OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [cfgloop.c] - Diff between revs 816 and 826

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Natural loop discovery code for GNU compiler.
/* Natural loop discovery code for GNU compiler.
   Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
   Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "obstack.h"
#include "function.h"
#include "function.h"
#include "basic-block.h"
#include "basic-block.h"
#include "toplev.h"
#include "toplev.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "flags.h"
#include "flags.h"
#include "tree.h"
#include "tree.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "pointer-set.h"
#include "pointer-set.h"
#include "output.h"
#include "output.h"
#include "ggc.h"
#include "ggc.h"
 
 
static void flow_loops_cfg_dump (FILE *);
static void flow_loops_cfg_dump (FILE *);


/* Dump loop related CFG information.  */
/* Dump loop related CFG information.  */
 
 
static void
static void
flow_loops_cfg_dump (FILE *file)
flow_loops_cfg_dump (FILE *file)
{
{
  basic_block bb;
  basic_block bb;
 
 
  if (!file)
  if (!file)
    return;
    return;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      edge succ;
      edge succ;
      edge_iterator ei;
      edge_iterator ei;
 
 
      fprintf (file, ";; %d succs { ", bb->index);
      fprintf (file, ";; %d succs { ", bb->index);
      FOR_EACH_EDGE (succ, ei, bb->succs)
      FOR_EACH_EDGE (succ, ei, bb->succs)
        fprintf (file, "%d ", succ->dest->index);
        fprintf (file, "%d ", succ->dest->index);
      fprintf (file, "}\n");
      fprintf (file, "}\n");
    }
    }
}
}
 
 
/* Return nonzero if the nodes of LOOP are a subset of OUTER.  */
/* Return nonzero if the nodes of LOOP are a subset of OUTER.  */
 
 
bool
bool
flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
{
{
  unsigned odepth = loop_depth (outer);
  unsigned odepth = loop_depth (outer);
 
 
  return (loop_depth (loop) > odepth
  return (loop_depth (loop) > odepth
          && VEC_index (loop_p, loop->superloops, odepth) == outer);
          && VEC_index (loop_p, loop->superloops, odepth) == outer);
}
}
 
 
/* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
/* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
   loops within LOOP.  */
   loops within LOOP.  */
 
 
struct loop *
struct loop *
superloop_at_depth (struct loop *loop, unsigned depth)
superloop_at_depth (struct loop *loop, unsigned depth)
{
{
  unsigned ldepth = loop_depth (loop);
  unsigned ldepth = loop_depth (loop);
 
 
  gcc_assert (depth <= ldepth);
  gcc_assert (depth <= ldepth);
 
 
  if (depth == ldepth)
  if (depth == ldepth)
    return loop;
    return loop;
 
 
  return VEC_index (loop_p, loop->superloops, depth);
  return VEC_index (loop_p, loop->superloops, depth);
}
}
 
 
/* Returns the list of the latch edges of LOOP.  */
/* Returns the list of the latch edges of LOOP.  */
 
 
static VEC (edge, heap) *
static VEC (edge, heap) *
get_loop_latch_edges (const struct loop *loop)
get_loop_latch_edges (const struct loop *loop)
{
{
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
  VEC (edge, heap) *ret = NULL;
  VEC (edge, heap) *ret = NULL;
 
 
  FOR_EACH_EDGE (e, ei, loop->header->preds)
  FOR_EACH_EDGE (e, ei, loop->header->preds)
    {
    {
      if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
      if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
        VEC_safe_push (edge, heap, ret, e);
        VEC_safe_push (edge, heap, ret, e);
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Dump the loop information specified by LOOP to the stream FILE
/* Dump the loop information specified by LOOP to the stream FILE
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */
 
 
void
void
flow_loop_dump (const struct loop *loop, FILE *file,
flow_loop_dump (const struct loop *loop, FILE *file,
                void (*loop_dump_aux) (const struct loop *, FILE *, int),
                void (*loop_dump_aux) (const struct loop *, FILE *, int),
                int verbose)
                int verbose)
{
{
  basic_block *bbs;
  basic_block *bbs;
  unsigned i;
  unsigned i;
  VEC (edge, heap) *latches;
  VEC (edge, heap) *latches;
  edge e;
  edge e;
 
 
  if (! loop || ! loop->header)
  if (! loop || ! loop->header)
    return;
    return;
 
 
  fprintf (file, ";;\n;; Loop %d\n", loop->num);
  fprintf (file, ";;\n;; Loop %d\n", loop->num);
 
 
  fprintf (file, ";;  header %d, ", loop->header->index);
  fprintf (file, ";;  header %d, ", loop->header->index);
  if (loop->latch)
  if (loop->latch)
    fprintf (file, "latch %d\n", loop->latch->index);
    fprintf (file, "latch %d\n", loop->latch->index);
  else
  else
    {
    {
      fprintf (file, "multiple latches:");
      fprintf (file, "multiple latches:");
      latches = get_loop_latch_edges (loop);
      latches = get_loop_latch_edges (loop);
      for (i = 0; VEC_iterate (edge, latches, i, e); i++)
      for (i = 0; VEC_iterate (edge, latches, i, e); i++)
        fprintf (file, " %d", e->src->index);
        fprintf (file, " %d", e->src->index);
      VEC_free (edge, heap, latches);
      VEC_free (edge, heap, latches);
      fprintf (file, "\n");
      fprintf (file, "\n");
    }
    }
 
 
  fprintf (file, ";;  depth %d, outer %ld\n",
  fprintf (file, ";;  depth %d, outer %ld\n",
           loop_depth (loop), (long) (loop_outer (loop)
           loop_depth (loop), (long) (loop_outer (loop)
                                      ? loop_outer (loop)->num : -1));
                                      ? loop_outer (loop)->num : -1));
 
 
  fprintf (file, ";;  nodes:");
  fprintf (file, ";;  nodes:");
  bbs = get_loop_body (loop);
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    fprintf (file, " %d", bbs[i]->index);
    fprintf (file, " %d", bbs[i]->index);
  free (bbs);
  free (bbs);
  fprintf (file, "\n");
  fprintf (file, "\n");
 
 
  if (loop_dump_aux)
  if (loop_dump_aux)
    loop_dump_aux (loop, file, verbose);
    loop_dump_aux (loop, file, verbose);
}
}
 
 
/* Dump the loop information about loops to the stream FILE,
/* Dump the loop information about loops to the stream FILE,
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */
 
 
void
void
flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
{
{
  loop_iterator li;
  loop_iterator li;
  struct loop *loop;
  struct loop *loop;
 
 
  if (!current_loops || ! file)
  if (!current_loops || ! file)
    return;
    return;
 
 
  fprintf (file, ";; %d loops found\n", number_of_loops ());
  fprintf (file, ";; %d loops found\n", number_of_loops ());
 
 
  FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
  FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
    {
    {
      flow_loop_dump (loop, file, loop_dump_aux, verbose);
      flow_loop_dump (loop, file, loop_dump_aux, verbose);
    }
    }
 
 
  if (verbose)
  if (verbose)
    flow_loops_cfg_dump (file);
    flow_loops_cfg_dump (file);
}
}
 
 
/* Free data allocated for LOOP.  */
/* Free data allocated for LOOP.  */
 
 
void
void
flow_loop_free (struct loop *loop)
flow_loop_free (struct loop *loop)
{
{
  struct loop_exit *exit, *next;
  struct loop_exit *exit, *next;
 
 
  VEC_free (loop_p, gc, loop->superloops);
  VEC_free (loop_p, gc, loop->superloops);
 
 
  /* Break the list of the loop exit records.  They will be freed when the
  /* Break the list of the loop exit records.  They will be freed when the
     corresponding edge is rescanned or removed, and this avoids
     corresponding edge is rescanned or removed, and this avoids
     accessing the (already released) head of the list stored in the
     accessing the (already released) head of the list stored in the
     loop structure.  */
     loop structure.  */
  for (exit = loop->exits->next; exit != loop->exits; exit = next)
  for (exit = loop->exits->next; exit != loop->exits; exit = next)
    {
    {
      next = exit->next;
      next = exit->next;
      exit->next = exit;
      exit->next = exit;
      exit->prev = exit;
      exit->prev = exit;
    }
    }
 
 
  ggc_free (loop->exits);
  ggc_free (loop->exits);
  ggc_free (loop);
  ggc_free (loop);
}
}
 
 
/* Free all the memory allocated for LOOPS.  */
/* Free all the memory allocated for LOOPS.  */
 
 
void
void
flow_loops_free (struct loops *loops)
flow_loops_free (struct loops *loops)
{
{
  if (loops->larray)
  if (loops->larray)
    {
    {
      unsigned i;
      unsigned i;
      loop_p loop;
      loop_p loop;
 
 
      /* Free the loop descriptors.  */
      /* Free the loop descriptors.  */
      for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
      for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
        {
        {
          if (!loop)
          if (!loop)
            continue;
            continue;
 
 
          flow_loop_free (loop);
          flow_loop_free (loop);
        }
        }
 
 
      VEC_free (loop_p, gc, loops->larray);
      VEC_free (loop_p, gc, loops->larray);
    }
    }
}
}
 
 
/* Find the nodes contained within the LOOP with header HEADER.
/* Find the nodes contained within the LOOP with header HEADER.
   Return the number of nodes within the loop.  */
   Return the number of nodes within the loop.  */
 
 
int
int
flow_loop_nodes_find (basic_block header, struct loop *loop)
flow_loop_nodes_find (basic_block header, struct loop *loop)
{
{
  VEC (basic_block, heap) *stack = NULL;
  VEC (basic_block, heap) *stack = NULL;
  int num_nodes = 1;
  int num_nodes = 1;
  edge latch;
  edge latch;
  edge_iterator latch_ei;
  edge_iterator latch_ei;
  unsigned depth = loop_depth (loop);
  unsigned depth = loop_depth (loop);
 
 
  header->loop_father = loop;
  header->loop_father = loop;
  header->loop_depth = depth;
  header->loop_depth = depth;
 
 
  FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
  FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
    {
    {
      if (latch->src->loop_father == loop
      if (latch->src->loop_father == loop
          || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
          || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
        continue;
        continue;
 
 
      num_nodes++;
      num_nodes++;
      VEC_safe_push (basic_block, heap, stack, latch->src);
      VEC_safe_push (basic_block, heap, stack, latch->src);
      latch->src->loop_father = loop;
      latch->src->loop_father = loop;
      latch->src->loop_depth = depth;
      latch->src->loop_depth = depth;
 
 
      while (!VEC_empty (basic_block, stack))
      while (!VEC_empty (basic_block, stack))
        {
        {
          basic_block node;
          basic_block node;
          edge e;
          edge e;
          edge_iterator ei;
          edge_iterator ei;
 
 
          node = VEC_pop (basic_block, stack);
          node = VEC_pop (basic_block, stack);
 
 
          FOR_EACH_EDGE (e, ei, node->preds)
          FOR_EACH_EDGE (e, ei, node->preds)
            {
            {
              basic_block ancestor = e->src;
              basic_block ancestor = e->src;
 
 
              if (ancestor->loop_father != loop)
              if (ancestor->loop_father != loop)
                {
                {
                  ancestor->loop_father = loop;
                  ancestor->loop_father = loop;
                  ancestor->loop_depth = depth;
                  ancestor->loop_depth = depth;
                  num_nodes++;
                  num_nodes++;
                  VEC_safe_push (basic_block, heap, stack, ancestor);
                  VEC_safe_push (basic_block, heap, stack, ancestor);
                }
                }
            }
            }
        }
        }
    }
    }
  VEC_free (basic_block, heap, stack);
  VEC_free (basic_block, heap, stack);
 
 
  return num_nodes;
  return num_nodes;
}
}
 
 
/* Records the vector of superloops of the loop LOOP, whose immediate
/* Records the vector of superloops of the loop LOOP, whose immediate
   superloop is FATHER.  */
   superloop is FATHER.  */
 
 
static void
static void
establish_preds (struct loop *loop, struct loop *father)
establish_preds (struct loop *loop, struct loop *father)
{
{
  loop_p ploop;
  loop_p ploop;
  unsigned depth = loop_depth (father) + 1;
  unsigned depth = loop_depth (father) + 1;
  unsigned i;
  unsigned i;
 
 
  VEC_truncate (loop_p, loop->superloops, 0);
  VEC_truncate (loop_p, loop->superloops, 0);
  VEC_reserve (loop_p, gc, loop->superloops, depth);
  VEC_reserve (loop_p, gc, loop->superloops, depth);
  for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
  for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
    VEC_quick_push (loop_p, loop->superloops, ploop);
    VEC_quick_push (loop_p, loop->superloops, ploop);
  VEC_quick_push (loop_p, loop->superloops, father);
  VEC_quick_push (loop_p, loop->superloops, father);
 
 
  for (ploop = loop->inner; ploop; ploop = ploop->next)
  for (ploop = loop->inner; ploop; ploop = ploop->next)
    establish_preds (ploop, loop);
    establish_preds (ploop, loop);
}
}
 
 
/* Add LOOP to the loop hierarchy tree where FATHER is father of the
/* Add LOOP to the loop hierarchy tree where FATHER is father of the
   added loop.  If LOOP has some children, take care of that their
   added loop.  If LOOP has some children, take care of that their
   pred field will be initialized correctly.  */
   pred field will be initialized correctly.  */
 
 
void
void
flow_loop_tree_node_add (struct loop *father, struct loop *loop)
flow_loop_tree_node_add (struct loop *father, struct loop *loop)
{
{
  loop->next = father->inner;
  loop->next = father->inner;
  father->inner = loop;
  father->inner = loop;
 
 
  establish_preds (loop, father);
  establish_preds (loop, father);
}
}
 
 
/* Remove LOOP from the loop hierarchy tree.  */
/* Remove LOOP from the loop hierarchy tree.  */
 
 
void
void
flow_loop_tree_node_remove (struct loop *loop)
flow_loop_tree_node_remove (struct loop *loop)
{
{
  struct loop *prev, *father;
  struct loop *prev, *father;
 
 
  father = loop_outer (loop);
  father = loop_outer (loop);
 
 
  /* Remove loop from the list of sons.  */
  /* Remove loop from the list of sons.  */
  if (father->inner == loop)
  if (father->inner == loop)
    father->inner = loop->next;
    father->inner = loop->next;
  else
  else
    {
    {
      for (prev = father->inner; prev->next != loop; prev = prev->next)
      for (prev = father->inner; prev->next != loop; prev = prev->next)
        continue;
        continue;
      prev->next = loop->next;
      prev->next = loop->next;
    }
    }
 
 
  VEC_truncate (loop_p, loop->superloops, 0);
  VEC_truncate (loop_p, loop->superloops, 0);
}
}
 
 
/* Allocates and returns new loop structure.  */
/* Allocates and returns new loop structure.  */
 
 
struct loop *
struct loop *
alloc_loop (void)
alloc_loop (void)
{
{
  struct loop *loop = GGC_CNEW (struct loop);
  struct loop *loop = GGC_CNEW (struct loop);
 
 
  loop->exits = GGC_CNEW (struct loop_exit);
  loop->exits = GGC_CNEW (struct loop_exit);
  loop->exits->next = loop->exits->prev = loop->exits;
  loop->exits->next = loop->exits->prev = loop->exits;
  loop->can_be_parallel = false;
  loop->can_be_parallel = false;
  loop->single_iv = NULL_TREE;
  loop->single_iv = NULL_TREE;
 
 
  return loop;
  return loop;
}
}
 
 
/* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
/* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
   (including the root of the loop tree).  */
   (including the root of the loop tree).  */
 
 
static void
static void
init_loops_structure (struct loops *loops, unsigned num_loops)
init_loops_structure (struct loops *loops, unsigned num_loops)
{
{
  struct loop *root;
  struct loop *root;
 
 
  memset (loops, 0, sizeof *loops);
  memset (loops, 0, sizeof *loops);
  loops->larray = VEC_alloc (loop_p, gc, num_loops);
  loops->larray = VEC_alloc (loop_p, gc, num_loops);
 
 
  /* Dummy loop containing whole function.  */
  /* Dummy loop containing whole function.  */
  root = alloc_loop ();
  root = alloc_loop ();
  root->num_nodes = n_basic_blocks;
  root->num_nodes = n_basic_blocks;
  root->latch = EXIT_BLOCK_PTR;
  root->latch = EXIT_BLOCK_PTR;
  root->header = ENTRY_BLOCK_PTR;
  root->header = ENTRY_BLOCK_PTR;
  ENTRY_BLOCK_PTR->loop_father = root;
  ENTRY_BLOCK_PTR->loop_father = root;
  EXIT_BLOCK_PTR->loop_father = root;
  EXIT_BLOCK_PTR->loop_father = root;
 
 
  VEC_quick_push (loop_p, loops->larray, root);
  VEC_quick_push (loop_p, loops->larray, root);
  loops->tree_root = root;
  loops->tree_root = root;
}
}
 
 
/* Find all the natural loops in the function and save in LOOPS structure and
/* Find all the natural loops in the function and save in LOOPS structure and
   recalculate loop_depth information in basic block structures.
   recalculate loop_depth information in basic block structures.
   Return the number of natural loops found.  */
   Return the number of natural loops found.  */
 
 
int
int
flow_loops_find (struct loops *loops)
flow_loops_find (struct loops *loops)
{
{
  int b;
  int b;
  int num_loops;
  int num_loops;
  edge e;
  edge e;
  sbitmap headers;
  sbitmap headers;
  int *dfs_order;
  int *dfs_order;
  int *rc_order;
  int *rc_order;
  basic_block header;
  basic_block header;
  basic_block bb;
  basic_block bb;
 
 
  /* Ensure that the dominators are computed.  */
  /* Ensure that the dominators are computed.  */
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
 
 
  /* Taking care of this degenerate case makes the rest of
  /* Taking care of this degenerate case makes the rest of
     this code simpler.  */
     this code simpler.  */
  if (n_basic_blocks == NUM_FIXED_BLOCKS)
  if (n_basic_blocks == NUM_FIXED_BLOCKS)
    {
    {
      init_loops_structure (loops, 1);
      init_loops_structure (loops, 1);
      return 1;
      return 1;
    }
    }
 
 
  dfs_order = NULL;
  dfs_order = NULL;
  rc_order = NULL;
  rc_order = NULL;
 
 
  /* Count the number of loop headers.  This should be the
  /* Count the number of loop headers.  This should be the
     same as the number of natural loops.  */
     same as the number of natural loops.  */
  headers = sbitmap_alloc (last_basic_block);
  headers = sbitmap_alloc (last_basic_block);
  sbitmap_zero (headers);
  sbitmap_zero (headers);
 
 
  num_loops = 0;
  num_loops = 0;
  FOR_EACH_BB (header)
  FOR_EACH_BB (header)
    {
    {
      edge_iterator ei;
      edge_iterator ei;
 
 
      header->loop_depth = 0;
      header->loop_depth = 0;
 
 
      /* If we have an abnormal predecessor, do not consider the
      /* If we have an abnormal predecessor, do not consider the
         loop (not worth the problems).  */
         loop (not worth the problems).  */
      FOR_EACH_EDGE (e, ei, header->preds)
      FOR_EACH_EDGE (e, ei, header->preds)
        if (e->flags & EDGE_ABNORMAL)
        if (e->flags & EDGE_ABNORMAL)
          break;
          break;
      if (e)
      if (e)
        continue;
        continue;
 
 
      FOR_EACH_EDGE (e, ei, header->preds)
      FOR_EACH_EDGE (e, ei, header->preds)
        {
        {
          basic_block latch = e->src;
          basic_block latch = e->src;
 
 
          gcc_assert (!(e->flags & EDGE_ABNORMAL));
          gcc_assert (!(e->flags & EDGE_ABNORMAL));
 
 
          /* Look for back edges where a predecessor is dominated
          /* Look for back edges where a predecessor is dominated
             by this block.  A natural loop has a single entry
             by this block.  A natural loop has a single entry
             node (header) that dominates all the nodes in the
             node (header) that dominates all the nodes in the
             loop.  It also has single back edge to the header
             loop.  It also has single back edge to the header
             from a latch node.  */
             from a latch node.  */
          if (latch != ENTRY_BLOCK_PTR
          if (latch != ENTRY_BLOCK_PTR
              && dominated_by_p (CDI_DOMINATORS, latch, header))
              && dominated_by_p (CDI_DOMINATORS, latch, header))
            {
            {
              /* Shared headers should be eliminated by now.  */
              /* Shared headers should be eliminated by now.  */
              SET_BIT (headers, header->index);
              SET_BIT (headers, header->index);
              num_loops++;
              num_loops++;
            }
            }
        }
        }
    }
    }
 
 
  /* Allocate loop structures.  */
  /* Allocate loop structures.  */
  init_loops_structure (loops, num_loops + 1);
  init_loops_structure (loops, num_loops + 1);
 
 
  /* Find and record information about all the natural loops
  /* Find and record information about all the natural loops
     in the CFG.  */
     in the CFG.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    bb->loop_father = loops->tree_root;
    bb->loop_father = loops->tree_root;
 
 
  if (num_loops)
  if (num_loops)
    {
    {
      /* Compute depth first search order of the CFG so that outer
      /* Compute depth first search order of the CFG so that outer
         natural loops will be found before inner natural loops.  */
         natural loops will be found before inner natural loops.  */
      dfs_order = XNEWVEC (int, n_basic_blocks);
      dfs_order = XNEWVEC (int, n_basic_blocks);
      rc_order = XNEWVEC (int, n_basic_blocks);
      rc_order = XNEWVEC (int, n_basic_blocks);
      pre_and_rev_post_order_compute (dfs_order, rc_order, false);
      pre_and_rev_post_order_compute (dfs_order, rc_order, false);
 
 
      num_loops = 1;
      num_loops = 1;
 
 
      for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
      for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
        {
        {
          struct loop *loop;
          struct loop *loop;
          edge_iterator ei;
          edge_iterator ei;
 
 
          /* Search the nodes of the CFG in reverse completion order
          /* Search the nodes of the CFG in reverse completion order
             so that we can find outer loops first.  */
             so that we can find outer loops first.  */
          if (!TEST_BIT (headers, rc_order[b]))
          if (!TEST_BIT (headers, rc_order[b]))
            continue;
            continue;
 
 
          header = BASIC_BLOCK (rc_order[b]);
          header = BASIC_BLOCK (rc_order[b]);
 
 
          loop = alloc_loop ();
          loop = alloc_loop ();
          VEC_quick_push (loop_p, loops->larray, loop);
          VEC_quick_push (loop_p, loops->larray, loop);
 
 
          loop->header = header;
          loop->header = header;
          loop->num = num_loops;
          loop->num = num_loops;
          num_loops++;
          num_loops++;
 
 
          flow_loop_tree_node_add (header->loop_father, loop);
          flow_loop_tree_node_add (header->loop_father, loop);
          loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
          loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
 
 
          /* Look for the latch for this header block, if it has just a
          /* Look for the latch for this header block, if it has just a
             single one.  */
             single one.  */
          FOR_EACH_EDGE (e, ei, header->preds)
          FOR_EACH_EDGE (e, ei, header->preds)
            {
            {
              basic_block latch = e->src;
              basic_block latch = e->src;
 
 
              if (flow_bb_inside_loop_p (loop, latch))
              if (flow_bb_inside_loop_p (loop, latch))
                {
                {
                  if (loop->latch != NULL)
                  if (loop->latch != NULL)
                    {
                    {
                      /* More than one latch edge.  */
                      /* More than one latch edge.  */
                      loop->latch = NULL;
                      loop->latch = NULL;
                      break;
                      break;
                    }
                    }
                  loop->latch = latch;
                  loop->latch = latch;
                }
                }
            }
            }
        }
        }
 
 
      free (dfs_order);
      free (dfs_order);
      free (rc_order);
      free (rc_order);
    }
    }
 
 
  sbitmap_free (headers);
  sbitmap_free (headers);
 
 
  loops->exits = NULL;
  loops->exits = NULL;
  return VEC_length (loop_p, loops->larray);
  return VEC_length (loop_p, loops->larray);
}
}
 
 
/* Ratio of frequencies of edges so that one of more latch edges is
/* Ratio of frequencies of edges so that one of more latch edges is
   considered to belong to inner loop with same header.  */
   considered to belong to inner loop with same header.  */
#define HEAVY_EDGE_RATIO 8
#define HEAVY_EDGE_RATIO 8
 
 
/* Minimum number of samples for that we apply
/* Minimum number of samples for that we apply
   find_subloop_latch_edge_by_profile heuristics.  */
   find_subloop_latch_edge_by_profile heuristics.  */
#define HEAVY_EDGE_MIN_SAMPLES 10
#define HEAVY_EDGE_MIN_SAMPLES 10
 
 
/* If the profile info is available, finds an edge in LATCHES that much more
/* If the profile info is available, finds an edge in LATCHES that much more
   frequent than the remaining edges.  Returns such an edge, or NULL if we do
   frequent than the remaining edges.  Returns such an edge, or NULL if we do
   not find one.
   not find one.
 
 
   We do not use guessed profile here, only the measured one.  The guessed
   We do not use guessed profile here, only the measured one.  The guessed
   profile is usually too flat and unreliable for this (and it is mostly based
   profile is usually too flat and unreliable for this (and it is mostly based
   on the loop structure of the program, so it does not make much sense to
   on the loop structure of the program, so it does not make much sense to
   derive the loop structure from it).  */
   derive the loop structure from it).  */
 
 
static edge
static edge
find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
{
{
  unsigned i;
  unsigned i;
  edge e, me = NULL;
  edge e, me = NULL;
  gcov_type mcount = 0, tcount = 0;
  gcov_type mcount = 0, tcount = 0;
 
 
  for (i = 0; VEC_iterate (edge, latches, i, e); i++)
  for (i = 0; VEC_iterate (edge, latches, i, e); i++)
    {
    {
      if (e->count > mcount)
      if (e->count > mcount)
        {
        {
          me = e;
          me = e;
          mcount = e->count;
          mcount = e->count;
        }
        }
      tcount += e->count;
      tcount += e->count;
    }
    }
 
 
  if (tcount < HEAVY_EDGE_MIN_SAMPLES
  if (tcount < HEAVY_EDGE_MIN_SAMPLES
      || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
      || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
    return NULL;
    return NULL;
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file,
    fprintf (dump_file,
             "Found latch edge %d -> %d using profile information.\n",
             "Found latch edge %d -> %d using profile information.\n",
             me->src->index, me->dest->index);
             me->src->index, me->dest->index);
  return me;
  return me;
}
}
 
 
/* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
/* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
   on the structure of induction variables.  Returns this edge, or NULL if we
   on the structure of induction variables.  Returns this edge, or NULL if we
   do not find any.
   do not find any.
 
 
   We are quite conservative, and look just for an obvious simple innermost
   We are quite conservative, and look just for an obvious simple innermost
   loop (which is the case where we would lose the most performance by not
   loop (which is the case where we would lose the most performance by not
   disambiguating the loop).  More precisely, we look for the following
   disambiguating the loop).  More precisely, we look for the following
   situation: The source of the chosen latch edge dominates sources of all
   situation: The source of the chosen latch edge dominates sources of all
   the other latch edges.  Additionally, the header does not contain a phi node
   the other latch edges.  Additionally, the header does not contain a phi node
   such that the argument from the chosen edge is equal to the argument from
   such that the argument from the chosen edge is equal to the argument from
   another edge.  */
   another edge.  */
 
 
static edge
static edge
find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
{
{
  edge e, latch = VEC_index (edge, latches, 0);
  edge e, latch = VEC_index (edge, latches, 0);
  unsigned i;
  unsigned i;
  gimple phi;
  gimple phi;
  gimple_stmt_iterator psi;
  gimple_stmt_iterator psi;
  tree lop;
  tree lop;
  basic_block bb;
  basic_block bb;
 
 
  /* Find the candidate for the latch edge.  */
  /* Find the candidate for the latch edge.  */
  for (i = 1; VEC_iterate (edge, latches, i, e); i++)
  for (i = 1; VEC_iterate (edge, latches, i, e); i++)
    if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
    if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
      latch = e;
      latch = e;
 
 
  /* Verify that it dominates all the latch edges.  */
  /* Verify that it dominates all the latch edges.  */
  for (i = 0; VEC_iterate (edge, latches, i, e); i++)
  for (i = 0; VEC_iterate (edge, latches, i, e); i++)
    if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
    if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
      return NULL;
      return NULL;
 
 
  /* Check for a phi node that would deny that this is a latch edge of
  /* Check for a phi node that would deny that this is a latch edge of
     a subloop.  */
     a subloop.  */
  for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
  for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
    {
    {
      phi = gsi_stmt (psi);
      phi = gsi_stmt (psi);
      lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
      lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
 
 
      /* Ignore the values that are not changed inside the subloop.  */
      /* Ignore the values that are not changed inside the subloop.  */
      if (TREE_CODE (lop) != SSA_NAME
      if (TREE_CODE (lop) != SSA_NAME
          || SSA_NAME_DEF_STMT (lop) == phi)
          || SSA_NAME_DEF_STMT (lop) == phi)
        continue;
        continue;
      bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
      bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
      if (!bb || !flow_bb_inside_loop_p (loop, bb))
      if (!bb || !flow_bb_inside_loop_p (loop, bb))
        continue;
        continue;
 
 
      for (i = 0; VEC_iterate (edge, latches, i, e); i++)
      for (i = 0; VEC_iterate (edge, latches, i, e); i++)
        if (e != latch
        if (e != latch
            && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
            && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
          return NULL;
          return NULL;
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file,
    fprintf (dump_file,
             "Found latch edge %d -> %d using iv structure.\n",
             "Found latch edge %d -> %d using iv structure.\n",
             latch->src->index, latch->dest->index);
             latch->src->index, latch->dest->index);
  return latch;
  return latch;
}
}
 
 
/* If we can determine that one of the several latch edges of LOOP behaves
/* If we can determine that one of the several latch edges of LOOP behaves
   as a latch edge of a separate subloop, returns this edge.  Otherwise
   as a latch edge of a separate subloop, returns this edge.  Otherwise
   returns NULL.  */
   returns NULL.  */
 
 
static edge
static edge
find_subloop_latch_edge (struct loop *loop)
find_subloop_latch_edge (struct loop *loop)
{
{
  VEC (edge, heap) *latches = get_loop_latch_edges (loop);
  VEC (edge, heap) *latches = get_loop_latch_edges (loop);
  edge latch = NULL;
  edge latch = NULL;
 
 
  if (VEC_length (edge, latches) > 1)
  if (VEC_length (edge, latches) > 1)
    {
    {
      latch = find_subloop_latch_edge_by_profile (latches);
      latch = find_subloop_latch_edge_by_profile (latches);
 
 
      if (!latch
      if (!latch
          /* We consider ivs to guess the latch edge only in SSA.  Perhaps we
          /* We consider ivs to guess the latch edge only in SSA.  Perhaps we
             should use cfghook for this, but it is hard to imagine it would
             should use cfghook for this, but it is hard to imagine it would
             be useful elsewhere.  */
             be useful elsewhere.  */
          && current_ir_type () == IR_GIMPLE)
          && current_ir_type () == IR_GIMPLE)
        latch = find_subloop_latch_edge_by_ivs (loop, latches);
        latch = find_subloop_latch_edge_by_ivs (loop, latches);
    }
    }
 
 
  VEC_free (edge, heap, latches);
  VEC_free (edge, heap, latches);
  return latch;
  return latch;
}
}
 
 
/* Callback for make_forwarder_block.  Returns true if the edge E is marked
/* Callback for make_forwarder_block.  Returns true if the edge E is marked
   in the set MFB_REIS_SET.  */
   in the set MFB_REIS_SET.  */
 
 
static struct pointer_set_t *mfb_reis_set;
static struct pointer_set_t *mfb_reis_set;
static bool
static bool
mfb_redirect_edges_in_set (edge e)
mfb_redirect_edges_in_set (edge e)
{
{
  return pointer_set_contains (mfb_reis_set, e);
  return pointer_set_contains (mfb_reis_set, e);
}
}
 
 
/* Creates a subloop of LOOP with latch edge LATCH.  */
/* Creates a subloop of LOOP with latch edge LATCH.  */
 
 
static void
static void
form_subloop (struct loop *loop, edge latch)
form_subloop (struct loop *loop, edge latch)
{
{
  edge_iterator ei;
  edge_iterator ei;
  edge e, new_entry;
  edge e, new_entry;
  struct loop *new_loop;
  struct loop *new_loop;
 
 
  mfb_reis_set = pointer_set_create ();
  mfb_reis_set = pointer_set_create ();
  FOR_EACH_EDGE (e, ei, loop->header->preds)
  FOR_EACH_EDGE (e, ei, loop->header->preds)
    {
    {
      if (e != latch)
      if (e != latch)
        pointer_set_insert (mfb_reis_set, e);
        pointer_set_insert (mfb_reis_set, e);
    }
    }
  new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
  new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
                                    NULL);
                                    NULL);
  pointer_set_destroy (mfb_reis_set);
  pointer_set_destroy (mfb_reis_set);
 
 
  loop->header = new_entry->src;
  loop->header = new_entry->src;
 
 
  /* Find the blocks and subloops that belong to the new loop, and add it to
  /* Find the blocks and subloops that belong to the new loop, and add it to
     the appropriate place in the loop tree.  */
     the appropriate place in the loop tree.  */
  new_loop = alloc_loop ();
  new_loop = alloc_loop ();
  new_loop->header = new_entry->dest;
  new_loop->header = new_entry->dest;
  new_loop->latch = latch->src;
  new_loop->latch = latch->src;
  add_loop (new_loop, loop);
  add_loop (new_loop, loop);
}
}
 
 
/* Make all the latch edges of LOOP to go to a single forwarder block --
/* Make all the latch edges of LOOP to go to a single forwarder block --
   a new latch of LOOP.  */
   a new latch of LOOP.  */
 
 
static void
static void
merge_latch_edges (struct loop *loop)
merge_latch_edges (struct loop *loop)
{
{
  VEC (edge, heap) *latches = get_loop_latch_edges (loop);
  VEC (edge, heap) *latches = get_loop_latch_edges (loop);
  edge latch, e;
  edge latch, e;
  unsigned i;
  unsigned i;
 
 
  gcc_assert (VEC_length (edge, latches) > 0);
  gcc_assert (VEC_length (edge, latches) > 0);
 
 
  if (VEC_length (edge, latches) == 1)
  if (VEC_length (edge, latches) == 1)
    loop->latch = VEC_index (edge, latches, 0)->src;
    loop->latch = VEC_index (edge, latches, 0)->src;
  else
  else
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
        fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
 
 
      mfb_reis_set = pointer_set_create ();
      mfb_reis_set = pointer_set_create ();
      for (i = 0; VEC_iterate (edge, latches, i, e); i++)
      for (i = 0; VEC_iterate (edge, latches, i, e); i++)
        pointer_set_insert (mfb_reis_set, e);
        pointer_set_insert (mfb_reis_set, e);
      latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
      latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
                                    NULL);
                                    NULL);
      pointer_set_destroy (mfb_reis_set);
      pointer_set_destroy (mfb_reis_set);
 
 
      loop->header = latch->dest;
      loop->header = latch->dest;
      loop->latch = latch->src;
      loop->latch = latch->src;
    }
    }
 
 
  VEC_free (edge, heap, latches);
  VEC_free (edge, heap, latches);
}
}
 
 
/* LOOP may have several latch edges.  Transform it into (possibly several)
/* LOOP may have several latch edges.  Transform it into (possibly several)
   loops with single latch edge.  */
   loops with single latch edge.  */
 
 
static void
static void
disambiguate_multiple_latches (struct loop *loop)
disambiguate_multiple_latches (struct loop *loop)
{
{
  edge e;
  edge e;
 
 
  /* We eliminate the multiple latches by splitting the header to the forwarder
  /* We eliminate the multiple latches by splitting the header to the forwarder
     block F and the rest R, and redirecting the edges.  There are two cases:
     block F and the rest R, and redirecting the edges.  There are two cases:
 
 
     1) If there is a latch edge E that corresponds to a subloop (we guess
     1) If there is a latch edge E that corresponds to a subloop (we guess
        that based on profile -- if it is taken much more often than the
        that based on profile -- if it is taken much more often than the
        remaining edges; and on trees, using the information about induction
        remaining edges; and on trees, using the information about induction
        variables of the loops), we redirect E to R, all the remaining edges to
        variables of the loops), we redirect E to R, all the remaining edges to
        F, then rescan the loops and try again for the outer loop.
        F, then rescan the loops and try again for the outer loop.
     2) If there is no such edge, we redirect all latch edges to F, and the
     2) If there is no such edge, we redirect all latch edges to F, and the
        entry edges to R, thus making F the single latch of the loop.  */
        entry edges to R, thus making F the single latch of the loop.  */
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
    fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
             loop->num);
             loop->num);
 
 
  /* During latch merging, we may need to redirect the entry edges to a new
  /* During latch merging, we may need to redirect the entry edges to a new
     block.  This would cause problems if the entry edge was the one from the
     block.  This would cause problems if the entry edge was the one from the
     entry block.  To avoid having to handle this case specially, split
     entry block.  To avoid having to handle this case specially, split
     such entry edge.  */
     such entry edge.  */
  e = find_edge (ENTRY_BLOCK_PTR, loop->header);
  e = find_edge (ENTRY_BLOCK_PTR, loop->header);
  if (e)
  if (e)
    split_edge (e);
    split_edge (e);
 
 
  while (1)
  while (1)
    {
    {
      e = find_subloop_latch_edge (loop);
      e = find_subloop_latch_edge (loop);
      if (!e)
      if (!e)
        break;
        break;
 
 
      form_subloop (loop, e);
      form_subloop (loop, e);
    }
    }
 
 
  merge_latch_edges (loop);
  merge_latch_edges (loop);
}
}
 
 
/* Split loops with multiple latch edges.  */
/* Split loops with multiple latch edges.  */
 
 
void
void
disambiguate_loops_with_multiple_latches (void)
disambiguate_loops_with_multiple_latches (void)
{
{
  loop_iterator li;
  loop_iterator li;
  struct loop *loop;
  struct loop *loop;
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      if (!loop->latch)
      if (!loop->latch)
        disambiguate_multiple_latches (loop);
        disambiguate_multiple_latches (loop);
    }
    }
}
}
 
 
/* Return nonzero if basic block BB belongs to LOOP.  */
/* Return nonzero if basic block BB belongs to LOOP.  */
bool
bool
flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
{
{
  struct loop *source_loop;
  struct loop *source_loop;
 
 
  if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
  if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
    return 0;
    return 0;
 
 
  source_loop = bb->loop_father;
  source_loop = bb->loop_father;
  return loop == source_loop || flow_loop_nested_p (loop, source_loop);
  return loop == source_loop || flow_loop_nested_p (loop, source_loop);
}
}
 
 
/* Enumeration predicate for get_loop_body_with_size.  */
/* Enumeration predicate for get_loop_body_with_size.  */
static bool
static bool
glb_enum_p (const_basic_block bb, const void *glb_loop)
glb_enum_p (const_basic_block bb, const void *glb_loop)
{
{
  const struct loop *const loop = (const struct loop *) glb_loop;
  const struct loop *const loop = (const struct loop *) glb_loop;
  return (bb != loop->header
  return (bb != loop->header
          && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
          && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
}
}
 
 
/* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
/* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
   order against direction of edges from latch.  Specially, if
   order against direction of edges from latch.  Specially, if
   header != latch, latch is the 1-st block.  LOOP cannot be the fake
   header != latch, latch is the 1-st block.  LOOP cannot be the fake
   loop tree root, and its size must be at most MAX_SIZE.  The blocks
   loop tree root, and its size must be at most MAX_SIZE.  The blocks
   in the LOOP body are stored to BODY, and the size of the LOOP is
   in the LOOP body are stored to BODY, and the size of the LOOP is
   returned.  */
   returned.  */
 
 
unsigned
unsigned
get_loop_body_with_size (const struct loop *loop, basic_block *body,
get_loop_body_with_size (const struct loop *loop, basic_block *body,
                         unsigned max_size)
                         unsigned max_size)
{
{
  return dfs_enumerate_from (loop->header, 1, glb_enum_p,
  return dfs_enumerate_from (loop->header, 1, glb_enum_p,
                             body, max_size, loop);
                             body, max_size, loop);
}
}
 
 
/* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
/* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
   order against direction of edges from latch.  Specially, if
   order against direction of edges from latch.  Specially, if
   header != latch, latch is the 1-st block.  */
   header != latch, latch is the 1-st block.  */
 
 
basic_block *
basic_block *
get_loop_body (const struct loop *loop)
get_loop_body (const struct loop *loop)
{
{
  basic_block *body, bb;
  basic_block *body, bb;
  unsigned tv = 0;
  unsigned tv = 0;
 
 
  gcc_assert (loop->num_nodes);
  gcc_assert (loop->num_nodes);
 
 
  body = XCNEWVEC (basic_block, loop->num_nodes);
  body = XCNEWVEC (basic_block, loop->num_nodes);
 
 
  if (loop->latch == EXIT_BLOCK_PTR)
  if (loop->latch == EXIT_BLOCK_PTR)
    {
    {
      /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
      /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
         special-case the fake loop that contains the whole function.  */
         special-case the fake loop that contains the whole function.  */
      gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
      gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
      body[tv++] = loop->header;
      body[tv++] = loop->header;
      body[tv++] = EXIT_BLOCK_PTR;
      body[tv++] = EXIT_BLOCK_PTR;
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        body[tv++] = bb;
        body[tv++] = bb;
    }
    }
  else
  else
    tv = get_loop_body_with_size (loop, body, loop->num_nodes);
    tv = get_loop_body_with_size (loop, body, loop->num_nodes);
 
 
  gcc_assert (tv == loop->num_nodes);
  gcc_assert (tv == loop->num_nodes);
  return body;
  return body;
}
}
 
 
/* Fills dominance descendants inside LOOP of the basic block BB into
/* Fills dominance descendants inside LOOP of the basic block BB into
   array TOVISIT from index *TV.  */
   array TOVISIT from index *TV.  */
 
 
static void
static void
fill_sons_in_loop (const struct loop *loop, basic_block bb,
fill_sons_in_loop (const struct loop *loop, basic_block bb,
                   basic_block *tovisit, int *tv)
                   basic_block *tovisit, int *tv)
{
{
  basic_block son, postpone = NULL;
  basic_block son, postpone = NULL;
 
 
  tovisit[(*tv)++] = bb;
  tovisit[(*tv)++] = bb;
  for (son = first_dom_son (CDI_DOMINATORS, bb);
  for (son = first_dom_son (CDI_DOMINATORS, bb);
       son;
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
       son = next_dom_son (CDI_DOMINATORS, son))
    {
    {
      if (!flow_bb_inside_loop_p (loop, son))
      if (!flow_bb_inside_loop_p (loop, son))
        continue;
        continue;
 
 
      if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
      if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
        {
        {
          postpone = son;
          postpone = son;
          continue;
          continue;
        }
        }
      fill_sons_in_loop (loop, son, tovisit, tv);
      fill_sons_in_loop (loop, son, tovisit, tv);
    }
    }
 
 
  if (postpone)
  if (postpone)
    fill_sons_in_loop (loop, postpone, tovisit, tv);
    fill_sons_in_loop (loop, postpone, tovisit, tv);
}
}
 
 
/* Gets body of a LOOP (that must be different from the outermost loop)
/* Gets body of a LOOP (that must be different from the outermost loop)
   sorted by dominance relation.  Additionally, if a basic block s dominates
   sorted by dominance relation.  Additionally, if a basic block s dominates
   the latch, then only blocks dominated by s are be after it.  */
   the latch, then only blocks dominated by s are be after it.  */
 
 
basic_block *
basic_block *
get_loop_body_in_dom_order (const struct loop *loop)
get_loop_body_in_dom_order (const struct loop *loop)
{
{
  basic_block *tovisit;
  basic_block *tovisit;
  int tv;
  int tv;
 
 
  gcc_assert (loop->num_nodes);
  gcc_assert (loop->num_nodes);
 
 
  tovisit = XCNEWVEC (basic_block, loop->num_nodes);
  tovisit = XCNEWVEC (basic_block, loop->num_nodes);
 
 
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
 
 
  tv = 0;
  tv = 0;
  fill_sons_in_loop (loop, loop->header, tovisit, &tv);
  fill_sons_in_loop (loop, loop->header, tovisit, &tv);
 
 
  gcc_assert (tv == (int) loop->num_nodes);
  gcc_assert (tv == (int) loop->num_nodes);
 
 
  return tovisit;
  return tovisit;
}
}
 
 
/* Gets body of a LOOP sorted via provided BB_COMPARATOR.  */
/* Gets body of a LOOP sorted via provided BB_COMPARATOR.  */
 
 
basic_block *
basic_block *
get_loop_body_in_custom_order (const struct loop *loop,
get_loop_body_in_custom_order (const struct loop *loop,
                               int (*bb_comparator) (const void *, const void *))
                               int (*bb_comparator) (const void *, const void *))
{
{
  basic_block *bbs = get_loop_body (loop);
  basic_block *bbs = get_loop_body (loop);
 
 
  qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
  qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
 
 
  return bbs;
  return bbs;
}
}
 
 
/* Get body of a LOOP in breadth first sort order.  */
/* Get body of a LOOP in breadth first sort order.  */
 
 
basic_block *
basic_block *
get_loop_body_in_bfs_order (const struct loop *loop)
get_loop_body_in_bfs_order (const struct loop *loop)
{
{
  basic_block *blocks;
  basic_block *blocks;
  basic_block bb;
  basic_block bb;
  bitmap visited;
  bitmap visited;
  unsigned int i = 0;
  unsigned int i = 0;
  unsigned int vc = 1;
  unsigned int vc = 1;
 
 
  gcc_assert (loop->num_nodes);
  gcc_assert (loop->num_nodes);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
 
 
  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  visited = BITMAP_ALLOC (NULL);
  visited = BITMAP_ALLOC (NULL);
 
 
  bb = loop->header;
  bb = loop->header;
  while (i < loop->num_nodes)
  while (i < loop->num_nodes)
    {
    {
      edge e;
      edge e;
      edge_iterator ei;
      edge_iterator ei;
 
 
      if (!bitmap_bit_p (visited, bb->index))
      if (!bitmap_bit_p (visited, bb->index))
        {
        {
          /* This basic block is now visited */
          /* This basic block is now visited */
          bitmap_set_bit (visited, bb->index);
          bitmap_set_bit (visited, bb->index);
          blocks[i++] = bb;
          blocks[i++] = bb;
        }
        }
 
 
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          if (flow_bb_inside_loop_p (loop, e->dest))
          if (flow_bb_inside_loop_p (loop, e->dest))
            {
            {
              if (!bitmap_bit_p (visited, e->dest->index))
              if (!bitmap_bit_p (visited, e->dest->index))
                {
                {
                  bitmap_set_bit (visited, e->dest->index);
                  bitmap_set_bit (visited, e->dest->index);
                  blocks[i++] = e->dest;
                  blocks[i++] = e->dest;
                }
                }
            }
            }
        }
        }
 
 
      gcc_assert (i >= vc);
      gcc_assert (i >= vc);
 
 
      bb = blocks[vc++];
      bb = blocks[vc++];
    }
    }
 
 
  BITMAP_FREE (visited);
  BITMAP_FREE (visited);
  return blocks;
  return blocks;
}
}
 
 
/* Hash function for struct loop_exit.  */
/* Hash function for struct loop_exit.  */
 
 
static hashval_t
static hashval_t
loop_exit_hash (const void *ex)
loop_exit_hash (const void *ex)
{
{
  const struct loop_exit *const exit = (const struct loop_exit *) ex;
  const struct loop_exit *const exit = (const struct loop_exit *) ex;
 
 
  return htab_hash_pointer (exit->e);
  return htab_hash_pointer (exit->e);
}
}
 
 
/* Equality function for struct loop_exit.  Compares with edge.  */
/* Equality function for struct loop_exit.  Compares with edge.  */
 
 
static int
static int
loop_exit_eq (const void *ex, const void *e)
loop_exit_eq (const void *ex, const void *e)
{
{
  const struct loop_exit *const exit = (const struct loop_exit *) ex;
  const struct loop_exit *const exit = (const struct loop_exit *) ex;
 
 
  return exit->e == e;
  return exit->e == e;
}
}
 
 
/* Frees the list of loop exit descriptions EX.  */
/* Frees the list of loop exit descriptions EX.  */
 
 
static void
static void
loop_exit_free (void *ex)
loop_exit_free (void *ex)
{
{
  struct loop_exit *exit = (struct loop_exit *) ex, *next;
  struct loop_exit *exit = (struct loop_exit *) ex, *next;
 
 
  for (; exit; exit = next)
  for (; exit; exit = next)
    {
    {
      next = exit->next_e;
      next = exit->next_e;
 
 
      exit->next->prev = exit->prev;
      exit->next->prev = exit->prev;
      exit->prev->next = exit->next;
      exit->prev->next = exit->next;
 
 
      ggc_free (exit);
      ggc_free (exit);
    }
    }
}
}
 
 
/* Returns the list of records for E as an exit of a loop.  */
/* Returns the list of records for E as an exit of a loop.  */
 
 
static struct loop_exit *
static struct loop_exit *
get_exit_descriptions (edge e)
get_exit_descriptions (edge e)
{
{
  return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
  return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
                                                   htab_hash_pointer (e));
                                                   htab_hash_pointer (e));
}
}
 
 
/* Updates the lists of loop exits in that E appears.
/* Updates the lists of loop exits in that E appears.
   If REMOVED is true, E is being removed, and we
   If REMOVED is true, E is being removed, and we
   just remove it from the lists of exits.
   just remove it from the lists of exits.
   If NEW_EDGE is true and E is not a loop exit, we
   If NEW_EDGE is true and E is not a loop exit, we
   do not try to remove it from loop exit lists.  */
   do not try to remove it from loop exit lists.  */
 
 
void
void
rescan_loop_exit (edge e, bool new_edge, bool removed)
rescan_loop_exit (edge e, bool new_edge, bool removed)
{
{
  void **slot;
  void **slot;
  struct loop_exit *exits = NULL, *exit;
  struct loop_exit *exits = NULL, *exit;
  struct loop *aloop, *cloop;
  struct loop *aloop, *cloop;
 
 
  if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
  if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
    return;
    return;
 
 
  if (!removed
  if (!removed
      && e->src->loop_father != NULL
      && e->src->loop_father != NULL
      && e->dest->loop_father != NULL
      && e->dest->loop_father != NULL
      && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
      && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
    {
    {
      cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
      cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
      for (aloop = e->src->loop_father;
      for (aloop = e->src->loop_father;
           aloop != cloop;
           aloop != cloop;
           aloop = loop_outer (aloop))
           aloop = loop_outer (aloop))
        {
        {
          exit = GGC_NEW (struct loop_exit);
          exit = GGC_NEW (struct loop_exit);
          exit->e = e;
          exit->e = e;
 
 
          exit->next = aloop->exits->next;
          exit->next = aloop->exits->next;
          exit->prev = aloop->exits;
          exit->prev = aloop->exits;
          exit->next->prev = exit;
          exit->next->prev = exit;
          exit->prev->next = exit;
          exit->prev->next = exit;
 
 
          exit->next_e = exits;
          exit->next_e = exits;
          exits = exit;
          exits = exit;
        }
        }
    }
    }
 
 
  if (!exits && new_edge)
  if (!exits && new_edge)
    return;
    return;
 
 
  slot = htab_find_slot_with_hash (current_loops->exits, e,
  slot = htab_find_slot_with_hash (current_loops->exits, e,
                                   htab_hash_pointer (e),
                                   htab_hash_pointer (e),
                                   exits ? INSERT : NO_INSERT);
                                   exits ? INSERT : NO_INSERT);
  if (!slot)
  if (!slot)
    return;
    return;
 
 
  if (exits)
  if (exits)
    {
    {
      if (*slot)
      if (*slot)
        loop_exit_free (*slot);
        loop_exit_free (*slot);
      *slot = exits;
      *slot = exits;
    }
    }
  else
  else
    htab_clear_slot (current_loops->exits, slot);
    htab_clear_slot (current_loops->exits, slot);
}
}
 
 
/* For each loop, record list of exit edges, and start maintaining these
/* For each loop, record list of exit edges, and start maintaining these
   lists.  */
   lists.  */
 
 
void
void
record_loop_exits (void)
record_loop_exits (void)
{
{
  basic_block bb;
  basic_block bb;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  if (!current_loops)
  if (!current_loops)
    return;
    return;
 
 
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
    return;
    return;
  loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
  loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
 
 
  gcc_assert (current_loops->exits == NULL);
  gcc_assert (current_loops->exits == NULL);
  current_loops->exits = htab_create_alloc (2 * number_of_loops (),
  current_loops->exits = htab_create_alloc (2 * number_of_loops (),
                                            loop_exit_hash,
                                            loop_exit_hash,
                                            loop_exit_eq,
                                            loop_exit_eq,
                                            loop_exit_free,
                                            loop_exit_free,
                                            ggc_calloc, ggc_free);
                                            ggc_calloc, ggc_free);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          rescan_loop_exit (e, true, false);
          rescan_loop_exit (e, true, false);
        }
        }
    }
    }
}
}
 
 
/* Dumps information about the exit in *SLOT to FILE.
/* Dumps information about the exit in *SLOT to FILE.
   Callback for htab_traverse.  */
   Callback for htab_traverse.  */
 
 
static int
static int
dump_recorded_exit (void **slot, void *file)
dump_recorded_exit (void **slot, void *file)
{
{
  struct loop_exit *exit = (struct loop_exit *) *slot;
  struct loop_exit *exit = (struct loop_exit *) *slot;
  unsigned n = 0;
  unsigned n = 0;
  edge e = exit->e;
  edge e = exit->e;
 
 
  for (; exit != NULL; exit = exit->next_e)
  for (; exit != NULL; exit = exit->next_e)
    n++;
    n++;
 
 
  fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
  fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
           e->src->index, e->dest->index, n);
           e->src->index, e->dest->index, n);
 
 
  return 1;
  return 1;
}
}
 
 
/* Dumps the recorded exits of loops to FILE.  */
/* Dumps the recorded exits of loops to FILE.  */
 
 
extern void dump_recorded_exits (FILE *);
extern void dump_recorded_exits (FILE *);
void
void
dump_recorded_exits (FILE *file)
dump_recorded_exits (FILE *file)
{
{
  if (!current_loops->exits)
  if (!current_loops->exits)
    return;
    return;
  htab_traverse (current_loops->exits, dump_recorded_exit, file);
  htab_traverse (current_loops->exits, dump_recorded_exit, file);
}
}
 
 
/* Releases lists of loop exits.  */
/* Releases lists of loop exits.  */
 
 
void
void
release_recorded_exits (void)
release_recorded_exits (void)
{
{
  gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
  gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
  htab_delete (current_loops->exits);
  htab_delete (current_loops->exits);
  current_loops->exits = NULL;
  current_loops->exits = NULL;
  loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
  loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
}
}
 
 
/* Returns the list of the exit edges of a LOOP.  */
/* Returns the list of the exit edges of a LOOP.  */
 
 
VEC (edge, heap) *
VEC (edge, heap) *
get_loop_exit_edges (const struct loop *loop)
get_loop_exit_edges (const struct loop *loop)
{
{
  VEC (edge, heap) *edges = NULL;
  VEC (edge, heap) *edges = NULL;
  edge e;
  edge e;
  unsigned i;
  unsigned i;
  basic_block *body;
  basic_block *body;
  edge_iterator ei;
  edge_iterator ei;
  struct loop_exit *exit;
  struct loop_exit *exit;
 
 
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
 
 
  /* If we maintain the lists of exits, use them.  Otherwise we must
  /* If we maintain the lists of exits, use them.  Otherwise we must
     scan the body of the loop.  */
     scan the body of the loop.  */
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
    {
    {
      for (exit = loop->exits->next; exit->e; exit = exit->next)
      for (exit = loop->exits->next; exit->e; exit = exit->next)
        VEC_safe_push (edge, heap, edges, exit->e);
        VEC_safe_push (edge, heap, edges, exit->e);
    }
    }
  else
  else
    {
    {
      body = get_loop_body (loop);
      body = get_loop_body (loop);
      for (i = 0; i < loop->num_nodes; i++)
      for (i = 0; i < loop->num_nodes; i++)
        FOR_EACH_EDGE (e, ei, body[i]->succs)
        FOR_EACH_EDGE (e, ei, body[i]->succs)
          {
          {
            if (!flow_bb_inside_loop_p (loop, e->dest))
            if (!flow_bb_inside_loop_p (loop, e->dest))
              VEC_safe_push (edge, heap, edges, e);
              VEC_safe_push (edge, heap, edges, e);
          }
          }
      free (body);
      free (body);
    }
    }
 
 
  return edges;
  return edges;
}
}
 
 
/* Counts the number of conditional branches inside LOOP.  */
/* Counts the number of conditional branches inside LOOP.  */
 
 
unsigned
unsigned
num_loop_branches (const struct loop *loop)
num_loop_branches (const struct loop *loop)
{
{
  unsigned i, n;
  unsigned i, n;
  basic_block * body;
  basic_block * body;
 
 
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR);
 
 
  body = get_loop_body (loop);
  body = get_loop_body (loop);
  n = 0;
  n = 0;
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    if (EDGE_COUNT (body[i]->succs) >= 2)
    if (EDGE_COUNT (body[i]->succs) >= 2)
      n++;
      n++;
  free (body);
  free (body);
 
 
  return n;
  return n;
}
}
 
 
/* Adds basic block BB to LOOP.  */
/* Adds basic block BB to LOOP.  */
void
void
add_bb_to_loop (basic_block bb, struct loop *loop)
add_bb_to_loop (basic_block bb, struct loop *loop)
{
{
  unsigned i;
  unsigned i;
  loop_p ploop;
  loop_p ploop;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  gcc_assert (bb->loop_father == NULL);
  gcc_assert (bb->loop_father == NULL);
  bb->loop_father = loop;
  bb->loop_father = loop;
  bb->loop_depth = loop_depth (loop);
  bb->loop_depth = loop_depth (loop);
  loop->num_nodes++;
  loop->num_nodes++;
  for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
  for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
    ploop->num_nodes++;
    ploop->num_nodes++;
 
 
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
    {
      rescan_loop_exit (e, true, false);
      rescan_loop_exit (e, true, false);
    }
    }
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
    {
      rescan_loop_exit (e, true, false);
      rescan_loop_exit (e, true, false);
    }
    }
}
}
 
 
/* Remove basic block BB from loops.  */
/* Remove basic block BB from loops.  */
void
void
remove_bb_from_loops (basic_block bb)
remove_bb_from_loops (basic_block bb)
{
{
  int i;
  int i;
  struct loop *loop = bb->loop_father;
  struct loop *loop = bb->loop_father;
  loop_p ploop;
  loop_p ploop;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  gcc_assert (loop != NULL);
  gcc_assert (loop != NULL);
  loop->num_nodes--;
  loop->num_nodes--;
  for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
  for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
    ploop->num_nodes--;
    ploop->num_nodes--;
  bb->loop_father = NULL;
  bb->loop_father = NULL;
  bb->loop_depth = 0;
  bb->loop_depth = 0;
 
 
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
    {
      rescan_loop_exit (e, false, true);
      rescan_loop_exit (e, false, true);
    }
    }
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
    {
      rescan_loop_exit (e, false, true);
      rescan_loop_exit (e, false, true);
    }
    }
}
}
 
 
/* Finds nearest common ancestor in loop tree for given loops.  */
/* Finds nearest common ancestor in loop tree for given loops.  */
struct loop *
struct loop *
find_common_loop (struct loop *loop_s, struct loop *loop_d)
find_common_loop (struct loop *loop_s, struct loop *loop_d)
{
{
  unsigned sdepth, ddepth;
  unsigned sdepth, ddepth;
 
 
  if (!loop_s) return loop_d;
  if (!loop_s) return loop_d;
  if (!loop_d) return loop_s;
  if (!loop_d) return loop_s;
 
 
  sdepth = loop_depth (loop_s);
  sdepth = loop_depth (loop_s);
  ddepth = loop_depth (loop_d);
  ddepth = loop_depth (loop_d);
 
 
  if (sdepth < ddepth)
  if (sdepth < ddepth)
    loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
    loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
  else if (sdepth > ddepth)
  else if (sdepth > ddepth)
    loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
    loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
 
 
  while (loop_s != loop_d)
  while (loop_s != loop_d)
    {
    {
      loop_s = loop_outer (loop_s);
      loop_s = loop_outer (loop_s);
      loop_d = loop_outer (loop_d);
      loop_d = loop_outer (loop_d);
    }
    }
  return loop_s;
  return loop_s;
}
}
 
 
/* Removes LOOP from structures and frees its data.  */
/* Removes LOOP from structures and frees its data.  */
 
 
void
void
delete_loop (struct loop *loop)
delete_loop (struct loop *loop)
{
{
  /* Remove the loop from structure.  */
  /* Remove the loop from structure.  */
  flow_loop_tree_node_remove (loop);
  flow_loop_tree_node_remove (loop);
 
 
  /* Remove loop from loops array.  */
  /* Remove loop from loops array.  */
  VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
  VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
 
 
  /* Free loop data.  */
  /* Free loop data.  */
  flow_loop_free (loop);
  flow_loop_free (loop);
}
}
 
 
/* Cancels the LOOP; it must be innermost one.  */
/* Cancels the LOOP; it must be innermost one.  */
 
 
static void
static void
cancel_loop (struct loop *loop)
cancel_loop (struct loop *loop)
{
{
  basic_block *bbs;
  basic_block *bbs;
  unsigned i;
  unsigned i;
  struct loop *outer = loop_outer (loop);
  struct loop *outer = loop_outer (loop);
 
 
  gcc_assert (!loop->inner);
  gcc_assert (!loop->inner);
 
 
  /* Move blocks up one level (they should be removed as soon as possible).  */
  /* Move blocks up one level (they should be removed as soon as possible).  */
  bbs = get_loop_body (loop);
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    bbs[i]->loop_father = outer;
    bbs[i]->loop_father = outer;
 
 
  delete_loop (loop);
  delete_loop (loop);
}
}
 
 
/* Cancels LOOP and all its subloops.  */
/* Cancels LOOP and all its subloops.  */
void
void
cancel_loop_tree (struct loop *loop)
cancel_loop_tree (struct loop *loop)
{
{
  while (loop->inner)
  while (loop->inner)
    cancel_loop_tree (loop->inner);
    cancel_loop_tree (loop->inner);
  cancel_loop (loop);
  cancel_loop (loop);
}
}
 
 
/* Checks that information about loops is correct
/* Checks that information about loops is correct
     -- sizes of loops are all right
     -- sizes of loops are all right
     -- results of get_loop_body really belong to the loop
     -- results of get_loop_body really belong to the loop
     -- loop header have just single entry edge and single latch edge
     -- loop header have just single entry edge and single latch edge
     -- loop latches have only single successor that is header of their loop
     -- loop latches have only single successor that is header of their loop
     -- irreducible loops are correctly marked
     -- irreducible loops are correctly marked
  */
  */
void
void
verify_loop_structure (void)
verify_loop_structure (void)
{
{
  unsigned *sizes, i, j;
  unsigned *sizes, i, j;
  sbitmap irreds;
  sbitmap irreds;
  basic_block *bbs, bb;
  basic_block *bbs, bb;
  struct loop *loop;
  struct loop *loop;
  int err = 0;
  int err = 0;
  edge e;
  edge e;
  unsigned num = number_of_loops ();
  unsigned num = number_of_loops ();
  loop_iterator li;
  loop_iterator li;
  struct loop_exit *exit, *mexit;
  struct loop_exit *exit, *mexit;
 
 
  /* Check sizes.  */
  /* Check sizes.  */
  sizes = XCNEWVEC (unsigned, num);
  sizes = XCNEWVEC (unsigned, num);
  sizes[0] = 2;
  sizes[0] = 2;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    for (loop = bb->loop_father; loop; loop = loop_outer (loop))
    for (loop = bb->loop_father; loop; loop = loop_outer (loop))
      sizes[loop->num]++;
      sizes[loop->num]++;
 
 
  FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
  FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
    {
    {
      i = loop->num;
      i = loop->num;
 
 
      if (loop->num_nodes != sizes[i])
      if (loop->num_nodes != sizes[i])
        {
        {
          error ("size of loop %d should be %d, not %d",
          error ("size of loop %d should be %d, not %d",
                   i, sizes[i], loop->num_nodes);
                   i, sizes[i], loop->num_nodes);
          err = 1;
          err = 1;
        }
        }
    }
    }
 
 
  /* Check get_loop_body.  */
  /* Check get_loop_body.  */
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      bbs = get_loop_body (loop);
      bbs = get_loop_body (loop);
 
 
      for (j = 0; j < loop->num_nodes; j++)
      for (j = 0; j < loop->num_nodes; j++)
        if (!flow_bb_inside_loop_p (loop, bbs[j]))
        if (!flow_bb_inside_loop_p (loop, bbs[j]))
          {
          {
            error ("bb %d do not belong to loop %d",
            error ("bb %d do not belong to loop %d",
                    bbs[j]->index, loop->num);
                    bbs[j]->index, loop->num);
            err = 1;
            err = 1;
          }
          }
      free (bbs);
      free (bbs);
    }
    }
 
 
  /* Check headers and latches.  */
  /* Check headers and latches.  */
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      i = loop->num;
      i = loop->num;
 
 
      if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
      if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
          && EDGE_COUNT (loop->header->preds) != 2)
          && EDGE_COUNT (loop->header->preds) != 2)
        {
        {
          error ("loop %d's header does not have exactly 2 entries", i);
          error ("loop %d's header does not have exactly 2 entries", i);
          err = 1;
          err = 1;
        }
        }
      if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
      if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
        {
        {
          if (!single_succ_p (loop->latch))
          if (!single_succ_p (loop->latch))
            {
            {
              error ("loop %d's latch does not have exactly 1 successor", i);
              error ("loop %d's latch does not have exactly 1 successor", i);
              err = 1;
              err = 1;
            }
            }
          if (single_succ (loop->latch) != loop->header)
          if (single_succ (loop->latch) != loop->header)
            {
            {
              error ("loop %d's latch does not have header as successor", i);
              error ("loop %d's latch does not have header as successor", i);
              err = 1;
              err = 1;
            }
            }
          if (loop->latch->loop_father != loop)
          if (loop->latch->loop_father != loop)
            {
            {
              error ("loop %d's latch does not belong directly to it", i);
              error ("loop %d's latch does not belong directly to it", i);
              err = 1;
              err = 1;
            }
            }
        }
        }
      if (loop->header->loop_father != loop)
      if (loop->header->loop_father != loop)
        {
        {
          error ("loop %d's header does not belong directly to it", i);
          error ("loop %d's header does not belong directly to it", i);
          err = 1;
          err = 1;
        }
        }
      if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
      if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
          && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
          && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
        {
        {
          error ("loop %d's latch is marked as part of irreducible region", i);
          error ("loop %d's latch is marked as part of irreducible region", i);
          err = 1;
          err = 1;
        }
        }
    }
    }
 
 
  /* Check irreducible loops.  */
  /* Check irreducible loops.  */
  if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
  if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
    {
    {
      /* Record old info.  */
      /* Record old info.  */
      irreds = sbitmap_alloc (last_basic_block);
      irreds = sbitmap_alloc (last_basic_block);
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          edge_iterator ei;
          edge_iterator ei;
          if (bb->flags & BB_IRREDUCIBLE_LOOP)
          if (bb->flags & BB_IRREDUCIBLE_LOOP)
            SET_BIT (irreds, bb->index);
            SET_BIT (irreds, bb->index);
          else
          else
            RESET_BIT (irreds, bb->index);
            RESET_BIT (irreds, bb->index);
          FOR_EACH_EDGE (e, ei, bb->succs)
          FOR_EACH_EDGE (e, ei, bb->succs)
            if (e->flags & EDGE_IRREDUCIBLE_LOOP)
            if (e->flags & EDGE_IRREDUCIBLE_LOOP)
              e->flags |= EDGE_ALL_FLAGS + 1;
              e->flags |= EDGE_ALL_FLAGS + 1;
        }
        }
 
 
      /* Recount it.  */
      /* Recount it.  */
      mark_irreducible_loops ();
      mark_irreducible_loops ();
 
 
      /* Compare.  */
      /* Compare.  */
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          edge_iterator ei;
          edge_iterator ei;
 
 
          if ((bb->flags & BB_IRREDUCIBLE_LOOP)
          if ((bb->flags & BB_IRREDUCIBLE_LOOP)
              && !TEST_BIT (irreds, bb->index))
              && !TEST_BIT (irreds, bb->index))
            {
            {
              error ("basic block %d should be marked irreducible", bb->index);
              error ("basic block %d should be marked irreducible", bb->index);
              err = 1;
              err = 1;
            }
            }
          else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
          else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
              && TEST_BIT (irreds, bb->index))
              && TEST_BIT (irreds, bb->index))
            {
            {
              error ("basic block %d should not be marked irreducible", bb->index);
              error ("basic block %d should not be marked irreducible", bb->index);
              err = 1;
              err = 1;
            }
            }
          FOR_EACH_EDGE (e, ei, bb->succs)
          FOR_EACH_EDGE (e, ei, bb->succs)
            {
            {
              if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
              if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
                  && !(e->flags & (EDGE_ALL_FLAGS + 1)))
                  && !(e->flags & (EDGE_ALL_FLAGS + 1)))
                {
                {
                  error ("edge from %d to %d should be marked irreducible",
                  error ("edge from %d to %d should be marked irreducible",
                         e->src->index, e->dest->index);
                         e->src->index, e->dest->index);
                  err = 1;
                  err = 1;
                }
                }
              else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
              else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
                       && (e->flags & (EDGE_ALL_FLAGS + 1)))
                       && (e->flags & (EDGE_ALL_FLAGS + 1)))
                {
                {
                  error ("edge from %d to %d should not be marked irreducible",
                  error ("edge from %d to %d should not be marked irreducible",
                         e->src->index, e->dest->index);
                         e->src->index, e->dest->index);
                  err = 1;
                  err = 1;
                }
                }
              e->flags &= ~(EDGE_ALL_FLAGS + 1);
              e->flags &= ~(EDGE_ALL_FLAGS + 1);
            }
            }
        }
        }
      free (irreds);
      free (irreds);
    }
    }
 
 
  /* Check the recorded loop exits.  */
  /* Check the recorded loop exits.  */
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      if (!loop->exits || loop->exits->e != NULL)
      if (!loop->exits || loop->exits->e != NULL)
        {
        {
          error ("corrupted head of the exits list of loop %d",
          error ("corrupted head of the exits list of loop %d",
                 loop->num);
                 loop->num);
          err = 1;
          err = 1;
        }
        }
      else
      else
        {
        {
          /* Check that the list forms a cycle, and all elements except
          /* Check that the list forms a cycle, and all elements except
             for the head are nonnull.  */
             for the head are nonnull.  */
          for (mexit = loop->exits, exit = mexit->next, i = 0;
          for (mexit = loop->exits, exit = mexit->next, i = 0;
               exit->e && exit != mexit;
               exit->e && exit != mexit;
               exit = exit->next)
               exit = exit->next)
            {
            {
              if (i++ & 1)
              if (i++ & 1)
                mexit = mexit->next;
                mexit = mexit->next;
            }
            }
 
 
          if (exit != loop->exits)
          if (exit != loop->exits)
            {
            {
              error ("corrupted exits list of loop %d", loop->num);
              error ("corrupted exits list of loop %d", loop->num);
              err = 1;
              err = 1;
            }
            }
        }
        }
 
 
      if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
      if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
        {
        {
          if (loop->exits->next != loop->exits)
          if (loop->exits->next != loop->exits)
            {
            {
              error ("nonempty exits list of loop %d, but exits are not recorded",
              error ("nonempty exits list of loop %d, but exits are not recorded",
                     loop->num);
                     loop->num);
              err = 1;
              err = 1;
            }
            }
        }
        }
    }
    }
 
 
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
  if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
    {
    {
      unsigned n_exits = 0, eloops;
      unsigned n_exits = 0, eloops;
 
 
      memset (sizes, 0, sizeof (unsigned) * num);
      memset (sizes, 0, sizeof (unsigned) * num);
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          edge_iterator ei;
          edge_iterator ei;
          if (bb->loop_father == current_loops->tree_root)
          if (bb->loop_father == current_loops->tree_root)
            continue;
            continue;
          FOR_EACH_EDGE (e, ei, bb->succs)
          FOR_EACH_EDGE (e, ei, bb->succs)
            {
            {
              if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
              if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
                continue;
                continue;
 
 
              n_exits++;
              n_exits++;
              exit = get_exit_descriptions (e);
              exit = get_exit_descriptions (e);
              if (!exit)
              if (!exit)
                {
                {
                  error ("Exit %d->%d not recorded",
                  error ("Exit %d->%d not recorded",
                         e->src->index, e->dest->index);
                         e->src->index, e->dest->index);
                  err = 1;
                  err = 1;
                }
                }
              eloops = 0;
              eloops = 0;
              for (; exit; exit = exit->next_e)
              for (; exit; exit = exit->next_e)
                eloops++;
                eloops++;
 
 
              for (loop = bb->loop_father;
              for (loop = bb->loop_father;
                   loop != e->dest->loop_father;
                   loop != e->dest->loop_father;
                   loop = loop_outer (loop))
                   loop = loop_outer (loop))
                {
                {
                  eloops--;
                  eloops--;
                  sizes[loop->num]++;
                  sizes[loop->num]++;
                }
                }
 
 
              if (eloops != 0)
              if (eloops != 0)
                {
                {
                  error ("Wrong list of exited loops for edge  %d->%d",
                  error ("Wrong list of exited loops for edge  %d->%d",
                         e->src->index, e->dest->index);
                         e->src->index, e->dest->index);
                  err = 1;
                  err = 1;
                }
                }
            }
            }
        }
        }
 
 
      if (n_exits != htab_elements (current_loops->exits))
      if (n_exits != htab_elements (current_loops->exits))
        {
        {
          error ("Too many loop exits recorded");
          error ("Too many loop exits recorded");
          err = 1;
          err = 1;
        }
        }
 
 
      FOR_EACH_LOOP (li, loop, 0)
      FOR_EACH_LOOP (li, loop, 0)
        {
        {
          eloops = 0;
          eloops = 0;
          for (exit = loop->exits->next; exit->e; exit = exit->next)
          for (exit = loop->exits->next; exit->e; exit = exit->next)
            eloops++;
            eloops++;
          if (eloops != sizes[loop->num])
          if (eloops != sizes[loop->num])
            {
            {
              error ("%d exits recorded for loop %d (having %d exits)",
              error ("%d exits recorded for loop %d (having %d exits)",
                     eloops, loop->num, sizes[loop->num]);
                     eloops, loop->num, sizes[loop->num]);
              err = 1;
              err = 1;
            }
            }
        }
        }
    }
    }
 
 
  gcc_assert (!err);
  gcc_assert (!err);
 
 
  free (sizes);
  free (sizes);
}
}
 
 
/* Returns latch edge of LOOP.  */
/* Returns latch edge of LOOP.  */
edge
edge
loop_latch_edge (const struct loop *loop)
loop_latch_edge (const struct loop *loop)
{
{
  return find_edge (loop->latch, loop->header);
  return find_edge (loop->latch, loop->header);
}
}
 
 
/* Returns preheader edge of LOOP.  */
/* Returns preheader edge of LOOP.  */
edge
edge
loop_preheader_edge (const struct loop *loop)
loop_preheader_edge (const struct loop *loop)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
  gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
 
 
  FOR_EACH_EDGE (e, ei, loop->header->preds)
  FOR_EACH_EDGE (e, ei, loop->header->preds)
    if (e->src != loop->latch)
    if (e->src != loop->latch)
      break;
      break;
 
 
  return e;
  return e;
}
}
 
 
/* Returns true if E is an exit of LOOP.  */
/* Returns true if E is an exit of LOOP.  */
 
 
bool
bool
loop_exit_edge_p (const struct loop *loop, const_edge e)
loop_exit_edge_p (const struct loop *loop, const_edge e)
{
{
  return (flow_bb_inside_loop_p (loop, e->src)
  return (flow_bb_inside_loop_p (loop, e->src)
          && !flow_bb_inside_loop_p (loop, e->dest));
          && !flow_bb_inside_loop_p (loop, e->dest));
}
}
 
 
/* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
/* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
   or more than one exit.  If loops do not have the exits recorded, NULL
   or more than one exit.  If loops do not have the exits recorded, NULL
   is returned always.  */
   is returned always.  */
 
 
edge
edge
single_exit (const struct loop *loop)
single_exit (const struct loop *loop)
{
{
  struct loop_exit *exit = loop->exits->next;
  struct loop_exit *exit = loop->exits->next;
 
 
  if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
  if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
    return NULL;
    return NULL;
 
 
  if (exit->e && exit->next == loop->exits)
  if (exit->e && exit->next == loop->exits)
    return exit->e;
    return exit->e;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Returns true when BB has an edge exiting LOOP.  */
/* Returns true when BB has an edge exiting LOOP.  */
 
 
bool
bool
is_loop_exit (struct loop *loop, basic_block bb)
is_loop_exit (struct loop *loop, basic_block bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (loop_exit_edge_p (loop, e))
    if (loop_exit_edge_p (loop, e))
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.