OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [genpreds.c] - Diff between revs 816 and 826

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Generate from machine description:
/* Generate from machine description:
   - prototype declarations for operand predicates (tm-preds.h)
   - prototype declarations for operand predicates (tm-preds.h)
   - function definitions of operand predicates, if defined new-style
   - function definitions of operand predicates, if defined new-style
     (insn-preds.c)
     (insn-preds.c)
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "bconfig.h"
#include "bconfig.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "errors.h"
#include "errors.h"
#include "obstack.h"
#include "obstack.h"
#include "gensupport.h"
#include "gensupport.h"
 
 
/* Given a predicate expression EXP, from form NAME at line LINENO,
/* Given a predicate expression EXP, from form NAME at line LINENO,
   verify that it does not contain any RTL constructs which are not
   verify that it does not contain any RTL constructs which are not
   valid in predicate definitions.  Returns true if EXP is
   valid in predicate definitions.  Returns true if EXP is
   INvalid; issues error messages, caller need not.  */
   INvalid; issues error messages, caller need not.  */
static bool
static bool
validate_exp (rtx exp, const char *name, int lineno)
validate_exp (rtx exp, const char *name, int lineno)
{
{
  if (exp == 0)
  if (exp == 0)
    {
    {
      message_with_line (lineno, "%s: must give a predicate expression", name);
      message_with_line (lineno, "%s: must give a predicate expression", name);
      return true;
      return true;
    }
    }
 
 
  switch (GET_CODE (exp))
  switch (GET_CODE (exp))
    {
    {
      /* Ternary, binary, unary expressions: recurse into subexpressions.  */
      /* Ternary, binary, unary expressions: recurse into subexpressions.  */
    case IF_THEN_ELSE:
    case IF_THEN_ELSE:
      if (validate_exp (XEXP (exp, 2), name, lineno))
      if (validate_exp (XEXP (exp, 2), name, lineno))
        return true;
        return true;
      /* else fall through */
      /* else fall through */
    case AND:
    case AND:
    case IOR:
    case IOR:
      if (validate_exp (XEXP (exp, 1), name, lineno))
      if (validate_exp (XEXP (exp, 1), name, lineno))
        return true;
        return true;
      /* else fall through */
      /* else fall through */
    case NOT:
    case NOT:
      return validate_exp (XEXP (exp, 0), name, lineno);
      return validate_exp (XEXP (exp, 0), name, lineno);
 
 
      /* MATCH_CODE might have a syntax error in its path expression.  */
      /* MATCH_CODE might have a syntax error in its path expression.  */
    case MATCH_CODE:
    case MATCH_CODE:
      {
      {
        const char *p;
        const char *p;
        for (p = XSTR (exp, 1); *p; p++)
        for (p = XSTR (exp, 1); *p; p++)
          {
          {
            if (!ISDIGIT (*p) && !ISLOWER (*p))
            if (!ISDIGIT (*p) && !ISLOWER (*p))
              {
              {
                message_with_line (lineno, "%s: invalid character in path "
                message_with_line (lineno, "%s: invalid character in path "
                                   "string '%s'", name, XSTR (exp, 1));
                                   "string '%s'", name, XSTR (exp, 1));
                have_error = 1;
                have_error = 1;
                return true;
                return true;
              }
              }
          }
          }
      }
      }
      /* fall through */
      /* fall through */
 
 
      /* These need no special checking.  */
      /* These need no special checking.  */
    case MATCH_OPERAND:
    case MATCH_OPERAND:
    case MATCH_TEST:
    case MATCH_TEST:
      return false;
      return false;
 
 
    default:
    default:
      message_with_line (lineno,
      message_with_line (lineno,
                         "%s: cannot use '%s' in a predicate expression",
                         "%s: cannot use '%s' in a predicate expression",
                         name, GET_RTX_NAME (GET_CODE (exp)));
                         name, GET_RTX_NAME (GET_CODE (exp)));
      have_error = 1;
      have_error = 1;
      return true;
      return true;
    }
    }
}
}
 
 
/* Predicates are defined with (define_predicate) or
/* Predicates are defined with (define_predicate) or
   (define_special_predicate) expressions in the machine description.  */
   (define_special_predicate) expressions in the machine description.  */
static void
static void
process_define_predicate (rtx defn, int lineno)
process_define_predicate (rtx defn, int lineno)
{
{
  struct pred_data *pred;
  struct pred_data *pred;
  const char *p;
  const char *p;
 
 
  if (!ISALPHA (XSTR (defn, 0)[0]) && XSTR (defn, 0)[0] != '_')
  if (!ISALPHA (XSTR (defn, 0)[0]) && XSTR (defn, 0)[0] != '_')
    goto bad_name;
    goto bad_name;
  for (p = XSTR (defn, 0) + 1; *p; p++)
  for (p = XSTR (defn, 0) + 1; *p; p++)
    if (!ISALNUM (*p) && *p != '_')
    if (!ISALNUM (*p) && *p != '_')
      goto bad_name;
      goto bad_name;
 
 
  if (validate_exp (XEXP (defn, 1), XSTR (defn, 0), lineno))
  if (validate_exp (XEXP (defn, 1), XSTR (defn, 0), lineno))
    return;
    return;
 
 
  pred = XCNEW (struct pred_data);
  pred = XCNEW (struct pred_data);
  pred->name = XSTR (defn, 0);
  pred->name = XSTR (defn, 0);
  pred->exp = XEXP (defn, 1);
  pred->exp = XEXP (defn, 1);
  pred->c_block = XSTR (defn, 2);
  pred->c_block = XSTR (defn, 2);
 
 
  if (GET_CODE (defn) == DEFINE_SPECIAL_PREDICATE)
  if (GET_CODE (defn) == DEFINE_SPECIAL_PREDICATE)
    pred->special = true;
    pred->special = true;
 
 
  add_predicate (pred);
  add_predicate (pred);
  return;
  return;
 
 
 bad_name:
 bad_name:
  message_with_line (lineno,
  message_with_line (lineno,
                     "%s: predicate name must be a valid C function name",
                     "%s: predicate name must be a valid C function name",
                     XSTR (defn, 0));
                     XSTR (defn, 0));
  have_error = 1;
  have_error = 1;
  return;
  return;
}
}
 
 
/* Given a predicate, if it has an embedded C block, write the block
/* Given a predicate, if it has an embedded C block, write the block
   out as a static inline subroutine, and augment the RTL test with a
   out as a static inline subroutine, and augment the RTL test with a
   match_test that calls that subroutine.  For instance,
   match_test that calls that subroutine.  For instance,
 
 
       (define_predicate "basereg_operand"
       (define_predicate "basereg_operand"
         (match_operand 0 "register_operand")
         (match_operand 0 "register_operand")
       {
       {
         if (GET_CODE (op) == SUBREG)
         if (GET_CODE (op) == SUBREG)
           op = SUBREG_REG (op);
           op = SUBREG_REG (op);
         return REG_POINTER (op);
         return REG_POINTER (op);
       })
       })
 
 
   becomes
   becomes
 
 
       static inline int basereg_operand_1(rtx op, enum machine_mode mode)
       static inline int basereg_operand_1(rtx op, enum machine_mode mode)
       {
       {
         if (GET_CODE (op) == SUBREG)
         if (GET_CODE (op) == SUBREG)
           op = SUBREG_REG (op);
           op = SUBREG_REG (op);
         return REG_POINTER (op);
         return REG_POINTER (op);
       }
       }
 
 
       (define_predicate "basereg_operand"
       (define_predicate "basereg_operand"
         (and (match_operand 0 "register_operand")
         (and (match_operand 0 "register_operand")
              (match_test "basereg_operand_1 (op, mode)")))
              (match_test "basereg_operand_1 (op, mode)")))
 
 
   The only wart is that there's no way to insist on a { } string in
   The only wart is that there's no way to insist on a { } string in
   an RTL template, so we have to handle "" strings.  */
   an RTL template, so we have to handle "" strings.  */
 
 
 
 
static void
static void
write_predicate_subfunction (struct pred_data *p)
write_predicate_subfunction (struct pred_data *p)
{
{
  const char *match_test_str;
  const char *match_test_str;
  rtx match_test_exp, and_exp;
  rtx match_test_exp, and_exp;
 
 
  if (p->c_block[0] == '\0')
  if (p->c_block[0] == '\0')
    return;
    return;
 
 
  /* Construct the function-call expression.  */
  /* Construct the function-call expression.  */
  obstack_grow (rtl_obstack, p->name, strlen (p->name));
  obstack_grow (rtl_obstack, p->name, strlen (p->name));
  obstack_grow (rtl_obstack, "_1 (op, mode)",
  obstack_grow (rtl_obstack, "_1 (op, mode)",
                sizeof "_1 (op, mode)");
                sizeof "_1 (op, mode)");
  match_test_str = XOBFINISH (rtl_obstack, const char *);
  match_test_str = XOBFINISH (rtl_obstack, const char *);
 
 
  /* Add the function-call expression to the complete expression to be
  /* Add the function-call expression to the complete expression to be
     evaluated.  */
     evaluated.  */
  match_test_exp = rtx_alloc (MATCH_TEST);
  match_test_exp = rtx_alloc (MATCH_TEST);
  XSTR (match_test_exp, 0) = match_test_str;
  XSTR (match_test_exp, 0) = match_test_str;
 
 
  and_exp = rtx_alloc (AND);
  and_exp = rtx_alloc (AND);
  XEXP (and_exp, 0) = p->exp;
  XEXP (and_exp, 0) = p->exp;
  XEXP (and_exp, 1) = match_test_exp;
  XEXP (and_exp, 1) = match_test_exp;
 
 
  p->exp = and_exp;
  p->exp = and_exp;
 
 
  printf ("static inline int\n"
  printf ("static inline int\n"
          "%s_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)\n",
          "%s_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)\n",
          p->name);
          p->name);
  print_rtx_ptr_loc (p->c_block);
  print_rtx_ptr_loc (p->c_block);
  if (p->c_block[0] == '{')
  if (p->c_block[0] == '{')
    fputs (p->c_block, stdout);
    fputs (p->c_block, stdout);
  else
  else
    printf ("{\n  %s\n}", p->c_block);
    printf ("{\n  %s\n}", p->c_block);
  fputs ("\n\n", stdout);
  fputs ("\n\n", stdout);
}
}
 
 
/* Given a predicate expression EXP, from form NAME, determine whether
/* Given a predicate expression EXP, from form NAME, determine whether
   it refers to the variable given as VAR.  */
   it refers to the variable given as VAR.  */
static bool
static bool
needs_variable (rtx exp, const char *var)
needs_variable (rtx exp, const char *var)
{
{
  switch (GET_CODE (exp))
  switch (GET_CODE (exp))
    {
    {
      /* Ternary, binary, unary expressions need a variable if
      /* Ternary, binary, unary expressions need a variable if
         any of their subexpressions do.  */
         any of their subexpressions do.  */
    case IF_THEN_ELSE:
    case IF_THEN_ELSE:
      if (needs_variable (XEXP (exp, 2), var))
      if (needs_variable (XEXP (exp, 2), var))
        return true;
        return true;
      /* else fall through */
      /* else fall through */
    case AND:
    case AND:
    case IOR:
    case IOR:
      if (needs_variable (XEXP (exp, 1), var))
      if (needs_variable (XEXP (exp, 1), var))
        return true;
        return true;
      /* else fall through */
      /* else fall through */
    case NOT:
    case NOT:
      return needs_variable (XEXP (exp, 0), var);
      return needs_variable (XEXP (exp, 0), var);
 
 
      /* MATCH_CODE uses "op", but nothing else.  */
      /* MATCH_CODE uses "op", but nothing else.  */
    case MATCH_CODE:
    case MATCH_CODE:
      return !strcmp (var, "op");
      return !strcmp (var, "op");
 
 
      /* MATCH_OPERAND uses "op" and may use "mode".  */
      /* MATCH_OPERAND uses "op" and may use "mode".  */
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      if (!strcmp (var, "op"))
      if (!strcmp (var, "op"))
        return true;
        return true;
      if (!strcmp (var, "mode") && GET_MODE (exp) == VOIDmode)
      if (!strcmp (var, "mode") && GET_MODE (exp) == VOIDmode)
        return true;
        return true;
      return false;
      return false;
 
 
      /* MATCH_TEST uses var if XSTR (exp, 0) =~ /\b${var}\b/o; */
      /* MATCH_TEST uses var if XSTR (exp, 0) =~ /\b${var}\b/o; */
    case MATCH_TEST:
    case MATCH_TEST:
      {
      {
        const char *p = XSTR (exp, 0);
        const char *p = XSTR (exp, 0);
        const char *q = strstr (p, var);
        const char *q = strstr (p, var);
        if (!q)
        if (!q)
          return false;
          return false;
        if (q != p && (ISALNUM (q[-1]) || q[-1] == '_'))
        if (q != p && (ISALNUM (q[-1]) || q[-1] == '_'))
          return false;
          return false;
        q += strlen (var);
        q += strlen (var);
        if (ISALNUM (q[0]) || q[0] == '_')
        if (ISALNUM (q[0]) || q[0] == '_')
          return false;
          return false;
      }
      }
      return true;
      return true;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Given an RTL expression EXP, find all subexpressions which we may
/* Given an RTL expression EXP, find all subexpressions which we may
   assume to perform mode tests.  Normal MATCH_OPERAND does;
   assume to perform mode tests.  Normal MATCH_OPERAND does;
   MATCH_CODE does if it applies to the whole expression and accepts
   MATCH_CODE does if it applies to the whole expression and accepts
   CONST_INT or CONST_DOUBLE; and we have to assume that MATCH_TEST
   CONST_INT or CONST_DOUBLE; and we have to assume that MATCH_TEST
   does not.  These combine in almost-boolean fashion - the only
   does not.  These combine in almost-boolean fashion - the only
   exception is that (not X) must be assumed not to perform a mode
   exception is that (not X) must be assumed not to perform a mode
   test, whether or not X does.
   test, whether or not X does.
 
 
   The mark is the RTL /v flag, which is true for subexpressions which
   The mark is the RTL /v flag, which is true for subexpressions which
   do *not* perform mode tests.
   do *not* perform mode tests.
*/
*/
#define NO_MODE_TEST(EXP) RTX_FLAG (EXP, volatil)
#define NO_MODE_TEST(EXP) RTX_FLAG (EXP, volatil)
static void
static void
mark_mode_tests (rtx exp)
mark_mode_tests (rtx exp)
{
{
  switch (GET_CODE (exp))
  switch (GET_CODE (exp))
    {
    {
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      {
      {
        struct pred_data *p = lookup_predicate (XSTR (exp, 1));
        struct pred_data *p = lookup_predicate (XSTR (exp, 1));
        if (!p)
        if (!p)
          error ("reference to undefined predicate '%s'", XSTR (exp, 1));
          error ("reference to undefined predicate '%s'", XSTR (exp, 1));
        else if (p->special || GET_MODE (exp) != VOIDmode)
        else if (p->special || GET_MODE (exp) != VOIDmode)
          NO_MODE_TEST (exp) = 1;
          NO_MODE_TEST (exp) = 1;
      }
      }
      break;
      break;
 
 
    case MATCH_CODE:
    case MATCH_CODE:
      if (XSTR (exp, 1)[0] != '\0'
      if (XSTR (exp, 1)[0] != '\0'
          || (!strstr (XSTR (exp, 0), "const_int")
          || (!strstr (XSTR (exp, 0), "const_int")
              && !strstr (XSTR (exp, 0), "const_double")))
              && !strstr (XSTR (exp, 0), "const_double")))
        NO_MODE_TEST (exp) = 1;
        NO_MODE_TEST (exp) = 1;
      break;
      break;
 
 
    case MATCH_TEST:
    case MATCH_TEST:
    case NOT:
    case NOT:
      NO_MODE_TEST (exp) = 1;
      NO_MODE_TEST (exp) = 1;
      break;
      break;
 
 
    case AND:
    case AND:
      mark_mode_tests (XEXP (exp, 0));
      mark_mode_tests (XEXP (exp, 0));
      mark_mode_tests (XEXP (exp, 1));
      mark_mode_tests (XEXP (exp, 1));
 
 
      NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
      NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
                            && NO_MODE_TEST (XEXP (exp, 1)));
                            && NO_MODE_TEST (XEXP (exp, 1)));
      break;
      break;
 
 
    case IOR:
    case IOR:
      mark_mode_tests (XEXP (exp, 0));
      mark_mode_tests (XEXP (exp, 0));
      mark_mode_tests (XEXP (exp, 1));
      mark_mode_tests (XEXP (exp, 1));
 
 
      NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
      NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0))
                            || NO_MODE_TEST (XEXP (exp, 1)));
                            || NO_MODE_TEST (XEXP (exp, 1)));
      break;
      break;
 
 
    case IF_THEN_ELSE:
    case IF_THEN_ELSE:
      /* A ? B : C does a mode test if (one of A and B) does a mode
      /* A ? B : C does a mode test if (one of A and B) does a mode
         test, and C does too.  */
         test, and C does too.  */
      mark_mode_tests (XEXP (exp, 0));
      mark_mode_tests (XEXP (exp, 0));
      mark_mode_tests (XEXP (exp, 1));
      mark_mode_tests (XEXP (exp, 1));
      mark_mode_tests (XEXP (exp, 2));
      mark_mode_tests (XEXP (exp, 2));
 
 
      NO_MODE_TEST (exp) = ((NO_MODE_TEST (XEXP (exp, 0))
      NO_MODE_TEST (exp) = ((NO_MODE_TEST (XEXP (exp, 0))
                             && NO_MODE_TEST (XEXP (exp, 1)))
                             && NO_MODE_TEST (XEXP (exp, 1)))
                            || NO_MODE_TEST (XEXP (exp, 2)));
                            || NO_MODE_TEST (XEXP (exp, 2)));
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Determine whether the expression EXP is a MATCH_CODE that should
/* Determine whether the expression EXP is a MATCH_CODE that should
   be written as a switch statement.  */
   be written as a switch statement.  */
static bool
static bool
generate_switch_p (rtx exp)
generate_switch_p (rtx exp)
{
{
  return GET_CODE (exp) == MATCH_CODE
  return GET_CODE (exp) == MATCH_CODE
         && strchr (XSTR (exp, 0), ',');
         && strchr (XSTR (exp, 0), ',');
}
}
 
 
/* Given a predicate, work out where in its RTL expression to add
/* Given a predicate, work out where in its RTL expression to add
   tests for proper modes.  Special predicates do not get any such
   tests for proper modes.  Special predicates do not get any such
   tests.  We try to avoid adding tests when we don't have to; in
   tests.  We try to avoid adding tests when we don't have to; in
   particular, other normal predicates can be counted on to do it for
   particular, other normal predicates can be counted on to do it for
   us.  */
   us.  */
 
 
static void
static void
add_mode_tests (struct pred_data *p)
add_mode_tests (struct pred_data *p)
{
{
  rtx match_test_exp, and_exp;
  rtx match_test_exp, and_exp;
  rtx *pos;
  rtx *pos;
 
 
  /* Don't touch special predicates.  */
  /* Don't touch special predicates.  */
  if (p->special)
  if (p->special)
    return;
    return;
 
 
  mark_mode_tests (p->exp);
  mark_mode_tests (p->exp);
 
 
  /* If the whole expression already tests the mode, we're done.  */
  /* If the whole expression already tests the mode, we're done.  */
  if (!NO_MODE_TEST (p->exp))
  if (!NO_MODE_TEST (p->exp))
    return;
    return;
 
 
  match_test_exp = rtx_alloc (MATCH_TEST);
  match_test_exp = rtx_alloc (MATCH_TEST);
  XSTR (match_test_exp, 0) = "mode == VOIDmode || GET_MODE (op) == mode";
  XSTR (match_test_exp, 0) = "mode == VOIDmode || GET_MODE (op) == mode";
  and_exp = rtx_alloc (AND);
  and_exp = rtx_alloc (AND);
  XEXP (and_exp, 1) = match_test_exp;
  XEXP (and_exp, 1) = match_test_exp;
 
 
  /* It is always correct to rewrite p->exp as
  /* It is always correct to rewrite p->exp as
 
 
        (and (...) (match_test "mode == VOIDmode || GET_MODE (op) == mode"))
        (and (...) (match_test "mode == VOIDmode || GET_MODE (op) == mode"))
 
 
     but there are a couple forms where we can do better.  If the
     but there are a couple forms where we can do better.  If the
     top-level pattern is an IOR, and one of the two branches does test
     top-level pattern is an IOR, and one of the two branches does test
     the mode, we can wrap just the branch that doesn't.  Likewise, if
     the mode, we can wrap just the branch that doesn't.  Likewise, if
     we have an IF_THEN_ELSE, and one side of it tests the mode, we can
     we have an IF_THEN_ELSE, and one side of it tests the mode, we can
     wrap just the side that doesn't.  And, of course, we can repeat this
     wrap just the side that doesn't.  And, of course, we can repeat this
     descent as many times as it works.  */
     descent as many times as it works.  */
 
 
  pos = &p->exp;
  pos = &p->exp;
  for (;;)
  for (;;)
    {
    {
      rtx subexp = *pos;
      rtx subexp = *pos;
 
 
      switch (GET_CODE (subexp))
      switch (GET_CODE (subexp))
        {
        {
        case AND:
        case AND:
          /* The switch code generation in write_predicate_stmts prefers
          /* The switch code generation in write_predicate_stmts prefers
             rtx code tests to be at the top of the expression tree.  So
             rtx code tests to be at the top of the expression tree.  So
             push this AND down into the second operand of an existing
             push this AND down into the second operand of an existing
             AND expression.  */
             AND expression.  */
          if (generate_switch_p (XEXP (subexp, 0)))
          if (generate_switch_p (XEXP (subexp, 0)))
            pos = &XEXP (subexp, 1);
            pos = &XEXP (subexp, 1);
          goto break_loop;
          goto break_loop;
 
 
        case IOR:
        case IOR:
          {
          {
            int test0 = NO_MODE_TEST (XEXP (subexp, 0));
            int test0 = NO_MODE_TEST (XEXP (subexp, 0));
            int test1 = NO_MODE_TEST (XEXP (subexp, 1));
            int test1 = NO_MODE_TEST (XEXP (subexp, 1));
 
 
            gcc_assert (test0 || test1);
            gcc_assert (test0 || test1);
 
 
            if (test0 && test1)
            if (test0 && test1)
              goto break_loop;
              goto break_loop;
            pos = test0 ? &XEXP (subexp, 0) : &XEXP (subexp, 1);
            pos = test0 ? &XEXP (subexp, 0) : &XEXP (subexp, 1);
          }
          }
          break;
          break;
 
 
        case IF_THEN_ELSE:
        case IF_THEN_ELSE:
          {
          {
            int test0 = NO_MODE_TEST (XEXP (subexp, 0));
            int test0 = NO_MODE_TEST (XEXP (subexp, 0));
            int test1 = NO_MODE_TEST (XEXP (subexp, 1));
            int test1 = NO_MODE_TEST (XEXP (subexp, 1));
            int test2 = NO_MODE_TEST (XEXP (subexp, 2));
            int test2 = NO_MODE_TEST (XEXP (subexp, 2));
 
 
            gcc_assert ((test0 && test1) || test2);
            gcc_assert ((test0 && test1) || test2);
 
 
            if (test0 && test1 && test2)
            if (test0 && test1 && test2)
              goto break_loop;
              goto break_loop;
            if (test0 && test1)
            if (test0 && test1)
              /* Must put it on the dependent clause, not the
              /* Must put it on the dependent clause, not the
                 controlling expression, or we change the meaning of
                 controlling expression, or we change the meaning of
                 the test.  */
                 the test.  */
              pos = &XEXP (subexp, 1);
              pos = &XEXP (subexp, 1);
            else
            else
              pos = &XEXP (subexp, 2);
              pos = &XEXP (subexp, 2);
          }
          }
          break;
          break;
 
 
        default:
        default:
          goto break_loop;
          goto break_loop;
        }
        }
    }
    }
 break_loop:
 break_loop:
  XEXP (and_exp, 0) = *pos;
  XEXP (and_exp, 0) = *pos;
  *pos = and_exp;
  *pos = and_exp;
}
}
 
 
/* PATH is a string describing a path from the root of an RTL
/* PATH is a string describing a path from the root of an RTL
   expression to an inner subexpression to be tested.  Output
   expression to an inner subexpression to be tested.  Output
   code which computes the subexpression from the variable
   code which computes the subexpression from the variable
   holding the root of the expression.  */
   holding the root of the expression.  */
static void
static void
write_extract_subexp (const char *path)
write_extract_subexp (const char *path)
{
{
  int len = strlen (path);
  int len = strlen (path);
  int i;
  int i;
 
 
  /* We first write out the operations (XEXP or XVECEXP) in reverse
  /* We first write out the operations (XEXP or XVECEXP) in reverse
     order, then write "op", then the indices in forward order.  */
     order, then write "op", then the indices in forward order.  */
  for (i = len - 1; i >= 0; i--)
  for (i = len - 1; i >= 0; i--)
    {
    {
      if (ISLOWER (path[i]))
      if (ISLOWER (path[i]))
        fputs ("XVECEXP (", stdout);
        fputs ("XVECEXP (", stdout);
      else if (ISDIGIT (path[i]))
      else if (ISDIGIT (path[i]))
        fputs ("XEXP (", stdout);
        fputs ("XEXP (", stdout);
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  fputs ("op", stdout);
  fputs ("op", stdout);
 
 
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      if (ISLOWER (path[i]))
      if (ISLOWER (path[i]))
        printf (", 0, %d)", path[i] - 'a');
        printf (", 0, %d)", path[i] - 'a');
      else if (ISDIGIT (path[i]))
      else if (ISDIGIT (path[i]))
        printf (", %d)", path[i] - '0');
        printf (", %d)", path[i] - '0');
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
}
}
 
 
/* CODES is a list of RTX codes.  Write out an expression which
/* CODES is a list of RTX codes.  Write out an expression which
   determines whether the operand has one of those codes.  */
   determines whether the operand has one of those codes.  */
static void
static void
write_match_code (const char *path, const char *codes)
write_match_code (const char *path, const char *codes)
{
{
  const char *code;
  const char *code;
 
 
  while ((code = scan_comma_elt (&codes)) != 0)
  while ((code = scan_comma_elt (&codes)) != 0)
    {
    {
      fputs ("GET_CODE (", stdout);
      fputs ("GET_CODE (", stdout);
      write_extract_subexp (path);
      write_extract_subexp (path);
      fputs (") == ", stdout);
      fputs (") == ", stdout);
      while (code < codes)
      while (code < codes)
        {
        {
          putchar (TOUPPER (*code));
          putchar (TOUPPER (*code));
          code++;
          code++;
        }
        }
 
 
      if (*codes == ',')
      if (*codes == ',')
        fputs (" || ", stdout);
        fputs (" || ", stdout);
    }
    }
}
}
 
 
/* EXP is an RTL (sub)expression for a predicate.  Recursively
/* EXP is an RTL (sub)expression for a predicate.  Recursively
   descend the expression and write out an equivalent C expression.  */
   descend the expression and write out an equivalent C expression.  */
static void
static void
write_predicate_expr (rtx exp)
write_predicate_expr (rtx exp)
{
{
  switch (GET_CODE (exp))
  switch (GET_CODE (exp))
    {
    {
    case AND:
    case AND:
      putchar ('(');
      putchar ('(');
      write_predicate_expr (XEXP (exp, 0));
      write_predicate_expr (XEXP (exp, 0));
      fputs (") && (", stdout);
      fputs (") && (", stdout);
      write_predicate_expr (XEXP (exp, 1));
      write_predicate_expr (XEXP (exp, 1));
      putchar (')');
      putchar (')');
      break;
      break;
 
 
    case IOR:
    case IOR:
      putchar ('(');
      putchar ('(');
      write_predicate_expr (XEXP (exp, 0));
      write_predicate_expr (XEXP (exp, 0));
      fputs (") || (", stdout);
      fputs (") || (", stdout);
      write_predicate_expr (XEXP (exp, 1));
      write_predicate_expr (XEXP (exp, 1));
      putchar (')');
      putchar (')');
      break;
      break;
 
 
    case NOT:
    case NOT:
      fputs ("!(", stdout);
      fputs ("!(", stdout);
      write_predicate_expr (XEXP (exp, 0));
      write_predicate_expr (XEXP (exp, 0));
      putchar (')');
      putchar (')');
      break;
      break;
 
 
    case IF_THEN_ELSE:
    case IF_THEN_ELSE:
      putchar ('(');
      putchar ('(');
      write_predicate_expr (XEXP (exp, 0));
      write_predicate_expr (XEXP (exp, 0));
      fputs (") ? (", stdout);
      fputs (") ? (", stdout);
      write_predicate_expr (XEXP (exp, 1));
      write_predicate_expr (XEXP (exp, 1));
      fputs (") : (", stdout);
      fputs (") : (", stdout);
      write_predicate_expr (XEXP (exp, 2));
      write_predicate_expr (XEXP (exp, 2));
      putchar (')');
      putchar (')');
      break;
      break;
 
 
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      if (GET_MODE (exp) == VOIDmode)
      if (GET_MODE (exp) == VOIDmode)
        printf ("%s (op, mode)", XSTR (exp, 1));
        printf ("%s (op, mode)", XSTR (exp, 1));
      else
      else
        printf ("%s (op, %smode)", XSTR (exp, 1), mode_name[GET_MODE (exp)]);
        printf ("%s (op, %smode)", XSTR (exp, 1), mode_name[GET_MODE (exp)]);
      break;
      break;
 
 
    case MATCH_CODE:
    case MATCH_CODE:
      write_match_code (XSTR (exp, 1), XSTR (exp, 0));
      write_match_code (XSTR (exp, 1), XSTR (exp, 0));
      break;
      break;
 
 
    case MATCH_TEST:
    case MATCH_TEST:
      print_c_condition (XSTR (exp, 0));
      print_c_condition (XSTR (exp, 0));
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Write the MATCH_CODE expression EXP as a switch statement.  */
/* Write the MATCH_CODE expression EXP as a switch statement.  */
 
 
static void
static void
write_match_code_switch (rtx exp)
write_match_code_switch (rtx exp)
{
{
  const char *codes = XSTR (exp, 0);
  const char *codes = XSTR (exp, 0);
  const char *path = XSTR (exp, 1);
  const char *path = XSTR (exp, 1);
  const char *code;
  const char *code;
 
 
  fputs ("  switch (GET_CODE (", stdout);
  fputs ("  switch (GET_CODE (", stdout);
  write_extract_subexp (path);
  write_extract_subexp (path);
  fputs ("))\n    {\n", stdout);
  fputs ("))\n    {\n", stdout);
 
 
  while ((code = scan_comma_elt (&codes)) != 0)
  while ((code = scan_comma_elt (&codes)) != 0)
    {
    {
      fputs ("    case ", stdout);
      fputs ("    case ", stdout);
      while (code < codes)
      while (code < codes)
        {
        {
          putchar (TOUPPER (*code));
          putchar (TOUPPER (*code));
          code++;
          code++;
        }
        }
      fputs(":\n", stdout);
      fputs(":\n", stdout);
    }
    }
}
}
 
 
/* Given a predicate expression EXP, write out a sequence of stmts
/* Given a predicate expression EXP, write out a sequence of stmts
   to evaluate it.  This is similar to write_predicate_expr but can
   to evaluate it.  This is similar to write_predicate_expr but can
   generate efficient switch statements.  */
   generate efficient switch statements.  */
 
 
static void
static void
write_predicate_stmts (rtx exp)
write_predicate_stmts (rtx exp)
{
{
  switch (GET_CODE (exp))
  switch (GET_CODE (exp))
    {
    {
    case MATCH_CODE:
    case MATCH_CODE:
      if (generate_switch_p (exp))
      if (generate_switch_p (exp))
        {
        {
          write_match_code_switch (exp);
          write_match_code_switch (exp);
          puts ("      return true;\n"
          puts ("      return true;\n"
                "    default:\n"
                "    default:\n"
                "      break;\n"
                "      break;\n"
                "    }\n"
                "    }\n"
                "  return false;");
                "  return false;");
          return;
          return;
        }
        }
      break;
      break;
 
 
    case AND:
    case AND:
      if (generate_switch_p (XEXP (exp, 0)))
      if (generate_switch_p (XEXP (exp, 0)))
        {
        {
          write_match_code_switch (XEXP (exp, 0));
          write_match_code_switch (XEXP (exp, 0));
          puts ("      break;\n"
          puts ("      break;\n"
                "    default:\n"
                "    default:\n"
                "      return false;\n"
                "      return false;\n"
                "    }");
                "    }");
          exp = XEXP (exp, 1);
          exp = XEXP (exp, 1);
        }
        }
      break;
      break;
 
 
    case IOR:
    case IOR:
      if (generate_switch_p (XEXP (exp, 0)))
      if (generate_switch_p (XEXP (exp, 0)))
        {
        {
          write_match_code_switch (XEXP (exp, 0));
          write_match_code_switch (XEXP (exp, 0));
          puts ("      return true;\n"
          puts ("      return true;\n"
                "    default:\n"
                "    default:\n"
                "      break;\n"
                "      break;\n"
                "    }");
                "    }");
          exp = XEXP (exp, 1);
          exp = XEXP (exp, 1);
        }
        }
      break;
      break;
 
 
    case NOT:
    case NOT:
      if (generate_switch_p (XEXP (exp, 0)))
      if (generate_switch_p (XEXP (exp, 0)))
        {
        {
          write_match_code_switch (XEXP (exp, 0));
          write_match_code_switch (XEXP (exp, 0));
          puts ("      return false;\n"
          puts ("      return false;\n"
                "    default:\n"
                "    default:\n"
                "      break;\n"
                "      break;\n"
                "    }\n"
                "    }\n"
                "  return true;");
                "  return true;");
          return;
          return;
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fputs("  return ",stdout);
  fputs("  return ",stdout);
  write_predicate_expr (exp);
  write_predicate_expr (exp);
  fputs(";\n", stdout);
  fputs(";\n", stdout);
}
}
 
 
/* Given a predicate, write out a complete C function to compute it.  */
/* Given a predicate, write out a complete C function to compute it.  */
static void
static void
write_one_predicate_function (struct pred_data *p)
write_one_predicate_function (struct pred_data *p)
{
{
  if (!p->exp)
  if (!p->exp)
    return;
    return;
 
 
  write_predicate_subfunction (p);
  write_predicate_subfunction (p);
  add_mode_tests (p);
  add_mode_tests (p);
 
 
  /* A normal predicate can legitimately not look at enum machine_mode
  /* A normal predicate can legitimately not look at enum machine_mode
     if it accepts only CONST_INTs and/or CONST_DOUBLEs.  */
     if it accepts only CONST_INTs and/or CONST_DOUBLEs.  */
  printf ("int\n%s (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)\n{\n",
  printf ("int\n%s (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)\n{\n",
          p->name);
          p->name);
  write_predicate_stmts (p->exp);
  write_predicate_stmts (p->exp);
  fputs ("}\n\n", stdout);
  fputs ("}\n\n", stdout);
}
}


/* Constraints fall into two categories: register constraints
/* Constraints fall into two categories: register constraints
   (define_register_constraint), and others (define_constraint,
   (define_register_constraint), and others (define_constraint,
   define_memory_constraint, define_address_constraint).  We
   define_memory_constraint, define_address_constraint).  We
   work out automatically which of the various old-style macros
   work out automatically which of the various old-style macros
   they correspond to, and produce appropriate code.  They all
   they correspond to, and produce appropriate code.  They all
   go in the same hash table so we can verify that there are no
   go in the same hash table so we can verify that there are no
   duplicate names.  */
   duplicate names.  */
 
 
/* All data from one constraint definition.  */
/* All data from one constraint definition.  */
struct constraint_data
struct constraint_data
{
{
  struct constraint_data *next_this_letter;
  struct constraint_data *next_this_letter;
  struct constraint_data *next_textual;
  struct constraint_data *next_textual;
  const char *name;
  const char *name;
  const char *c_name;    /* same as .name unless mangling is necessary */
  const char *c_name;    /* same as .name unless mangling is necessary */
  size_t namelen;
  size_t namelen;
  const char *regclass;  /* for register constraints */
  const char *regclass;  /* for register constraints */
  rtx exp;               /* for other constraints */
  rtx exp;               /* for other constraints */
  unsigned int lineno;   /* line of definition */
  unsigned int lineno;   /* line of definition */
  unsigned int is_register  : 1;
  unsigned int is_register  : 1;
  unsigned int is_const_int : 1;
  unsigned int is_const_int : 1;
  unsigned int is_const_dbl : 1;
  unsigned int is_const_dbl : 1;
  unsigned int is_extra     : 1;
  unsigned int is_extra     : 1;
  unsigned int is_memory    : 1;
  unsigned int is_memory    : 1;
  unsigned int is_address   : 1;
  unsigned int is_address   : 1;
};
};
 
 
/* Overview of all constraints beginning with a given letter.  */
/* Overview of all constraints beginning with a given letter.  */
 
 
static struct constraint_data *
static struct constraint_data *
constraints_by_letter_table[1<<CHAR_BIT];
constraints_by_letter_table[1<<CHAR_BIT];
 
 
/* For looking up all the constraints in the order that they appeared
/* For looking up all the constraints in the order that they appeared
   in the machine description.  */
   in the machine description.  */
static struct constraint_data *first_constraint;
static struct constraint_data *first_constraint;
static struct constraint_data **last_constraint_ptr = &first_constraint;
static struct constraint_data **last_constraint_ptr = &first_constraint;
 
 
#define FOR_ALL_CONSTRAINTS(iter_) \
#define FOR_ALL_CONSTRAINTS(iter_) \
  for (iter_ = first_constraint; iter_; iter_ = iter_->next_textual)
  for (iter_ = first_constraint; iter_; iter_ = iter_->next_textual)
 
 
/* These letters, and all names beginning with them, are reserved for
/* These letters, and all names beginning with them, are reserved for
   generic constraints.
   generic constraints.
   The 'm' constraint is not mentioned here since that constraint
   The 'm' constraint is not mentioned here since that constraint
   letter can be overridden by the back end by defining the
   letter can be overridden by the back end by defining the
   TARGET_MEM_CONSTRAINT macro.  */
   TARGET_MEM_CONSTRAINT macro.  */
static const char generic_constraint_letters[] = "EFVXginoprs";
static const char generic_constraint_letters[] = "EFVXginoprs";
 
 
/* Machine-independent code expects that constraints with these
/* Machine-independent code expects that constraints with these
   (initial) letters will allow only (a subset of all) CONST_INTs.  */
   (initial) letters will allow only (a subset of all) CONST_INTs.  */
 
 
static const char const_int_constraints[] = "IJKLMNOP";
static const char const_int_constraints[] = "IJKLMNOP";
 
 
/* Machine-independent code expects that constraints with these
/* Machine-independent code expects that constraints with these
   (initial) letters will allow only (a subset of all) CONST_DOUBLEs.  */
   (initial) letters will allow only (a subset of all) CONST_DOUBLEs.  */
 
 
static const char const_dbl_constraints[] = "GH";
static const char const_dbl_constraints[] = "GH";
 
 
/* Summary data used to decide whether to output various functions and
/* Summary data used to decide whether to output various functions and
   macro definitions.  */
   macro definitions.  */
static unsigned int constraint_max_namelen;
static unsigned int constraint_max_namelen;
static bool have_register_constraints;
static bool have_register_constraints;
static bool have_memory_constraints;
static bool have_memory_constraints;
static bool have_address_constraints;
static bool have_address_constraints;
static bool have_extra_constraints;
static bool have_extra_constraints;
static bool have_const_int_constraints;
static bool have_const_int_constraints;
static bool have_const_dbl_constraints;
static bool have_const_dbl_constraints;
 
 
/* Convert NAME, which contains angle brackets and/or underscores, to
/* Convert NAME, which contains angle brackets and/or underscores, to
   a string that can be used as part of a C identifier.  The string
   a string that can be used as part of a C identifier.  The string
   comes from the rtl_obstack.  */
   comes from the rtl_obstack.  */
static const char *
static const char *
mangle (const char *name)
mangle (const char *name)
{
{
  for (; *name; name++)
  for (; *name; name++)
    switch (*name)
    switch (*name)
      {
      {
      case '_': obstack_grow (rtl_obstack, "__", 2); break;
      case '_': obstack_grow (rtl_obstack, "__", 2); break;
      case '<': obstack_grow (rtl_obstack, "_l", 2); break;
      case '<': obstack_grow (rtl_obstack, "_l", 2); break;
      case '>': obstack_grow (rtl_obstack, "_g", 2); break;
      case '>': obstack_grow (rtl_obstack, "_g", 2); break;
      default: obstack_1grow (rtl_obstack, *name); break;
      default: obstack_1grow (rtl_obstack, *name); break;
      }
      }
 
 
  obstack_1grow (rtl_obstack, '\0');
  obstack_1grow (rtl_obstack, '\0');
  return XOBFINISH (rtl_obstack, const char *);
  return XOBFINISH (rtl_obstack, const char *);
}
}
 
 
/* Add one constraint, of any sort, to the tables.  NAME is its name;
/* Add one constraint, of any sort, to the tables.  NAME is its name;
   REGCLASS is the register class, if any; EXP is the expression to
   REGCLASS is the register class, if any; EXP is the expression to
   test, if any;  IS_MEMORY and IS_ADDRESS indicate memory and address
   test, if any;  IS_MEMORY and IS_ADDRESS indicate memory and address
   constraints, respectively; LINENO is the line number from the MD reader.
   constraints, respectively; LINENO is the line number from the MD reader.
   Not all combinations of arguments are valid; most importantly, REGCLASS
   Not all combinations of arguments are valid; most importantly, REGCLASS
   is mutually exclusive with EXP, and IS_MEMORY/IS_ADDRESS are only
   is mutually exclusive with EXP, and IS_MEMORY/IS_ADDRESS are only
   meaningful for constraints with EXP.
   meaningful for constraints with EXP.
 
 
   This function enforces all syntactic and semantic rules about what
   This function enforces all syntactic and semantic rules about what
   constraints can be defined.  */
   constraints can be defined.  */
 
 
static void
static void
add_constraint (const char *name, const char *regclass,
add_constraint (const char *name, const char *regclass,
                rtx exp, bool is_memory, bool is_address,
                rtx exp, bool is_memory, bool is_address,
                int lineno)
                int lineno)
{
{
  struct constraint_data *c, **iter, **slot;
  struct constraint_data *c, **iter, **slot;
  const char *p;
  const char *p;
  bool need_mangled_name = false;
  bool need_mangled_name = false;
  bool is_const_int;
  bool is_const_int;
  bool is_const_dbl;
  bool is_const_dbl;
  size_t namelen;
  size_t namelen;
 
 
  if (exp && validate_exp (exp, name, lineno))
  if (exp && validate_exp (exp, name, lineno))
    return;
    return;
 
 
  if (!ISALPHA (name[0]) && name[0] != '_')
  if (!ISALPHA (name[0]) && name[0] != '_')
    {
    {
      if (name[1] == '\0')
      if (name[1] == '\0')
        message_with_line (lineno, "constraint name '%s' is not "
        message_with_line (lineno, "constraint name '%s' is not "
                           "a letter or underscore", name);
                           "a letter or underscore", name);
      else
      else
        message_with_line (lineno, "constraint name '%s' does not begin "
        message_with_line (lineno, "constraint name '%s' does not begin "
                           "with a letter or underscore", name);
                           "with a letter or underscore", name);
      have_error = 1;
      have_error = 1;
      return;
      return;
    }
    }
  for (p = name; *p; p++)
  for (p = name; *p; p++)
    if (!ISALNUM (*p))
    if (!ISALNUM (*p))
      {
      {
        if (*p == '<' || *p == '>' || *p == '_')
        if (*p == '<' || *p == '>' || *p == '_')
          need_mangled_name = true;
          need_mangled_name = true;
        else
        else
          {
          {
            message_with_line (lineno,
            message_with_line (lineno,
                               "constraint name '%s' must be composed of "
                               "constraint name '%s' must be composed of "
                               "letters, digits, underscores, and "
                               "letters, digits, underscores, and "
                               "angle brackets", name);
                               "angle brackets", name);
            have_error = 1;
            have_error = 1;
            return;
            return;
          }
          }
      }
      }
 
 
  if (strchr (generic_constraint_letters, name[0]))
  if (strchr (generic_constraint_letters, name[0]))
    {
    {
      if (name[1] == '\0')
      if (name[1] == '\0')
        message_with_line (lineno, "constraint letter '%s' cannot be "
        message_with_line (lineno, "constraint letter '%s' cannot be "
                           "redefined by the machine description", name);
                           "redefined by the machine description", name);
      else
      else
        message_with_line (lineno, "constraint name '%s' cannot be defined by "
        message_with_line (lineno, "constraint name '%s' cannot be defined by "
                           "the machine description, as it begins with '%c'",
                           "the machine description, as it begins with '%c'",
                           name, name[0]);
                           name, name[0]);
      have_error = 1;
      have_error = 1;
      return;
      return;
    }
    }
 
 
 
 
  namelen = strlen (name);
  namelen = strlen (name);
  slot = &constraints_by_letter_table[(unsigned int)name[0]];
  slot = &constraints_by_letter_table[(unsigned int)name[0]];
  for (iter = slot; *iter; iter = &(*iter)->next_this_letter)
  for (iter = slot; *iter; iter = &(*iter)->next_this_letter)
    {
    {
      /* This causes slot to end up pointing to the
      /* This causes slot to end up pointing to the
         next_this_letter field of the last constraint with a name
         next_this_letter field of the last constraint with a name
         of equal or greater length than the new constraint; hence
         of equal or greater length than the new constraint; hence
         the new constraint will be inserted after all previous
         the new constraint will be inserted after all previous
         constraints with names of the same length.  */
         constraints with names of the same length.  */
      if ((*iter)->namelen >= namelen)
      if ((*iter)->namelen >= namelen)
        slot = iter;
        slot = iter;
 
 
      if (!strcmp ((*iter)->name, name))
      if (!strcmp ((*iter)->name, name))
        {
        {
          message_with_line (lineno, "redefinition of constraint '%s'", name);
          message_with_line (lineno, "redefinition of constraint '%s'", name);
          message_with_line ((*iter)->lineno, "previous definition is here");
          message_with_line ((*iter)->lineno, "previous definition is here");
          have_error = 1;
          have_error = 1;
          return;
          return;
        }
        }
      else if (!strncmp ((*iter)->name, name, (*iter)->namelen))
      else if (!strncmp ((*iter)->name, name, (*iter)->namelen))
        {
        {
          message_with_line (lineno, "defining constraint '%s' here", name);
          message_with_line (lineno, "defining constraint '%s' here", name);
          message_with_line ((*iter)->lineno, "renders constraint '%s' "
          message_with_line ((*iter)->lineno, "renders constraint '%s' "
                             "(defined here) a prefix", (*iter)->name);
                             "(defined here) a prefix", (*iter)->name);
          have_error = 1;
          have_error = 1;
          return;
          return;
        }
        }
      else if (!strncmp ((*iter)->name, name, namelen))
      else if (!strncmp ((*iter)->name, name, namelen))
        {
        {
          message_with_line (lineno, "constraint '%s' is a prefix", name);
          message_with_line (lineno, "constraint '%s' is a prefix", name);
          message_with_line ((*iter)->lineno, "of constraint '%s' "
          message_with_line ((*iter)->lineno, "of constraint '%s' "
                             "(defined here)", (*iter)->name);
                             "(defined here)", (*iter)->name);
          have_error = 1;
          have_error = 1;
          return;
          return;
        }
        }
    }
    }
 
 
  is_const_int = strchr (const_int_constraints, name[0]) != 0;
  is_const_int = strchr (const_int_constraints, name[0]) != 0;
  is_const_dbl = strchr (const_dbl_constraints, name[0]) != 0;
  is_const_dbl = strchr (const_dbl_constraints, name[0]) != 0;
 
 
  if (is_const_int || is_const_dbl)
  if (is_const_int || is_const_dbl)
    {
    {
      enum rtx_code appropriate_code
      enum rtx_code appropriate_code
        = is_const_int ? CONST_INT : CONST_DOUBLE;
        = is_const_int ? CONST_INT : CONST_DOUBLE;
 
 
      /* Consider relaxing this requirement in the future.  */
      /* Consider relaxing this requirement in the future.  */
      if (regclass
      if (regclass
          || GET_CODE (exp) != AND
          || GET_CODE (exp) != AND
          || GET_CODE (XEXP (exp, 0)) != MATCH_CODE
          || GET_CODE (XEXP (exp, 0)) != MATCH_CODE
          || strcmp (XSTR (XEXP (exp, 0), 0),
          || strcmp (XSTR (XEXP (exp, 0), 0),
                     GET_RTX_NAME (appropriate_code)))
                     GET_RTX_NAME (appropriate_code)))
        {
        {
          if (name[1] == '\0')
          if (name[1] == '\0')
            message_with_line (lineno, "constraint letter '%c' is reserved "
            message_with_line (lineno, "constraint letter '%c' is reserved "
                               "for %s constraints",
                               "for %s constraints",
                               name[0], GET_RTX_NAME (appropriate_code));
                               name[0], GET_RTX_NAME (appropriate_code));
          else
          else
            message_with_line (lineno, "constraint names beginning with '%c' "
            message_with_line (lineno, "constraint names beginning with '%c' "
                               "(%s) are reserved for %s constraints",
                               "(%s) are reserved for %s constraints",
                               name[0], name,
                               name[0], name,
                               GET_RTX_NAME (appropriate_code));
                               GET_RTX_NAME (appropriate_code));
 
 
          have_error = 1;
          have_error = 1;
          return;
          return;
        }
        }
 
 
      if (is_memory)
      if (is_memory)
        {
        {
          if (name[1] == '\0')
          if (name[1] == '\0')
            message_with_line (lineno, "constraint letter '%c' cannot be a "
            message_with_line (lineno, "constraint letter '%c' cannot be a "
                               "memory constraint", name[0]);
                               "memory constraint", name[0]);
          else
          else
            message_with_line (lineno, "constraint name '%s' begins with '%c', "
            message_with_line (lineno, "constraint name '%s' begins with '%c', "
                               "and therefore cannot be a memory constraint",
                               "and therefore cannot be a memory constraint",
                               name, name[0]);
                               name, name[0]);
 
 
          have_error = 1;
          have_error = 1;
          return;
          return;
        }
        }
      else if (is_address)
      else if (is_address)
        {
        {
          if (name[1] == '\0')
          if (name[1] == '\0')
            message_with_line (lineno, "constraint letter '%c' cannot be a "
            message_with_line (lineno, "constraint letter '%c' cannot be a "
                               "memory constraint", name[0]);
                               "memory constraint", name[0]);
          else
          else
            message_with_line (lineno, "constraint name '%s' begins with '%c', "
            message_with_line (lineno, "constraint name '%s' begins with '%c', "
                               "and therefore cannot be a memory constraint",
                               "and therefore cannot be a memory constraint",
                               name, name[0]);
                               name, name[0]);
 
 
          have_error = 1;
          have_error = 1;
          return;
          return;
        }
        }
    }
    }
 
 
 
 
  c = XOBNEW (rtl_obstack, struct constraint_data);
  c = XOBNEW (rtl_obstack, struct constraint_data);
  c->name = name;
  c->name = name;
  c->c_name = need_mangled_name ? mangle (name) : name;
  c->c_name = need_mangled_name ? mangle (name) : name;
  c->lineno = lineno;
  c->lineno = lineno;
  c->namelen = namelen;
  c->namelen = namelen;
  c->regclass = regclass;
  c->regclass = regclass;
  c->exp = exp;
  c->exp = exp;
  c->is_register = regclass != 0;
  c->is_register = regclass != 0;
  c->is_const_int = is_const_int;
  c->is_const_int = is_const_int;
  c->is_const_dbl = is_const_dbl;
  c->is_const_dbl = is_const_dbl;
  c->is_extra = !(regclass || is_const_int || is_const_dbl);
  c->is_extra = !(regclass || is_const_int || is_const_dbl);
  c->is_memory = is_memory;
  c->is_memory = is_memory;
  c->is_address = is_address;
  c->is_address = is_address;
 
 
  c->next_this_letter = *slot;
  c->next_this_letter = *slot;
  *slot = c;
  *slot = c;
 
 
  /* Insert this constraint in the list of all constraints in textual
  /* Insert this constraint in the list of all constraints in textual
     order.  */
     order.  */
  c->next_textual = 0;
  c->next_textual = 0;
  *last_constraint_ptr = c;
  *last_constraint_ptr = c;
  last_constraint_ptr = &c->next_textual;
  last_constraint_ptr = &c->next_textual;
 
 
  constraint_max_namelen = MAX (constraint_max_namelen, strlen (name));
  constraint_max_namelen = MAX (constraint_max_namelen, strlen (name));
  have_register_constraints |= c->is_register;
  have_register_constraints |= c->is_register;
  have_const_int_constraints |= c->is_const_int;
  have_const_int_constraints |= c->is_const_int;
  have_const_dbl_constraints |= c->is_const_dbl;
  have_const_dbl_constraints |= c->is_const_dbl;
  have_extra_constraints |= c->is_extra;
  have_extra_constraints |= c->is_extra;
  have_memory_constraints |= c->is_memory;
  have_memory_constraints |= c->is_memory;
  have_address_constraints |= c->is_address;
  have_address_constraints |= c->is_address;
}
}
 
 
/* Process a DEFINE_CONSTRAINT, DEFINE_MEMORY_CONSTRAINT, or
/* Process a DEFINE_CONSTRAINT, DEFINE_MEMORY_CONSTRAINT, or
   DEFINE_ADDRESS_CONSTRAINT expression, C.  */
   DEFINE_ADDRESS_CONSTRAINT expression, C.  */
static void
static void
process_define_constraint (rtx c, int lineno)
process_define_constraint (rtx c, int lineno)
{
{
  add_constraint (XSTR (c, 0), 0, XEXP (c, 2),
  add_constraint (XSTR (c, 0), 0, XEXP (c, 2),
                  GET_CODE (c) == DEFINE_MEMORY_CONSTRAINT,
                  GET_CODE (c) == DEFINE_MEMORY_CONSTRAINT,
                  GET_CODE (c) == DEFINE_ADDRESS_CONSTRAINT,
                  GET_CODE (c) == DEFINE_ADDRESS_CONSTRAINT,
                  lineno);
                  lineno);
}
}
 
 
/* Process a DEFINE_REGISTER_CONSTRAINT expression, C.  */
/* Process a DEFINE_REGISTER_CONSTRAINT expression, C.  */
static void
static void
process_define_register_constraint (rtx c, int lineno)
process_define_register_constraint (rtx c, int lineno)
{
{
  add_constraint (XSTR (c, 0), XSTR (c, 1), 0, false, false, lineno);
  add_constraint (XSTR (c, 0), XSTR (c, 1), 0, false, false, lineno);
}
}
 
 
/* Write out an enumeration with one entry per machine-specific
/* Write out an enumeration with one entry per machine-specific
   constraint.  */
   constraint.  */
static void
static void
write_enum_constraint_num (void)
write_enum_constraint_num (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  fputs ("#define CONSTRAINT_NUM_DEFINED_P 1\n", stdout);
  fputs ("#define CONSTRAINT_NUM_DEFINED_P 1\n", stdout);
  fputs ("enum constraint_num\n"
  fputs ("enum constraint_num\n"
         "{\n"
         "{\n"
         "  CONSTRAINT__UNKNOWN = 0", stdout);
         "  CONSTRAINT__UNKNOWN = 0", stdout);
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    printf (",\n  CONSTRAINT_%s", c->c_name);
    printf (",\n  CONSTRAINT_%s", c->c_name);
  puts (",\n  CONSTRAINT__LIMIT\n};\n");
  puts (",\n  CONSTRAINT__LIMIT\n};\n");
}
}
 
 
/* Write out a function which looks at a string and determines what
/* Write out a function which looks at a string and determines what
   constraint name, if any, it begins with.  */
   constraint name, if any, it begins with.  */
static void
static void
write_lookup_constraint (void)
write_lookup_constraint (void)
{
{
  unsigned int i;
  unsigned int i;
  puts ("enum constraint_num\n"
  puts ("enum constraint_num\n"
        "lookup_constraint (const char *str)\n"
        "lookup_constraint (const char *str)\n"
        "{\n"
        "{\n"
        "  switch (str[0])\n"
        "  switch (str[0])\n"
        "    {");
        "    {");
 
 
  for (i = 0; i < ARRAY_SIZE(constraints_by_letter_table); i++)
  for (i = 0; i < ARRAY_SIZE(constraints_by_letter_table); i++)
    {
    {
      struct constraint_data *c = constraints_by_letter_table[i];
      struct constraint_data *c = constraints_by_letter_table[i];
      if (!c)
      if (!c)
        continue;
        continue;
 
 
      printf ("    case '%c':\n", i);
      printf ("    case '%c':\n", i);
      if (c->namelen == 1)
      if (c->namelen == 1)
        printf ("      return CONSTRAINT_%s;\n", c->c_name);
        printf ("      return CONSTRAINT_%s;\n", c->c_name);
      else
      else
        {
        {
          do
          do
            {
            {
              printf ("      if (!strncmp (str, \"%s\", %lu))\n"
              printf ("      if (!strncmp (str, \"%s\", %lu))\n"
                      "        return CONSTRAINT_%s;\n",
                      "        return CONSTRAINT_%s;\n",
                      c->name, (unsigned long int) c->namelen, c->c_name);
                      c->name, (unsigned long int) c->namelen, c->c_name);
              c = c->next_this_letter;
              c = c->next_this_letter;
            }
            }
          while (c);
          while (c);
          puts ("      break;");
          puts ("      break;");
        }
        }
    }
    }
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return CONSTRAINT__UNKNOWN;\n"
        "  return CONSTRAINT__UNKNOWN;\n"
        "}\n");
        "}\n");
}
}
 
 
/* Write out a function which looks at a string and determines what
/* Write out a function which looks at a string and determines what
   the constraint name length is.  */
   the constraint name length is.  */
static void
static void
write_insn_constraint_len (void)
write_insn_constraint_len (void)
{
{
  unsigned int i;
  unsigned int i;
 
 
  puts ("static inline size_t\n"
  puts ("static inline size_t\n"
        "insn_constraint_len (char fc, const char *str ATTRIBUTE_UNUSED)\n"
        "insn_constraint_len (char fc, const char *str ATTRIBUTE_UNUSED)\n"
        "{\n"
        "{\n"
        "  switch (fc)\n"
        "  switch (fc)\n"
        "    {");
        "    {");
 
 
  for (i = 0; i < ARRAY_SIZE(constraints_by_letter_table); i++)
  for (i = 0; i < ARRAY_SIZE(constraints_by_letter_table); i++)
    {
    {
      struct constraint_data *c = constraints_by_letter_table[i];
      struct constraint_data *c = constraints_by_letter_table[i];
 
 
      if (!c
      if (!c
          || c->namelen == 1)
          || c->namelen == 1)
        continue;
        continue;
 
 
      /* Constraints with multiple characters should have the same
      /* Constraints with multiple characters should have the same
         length.  */
         length.  */
      {
      {
        struct constraint_data *c2 = c->next_this_letter;
        struct constraint_data *c2 = c->next_this_letter;
        size_t len = c->namelen;
        size_t len = c->namelen;
        while (c2)
        while (c2)
          {
          {
            if (c2->namelen != len)
            if (c2->namelen != len)
              error ("Multi-letter constraints with first letter '%c' "
              error ("Multi-letter constraints with first letter '%c' "
                     "should have same length", i);
                     "should have same length", i);
            c2 = c2->next_this_letter;
            c2 = c2->next_this_letter;
          }
          }
      }
      }
 
 
      printf ("    case '%c': return %lu;\n",
      printf ("    case '%c': return %lu;\n",
              i, (unsigned long int) c->namelen);
              i, (unsigned long int) c->namelen);
    }
    }
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return 1;\n"
        "  return 1;\n"
        "}\n");
        "}\n");
}
}
 
 
/* Write out the function which computes the register class corresponding
/* Write out the function which computes the register class corresponding
   to a register constraint.  */
   to a register constraint.  */
static void
static void
write_regclass_for_constraint (void)
write_regclass_for_constraint (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  puts ("enum reg_class\n"
  puts ("enum reg_class\n"
        "regclass_for_constraint (enum constraint_num c)\n"
        "regclass_for_constraint (enum constraint_num c)\n"
        "{\n"
        "{\n"
        "  switch (c)\n"
        "  switch (c)\n"
        "    {");
        "    {");
 
 
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    if (c->is_register)
    if (c->is_register)
      printf ("    case CONSTRAINT_%s: return %s;\n", c->c_name, c->regclass);
      printf ("    case CONSTRAINT_%s: return %s;\n", c->c_name, c->regclass);
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return NO_REGS;\n"
        "  return NO_REGS;\n"
        "}\n");
        "}\n");
}
}
 
 
/* Write out the functions which compute whether a given value matches
/* Write out the functions which compute whether a given value matches
   a given non-register constraint.  */
   a given non-register constraint.  */
static void
static void
write_tm_constrs_h (void)
write_tm_constrs_h (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  printf ("\
  printf ("\
/* Generated automatically by the program '%s'\n\
/* Generated automatically by the program '%s'\n\
   from the machine description file '%s'.  */\n\n", progname, in_fname);
   from the machine description file '%s'.  */\n\n", progname, in_fname);
 
 
  puts ("\
  puts ("\
#ifndef GCC_TM_CONSTRS_H\n\
#ifndef GCC_TM_CONSTRS_H\n\
#define GCC_TM_CONSTRS_H\n");
#define GCC_TM_CONSTRS_H\n");
 
 
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    if (!c->is_register)
    if (!c->is_register)
      {
      {
        bool needs_ival = needs_variable (c->exp, "ival");
        bool needs_ival = needs_variable (c->exp, "ival");
        bool needs_hval = needs_variable (c->exp, "hval");
        bool needs_hval = needs_variable (c->exp, "hval");
        bool needs_lval = needs_variable (c->exp, "lval");
        bool needs_lval = needs_variable (c->exp, "lval");
        bool needs_rval = needs_variable (c->exp, "rval");
        bool needs_rval = needs_variable (c->exp, "rval");
        bool needs_mode = (needs_variable (c->exp, "mode")
        bool needs_mode = (needs_variable (c->exp, "mode")
                           || needs_hval || needs_lval || needs_rval);
                           || needs_hval || needs_lval || needs_rval);
        bool needs_op = (needs_variable (c->exp, "op")
        bool needs_op = (needs_variable (c->exp, "op")
                         || needs_ival || needs_mode);
                         || needs_ival || needs_mode);
 
 
        printf ("static inline bool\n"
        printf ("static inline bool\n"
                "satisfies_constraint_%s (rtx %s)\n"
                "satisfies_constraint_%s (rtx %s)\n"
                "{\n", c->c_name,
                "{\n", c->c_name,
                needs_op ? "op" : "ARG_UNUSED (op)");
                needs_op ? "op" : "ARG_UNUSED (op)");
        if (needs_mode)
        if (needs_mode)
          puts ("  enum machine_mode mode = GET_MODE (op);");
          puts ("  enum machine_mode mode = GET_MODE (op);");
        if (needs_ival)
        if (needs_ival)
          puts ("  HOST_WIDE_INT ival = 0;");
          puts ("  HOST_WIDE_INT ival = 0;");
        if (needs_hval)
        if (needs_hval)
          puts ("  HOST_WIDE_INT hval = 0;");
          puts ("  HOST_WIDE_INT hval = 0;");
        if (needs_lval)
        if (needs_lval)
          puts ("  unsigned HOST_WIDE_INT lval = 0;");
          puts ("  unsigned HOST_WIDE_INT lval = 0;");
        if (needs_rval)
        if (needs_rval)
          puts ("  const REAL_VALUE_TYPE *rval = 0;");
          puts ("  const REAL_VALUE_TYPE *rval = 0;");
 
 
        if (needs_ival)
        if (needs_ival)
          puts ("  if (CONST_INT_P (op))\n"
          puts ("  if (CONST_INT_P (op))\n"
                "    ival = INTVAL (op);");
                "    ival = INTVAL (op);");
        if (needs_hval)
        if (needs_hval)
          puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
          puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
                "    hval = CONST_DOUBLE_HIGH (op);");
                "    hval = CONST_DOUBLE_HIGH (op);");
        if (needs_lval)
        if (needs_lval)
          puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
          puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)"
                "    lval = CONST_DOUBLE_LOW (op);");
                "    lval = CONST_DOUBLE_LOW (op);");
        if (needs_rval)
        if (needs_rval)
          puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode != VOIDmode)"
          puts ("  if (GET_CODE (op) == CONST_DOUBLE && mode != VOIDmode)"
                "    rval = CONST_DOUBLE_REAL_VALUE (op);");
                "    rval = CONST_DOUBLE_REAL_VALUE (op);");
 
 
        write_predicate_stmts (c->exp);
        write_predicate_stmts (c->exp);
        fputs ("}\n", stdout);
        fputs ("}\n", stdout);
      }
      }
  puts ("#endif /* tm-constrs.h */");
  puts ("#endif /* tm-constrs.h */");
}
}
 
 
/* Write out the wrapper function, constraint_satisfied_p, that maps
/* Write out the wrapper function, constraint_satisfied_p, that maps
   a CONSTRAINT_xxx constant to one of the predicate functions generated
   a CONSTRAINT_xxx constant to one of the predicate functions generated
   above.  */
   above.  */
static void
static void
write_constraint_satisfied_p (void)
write_constraint_satisfied_p (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  puts ("bool\n"
  puts ("bool\n"
        "constraint_satisfied_p (rtx op, enum constraint_num c)\n"
        "constraint_satisfied_p (rtx op, enum constraint_num c)\n"
        "{\n"
        "{\n"
        "  switch (c)\n"
        "  switch (c)\n"
        "    {");
        "    {");
 
 
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    if (!c->is_register)
    if (!c->is_register)
      printf ("    case CONSTRAINT_%s: "
      printf ("    case CONSTRAINT_%s: "
              "return satisfies_constraint_%s (op);\n",
              "return satisfies_constraint_%s (op);\n",
              c->c_name, c->c_name);
              c->c_name, c->c_name);
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return false;\n"
        "  return false;\n"
        "}\n");
        "}\n");
}
}
 
 
/* Write out the function which computes whether a given value matches
/* Write out the function which computes whether a given value matches
   a given CONST_INT constraint.  This doesn't just forward to
   a given CONST_INT constraint.  This doesn't just forward to
   constraint_satisfied_p because caller passes the INTVAL, not the RTX.  */
   constraint_satisfied_p because caller passes the INTVAL, not the RTX.  */
static void
static void
write_insn_const_int_ok_for_constraint (void)
write_insn_const_int_ok_for_constraint (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  puts ("bool\n"
  puts ("bool\n"
        "insn_const_int_ok_for_constraint (HOST_WIDE_INT ival, "
        "insn_const_int_ok_for_constraint (HOST_WIDE_INT ival, "
                                          "enum constraint_num c)\n"
                                          "enum constraint_num c)\n"
        "{\n"
        "{\n"
        "  switch (c)\n"
        "  switch (c)\n"
        "    {");
        "    {");
 
 
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    if (c->is_const_int)
    if (c->is_const_int)
      {
      {
        printf ("    case CONSTRAINT_%s:\n      return ", c->c_name);
        printf ("    case CONSTRAINT_%s:\n      return ", c->c_name);
        /* c->exp is guaranteed to be (and (match_code "const_int") (...));
        /* c->exp is guaranteed to be (and (match_code "const_int") (...));
           we know at this point that we have a const_int, so we need not
           we know at this point that we have a const_int, so we need not
           bother with that part of the test.  */
           bother with that part of the test.  */
        write_predicate_expr (XEXP (c->exp, 1));
        write_predicate_expr (XEXP (c->exp, 1));
        fputs (";\n\n", stdout);
        fputs (";\n\n", stdout);
      }
      }
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return false;\n"
        "  return false;\n"
        "}\n");
        "}\n");
}
}
 
 
 
 
/* Write out the function which computes whether a given constraint is
/* Write out the function which computes whether a given constraint is
   a memory constraint.  */
   a memory constraint.  */
static void
static void
write_insn_extra_memory_constraint (void)
write_insn_extra_memory_constraint (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  puts ("bool\n"
  puts ("bool\n"
        "insn_extra_memory_constraint (enum constraint_num c)\n"
        "insn_extra_memory_constraint (enum constraint_num c)\n"
        "{\n"
        "{\n"
        "  switch (c)\n"
        "  switch (c)\n"
        "    {");
        "    {");
 
 
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    if (c->is_memory)
    if (c->is_memory)
      printf ("    case CONSTRAINT_%s:\n      return true;\n\n", c->c_name);
      printf ("    case CONSTRAINT_%s:\n      return true;\n\n", c->c_name);
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return false;\n"
        "  return false;\n"
        "}\n");
        "}\n");
}
}
 
 
/* Write out the function which computes whether a given constraint is
/* Write out the function which computes whether a given constraint is
   an address constraint.  */
   an address constraint.  */
static void
static void
write_insn_extra_address_constraint (void)
write_insn_extra_address_constraint (void)
{
{
  struct constraint_data *c;
  struct constraint_data *c;
 
 
  puts ("bool\n"
  puts ("bool\n"
        "insn_extra_address_constraint (enum constraint_num c)\n"
        "insn_extra_address_constraint (enum constraint_num c)\n"
        "{\n"
        "{\n"
        "  switch (c)\n"
        "  switch (c)\n"
        "    {");
        "    {");
 
 
  FOR_ALL_CONSTRAINTS (c)
  FOR_ALL_CONSTRAINTS (c)
    if (c->is_address)
    if (c->is_address)
      printf ("    case CONSTRAINT_%s:\n      return true;\n\n", c->c_name);
      printf ("    case CONSTRAINT_%s:\n      return true;\n\n", c->c_name);
 
 
  puts ("    default: break;\n"
  puts ("    default: break;\n"
        "    }\n"
        "    }\n"
        "  return false;\n"
        "  return false;\n"
        "}\n");
        "}\n");
}
}
 
 


/* Write tm-preds.h.  Unfortunately, it is impossible to forward-declare
/* Write tm-preds.h.  Unfortunately, it is impossible to forward-declare
   an enumeration in portable C, so we have to condition all these
   an enumeration in portable C, so we have to condition all these
   prototypes on HAVE_MACHINE_MODES.  */
   prototypes on HAVE_MACHINE_MODES.  */
static void
static void
write_tm_preds_h (void)
write_tm_preds_h (void)
{
{
  struct pred_data *p;
  struct pred_data *p;
 
 
  printf ("\
  printf ("\
/* Generated automatically by the program '%s'\n\
/* Generated automatically by the program '%s'\n\
   from the machine description file '%s'.  */\n\n", progname, in_fname);
   from the machine description file '%s'.  */\n\n", progname, in_fname);
 
 
  puts ("\
  puts ("\
#ifndef GCC_TM_PREDS_H\n\
#ifndef GCC_TM_PREDS_H\n\
#define GCC_TM_PREDS_H\n\
#define GCC_TM_PREDS_H\n\
\n\
\n\
#ifdef HAVE_MACHINE_MODES");
#ifdef HAVE_MACHINE_MODES");
 
 
  FOR_ALL_PREDICATES (p)
  FOR_ALL_PREDICATES (p)
    printf ("extern int %s (rtx, enum machine_mode);\n", p->name);
    printf ("extern int %s (rtx, enum machine_mode);\n", p->name);
 
 
  puts ("#endif /* HAVE_MACHINE_MODES */\n");
  puts ("#endif /* HAVE_MACHINE_MODES */\n");
 
 
  if (constraint_max_namelen > 0)
  if (constraint_max_namelen > 0)
    {
    {
      write_enum_constraint_num ();
      write_enum_constraint_num ();
      puts ("extern enum constraint_num lookup_constraint (const char *);\n"
      puts ("extern enum constraint_num lookup_constraint (const char *);\n"
            "extern bool constraint_satisfied_p (rtx, enum constraint_num);\n");
            "extern bool constraint_satisfied_p (rtx, enum constraint_num);\n");
 
 
      if (constraint_max_namelen > 1)
      if (constraint_max_namelen > 1)
        {
        {
          write_insn_constraint_len ();
          write_insn_constraint_len ();
          puts ("#define CONSTRAINT_LEN(c_,s_) "
          puts ("#define CONSTRAINT_LEN(c_,s_) "
                "insn_constraint_len (c_,s_)\n");
                "insn_constraint_len (c_,s_)\n");
        }
        }
      else
      else
        puts ("#define CONSTRAINT_LEN(c_,s_) 1\n");
        puts ("#define CONSTRAINT_LEN(c_,s_) 1\n");
      if (have_register_constraints)
      if (have_register_constraints)
        puts ("extern enum reg_class regclass_for_constraint "
        puts ("extern enum reg_class regclass_for_constraint "
              "(enum constraint_num);\n"
              "(enum constraint_num);\n"
              "#define REG_CLASS_FROM_CONSTRAINT(c_,s_) \\\n"
              "#define REG_CLASS_FROM_CONSTRAINT(c_,s_) \\\n"
              "    regclass_for_constraint (lookup_constraint (s_))\n"
              "    regclass_for_constraint (lookup_constraint (s_))\n"
              "#define REG_CLASS_FOR_CONSTRAINT(x_) \\\n"
              "#define REG_CLASS_FOR_CONSTRAINT(x_) \\\n"
              "    regclass_for_constraint (x_)\n");
              "    regclass_for_constraint (x_)\n");
      else
      else
        puts ("#define REG_CLASS_FROM_CONSTRAINT(c_,s_) NO_REGS\n"
        puts ("#define REG_CLASS_FROM_CONSTRAINT(c_,s_) NO_REGS\n"
              "#define REG_CLASS_FOR_CONSTRAINT(x_) \\\n"
              "#define REG_CLASS_FOR_CONSTRAINT(x_) \\\n"
              "    NO_REGS\n");
              "    NO_REGS\n");
      if (have_const_int_constraints)
      if (have_const_int_constraints)
        puts ("extern bool insn_const_int_ok_for_constraint "
        puts ("extern bool insn_const_int_ok_for_constraint "
              "(HOST_WIDE_INT, enum constraint_num);\n"
              "(HOST_WIDE_INT, enum constraint_num);\n"
              "#define CONST_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n"
              "#define CONST_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n"
              "    insn_const_int_ok_for_constraint (v_, "
              "    insn_const_int_ok_for_constraint (v_, "
              "lookup_constraint (s_))\n");
              "lookup_constraint (s_))\n");
      if (have_const_dbl_constraints)
      if (have_const_dbl_constraints)
        puts ("#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n"
        puts ("#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n"
              "    constraint_satisfied_p (v_, lookup_constraint (s_))\n");
              "    constraint_satisfied_p (v_, lookup_constraint (s_))\n");
      else
      else
        puts ("#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(v_,c_,s_) 0\n");
        puts ("#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(v_,c_,s_) 0\n");
      if (have_extra_constraints)
      if (have_extra_constraints)
        puts ("#define EXTRA_CONSTRAINT_STR(v_,c_,s_) \\\n"
        puts ("#define EXTRA_CONSTRAINT_STR(v_,c_,s_) \\\n"
              "    constraint_satisfied_p (v_, lookup_constraint (s_))\n");
              "    constraint_satisfied_p (v_, lookup_constraint (s_))\n");
      if (have_memory_constraints)
      if (have_memory_constraints)
        puts ("extern bool "
        puts ("extern bool "
              "insn_extra_memory_constraint (enum constraint_num);\n"
              "insn_extra_memory_constraint (enum constraint_num);\n"
              "#define EXTRA_MEMORY_CONSTRAINT(c_,s_) "
              "#define EXTRA_MEMORY_CONSTRAINT(c_,s_) "
              "insn_extra_memory_constraint (lookup_constraint (s_))\n");
              "insn_extra_memory_constraint (lookup_constraint (s_))\n");
      else
      else
        puts ("#define EXTRA_MEMORY_CONSTRAINT(c_,s_) false\n");
        puts ("#define EXTRA_MEMORY_CONSTRAINT(c_,s_) false\n");
      if (have_address_constraints)
      if (have_address_constraints)
        puts ("extern bool "
        puts ("extern bool "
              "insn_extra_address_constraint (enum constraint_num);\n"
              "insn_extra_address_constraint (enum constraint_num);\n"
              "#define EXTRA_ADDRESS_CONSTRAINT(c_,s_) "
              "#define EXTRA_ADDRESS_CONSTRAINT(c_,s_) "
              "insn_extra_address_constraint (lookup_constraint (s_))\n");
              "insn_extra_address_constraint (lookup_constraint (s_))\n");
      else
      else
        puts ("#define EXTRA_ADDRESS_CONSTRAINT(c_,s_) false\n");
        puts ("#define EXTRA_ADDRESS_CONSTRAINT(c_,s_) false\n");
    }
    }
 
 
  puts ("#endif /* tm-preds.h */");
  puts ("#endif /* tm-preds.h */");
}
}
 
 
/* Write insn-preds.c.
/* Write insn-preds.c.
   N.B. the list of headers to include was copied from genrecog; it
   N.B. the list of headers to include was copied from genrecog; it
   may not be ideal.
   may not be ideal.
 
 
   FUTURE: Write #line markers referring back to the machine
   FUTURE: Write #line markers referring back to the machine
   description.  (Can't practically do this now since we don't know
   description.  (Can't practically do this now since we don't know
   the line number of the C block - just the line number of the enclosing
   the line number of the C block - just the line number of the enclosing
   expression.)  */
   expression.)  */
static void
static void
write_insn_preds_c (void)
write_insn_preds_c (void)
{
{
  struct pred_data *p;
  struct pred_data *p;
 
 
  printf ("\
  printf ("\
/* Generated automatically by the program '%s'\n\
/* Generated automatically by the program '%s'\n\
   from the machine description file '%s'.  */\n\n", progname, in_fname);
   from the machine description file '%s'.  */\n\n", progname, in_fname);
 
 
  puts ("\
  puts ("\
#include \"config.h\"\n\
#include \"config.h\"\n\
#include \"system.h\"\n\
#include \"system.h\"\n\
#include \"coretypes.h\"\n\
#include \"coretypes.h\"\n\
#include \"tm.h\"\n\
#include \"tm.h\"\n\
#include \"rtl.h\"\n\
#include \"rtl.h\"\n\
#include \"tree.h\"\n\
#include \"tree.h\"\n\
#include \"tm_p.h\"\n\
#include \"tm_p.h\"\n\
#include \"function.h\"\n\
#include \"function.h\"\n\
#include \"insn-config.h\"\n\
#include \"insn-config.h\"\n\
#include \"recog.h\"\n\
#include \"recog.h\"\n\
#include \"real.h\"\n\
#include \"real.h\"\n\
#include \"output.h\"\n\
#include \"output.h\"\n\
#include \"flags.h\"\n\
#include \"flags.h\"\n\
#include \"hard-reg-set.h\"\n\
#include \"hard-reg-set.h\"\n\
#include \"resource.h\"\n\
#include \"resource.h\"\n\
#include \"toplev.h\"\n\
#include \"toplev.h\"\n\
#include \"reload.h\"\n\
#include \"reload.h\"\n\
#include \"regs.h\"\n\
#include \"regs.h\"\n\
#include \"tm-constrs.h\"\n");
#include \"tm-constrs.h\"\n");
 
 
  FOR_ALL_PREDICATES (p)
  FOR_ALL_PREDICATES (p)
    write_one_predicate_function (p);
    write_one_predicate_function (p);
 
 
  if (constraint_max_namelen > 0)
  if (constraint_max_namelen > 0)
    {
    {
      write_lookup_constraint ();
      write_lookup_constraint ();
      if (have_register_constraints)
      if (have_register_constraints)
        write_regclass_for_constraint ();
        write_regclass_for_constraint ();
      write_constraint_satisfied_p ();
      write_constraint_satisfied_p ();
 
 
      if (have_const_int_constraints)
      if (have_const_int_constraints)
        write_insn_const_int_ok_for_constraint ();
        write_insn_const_int_ok_for_constraint ();
 
 
      if (have_memory_constraints)
      if (have_memory_constraints)
        write_insn_extra_memory_constraint ();
        write_insn_extra_memory_constraint ();
      if (have_address_constraints)
      if (have_address_constraints)
        write_insn_extra_address_constraint ();
        write_insn_extra_address_constraint ();
    }
    }
}
}
 
 
/* Argument parsing.  */
/* Argument parsing.  */
static bool gen_header;
static bool gen_header;
static bool gen_constrs;
static bool gen_constrs;
 
 
static bool
static bool
parse_option (const char *opt)
parse_option (const char *opt)
{
{
  if (!strcmp (opt, "-h"))
  if (!strcmp (opt, "-h"))
    {
    {
      gen_header = true;
      gen_header = true;
      return 1;
      return 1;
    }
    }
  else if (!strcmp (opt, "-c"))
  else if (!strcmp (opt, "-c"))
    {
    {
      gen_constrs = true;
      gen_constrs = true;
      return 1;
      return 1;
    }
    }
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Master control.  */
/* Master control.  */
int
int
main (int argc, char **argv)
main (int argc, char **argv)
{
{
  rtx defn;
  rtx defn;
  int pattern_lineno, next_insn_code = 0;
  int pattern_lineno, next_insn_code = 0;
 
 
  progname = argv[0];
  progname = argv[0];
  if (argc <= 1)
  if (argc <= 1)
    fatal ("no input file name");
    fatal ("no input file name");
  if (init_md_reader_args_cb (argc, argv, parse_option) != SUCCESS_EXIT_CODE)
  if (init_md_reader_args_cb (argc, argv, parse_option) != SUCCESS_EXIT_CODE)
    return FATAL_EXIT_CODE;
    return FATAL_EXIT_CODE;
 
 
  while ((defn = read_md_rtx (&pattern_lineno, &next_insn_code)) != 0)
  while ((defn = read_md_rtx (&pattern_lineno, &next_insn_code)) != 0)
    switch (GET_CODE (defn))
    switch (GET_CODE (defn))
      {
      {
      case DEFINE_PREDICATE:
      case DEFINE_PREDICATE:
      case DEFINE_SPECIAL_PREDICATE:
      case DEFINE_SPECIAL_PREDICATE:
        process_define_predicate (defn, pattern_lineno);
        process_define_predicate (defn, pattern_lineno);
        break;
        break;
 
 
      case DEFINE_CONSTRAINT:
      case DEFINE_CONSTRAINT:
      case DEFINE_MEMORY_CONSTRAINT:
      case DEFINE_MEMORY_CONSTRAINT:
      case DEFINE_ADDRESS_CONSTRAINT:
      case DEFINE_ADDRESS_CONSTRAINT:
        process_define_constraint (defn, pattern_lineno);
        process_define_constraint (defn, pattern_lineno);
        break;
        break;
 
 
      case DEFINE_REGISTER_CONSTRAINT:
      case DEFINE_REGISTER_CONSTRAINT:
        process_define_register_constraint (defn, pattern_lineno);
        process_define_register_constraint (defn, pattern_lineno);
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
 
 
  if (gen_header)
  if (gen_header)
    write_tm_preds_h ();
    write_tm_preds_h ();
  else if (gen_constrs)
  else if (gen_constrs)
    write_tm_constrs_h ();
    write_tm_constrs_h ();
  else
  else
    write_insn_preds_c ();
    write_insn_preds_c ();
 
 
  if (have_error || ferror (stdout) || fflush (stdout) || fclose (stdout))
  if (have_error || ferror (stdout) || fflush (stdout) || fclose (stdout))
    return FATAL_EXIT_CODE;
    return FATAL_EXIT_CODE;
 
 
  return SUCCESS_EXIT_CODE;
  return SUCCESS_EXIT_CODE;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.