (file, e, 0);
        dump_edge_info (file, e, 0);
 
 
      if ((flags & TDF_DETAILS)
      if ((flags & TDF_DETAILS)
          && (bb->flags & BB_RTL)
          && (bb->flags & BB_RTL)
          && df)
          && df)
        {
        {
          putc ('\n', file);
          putc ('\n', file);
          df_dump_top (bb, file);
          df_dump_top (bb, file);
        }
        }
   }
   }
 
 
  if (footer)
  if (footer)
    {
    {
      fprintf (file, "\n%sSuccessors: ", prefix);
      fprintf (file, "\n%sSuccessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        dump_edge_info (file, e, 1);
        dump_edge_info (file, e, 1);
 
 
      if ((flags & TDF_DETAILS)
      if ((flags & TDF_DETAILS)
          && (bb->flags & BB_RTL)
          && (bb->flags & BB_RTL)
          && df)
          && df)
        {
        {
          putc ('\n', file);
          putc ('\n', file);
          df_dump_bottom (bb, file);
          df_dump_bottom (bb, file);
        }
        }
   }
   }
 
 
  putc ('\n', file);
  putc ('\n', file);
}
}
 
 
/* Dump the register info to FILE.  */
/* Dump the register info to FILE.  */
 
 
void
void
dump_reg_info (FILE *file)
dump_reg_info (FILE *file)
{
{
  unsigned int i, max = max_reg_num ();
  unsigned int i, max = max_reg_num ();
  if (reload_completed)
  if (reload_completed)
    return;
    return;
 
 
  if (reg_info_p_size < max)
  if (reg_info_p_size < max)
    max = reg_info_p_size;
    max = reg_info_p_size;
 
 
  fprintf (file, "%d registers.\n", max);
  fprintf (file, "%d registers.\n", max);
  for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
    {
    {
      enum reg_class rclass, altclass;
      enum reg_class rclass, altclass;
 
 
      if (regstat_n_sets_and_refs)
      if (regstat_n_sets_and_refs)
        fprintf (file, "\nRegister %d used %d times across %d insns",
        fprintf (file, "\nRegister %d used %d times across %d insns",
                 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
                 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
      else if (df)
      else if (df)
        fprintf (file, "\nRegister %d used %d times across %d insns",
        fprintf (file, "\nRegister %d used %d times across %d insns",
                 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
                 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
 
 
      if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
      if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
        fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
        fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
      if (regstat_n_sets_and_refs)
      if (regstat_n_sets_and_refs)
        fprintf (file, "; set %d time%s", REG_N_SETS (i),
        fprintf (file, "; set %d time%s", REG_N_SETS (i),
                 (REG_N_SETS (i) == 1) ? "" : "s");
                 (REG_N_SETS (i) == 1) ? "" : "s");
      else if (df)
      else if (df)
        fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
        fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
                 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
                 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
      if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
      if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
        fputs ("; user var", file);
        fputs ("; user var", file);
      if (REG_N_DEATHS (i) != 1)
      if (REG_N_DEATHS (i) != 1)
        fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
        fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
      if (REG_N_CALLS_CROSSED (i) == 1)
      if (REG_N_CALLS_CROSSED (i) == 1)
        fputs ("; crosses 1 call", file);
        fputs ("; crosses 1 call", file);
      else if (REG_N_CALLS_CROSSED (i))
      else if (REG_N_CALLS_CROSSED (i))
        fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
        fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
      if (REG_FREQ_CALLS_CROSSED (i))
      if (REG_FREQ_CALLS_CROSSED (i))
        fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
        fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
      if (regno_reg_rtx[i] != NULL
      if (regno_reg_rtx[i] != NULL
          && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
          && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
        fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
        fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
 
 
      rclass = reg_preferred_class (i);
      rclass = reg_preferred_class (i);
      altclass = reg_alternate_class (i);
      altclass = reg_alternate_class (i);
      if (rclass != GENERAL_REGS || altclass != ALL_REGS)
      if (rclass != GENERAL_REGS || altclass != ALL_REGS)
        {
        {
          if (altclass == ALL_REGS || rclass == ALL_REGS)
          if (altclass == ALL_REGS || rclass == ALL_REGS)
            fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
            fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
          else if (altclass == NO_REGS)
          else if (altclass == NO_REGS)
            fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
            fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
          else
          else
            fprintf (file, "; pref %s, else %s",
            fprintf (file, "; pref %s, else %s",
                     reg_class_names[(int) rclass],
                     reg_class_names[(int) rclass],
                     reg_class_names[(int) altclass]);
                     reg_class_names[(int) altclass]);
        }
        }
 
 
      if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
      if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
        fputs ("; pointer", file);
        fputs ("; pointer", file);
      fputs (".\n", file);
      fputs (".\n", file);
    }
    }
}
}
 
 
 
 
void
void
dump_flow_info (FILE *file, int flags)
dump_flow_info (FILE *file, int flags)
{
{
  basic_block bb;
  basic_block bb;
 
 
  /* There are no pseudo registers after reload.  Don't dump them.  */
  /* There are no pseudo registers after reload.  Don't dump them.  */
  if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
  if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
    dump_reg_info (file);
    dump_reg_info (file);
 
 
  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
  FOR_ALL_BB (bb)
  FOR_ALL_BB (bb)
    {
    {
      dump_bb_info (bb, true, true, flags, "", file);
      dump_bb_info (bb, true, true, flags, "", file);
      check_bb_profile (bb, file);
      check_bb_profile (bb, file);
    }
    }
 
 
  putc ('\n', file);
  putc ('\n', file);
}
}
 
 
void
void
debug_flow_info (void)
debug_flow_info (void)
{
{
  dump_flow_info (stderr, TDF_DETAILS);
  dump_flow_info (stderr, TDF_DETAILS);
}
}
 
 
void
void
dump_edge_info (FILE *file, edge e, int do_succ)
dump_edge_info (FILE *file, edge e, int do_succ)
{
{
  basic_block side = (do_succ ? e->dest : e->src);
  basic_block side = (do_succ ? e->dest : e->src);
  /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
  /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
  if (cfun && side == ENTRY_BLOCK_PTR)
  if (cfun && side == ENTRY_BLOCK_PTR)
    fputs (" ENTRY", file);
    fputs (" ENTRY", file);
  else if (cfun && side == EXIT_BLOCK_PTR)
  else if (cfun && side == EXIT_BLOCK_PTR)
    fputs (" EXIT", file);
    fputs (" EXIT", file);
  else
  else
    fprintf (file, " %d", side->index);
    fprintf (file, " %d", side->index);
 
 
  if (e->probability)
  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
 
 
  if (e->count)
  if (e->count)
    {
    {
      fputs (" count:", file);
      fputs (" count:", file);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
    }
    }
 
 
  if (e->flags)
  if (e->flags)
    {
    {
      static const char * const bitnames[] = {
      static const char * const bitnames[] = {
        "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
        "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
        "can_fallthru", "irreducible", "sibcall", "loop_exit",
        "can_fallthru", "irreducible", "sibcall", "loop_exit",
        "true", "false", "exec"
        "true", "false", "exec"
      };
      };
      int comma = 0;
      int comma = 0;
      int i, flags = e->flags;
      int i, flags = e->flags;
 
 
      fputs (" (", file);
      fputs (" (", file);
      for (i = 0; flags; i++)
      for (i = 0; flags; i++)
        if (flags & (1 << i))
        if (flags & (1 << i))
          {
          {
            flags &= ~(1 << i);
            flags &= ~(1 << i);
 
 
            if (comma)
            if (comma)
              fputc (',', file);
              fputc (',', file);
            if (i < (int) ARRAY_SIZE (bitnames))
            if (i < (int) ARRAY_SIZE (bitnames))
              fputs (bitnames[i], file);
              fputs (bitnames[i], file);
            else
            else
              fprintf (file, "%d", i);
              fprintf (file, "%d", i);
            comma = 1;
            comma = 1;
          }
          }
 
 
      fputc (')', file);
      fputc (')', file);
    }
    }
}
}


/* Simple routines to easily allocate AUX fields of basic blocks.  */
/* Simple routines to easily allocate AUX fields of basic blocks.  */
 
 
static struct obstack block_aux_obstack;
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;
static void *first_edge_aux_obj = 0;
 
 
/* Allocate a memory block of SIZE as BB->aux.  The obstack must
/* Allocate a memory block of SIZE as BB->aux.  The obstack must
   be first initialized by alloc_aux_for_blocks.  */
   be first initialized by alloc_aux_for_blocks.  */
 
 
void
void
alloc_aux_for_block (basic_block bb, int size)
alloc_aux_for_block (basic_block bb, int size)
{
{
  /* Verify that aux field is clear.  */
  /* Verify that aux field is clear.  */
  gcc_assert (!bb->aux && first_block_aux_obj);
  gcc_assert (!bb->aux && first_block_aux_obj);
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
  memset (bb->aux, 0, size);
}
}
 
 
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */
   alloc_aux_for_block for each basic block.  */
 
 
void
void
alloc_aux_for_blocks (int size)
alloc_aux_for_blocks (int size)
{
{
  static int initialized;
  static int initialized;
 
 
  if (!initialized)
  if (!initialized)
    {
    {
      gcc_obstack_init (&block_aux_obstack);
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
      initialized = 1;
    }
    }
  else
  else
    /* Check whether AUX data are still allocated.  */
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_block_aux_obj);
    gcc_assert (!first_block_aux_obj);
 
 
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
  if (size)
  if (size)
    {
    {
      basic_block bb;
      basic_block bb;
 
 
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
        alloc_aux_for_block (bb, size);
        alloc_aux_for_block (bb, size);
    }
    }
}
}
 
 
/* Clear AUX pointers of all blocks.  */
/* Clear AUX pointers of all blocks.  */
 
 
void
void
clear_aux_for_blocks (void)
clear_aux_for_blocks (void)
{
{
  basic_block bb;
  basic_block bb;
 
 
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->aux = NULL;
    bb->aux = NULL;
}
}
 
 
/* Free data allocated in block_aux_obstack and clear AUX pointers
/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */
   of all blocks.  */
 
 
void
void
free_aux_for_blocks (void)
free_aux_for_blocks (void)
{
{
  gcc_assert (first_block_aux_obj);
  gcc_assert (first_block_aux_obj);
  obstack_free (&block_aux_obstack, first_block_aux_obj);
  obstack_free (&block_aux_obstack, first_block_aux_obj);
  first_block_aux_obj = NULL;
  first_block_aux_obj = NULL;
 
 
  clear_aux_for_blocks ();
  clear_aux_for_blocks ();
}
}
 
 
/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
   be first initialized by alloc_aux_for_edges.  */
   be first initialized by alloc_aux_for_edges.  */
 
 
void
void
alloc_aux_for_edge (edge e, int size)
alloc_aux_for_edge (edge e, int size)
{
{
  /* Verify that aux field is clear.  */
  /* Verify that aux field is clear.  */
  gcc_assert (!e->aux && first_edge_aux_obj);
  gcc_assert (!e->aux && first_edge_aux_obj);
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
  memset (e->aux, 0, size);
}
}
 
 
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */
   alloc_aux_for_edge for each basic edge.  */
 
 
void
void
alloc_aux_for_edges (int size)
alloc_aux_for_edges (int size)
{
{
  static int initialized;
  static int initialized;
 
 
  if (!initialized)
  if (!initialized)
    {
    {
      gcc_obstack_init (&edge_aux_obstack);
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
      initialized = 1;
    }
    }
  else
  else
    /* Check whether AUX data are still allocated.  */
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_edge_aux_obj);
    gcc_assert (!first_edge_aux_obj);
 
 
  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
  if (size)
  if (size)
    {
    {
      basic_block bb;
      basic_block bb;
 
 
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
        {
        {
          edge e;
          edge e;
          edge_iterator ei;
          edge_iterator ei;
 
 
          FOR_EACH_EDGE (e, ei, bb->succs)
          FOR_EACH_EDGE (e, ei, bb->succs)
            alloc_aux_for_edge (e, size);
            alloc_aux_for_edge (e, size);
        }
        }
    }
    }
}
}
 
 
/* Clear AUX pointers of all edges.  */
/* Clear AUX pointers of all edges.  */
 
 
void
void
clear_aux_for_edges (void)
clear_aux_for_edges (void)
{
{
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
 
 
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
    {
      edge_iterator ei;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        e->aux = NULL;
        e->aux = NULL;
    }
    }
}
}
 
 
/* Free data allocated in edge_aux_obstack and clear AUX pointers
/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */
   of all edges.  */
 
 
void
void
free_aux_for_edges (void)
free_aux_for_edges (void)
{
{
  gcc_assert (first_edge_aux_obj);
  gcc_assert (first_edge_aux_obj);
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
  first_edge_aux_obj = NULL;
  first_edge_aux_obj = NULL;
 
 
  clear_aux_for_edges ();
  clear_aux_for_edges ();
}
}
 
 
void
void
debug_bb (basic_block bb)
debug_bb (basic_block bb)
{
{
  dump_bb (bb, stderr, 0);
  dump_bb (bb, stderr, 0);
}
}
 
 
basic_block
basic_block
debug_bb_n (int n)
debug_bb_n (int n)
{
{
  basic_block bb = BASIC_BLOCK (n);
  basic_block bb = BASIC_BLOCK (n);
  dump_bb (bb, stderr, 0);
  dump_bb (bb, stderr, 0);
  return bb;
  return bb;
}
}
 
 
/* Dumps cfg related information about basic block BB to FILE.  */
/* Dumps cfg related information about basic block BB to FILE.  */
 
 
static void
static void
dump_cfg_bb_info (FILE *file, basic_block bb)
dump_cfg_bb_info (FILE *file, basic_block bb)
{
{
  unsigned i;
  unsigned i;
  edge_iterator ei;
  edge_iterator ei;
  bool first = true;
  bool first = true;
  static const char * const bb_bitnames[] =
  static const char * const bb_bitnames[] =
    {
    {
      "new", "reachable", "irreducible_loop", "superblock",
      "new", "reachable", "irreducible_loop", "superblock",
      "nosched", "hot", "cold", "dup", "xlabel", "rtl",
      "nosched", "hot", "cold", "dup", "xlabel", "rtl",
      "fwdr", "nothrd"
      "fwdr", "nothrd"
    };
    };
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  edge e;
  edge e;
 
 
  fprintf (file, "Basic block %d", bb->index);
  fprintf (file, "Basic block %d", bb->index);
  for (i = 0; i < n_bitnames; i++)
  for (i = 0; i < n_bitnames; i++)
    if (bb->flags & (1 << i))
    if (bb->flags & (1 << i))
      {
      {
        if (first)
        if (first)
          fputs (" (", file);
          fputs (" (", file);
        else
        else
          fputs (", ", file);
          fputs (", ", file);
        first = false;
        first = false;
        fputs (bb_bitnames[i], file);
        fputs (bb_bitnames[i], file);
      }
      }
  if (!first)
  if (!first)
    putc (')', file);
    putc (')', file);
  putc ('\n', file);
  putc ('\n', file);
 
 
  fputs ("Predecessors: ", file);
  fputs ("Predecessors: ", file);
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    dump_edge_info (file, e, 0);
    dump_edge_info (file, e, 0);
 
 
  fprintf (file, "\nSuccessors: ");
  fprintf (file, "\nSuccessors: ");
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    dump_edge_info (file, e, 1);
    dump_edge_info (file, e, 1);
  fputs ("\n\n", file);
  fputs ("\n\n", file);
}
}
 
 
/* Dumps a brief description of cfg to FILE.  */
/* Dumps a brief description of cfg to FILE.  */
 
 
void
void
brief_dump_cfg (FILE *file)
brief_dump_cfg (FILE *file)
{
{
  basic_block bb;
  basic_block bb;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      dump_cfg_bb_info (file, bb);
      dump_cfg_bb_info (file, bb);
    }
    }
}
}
 
 
/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
   leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
   leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
   redirected to destination of TAKEN_EDGE.
   redirected to destination of TAKEN_EDGE.
 
 
   This function may leave the profile inconsistent in the case TAKEN_EDGE
   This function may leave the profile inconsistent in the case TAKEN_EDGE
   frequency or count is believed to be lower than FREQUENCY or COUNT
   frequency or count is believed to be lower than FREQUENCY or COUNT
   respectively.  */
   respectively.  */
void
void
update_bb_profile_for_threading (basic_block bb, int edge_frequency,
update_bb_profile_for_threading (basic_block bb, int edge_frequency,
                                 gcov_type count, edge taken_edge)
                                 gcov_type count, edge taken_edge)
{
{
  edge c;
  edge c;
  int prob;
  int prob;
  edge_iterator ei;
  edge_iterator ei;
 
 
  bb->count -= count;
  bb->count -= count;
  if (bb->count < 0)
  if (bb->count < 0)
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "bb %i count became negative after threading",
        fprintf (dump_file, "bb %i count became negative after threading",
                 bb->index);
                 bb->index);
      bb->count = 0;
      bb->count = 0;
    }
    }
 
 
  /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
  /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
     Watch for overflows.  */
     Watch for overflows.  */
  if (bb->frequency)
  if (bb->frequency)
    prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
    prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
  else
  else
    prob = 0;
    prob = 0;
  if (prob > taken_edge->probability)
  if (prob > taken_edge->probability)
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "Jump threading proved probability of edge "
        fprintf (dump_file, "Jump threading proved probability of edge "
                 "%i->%i too small (it is %i, should be %i).\n",
                 "%i->%i too small (it is %i, should be %i).\n",
                 taken_edge->src->index, taken_edge->dest->index,
                 taken_edge->src->index, taken_edge->dest->index,
                 taken_edge->probability, prob);
                 taken_edge->probability, prob);
      prob = taken_edge->probability;
      prob = taken_edge->probability;
    }
    }
 
 
  /* Now rescale the probabilities.  */
  /* Now rescale the probabilities.  */
  taken_edge->probability -= prob;
  taken_edge->probability -= prob;
  prob = REG_BR_PROB_BASE - prob;
  prob = REG_BR_PROB_BASE - prob;
  bb->frequency -= edge_frequency;
  bb->frequency -= edge_frequency;
  if (bb->frequency < 0)
  if (bb->frequency < 0)
    bb->frequency = 0;
    bb->frequency = 0;
  if (prob <= 0)
  if (prob <= 0)
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
        fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
                 "frequency of block should end up being 0, it is %i\n",
                 "frequency of block should end up being 0, it is %i\n",
                 bb->index, bb->frequency);
                 bb->index, bb->frequency);
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
      ei = ei_start (bb->succs);
      ei = ei_start (bb->succs);
      ei_next (&ei);
      ei_next (&ei);
      for (; (c = ei_safe_edge (ei)); ei_next (&ei))
      for (; (c = ei_safe_edge (ei)); ei_next (&ei))
        c->probability = 0;
        c->probability = 0;
    }
    }
  else if (prob != REG_BR_PROB_BASE)
  else if (prob != REG_BR_PROB_BASE)
    {
    {
      int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
      int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
 
 
      FOR_EACH_EDGE (c, ei, bb->succs)
      FOR_EACH_EDGE (c, ei, bb->succs)
        {
        {
          /* Protect from overflow due to additional scaling.  */
          /* Protect from overflow due to additional scaling.  */
          if (c->probability > prob)
          if (c->probability > prob)
            c->probability = REG_BR_PROB_BASE;
            c->probability = REG_BR_PROB_BASE;
          else
          else
            {
            {
              c->probability = RDIV (c->probability * scale, 65536);
              c->probability = RDIV (c->probability * scale, 65536);
              if (c->probability > REG_BR_PROB_BASE)
              if (c->probability > REG_BR_PROB_BASE)
                c->probability = REG_BR_PROB_BASE;
                c->probability = REG_BR_PROB_BASE;
            }
            }
        }
        }
    }
    }
 
 
  gcc_assert (bb == taken_edge->src);
  gcc_assert (bb == taken_edge->src);
  taken_edge->count -= count;
  taken_edge->count -= count;
  if (taken_edge->count < 0)
  if (taken_edge->count < 0)
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "edge %i->%i count became negative after threading",
        fprintf (dump_file, "edge %i->%i count became negative after threading",
                 taken_edge->src->index, taken_edge->dest->index);
                 taken_edge->src->index, taken_edge->dest->index);
      taken_edge->count = 0;
      taken_edge->count = 0;
    }
    }
}
}
 
 
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
   by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
void
void
scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
{
{
  int i;
  int i;
  edge e;
  edge e;
  if (num < 0)
  if (num < 0)
    num = 0;
    num = 0;
 
 
  /* Scale NUM and DEN to avoid overflows.  Frequencies are in order of
  /* Scale NUM and DEN to avoid overflows.  Frequencies are in order of
     10^4, if we make DEN <= 10^3, we can afford to upscale by 100
     10^4, if we make DEN <= 10^3, we can afford to upscale by 100
     and still safely fit in int during calculations.  */
     and still safely fit in int during calculations.  */
  if (den > 1000)
  if (den > 1000)
    {
    {
      if (num > 1000000)
      if (num > 1000000)
        return;
        return;
 
 
      num = RDIV (1000 * num, den);
      num = RDIV (1000 * num, den);
      den = 1000;
      den = 1000;
    }
    }
  if (num > 100 * den)
  if (num > 100 * den)
    return;
    return;
 
 
  for (i = 0; i < nbbs; i++)
  for (i = 0; i < nbbs; i++)
    {
    {
      edge_iterator ei;
      edge_iterator ei;
      bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
      bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
      /* Make sure the frequencies do not grow over BB_FREQ_MAX.  */
      /* Make sure the frequencies do not grow over BB_FREQ_MAX.  */
      if (bbs[i]->frequency > BB_FREQ_MAX)
      if (bbs[i]->frequency > BB_FREQ_MAX)
        bbs[i]->frequency = BB_FREQ_MAX;
        bbs[i]->frequency = BB_FREQ_MAX;
      bbs[i]->count = RDIV (bbs[i]->count * num, den);
      bbs[i]->count = RDIV (bbs[i]->count * num, den);
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
        e->count = RDIV (e->count * num, den);
        e->count = RDIV (e->count * num, den);
    }
    }
}
}
 
 
/* numbers smaller than this value are safe to multiply without getting
/* numbers smaller than this value are safe to multiply without getting
   64bit overflow.  */
   64bit overflow.  */
#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
 
 
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
   by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
   function but considerably slower.  */
   function but considerably slower.  */
void
void
scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
                                 gcov_type den)
                                 gcov_type den)
{
{
  int i;
  int i;
  edge e;
  edge e;
  gcov_type fraction = RDIV (num * 65536, den);
  gcov_type fraction = RDIV (num * 65536, den);
 
 
  gcc_assert (fraction >= 0);
  gcc_assert (fraction >= 0);
 
 
  if (num < MAX_SAFE_MULTIPLIER)
  if (num < MAX_SAFE_MULTIPLIER)
    for (i = 0; i < nbbs; i++)
    for (i = 0; i < nbbs; i++)
      {
      {
        edge_iterator ei;
        edge_iterator ei;
        bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
        bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
        if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
        if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
          bbs[i]->count = RDIV (bbs[i]->count * num, den);
          bbs[i]->count = RDIV (bbs[i]->count * num, den);
        else
        else
          bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
          bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
        FOR_EACH_EDGE (e, ei, bbs[i]->succs)
        FOR_EACH_EDGE (e, ei, bbs[i]->succs)
          if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
          if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
            e->count = RDIV (e->count * num, den);
            e->count = RDIV (e->count * num, den);
          else
          else
            e->count = RDIV (e->count * fraction, 65536);
            e->count = RDIV (e->count * fraction, 65536);
      }
      }
   else
   else
    for (i = 0; i < nbbs; i++)
    for (i = 0; i < nbbs; i++)
      {
      {
        edge_iterator ei;
        edge_iterator ei;
        if (sizeof (gcov_type) > sizeof (int))
        if (sizeof (gcov_type) > sizeof (int))
          bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
          bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
        else
        else
          bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
          bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
        bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
        bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
        FOR_EACH_EDGE (e, ei, bbs[i]->succs)
        FOR_EACH_EDGE (e, ei, bbs[i]->succs)
          e->count = RDIV (e->count * fraction, 65536);
          e->count = RDIV (e->count * fraction, 65536);
      }
      }
}
}
 
 
/* Data structures used to maintain mapping between basic blocks and
/* Data structures used to maintain mapping between basic blocks and
   copies.  */
   copies.  */
static htab_t bb_original;
static htab_t bb_original;
static htab_t bb_copy;
static htab_t bb_copy;
 
 
/* And between loops and copies.  */
/* And between loops and copies.  */
static htab_t loop_copy;
static htab_t loop_copy;
static alloc_pool original_copy_bb_pool;
static alloc_pool original_copy_bb_pool;
 
 
struct htab_bb_copy_original_entry
struct htab_bb_copy_original_entry
{
{
  /* Block we are attaching info to.  */
  /* Block we are attaching info to.  */
  int index1;
  int index1;
  /* Index of original or copy (depending on the hashtable) */
  /* Index of original or copy (depending on the hashtable) */
  int index2;
  int index2;
};
};
 
 
static hashval_t
static hashval_t
bb_copy_original_hash (const void *p)
bb_copy_original_hash (const void *p)
{
{
  const struct htab_bb_copy_original_entry *data
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
    = ((const struct htab_bb_copy_original_entry *)p);
 
 
  return data->index1;
  return data->index1;
}
}
static int
static int
bb_copy_original_eq (const void *p, const void *q)
bb_copy_original_eq (const void *p, const void *q)
{
{
  const struct htab_bb_copy_original_entry *data
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
    = ((const struct htab_bb_copy_original_entry *)p);
  const struct htab_bb_copy_original_entry *data2
  const struct htab_bb_copy_original_entry *data2
    = ((const struct htab_bb_copy_original_entry *)q);
    = ((const struct htab_bb_copy_original_entry *)q);
 
 
  return data->index1 == data2->index1;
  return data->index1 == data2->index1;
}
}
 
 
/* Initialize the data structures to maintain mapping between blocks
/* Initialize the data structures to maintain mapping between blocks
   and its copies.  */
   and its copies.  */
void
void
initialize_original_copy_tables (void)
initialize_original_copy_tables (void)
{
{
  gcc_assert (!original_copy_bb_pool);
  gcc_assert (!original_copy_bb_pool);
  original_copy_bb_pool
  original_copy_bb_pool
    = create_alloc_pool ("original_copy",
    = create_alloc_pool ("original_copy",
                         sizeof (struct htab_bb_copy_original_entry), 10);
                         sizeof (struct htab_bb_copy_original_entry), 10);
  bb_original = htab_create (10, bb_copy_original_hash,
  bb_original = htab_create (10, bb_copy_original_hash,
                             bb_copy_original_eq, NULL);
                             bb_copy_original_eq, NULL);
  bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
  bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
  loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
  loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
}
}
 
 
/* Free the data structures to maintain mapping between blocks and
/* Free the data structures to maintain mapping between blocks and
   its copies.  */
   its copies.  */
void
void
free_original_copy_tables (void)
free_original_copy_tables (void)
{
{
  gcc_assert (original_copy_bb_pool);
  gcc_assert (original_copy_bb_pool);
  htab_delete (bb_copy);
  htab_delete (bb_copy);
  htab_delete (bb_original);
  htab_delete (bb_original);
  htab_delete (loop_copy);
  htab_delete (loop_copy);
  free_alloc_pool (original_copy_bb_pool);
  free_alloc_pool (original_copy_bb_pool);
  bb_copy = NULL;
  bb_copy = NULL;
  bb_original = NULL;
  bb_original = NULL;
  loop_copy = NULL;
  loop_copy = NULL;
  original_copy_bb_pool = NULL;
  original_copy_bb_pool = NULL;
}
}
 
 
/* Removes the value associated with OBJ from table TAB.  */
/* Removes the value associated with OBJ from table TAB.  */
 
 
static void
static void
copy_original_table_clear (htab_t tab, unsigned obj)
copy_original_table_clear (htab_t tab, unsigned obj)
{
{
  void **slot;
  void **slot;
  struct htab_bb_copy_original_entry key, *elt;
  struct htab_bb_copy_original_entry key, *elt;
 
 
  if (!original_copy_bb_pool)
  if (!original_copy_bb_pool)
    return;
    return;
 
 
  key.index1 = obj;
  key.index1 = obj;
  slot = htab_find_slot (tab, &key, NO_INSERT);
  slot = htab_find_slot (tab, &key, NO_INSERT);
  if (!slot)
  if (!slot)
    return;
    return;
 
 
  elt = (struct htab_bb_copy_original_entry *) *slot;
  elt = (struct htab_bb_copy_original_entry *) *slot;
  htab_clear_slot (tab, slot);
  htab_clear_slot (tab, slot);
  pool_free (original_copy_bb_pool, elt);
  pool_free (original_copy_bb_pool, elt);
}
}
 
 
/* Sets the value associated with OBJ in table TAB to VAL.
/* Sets the value associated with OBJ in table TAB to VAL.
   Do nothing when data structures are not initialized.  */
   Do nothing when data structures are not initialized.  */
 
 
static void
static void
copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
{
{
  struct htab_bb_copy_original_entry **slot;
  struct htab_bb_copy_original_entry **slot;
  struct htab_bb_copy_original_entry key;
  struct htab_bb_copy_original_entry key;
 
 
  if (!original_copy_bb_pool)
  if (!original_copy_bb_pool)
    return;
    return;
 
 
  key.index1 = obj;
  key.index1 = obj;
  slot = (struct htab_bb_copy_original_entry **)
  slot = (struct htab_bb_copy_original_entry **)
                htab_find_slot (tab, &key, INSERT);
                htab_find_slot (tab, &key, INSERT);
  if (!*slot)
  if (!*slot)
    {
    {
      *slot = (struct htab_bb_copy_original_entry *)
      *slot = (struct htab_bb_copy_original_entry *)
                pool_alloc (original_copy_bb_pool);
                pool_alloc (original_copy_bb_pool);
      (*slot)->index1 = obj;
      (*slot)->index1 = obj;
    }
    }
  (*slot)->index2 = val;
  (*slot)->index2 = val;
}
}
 
 
/* Set original for basic block.  Do nothing when data structures are not
/* Set original for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
   initialized so passes not needing this don't need to care.  */
void
void
set_bb_original (basic_block bb, basic_block original)
set_bb_original (basic_block bb, basic_block original)
{
{
  copy_original_table_set (bb_original, bb->index, original->index);
  copy_original_table_set (bb_original, bb->index, original->index);
}
}
 
 
/* Get the original basic block.  */
/* Get the original basic block.  */
basic_block
basic_block
get_bb_original (basic_block bb)
get_bb_original (basic_block bb)
{
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;
  struct htab_bb_copy_original_entry key;
 
 
  gcc_assert (original_copy_bb_pool);
  gcc_assert (original_copy_bb_pool);
 
 
  key.index1 = bb->index;
  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
  if (entry)
  if (entry)
    return BASIC_BLOCK (entry->index2);
    return BASIC_BLOCK (entry->index2);
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Set copy for basic block.  Do nothing when data structures are not
/* Set copy for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
   initialized so passes not needing this don't need to care.  */
void
void
set_bb_copy (basic_block bb, basic_block copy)
set_bb_copy (basic_block bb, basic_block copy)
{
{
  copy_original_table_set (bb_copy, bb->index, copy->index);
  copy_original_table_set (bb_copy, bb->index, copy->index);
}
}
 
 
/* Get the copy of basic block.  */
/* Get the copy of basic block.  */
basic_block
basic_block
get_bb_copy (basic_block bb)
get_bb_copy (basic_block bb)
{
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;
  struct htab_bb_copy_original_entry key;
 
 
  gcc_assert (original_copy_bb_pool);
  gcc_assert (original_copy_bb_pool);
 
 
  key.index1 = bb->index;
  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
  if (entry)
  if (entry)
    return BASIC_BLOCK (entry->index2);
    return BASIC_BLOCK (entry->index2);
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Set copy for LOOP to COPY.  Do nothing when data structures are not
/* Set copy for LOOP to COPY.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
   initialized so passes not needing this don't need to care.  */
 
 
void
void
set_loop_copy (struct loop *loop, struct loop *copy)
set_loop_copy (struct loop *loop, struct loop *copy)
{
{
  if (!copy)
  if (!copy)
    copy_original_table_clear (loop_copy, loop->num);
    copy_original_table_clear (loop_copy, loop->num);
  else
  else
    copy_original_table_set (loop_copy, loop->num, copy->num);
    copy_original_table_set (loop_copy, loop->num, copy->num);
}
}
 
 
/* Get the copy of LOOP.  */
/* Get the copy of LOOP.  */
 
 
struct loop *
struct loop *
get_loop_copy (struct loop *loop)
get_loop_copy (struct loop *loop)
{
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;
  struct htab_bb_copy_original_entry key;
 
 
  gcc_assert (original_copy_bb_pool);
  gcc_assert (original_copy_bb_pool);
 
 
  key.index1 = loop->num;
  key.index1 = loop->num;
  entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
  entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
  if (entry)
  if (entry)
    return get_loop (entry->index2);
    return get_loop (entry->index2);
  else
  else
    return NULL;
    return NULL;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.