OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [except.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Implements exception handling.
/* Implements exception handling.
   Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Mike Stump <mrs@cygnus.com>.
   Contributed by Mike Stump <mrs@cygnus.com>.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* An exception is an event that can be "thrown" from within a
/* An exception is an event that can be "thrown" from within a
   function.  This event can then be "caught" by the callers of
   function.  This event can then be "caught" by the callers of
   the function.
   the function.
 
 
   The representation of exceptions changes several times during
   The representation of exceptions changes several times during
   the compilation process:
   the compilation process:
 
 
   In the beginning, in the front end, we have the GENERIC trees
   In the beginning, in the front end, we have the GENERIC trees
   TRY_CATCH_EXPR, TRY_FINALLY_EXPR, WITH_CLEANUP_EXPR,
   TRY_CATCH_EXPR, TRY_FINALLY_EXPR, WITH_CLEANUP_EXPR,
   CLEANUP_POINT_EXPR, CATCH_EXPR, and EH_FILTER_EXPR.
   CLEANUP_POINT_EXPR, CATCH_EXPR, and EH_FILTER_EXPR.
 
 
   During initial gimplification (gimplify.c) these are lowered
   During initial gimplification (gimplify.c) these are lowered
   to the GIMPLE_TRY, GIMPLE_CATCH, and GIMPLE_EH_FILTER nodes.
   to the GIMPLE_TRY, GIMPLE_CATCH, and GIMPLE_EH_FILTER nodes.
   The WITH_CLEANUP_EXPR and CLEANUP_POINT_EXPR nodes are converted
   The WITH_CLEANUP_EXPR and CLEANUP_POINT_EXPR nodes are converted
   into GIMPLE_TRY_FINALLY nodes; the others are a more direct 1-1
   into GIMPLE_TRY_FINALLY nodes; the others are a more direct 1-1
   conversion.
   conversion.
 
 
   During pass_lower_eh (tree-eh.c) we record the nested structure
   During pass_lower_eh (tree-eh.c) we record the nested structure
   of the TRY nodes in EH_REGION nodes in CFUN->EH->REGION_TREE.
   of the TRY nodes in EH_REGION nodes in CFUN->EH->REGION_TREE.
   We expand the lang_protect_cleanup_actions hook into MUST_NOT_THROW
   We expand the lang_protect_cleanup_actions hook into MUST_NOT_THROW
   regions at this time.  We can then flatten the statements within
   regions at this time.  We can then flatten the statements within
   the TRY nodes to straight-line code.  Statements that had been within
   the TRY nodes to straight-line code.  Statements that had been within
   TRY nodes that can throw are recorded within CFUN->EH->THROW_STMT_TABLE,
   TRY nodes that can throw are recorded within CFUN->EH->THROW_STMT_TABLE,
   so that we may remember what action is supposed to be taken if
   so that we may remember what action is supposed to be taken if
   a given statement does throw.  During this lowering process,
   a given statement does throw.  During this lowering process,
   we create an EH_LANDING_PAD node for each EH_REGION that has
   we create an EH_LANDING_PAD node for each EH_REGION that has
   some code within the function that needs to be executed if a
   some code within the function that needs to be executed if a
   throw does happen.  We also create RESX statements that are
   throw does happen.  We also create RESX statements that are
   used to transfer control from an inner EH_REGION to an outer
   used to transfer control from an inner EH_REGION to an outer
   EH_REGION.  We also create EH_DISPATCH statements as placeholders
   EH_REGION.  We also create EH_DISPATCH statements as placeholders
   for a runtime type comparison that should be made in order to
   for a runtime type comparison that should be made in order to
   select the action to perform among different CATCH and EH_FILTER
   select the action to perform among different CATCH and EH_FILTER
   regions.
   regions.
 
 
   During pass_lower_eh_dispatch (tree-eh.c), which is run after
   During pass_lower_eh_dispatch (tree-eh.c), which is run after
   all inlining is complete, we are able to run assign_filter_values,
   all inlining is complete, we are able to run assign_filter_values,
   which allows us to map the set of types manipulated by all of the
   which allows us to map the set of types manipulated by all of the
   CATCH and EH_FILTER regions to a set of integers.  This set of integers
   CATCH and EH_FILTER regions to a set of integers.  This set of integers
   will be how the exception runtime communicates with the code generated
   will be how the exception runtime communicates with the code generated
   within the function.  We then expand the GIMPLE_EH_DISPATCH statements
   within the function.  We then expand the GIMPLE_EH_DISPATCH statements
   to a switch or conditional branches that use the argument provided by
   to a switch or conditional branches that use the argument provided by
   the runtime (__builtin_eh_filter) and the set of integers we computed
   the runtime (__builtin_eh_filter) and the set of integers we computed
   in assign_filter_values.
   in assign_filter_values.
 
 
   During pass_lower_resx (tree-eh.c), which is run near the end
   During pass_lower_resx (tree-eh.c), which is run near the end
   of optimization, we expand RESX statements.  If the eh region
   of optimization, we expand RESX statements.  If the eh region
   that is outer to the RESX statement is a MUST_NOT_THROW, then
   that is outer to the RESX statement is a MUST_NOT_THROW, then
   the RESX expands to some form of abort statement.  If the eh
   the RESX expands to some form of abort statement.  If the eh
   region that is outer to the RESX statement is within the current
   region that is outer to the RESX statement is within the current
   function, then the RESX expands to a bookkeeping call
   function, then the RESX expands to a bookkeeping call
   (__builtin_eh_copy_values) and a goto.  Otherwise, the next
   (__builtin_eh_copy_values) and a goto.  Otherwise, the next
   handler for the exception must be within a function somewhere
   handler for the exception must be within a function somewhere
   up the call chain, so we call back into the exception runtime
   up the call chain, so we call back into the exception runtime
   (__builtin_unwind_resume).
   (__builtin_unwind_resume).
 
 
   During pass_expand (cfgexpand.c), we generate REG_EH_REGION notes
   During pass_expand (cfgexpand.c), we generate REG_EH_REGION notes
   that create an rtl to eh_region mapping that corresponds to the
   that create an rtl to eh_region mapping that corresponds to the
   gimple to eh_region mapping that had been recorded in the
   gimple to eh_region mapping that had been recorded in the
   THROW_STMT_TABLE.
   THROW_STMT_TABLE.
 
 
   During pass_rtl_eh (except.c), we generate the real landing pads
   During pass_rtl_eh (except.c), we generate the real landing pads
   to which the runtime will actually transfer control.  These new
   to which the runtime will actually transfer control.  These new
   landing pads perform whatever bookkeeping is needed by the target
   landing pads perform whatever bookkeeping is needed by the target
   backend in order to resume execution within the current function.
   backend in order to resume execution within the current function.
   Each of these new landing pads falls through into the post_landing_pad
   Each of these new landing pads falls through into the post_landing_pad
   label which had been used within the CFG up to this point.  All
   label which had been used within the CFG up to this point.  All
   exception edges within the CFG are redirected to the new landing pads.
   exception edges within the CFG are redirected to the new landing pads.
   If the target uses setjmp to implement exceptions, the various extra
   If the target uses setjmp to implement exceptions, the various extra
   calls into the runtime to register and unregister the current stack
   calls into the runtime to register and unregister the current stack
   frame are emitted at this time.
   frame are emitted at this time.
 
 
   During pass_convert_to_eh_region_ranges (except.c), we transform
   During pass_convert_to_eh_region_ranges (except.c), we transform
   the REG_EH_REGION notes attached to individual insns into
   the REG_EH_REGION notes attached to individual insns into
   non-overlapping ranges of insns bounded by NOTE_INSN_EH_REGION_BEG
   non-overlapping ranges of insns bounded by NOTE_INSN_EH_REGION_BEG
   and NOTE_INSN_EH_REGION_END.  Each insn within such ranges has the
   and NOTE_INSN_EH_REGION_END.  Each insn within such ranges has the
   same associated action within the exception region tree, meaning
   same associated action within the exception region tree, meaning
   that (1) the exception is caught by the same landing pad within the
   that (1) the exception is caught by the same landing pad within the
   current function, (2) the exception is blocked by the runtime with
   current function, (2) the exception is blocked by the runtime with
   a MUST_NOT_THROW region, or (3) the exception is not handled at all
   a MUST_NOT_THROW region, or (3) the exception is not handled at all
   within the current function.
   within the current function.
 
 
   Finally, during assembly generation, we call
   Finally, during assembly generation, we call
   output_function_exception_table (except.c) to emit the tables with
   output_function_exception_table (except.c) to emit the tables with
   which the exception runtime can determine if a given stack frame
   which the exception runtime can determine if a given stack frame
   handles a given exception, and if so what filter value to provide
   handles a given exception, and if so what filter value to provide
   to the function when the non-local control transfer is effected.
   to the function when the non-local control transfer is effected.
   If the target uses dwarf2 unwinding to implement exceptions, then
   If the target uses dwarf2 unwinding to implement exceptions, then
   output_call_frame_info (dwarf2out.c) emits the required unwind data.  */
   output_call_frame_info (dwarf2out.c) emits the required unwind data.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "flags.h"
#include "flags.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "insn-config.h"
#include "insn-config.h"
#include "except.h"
#include "except.h"
#include "integrate.h"
#include "integrate.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "output.h"
#include "output.h"
#include "dwarf2asm.h"
#include "dwarf2asm.h"
#include "dwarf2out.h"
#include "dwarf2out.h"
#include "dwarf2.h"
#include "dwarf2.h"
#include "toplev.h"
#include "toplev.h"
#include "hashtab.h"
#include "hashtab.h"
#include "intl.h"
#include "intl.h"
#include "ggc.h"
#include "ggc.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "langhooks.h"
#include "langhooks.h"
#include "cgraph.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-flow.h"
#include "tree-flow.h"
 
 
/* Provide defaults for stuff that may not be defined when using
/* Provide defaults for stuff that may not be defined when using
   sjlj exceptions.  */
   sjlj exceptions.  */
#ifndef EH_RETURN_DATA_REGNO
#ifndef EH_RETURN_DATA_REGNO
#define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
#define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
#endif
#endif
 
 
/* Protect cleanup actions with must-not-throw regions, with a call
/* Protect cleanup actions with must-not-throw regions, with a call
   to the given failure handler.  */
   to the given failure handler.  */
tree (*lang_protect_cleanup_actions) (void);
tree (*lang_protect_cleanup_actions) (void);
 
 
/* Return true if type A catches type B.  */
/* Return true if type A catches type B.  */
int (*lang_eh_type_covers) (tree a, tree b);
int (*lang_eh_type_covers) (tree a, tree b);
 
 
static GTY(()) int call_site_base;
static GTY(()) int call_site_base;
static GTY ((param_is (union tree_node)))
static GTY ((param_is (union tree_node)))
  htab_t type_to_runtime_map;
  htab_t type_to_runtime_map;
 
 
/* Describe the SjLj_Function_Context structure.  */
/* Describe the SjLj_Function_Context structure.  */
static GTY(()) tree sjlj_fc_type_node;
static GTY(()) tree sjlj_fc_type_node;
static int sjlj_fc_call_site_ofs;
static int sjlj_fc_call_site_ofs;
static int sjlj_fc_data_ofs;
static int sjlj_fc_data_ofs;
static int sjlj_fc_personality_ofs;
static int sjlj_fc_personality_ofs;
static int sjlj_fc_lsda_ofs;
static int sjlj_fc_lsda_ofs;
static int sjlj_fc_jbuf_ofs;
static int sjlj_fc_jbuf_ofs;


 
 
struct GTY(()) call_site_record_d
struct GTY(()) call_site_record_d
{
{
  rtx landing_pad;
  rtx landing_pad;
  int action;
  int action;
};
};


static bool get_eh_region_and_lp_from_rtx (const_rtx, eh_region *,
static bool get_eh_region_and_lp_from_rtx (const_rtx, eh_region *,
                                           eh_landing_pad *);
                                           eh_landing_pad *);
 
 
static int t2r_eq (const void *, const void *);
static int t2r_eq (const void *, const void *);
static hashval_t t2r_hash (const void *);
static hashval_t t2r_hash (const void *);
 
 
static int ttypes_filter_eq (const void *, const void *);
static int ttypes_filter_eq (const void *, const void *);
static hashval_t ttypes_filter_hash (const void *);
static hashval_t ttypes_filter_hash (const void *);
static int ehspec_filter_eq (const void *, const void *);
static int ehspec_filter_eq (const void *, const void *);
static hashval_t ehspec_filter_hash (const void *);
static hashval_t ehspec_filter_hash (const void *);
static int add_ttypes_entry (htab_t, tree);
static int add_ttypes_entry (htab_t, tree);
static int add_ehspec_entry (htab_t, htab_t, tree);
static int add_ehspec_entry (htab_t, htab_t, tree);
static void dw2_build_landing_pads (void);
static void dw2_build_landing_pads (void);
 
 
static int action_record_eq (const void *, const void *);
static int action_record_eq (const void *, const void *);
static hashval_t action_record_hash (const void *);
static hashval_t action_record_hash (const void *);
static int add_action_record (htab_t, int, int);
static int add_action_record (htab_t, int, int);
static int collect_one_action_chain (htab_t, eh_region);
static int collect_one_action_chain (htab_t, eh_region);
static int add_call_site (rtx, int, int);
static int add_call_site (rtx, int, int);
 
 
static void push_uleb128 (VEC (uchar, gc) **, unsigned int);
static void push_uleb128 (VEC (uchar, gc) **, unsigned int);
static void push_sleb128 (VEC (uchar, gc) **, int);
static void push_sleb128 (VEC (uchar, gc) **, int);
#ifndef HAVE_AS_LEB128
#ifndef HAVE_AS_LEB128
static int dw2_size_of_call_site_table (int);
static int dw2_size_of_call_site_table (int);
static int sjlj_size_of_call_site_table (void);
static int sjlj_size_of_call_site_table (void);
#endif
#endif
static void dw2_output_call_site_table (int, int);
static void dw2_output_call_site_table (int, int);
static void sjlj_output_call_site_table (void);
static void sjlj_output_call_site_table (void);
 
 


/* Routine to see if exception handling is turned on.
/* Routine to see if exception handling is turned on.
   DO_WARN is nonzero if we want to inform the user that exception
   DO_WARN is nonzero if we want to inform the user that exception
   handling is turned off.
   handling is turned off.
 
 
   This is used to ensure that -fexceptions has been specified if the
   This is used to ensure that -fexceptions has been specified if the
   compiler tries to use any exception-specific functions.  */
   compiler tries to use any exception-specific functions.  */
 
 
int
int
doing_eh (int do_warn)
doing_eh (int do_warn)
{
{
  if (! flag_exceptions)
  if (! flag_exceptions)
    {
    {
      static int warned = 0;
      static int warned = 0;
      if (! warned && do_warn)
      if (! warned && do_warn)
        {
        {
          error ("exception handling disabled, use -fexceptions to enable");
          error ("exception handling disabled, use -fexceptions to enable");
          warned = 1;
          warned = 1;
        }
        }
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 


void
void
init_eh (void)
init_eh (void)
{
{
  if (! flag_exceptions)
  if (! flag_exceptions)
    return;
    return;
 
 
  type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
  type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
 
 
  /* Create the SjLj_Function_Context structure.  This should match
  /* Create the SjLj_Function_Context structure.  This should match
     the definition in unwind-sjlj.c.  */
     the definition in unwind-sjlj.c.  */
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    {
    {
      tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
      tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
 
 
      sjlj_fc_type_node = lang_hooks.types.make_type (RECORD_TYPE);
      sjlj_fc_type_node = lang_hooks.types.make_type (RECORD_TYPE);
 
 
      f_prev = build_decl (BUILTINS_LOCATION,
      f_prev = build_decl (BUILTINS_LOCATION,
                           FIELD_DECL, get_identifier ("__prev"),
                           FIELD_DECL, get_identifier ("__prev"),
                           build_pointer_type (sjlj_fc_type_node));
                           build_pointer_type (sjlj_fc_type_node));
      DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
 
 
      f_cs = build_decl (BUILTINS_LOCATION,
      f_cs = build_decl (BUILTINS_LOCATION,
                         FIELD_DECL, get_identifier ("__call_site"),
                         FIELD_DECL, get_identifier ("__call_site"),
                         integer_type_node);
                         integer_type_node);
      DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
 
 
      tmp = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
      tmp = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
      tmp = build_array_type (lang_hooks.types.type_for_mode
      tmp = build_array_type (lang_hooks.types.type_for_mode
                                (targetm.unwind_word_mode (), 1),
                                (targetm.unwind_word_mode (), 1),
                              tmp);
                              tmp);
      f_data = build_decl (BUILTINS_LOCATION,
      f_data = build_decl (BUILTINS_LOCATION,
                           FIELD_DECL, get_identifier ("__data"), tmp);
                           FIELD_DECL, get_identifier ("__data"), tmp);
      DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
 
 
      f_per = build_decl (BUILTINS_LOCATION,
      f_per = build_decl (BUILTINS_LOCATION,
                          FIELD_DECL, get_identifier ("__personality"),
                          FIELD_DECL, get_identifier ("__personality"),
                          ptr_type_node);
                          ptr_type_node);
      DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
 
 
      f_lsda = build_decl (BUILTINS_LOCATION,
      f_lsda = build_decl (BUILTINS_LOCATION,
                           FIELD_DECL, get_identifier ("__lsda"),
                           FIELD_DECL, get_identifier ("__lsda"),
                           ptr_type_node);
                           ptr_type_node);
      DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
 
 
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef JMP_BUF_SIZE
#ifdef JMP_BUF_SIZE
      tmp = build_int_cst (NULL_TREE, JMP_BUF_SIZE - 1);
      tmp = build_int_cst (NULL_TREE, JMP_BUF_SIZE - 1);
#else
#else
      /* Should be large enough for most systems, if it is not,
      /* Should be large enough for most systems, if it is not,
         JMP_BUF_SIZE should be defined with the proper value.  It will
         JMP_BUF_SIZE should be defined with the proper value.  It will
         also tend to be larger than necessary for most systems, a more
         also tend to be larger than necessary for most systems, a more
         optimal port will define JMP_BUF_SIZE.  */
         optimal port will define JMP_BUF_SIZE.  */
      tmp = build_int_cst (NULL_TREE, FIRST_PSEUDO_REGISTER + 2 - 1);
      tmp = build_int_cst (NULL_TREE, FIRST_PSEUDO_REGISTER + 2 - 1);
#endif
#endif
#else
#else
      /* builtin_setjmp takes a pointer to 5 words.  */
      /* builtin_setjmp takes a pointer to 5 words.  */
      tmp = build_int_cst (NULL_TREE, 5 * BITS_PER_WORD / POINTER_SIZE - 1);
      tmp = build_int_cst (NULL_TREE, 5 * BITS_PER_WORD / POINTER_SIZE - 1);
#endif
#endif
      tmp = build_index_type (tmp);
      tmp = build_index_type (tmp);
      tmp = build_array_type (ptr_type_node, tmp);
      tmp = build_array_type (ptr_type_node, tmp);
      f_jbuf = build_decl (BUILTINS_LOCATION,
      f_jbuf = build_decl (BUILTINS_LOCATION,
                           FIELD_DECL, get_identifier ("__jbuf"), tmp);
                           FIELD_DECL, get_identifier ("__jbuf"), tmp);
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef DONT_USE_BUILTIN_SETJMP
      /* We don't know what the alignment requirements of the
      /* We don't know what the alignment requirements of the
         runtime's jmp_buf has.  Overestimate.  */
         runtime's jmp_buf has.  Overestimate.  */
      DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
      DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
      DECL_USER_ALIGN (f_jbuf) = 1;
      DECL_USER_ALIGN (f_jbuf) = 1;
#endif
#endif
      DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
      DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
 
 
      TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
      TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
      TREE_CHAIN (f_prev) = f_cs;
      TREE_CHAIN (f_prev) = f_cs;
      TREE_CHAIN (f_cs) = f_data;
      TREE_CHAIN (f_cs) = f_data;
      TREE_CHAIN (f_data) = f_per;
      TREE_CHAIN (f_data) = f_per;
      TREE_CHAIN (f_per) = f_lsda;
      TREE_CHAIN (f_per) = f_lsda;
      TREE_CHAIN (f_lsda) = f_jbuf;
      TREE_CHAIN (f_lsda) = f_jbuf;
 
 
      layout_type (sjlj_fc_type_node);
      layout_type (sjlj_fc_type_node);
 
 
      /* Cache the interesting field offsets so that we have
      /* Cache the interesting field offsets so that we have
         easy access from rtl.  */
         easy access from rtl.  */
      sjlj_fc_call_site_ofs
      sjlj_fc_call_site_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
      sjlj_fc_data_ofs
      sjlj_fc_data_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
      sjlj_fc_personality_ofs
      sjlj_fc_personality_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
      sjlj_fc_lsda_ofs
      sjlj_fc_lsda_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
      sjlj_fc_jbuf_ofs
      sjlj_fc_jbuf_ofs
        = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
        = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
           + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
    }
    }
}
}
 
 
void
void
init_eh_for_function (void)
init_eh_for_function (void)
{
{
  cfun->eh = GGC_CNEW (struct eh_status);
  cfun->eh = GGC_CNEW (struct eh_status);
 
 
  /* Make sure zero'th entries are used.  */
  /* Make sure zero'th entries are used.  */
  VEC_safe_push (eh_region, gc, cfun->eh->region_array, NULL);
  VEC_safe_push (eh_region, gc, cfun->eh->region_array, NULL);
  VEC_safe_push (eh_landing_pad, gc, cfun->eh->lp_array, NULL);
  VEC_safe_push (eh_landing_pad, gc, cfun->eh->lp_array, NULL);
}
}


/* Routines to generate the exception tree somewhat directly.
/* Routines to generate the exception tree somewhat directly.
   These are used from tree-eh.c when processing exception related
   These are used from tree-eh.c when processing exception related
   nodes during tree optimization.  */
   nodes during tree optimization.  */
 
 
static eh_region
static eh_region
gen_eh_region (enum eh_region_type type, eh_region outer)
gen_eh_region (enum eh_region_type type, eh_region outer)
{
{
  eh_region new_eh;
  eh_region new_eh;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  gcc_assert (doing_eh (0));
  gcc_assert (doing_eh (0));
#endif
#endif
 
 
  /* Insert a new blank region as a leaf in the tree.  */
  /* Insert a new blank region as a leaf in the tree.  */
  new_eh = GGC_CNEW (struct eh_region_d);
  new_eh = GGC_CNEW (struct eh_region_d);
  new_eh->type = type;
  new_eh->type = type;
  new_eh->outer = outer;
  new_eh->outer = outer;
  if (outer)
  if (outer)
    {
    {
      new_eh->next_peer = outer->inner;
      new_eh->next_peer = outer->inner;
      outer->inner = new_eh;
      outer->inner = new_eh;
    }
    }
  else
  else
    {
    {
      new_eh->next_peer = cfun->eh->region_tree;
      new_eh->next_peer = cfun->eh->region_tree;
      cfun->eh->region_tree = new_eh;
      cfun->eh->region_tree = new_eh;
    }
    }
 
 
  new_eh->index = VEC_length (eh_region, cfun->eh->region_array);
  new_eh->index = VEC_length (eh_region, cfun->eh->region_array);
  VEC_safe_push (eh_region, gc, cfun->eh->region_array, new_eh);
  VEC_safe_push (eh_region, gc, cfun->eh->region_array, new_eh);
 
 
  /* Copy the language's notion of whether to use __cxa_end_cleanup.  */
  /* Copy the language's notion of whether to use __cxa_end_cleanup.  */
  if (targetm.arm_eabi_unwinder && lang_hooks.eh_use_cxa_end_cleanup)
  if (targetm.arm_eabi_unwinder && lang_hooks.eh_use_cxa_end_cleanup)
    new_eh->use_cxa_end_cleanup = true;
    new_eh->use_cxa_end_cleanup = true;
 
 
  return new_eh;
  return new_eh;
}
}
 
 
eh_region
eh_region
gen_eh_region_cleanup (eh_region outer)
gen_eh_region_cleanup (eh_region outer)
{
{
  return gen_eh_region (ERT_CLEANUP, outer);
  return gen_eh_region (ERT_CLEANUP, outer);
}
}
 
 
eh_region
eh_region
gen_eh_region_try (eh_region outer)
gen_eh_region_try (eh_region outer)
{
{
  return gen_eh_region (ERT_TRY, outer);
  return gen_eh_region (ERT_TRY, outer);
}
}
 
 
eh_catch
eh_catch
gen_eh_region_catch (eh_region t, tree type_or_list)
gen_eh_region_catch (eh_region t, tree type_or_list)
{
{
  eh_catch c, l;
  eh_catch c, l;
  tree type_list, type_node;
  tree type_list, type_node;
 
 
  gcc_assert (t->type == ERT_TRY);
  gcc_assert (t->type == ERT_TRY);
 
 
  /* Ensure to always end up with a type list to normalize further
  /* Ensure to always end up with a type list to normalize further
     processing, then register each type against the runtime types map.  */
     processing, then register each type against the runtime types map.  */
  type_list = type_or_list;
  type_list = type_or_list;
  if (type_or_list)
  if (type_or_list)
    {
    {
      if (TREE_CODE (type_or_list) != TREE_LIST)
      if (TREE_CODE (type_or_list) != TREE_LIST)
        type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
        type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
 
 
      type_node = type_list;
      type_node = type_list;
      for (; type_node; type_node = TREE_CHAIN (type_node))
      for (; type_node; type_node = TREE_CHAIN (type_node))
        add_type_for_runtime (TREE_VALUE (type_node));
        add_type_for_runtime (TREE_VALUE (type_node));
    }
    }
 
 
  c = GGC_CNEW (struct eh_catch_d);
  c = GGC_CNEW (struct eh_catch_d);
  c->type_list = type_list;
  c->type_list = type_list;
  l = t->u.eh_try.last_catch;
  l = t->u.eh_try.last_catch;
  c->prev_catch = l;
  c->prev_catch = l;
  if (l)
  if (l)
    l->next_catch = c;
    l->next_catch = c;
  else
  else
    t->u.eh_try.first_catch = c;
    t->u.eh_try.first_catch = c;
  t->u.eh_try.last_catch = c;
  t->u.eh_try.last_catch = c;
 
 
  return c;
  return c;
}
}
 
 
eh_region
eh_region
gen_eh_region_allowed (eh_region outer, tree allowed)
gen_eh_region_allowed (eh_region outer, tree allowed)
{
{
  eh_region region = gen_eh_region (ERT_ALLOWED_EXCEPTIONS, outer);
  eh_region region = gen_eh_region (ERT_ALLOWED_EXCEPTIONS, outer);
  region->u.allowed.type_list = allowed;
  region->u.allowed.type_list = allowed;
 
 
  for (; allowed ; allowed = TREE_CHAIN (allowed))
  for (; allowed ; allowed = TREE_CHAIN (allowed))
    add_type_for_runtime (TREE_VALUE (allowed));
    add_type_for_runtime (TREE_VALUE (allowed));
 
 
  return region;
  return region;
}
}
 
 
eh_region
eh_region
gen_eh_region_must_not_throw (eh_region outer)
gen_eh_region_must_not_throw (eh_region outer)
{
{
  return gen_eh_region (ERT_MUST_NOT_THROW, outer);
  return gen_eh_region (ERT_MUST_NOT_THROW, outer);
}
}
 
 
eh_landing_pad
eh_landing_pad
gen_eh_landing_pad (eh_region region)
gen_eh_landing_pad (eh_region region)
{
{
  eh_landing_pad lp = GGC_CNEW (struct eh_landing_pad_d);
  eh_landing_pad lp = GGC_CNEW (struct eh_landing_pad_d);
 
 
  lp->next_lp = region->landing_pads;
  lp->next_lp = region->landing_pads;
  lp->region = region;
  lp->region = region;
  lp->index = VEC_length (eh_landing_pad, cfun->eh->lp_array);
  lp->index = VEC_length (eh_landing_pad, cfun->eh->lp_array);
  region->landing_pads = lp;
  region->landing_pads = lp;
 
 
  VEC_safe_push (eh_landing_pad, gc, cfun->eh->lp_array, lp);
  VEC_safe_push (eh_landing_pad, gc, cfun->eh->lp_array, lp);
 
 
  return lp;
  return lp;
}
}
 
 
eh_region
eh_region
get_eh_region_from_number_fn (struct function *ifun, int i)
get_eh_region_from_number_fn (struct function *ifun, int i)
{
{
  return VEC_index (eh_region, ifun->eh->region_array, i);
  return VEC_index (eh_region, ifun->eh->region_array, i);
}
}
 
 
eh_region
eh_region
get_eh_region_from_number (int i)
get_eh_region_from_number (int i)
{
{
  return get_eh_region_from_number_fn (cfun, i);
  return get_eh_region_from_number_fn (cfun, i);
}
}
 
 
eh_landing_pad
eh_landing_pad
get_eh_landing_pad_from_number_fn (struct function *ifun, int i)
get_eh_landing_pad_from_number_fn (struct function *ifun, int i)
{
{
  return VEC_index (eh_landing_pad, ifun->eh->lp_array, i);
  return VEC_index (eh_landing_pad, ifun->eh->lp_array, i);
}
}
 
 
eh_landing_pad
eh_landing_pad
get_eh_landing_pad_from_number (int i)
get_eh_landing_pad_from_number (int i)
{
{
  return get_eh_landing_pad_from_number_fn (cfun, i);
  return get_eh_landing_pad_from_number_fn (cfun, i);
}
}
 
 
eh_region
eh_region
get_eh_region_from_lp_number_fn (struct function *ifun, int i)
get_eh_region_from_lp_number_fn (struct function *ifun, int i)
{
{
  if (i < 0)
  if (i < 0)
    return VEC_index (eh_region, ifun->eh->region_array, -i);
    return VEC_index (eh_region, ifun->eh->region_array, -i);
  else if (i == 0)
  else if (i == 0)
    return NULL;
    return NULL;
  else
  else
    {
    {
      eh_landing_pad lp;
      eh_landing_pad lp;
      lp = VEC_index (eh_landing_pad, ifun->eh->lp_array, i);
      lp = VEC_index (eh_landing_pad, ifun->eh->lp_array, i);
      return lp->region;
      return lp->region;
    }
    }
}
}
 
 
eh_region
eh_region
get_eh_region_from_lp_number (int i)
get_eh_region_from_lp_number (int i)
{
{
  return get_eh_region_from_lp_number_fn (cfun, i);
  return get_eh_region_from_lp_number_fn (cfun, i);
}
}


/* Returns true if the current function has exception handling regions.  */
/* Returns true if the current function has exception handling regions.  */
 
 
bool
bool
current_function_has_exception_handlers (void)
current_function_has_exception_handlers (void)
{
{
  return cfun->eh->region_tree != NULL;
  return cfun->eh->region_tree != NULL;
}
}


/* A subroutine of duplicate_eh_regions.  Copy the eh_region tree at OLD.
/* A subroutine of duplicate_eh_regions.  Copy the eh_region tree at OLD.
   Root it at OUTER, and apply LP_OFFSET to the lp numbers.  */
   Root it at OUTER, and apply LP_OFFSET to the lp numbers.  */
 
 
struct duplicate_eh_regions_data
struct duplicate_eh_regions_data
{
{
  duplicate_eh_regions_map label_map;
  duplicate_eh_regions_map label_map;
  void *label_map_data;
  void *label_map_data;
  struct pointer_map_t *eh_map;
  struct pointer_map_t *eh_map;
};
};
 
 
static void
static void
duplicate_eh_regions_1 (struct duplicate_eh_regions_data *data,
duplicate_eh_regions_1 (struct duplicate_eh_regions_data *data,
                        eh_region old_r, eh_region outer)
                        eh_region old_r, eh_region outer)
{
{
  eh_landing_pad old_lp, new_lp;
  eh_landing_pad old_lp, new_lp;
  eh_region new_r;
  eh_region new_r;
  void **slot;
  void **slot;
 
 
  new_r = gen_eh_region (old_r->type, outer);
  new_r = gen_eh_region (old_r->type, outer);
  slot = pointer_map_insert (data->eh_map, (void *)old_r);
  slot = pointer_map_insert (data->eh_map, (void *)old_r);
  gcc_assert (*slot == NULL);
  gcc_assert (*slot == NULL);
  *slot = (void *)new_r;
  *slot = (void *)new_r;
 
 
  switch (old_r->type)
  switch (old_r->type)
    {
    {
    case ERT_CLEANUP:
    case ERT_CLEANUP:
      break;
      break;
 
 
    case ERT_TRY:
    case ERT_TRY:
      {
      {
        eh_catch oc, nc;
        eh_catch oc, nc;
        for (oc = old_r->u.eh_try.first_catch; oc ; oc = oc->next_catch)
        for (oc = old_r->u.eh_try.first_catch; oc ; oc = oc->next_catch)
          {
          {
            /* We should be doing all our region duplication before and
            /* We should be doing all our region duplication before and
               during inlining, which is before filter lists are created.  */
               during inlining, which is before filter lists are created.  */
            gcc_assert (oc->filter_list == NULL);
            gcc_assert (oc->filter_list == NULL);
            nc = gen_eh_region_catch (new_r, oc->type_list);
            nc = gen_eh_region_catch (new_r, oc->type_list);
            nc->label = data->label_map (oc->label, data->label_map_data);
            nc->label = data->label_map (oc->label, data->label_map_data);
          }
          }
      }
      }
      break;
      break;
 
 
    case ERT_ALLOWED_EXCEPTIONS:
    case ERT_ALLOWED_EXCEPTIONS:
      new_r->u.allowed.type_list = old_r->u.allowed.type_list;
      new_r->u.allowed.type_list = old_r->u.allowed.type_list;
      if (old_r->u.allowed.label)
      if (old_r->u.allowed.label)
        new_r->u.allowed.label
        new_r->u.allowed.label
            = data->label_map (old_r->u.allowed.label, data->label_map_data);
            = data->label_map (old_r->u.allowed.label, data->label_map_data);
      else
      else
        new_r->u.allowed.label = NULL_TREE;
        new_r->u.allowed.label = NULL_TREE;
      break;
      break;
 
 
    case ERT_MUST_NOT_THROW:
    case ERT_MUST_NOT_THROW:
      new_r->u.must_not_throw = old_r->u.must_not_throw;
      new_r->u.must_not_throw = old_r->u.must_not_throw;
      break;
      break;
    }
    }
 
 
  for (old_lp = old_r->landing_pads; old_lp ; old_lp = old_lp->next_lp)
  for (old_lp = old_r->landing_pads; old_lp ; old_lp = old_lp->next_lp)
    {
    {
      /* Don't bother copying unused landing pads.  */
      /* Don't bother copying unused landing pads.  */
      if (old_lp->post_landing_pad == NULL)
      if (old_lp->post_landing_pad == NULL)
        continue;
        continue;
 
 
      new_lp = gen_eh_landing_pad (new_r);
      new_lp = gen_eh_landing_pad (new_r);
      slot = pointer_map_insert (data->eh_map, (void *)old_lp);
      slot = pointer_map_insert (data->eh_map, (void *)old_lp);
      gcc_assert (*slot == NULL);
      gcc_assert (*slot == NULL);
      *slot = (void *)new_lp;
      *slot = (void *)new_lp;
 
 
      new_lp->post_landing_pad
      new_lp->post_landing_pad
        = data->label_map (old_lp->post_landing_pad, data->label_map_data);
        = data->label_map (old_lp->post_landing_pad, data->label_map_data);
      EH_LANDING_PAD_NR (new_lp->post_landing_pad) = new_lp->index;
      EH_LANDING_PAD_NR (new_lp->post_landing_pad) = new_lp->index;
    }
    }
 
 
  /* Make sure to preserve the original use of __cxa_end_cleanup.  */
  /* Make sure to preserve the original use of __cxa_end_cleanup.  */
  new_r->use_cxa_end_cleanup = old_r->use_cxa_end_cleanup;
  new_r->use_cxa_end_cleanup = old_r->use_cxa_end_cleanup;
 
 
  for (old_r = old_r->inner; old_r ; old_r = old_r->next_peer)
  for (old_r = old_r->inner; old_r ; old_r = old_r->next_peer)
    duplicate_eh_regions_1 (data, old_r, new_r);
    duplicate_eh_regions_1 (data, old_r, new_r);
}
}
 
 
/* Duplicate the EH regions from IFUN rooted at COPY_REGION into
/* Duplicate the EH regions from IFUN rooted at COPY_REGION into
   the current function and root the tree below OUTER_REGION.
   the current function and root the tree below OUTER_REGION.
   The special case of COPY_REGION of NULL means all regions.
   The special case of COPY_REGION of NULL means all regions.
   Remap labels using MAP/MAP_DATA callback.  Return a pointer map
   Remap labels using MAP/MAP_DATA callback.  Return a pointer map
   that allows the caller to remap uses of both EH regions and
   that allows the caller to remap uses of both EH regions and
   EH landing pads.  */
   EH landing pads.  */
 
 
struct pointer_map_t *
struct pointer_map_t *
duplicate_eh_regions (struct function *ifun,
duplicate_eh_regions (struct function *ifun,
                      eh_region copy_region, int outer_lp,
                      eh_region copy_region, int outer_lp,
                      duplicate_eh_regions_map map, void *map_data)
                      duplicate_eh_regions_map map, void *map_data)
{
{
  struct duplicate_eh_regions_data data;
  struct duplicate_eh_regions_data data;
  eh_region outer_region;
  eh_region outer_region;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_eh_tree (ifun);
  verify_eh_tree (ifun);
#endif
#endif
 
 
  data.label_map = map;
  data.label_map = map;
  data.label_map_data = map_data;
  data.label_map_data = map_data;
  data.eh_map = pointer_map_create ();
  data.eh_map = pointer_map_create ();
 
 
  outer_region = get_eh_region_from_lp_number (outer_lp);
  outer_region = get_eh_region_from_lp_number (outer_lp);
 
 
  /* Copy all the regions in the subtree.  */
  /* Copy all the regions in the subtree.  */
  if (copy_region)
  if (copy_region)
    duplicate_eh_regions_1 (&data, copy_region, outer_region);
    duplicate_eh_regions_1 (&data, copy_region, outer_region);
  else
  else
    {
    {
      eh_region r;
      eh_region r;
      for (r = ifun->eh->region_tree; r ; r = r->next_peer)
      for (r = ifun->eh->region_tree; r ; r = r->next_peer)
        duplicate_eh_regions_1 (&data, r, outer_region);
        duplicate_eh_regions_1 (&data, r, outer_region);
    }
    }
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_eh_tree (cfun);
  verify_eh_tree (cfun);
#endif
#endif
 
 
  return data.eh_map;
  return data.eh_map;
}
}
 
 
/* Return the region that is outer to both REGION_A and REGION_B in IFUN.  */
/* Return the region that is outer to both REGION_A and REGION_B in IFUN.  */
 
 
eh_region
eh_region
eh_region_outermost (struct function *ifun, eh_region region_a,
eh_region_outermost (struct function *ifun, eh_region region_a,
                     eh_region region_b)
                     eh_region region_b)
{
{
  sbitmap b_outer;
  sbitmap b_outer;
 
 
  gcc_assert (ifun->eh->region_array);
  gcc_assert (ifun->eh->region_array);
  gcc_assert (ifun->eh->region_tree);
  gcc_assert (ifun->eh->region_tree);
 
 
  b_outer = sbitmap_alloc (VEC_length (eh_region, ifun->eh->region_array));
  b_outer = sbitmap_alloc (VEC_length (eh_region, ifun->eh->region_array));
  sbitmap_zero (b_outer);
  sbitmap_zero (b_outer);
 
 
  do
  do
    {
    {
      SET_BIT (b_outer, region_b->index);
      SET_BIT (b_outer, region_b->index);
      region_b = region_b->outer;
      region_b = region_b->outer;
    }
    }
  while (region_b);
  while (region_b);
 
 
  do
  do
    {
    {
      if (TEST_BIT (b_outer, region_a->index))
      if (TEST_BIT (b_outer, region_a->index))
        break;
        break;
      region_a = region_a->outer;
      region_a = region_a->outer;
    }
    }
  while (region_a);
  while (region_a);
 
 
  sbitmap_free (b_outer);
  sbitmap_free (b_outer);
  return region_a;
  return region_a;
}
}


static int
static int
t2r_eq (const void *pentry, const void *pdata)
t2r_eq (const void *pentry, const void *pdata)
{
{
  const_tree const entry = (const_tree) pentry;
  const_tree const entry = (const_tree) pentry;
  const_tree const data = (const_tree) pdata;
  const_tree const data = (const_tree) pdata;
 
 
  return TREE_PURPOSE (entry) == data;
  return TREE_PURPOSE (entry) == data;
}
}
 
 
static hashval_t
static hashval_t
t2r_hash (const void *pentry)
t2r_hash (const void *pentry)
{
{
  const_tree const entry = (const_tree) pentry;
  const_tree const entry = (const_tree) pentry;
  return TREE_HASH (TREE_PURPOSE (entry));
  return TREE_HASH (TREE_PURPOSE (entry));
}
}
 
 
void
void
add_type_for_runtime (tree type)
add_type_for_runtime (tree type)
{
{
  tree *slot;
  tree *slot;
 
 
  /* If TYPE is NOP_EXPR, it means that it already is a runtime type.  */
  /* If TYPE is NOP_EXPR, it means that it already is a runtime type.  */
  if (TREE_CODE (type) == NOP_EXPR)
  if (TREE_CODE (type) == NOP_EXPR)
    return;
    return;
 
 
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
                                            TREE_HASH (type), INSERT);
                                            TREE_HASH (type), INSERT);
  if (*slot == NULL)
  if (*slot == NULL)
    {
    {
      tree runtime = lang_hooks.eh_runtime_type (type);
      tree runtime = lang_hooks.eh_runtime_type (type);
      *slot = tree_cons (type, runtime, NULL_TREE);
      *slot = tree_cons (type, runtime, NULL_TREE);
    }
    }
}
}
 
 
tree
tree
lookup_type_for_runtime (tree type)
lookup_type_for_runtime (tree type)
{
{
  tree *slot;
  tree *slot;
 
 
  /* If TYPE is NOP_EXPR, it means that it already is a runtime type.  */
  /* If TYPE is NOP_EXPR, it means that it already is a runtime type.  */
  if (TREE_CODE (type) == NOP_EXPR)
  if (TREE_CODE (type) == NOP_EXPR)
    return type;
    return type;
 
 
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
  slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
                                            TREE_HASH (type), NO_INSERT);
                                            TREE_HASH (type), NO_INSERT);
 
 
  /* We should have always inserted the data earlier.  */
  /* We should have always inserted the data earlier.  */
  return TREE_VALUE (*slot);
  return TREE_VALUE (*slot);
}
}
 
 


/* Represent an entry in @TTypes for either catch actions
/* Represent an entry in @TTypes for either catch actions
   or exception filter actions.  */
   or exception filter actions.  */
struct GTY(()) ttypes_filter {
struct GTY(()) ttypes_filter {
  tree t;
  tree t;
  int filter;
  int filter;
};
};
 
 
/* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
/* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
   (a tree) for a @TTypes type node we are thinking about adding.  */
   (a tree) for a @TTypes type node we are thinking about adding.  */
 
 
static int
static int
ttypes_filter_eq (const void *pentry, const void *pdata)
ttypes_filter_eq (const void *pentry, const void *pdata)
{
{
  const struct ttypes_filter *const entry
  const struct ttypes_filter *const entry
    = (const struct ttypes_filter *) pentry;
    = (const struct ttypes_filter *) pentry;
  const_tree const data = (const_tree) pdata;
  const_tree const data = (const_tree) pdata;
 
 
  return entry->t == data;
  return entry->t == data;
}
}
 
 
static hashval_t
static hashval_t
ttypes_filter_hash (const void *pentry)
ttypes_filter_hash (const void *pentry)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  return TREE_HASH (entry->t);
  return TREE_HASH (entry->t);
}
}
 
 
/* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
/* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
   exception specification list we are thinking about adding.  */
   exception specification list we are thinking about adding.  */
/* ??? Currently we use the type lists in the order given.  Someone
/* ??? Currently we use the type lists in the order given.  Someone
   should put these in some canonical order.  */
   should put these in some canonical order.  */
 
 
static int
static int
ehspec_filter_eq (const void *pentry, const void *pdata)
ehspec_filter_eq (const void *pentry, const void *pdata)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
  const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
 
 
  return type_list_equal (entry->t, data->t);
  return type_list_equal (entry->t, data->t);
}
}
 
 
/* Hash function for exception specification lists.  */
/* Hash function for exception specification lists.  */
 
 
static hashval_t
static hashval_t
ehspec_filter_hash (const void *pentry)
ehspec_filter_hash (const void *pentry)
{
{
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
  hashval_t h = 0;
  hashval_t h = 0;
  tree list;
  tree list;
 
 
  for (list = entry->t; list ; list = TREE_CHAIN (list))
  for (list = entry->t; list ; list = TREE_CHAIN (list))
    h = (h << 5) + (h >> 27) + TREE_HASH (TREE_VALUE (list));
    h = (h << 5) + (h >> 27) + TREE_HASH (TREE_VALUE (list));
  return h;
  return h;
}
}
 
 
/* Add TYPE (which may be NULL) to cfun->eh->ttype_data, using TYPES_HASH
/* Add TYPE (which may be NULL) to cfun->eh->ttype_data, using TYPES_HASH
   to speed up the search.  Return the filter value to be used.  */
   to speed up the search.  Return the filter value to be used.  */
 
 
static int
static int
add_ttypes_entry (htab_t ttypes_hash, tree type)
add_ttypes_entry (htab_t ttypes_hash, tree type)
{
{
  struct ttypes_filter **slot, *n;
  struct ttypes_filter **slot, *n;
 
 
  slot = (struct ttypes_filter **)
  slot = (struct ttypes_filter **)
    htab_find_slot_with_hash (ttypes_hash, type, TREE_HASH (type), INSERT);
    htab_find_slot_with_hash (ttypes_hash, type, TREE_HASH (type), INSERT);
 
 
  if ((n = *slot) == NULL)
  if ((n = *slot) == NULL)
    {
    {
      /* Filter value is a 1 based table index.  */
      /* Filter value is a 1 based table index.  */
 
 
      n = XNEW (struct ttypes_filter);
      n = XNEW (struct ttypes_filter);
      n->t = type;
      n->t = type;
      n->filter = VEC_length (tree, cfun->eh->ttype_data) + 1;
      n->filter = VEC_length (tree, cfun->eh->ttype_data) + 1;
      *slot = n;
      *slot = n;
 
 
      VEC_safe_push (tree, gc, cfun->eh->ttype_data, type);
      VEC_safe_push (tree, gc, cfun->eh->ttype_data, type);
    }
    }
 
 
  return n->filter;
  return n->filter;
}
}
 
 
/* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
/* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
   to speed up the search.  Return the filter value to be used.  */
   to speed up the search.  Return the filter value to be used.  */
 
 
static int
static int
add_ehspec_entry (htab_t ehspec_hash, htab_t ttypes_hash, tree list)
add_ehspec_entry (htab_t ehspec_hash, htab_t ttypes_hash, tree list)
{
{
  struct ttypes_filter **slot, *n;
  struct ttypes_filter **slot, *n;
  struct ttypes_filter dummy;
  struct ttypes_filter dummy;
 
 
  dummy.t = list;
  dummy.t = list;
  slot = (struct ttypes_filter **)
  slot = (struct ttypes_filter **)
    htab_find_slot (ehspec_hash, &dummy, INSERT);
    htab_find_slot (ehspec_hash, &dummy, INSERT);
 
 
  if ((n = *slot) == NULL)
  if ((n = *slot) == NULL)
    {
    {
      int len;
      int len;
 
 
      if (targetm.arm_eabi_unwinder)
      if (targetm.arm_eabi_unwinder)
        len = VEC_length (tree, cfun->eh->ehspec_data.arm_eabi);
        len = VEC_length (tree, cfun->eh->ehspec_data.arm_eabi);
      else
      else
        len = VEC_length (uchar, cfun->eh->ehspec_data.other);
        len = VEC_length (uchar, cfun->eh->ehspec_data.other);
 
 
      /* Filter value is a -1 based byte index into a uleb128 buffer.  */
      /* Filter value is a -1 based byte index into a uleb128 buffer.  */
 
 
      n = XNEW (struct ttypes_filter);
      n = XNEW (struct ttypes_filter);
      n->t = list;
      n->t = list;
      n->filter = -(len + 1);
      n->filter = -(len + 1);
      *slot = n;
      *slot = n;
 
 
      /* Generate a 0 terminated list of filter values.  */
      /* Generate a 0 terminated list of filter values.  */
      for (; list ; list = TREE_CHAIN (list))
      for (; list ; list = TREE_CHAIN (list))
        {
        {
          if (targetm.arm_eabi_unwinder)
          if (targetm.arm_eabi_unwinder)
            VEC_safe_push (tree, gc, cfun->eh->ehspec_data.arm_eabi,
            VEC_safe_push (tree, gc, cfun->eh->ehspec_data.arm_eabi,
                           TREE_VALUE (list));
                           TREE_VALUE (list));
          else
          else
            {
            {
              /* Look up each type in the list and encode its filter
              /* Look up each type in the list and encode its filter
                 value as a uleb128.  */
                 value as a uleb128.  */
              push_uleb128 (&cfun->eh->ehspec_data.other,
              push_uleb128 (&cfun->eh->ehspec_data.other,
                            add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
                            add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
            }
            }
        }
        }
      if (targetm.arm_eabi_unwinder)
      if (targetm.arm_eabi_unwinder)
        VEC_safe_push (tree, gc, cfun->eh->ehspec_data.arm_eabi, NULL_TREE);
        VEC_safe_push (tree, gc, cfun->eh->ehspec_data.arm_eabi, NULL_TREE);
      else
      else
        VEC_safe_push (uchar, gc, cfun->eh->ehspec_data.other, 0);
        VEC_safe_push (uchar, gc, cfun->eh->ehspec_data.other, 0);
    }
    }
 
 
  return n->filter;
  return n->filter;
}
}
 
 
/* Generate the action filter values to be used for CATCH and
/* Generate the action filter values to be used for CATCH and
   ALLOWED_EXCEPTIONS regions.  When using dwarf2 exception regions,
   ALLOWED_EXCEPTIONS regions.  When using dwarf2 exception regions,
   we use lots of landing pads, and so every type or list can share
   we use lots of landing pads, and so every type or list can share
   the same filter value, which saves table space.  */
   the same filter value, which saves table space.  */
 
 
void
void
assign_filter_values (void)
assign_filter_values (void)
{
{
  int i;
  int i;
  htab_t ttypes, ehspec;
  htab_t ttypes, ehspec;
  eh_region r;
  eh_region r;
  eh_catch c;
  eh_catch c;
 
 
  cfun->eh->ttype_data = VEC_alloc (tree, gc, 16);
  cfun->eh->ttype_data = VEC_alloc (tree, gc, 16);
  if (targetm.arm_eabi_unwinder)
  if (targetm.arm_eabi_unwinder)
    cfun->eh->ehspec_data.arm_eabi = VEC_alloc (tree, gc, 64);
    cfun->eh->ehspec_data.arm_eabi = VEC_alloc (tree, gc, 64);
  else
  else
    cfun->eh->ehspec_data.other = VEC_alloc (uchar, gc, 64);
    cfun->eh->ehspec_data.other = VEC_alloc (uchar, gc, 64);
 
 
  ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
  ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
  ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
  ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
 
 
  for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
  for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
    {
    {
      if (r == NULL)
      if (r == NULL)
        continue;
        continue;
 
 
      switch (r->type)
      switch (r->type)
        {
        {
        case ERT_TRY:
        case ERT_TRY:
          for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
          for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
            {
            {
              /* Whatever type_list is (NULL or true list), we build a list
              /* Whatever type_list is (NULL or true list), we build a list
                 of filters for the region.  */
                 of filters for the region.  */
              c->filter_list = NULL_TREE;
              c->filter_list = NULL_TREE;
 
 
              if (c->type_list != NULL)
              if (c->type_list != NULL)
                {
                {
                  /* Get a filter value for each of the types caught and store
                  /* Get a filter value for each of the types caught and store
                     them in the region's dedicated list.  */
                     them in the region's dedicated list.  */
                  tree tp_node = c->type_list;
                  tree tp_node = c->type_list;
 
 
                  for ( ; tp_node; tp_node = TREE_CHAIN (tp_node))
                  for ( ; tp_node; tp_node = TREE_CHAIN (tp_node))
                    {
                    {
                      int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
                      int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
                      tree flt_node = build_int_cst (NULL_TREE, flt);
                      tree flt_node = build_int_cst (NULL_TREE, flt);
 
 
                      c->filter_list
                      c->filter_list
                        = tree_cons (NULL_TREE, flt_node, c->filter_list);
                        = tree_cons (NULL_TREE, flt_node, c->filter_list);
                    }
                    }
                }
                }
              else
              else
                {
                {
                  /* Get a filter value for the NULL list also since it
                  /* Get a filter value for the NULL list also since it
                     will need an action record anyway.  */
                     will need an action record anyway.  */
                  int flt = add_ttypes_entry (ttypes, NULL);
                  int flt = add_ttypes_entry (ttypes, NULL);
                  tree flt_node = build_int_cst (NULL_TREE, flt);
                  tree flt_node = build_int_cst (NULL_TREE, flt);
 
 
                  c->filter_list
                  c->filter_list
                    = tree_cons (NULL_TREE, flt_node, NULL);
                    = tree_cons (NULL_TREE, flt_node, NULL);
                }
                }
            }
            }
          break;
          break;
 
 
        case ERT_ALLOWED_EXCEPTIONS:
        case ERT_ALLOWED_EXCEPTIONS:
          r->u.allowed.filter
          r->u.allowed.filter
            = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
            = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  htab_delete (ttypes);
  htab_delete (ttypes);
  htab_delete (ehspec);
  htab_delete (ehspec);
}
}
 
 
/* Emit SEQ into basic block just before INSN (that is assumed to be
/* Emit SEQ into basic block just before INSN (that is assumed to be
   first instruction of some existing BB and return the newly
   first instruction of some existing BB and return the newly
   produced block.  */
   produced block.  */
static basic_block
static basic_block
emit_to_new_bb_before (rtx seq, rtx insn)
emit_to_new_bb_before (rtx seq, rtx insn)
{
{
  rtx last;
  rtx last;
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* If there happens to be a fallthru edge (possibly created by cleanup_cfg
  /* If there happens to be a fallthru edge (possibly created by cleanup_cfg
     call), we don't want it to go into newly created landing pad or other EH
     call), we don't want it to go into newly created landing pad or other EH
     construct.  */
     construct.  */
  for (ei = ei_start (BLOCK_FOR_INSN (insn)->preds); (e = ei_safe_edge (ei)); )
  for (ei = ei_start (BLOCK_FOR_INSN (insn)->preds); (e = ei_safe_edge (ei)); )
    if (e->flags & EDGE_FALLTHRU)
    if (e->flags & EDGE_FALLTHRU)
      force_nonfallthru (e);
      force_nonfallthru (e);
    else
    else
      ei_next (&ei);
      ei_next (&ei);
  last = emit_insn_before (seq, insn);
  last = emit_insn_before (seq, insn);
  if (BARRIER_P (last))
  if (BARRIER_P (last))
    last = PREV_INSN (last);
    last = PREV_INSN (last);
  bb = create_basic_block (seq, last, BLOCK_FOR_INSN (insn)->prev_bb);
  bb = create_basic_block (seq, last, BLOCK_FOR_INSN (insn)->prev_bb);
  update_bb_for_insn (bb);
  update_bb_for_insn (bb);
  bb->flags |= BB_SUPERBLOCK;
  bb->flags |= BB_SUPERBLOCK;
  return bb;
  return bb;
}
}


/* Expand the extra code needed at landing pads for dwarf2 unwinding.  */
/* Expand the extra code needed at landing pads for dwarf2 unwinding.  */
 
 
static void
static void
dw2_build_landing_pads (void)
dw2_build_landing_pads (void)
{
{
  int i;
  int i;
  eh_landing_pad lp;
  eh_landing_pad lp;
 
 
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
    {
    {
      eh_region region;
      eh_region region;
      basic_block bb;
      basic_block bb;
      rtx seq;
      rtx seq;
      edge e;
      edge e;
 
 
      if (lp == NULL || lp->post_landing_pad == NULL)
      if (lp == NULL || lp->post_landing_pad == NULL)
        continue;
        continue;
 
 
      start_sequence ();
      start_sequence ();
 
 
      lp->landing_pad = gen_label_rtx ();
      lp->landing_pad = gen_label_rtx ();
      emit_label (lp->landing_pad);
      emit_label (lp->landing_pad);
      LABEL_PRESERVE_P (lp->landing_pad) = 1;
      LABEL_PRESERVE_P (lp->landing_pad) = 1;
 
 
#ifdef HAVE_exception_receiver
#ifdef HAVE_exception_receiver
      if (HAVE_exception_receiver)
      if (HAVE_exception_receiver)
        emit_insn (gen_exception_receiver ());
        emit_insn (gen_exception_receiver ());
      else
      else
#endif
#endif
#ifdef HAVE_nonlocal_goto_receiver
#ifdef HAVE_nonlocal_goto_receiver
        if (HAVE_nonlocal_goto_receiver)
        if (HAVE_nonlocal_goto_receiver)
          emit_insn (gen_nonlocal_goto_receiver ());
          emit_insn (gen_nonlocal_goto_receiver ());
        else
        else
#endif
#endif
          { /* Nothing */ }
          { /* Nothing */ }
 
 
      region = lp->region;
      region = lp->region;
      if (region->exc_ptr_reg)
      if (region->exc_ptr_reg)
        emit_move_insn (region->exc_ptr_reg,
        emit_move_insn (region->exc_ptr_reg,
                        gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
                        gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
      if (region->filter_reg)
      if (region->filter_reg)
        emit_move_insn (region->filter_reg,
        emit_move_insn (region->filter_reg,
                        gen_rtx_REG (targetm.eh_return_filter_mode (),
                        gen_rtx_REG (targetm.eh_return_filter_mode (),
                                     EH_RETURN_DATA_REGNO (1)));
                                     EH_RETURN_DATA_REGNO (1)));
 
 
      seq = get_insns ();
      seq = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      bb = emit_to_new_bb_before (seq, label_rtx (lp->post_landing_pad));
      bb = emit_to_new_bb_before (seq, label_rtx (lp->post_landing_pad));
      e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      e->count = bb->count;
      e->count = bb->count;
      e->probability = REG_BR_PROB_BASE;
      e->probability = REG_BR_PROB_BASE;
    }
    }
}
}
 
 


static VEC (int, heap) *sjlj_lp_call_site_index;
static VEC (int, heap) *sjlj_lp_call_site_index;
 
 
/* Process all active landing pads.  Assign each one a compact dispatch
/* Process all active landing pads.  Assign each one a compact dispatch
   index, and a call-site index.  */
   index, and a call-site index.  */
 
 
static int
static int
sjlj_assign_call_site_values (void)
sjlj_assign_call_site_values (void)
{
{
  htab_t ar_hash;
  htab_t ar_hash;
  int i, disp_index;
  int i, disp_index;
  eh_landing_pad lp;
  eh_landing_pad lp;
 
 
  crtl->eh.action_record_data = VEC_alloc (uchar, gc, 64);
  crtl->eh.action_record_data = VEC_alloc (uchar, gc, 64);
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
 
 
  disp_index = 0;
  disp_index = 0;
  call_site_base = 1;
  call_site_base = 1;
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
    if (lp && lp->post_landing_pad)
    if (lp && lp->post_landing_pad)
      {
      {
        int action, call_site;
        int action, call_site;
 
 
        /* First: build the action table.  */
        /* First: build the action table.  */
        action = collect_one_action_chain (ar_hash, lp->region);
        action = collect_one_action_chain (ar_hash, lp->region);
        if (action != -1)
        if (action != -1)
          crtl->uses_eh_lsda = 1;
          crtl->uses_eh_lsda = 1;
 
 
        /* Next: assign call-site values.  If dwarf2 terms, this would be
        /* Next: assign call-site values.  If dwarf2 terms, this would be
           the region number assigned by convert_to_eh_region_ranges, but
           the region number assigned by convert_to_eh_region_ranges, but
           handles no-action and must-not-throw differently.  */
           handles no-action and must-not-throw differently.  */
        /* Map must-not-throw to otherwise unused call-site index 0.  */
        /* Map must-not-throw to otherwise unused call-site index 0.  */
        if (action == -2)
        if (action == -2)
          call_site = 0;
          call_site = 0;
        /* Map no-action to otherwise unused call-site index -1.  */
        /* Map no-action to otherwise unused call-site index -1.  */
        else if (action == -1)
        else if (action == -1)
          call_site = -1;
          call_site = -1;
        /* Otherwise, look it up in the table.  */
        /* Otherwise, look it up in the table.  */
        else
        else
          call_site = add_call_site (GEN_INT (disp_index), action, 0);
          call_site = add_call_site (GEN_INT (disp_index), action, 0);
        VEC_replace (int, sjlj_lp_call_site_index, i, call_site);
        VEC_replace (int, sjlj_lp_call_site_index, i, call_site);
 
 
        disp_index++;
        disp_index++;
      }
      }
 
 
  htab_delete (ar_hash);
  htab_delete (ar_hash);
 
 
  return disp_index;
  return disp_index;
}
}
 
 
/* Emit code to record the current call-site index before every
/* Emit code to record the current call-site index before every
   insn that can throw.  */
   insn that can throw.  */
 
 
static void
static void
sjlj_mark_call_sites (void)
sjlj_mark_call_sites (void)
{
{
  int last_call_site = -2;
  int last_call_site = -2;
  rtx insn, mem;
  rtx insn, mem;
 
 
  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
    {
    {
      eh_landing_pad lp;
      eh_landing_pad lp;
      eh_region r;
      eh_region r;
      bool nothrow;
      bool nothrow;
      int this_call_site;
      int this_call_site;
      rtx before, p;
      rtx before, p;
 
 
      /* Reset value tracking at extended basic block boundaries.  */
      /* Reset value tracking at extended basic block boundaries.  */
      if (LABEL_P (insn))
      if (LABEL_P (insn))
        last_call_site = -2;
        last_call_site = -2;
 
 
      if (! INSN_P (insn))
      if (! INSN_P (insn))
        continue;
        continue;
 
 
      nothrow = get_eh_region_and_lp_from_rtx (insn, &r, &lp);
      nothrow = get_eh_region_and_lp_from_rtx (insn, &r, &lp);
      if (nothrow)
      if (nothrow)
        continue;
        continue;
      if (lp)
      if (lp)
        this_call_site = VEC_index (int, sjlj_lp_call_site_index, lp->index);
        this_call_site = VEC_index (int, sjlj_lp_call_site_index, lp->index);
      else if (r == NULL)
      else if (r == NULL)
        {
        {
          /* Calls (and trapping insns) without notes are outside any
          /* Calls (and trapping insns) without notes are outside any
             exception handling region in this function.  Mark them as
             exception handling region in this function.  Mark them as
             no action.  */
             no action.  */
          this_call_site = -1;
          this_call_site = -1;
        }
        }
      else
      else
        {
        {
          gcc_assert (r->type == ERT_MUST_NOT_THROW);
          gcc_assert (r->type == ERT_MUST_NOT_THROW);
          this_call_site = 0;
          this_call_site = 0;
        }
        }
 
 
      if (this_call_site == last_call_site)
      if (this_call_site == last_call_site)
        continue;
        continue;
 
 
      /* Don't separate a call from it's argument loads.  */
      /* Don't separate a call from it's argument loads.  */
      before = insn;
      before = insn;
      if (CALL_P (insn))
      if (CALL_P (insn))
        before = find_first_parameter_load (insn, NULL_RTX);
        before = find_first_parameter_load (insn, NULL_RTX);
 
 
      start_sequence ();
      start_sequence ();
      mem = adjust_address (crtl->eh.sjlj_fc, TYPE_MODE (integer_type_node),
      mem = adjust_address (crtl->eh.sjlj_fc, TYPE_MODE (integer_type_node),
                            sjlj_fc_call_site_ofs);
                            sjlj_fc_call_site_ofs);
      emit_move_insn (mem, GEN_INT (this_call_site));
      emit_move_insn (mem, GEN_INT (this_call_site));
      p = get_insns ();
      p = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      emit_insn_before (p, before);
      emit_insn_before (p, before);
      last_call_site = this_call_site;
      last_call_site = this_call_site;
    }
    }
}
}
 
 
/* Construct the SjLj_Function_Context.  */
/* Construct the SjLj_Function_Context.  */
 
 
static void
static void
sjlj_emit_function_enter (rtx dispatch_label)
sjlj_emit_function_enter (rtx dispatch_label)
{
{
  rtx fn_begin, fc, mem, seq;
  rtx fn_begin, fc, mem, seq;
  bool fn_begin_outside_block;
  bool fn_begin_outside_block;
  rtx personality = get_personality_function (current_function_decl);
  rtx personality = get_personality_function (current_function_decl);
 
 
  fc = crtl->eh.sjlj_fc;
  fc = crtl->eh.sjlj_fc;
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* We're storing this libcall's address into memory instead of
  /* We're storing this libcall's address into memory instead of
     calling it directly.  Thus, we must call assemble_external_libcall
     calling it directly.  Thus, we must call assemble_external_libcall
     here, as we can not depend on emit_library_call to do it for us.  */
     here, as we can not depend on emit_library_call to do it for us.  */
  assemble_external_libcall (personality);
  assemble_external_libcall (personality);
  mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
  mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
  emit_move_insn (mem, personality);
  emit_move_insn (mem, personality);
 
 
  mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
  mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
  if (crtl->uses_eh_lsda)
  if (crtl->uses_eh_lsda)
    {
    {
      char buf[20];
      char buf[20];
      rtx sym;
      rtx sym;
 
 
      ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
      ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
      sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
      sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
      SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
      SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
      emit_move_insn (mem, sym);
      emit_move_insn (mem, sym);
    }
    }
  else
  else
    emit_move_insn (mem, const0_rtx);
    emit_move_insn (mem, const0_rtx);
 
 
#ifdef DONT_USE_BUILTIN_SETJMP
#ifdef DONT_USE_BUILTIN_SETJMP
  {
  {
    rtx x, last;
    rtx x, last;
    x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
    x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
                                 TYPE_MODE (integer_type_node), 1,
                                 TYPE_MODE (integer_type_node), 1,
                                 plus_constant (XEXP (fc, 0),
                                 plus_constant (XEXP (fc, 0),
                                                sjlj_fc_jbuf_ofs), Pmode);
                                                sjlj_fc_jbuf_ofs), Pmode);
 
 
    emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
    emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
                             TYPE_MODE (integer_type_node), 0, dispatch_label);
                             TYPE_MODE (integer_type_node), 0, dispatch_label);
    last = get_last_insn ();
    last = get_last_insn ();
    if (JUMP_P (last) && any_condjump_p (last))
    if (JUMP_P (last) && any_condjump_p (last))
      {
      {
        gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
        gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
        add_reg_note (last, REG_BR_PROB, GEN_INT (REG_BR_PROB_BASE / 100));
        add_reg_note (last, REG_BR_PROB, GEN_INT (REG_BR_PROB_BASE / 100));
      }
      }
  }
  }
#else
#else
  expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
  expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
                               dispatch_label);
                               dispatch_label);
#endif
#endif
 
 
  emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
  emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
                     1, XEXP (fc, 0), Pmode);
                     1, XEXP (fc, 0), Pmode);
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  /* ??? Instead of doing this at the beginning of the function,
  /* ??? Instead of doing this at the beginning of the function,
     do this in a block that is at loop level 0 and dominates all
     do this in a block that is at loop level 0 and dominates all
     can_throw_internal instructions.  */
     can_throw_internal instructions.  */
 
 
  fn_begin_outside_block = true;
  fn_begin_outside_block = true;
  for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
  for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
    if (NOTE_P (fn_begin))
    if (NOTE_P (fn_begin))
      {
      {
        if (NOTE_KIND (fn_begin) == NOTE_INSN_FUNCTION_BEG)
        if (NOTE_KIND (fn_begin) == NOTE_INSN_FUNCTION_BEG)
          break;
          break;
        else if (NOTE_INSN_BASIC_BLOCK_P (fn_begin))
        else if (NOTE_INSN_BASIC_BLOCK_P (fn_begin))
          fn_begin_outside_block = false;
          fn_begin_outside_block = false;
      }
      }
 
 
  if (fn_begin_outside_block)
  if (fn_begin_outside_block)
    insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
    insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
  else
  else
    emit_insn_after (seq, fn_begin);
    emit_insn_after (seq, fn_begin);
}
}
 
 
/* Call back from expand_function_end to know where we should put
/* Call back from expand_function_end to know where we should put
   the call to unwind_sjlj_unregister_libfunc if needed.  */
   the call to unwind_sjlj_unregister_libfunc if needed.  */
 
 
void
void
sjlj_emit_function_exit_after (rtx after)
sjlj_emit_function_exit_after (rtx after)
{
{
  crtl->eh.sjlj_exit_after = after;
  crtl->eh.sjlj_exit_after = after;
}
}
 
 
static void
static void
sjlj_emit_function_exit (void)
sjlj_emit_function_exit (void)
{
{
  rtx seq, insn;
  rtx seq, insn;
 
 
  start_sequence ();
  start_sequence ();
 
 
  emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
  emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
                     1, XEXP (crtl->eh.sjlj_fc, 0), Pmode);
                     1, XEXP (crtl->eh.sjlj_fc, 0), Pmode);
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  /* ??? Really this can be done in any block at loop level 0 that
  /* ??? Really this can be done in any block at loop level 0 that
     post-dominates all can_throw_internal instructions.  This is
     post-dominates all can_throw_internal instructions.  This is
     the last possible moment.  */
     the last possible moment.  */
 
 
  insn = crtl->eh.sjlj_exit_after;
  insn = crtl->eh.sjlj_exit_after;
  if (LABEL_P (insn))
  if (LABEL_P (insn))
    insn = NEXT_INSN (insn);
    insn = NEXT_INSN (insn);
 
 
  emit_insn_after (seq, insn);
  emit_insn_after (seq, insn);
}
}
 
 
static void
static void
sjlj_emit_dispatch_table (rtx dispatch_label, int num_dispatch)
sjlj_emit_dispatch_table (rtx dispatch_label, int num_dispatch)
{
{
  enum machine_mode unwind_word_mode = targetm.unwind_word_mode ();
  enum machine_mode unwind_word_mode = targetm.unwind_word_mode ();
  enum machine_mode filter_mode = targetm.eh_return_filter_mode ();
  enum machine_mode filter_mode = targetm.eh_return_filter_mode ();
  eh_landing_pad lp;
  eh_landing_pad lp;
  rtx mem, seq, fc, before, exc_ptr_reg, filter_reg;
  rtx mem, seq, fc, before, exc_ptr_reg, filter_reg;
  rtx first_reachable_label;
  rtx first_reachable_label;
  basic_block bb;
  basic_block bb;
  eh_region r;
  eh_region r;
  edge e;
  edge e;
  int i, disp_index;
  int i, disp_index;
  gimple switch_stmt;
  gimple switch_stmt;
 
 
  fc = crtl->eh.sjlj_fc;
  fc = crtl->eh.sjlj_fc;
 
 
  start_sequence ();
  start_sequence ();
 
 
  emit_label (dispatch_label);
  emit_label (dispatch_label);
 
 
#ifndef DONT_USE_BUILTIN_SETJMP
#ifndef DONT_USE_BUILTIN_SETJMP
  expand_builtin_setjmp_receiver (dispatch_label);
  expand_builtin_setjmp_receiver (dispatch_label);
 
 
  /* The caller of expand_builtin_setjmp_receiver is responsible for
  /* The caller of expand_builtin_setjmp_receiver is responsible for
     making sure that the label doesn't vanish.  The only other caller
     making sure that the label doesn't vanish.  The only other caller
     is the expander for __builtin_setjmp_receiver, which places this
     is the expander for __builtin_setjmp_receiver, which places this
     label on the nonlocal_goto_label list.  Since we're modeling these
     label on the nonlocal_goto_label list.  Since we're modeling these
     CFG edges more exactly, we can use the forced_labels list instead.  */
     CFG edges more exactly, we can use the forced_labels list instead.  */
  LABEL_PRESERVE_P (dispatch_label) = 1;
  LABEL_PRESERVE_P (dispatch_label) = 1;
  forced_labels
  forced_labels
    = gen_rtx_EXPR_LIST (VOIDmode, dispatch_label, forced_labels);
    = gen_rtx_EXPR_LIST (VOIDmode, dispatch_label, forced_labels);
#endif
#endif
 
 
  /* Load up exc_ptr and filter values from the function context.  */
  /* Load up exc_ptr and filter values from the function context.  */
  mem = adjust_address (fc, unwind_word_mode, sjlj_fc_data_ofs);
  mem = adjust_address (fc, unwind_word_mode, sjlj_fc_data_ofs);
  if (unwind_word_mode != ptr_mode)
  if (unwind_word_mode != ptr_mode)
    {
    {
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
      mem = convert_memory_address (ptr_mode, mem);
      mem = convert_memory_address (ptr_mode, mem);
#else
#else
      mem = convert_to_mode (ptr_mode, mem, 0);
      mem = convert_to_mode (ptr_mode, mem, 0);
#endif
#endif
    }
    }
  exc_ptr_reg = force_reg (ptr_mode, mem);
  exc_ptr_reg = force_reg (ptr_mode, mem);
 
 
  mem = adjust_address (fc, unwind_word_mode,
  mem = adjust_address (fc, unwind_word_mode,
                        sjlj_fc_data_ofs + GET_MODE_SIZE (unwind_word_mode));
                        sjlj_fc_data_ofs + GET_MODE_SIZE (unwind_word_mode));
  if (unwind_word_mode != filter_mode)
  if (unwind_word_mode != filter_mode)
    mem = convert_to_mode (filter_mode, mem, 0);
    mem = convert_to_mode (filter_mode, mem, 0);
  filter_reg = force_reg (filter_mode, mem);
  filter_reg = force_reg (filter_mode, mem);
 
 
  /* Jump to one of the directly reachable regions.  */
  /* Jump to one of the directly reachable regions.  */
 
 
  disp_index = 0;
  disp_index = 0;
  first_reachable_label = NULL;
  first_reachable_label = NULL;
 
 
  /* If there's exactly one call site in the function, don't bother
  /* If there's exactly one call site in the function, don't bother
     generating a switch statement.  */
     generating a switch statement.  */
  switch_stmt = NULL;
  switch_stmt = NULL;
  if (num_dispatch > 1)
  if (num_dispatch > 1)
    {
    {
      tree disp;
      tree disp;
 
 
      mem = adjust_address (fc, TYPE_MODE (integer_type_node),
      mem = adjust_address (fc, TYPE_MODE (integer_type_node),
                            sjlj_fc_call_site_ofs);
                            sjlj_fc_call_site_ofs);
      disp = make_tree (integer_type_node, mem);
      disp = make_tree (integer_type_node, mem);
 
 
      switch_stmt = gimple_build_switch_nlabels (num_dispatch, disp, NULL);
      switch_stmt = gimple_build_switch_nlabels (num_dispatch, disp, NULL);
    }
    }
 
 
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
    if (lp && lp->post_landing_pad)
    if (lp && lp->post_landing_pad)
      {
      {
        rtx seq2, label;
        rtx seq2, label;
 
 
        start_sequence ();
        start_sequence ();
 
 
        lp->landing_pad = dispatch_label;
        lp->landing_pad = dispatch_label;
 
 
        if (num_dispatch > 1)
        if (num_dispatch > 1)
          {
          {
            tree t_label, case_elt;
            tree t_label, case_elt;
 
 
            t_label = create_artificial_label (UNKNOWN_LOCATION);
            t_label = create_artificial_label (UNKNOWN_LOCATION);
            case_elt = build3 (CASE_LABEL_EXPR, void_type_node,
            case_elt = build3 (CASE_LABEL_EXPR, void_type_node,
                               build_int_cst (NULL, disp_index),
                               build_int_cst (NULL, disp_index),
                               NULL, t_label);
                               NULL, t_label);
            gimple_switch_set_label (switch_stmt, disp_index, case_elt);
            gimple_switch_set_label (switch_stmt, disp_index, case_elt);
 
 
            label = label_rtx (t_label);
            label = label_rtx (t_label);
          }
          }
        else
        else
          label = gen_label_rtx ();
          label = gen_label_rtx ();
 
 
        if (disp_index == 0)
        if (disp_index == 0)
          first_reachable_label = label;
          first_reachable_label = label;
        emit_label (label);
        emit_label (label);
 
 
        r = lp->region;
        r = lp->region;
        if (r->exc_ptr_reg)
        if (r->exc_ptr_reg)
          emit_move_insn (r->exc_ptr_reg, exc_ptr_reg);
          emit_move_insn (r->exc_ptr_reg, exc_ptr_reg);
        if (r->filter_reg)
        if (r->filter_reg)
          emit_move_insn (r->filter_reg, filter_reg);
          emit_move_insn (r->filter_reg, filter_reg);
 
 
        seq2 = get_insns ();
        seq2 = get_insns ();
        end_sequence ();
        end_sequence ();
 
 
        before = label_rtx (lp->post_landing_pad);
        before = label_rtx (lp->post_landing_pad);
        bb = emit_to_new_bb_before (seq2, before);
        bb = emit_to_new_bb_before (seq2, before);
        e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
        e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
        e->count = bb->count;
        e->count = bb->count;
        e->probability = REG_BR_PROB_BASE;
        e->probability = REG_BR_PROB_BASE;
 
 
        disp_index++;
        disp_index++;
      }
      }
  gcc_assert (disp_index == num_dispatch);
  gcc_assert (disp_index == num_dispatch);
 
 
  if (num_dispatch > 1)
  if (num_dispatch > 1)
    {
    {
      expand_case (switch_stmt);
      expand_case (switch_stmt);
      expand_builtin_trap ();
      expand_builtin_trap ();
    }
    }
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  bb = emit_to_new_bb_before (seq, first_reachable_label);
  bb = emit_to_new_bb_before (seq, first_reachable_label);
  if (num_dispatch == 1)
  if (num_dispatch == 1)
    {
    {
      e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
      e->count = bb->count;
      e->count = bb->count;
      e->probability = REG_BR_PROB_BASE;
      e->probability = REG_BR_PROB_BASE;
    }
    }
}
}
 
 
static void
static void
sjlj_build_landing_pads (void)
sjlj_build_landing_pads (void)
{
{
  int num_dispatch;
  int num_dispatch;
 
 
  num_dispatch = VEC_length (eh_landing_pad, cfun->eh->lp_array);
  num_dispatch = VEC_length (eh_landing_pad, cfun->eh->lp_array);
  if (num_dispatch == 0)
  if (num_dispatch == 0)
    return;
    return;
  VEC_safe_grow (int, heap, sjlj_lp_call_site_index, num_dispatch);
  VEC_safe_grow (int, heap, sjlj_lp_call_site_index, num_dispatch);
 
 
  num_dispatch = sjlj_assign_call_site_values ();
  num_dispatch = sjlj_assign_call_site_values ();
  if (num_dispatch > 0)
  if (num_dispatch > 0)
    {
    {
      rtx dispatch_label = gen_label_rtx ();
      rtx dispatch_label = gen_label_rtx ();
      int align = STACK_SLOT_ALIGNMENT (sjlj_fc_type_node,
      int align = STACK_SLOT_ALIGNMENT (sjlj_fc_type_node,
                                        TYPE_MODE (sjlj_fc_type_node),
                                        TYPE_MODE (sjlj_fc_type_node),
                                        TYPE_ALIGN (sjlj_fc_type_node));
                                        TYPE_ALIGN (sjlj_fc_type_node));
      crtl->eh.sjlj_fc
      crtl->eh.sjlj_fc
        = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
        = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
                              int_size_in_bytes (sjlj_fc_type_node),
                              int_size_in_bytes (sjlj_fc_type_node),
                              align);
                              align);
 
 
      sjlj_mark_call_sites ();
      sjlj_mark_call_sites ();
      sjlj_emit_function_enter (dispatch_label);
      sjlj_emit_function_enter (dispatch_label);
      sjlj_emit_dispatch_table (dispatch_label, num_dispatch);
      sjlj_emit_dispatch_table (dispatch_label, num_dispatch);
      sjlj_emit_function_exit ();
      sjlj_emit_function_exit ();
    }
    }
 
 
  VEC_free (int, heap, sjlj_lp_call_site_index);
  VEC_free (int, heap, sjlj_lp_call_site_index);
}
}
 
 
/* After initial rtl generation, call back to finish generating
/* After initial rtl generation, call back to finish generating
   exception support code.  */
   exception support code.  */
 
 
static void
static void
finish_eh_generation (void)
finish_eh_generation (void)
{
{
  basic_block bb;
  basic_block bb;
 
 
  /* Construct the landing pads.  */
  /* Construct the landing pads.  */
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    sjlj_build_landing_pads ();
    sjlj_build_landing_pads ();
  else
  else
    dw2_build_landing_pads ();
    dw2_build_landing_pads ();
  break_superblocks ();
  break_superblocks ();
 
 
  if (USING_SJLJ_EXCEPTIONS
  if (USING_SJLJ_EXCEPTIONS
      /* Kludge for Alpha/Tru64 (see alpha_gp_save_rtx).  */
      /* Kludge for Alpha/Tru64 (see alpha_gp_save_rtx).  */
      || single_succ_edge (ENTRY_BLOCK_PTR)->insns.r)
      || single_succ_edge (ENTRY_BLOCK_PTR)->insns.r)
    commit_edge_insertions ();
    commit_edge_insertions ();
 
 
  /* Redirect all EH edges from the post_landing_pad to the landing pad.  */
  /* Redirect all EH edges from the post_landing_pad to the landing pad.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      eh_landing_pad lp;
      eh_landing_pad lp;
      edge_iterator ei;
      edge_iterator ei;
      edge e;
      edge e;
 
 
      lp = get_eh_landing_pad_from_rtx (BB_END (bb));
      lp = get_eh_landing_pad_from_rtx (BB_END (bb));
 
 
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        if (e->flags & EDGE_EH)
        if (e->flags & EDGE_EH)
          break;
          break;
 
 
      /* We should not have generated any new throwing insns during this
      /* We should not have generated any new throwing insns during this
         pass, and we should not have lost any EH edges, so we only need
         pass, and we should not have lost any EH edges, so we only need
         to handle two cases here:
         to handle two cases here:
         (1) reachable handler and an existing edge to post-landing-pad,
         (1) reachable handler and an existing edge to post-landing-pad,
         (2) no reachable handler and no edge.  */
         (2) no reachable handler and no edge.  */
      gcc_assert ((lp != NULL) == (e != NULL));
      gcc_assert ((lp != NULL) == (e != NULL));
      if (lp != NULL)
      if (lp != NULL)
        {
        {
          gcc_assert (BB_HEAD (e->dest) == label_rtx (lp->post_landing_pad));
          gcc_assert (BB_HEAD (e->dest) == label_rtx (lp->post_landing_pad));
 
 
          redirect_edge_succ (e, BLOCK_FOR_INSN (lp->landing_pad));
          redirect_edge_succ (e, BLOCK_FOR_INSN (lp->landing_pad));
          e->flags |= (CALL_P (BB_END (bb))
          e->flags |= (CALL_P (BB_END (bb))
                       ? EDGE_ABNORMAL | EDGE_ABNORMAL_CALL
                       ? EDGE_ABNORMAL | EDGE_ABNORMAL_CALL
                       : EDGE_ABNORMAL);
                       : EDGE_ABNORMAL);
        }
        }
    }
    }
}
}
 
 
static bool
static bool
gate_handle_eh (void)
gate_handle_eh (void)
{
{
  /* Nothing to do if no regions created.  */
  /* Nothing to do if no regions created.  */
  return cfun->eh->region_tree != NULL;
  return cfun->eh->region_tree != NULL;
}
}
 
 
/* Complete generation of exception handling code.  */
/* Complete generation of exception handling code.  */
static unsigned int
static unsigned int
rest_of_handle_eh (void)
rest_of_handle_eh (void)
{
{
  finish_eh_generation ();
  finish_eh_generation ();
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
  cleanup_cfg (CLEANUP_NO_INSN_DEL);
  return 0;
  return 0;
}
}
 
 
struct rtl_opt_pass pass_rtl_eh =
struct rtl_opt_pass pass_rtl_eh =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "rtl eh",                             /* name */
  "rtl eh",                             /* name */
  gate_handle_eh,                       /* gate */
  gate_handle_eh,                       /* gate */
  rest_of_handle_eh,                    /* execute */
  rest_of_handle_eh,                    /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_JUMP,                              /* tv_id */
  TV_JUMP,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func                        /* todo_flags_finish */
  TODO_dump_func                        /* todo_flags_finish */
 }
 }
};
};


/* This section handles removing dead code for flow.  */
/* This section handles removing dead code for flow.  */
 
 
void
void
remove_eh_landing_pad (eh_landing_pad lp)
remove_eh_landing_pad (eh_landing_pad lp)
{
{
  eh_landing_pad *pp;
  eh_landing_pad *pp;
 
 
  for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
  for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
    continue;
    continue;
  *pp = lp->next_lp;
  *pp = lp->next_lp;
 
 
  if (lp->post_landing_pad)
  if (lp->post_landing_pad)
    EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
    EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
  VEC_replace (eh_landing_pad, cfun->eh->lp_array, lp->index, NULL);
  VEC_replace (eh_landing_pad, cfun->eh->lp_array, lp->index, NULL);
}
}
 
 
/* Splice REGION from the region tree.  */
/* Splice REGION from the region tree.  */
 
 
void
void
remove_eh_handler (eh_region region)
remove_eh_handler (eh_region region)
{
{
  eh_region *pp, *pp_start, p, outer;
  eh_region *pp, *pp_start, p, outer;
  eh_landing_pad lp;
  eh_landing_pad lp;
 
 
  for (lp = region->landing_pads; lp ; lp = lp->next_lp)
  for (lp = region->landing_pads; lp ; lp = lp->next_lp)
    {
    {
      if (lp->post_landing_pad)
      if (lp->post_landing_pad)
        EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
        EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
      VEC_replace (eh_landing_pad, cfun->eh->lp_array, lp->index, NULL);
      VEC_replace (eh_landing_pad, cfun->eh->lp_array, lp->index, NULL);
    }
    }
 
 
  outer = region->outer;
  outer = region->outer;
  if (outer)
  if (outer)
    pp_start = &outer->inner;
    pp_start = &outer->inner;
  else
  else
    pp_start = &cfun->eh->region_tree;
    pp_start = &cfun->eh->region_tree;
  for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
  for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
    continue;
    continue;
  if (region->inner)
  if (region->inner)
    {
    {
      *pp = p = region->inner;
      *pp = p = region->inner;
      do
      do
        {
        {
          p->outer = outer;
          p->outer = outer;
          pp = &p->next_peer;
          pp = &p->next_peer;
          p = *pp;
          p = *pp;
        }
        }
      while (p);
      while (p);
    }
    }
  *pp = region->next_peer;
  *pp = region->next_peer;
 
 
  VEC_replace (eh_region, cfun->eh->region_array, region->index, NULL);
  VEC_replace (eh_region, cfun->eh->region_array, region->index, NULL);
}
}
 
 
/* Invokes CALLBACK for every exception handler landing pad label.
/* Invokes CALLBACK for every exception handler landing pad label.
   Only used by reload hackery; should not be used by new code.  */
   Only used by reload hackery; should not be used by new code.  */
 
 
void
void
for_each_eh_label (void (*callback) (rtx))
for_each_eh_label (void (*callback) (rtx))
{
{
  eh_landing_pad lp;
  eh_landing_pad lp;
  int i;
  int i;
 
 
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
  for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
    {
    {
      if (lp)
      if (lp)
        {
        {
          rtx lab = lp->landing_pad;
          rtx lab = lp->landing_pad;
          if (lab && LABEL_P (lab))
          if (lab && LABEL_P (lab))
            (*callback) (lab);
            (*callback) (lab);
        }
        }
    }
    }
}
}


/* Create the REG_EH_REGION note for INSN, given its ECF_FLAGS for a
/* Create the REG_EH_REGION note for INSN, given its ECF_FLAGS for a
   call insn.
   call insn.
 
 
   At the gimple level, we use LP_NR
   At the gimple level, we use LP_NR
       > 0 : The statement transfers to landing pad LP_NR
       > 0 : The statement transfers to landing pad LP_NR
       = 0 : The statement is outside any EH region
       = 0 : The statement is outside any EH region
       < 0 : The statement is within MUST_NOT_THROW region -LP_NR.
       < 0 : The statement is within MUST_NOT_THROW region -LP_NR.
 
 
   At the rtl level, we use LP_NR
   At the rtl level, we use LP_NR
       > 0 : The insn transfers to landing pad LP_NR
       > 0 : The insn transfers to landing pad LP_NR
       = 0 : The insn cannot throw
       = 0 : The insn cannot throw
       < 0 : The insn is within MUST_NOT_THROW region -LP_NR
       < 0 : The insn is within MUST_NOT_THROW region -LP_NR
       = INT_MIN : The insn cannot throw or execute a nonlocal-goto.
       = INT_MIN : The insn cannot throw or execute a nonlocal-goto.
       missing note: The insn is outside any EH region.
       missing note: The insn is outside any EH region.
 
 
  ??? This difference probably ought to be avoided.  We could stand
  ??? This difference probably ought to be avoided.  We could stand
  to record nothrow for arbitrary gimple statements, and so avoid
  to record nothrow for arbitrary gimple statements, and so avoid
  some moderately complex lookups in stmt_could_throw_p.  Perhaps
  some moderately complex lookups in stmt_could_throw_p.  Perhaps
  NOTHROW should be mapped on both sides to INT_MIN.  Perhaps the
  NOTHROW should be mapped on both sides to INT_MIN.  Perhaps the
  no-nonlocal-goto property should be recorded elsewhere as a bit
  no-nonlocal-goto property should be recorded elsewhere as a bit
  on the call_insn directly.  Perhaps we should make more use of
  on the call_insn directly.  Perhaps we should make more use of
  attaching the trees to call_insns (reachable via symbol_ref in
  attaching the trees to call_insns (reachable via symbol_ref in
  direct call cases) and just pull the data out of the trees.  */
  direct call cases) and just pull the data out of the trees.  */
 
 
void
void
make_reg_eh_region_note (rtx insn, int ecf_flags, int lp_nr)
make_reg_eh_region_note (rtx insn, int ecf_flags, int lp_nr)
{
{
  rtx value;
  rtx value;
  if (ecf_flags & ECF_NOTHROW)
  if (ecf_flags & ECF_NOTHROW)
    value = const0_rtx;
    value = const0_rtx;
  else if (lp_nr != 0)
  else if (lp_nr != 0)
    value = GEN_INT (lp_nr);
    value = GEN_INT (lp_nr);
  else
  else
    return;
    return;
  add_reg_note (insn, REG_EH_REGION, value);
  add_reg_note (insn, REG_EH_REGION, value);
}
}
 
 
/* Create a REG_EH_REGION note for a CALL_INSN that cannot throw
/* Create a REG_EH_REGION note for a CALL_INSN that cannot throw
   nor perform a non-local goto.  Replace the region note if it
   nor perform a non-local goto.  Replace the region note if it
   already exists.  */
   already exists.  */
 
 
void
void
make_reg_eh_region_note_nothrow_nononlocal (rtx insn)
make_reg_eh_region_note_nothrow_nononlocal (rtx insn)
{
{
  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  rtx intmin = GEN_INT (INT_MIN);
  rtx intmin = GEN_INT (INT_MIN);
 
 
  if (note != 0)
  if (note != 0)
    XEXP (note, 0) = intmin;
    XEXP (note, 0) = intmin;
  else
  else
    add_reg_note (insn, REG_EH_REGION, intmin);
    add_reg_note (insn, REG_EH_REGION, intmin);
}
}
 
 
/* Return true if INSN could throw, assuming no REG_EH_REGION note
/* Return true if INSN could throw, assuming no REG_EH_REGION note
   to the contrary.  */
   to the contrary.  */
 
 
bool
bool
insn_could_throw_p (const_rtx insn)
insn_could_throw_p (const_rtx insn)
{
{
  if (!flag_exceptions)
  if (!flag_exceptions)
    return false;
    return false;
  if (CALL_P (insn))
  if (CALL_P (insn))
    return true;
    return true;
  if (INSN_P (insn) && flag_non_call_exceptions)
  if (INSN_P (insn) && flag_non_call_exceptions)
    return may_trap_p (PATTERN (insn));
    return may_trap_p (PATTERN (insn));
  return false;
  return false;
}
}
 
 
/* Copy an REG_EH_REGION note to each insn that might throw beginning
/* Copy an REG_EH_REGION note to each insn that might throw beginning
   at FIRST and ending at LAST.  NOTE_OR_INSN is either the source insn
   at FIRST and ending at LAST.  NOTE_OR_INSN is either the source insn
   to look for a note, or the note itself.  */
   to look for a note, or the note itself.  */
 
 
void
void
copy_reg_eh_region_note_forward (rtx note_or_insn, rtx first, rtx last)
copy_reg_eh_region_note_forward (rtx note_or_insn, rtx first, rtx last)
{
{
  rtx insn, note = note_or_insn;
  rtx insn, note = note_or_insn;
 
 
  if (INSN_P (note_or_insn))
  if (INSN_P (note_or_insn))
    {
    {
      note = find_reg_note (note_or_insn, REG_EH_REGION, NULL_RTX);
      note = find_reg_note (note_or_insn, REG_EH_REGION, NULL_RTX);
      if (note == NULL)
      if (note == NULL)
        return;
        return;
    }
    }
  note = XEXP (note, 0);
  note = XEXP (note, 0);
 
 
  for (insn = first; insn != last ; insn = NEXT_INSN (insn))
  for (insn = first; insn != last ; insn = NEXT_INSN (insn))
    if (!find_reg_note (insn, REG_EH_REGION, NULL_RTX)
    if (!find_reg_note (insn, REG_EH_REGION, NULL_RTX)
        && insn_could_throw_p (insn))
        && insn_could_throw_p (insn))
      add_reg_note (insn, REG_EH_REGION, note);
      add_reg_note (insn, REG_EH_REGION, note);
}
}
 
 
/* Likewise, but iterate backward.  */
/* Likewise, but iterate backward.  */
 
 
void
void
copy_reg_eh_region_note_backward (rtx note_or_insn, rtx last, rtx first)
copy_reg_eh_region_note_backward (rtx note_or_insn, rtx last, rtx first)
{
{
  rtx insn, note = note_or_insn;
  rtx insn, note = note_or_insn;
 
 
  if (INSN_P (note_or_insn))
  if (INSN_P (note_or_insn))
    {
    {
      note = find_reg_note (note_or_insn, REG_EH_REGION, NULL_RTX);
      note = find_reg_note (note_or_insn, REG_EH_REGION, NULL_RTX);
      if (note == NULL)
      if (note == NULL)
        return;
        return;
    }
    }
  note = XEXP (note, 0);
  note = XEXP (note, 0);
 
 
  for (insn = last; insn != first; insn = PREV_INSN (insn))
  for (insn = last; insn != first; insn = PREV_INSN (insn))
    if (insn_could_throw_p (insn))
    if (insn_could_throw_p (insn))
      add_reg_note (insn, REG_EH_REGION, note);
      add_reg_note (insn, REG_EH_REGION, note);
}
}
 
 
 
 
/* Extract all EH information from INSN.  Return true if the insn
/* Extract all EH information from INSN.  Return true if the insn
   was marked NOTHROW.  */
   was marked NOTHROW.  */
 
 
static bool
static bool
get_eh_region_and_lp_from_rtx (const_rtx insn, eh_region *pr,
get_eh_region_and_lp_from_rtx (const_rtx insn, eh_region *pr,
                               eh_landing_pad *plp)
                               eh_landing_pad *plp)
{
{
  eh_landing_pad lp = NULL;
  eh_landing_pad lp = NULL;
  eh_region r = NULL;
  eh_region r = NULL;
  bool ret = false;
  bool ret = false;
  rtx note;
  rtx note;
  int lp_nr;
  int lp_nr;
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    goto egress;
    goto egress;
 
 
  if (NONJUMP_INSN_P (insn)
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    insn = XVECEXP (PATTERN (insn), 0, 0);
    insn = XVECEXP (PATTERN (insn), 0, 0);
 
 
  note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  if (!note)
  if (!note)
    {
    {
      ret = !insn_could_throw_p (insn);
      ret = !insn_could_throw_p (insn);
      goto egress;
      goto egress;
    }
    }
 
 
  lp_nr = INTVAL (XEXP (note, 0));
  lp_nr = INTVAL (XEXP (note, 0));
  if (lp_nr == 0 || lp_nr == INT_MIN)
  if (lp_nr == 0 || lp_nr == INT_MIN)
    {
    {
      ret = true;
      ret = true;
      goto egress;
      goto egress;
    }
    }
 
 
  if (lp_nr < 0)
  if (lp_nr < 0)
    r = VEC_index (eh_region, cfun->eh->region_array, -lp_nr);
    r = VEC_index (eh_region, cfun->eh->region_array, -lp_nr);
  else
  else
    {
    {
      lp = VEC_index (eh_landing_pad, cfun->eh->lp_array, lp_nr);
      lp = VEC_index (eh_landing_pad, cfun->eh->lp_array, lp_nr);
      r = lp->region;
      r = lp->region;
    }
    }
 
 
 egress:
 egress:
  *plp = lp;
  *plp = lp;
  *pr = r;
  *pr = r;
  return ret;
  return ret;
}
}
 
 
/* Return the landing pad to which INSN may go, or NULL if it does not
/* Return the landing pad to which INSN may go, or NULL if it does not
   have a reachable landing pad within this function.  */
   have a reachable landing pad within this function.  */
 
 
eh_landing_pad
eh_landing_pad
get_eh_landing_pad_from_rtx (const_rtx insn)
get_eh_landing_pad_from_rtx (const_rtx insn)
{
{
  eh_landing_pad lp;
  eh_landing_pad lp;
  eh_region r;
  eh_region r;
 
 
  get_eh_region_and_lp_from_rtx (insn, &r, &lp);
  get_eh_region_and_lp_from_rtx (insn, &r, &lp);
  return lp;
  return lp;
}
}
 
 
/* Return the region to which INSN may go, or NULL if it does not
/* Return the region to which INSN may go, or NULL if it does not
   have a reachable region within this function.  */
   have a reachable region within this function.  */
 
 
eh_region
eh_region
get_eh_region_from_rtx (const_rtx insn)
get_eh_region_from_rtx (const_rtx insn)
{
{
  eh_landing_pad lp;
  eh_landing_pad lp;
  eh_region r;
  eh_region r;
 
 
  get_eh_region_and_lp_from_rtx (insn, &r, &lp);
  get_eh_region_and_lp_from_rtx (insn, &r, &lp);
  return r;
  return r;
}
}
 
 
/* Return true if INSN throws and is caught by something in this function.  */
/* Return true if INSN throws and is caught by something in this function.  */
 
 
bool
bool
can_throw_internal (const_rtx insn)
can_throw_internal (const_rtx insn)
{
{
  return get_eh_landing_pad_from_rtx (insn) != NULL;
  return get_eh_landing_pad_from_rtx (insn) != NULL;
}
}
 
 
/* Return true if INSN throws and escapes from the current function.  */
/* Return true if INSN throws and escapes from the current function.  */
 
 
bool
bool
can_throw_external (const_rtx insn)
can_throw_external (const_rtx insn)
{
{
  eh_landing_pad lp;
  eh_landing_pad lp;
  eh_region r;
  eh_region r;
  bool nothrow;
  bool nothrow;
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return false;
    return false;
 
 
  if (NONJUMP_INSN_P (insn)
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
    {
      rtx seq = PATTERN (insn);
      rtx seq = PATTERN (insn);
      int i, n = XVECLEN (seq, 0);
      int i, n = XVECLEN (seq, 0);
 
 
      for (i = 0; i < n; i++)
      for (i = 0; i < n; i++)
        if (can_throw_external (XVECEXP (seq, 0, i)))
        if (can_throw_external (XVECEXP (seq, 0, i)))
          return true;
          return true;
 
 
      return false;
      return false;
    }
    }
 
 
  nothrow = get_eh_region_and_lp_from_rtx (insn, &r, &lp);
  nothrow = get_eh_region_and_lp_from_rtx (insn, &r, &lp);
 
 
  /* If we can't throw, we obviously can't throw external.  */
  /* If we can't throw, we obviously can't throw external.  */
  if (nothrow)
  if (nothrow)
    return false;
    return false;
 
 
  /* If we have an internal landing pad, then we're not external.  */
  /* If we have an internal landing pad, then we're not external.  */
  if (lp != NULL)
  if (lp != NULL)
    return false;
    return false;
 
 
  /* If we're not within an EH region, then we are external.  */
  /* If we're not within an EH region, then we are external.  */
  if (r == NULL)
  if (r == NULL)
    return true;
    return true;
 
 
  /* The only thing that ought to be left is MUST_NOT_THROW regions,
  /* The only thing that ought to be left is MUST_NOT_THROW regions,
     which don't always have landing pads.  */
     which don't always have landing pads.  */
  gcc_assert (r->type == ERT_MUST_NOT_THROW);
  gcc_assert (r->type == ERT_MUST_NOT_THROW);
  return false;
  return false;
}
}
 
 
/* Return true if INSN cannot throw at all.  */
/* Return true if INSN cannot throw at all.  */
 
 
bool
bool
insn_nothrow_p (const_rtx insn)
insn_nothrow_p (const_rtx insn)
{
{
  eh_landing_pad lp;
  eh_landing_pad lp;
  eh_region r;
  eh_region r;
 
 
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return true;
    return true;
 
 
  if (NONJUMP_INSN_P (insn)
  if (NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
    {
      rtx seq = PATTERN (insn);
      rtx seq = PATTERN (insn);
      int i, n = XVECLEN (seq, 0);
      int i, n = XVECLEN (seq, 0);
 
 
      for (i = 0; i < n; i++)
      for (i = 0; i < n; i++)
        if (!insn_nothrow_p (XVECEXP (seq, 0, i)))
        if (!insn_nothrow_p (XVECEXP (seq, 0, i)))
          return false;
          return false;
 
 
      return true;
      return true;
    }
    }
 
 
  return get_eh_region_and_lp_from_rtx (insn, &r, &lp);
  return get_eh_region_and_lp_from_rtx (insn, &r, &lp);
}
}
 
 
/* Return true if INSN can perform a non-local goto.  */
/* Return true if INSN can perform a non-local goto.  */
/* ??? This test is here in this file because it (ab)uses REG_EH_REGION.  */
/* ??? This test is here in this file because it (ab)uses REG_EH_REGION.  */
 
 
bool
bool
can_nonlocal_goto (const_rtx insn)
can_nonlocal_goto (const_rtx insn)
{
{
  if (nonlocal_goto_handler_labels && CALL_P (insn))
  if (nonlocal_goto_handler_labels && CALL_P (insn))
    {
    {
      rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
      if (!note || INTVAL (XEXP (note, 0)) != INT_MIN)
      if (!note || INTVAL (XEXP (note, 0)) != INT_MIN)
        return true;
        return true;
    }
    }
  return false;
  return false;
}
}


/* Set TREE_NOTHROW and crtl->all_throwers_are_sibcalls.  */
/* Set TREE_NOTHROW and crtl->all_throwers_are_sibcalls.  */
 
 
static unsigned int
static unsigned int
set_nothrow_function_flags (void)
set_nothrow_function_flags (void)
{
{
  rtx insn;
  rtx insn;
 
 
  crtl->nothrow = 1;
  crtl->nothrow = 1;
 
 
  /* Assume crtl->all_throwers_are_sibcalls until we encounter
  /* Assume crtl->all_throwers_are_sibcalls until we encounter
     something that can throw an exception.  We specifically exempt
     something that can throw an exception.  We specifically exempt
     CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
     CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
     and can't throw.  Most CALL_INSNs are not SIBLING_CALL_P, so this
     and can't throw.  Most CALL_INSNs are not SIBLING_CALL_P, so this
     is optimistic.  */
     is optimistic.  */
 
 
  crtl->all_throwers_are_sibcalls = 1;
  crtl->all_throwers_are_sibcalls = 1;
 
 
  /* If we don't know that this implementation of the function will
  /* If we don't know that this implementation of the function will
     actually be used, then we must not set TREE_NOTHROW, since
     actually be used, then we must not set TREE_NOTHROW, since
     callers must not assume that this function does not throw.  */
     callers must not assume that this function does not throw.  */
  if (TREE_NOTHROW (current_function_decl))
  if (TREE_NOTHROW (current_function_decl))
    return 0;
    return 0;
 
 
  if (! flag_exceptions)
  if (! flag_exceptions)
    return 0;
    return 0;
 
 
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (can_throw_external (insn))
    if (can_throw_external (insn))
      {
      {
        crtl->nothrow = 0;
        crtl->nothrow = 0;
 
 
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
          {
          {
            crtl->all_throwers_are_sibcalls = 0;
            crtl->all_throwers_are_sibcalls = 0;
            return 0;
            return 0;
          }
          }
      }
      }
 
 
  for (insn = crtl->epilogue_delay_list; insn;
  for (insn = crtl->epilogue_delay_list; insn;
       insn = XEXP (insn, 1))
       insn = XEXP (insn, 1))
    if (can_throw_external (insn))
    if (can_throw_external (insn))
      {
      {
        crtl->nothrow = 0;
        crtl->nothrow = 0;
 
 
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
        if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
          {
          {
            crtl->all_throwers_are_sibcalls = 0;
            crtl->all_throwers_are_sibcalls = 0;
            return 0;
            return 0;
          }
          }
      }
      }
  if (crtl->nothrow
  if (crtl->nothrow
      && (cgraph_function_body_availability (cgraph_node
      && (cgraph_function_body_availability (cgraph_node
                                             (current_function_decl))
                                             (current_function_decl))
          >= AVAIL_AVAILABLE))
          >= AVAIL_AVAILABLE))
    {
    {
      struct cgraph_node *node = cgraph_node (current_function_decl);
      struct cgraph_node *node = cgraph_node (current_function_decl);
      struct cgraph_edge *e;
      struct cgraph_edge *e;
      for (e = node->callers; e; e = e->next_caller)
      for (e = node->callers; e; e = e->next_caller)
        e->can_throw_external = false;
        e->can_throw_external = false;
      cgraph_set_nothrow_flag (node, true);
      cgraph_set_nothrow_flag (node, true);
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "Marking function nothrow: %s\n\n",
        fprintf (dump_file, "Marking function nothrow: %s\n\n",
                 current_function_name ());
                 current_function_name ());
    }
    }
  return 0;
  return 0;
}
}
 
 
struct rtl_opt_pass pass_set_nothrow_function_flags =
struct rtl_opt_pass pass_set_nothrow_function_flags =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "nothrow",                            /* name */
  "nothrow",                            /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  set_nothrow_function_flags,           /* execute */
  set_nothrow_function_flags,           /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_NONE,                              /* tv_id */
  TV_NONE,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
 }
 }
};
};
 
 


/* Various hooks for unwind library.  */
/* Various hooks for unwind library.  */
 
 
/* Expand the EH support builtin functions:
/* Expand the EH support builtin functions:
   __builtin_eh_pointer and __builtin_eh_filter.  */
   __builtin_eh_pointer and __builtin_eh_filter.  */
 
 
static eh_region
static eh_region
expand_builtin_eh_common (tree region_nr_t)
expand_builtin_eh_common (tree region_nr_t)
{
{
  HOST_WIDE_INT region_nr;
  HOST_WIDE_INT region_nr;
  eh_region region;
  eh_region region;
 
 
  gcc_assert (host_integerp (region_nr_t, 0));
  gcc_assert (host_integerp (region_nr_t, 0));
  region_nr = tree_low_cst (region_nr_t, 0);
  region_nr = tree_low_cst (region_nr_t, 0);
 
 
  region = VEC_index (eh_region, cfun->eh->region_array, region_nr);
  region = VEC_index (eh_region, cfun->eh->region_array, region_nr);
 
 
  /* ??? We shouldn't have been able to delete a eh region without
  /* ??? We shouldn't have been able to delete a eh region without
     deleting all the code that depended on it.  */
     deleting all the code that depended on it.  */
  gcc_assert (region != NULL);
  gcc_assert (region != NULL);
 
 
  return region;
  return region;
}
}
 
 
/* Expand to the exc_ptr value from the given eh region.  */
/* Expand to the exc_ptr value from the given eh region.  */
 
 
rtx
rtx
expand_builtin_eh_pointer (tree exp)
expand_builtin_eh_pointer (tree exp)
{
{
  eh_region region
  eh_region region
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 0));
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 0));
  if (region->exc_ptr_reg == NULL)
  if (region->exc_ptr_reg == NULL)
    region->exc_ptr_reg = gen_reg_rtx (ptr_mode);
    region->exc_ptr_reg = gen_reg_rtx (ptr_mode);
  return region->exc_ptr_reg;
  return region->exc_ptr_reg;
}
}
 
 
/* Expand to the filter value from the given eh region.  */
/* Expand to the filter value from the given eh region.  */
 
 
rtx
rtx
expand_builtin_eh_filter (tree exp)
expand_builtin_eh_filter (tree exp)
{
{
  eh_region region
  eh_region region
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 0));
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 0));
  if (region->filter_reg == NULL)
  if (region->filter_reg == NULL)
    region->filter_reg = gen_reg_rtx (targetm.eh_return_filter_mode ());
    region->filter_reg = gen_reg_rtx (targetm.eh_return_filter_mode ());
  return region->filter_reg;
  return region->filter_reg;
}
}
 
 
/* Copy the exc_ptr and filter values from one landing pad's registers
/* Copy the exc_ptr and filter values from one landing pad's registers
   to another.  This is used to inline the resx statement.  */
   to another.  This is used to inline the resx statement.  */
 
 
rtx
rtx
expand_builtin_eh_copy_values (tree exp)
expand_builtin_eh_copy_values (tree exp)
{
{
  eh_region dst
  eh_region dst
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 0));
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 0));
  eh_region src
  eh_region src
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 1));
    = expand_builtin_eh_common (CALL_EXPR_ARG (exp, 1));
  enum machine_mode fmode = targetm.eh_return_filter_mode ();
  enum machine_mode fmode = targetm.eh_return_filter_mode ();
 
 
  if (dst->exc_ptr_reg == NULL)
  if (dst->exc_ptr_reg == NULL)
    dst->exc_ptr_reg = gen_reg_rtx (ptr_mode);
    dst->exc_ptr_reg = gen_reg_rtx (ptr_mode);
  if (src->exc_ptr_reg == NULL)
  if (src->exc_ptr_reg == NULL)
    src->exc_ptr_reg = gen_reg_rtx (ptr_mode);
    src->exc_ptr_reg = gen_reg_rtx (ptr_mode);
 
 
  if (dst->filter_reg == NULL)
  if (dst->filter_reg == NULL)
    dst->filter_reg = gen_reg_rtx (fmode);
    dst->filter_reg = gen_reg_rtx (fmode);
  if (src->filter_reg == NULL)
  if (src->filter_reg == NULL)
    src->filter_reg = gen_reg_rtx (fmode);
    src->filter_reg = gen_reg_rtx (fmode);
 
 
  emit_move_insn (dst->exc_ptr_reg, src->exc_ptr_reg);
  emit_move_insn (dst->exc_ptr_reg, src->exc_ptr_reg);
  emit_move_insn (dst->filter_reg, src->filter_reg);
  emit_move_insn (dst->filter_reg, src->filter_reg);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Do any necessary initialization to access arbitrary stack frames.
/* Do any necessary initialization to access arbitrary stack frames.
   On the SPARC, this means flushing the register windows.  */
   On the SPARC, this means flushing the register windows.  */
 
 
void
void
expand_builtin_unwind_init (void)
expand_builtin_unwind_init (void)
{
{
  /* Set this so all the registers get saved in our frame; we need to be
  /* Set this so all the registers get saved in our frame; we need to be
     able to copy the saved values for any registers from frames we unwind.  */
     able to copy the saved values for any registers from frames we unwind.  */
  crtl->saves_all_registers = 1;
  crtl->saves_all_registers = 1;
 
 
#ifdef SETUP_FRAME_ADDRESSES
#ifdef SETUP_FRAME_ADDRESSES
  SETUP_FRAME_ADDRESSES ();
  SETUP_FRAME_ADDRESSES ();
#endif
#endif
}
}
 
 
/* Map a non-negative number to an eh return data register number; expands
/* Map a non-negative number to an eh return data register number; expands
   to -1 if no return data register is associated with the input number.
   to -1 if no return data register is associated with the input number.
   At least the inputs 0 and 1 must be mapped; the target may provide more.  */
   At least the inputs 0 and 1 must be mapped; the target may provide more.  */
 
 
rtx
rtx
expand_builtin_eh_return_data_regno (tree exp)
expand_builtin_eh_return_data_regno (tree exp)
{
{
  tree which = CALL_EXPR_ARG (exp, 0);
  tree which = CALL_EXPR_ARG (exp, 0);
  unsigned HOST_WIDE_INT iwhich;
  unsigned HOST_WIDE_INT iwhich;
 
 
  if (TREE_CODE (which) != INTEGER_CST)
  if (TREE_CODE (which) != INTEGER_CST)
    {
    {
      error ("argument of %<__builtin_eh_return_regno%> must be constant");
      error ("argument of %<__builtin_eh_return_regno%> must be constant");
      return constm1_rtx;
      return constm1_rtx;
    }
    }
 
 
  iwhich = tree_low_cst (which, 1);
  iwhich = tree_low_cst (which, 1);
  iwhich = EH_RETURN_DATA_REGNO (iwhich);
  iwhich = EH_RETURN_DATA_REGNO (iwhich);
  if (iwhich == INVALID_REGNUM)
  if (iwhich == INVALID_REGNUM)
    return constm1_rtx;
    return constm1_rtx;
 
 
#ifdef DWARF_FRAME_REGNUM
#ifdef DWARF_FRAME_REGNUM
  iwhich = DWARF_FRAME_REGNUM (iwhich);
  iwhich = DWARF_FRAME_REGNUM (iwhich);
#else
#else
  iwhich = DBX_REGISTER_NUMBER (iwhich);
  iwhich = DBX_REGISTER_NUMBER (iwhich);
#endif
#endif
 
 
  return GEN_INT (iwhich);
  return GEN_INT (iwhich);
}
}
 
 
/* Given a value extracted from the return address register or stack slot,
/* Given a value extracted from the return address register or stack slot,
   return the actual address encoded in that value.  */
   return the actual address encoded in that value.  */
 
 
rtx
rtx
expand_builtin_extract_return_addr (tree addr_tree)
expand_builtin_extract_return_addr (tree addr_tree)
{
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
  rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
 
 
  if (GET_MODE (addr) != Pmode
  if (GET_MODE (addr) != Pmode
      && GET_MODE (addr) != VOIDmode)
      && GET_MODE (addr) != VOIDmode)
    {
    {
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
      addr = convert_memory_address (Pmode, addr);
      addr = convert_memory_address (Pmode, addr);
#else
#else
      addr = convert_to_mode (Pmode, addr, 0);
      addr = convert_to_mode (Pmode, addr, 0);
#endif
#endif
    }
    }
 
 
  /* First mask out any unwanted bits.  */
  /* First mask out any unwanted bits.  */
#ifdef MASK_RETURN_ADDR
#ifdef MASK_RETURN_ADDR
  expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
  expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
#endif
#endif
 
 
  /* Then adjust to find the real return address.  */
  /* Then adjust to find the real return address.  */
#if defined (RETURN_ADDR_OFFSET)
#if defined (RETURN_ADDR_OFFSET)
  addr = plus_constant (addr, RETURN_ADDR_OFFSET);
  addr = plus_constant (addr, RETURN_ADDR_OFFSET);
#endif
#endif
 
 
  return addr;
  return addr;
}
}
 
 
/* Given an actual address in addr_tree, do any necessary encoding
/* Given an actual address in addr_tree, do any necessary encoding
   and return the value to be stored in the return address register or
   and return the value to be stored in the return address register or
   stack slot so the epilogue will return to that address.  */
   stack slot so the epilogue will return to that address.  */
 
 
rtx
rtx
expand_builtin_frob_return_addr (tree addr_tree)
expand_builtin_frob_return_addr (tree addr_tree)
{
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, EXPAND_NORMAL);
 
 
  addr = convert_memory_address (Pmode, addr);
  addr = convert_memory_address (Pmode, addr);
 
 
#ifdef RETURN_ADDR_OFFSET
#ifdef RETURN_ADDR_OFFSET
  addr = force_reg (Pmode, addr);
  addr = force_reg (Pmode, addr);
  addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
  addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
#endif
#endif
 
 
  return addr;
  return addr;
}
}
 
 
/* Set up the epilogue with the magic bits we'll need to return to the
/* Set up the epilogue with the magic bits we'll need to return to the
   exception handler.  */
   exception handler.  */
 
 
void
void
expand_builtin_eh_return (tree stackadj_tree ATTRIBUTE_UNUSED,
expand_builtin_eh_return (tree stackadj_tree ATTRIBUTE_UNUSED,
                          tree handler_tree)
                          tree handler_tree)
{
{
  rtx tmp;
  rtx tmp;
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  tmp = expand_expr (stackadj_tree, crtl->eh.ehr_stackadj,
  tmp = expand_expr (stackadj_tree, crtl->eh.ehr_stackadj,
                     VOIDmode, EXPAND_NORMAL);
                     VOIDmode, EXPAND_NORMAL);
  tmp = convert_memory_address (Pmode, tmp);
  tmp = convert_memory_address (Pmode, tmp);
  if (!crtl->eh.ehr_stackadj)
  if (!crtl->eh.ehr_stackadj)
    crtl->eh.ehr_stackadj = copy_to_reg (tmp);
    crtl->eh.ehr_stackadj = copy_to_reg (tmp);
  else if (tmp != crtl->eh.ehr_stackadj)
  else if (tmp != crtl->eh.ehr_stackadj)
    emit_move_insn (crtl->eh.ehr_stackadj, tmp);
    emit_move_insn (crtl->eh.ehr_stackadj, tmp);
#endif
#endif
 
 
  tmp = expand_expr (handler_tree, crtl->eh.ehr_handler,
  tmp = expand_expr (handler_tree, crtl->eh.ehr_handler,
                     VOIDmode, EXPAND_NORMAL);
                     VOIDmode, EXPAND_NORMAL);
  tmp = convert_memory_address (Pmode, tmp);
  tmp = convert_memory_address (Pmode, tmp);
  if (!crtl->eh.ehr_handler)
  if (!crtl->eh.ehr_handler)
    crtl->eh.ehr_handler = copy_to_reg (tmp);
    crtl->eh.ehr_handler = copy_to_reg (tmp);
  else if (tmp != crtl->eh.ehr_handler)
  else if (tmp != crtl->eh.ehr_handler)
    emit_move_insn (crtl->eh.ehr_handler, tmp);
    emit_move_insn (crtl->eh.ehr_handler, tmp);
 
 
  if (!crtl->eh.ehr_label)
  if (!crtl->eh.ehr_label)
    crtl->eh.ehr_label = gen_label_rtx ();
    crtl->eh.ehr_label = gen_label_rtx ();
  emit_jump (crtl->eh.ehr_label);
  emit_jump (crtl->eh.ehr_label);
}
}
 
 
/* Expand __builtin_eh_return.  This exit path from the function loads up
/* Expand __builtin_eh_return.  This exit path from the function loads up
   the eh return data registers, adjusts the stack, and branches to a
   the eh return data registers, adjusts the stack, and branches to a
   given PC other than the normal return address.  */
   given PC other than the normal return address.  */
 
 
void
void
expand_eh_return (void)
expand_eh_return (void)
{
{
  rtx around_label;
  rtx around_label;
 
 
  if (! crtl->eh.ehr_label)
  if (! crtl->eh.ehr_label)
    return;
    return;
 
 
  crtl->calls_eh_return = 1;
  crtl->calls_eh_return = 1;
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
  emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
#endif
#endif
 
 
  around_label = gen_label_rtx ();
  around_label = gen_label_rtx ();
  emit_jump (around_label);
  emit_jump (around_label);
 
 
  emit_label (crtl->eh.ehr_label);
  emit_label (crtl->eh.ehr_label);
  clobber_return_register ();
  clobber_return_register ();
 
 
#ifdef EH_RETURN_STACKADJ_RTX
#ifdef EH_RETURN_STACKADJ_RTX
  emit_move_insn (EH_RETURN_STACKADJ_RTX, crtl->eh.ehr_stackadj);
  emit_move_insn (EH_RETURN_STACKADJ_RTX, crtl->eh.ehr_stackadj);
#endif
#endif
 
 
#ifdef HAVE_eh_return
#ifdef HAVE_eh_return
  if (HAVE_eh_return)
  if (HAVE_eh_return)
    emit_insn (gen_eh_return (crtl->eh.ehr_handler));
    emit_insn (gen_eh_return (crtl->eh.ehr_handler));
  else
  else
#endif
#endif
    {
    {
#ifdef EH_RETURN_HANDLER_RTX
#ifdef EH_RETURN_HANDLER_RTX
      emit_move_insn (EH_RETURN_HANDLER_RTX, crtl->eh.ehr_handler);
      emit_move_insn (EH_RETURN_HANDLER_RTX, crtl->eh.ehr_handler);
#else
#else
      error ("__builtin_eh_return not supported on this target");
      error ("__builtin_eh_return not supported on this target");
#endif
#endif
    }
    }
 
 
  emit_label (around_label);
  emit_label (around_label);
}
}
 
 
/* Convert a ptr_mode address ADDR_TREE to a Pmode address controlled by
/* Convert a ptr_mode address ADDR_TREE to a Pmode address controlled by
   POINTERS_EXTEND_UNSIGNED and return it.  */
   POINTERS_EXTEND_UNSIGNED and return it.  */
 
 
rtx
rtx
expand_builtin_extend_pointer (tree addr_tree)
expand_builtin_extend_pointer (tree addr_tree)
{
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  int extend;
  int extend;
 
 
#ifdef POINTERS_EXTEND_UNSIGNED
#ifdef POINTERS_EXTEND_UNSIGNED
  extend = POINTERS_EXTEND_UNSIGNED;
  extend = POINTERS_EXTEND_UNSIGNED;
#else
#else
  /* The previous EH code did an unsigned extend by default, so we do this also
  /* The previous EH code did an unsigned extend by default, so we do this also
     for consistency.  */
     for consistency.  */
  extend = 1;
  extend = 1;
#endif
#endif
 
 
  return convert_modes (targetm.unwind_word_mode (), ptr_mode, addr, extend);
  return convert_modes (targetm.unwind_word_mode (), ptr_mode, addr, extend);
}
}


/* In the following functions, we represent entries in the action table
/* In the following functions, we represent entries in the action table
   as 1-based indices.  Special cases are:
   as 1-based indices.  Special cases are:
 
 
         0:     null action record, non-null landing pad; implies cleanups
         0:     null action record, non-null landing pad; implies cleanups
        -1:     null action record, null landing pad; implies no action
        -1:     null action record, null landing pad; implies no action
        -2:     no call-site entry; implies must_not_throw
        -2:     no call-site entry; implies must_not_throw
        -3:     we have yet to process outer regions
        -3:     we have yet to process outer regions
 
 
   Further, no special cases apply to the "next" field of the record.
   Further, no special cases apply to the "next" field of the record.
   For next, 0 means end of list.  */
   For next, 0 means end of list.  */
 
 
struct action_record
struct action_record
{
{
  int offset;
  int offset;
  int filter;
  int filter;
  int next;
  int next;
};
};
 
 
static int
static int
action_record_eq (const void *pentry, const void *pdata)
action_record_eq (const void *pentry, const void *pdata)
{
{
  const struct action_record *entry = (const struct action_record *) pentry;
  const struct action_record *entry = (const struct action_record *) pentry;
  const struct action_record *data = (const struct action_record *) pdata;
  const struct action_record *data = (const struct action_record *) pdata;
  return entry->filter == data->filter && entry->next == data->next;
  return entry->filter == data->filter && entry->next == data->next;
}
}
 
 
static hashval_t
static hashval_t
action_record_hash (const void *pentry)
action_record_hash (const void *pentry)
{
{
  const struct action_record *entry = (const struct action_record *) pentry;
  const struct action_record *entry = (const struct action_record *) pentry;
  return entry->next * 1009 + entry->filter;
  return entry->next * 1009 + entry->filter;
}
}
 
 
static int
static int
add_action_record (htab_t ar_hash, int filter, int next)
add_action_record (htab_t ar_hash, int filter, int next)
{
{
  struct action_record **slot, *new_ar, tmp;
  struct action_record **slot, *new_ar, tmp;
 
 
  tmp.filter = filter;
  tmp.filter = filter;
  tmp.next = next;
  tmp.next = next;
  slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
  slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
 
 
  if ((new_ar = *slot) == NULL)
  if ((new_ar = *slot) == NULL)
    {
    {
      new_ar = XNEW (struct action_record);
      new_ar = XNEW (struct action_record);
      new_ar->offset = VEC_length (uchar, crtl->eh.action_record_data) + 1;
      new_ar->offset = VEC_length (uchar, crtl->eh.action_record_data) + 1;
      new_ar->filter = filter;
      new_ar->filter = filter;
      new_ar->next = next;
      new_ar->next = next;
      *slot = new_ar;
      *slot = new_ar;
 
 
      /* The filter value goes in untouched.  The link to the next
      /* The filter value goes in untouched.  The link to the next
         record is a "self-relative" byte offset, or zero to indicate
         record is a "self-relative" byte offset, or zero to indicate
         that there is no next record.  So convert the absolute 1 based
         that there is no next record.  So convert the absolute 1 based
         indices we've been carrying around into a displacement.  */
         indices we've been carrying around into a displacement.  */
 
 
      push_sleb128 (&crtl->eh.action_record_data, filter);
      push_sleb128 (&crtl->eh.action_record_data, filter);
      if (next)
      if (next)
        next -= VEC_length (uchar, crtl->eh.action_record_data) + 1;
        next -= VEC_length (uchar, crtl->eh.action_record_data) + 1;
      push_sleb128 (&crtl->eh.action_record_data, next);
      push_sleb128 (&crtl->eh.action_record_data, next);
    }
    }
 
 
  return new_ar->offset;
  return new_ar->offset;
}
}
 
 
static int
static int
collect_one_action_chain (htab_t ar_hash, eh_region region)
collect_one_action_chain (htab_t ar_hash, eh_region region)
{
{
  int next;
  int next;
 
 
  /* If we've reached the top of the region chain, then we have
  /* If we've reached the top of the region chain, then we have
     no actions, and require no landing pad.  */
     no actions, and require no landing pad.  */
  if (region == NULL)
  if (region == NULL)
    return -1;
    return -1;
 
 
  switch (region->type)
  switch (region->type)
    {
    {
    case ERT_CLEANUP:
    case ERT_CLEANUP:
      {
      {
        eh_region r;
        eh_region r;
        /* A cleanup adds a zero filter to the beginning of the chain, but
        /* A cleanup adds a zero filter to the beginning of the chain, but
           there are special cases to look out for.  If there are *only*
           there are special cases to look out for.  If there are *only*
           cleanups along a path, then it compresses to a zero action.
           cleanups along a path, then it compresses to a zero action.
           Further, if there are multiple cleanups along a path, we only
           Further, if there are multiple cleanups along a path, we only
           need to represent one of them, as that is enough to trigger
           need to represent one of them, as that is enough to trigger
           entry to the landing pad at runtime.  */
           entry to the landing pad at runtime.  */
        next = collect_one_action_chain (ar_hash, region->outer);
        next = collect_one_action_chain (ar_hash, region->outer);
        if (next <= 0)
        if (next <= 0)
          return 0;
          return 0;
        for (r = region->outer; r ; r = r->outer)
        for (r = region->outer; r ; r = r->outer)
          if (r->type == ERT_CLEANUP)
          if (r->type == ERT_CLEANUP)
            return next;
            return next;
        return add_action_record (ar_hash, 0, next);
        return add_action_record (ar_hash, 0, next);
      }
      }
 
 
    case ERT_TRY:
    case ERT_TRY:
      {
      {
        eh_catch c;
        eh_catch c;
 
 
        /* Process the associated catch regions in reverse order.
        /* Process the associated catch regions in reverse order.
           If there's a catch-all handler, then we don't need to
           If there's a catch-all handler, then we don't need to
           search outer regions.  Use a magic -3 value to record
           search outer regions.  Use a magic -3 value to record
           that we haven't done the outer search.  */
           that we haven't done the outer search.  */
        next = -3;
        next = -3;
        for (c = region->u.eh_try.last_catch; c ; c = c->prev_catch)
        for (c = region->u.eh_try.last_catch; c ; c = c->prev_catch)
          {
          {
            if (c->type_list == NULL)
            if (c->type_list == NULL)
              {
              {
                /* Retrieve the filter from the head of the filter list
                /* Retrieve the filter from the head of the filter list
                   where we have stored it (see assign_filter_values).  */
                   where we have stored it (see assign_filter_values).  */
                int filter = TREE_INT_CST_LOW (TREE_VALUE (c->filter_list));
                int filter = TREE_INT_CST_LOW (TREE_VALUE (c->filter_list));
                next = add_action_record (ar_hash, filter, 0);
                next = add_action_record (ar_hash, filter, 0);
              }
              }
            else
            else
              {
              {
                /* Once the outer search is done, trigger an action record for
                /* Once the outer search is done, trigger an action record for
                   each filter we have.  */
                   each filter we have.  */
                tree flt_node;
                tree flt_node;
 
 
                if (next == -3)
                if (next == -3)
                  {
                  {
                    next = collect_one_action_chain (ar_hash, region->outer);
                    next = collect_one_action_chain (ar_hash, region->outer);
 
 
                    /* If there is no next action, terminate the chain.  */
                    /* If there is no next action, terminate the chain.  */
                    if (next == -1)
                    if (next == -1)
                      next = 0;
                      next = 0;
                    /* If all outer actions are cleanups or must_not_throw,
                    /* If all outer actions are cleanups or must_not_throw,
                       we'll have no action record for it, since we had wanted
                       we'll have no action record for it, since we had wanted
                       to encode these states in the call-site record directly.
                       to encode these states in the call-site record directly.
                       Add a cleanup action to the chain to catch these.  */
                       Add a cleanup action to the chain to catch these.  */
                    else if (next <= 0)
                    else if (next <= 0)
                      next = add_action_record (ar_hash, 0, 0);
                      next = add_action_record (ar_hash, 0, 0);
                  }
                  }
 
 
                flt_node = c->filter_list;
                flt_node = c->filter_list;
                for (; flt_node; flt_node = TREE_CHAIN (flt_node))
                for (; flt_node; flt_node = TREE_CHAIN (flt_node))
                  {
                  {
                    int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
                    int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
                    next = add_action_record (ar_hash, filter, next);
                    next = add_action_record (ar_hash, filter, next);
                  }
                  }
              }
              }
          }
          }
        return next;
        return next;
      }
      }
 
 
    case ERT_ALLOWED_EXCEPTIONS:
    case ERT_ALLOWED_EXCEPTIONS:
      /* An exception specification adds its filter to the
      /* An exception specification adds its filter to the
         beginning of the chain.  */
         beginning of the chain.  */
      next = collect_one_action_chain (ar_hash, region->outer);
      next = collect_one_action_chain (ar_hash, region->outer);
 
 
      /* If there is no next action, terminate the chain.  */
      /* If there is no next action, terminate the chain.  */
      if (next == -1)
      if (next == -1)
        next = 0;
        next = 0;
      /* If all outer actions are cleanups or must_not_throw,
      /* If all outer actions are cleanups or must_not_throw,
         we'll have no action record for it, since we had wanted
         we'll have no action record for it, since we had wanted
         to encode these states in the call-site record directly.
         to encode these states in the call-site record directly.
         Add a cleanup action to the chain to catch these.  */
         Add a cleanup action to the chain to catch these.  */
      else if (next <= 0)
      else if (next <= 0)
        next = add_action_record (ar_hash, 0, 0);
        next = add_action_record (ar_hash, 0, 0);
 
 
      return add_action_record (ar_hash, region->u.allowed.filter, next);
      return add_action_record (ar_hash, region->u.allowed.filter, next);
 
 
    case ERT_MUST_NOT_THROW:
    case ERT_MUST_NOT_THROW:
      /* A must-not-throw region with no inner handlers or cleanups
      /* A must-not-throw region with no inner handlers or cleanups
         requires no call-site entry.  Note that this differs from
         requires no call-site entry.  Note that this differs from
         the no handler or cleanup case in that we do require an lsda
         the no handler or cleanup case in that we do require an lsda
         to be generated.  Return a magic -2 value to record this.  */
         to be generated.  Return a magic -2 value to record this.  */
      return -2;
      return -2;
    }
    }
 
 
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
static int
static int
add_call_site (rtx landing_pad, int action, int section)
add_call_site (rtx landing_pad, int action, int section)
{
{
  call_site_record record;
  call_site_record record;
 
 
  record = GGC_NEW (struct call_site_record_d);
  record = GGC_NEW (struct call_site_record_d);
  record->landing_pad = landing_pad;
  record->landing_pad = landing_pad;
  record->action = action;
  record->action = action;
 
 
  VEC_safe_push (call_site_record, gc,
  VEC_safe_push (call_site_record, gc,
                 crtl->eh.call_site_record[section], record);
                 crtl->eh.call_site_record[section], record);
 
 
  return call_site_base + VEC_length (call_site_record,
  return call_site_base + VEC_length (call_site_record,
                                      crtl->eh.call_site_record[section]) - 1;
                                      crtl->eh.call_site_record[section]) - 1;
}
}
 
 
/* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
/* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
   The new note numbers will not refer to region numbers, but
   The new note numbers will not refer to region numbers, but
   instead to call site entries.  */
   instead to call site entries.  */
 
 
static unsigned int
static unsigned int
convert_to_eh_region_ranges (void)
convert_to_eh_region_ranges (void)
{
{
  rtx insn, iter, note;
  rtx insn, iter, note;
  htab_t ar_hash;
  htab_t ar_hash;
  int last_action = -3;
  int last_action = -3;
  rtx last_action_insn = NULL_RTX;
  rtx last_action_insn = NULL_RTX;
  rtx last_landing_pad = NULL_RTX;
  rtx last_landing_pad = NULL_RTX;
  rtx first_no_action_insn = NULL_RTX;
  rtx first_no_action_insn = NULL_RTX;
  int call_site = 0;
  int call_site = 0;
  int cur_sec = 0;
  int cur_sec = 0;
  rtx section_switch_note = NULL_RTX;
  rtx section_switch_note = NULL_RTX;
  rtx first_no_action_insn_before_switch = NULL_RTX;
  rtx first_no_action_insn_before_switch = NULL_RTX;
  rtx last_no_action_insn_before_switch = NULL_RTX;
  rtx last_no_action_insn_before_switch = NULL_RTX;
  rtx *pad_map = NULL;
  rtx *pad_map = NULL;
  sbitmap pad_loc = NULL;
  sbitmap pad_loc = NULL;
  int min_labelno = 0, max_labelno = 0;
  int min_labelno = 0, max_labelno = 0;
  int saved_call_site_base = call_site_base;
  int saved_call_site_base = call_site_base;
 
 
  crtl->eh.action_record_data = VEC_alloc (uchar, gc, 64);
  crtl->eh.action_record_data = VEC_alloc (uchar, gc, 64);
 
 
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
  ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
 
 
  for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
  for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
    if (INSN_P (iter))
    if (INSN_P (iter))
      {
      {
        eh_landing_pad lp;
        eh_landing_pad lp;
        eh_region region;
        eh_region region;
        bool nothrow;
        bool nothrow;
        int this_action;
        int this_action;
        rtx this_landing_pad;
        rtx this_landing_pad;
 
 
        insn = iter;
        insn = iter;
        if (NONJUMP_INSN_P (insn)
        if (NONJUMP_INSN_P (insn)
            && GET_CODE (PATTERN (insn)) == SEQUENCE)
            && GET_CODE (PATTERN (insn)) == SEQUENCE)
          insn = XVECEXP (PATTERN (insn), 0, 0);
          insn = XVECEXP (PATTERN (insn), 0, 0);
 
 
        nothrow = get_eh_region_and_lp_from_rtx (insn, &region, &lp);
        nothrow = get_eh_region_and_lp_from_rtx (insn, &region, &lp);
        if (nothrow)
        if (nothrow)
          continue;
          continue;
        if (region)
        if (region)
          this_action = collect_one_action_chain (ar_hash, region);
          this_action = collect_one_action_chain (ar_hash, region);
        else
        else
          this_action = -1;
          this_action = -1;
 
 
        /* Existence of catch handlers, or must-not-throw regions
        /* Existence of catch handlers, or must-not-throw regions
           implies that an lsda is needed (even if empty).  */
           implies that an lsda is needed (even if empty).  */
        if (this_action != -1)
        if (this_action != -1)
          crtl->uses_eh_lsda = 1;
          crtl->uses_eh_lsda = 1;
 
 
        /* Delay creation of region notes for no-action regions
        /* Delay creation of region notes for no-action regions
           until we're sure that an lsda will be required.  */
           until we're sure that an lsda will be required.  */
        else if (last_action == -3)
        else if (last_action == -3)
          {
          {
            first_no_action_insn = iter;
            first_no_action_insn = iter;
            last_action = -1;
            last_action = -1;
          }
          }
 
 
        if (this_action >= 0)
        if (this_action >= 0)
          this_landing_pad = lp->landing_pad;
          this_landing_pad = lp->landing_pad;
        else
        else
          this_landing_pad = NULL_RTX;
          this_landing_pad = NULL_RTX;
 
 
        /* Differing actions or landing pads implies a change in call-site
        /* Differing actions or landing pads implies a change in call-site
           info, which implies some EH_REGION note should be emitted.  */
           info, which implies some EH_REGION note should be emitted.  */
        if (last_action != this_action
        if (last_action != this_action
            || last_landing_pad != this_landing_pad)
            || last_landing_pad != this_landing_pad)
          {
          {
            /* If we'd not seen a previous action (-3) or the previous
            /* If we'd not seen a previous action (-3) or the previous
               action was must-not-throw (-2), then we do not need an
               action was must-not-throw (-2), then we do not need an
               end note.  */
               end note.  */
            if (last_action >= -1)
            if (last_action >= -1)
              {
              {
                /* If we delayed the creation of the begin, do it now.  */
                /* If we delayed the creation of the begin, do it now.  */
                if (first_no_action_insn_before_switch)
                if (first_no_action_insn_before_switch)
                  {
                  {
                    call_site = add_call_site (NULL_RTX, 0, 0);
                    call_site = add_call_site (NULL_RTX, 0, 0);
                    note
                    note
                      = emit_note_before (NOTE_INSN_EH_REGION_BEG,
                      = emit_note_before (NOTE_INSN_EH_REGION_BEG,
                                          first_no_action_insn_before_switch);
                                          first_no_action_insn_before_switch);
                    NOTE_EH_HANDLER (note) = call_site;
                    NOTE_EH_HANDLER (note) = call_site;
                    if (first_no_action_insn)
                    if (first_no_action_insn)
                      {
                      {
                        note
                        note
                          = emit_note_after (NOTE_INSN_EH_REGION_END,
                          = emit_note_after (NOTE_INSN_EH_REGION_END,
                                             last_no_action_insn_before_switch);
                                             last_no_action_insn_before_switch);
                        NOTE_EH_HANDLER (note) = call_site;
                        NOTE_EH_HANDLER (note) = call_site;
                      }
                      }
                    else
                    else
                      gcc_assert (last_action_insn
                      gcc_assert (last_action_insn
                                  == last_no_action_insn_before_switch);
                                  == last_no_action_insn_before_switch);
                  }
                  }
                if (first_no_action_insn)
                if (first_no_action_insn)
                  {
                  {
                    call_site = add_call_site (NULL_RTX, 0, cur_sec);
                    call_site = add_call_site (NULL_RTX, 0, cur_sec);
                    note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
                    note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
                                             first_no_action_insn);
                                             first_no_action_insn);
                    NOTE_EH_HANDLER (note) = call_site;
                    NOTE_EH_HANDLER (note) = call_site;
                    first_no_action_insn = NULL_RTX;
                    first_no_action_insn = NULL_RTX;
                  }
                  }
 
 
                note = emit_note_after (NOTE_INSN_EH_REGION_END,
                note = emit_note_after (NOTE_INSN_EH_REGION_END,
                                        last_action_insn);
                                        last_action_insn);
                NOTE_EH_HANDLER (note) = call_site;
                NOTE_EH_HANDLER (note) = call_site;
              }
              }
 
 
            /* If the new action is must-not-throw, then no region notes
            /* If the new action is must-not-throw, then no region notes
               are created.  */
               are created.  */
            if (this_action >= -1)
            if (this_action >= -1)
              {
              {
                call_site = add_call_site (this_landing_pad,
                call_site = add_call_site (this_landing_pad,
                                           this_action < 0 ? 0 : this_action,
                                           this_action < 0 ? 0 : this_action,
                                           cur_sec);
                                           cur_sec);
                note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
                note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
                NOTE_EH_HANDLER (note) = call_site;
                NOTE_EH_HANDLER (note) = call_site;
              }
              }
 
 
            last_action = this_action;
            last_action = this_action;
            last_landing_pad = this_landing_pad;
            last_landing_pad = this_landing_pad;
          }
          }
        last_action_insn = iter;
        last_action_insn = iter;
      }
      }
    else if (NOTE_P (iter)
    else if (NOTE_P (iter)
             && NOTE_KIND (iter) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
             && NOTE_KIND (iter) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
      {
      {
        gcc_assert (section_switch_note == NULL_RTX);
        gcc_assert (section_switch_note == NULL_RTX);
        gcc_assert (flag_reorder_blocks_and_partition);
        gcc_assert (flag_reorder_blocks_and_partition);
        section_switch_note = iter;
        section_switch_note = iter;
        if (first_no_action_insn)
        if (first_no_action_insn)
          {
          {
            first_no_action_insn_before_switch = first_no_action_insn;
            first_no_action_insn_before_switch = first_no_action_insn;
            last_no_action_insn_before_switch = last_action_insn;
            last_no_action_insn_before_switch = last_action_insn;
            first_no_action_insn = NULL_RTX;
            first_no_action_insn = NULL_RTX;
            gcc_assert (last_action == -1);
            gcc_assert (last_action == -1);
            last_action = -3;
            last_action = -3;
          }
          }
        /* Force closing of current EH region before section switch and
        /* Force closing of current EH region before section switch and
           opening a new one afterwards.  */
           opening a new one afterwards.  */
        else if (last_action != -3)
        else if (last_action != -3)
          last_landing_pad = pc_rtx;
          last_landing_pad = pc_rtx;
        call_site_base += VEC_length (call_site_record,
        call_site_base += VEC_length (call_site_record,
                                      crtl->eh.call_site_record[cur_sec]);
                                      crtl->eh.call_site_record[cur_sec]);
        cur_sec++;
        cur_sec++;
        gcc_assert (crtl->eh.call_site_record[cur_sec] == NULL);
        gcc_assert (crtl->eh.call_site_record[cur_sec] == NULL);
        crtl->eh.call_site_record[cur_sec]
        crtl->eh.call_site_record[cur_sec]
          = VEC_alloc (call_site_record, gc, 10);
          = VEC_alloc (call_site_record, gc, 10);
        max_labelno = max_label_num ();
        max_labelno = max_label_num ();
        min_labelno = get_first_label_num ();
        min_labelno = get_first_label_num ();
        pad_map = XCNEWVEC (rtx, max_labelno - min_labelno + 1);
        pad_map = XCNEWVEC (rtx, max_labelno - min_labelno + 1);
        pad_loc = sbitmap_alloc (max_labelno - min_labelno + 1);
        pad_loc = sbitmap_alloc (max_labelno - min_labelno + 1);
      }
      }
    else if (LABEL_P (iter) && pad_map)
    else if (LABEL_P (iter) && pad_map)
      SET_BIT (pad_loc, CODE_LABEL_NUMBER (iter) - min_labelno);
      SET_BIT (pad_loc, CODE_LABEL_NUMBER (iter) - min_labelno);
 
 
  if (last_action >= -1 && ! first_no_action_insn)
  if (last_action >= -1 && ! first_no_action_insn)
    {
    {
      note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
      note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
      NOTE_EH_HANDLER (note) = call_site;
      NOTE_EH_HANDLER (note) = call_site;
    }
    }
 
 
  call_site_base = saved_call_site_base;
  call_site_base = saved_call_site_base;
 
 
  if (pad_map)
  if (pad_map)
    {
    {
      /* When doing hot/cold partitioning, ensure landing pads are
      /* When doing hot/cold partitioning, ensure landing pads are
         always in the same section as the EH region, .gcc_except_table
         always in the same section as the EH region, .gcc_except_table
         can't express it otherwise.  */
         can't express it otherwise.  */
      for (cur_sec = 0; cur_sec < 2; cur_sec++)
      for (cur_sec = 0; cur_sec < 2; cur_sec++)
        {
        {
          int i, idx;
          int i, idx;
          int n = VEC_length (call_site_record,
          int n = VEC_length (call_site_record,
                              crtl->eh.call_site_record[cur_sec]);
                              crtl->eh.call_site_record[cur_sec]);
          basic_block prev_bb = NULL, padbb;
          basic_block prev_bb = NULL, padbb;
 
 
          for (i = 0; i < n; ++i)
          for (i = 0; i < n; ++i)
            {
            {
              struct call_site_record_d *cs =
              struct call_site_record_d *cs =
                VEC_index (call_site_record,
                VEC_index (call_site_record,
                           crtl->eh.call_site_record[cur_sec], i);
                           crtl->eh.call_site_record[cur_sec], i);
              rtx jump, note;
              rtx jump, note;
 
 
              if (cs->landing_pad == NULL_RTX)
              if (cs->landing_pad == NULL_RTX)
                continue;
                continue;
              idx = CODE_LABEL_NUMBER (cs->landing_pad) - min_labelno;
              idx = CODE_LABEL_NUMBER (cs->landing_pad) - min_labelno;
              /* If the landing pad is in the correct section, nothing
              /* If the landing pad is in the correct section, nothing
                 is needed.  */
                 is needed.  */
              if (TEST_BIT (pad_loc, idx) ^ (cur_sec == 0))
              if (TEST_BIT (pad_loc, idx) ^ (cur_sec == 0))
                continue;
                continue;
              /* Otherwise, if we haven't seen this pad yet, we need to
              /* Otherwise, if we haven't seen this pad yet, we need to
                 add a new label and jump to the correct section.  */
                 add a new label and jump to the correct section.  */
              if (pad_map[idx] == NULL_RTX)
              if (pad_map[idx] == NULL_RTX)
                {
                {
                  pad_map[idx] = gen_label_rtx ();
                  pad_map[idx] = gen_label_rtx ();
                  if (prev_bb == NULL)
                  if (prev_bb == NULL)
                    for (iter = section_switch_note;
                    for (iter = section_switch_note;
                         iter; iter = PREV_INSN (iter))
                         iter; iter = PREV_INSN (iter))
                      if (NOTE_INSN_BASIC_BLOCK_P (iter))
                      if (NOTE_INSN_BASIC_BLOCK_P (iter))
                        {
                        {
                          prev_bb = NOTE_BASIC_BLOCK (iter);
                          prev_bb = NOTE_BASIC_BLOCK (iter);
                          break;
                          break;
                        }
                        }
                  if (cur_sec == 0)
                  if (cur_sec == 0)
                    {
                    {
                      note = emit_label_before (pad_map[idx],
                      note = emit_label_before (pad_map[idx],
                                                section_switch_note);
                                                section_switch_note);
                      jump = emit_jump_insn_before (gen_jump (cs->landing_pad),
                      jump = emit_jump_insn_before (gen_jump (cs->landing_pad),
                                                    section_switch_note);
                                                    section_switch_note);
                    }
                    }
                  else
                  else
                    {
                    {
                      jump = emit_jump_insn_after (gen_jump (cs->landing_pad),
                      jump = emit_jump_insn_after (gen_jump (cs->landing_pad),
                                                   section_switch_note);
                                                   section_switch_note);
                      note = emit_label_after (pad_map[idx],
                      note = emit_label_after (pad_map[idx],
                                               section_switch_note);
                                               section_switch_note);
                    }
                    }
                  JUMP_LABEL (jump) = cs->landing_pad;
                  JUMP_LABEL (jump) = cs->landing_pad;
                  add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
                  add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
                  iter = NEXT_INSN (cs->landing_pad);
                  iter = NEXT_INSN (cs->landing_pad);
                  if (iter && NOTE_INSN_BASIC_BLOCK_P (iter))
                  if (iter && NOTE_INSN_BASIC_BLOCK_P (iter))
                    padbb = NOTE_BASIC_BLOCK (iter);
                    padbb = NOTE_BASIC_BLOCK (iter);
                  else
                  else
                    padbb = NULL;
                    padbb = NULL;
                  if (padbb && prev_bb
                  if (padbb && prev_bb
                      && BB_PARTITION (padbb) != BB_UNPARTITIONED)
                      && BB_PARTITION (padbb) != BB_UNPARTITIONED)
                    {
                    {
                      basic_block bb;
                      basic_block bb;
                      int part
                      int part
                        = BB_PARTITION (padbb) == BB_COLD_PARTITION
                        = BB_PARTITION (padbb) == BB_COLD_PARTITION
                          ? BB_HOT_PARTITION : BB_COLD_PARTITION;
                          ? BB_HOT_PARTITION : BB_COLD_PARTITION;
                      edge_iterator ei;
                      edge_iterator ei;
                      edge e;
                      edge e;
 
 
                      bb = create_basic_block (note, jump, prev_bb);
                      bb = create_basic_block (note, jump, prev_bb);
                      make_single_succ_edge (bb, padbb, EDGE_CROSSING);
                      make_single_succ_edge (bb, padbb, EDGE_CROSSING);
                      BB_SET_PARTITION (bb, part);
                      BB_SET_PARTITION (bb, part);
                      for (ei = ei_start (padbb->preds);
                      for (ei = ei_start (padbb->preds);
                           (e = ei_safe_edge (ei)); )
                           (e = ei_safe_edge (ei)); )
                        {
                        {
                          if ((e->flags & (EDGE_EH|EDGE_CROSSING))
                          if ((e->flags & (EDGE_EH|EDGE_CROSSING))
                              == (EDGE_EH|EDGE_CROSSING))
                              == (EDGE_EH|EDGE_CROSSING))
                            {
                            {
                              redirect_edge_succ (e, bb);
                              redirect_edge_succ (e, bb);
                              e->flags &= ~EDGE_CROSSING;
                              e->flags &= ~EDGE_CROSSING;
                            }
                            }
                          else
                          else
                            ei_next (&ei);
                            ei_next (&ei);
                        }
                        }
                      if (cur_sec == 0)
                      if (cur_sec == 0)
                        prev_bb = bb;
                        prev_bb = bb;
                    }
                    }
                }
                }
              cs->landing_pad = pad_map[idx];
              cs->landing_pad = pad_map[idx];
            }
            }
        }
        }
 
 
      sbitmap_free (pad_loc);
      sbitmap_free (pad_loc);
      XDELETEVEC (pad_map);
      XDELETEVEC (pad_map);
    }
    }
 
 
  htab_delete (ar_hash);
  htab_delete (ar_hash);
  return 0;
  return 0;
}
}
 
 
static bool
static bool
gate_convert_to_eh_region_ranges (void)
gate_convert_to_eh_region_ranges (void)
{
{
  /* Nothing to do for SJLJ exceptions or if no regions created.  */
  /* Nothing to do for SJLJ exceptions or if no regions created.  */
  return !(USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL);
  return !(USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL);
}
}
 
 
struct rtl_opt_pass pass_convert_to_eh_region_ranges =
struct rtl_opt_pass pass_convert_to_eh_region_ranges =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "eh_ranges",                          /* name */
  "eh_ranges",                          /* name */
  gate_convert_to_eh_region_ranges,     /* gate */
  gate_convert_to_eh_region_ranges,     /* gate */
  convert_to_eh_region_ranges,          /* execute */
  convert_to_eh_region_ranges,          /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_NONE,                              /* tv_id */
  TV_NONE,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
 }
 }
};
};


static void
static void
push_uleb128 (VEC (uchar, gc) **data_area, unsigned int value)
push_uleb128 (VEC (uchar, gc) **data_area, unsigned int value)
{
{
  do
  do
    {
    {
      unsigned char byte = value & 0x7f;
      unsigned char byte = value & 0x7f;
      value >>= 7;
      value >>= 7;
      if (value)
      if (value)
        byte |= 0x80;
        byte |= 0x80;
      VEC_safe_push (uchar, gc, *data_area, byte);
      VEC_safe_push (uchar, gc, *data_area, byte);
    }
    }
  while (value);
  while (value);
}
}
 
 
static void
static void
push_sleb128 (VEC (uchar, gc) **data_area, int value)
push_sleb128 (VEC (uchar, gc) **data_area, int value)
{
{
  unsigned char byte;
  unsigned char byte;
  int more;
  int more;
 
 
  do
  do
    {
    {
      byte = value & 0x7f;
      byte = value & 0x7f;
      value >>= 7;
      value >>= 7;
      more = ! ((value == 0 && (byte & 0x40) == 0)
      more = ! ((value == 0 && (byte & 0x40) == 0)
                || (value == -1 && (byte & 0x40) != 0));
                || (value == -1 && (byte & 0x40) != 0));
      if (more)
      if (more)
        byte |= 0x80;
        byte |= 0x80;
      VEC_safe_push (uchar, gc, *data_area, byte);
      VEC_safe_push (uchar, gc, *data_area, byte);
    }
    }
  while (more);
  while (more);
}
}
 
 


#ifndef HAVE_AS_LEB128
#ifndef HAVE_AS_LEB128
static int
static int
dw2_size_of_call_site_table (int section)
dw2_size_of_call_site_table (int section)
{
{
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[section]);
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[section]);
  int size = n * (4 + 4 + 4);
  int size = n * (4 + 4 + 4);
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record_d *cs =
      struct call_site_record_d *cs =
        VEC_index (call_site_record, crtl->eh.call_site_record[section], i);
        VEC_index (call_site_record, crtl->eh.call_site_record[section], i);
      size += size_of_uleb128 (cs->action);
      size += size_of_uleb128 (cs->action);
    }
    }
 
 
  return size;
  return size;
}
}
 
 
static int
static int
sjlj_size_of_call_site_table (void)
sjlj_size_of_call_site_table (void)
{
{
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[0]);
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[0]);
  int size = 0;
  int size = 0;
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record_d *cs =
      struct call_site_record_d *cs =
        VEC_index (call_site_record, crtl->eh.call_site_record[0], i);
        VEC_index (call_site_record, crtl->eh.call_site_record[0], i);
      size += size_of_uleb128 (INTVAL (cs->landing_pad));
      size += size_of_uleb128 (INTVAL (cs->landing_pad));
      size += size_of_uleb128 (cs->action);
      size += size_of_uleb128 (cs->action);
    }
    }
 
 
  return size;
  return size;
}
}
#endif
#endif
 
 
static void
static void
dw2_output_call_site_table (int cs_format, int section)
dw2_output_call_site_table (int cs_format, int section)
{
{
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[section]);
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[section]);
  int i;
  int i;
  const char *begin;
  const char *begin;
 
 
  if (section == 0)
  if (section == 0)
    begin = current_function_func_begin_label;
    begin = current_function_func_begin_label;
  else if (first_function_block_is_cold)
  else if (first_function_block_is_cold)
    begin = crtl->subsections.hot_section_label;
    begin = crtl->subsections.hot_section_label;
  else
  else
    begin = crtl->subsections.cold_section_label;
    begin = crtl->subsections.cold_section_label;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record_d *cs =
      struct call_site_record_d *cs =
        VEC_index (call_site_record, crtl->eh.call_site_record[section], i);
        VEC_index (call_site_record, crtl->eh.call_site_record[section], i);
      char reg_start_lab[32];
      char reg_start_lab[32];
      char reg_end_lab[32];
      char reg_end_lab[32];
      char landing_pad_lab[32];
      char landing_pad_lab[32];
 
 
      ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
      ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
      ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
      ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
 
 
      if (cs->landing_pad)
      if (cs->landing_pad)
        ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
        ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
                                     CODE_LABEL_NUMBER (cs->landing_pad));
                                     CODE_LABEL_NUMBER (cs->landing_pad));
 
 
      /* ??? Perhaps use insn length scaling if the assembler supports
      /* ??? Perhaps use insn length scaling if the assembler supports
         generic arithmetic.  */
         generic arithmetic.  */
      /* ??? Perhaps use attr_length to choose data1 or data2 instead of
      /* ??? Perhaps use attr_length to choose data1 or data2 instead of
         data4 if the function is small enough.  */
         data4 if the function is small enough.  */
      if (cs_format == DW_EH_PE_uleb128)
      if (cs_format == DW_EH_PE_uleb128)
        {
        {
          dw2_asm_output_delta_uleb128 (reg_start_lab, begin,
          dw2_asm_output_delta_uleb128 (reg_start_lab, begin,
                                        "region %d start", i);
                                        "region %d start", i);
          dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
          dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
                                        "length");
                                        "length");
          if (cs->landing_pad)
          if (cs->landing_pad)
            dw2_asm_output_delta_uleb128 (landing_pad_lab, begin,
            dw2_asm_output_delta_uleb128 (landing_pad_lab, begin,
                                          "landing pad");
                                          "landing pad");
          else
          else
            dw2_asm_output_data_uleb128 (0, "landing pad");
            dw2_asm_output_data_uleb128 (0, "landing pad");
        }
        }
      else
      else
        {
        {
          dw2_asm_output_delta (4, reg_start_lab, begin,
          dw2_asm_output_delta (4, reg_start_lab, begin,
                                "region %d start", i);
                                "region %d start", i);
          dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
          dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
          if (cs->landing_pad)
          if (cs->landing_pad)
            dw2_asm_output_delta (4, landing_pad_lab, begin,
            dw2_asm_output_delta (4, landing_pad_lab, begin,
                                  "landing pad");
                                  "landing pad");
          else
          else
            dw2_asm_output_data (4, 0, "landing pad");
            dw2_asm_output_data (4, 0, "landing pad");
        }
        }
      dw2_asm_output_data_uleb128 (cs->action, "action");
      dw2_asm_output_data_uleb128 (cs->action, "action");
    }
    }
 
 
  call_site_base += n;
  call_site_base += n;
}
}
 
 
static void
static void
sjlj_output_call_site_table (void)
sjlj_output_call_site_table (void)
{
{
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[0]);
  int n = VEC_length (call_site_record, crtl->eh.call_site_record[0]);
  int i;
  int i;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      struct call_site_record_d *cs =
      struct call_site_record_d *cs =
        VEC_index (call_site_record, crtl->eh.call_site_record[0], i);
        VEC_index (call_site_record, crtl->eh.call_site_record[0], i);
 
 
      dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
      dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
                                   "region %d landing pad", i);
                                   "region %d landing pad", i);
      dw2_asm_output_data_uleb128 (cs->action, "action");
      dw2_asm_output_data_uleb128 (cs->action, "action");
    }
    }
 
 
  call_site_base += n;
  call_site_base += n;
}
}
 
 
#ifndef TARGET_UNWIND_INFO
#ifndef TARGET_UNWIND_INFO
/* Switch to the section that should be used for exception tables.  */
/* Switch to the section that should be used for exception tables.  */
 
 
static void
static void
switch_to_exception_section (const char * ARG_UNUSED (fnname))
switch_to_exception_section (const char * ARG_UNUSED (fnname))
{
{
  section *s;
  section *s;
 
 
  if (exception_section)
  if (exception_section)
    s = exception_section;
    s = exception_section;
  else
  else
    {
    {
      /* Compute the section and cache it into exception_section,
      /* Compute the section and cache it into exception_section,
         unless it depends on the function name.  */
         unless it depends on the function name.  */
      if (targetm.have_named_sections)
      if (targetm.have_named_sections)
        {
        {
          int flags;
          int flags;
 
 
          if (EH_TABLES_CAN_BE_READ_ONLY)
          if (EH_TABLES_CAN_BE_READ_ONLY)
            {
            {
              int tt_format =
              int tt_format =
                ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
                ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
              flags = ((! flag_pic
              flags = ((! flag_pic
                        || ((tt_format & 0x70) != DW_EH_PE_absptr
                        || ((tt_format & 0x70) != DW_EH_PE_absptr
                            && (tt_format & 0x70) != DW_EH_PE_aligned))
                            && (tt_format & 0x70) != DW_EH_PE_aligned))
                       ? 0 : SECTION_WRITE);
                       ? 0 : SECTION_WRITE);
            }
            }
          else
          else
            flags = SECTION_WRITE;
            flags = SECTION_WRITE;
 
 
#ifdef HAVE_LD_EH_GC_SECTIONS
#ifdef HAVE_LD_EH_GC_SECTIONS
          if (flag_function_sections)
          if (flag_function_sections)
            {
            {
              char *section_name = XNEWVEC (char, strlen (fnname) + 32);
              char *section_name = XNEWVEC (char, strlen (fnname) + 32);
              sprintf (section_name, ".gcc_except_table.%s", fnname);
              sprintf (section_name, ".gcc_except_table.%s", fnname);
              s = get_section (section_name, flags, NULL);
              s = get_section (section_name, flags, NULL);
              free (section_name);
              free (section_name);
            }
            }
          else
          else
#endif
#endif
            exception_section
            exception_section
              = s = get_section (".gcc_except_table", flags, NULL);
              = s = get_section (".gcc_except_table", flags, NULL);
        }
        }
      else
      else
        exception_section
        exception_section
          = s = flag_pic ? data_section : readonly_data_section;
          = s = flag_pic ? data_section : readonly_data_section;
    }
    }
 
 
  switch_to_section (s);
  switch_to_section (s);
}
}
#endif
#endif
 
 
 
 
/* Output a reference from an exception table to the type_info object TYPE.
/* Output a reference from an exception table to the type_info object TYPE.
   TT_FORMAT and TT_FORMAT_SIZE describe the DWARF encoding method used for
   TT_FORMAT and TT_FORMAT_SIZE describe the DWARF encoding method used for
   the value.  */
   the value.  */
 
 
static void
static void
output_ttype (tree type, int tt_format, int tt_format_size)
output_ttype (tree type, int tt_format, int tt_format_size)
{
{
  rtx value;
  rtx value;
  bool is_public = true;
  bool is_public = true;
 
 
  if (type == NULL_TREE)
  if (type == NULL_TREE)
    value = const0_rtx;
    value = const0_rtx;
  else
  else
    {
    {
      struct varpool_node *node;
      struct varpool_node *node;
 
 
      /* FIXME lto.  pass_ipa_free_lang_data changes all types to
      /* FIXME lto.  pass_ipa_free_lang_data changes all types to
         runtime types so TYPE should already be a runtime type
         runtime types so TYPE should already be a runtime type
         reference.  When pass_ipa_free_lang data is made a default
         reference.  When pass_ipa_free_lang data is made a default
         pass, we can then remove the call to lookup_type_for_runtime
         pass, we can then remove the call to lookup_type_for_runtime
         below.  */
         below.  */
      if (TYPE_P (type))
      if (TYPE_P (type))
        type = lookup_type_for_runtime (type);
        type = lookup_type_for_runtime (type);
 
 
      value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
      value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
 
 
      /* Let cgraph know that the rtti decl is used.  Not all of the
      /* Let cgraph know that the rtti decl is used.  Not all of the
         paths below go through assemble_integer, which would take
         paths below go through assemble_integer, which would take
         care of this for us.  */
         care of this for us.  */
      STRIP_NOPS (type);
      STRIP_NOPS (type);
      if (TREE_CODE (type) == ADDR_EXPR)
      if (TREE_CODE (type) == ADDR_EXPR)
        {
        {
          type = TREE_OPERAND (type, 0);
          type = TREE_OPERAND (type, 0);
          if (TREE_CODE (type) == VAR_DECL)
          if (TREE_CODE (type) == VAR_DECL)
            {
            {
              node = varpool_node (type);
              node = varpool_node (type);
              if (node)
              if (node)
                varpool_mark_needed_node (node);
                varpool_mark_needed_node (node);
              is_public = TREE_PUBLIC (type);
              is_public = TREE_PUBLIC (type);
            }
            }
        }
        }
      else
      else
        gcc_assert (TREE_CODE (type) == INTEGER_CST);
        gcc_assert (TREE_CODE (type) == INTEGER_CST);
    }
    }
 
 
  /* Allow the target to override the type table entry format.  */
  /* Allow the target to override the type table entry format.  */
  if (targetm.asm_out.ttype (value))
  if (targetm.asm_out.ttype (value))
    return;
    return;
 
 
  if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
  if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
    assemble_integer (value, tt_format_size,
    assemble_integer (value, tt_format_size,
                      tt_format_size * BITS_PER_UNIT, 1);
                      tt_format_size * BITS_PER_UNIT, 1);
  else
  else
    dw2_asm_output_encoded_addr_rtx (tt_format, value, is_public, NULL);
    dw2_asm_output_encoded_addr_rtx (tt_format, value, is_public, NULL);
}
}
 
 
static void
static void
output_one_function_exception_table (const char * ARG_UNUSED (fnname),
output_one_function_exception_table (const char * ARG_UNUSED (fnname),
                                     int section, rtx ARG_UNUSED (personality))
                                     int section, rtx ARG_UNUSED (personality))
{
{
  int tt_format, cs_format, lp_format, i;
  int tt_format, cs_format, lp_format, i;
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  char ttype_label[32];
  char ttype_label[32];
  char cs_after_size_label[32];
  char cs_after_size_label[32];
  char cs_end_label[32];
  char cs_end_label[32];
#else
#else
  int call_site_len;
  int call_site_len;
#endif
#endif
  int have_tt_data;
  int have_tt_data;
  int tt_format_size = 0;
  int tt_format_size = 0;
 
 
#ifdef TARGET_UNWIND_INFO
#ifdef TARGET_UNWIND_INFO
  /* TODO: Move this into target file.  */
  /* TODO: Move this into target file.  */
  fputs ("\t.personality\t", asm_out_file);
  fputs ("\t.personality\t", asm_out_file);
  output_addr_const (asm_out_file, personality);
  output_addr_const (asm_out_file, personality);
  fputs ("\n\t.handlerdata\n", asm_out_file);
  fputs ("\n\t.handlerdata\n", asm_out_file);
  /* Note that varasm still thinks we're in the function's code section.
  /* Note that varasm still thinks we're in the function's code section.
     The ".endp" directive that will immediately follow will take us back.  */
     The ".endp" directive that will immediately follow will take us back.  */
#else
#else
  switch_to_exception_section (fnname);
  switch_to_exception_section (fnname);
#endif
#endif
 
 
  /* If the target wants a label to begin the table, emit it here.  */
  /* If the target wants a label to begin the table, emit it here.  */
  targetm.asm_out.except_table_label (asm_out_file);
  targetm.asm_out.except_table_label (asm_out_file);
 
 
  have_tt_data = (VEC_length (tree, cfun->eh->ttype_data)
  have_tt_data = (VEC_length (tree, cfun->eh->ttype_data)
                  || (targetm.arm_eabi_unwinder
                  || (targetm.arm_eabi_unwinder
                      ? VEC_length (tree, cfun->eh->ehspec_data.arm_eabi)
                      ? VEC_length (tree, cfun->eh->ehspec_data.arm_eabi)
                      : VEC_length (uchar, cfun->eh->ehspec_data.other)));
                      : VEC_length (uchar, cfun->eh->ehspec_data.other)));
 
 
  /* Indicate the format of the @TType entries.  */
  /* Indicate the format of the @TType entries.  */
  if (! have_tt_data)
  if (! have_tt_data)
    tt_format = DW_EH_PE_omit;
    tt_format = DW_EH_PE_omit;
  else
  else
    {
    {
      tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
      tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
      ASM_GENERATE_INTERNAL_LABEL (ttype_label,
      ASM_GENERATE_INTERNAL_LABEL (ttype_label,
                                   section ? "LLSDATTC" : "LLSDATT",
                                   section ? "LLSDATTC" : "LLSDATT",
                                   current_function_funcdef_no);
                                   current_function_funcdef_no);
#endif
#endif
      tt_format_size = size_of_encoded_value (tt_format);
      tt_format_size = size_of_encoded_value (tt_format);
 
 
      assemble_align (tt_format_size * BITS_PER_UNIT);
      assemble_align (tt_format_size * BITS_PER_UNIT);
    }
    }
 
 
  targetm.asm_out.internal_label (asm_out_file, section ? "LLSDAC" : "LLSDA",
  targetm.asm_out.internal_label (asm_out_file, section ? "LLSDAC" : "LLSDA",
                                  current_function_funcdef_no);
                                  current_function_funcdef_no);
 
 
  /* The LSDA header.  */
  /* The LSDA header.  */
 
 
  /* Indicate the format of the landing pad start pointer.  An omitted
  /* Indicate the format of the landing pad start pointer.  An omitted
     field implies @LPStart == @Start.  */
     field implies @LPStart == @Start.  */
  /* Currently we always put @LPStart == @Start.  This field would
  /* Currently we always put @LPStart == @Start.  This field would
     be most useful in moving the landing pads completely out of
     be most useful in moving the landing pads completely out of
     line to another section, but it could also be used to minimize
     line to another section, but it could also be used to minimize
     the size of uleb128 landing pad offsets.  */
     the size of uleb128 landing pad offsets.  */
  lp_format = DW_EH_PE_omit;
  lp_format = DW_EH_PE_omit;
  dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
  dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
                       eh_data_format_name (lp_format));
                       eh_data_format_name (lp_format));
 
 
  /* @LPStart pointer would go here.  */
  /* @LPStart pointer would go here.  */
 
 
  dw2_asm_output_data (1, tt_format, "@TType format (%s)",
  dw2_asm_output_data (1, tt_format, "@TType format (%s)",
                       eh_data_format_name (tt_format));
                       eh_data_format_name (tt_format));
 
 
#ifndef HAVE_AS_LEB128
#ifndef HAVE_AS_LEB128
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    call_site_len = sjlj_size_of_call_site_table ();
    call_site_len = sjlj_size_of_call_site_table ();
  else
  else
    call_site_len = dw2_size_of_call_site_table (section);
    call_site_len = dw2_size_of_call_site_table (section);
#endif
#endif
 
 
  /* A pc-relative 4-byte displacement to the @TType data.  */
  /* A pc-relative 4-byte displacement to the @TType data.  */
  if (have_tt_data)
  if (have_tt_data)
    {
    {
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
      char ttype_after_disp_label[32];
      char ttype_after_disp_label[32];
      ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label,
      ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label,
                                   section ? "LLSDATTDC" : "LLSDATTD",
                                   section ? "LLSDATTDC" : "LLSDATTD",
                                   current_function_funcdef_no);
                                   current_function_funcdef_no);
      dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
      dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
                                    "@TType base offset");
                                    "@TType base offset");
      ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
      ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
#else
#else
      /* Ug.  Alignment queers things.  */
      /* Ug.  Alignment queers things.  */
      unsigned int before_disp, after_disp, last_disp, disp;
      unsigned int before_disp, after_disp, last_disp, disp;
 
 
      before_disp = 1 + 1;
      before_disp = 1 + 1;
      after_disp = (1 + size_of_uleb128 (call_site_len)
      after_disp = (1 + size_of_uleb128 (call_site_len)
                    + call_site_len
                    + call_site_len
                    + VEC_length (uchar, crtl->eh.action_record_data)
                    + VEC_length (uchar, crtl->eh.action_record_data)
                    + (VEC_length (tree, cfun->eh->ttype_data)
                    + (VEC_length (tree, cfun->eh->ttype_data)
                       * tt_format_size));
                       * tt_format_size));
 
 
      disp = after_disp;
      disp = after_disp;
      do
      do
        {
        {
          unsigned int disp_size, pad;
          unsigned int disp_size, pad;
 
 
          last_disp = disp;
          last_disp = disp;
          disp_size = size_of_uleb128 (disp);
          disp_size = size_of_uleb128 (disp);
          pad = before_disp + disp_size + after_disp;
          pad = before_disp + disp_size + after_disp;
          if (pad % tt_format_size)
          if (pad % tt_format_size)
            pad = tt_format_size - (pad % tt_format_size);
            pad = tt_format_size - (pad % tt_format_size);
          else
          else
            pad = 0;
            pad = 0;
          disp = after_disp + pad;
          disp = after_disp + pad;
        }
        }
      while (disp != last_disp);
      while (disp != last_disp);
 
 
      dw2_asm_output_data_uleb128 (disp, "@TType base offset");
      dw2_asm_output_data_uleb128 (disp, "@TType base offset");
#endif
#endif
    }
    }
 
 
  /* Indicate the format of the call-site offsets.  */
  /* Indicate the format of the call-site offsets.  */
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  cs_format = DW_EH_PE_uleb128;
  cs_format = DW_EH_PE_uleb128;
#else
#else
  cs_format = DW_EH_PE_udata4;
  cs_format = DW_EH_PE_udata4;
#endif
#endif
  dw2_asm_output_data (1, cs_format, "call-site format (%s)",
  dw2_asm_output_data (1, cs_format, "call-site format (%s)",
                       eh_data_format_name (cs_format));
                       eh_data_format_name (cs_format));
 
 
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label,
  ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label,
                               section ? "LLSDACSBC" : "LLSDACSB",
                               section ? "LLSDACSBC" : "LLSDACSB",
                               current_function_funcdef_no);
                               current_function_funcdef_no);
  ASM_GENERATE_INTERNAL_LABEL (cs_end_label,
  ASM_GENERATE_INTERNAL_LABEL (cs_end_label,
                               section ? "LLSDACSEC" : "LLSDACSE",
                               section ? "LLSDACSEC" : "LLSDACSE",
                               current_function_funcdef_no);
                               current_function_funcdef_no);
  dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
  dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
                                "Call-site table length");
                                "Call-site table length");
  ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
  ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    sjlj_output_call_site_table ();
    sjlj_output_call_site_table ();
  else
  else
    dw2_output_call_site_table (cs_format, section);
    dw2_output_call_site_table (cs_format, section);
  ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
  ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
#else
#else
  dw2_asm_output_data_uleb128 (call_site_len, "Call-site table length");
  dw2_asm_output_data_uleb128 (call_site_len, "Call-site table length");
  if (USING_SJLJ_EXCEPTIONS)
  if (USING_SJLJ_EXCEPTIONS)
    sjlj_output_call_site_table ();
    sjlj_output_call_site_table ();
  else
  else
    dw2_output_call_site_table (cs_format, section);
    dw2_output_call_site_table (cs_format, section);
#endif
#endif
 
 
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  {
  {
    uchar uc;
    uchar uc;
    for (i = 0; VEC_iterate (uchar, crtl->eh.action_record_data, i, uc); ++i)
    for (i = 0; VEC_iterate (uchar, crtl->eh.action_record_data, i, uc); ++i)
      dw2_asm_output_data (1, uc, i ? NULL : "Action record table");
      dw2_asm_output_data (1, uc, i ? NULL : "Action record table");
  }
  }
 
 
  if (have_tt_data)
  if (have_tt_data)
    assemble_align (tt_format_size * BITS_PER_UNIT);
    assemble_align (tt_format_size * BITS_PER_UNIT);
 
 
  i = VEC_length (tree, cfun->eh->ttype_data);
  i = VEC_length (tree, cfun->eh->ttype_data);
  while (i-- > 0)
  while (i-- > 0)
    {
    {
      tree type = VEC_index (tree, cfun->eh->ttype_data, i);
      tree type = VEC_index (tree, cfun->eh->ttype_data, i);
      output_ttype (type, tt_format, tt_format_size);
      output_ttype (type, tt_format, tt_format_size);
    }
    }
 
 
#ifdef HAVE_AS_LEB128
#ifdef HAVE_AS_LEB128
  if (have_tt_data)
  if (have_tt_data)
      ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
      ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
#endif
#endif
 
 
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  /* ??? Decode and interpret the data for flag_debug_asm.  */
  if (targetm.arm_eabi_unwinder)
  if (targetm.arm_eabi_unwinder)
    {
    {
      tree type;
      tree type;
      for (i = 0;
      for (i = 0;
           VEC_iterate (tree, cfun->eh->ehspec_data.arm_eabi, i, type); ++i)
           VEC_iterate (tree, cfun->eh->ehspec_data.arm_eabi, i, type); ++i)
        output_ttype (type, tt_format, tt_format_size);
        output_ttype (type, tt_format, tt_format_size);
    }
    }
  else
  else
    {
    {
      uchar uc;
      uchar uc;
      for (i = 0;
      for (i = 0;
           VEC_iterate (uchar, cfun->eh->ehspec_data.other, i, uc); ++i)
           VEC_iterate (uchar, cfun->eh->ehspec_data.other, i, uc); ++i)
        dw2_asm_output_data (1, uc,
        dw2_asm_output_data (1, uc,
                             i ? NULL : "Exception specification table");
                             i ? NULL : "Exception specification table");
    }
    }
}
}
 
 
void
void
output_function_exception_table (const char * ARG_UNUSED (fnname))
output_function_exception_table (const char * ARG_UNUSED (fnname))
{
{
  rtx personality = get_personality_function (current_function_decl);
  rtx personality = get_personality_function (current_function_decl);
 
 
  /* Not all functions need anything.  */
  /* Not all functions need anything.  */
  if (! crtl->uses_eh_lsda)
  if (! crtl->uses_eh_lsda)
    return;
    return;
 
 
  if (personality)
  if (personality)
    assemble_external_libcall (personality);
    assemble_external_libcall (personality);
 
 
  output_one_function_exception_table (fnname, 0, personality);
  output_one_function_exception_table (fnname, 0, personality);
  if (crtl->eh.call_site_record[1] != NULL)
  if (crtl->eh.call_site_record[1] != NULL)
    output_one_function_exception_table (fnname, 1, personality);
    output_one_function_exception_table (fnname, 1, personality);
 
 
  switch_to_section (current_function_section ());
  switch_to_section (current_function_section ());
}
}
 
 
void
void
set_eh_throw_stmt_table (struct function *fun, struct htab *table)
set_eh_throw_stmt_table (struct function *fun, struct htab *table)
{
{
  fun->eh->throw_stmt_table = table;
  fun->eh->throw_stmt_table = table;
}
}
 
 
htab_t
htab_t
get_eh_throw_stmt_table (struct function *fun)
get_eh_throw_stmt_table (struct function *fun)
{
{
  return fun->eh->throw_stmt_table;
  return fun->eh->throw_stmt_table;
}
}


/* Determine if the function needs an EH personality function.  */
/* Determine if the function needs an EH personality function.  */
 
 
enum eh_personality_kind
enum eh_personality_kind
function_needs_eh_personality (struct function *fn)
function_needs_eh_personality (struct function *fn)
{
{
  enum eh_personality_kind kind = eh_personality_none;
  enum eh_personality_kind kind = eh_personality_none;
  eh_region i;
  eh_region i;
 
 
  FOR_ALL_EH_REGION_FN (i, fn)
  FOR_ALL_EH_REGION_FN (i, fn)
    {
    {
      switch (i->type)
      switch (i->type)
        {
        {
        case ERT_CLEANUP:
        case ERT_CLEANUP:
          /* Can do with any personality including the generic C one.  */
          /* Can do with any personality including the generic C one.  */
          kind = eh_personality_any;
          kind = eh_personality_any;
          break;
          break;
 
 
        case ERT_TRY:
        case ERT_TRY:
        case ERT_ALLOWED_EXCEPTIONS:
        case ERT_ALLOWED_EXCEPTIONS:
          /* Always needs a EH personality function.  The generic C
          /* Always needs a EH personality function.  The generic C
             personality doesn't handle these even for empty type lists.  */
             personality doesn't handle these even for empty type lists.  */
          return eh_personality_lang;
          return eh_personality_lang;
 
 
        case ERT_MUST_NOT_THROW:
        case ERT_MUST_NOT_THROW:
          /* Always needs a EH personality function.  The language may specify
          /* Always needs a EH personality function.  The language may specify
             what abort routine that must be used, e.g. std::terminate.  */
             what abort routine that must be used, e.g. std::terminate.  */
          return eh_personality_lang;
          return eh_personality_lang;
        }
        }
    }
    }
 
 
  return kind;
  return kind;
}
}


/* Dump EH information to OUT.  */
/* Dump EH information to OUT.  */
 
 
void
void
dump_eh_tree (FILE * out, struct function *fun)
dump_eh_tree (FILE * out, struct function *fun)
{
{
  eh_region i;
  eh_region i;
  int depth = 0;
  int depth = 0;
  static const char *const type_name[] = {
  static const char *const type_name[] = {
    "cleanup", "try", "allowed_exceptions", "must_not_throw"
    "cleanup", "try", "allowed_exceptions", "must_not_throw"
  };
  };
 
 
  i = fun->eh->region_tree;
  i = fun->eh->region_tree;
  if (!i)
  if (!i)
    return;
    return;
 
 
  fprintf (out, "Eh tree:\n");
  fprintf (out, "Eh tree:\n");
  while (1)
  while (1)
    {
    {
      fprintf (out, "  %*s %i %s", depth * 2, "",
      fprintf (out, "  %*s %i %s", depth * 2, "",
               i->index, type_name[(int) i->type]);
               i->index, type_name[(int) i->type]);
 
 
      if (i->landing_pads)
      if (i->landing_pads)
        {
        {
          eh_landing_pad lp;
          eh_landing_pad lp;
 
 
          fprintf (out, " land:");
          fprintf (out, " land:");
          if (current_ir_type () == IR_GIMPLE)
          if (current_ir_type () == IR_GIMPLE)
            {
            {
              for (lp = i->landing_pads; lp ; lp = lp->next_lp)
              for (lp = i->landing_pads; lp ; lp = lp->next_lp)
                {
                {
                  fprintf (out, "{%i,", lp->index);
                  fprintf (out, "{%i,", lp->index);
                  print_generic_expr (out, lp->post_landing_pad, 0);
                  print_generic_expr (out, lp->post_landing_pad, 0);
                  fputc ('}', out);
                  fputc ('}', out);
                  if (lp->next_lp)
                  if (lp->next_lp)
                    fputc (',', out);
                    fputc (',', out);
                }
                }
            }
            }
          else
          else
            {
            {
              for (lp = i->landing_pads; lp ; lp = lp->next_lp);
              for (lp = i->landing_pads; lp ; lp = lp->next_lp);
                {
                {
                  fprintf (out, "{%i,", lp->index);
                  fprintf (out, "{%i,", lp->index);
                  if (lp->landing_pad)
                  if (lp->landing_pad)
                    fprintf (out, "%i%s,", INSN_UID (lp->landing_pad),
                    fprintf (out, "%i%s,", INSN_UID (lp->landing_pad),
                             NOTE_P (lp->landing_pad) ? "(del)" : "");
                             NOTE_P (lp->landing_pad) ? "(del)" : "");
                  else
                  else
                    fprintf (out, "(nil),");
                    fprintf (out, "(nil),");
                  if (lp->post_landing_pad)
                  if (lp->post_landing_pad)
                    {
                    {
                      rtx lab = label_rtx (lp->post_landing_pad);
                      rtx lab = label_rtx (lp->post_landing_pad);
                      fprintf (out, "%i%s}", INSN_UID (lab),
                      fprintf (out, "%i%s}", INSN_UID (lab),
                               NOTE_P (lab) ? "(del)" : "");
                               NOTE_P (lab) ? "(del)" : "");
                    }
                    }
                  else
                  else
                    fprintf (out, "(nil)}");
                    fprintf (out, "(nil)}");
                  if (lp->next_lp)
                  if (lp->next_lp)
                    fputc (',', out);
                    fputc (',', out);
                }
                }
            }
            }
        }
        }
 
 
      switch (i->type)
      switch (i->type)
        {
        {
        case ERT_CLEANUP:
        case ERT_CLEANUP:
        case ERT_MUST_NOT_THROW:
        case ERT_MUST_NOT_THROW:
          break;
          break;
 
 
        case ERT_TRY:
        case ERT_TRY:
          {
          {
            eh_catch c;
            eh_catch c;
            fprintf (out, " catch:");
            fprintf (out, " catch:");
            for (c = i->u.eh_try.first_catch; c; c = c->next_catch)
            for (c = i->u.eh_try.first_catch; c; c = c->next_catch)
              {
              {
                fputc ('{', out);
                fputc ('{', out);
                if (c->label)
                if (c->label)
                  {
                  {
                    fprintf (out, "lab:");
                    fprintf (out, "lab:");
                    print_generic_expr (out, c->label, 0);
                    print_generic_expr (out, c->label, 0);
                    fputc (';', out);
                    fputc (';', out);
                  }
                  }
                print_generic_expr (out, c->type_list, 0);
                print_generic_expr (out, c->type_list, 0);
                fputc ('}', out);
                fputc ('}', out);
                if (c->next_catch)
                if (c->next_catch)
                  fputc (',', out);
                  fputc (',', out);
              }
              }
          }
          }
          break;
          break;
 
 
        case ERT_ALLOWED_EXCEPTIONS:
        case ERT_ALLOWED_EXCEPTIONS:
          fprintf (out, " filter :%i types:", i->u.allowed.filter);
          fprintf (out, " filter :%i types:", i->u.allowed.filter);
          print_generic_expr (out, i->u.allowed.type_list, 0);
          print_generic_expr (out, i->u.allowed.type_list, 0);
          break;
          break;
        }
        }
      fputc ('\n', out);
      fputc ('\n', out);
 
 
      /* If there are sub-regions, process them.  */
      /* If there are sub-regions, process them.  */
      if (i->inner)
      if (i->inner)
        i = i->inner, depth++;
        i = i->inner, depth++;
      /* If there are peers, process them.  */
      /* If there are peers, process them.  */
      else if (i->next_peer)
      else if (i->next_peer)
        i = i->next_peer;
        i = i->next_peer;
      /* Otherwise, step back up the tree to the next peer.  */
      /* Otherwise, step back up the tree to the next peer.  */
      else
      else
        {
        {
          do
          do
            {
            {
              i = i->outer;
              i = i->outer;
              depth--;
              depth--;
              if (i == NULL)
              if (i == NULL)
                return;
                return;
            }
            }
          while (i->next_peer == NULL);
          while (i->next_peer == NULL);
          i = i->next_peer;
          i = i->next_peer;
        }
        }
    }
    }
}
}
 
 
/* Dump the EH tree for FN on stderr.  */
/* Dump the EH tree for FN on stderr.  */
 
 
void
void
debug_eh_tree (struct function *fn)
debug_eh_tree (struct function *fn)
{
{
  dump_eh_tree (stderr, fn);
  dump_eh_tree (stderr, fn);
}
}
 
 
/* Verify invariants on EH datastructures.  */
/* Verify invariants on EH datastructures.  */
 
 
void
void
verify_eh_tree (struct function *fun)
verify_eh_tree (struct function *fun)
{
{
  eh_region r, outer;
  eh_region r, outer;
  int nvisited_lp, nvisited_r;
  int nvisited_lp, nvisited_r;
  int count_lp, count_r, depth, i;
  int count_lp, count_r, depth, i;
  eh_landing_pad lp;
  eh_landing_pad lp;
  bool err = false;
  bool err = false;
 
 
  if (!fun->eh->region_tree)
  if (!fun->eh->region_tree)
    return;
    return;
 
 
  count_r = 0;
  count_r = 0;
  for (i = 1; VEC_iterate (eh_region, fun->eh->region_array, i, r); ++i)
  for (i = 1; VEC_iterate (eh_region, fun->eh->region_array, i, r); ++i)
    if (r)
    if (r)
      {
      {
        if (r->index == i)
        if (r->index == i)
          count_r++;
          count_r++;
        else
        else
          {
          {
            error ("region_array is corrupted for region %i", r->index);
            error ("region_array is corrupted for region %i", r->index);
            err = true;
            err = true;
          }
          }
      }
      }
 
 
  count_lp = 0;
  count_lp = 0;
  for (i = 1; VEC_iterate (eh_landing_pad, fun->eh->lp_array, i, lp); ++i)
  for (i = 1; VEC_iterate (eh_landing_pad, fun->eh->lp_array, i, lp); ++i)
    if (lp)
    if (lp)
      {
      {
        if (lp->index == i)
        if (lp->index == i)
          count_lp++;
          count_lp++;
        else
        else
          {
          {
            error ("lp_array is corrupted for lp %i", lp->index);
            error ("lp_array is corrupted for lp %i", lp->index);
            err = true;
            err = true;
          }
          }
      }
      }
 
 
  depth = nvisited_lp = nvisited_r = 0;
  depth = nvisited_lp = nvisited_r = 0;
  outer = NULL;
  outer = NULL;
  r = fun->eh->region_tree;
  r = fun->eh->region_tree;
  while (1)
  while (1)
    {
    {
      if (VEC_index (eh_region, fun->eh->region_array, r->index) != r)
      if (VEC_index (eh_region, fun->eh->region_array, r->index) != r)
        {
        {
          error ("region_array is corrupted for region %i", r->index);
          error ("region_array is corrupted for region %i", r->index);
          err = true;
          err = true;
        }
        }
      if (r->outer != outer)
      if (r->outer != outer)
        {
        {
          error ("outer block of region %i is wrong", r->index);
          error ("outer block of region %i is wrong", r->index);
          err = true;
          err = true;
        }
        }
      if (depth < 0)
      if (depth < 0)
        {
        {
          error ("negative nesting depth of region %i", r->index);
          error ("negative nesting depth of region %i", r->index);
          err = true;
          err = true;
        }
        }
      nvisited_r++;
      nvisited_r++;
 
 
      for (lp = r->landing_pads; lp ; lp = lp->next_lp)
      for (lp = r->landing_pads; lp ; lp = lp->next_lp)
        {
        {
          if (VEC_index (eh_landing_pad, fun->eh->lp_array, lp->index) != lp)
          if (VEC_index (eh_landing_pad, fun->eh->lp_array, lp->index) != lp)
            {
            {
              error ("lp_array is corrupted for lp %i", lp->index);
              error ("lp_array is corrupted for lp %i", lp->index);
              err = true;
              err = true;
            }
            }
          if (lp->region != r)
          if (lp->region != r)
            {
            {
              error ("region of lp %i is wrong", lp->index);
              error ("region of lp %i is wrong", lp->index);
              err = true;
              err = true;
            }
            }
          nvisited_lp++;
          nvisited_lp++;
        }
        }
 
 
      if (r->inner)
      if (r->inner)
        outer = r, r = r->inner, depth++;
        outer = r, r = r->inner, depth++;
      else if (r->next_peer)
      else if (r->next_peer)
        r = r->next_peer;
        r = r->next_peer;
      else
      else
        {
        {
          do
          do
            {
            {
              r = r->outer;
              r = r->outer;
              if (r == NULL)
              if (r == NULL)
                goto region_done;
                goto region_done;
              depth--;
              depth--;
              outer = r->outer;
              outer = r->outer;
            }
            }
          while (r->next_peer == NULL);
          while (r->next_peer == NULL);
          r = r->next_peer;
          r = r->next_peer;
        }
        }
    }
    }
 region_done:
 region_done:
  if (depth != 0)
  if (depth != 0)
    {
    {
      error ("tree list ends on depth %i", depth);
      error ("tree list ends on depth %i", depth);
      err = true;
      err = true;
    }
    }
  if (count_r != nvisited_r)
  if (count_r != nvisited_r)
    {
    {
      error ("region_array does not match region_tree");
      error ("region_array does not match region_tree");
      err = true;
      err = true;
    }
    }
  if (count_lp != nvisited_lp)
  if (count_lp != nvisited_lp)
    {
    {
      error ("lp_array does not match region_tree");
      error ("lp_array does not match region_tree");
      err = true;
      err = true;
    }
    }
 
 
  if (err)
  if (err)
    {
    {
      dump_eh_tree (stderr, fun);
      dump_eh_tree (stderr, fun);
      internal_error ("verify_eh_tree failed");
      internal_error ("verify_eh_tree failed");
    }
    }
}
}


#include "gt-except.h"
#include "gt-except.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.