OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [graphite-sese-to-poly.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Conversion of SESE regions to Polyhedra.
/* Conversion of SESE regions to Polyhedra.
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <sebastian.pop@amd.com>.
   Contributed by Sebastian Pop <sebastian.pop@amd.com>.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "toplev.h"
#include "toplev.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "timevar.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "domwalk.h"
#include "value-prof.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "pointer-set.h"
#include "gimple.h"
#include "gimple.h"
#include "sese.h"
#include "sese.h"
 
 
#ifdef HAVE_cloog
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "ppl_c.h"
#include "graphite-ppl.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
#include "graphite-scop-detection.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-sese-to-poly.h"
#include "graphite-sese-to-poly.h"
 
 
/* Check if VAR is used in a phi node, that is no loop header.  */
/* Check if VAR is used in a phi node, that is no loop header.  */
 
 
static bool
static bool
var_used_in_not_loop_header_phi_node (tree var)
var_used_in_not_loop_header_phi_node (tree var)
{
{
  imm_use_iterator imm_iter;
  imm_use_iterator imm_iter;
  gimple stmt;
  gimple stmt;
  bool result = false;
  bool result = false;
 
 
  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
    {
    {
      basic_block bb = gimple_bb (stmt);
      basic_block bb = gimple_bb (stmt);
 
 
      if (gimple_code (stmt) == GIMPLE_PHI
      if (gimple_code (stmt) == GIMPLE_PHI
          && bb->loop_father->header != bb)
          && bb->loop_father->header != bb)
        result = true;
        result = true;
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Returns the index of the phi argument corresponding to the initial
/* Returns the index of the phi argument corresponding to the initial
   value in the loop.  */
   value in the loop.  */
 
 
static size_t
static size_t
loop_entry_phi_arg (gimple phi)
loop_entry_phi_arg (gimple phi)
{
{
  loop_p loop = gimple_bb (phi)->loop_father;
  loop_p loop = gimple_bb (phi)->loop_father;
  size_t i;
  size_t i;
 
 
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
    if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
      return i;
      return i;
 
 
  gcc_unreachable ();
  gcc_unreachable ();
  return 0;
  return 0;
}
}
 
 
/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
   PSI by inserting on the loop ENTRY edge assignment "RES = INIT".  */
   PSI by inserting on the loop ENTRY edge assignment "RES = INIT".  */
 
 
static void
static void
remove_simple_copy_phi (gimple_stmt_iterator *psi)
remove_simple_copy_phi (gimple_stmt_iterator *psi)
{
{
  gimple phi = gsi_stmt (*psi);
  gimple phi = gsi_stmt (*psi);
  tree res = gimple_phi_result (phi);
  tree res = gimple_phi_result (phi);
  size_t entry = loop_entry_phi_arg (phi);
  size_t entry = loop_entry_phi_arg (phi);
  tree init = gimple_phi_arg_def (phi, entry);
  tree init = gimple_phi_arg_def (phi, entry);
  gimple stmt = gimple_build_assign (res, init);
  gimple stmt = gimple_build_assign (res, init);
  edge e = gimple_phi_arg_edge (phi, entry);
  edge e = gimple_phi_arg_edge (phi, entry);
 
 
  remove_phi_node (psi, false);
  remove_phi_node (psi, false);
  gsi_insert_on_edge_immediate (e, stmt);
  gsi_insert_on_edge_immediate (e, stmt);
  SSA_NAME_DEF_STMT (res) = stmt;
  SSA_NAME_DEF_STMT (res) = stmt;
}
}
 
 
/* Removes an invariant phi node at position PSI by inserting on the
/* Removes an invariant phi node at position PSI by inserting on the
   loop ENTRY edge the assignment RES = INIT.  */
   loop ENTRY edge the assignment RES = INIT.  */
 
 
static void
static void
remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
{
{
  gimple phi = gsi_stmt (*psi);
  gimple phi = gsi_stmt (*psi);
  loop_p loop = loop_containing_stmt (phi);
  loop_p loop = loop_containing_stmt (phi);
  tree res = gimple_phi_result (phi);
  tree res = gimple_phi_result (phi);
  tree scev = scalar_evolution_in_region (region, loop, res);
  tree scev = scalar_evolution_in_region (region, loop, res);
  size_t entry = loop_entry_phi_arg (phi);
  size_t entry = loop_entry_phi_arg (phi);
  edge e = gimple_phi_arg_edge (phi, entry);
  edge e = gimple_phi_arg_edge (phi, entry);
  tree var;
  tree var;
  gimple stmt;
  gimple stmt;
  gimple_seq stmts;
  gimple_seq stmts;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  if (tree_contains_chrecs (scev, NULL))
  if (tree_contains_chrecs (scev, NULL))
    scev = gimple_phi_arg_def (phi, entry);
    scev = gimple_phi_arg_def (phi, entry);
 
 
  var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
  var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
  stmt = gimple_build_assign (res, var);
  stmt = gimple_build_assign (res, var);
  remove_phi_node (psi, false);
  remove_phi_node (psi, false);
 
 
  if (!stmts)
  if (!stmts)
    stmts = gimple_seq_alloc ();
    stmts = gimple_seq_alloc ();
 
 
  gsi = gsi_last (stmts);
  gsi = gsi_last (stmts);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  gsi_insert_seq_on_edge (e, stmts);
  gsi_insert_seq_on_edge (e, stmts);
  gsi_commit_edge_inserts ();
  gsi_commit_edge_inserts ();
  SSA_NAME_DEF_STMT (res) = stmt;
  SSA_NAME_DEF_STMT (res) = stmt;
}
}
 
 
/* Returns true when the phi node at PSI is of the form "a = phi (a, x)".  */
/* Returns true when the phi node at PSI is of the form "a = phi (a, x)".  */
 
 
static inline bool
static inline bool
simple_copy_phi_p (gimple phi)
simple_copy_phi_p (gimple phi)
{
{
  tree res;
  tree res;
 
 
  if (gimple_phi_num_args (phi) != 2)
  if (gimple_phi_num_args (phi) != 2)
    return false;
    return false;
 
 
  res = gimple_phi_result (phi);
  res = gimple_phi_result (phi);
  return (res == gimple_phi_arg_def (phi, 0)
  return (res == gimple_phi_arg_def (phi, 0)
          || res == gimple_phi_arg_def (phi, 1));
          || res == gimple_phi_arg_def (phi, 1));
}
}
 
 
/* Returns true when the phi node at position PSI is a reduction phi
/* Returns true when the phi node at position PSI is a reduction phi
   node in REGION.  Otherwise moves the pointer PSI to the next phi to
   node in REGION.  Otherwise moves the pointer PSI to the next phi to
   be considered.  */
   be considered.  */
 
 
static bool
static bool
reduction_phi_p (sese region, gimple_stmt_iterator *psi)
reduction_phi_p (sese region, gimple_stmt_iterator *psi)
{
{
  loop_p loop;
  loop_p loop;
  tree scev;
  tree scev;
  affine_iv iv;
  affine_iv iv;
  gimple phi = gsi_stmt (*psi);
  gimple phi = gsi_stmt (*psi);
  tree res = gimple_phi_result (phi);
  tree res = gimple_phi_result (phi);
 
 
  if (!is_gimple_reg (res))
  if (!is_gimple_reg (res))
    {
    {
      gsi_next (psi);
      gsi_next (psi);
      return false;
      return false;
    }
    }
 
 
  loop = loop_containing_stmt (phi);
  loop = loop_containing_stmt (phi);
 
 
  if (simple_copy_phi_p (phi))
  if (simple_copy_phi_p (phi))
    {
    {
      /* PRE introduces phi nodes like these, for an example,
      /* PRE introduces phi nodes like these, for an example,
         see id-5.f in the fortran graphite testsuite:
         see id-5.f in the fortran graphite testsuite:
 
 
         # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
         # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
      */
      */
      remove_simple_copy_phi (psi);
      remove_simple_copy_phi (psi);
      return false;
      return false;
    }
    }
 
 
  /* Main induction variables with constant strides in LOOP are not
  /* Main induction variables with constant strides in LOOP are not
     reductions.  */
     reductions.  */
  if (simple_iv (loop, loop, res, &iv, true))
  if (simple_iv (loop, loop, res, &iv, true))
    {
    {
      if (integer_zerop (iv.step))
      if (integer_zerop (iv.step))
        remove_invariant_phi (region, psi);
        remove_invariant_phi (region, psi);
      else
      else
        gsi_next (psi);
        gsi_next (psi);
 
 
      return false;
      return false;
    }
    }
 
 
  scev = scalar_evolution_in_region (region, loop, res);
  scev = scalar_evolution_in_region (region, loop, res);
  if (chrec_contains_undetermined (scev))
  if (chrec_contains_undetermined (scev))
    return true;
    return true;
 
 
  if (evolution_function_is_invariant_p (scev, loop->num))
  if (evolution_function_is_invariant_p (scev, loop->num))
    {
    {
      remove_invariant_phi (region, psi);
      remove_invariant_phi (region, psi);
      return false;
      return false;
    }
    }
 
 
  /* All the other cases are considered reductions.  */
  /* All the other cases are considered reductions.  */
  return true;
  return true;
}
}
 
 
/* Returns true when BB will be represented in graphite.  Return false
/* Returns true when BB will be represented in graphite.  Return false
   for the basic blocks that contain code eliminated in the code
   for the basic blocks that contain code eliminated in the code
   generation pass: i.e. induction variables and exit conditions.  */
   generation pass: i.e. induction variables and exit conditions.  */
 
 
static bool
static bool
graphite_stmt_p (sese region, basic_block bb,
graphite_stmt_p (sese region, basic_block bb,
                 VEC (data_reference_p, heap) *drs)
                 VEC (data_reference_p, heap) *drs)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  loop_p loop = bb->loop_father;
  loop_p loop = bb->loop_father;
 
 
  if (VEC_length (data_reference_p, drs) > 0)
  if (VEC_length (data_reference_p, drs) > 0)
    return true;
    return true;
 
 
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      gimple stmt = gsi_stmt (gsi);
      gimple stmt = gsi_stmt (gsi);
 
 
      switch (gimple_code (stmt))
      switch (gimple_code (stmt))
        {
        {
        case GIMPLE_DEBUG:
        case GIMPLE_DEBUG:
          /* Control flow expressions can be ignored, as they are
          /* Control flow expressions can be ignored, as they are
             represented in the iteration domains and will be
             represented in the iteration domains and will be
             regenerated by graphite.  */
             regenerated by graphite.  */
        case GIMPLE_COND:
        case GIMPLE_COND:
        case GIMPLE_GOTO:
        case GIMPLE_GOTO:
        case GIMPLE_SWITCH:
        case GIMPLE_SWITCH:
          break;
          break;
 
 
        case GIMPLE_ASSIGN:
        case GIMPLE_ASSIGN:
          {
          {
            tree var = gimple_assign_lhs (stmt);
            tree var = gimple_assign_lhs (stmt);
 
 
            /* We need these bbs to be able to construct the phi nodes.  */
            /* We need these bbs to be able to construct the phi nodes.  */
            if (var_used_in_not_loop_header_phi_node (var))
            if (var_used_in_not_loop_header_phi_node (var))
              return true;
              return true;
 
 
            var = scalar_evolution_in_region (region, loop, var);
            var = scalar_evolution_in_region (region, loop, var);
            if (chrec_contains_undetermined (var))
            if (chrec_contains_undetermined (var))
              return true;
              return true;
 
 
            break;
            break;
          }
          }
 
 
        default:
        default:
          return true;
          return true;
        }
        }
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Store the GRAPHITE representation of BB.  */
/* Store the GRAPHITE representation of BB.  */
 
 
static gimple_bb_p
static gimple_bb_p
new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
{
{
  struct gimple_bb *gbb;
  struct gimple_bb *gbb;
 
 
  gbb = XNEW (struct gimple_bb);
  gbb = XNEW (struct gimple_bb);
  bb->aux = gbb;
  bb->aux = gbb;
  GBB_BB (gbb) = bb;
  GBB_BB (gbb) = bb;
  GBB_DATA_REFS (gbb) = drs;
  GBB_DATA_REFS (gbb) = drs;
  GBB_CONDITIONS (gbb) = NULL;
  GBB_CONDITIONS (gbb) = NULL;
  GBB_CONDITION_CASES (gbb) = NULL;
  GBB_CONDITION_CASES (gbb) = NULL;
  GBB_CLOOG_IV_TYPES (gbb) = NULL;
  GBB_CLOOG_IV_TYPES (gbb) = NULL;
 
 
  return gbb;
  return gbb;
}
}
 
 
static void
static void
free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
{
{
  unsigned int i;
  unsigned int i;
  struct data_reference *dr;
  struct data_reference *dr;
 
 
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
  for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
    if (dr->aux)
    if (dr->aux)
      {
      {
        base_alias_pair *bap = (base_alias_pair *)(dr->aux);
        base_alias_pair *bap = (base_alias_pair *)(dr->aux);
 
 
        if (bap->alias_set)
        if (bap->alias_set)
          free (bap->alias_set);
          free (bap->alias_set);
 
 
        free (bap);
        free (bap);
        dr->aux = NULL;
        dr->aux = NULL;
      }
      }
}
}
/* Frees GBB.  */
/* Frees GBB.  */
 
 
static void
static void
free_gimple_bb (struct gimple_bb *gbb)
free_gimple_bb (struct gimple_bb *gbb)
{
{
  if (GBB_CLOOG_IV_TYPES (gbb))
  if (GBB_CLOOG_IV_TYPES (gbb))
    htab_delete (GBB_CLOOG_IV_TYPES (gbb));
    htab_delete (GBB_CLOOG_IV_TYPES (gbb));
 
 
  free_data_refs_aux (GBB_DATA_REFS (gbb));
  free_data_refs_aux (GBB_DATA_REFS (gbb));
  free_data_refs (GBB_DATA_REFS (gbb));
  free_data_refs (GBB_DATA_REFS (gbb));
 
 
  VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
  VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
  VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
  VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
  GBB_BB (gbb)->aux = 0;
  GBB_BB (gbb)->aux = 0;
  XDELETE (gbb);
  XDELETE (gbb);
}
}
 
 
/* Deletes all gimple bbs in SCOP.  */
/* Deletes all gimple bbs in SCOP.  */
 
 
static void
static void
remove_gbbs_in_scop (scop_p scop)
remove_gbbs_in_scop (scop_p scop)
{
{
  int i;
  int i;
  poly_bb_p pbb;
  poly_bb_p pbb;
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    free_gimple_bb (PBB_BLACK_BOX (pbb));
    free_gimple_bb (PBB_BLACK_BOX (pbb));
}
}
 
 
/* Deletes all scops in SCOPS.  */
/* Deletes all scops in SCOPS.  */
 
 
void
void
free_scops (VEC (scop_p, heap) *scops)
free_scops (VEC (scop_p, heap) *scops)
{
{
  int i;
  int i;
  scop_p scop;
  scop_p scop;
 
 
  for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
  for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
    {
    {
      remove_gbbs_in_scop (scop);
      remove_gbbs_in_scop (scop);
      free_sese (SCOP_REGION (scop));
      free_sese (SCOP_REGION (scop));
      free_scop (scop);
      free_scop (scop);
    }
    }
 
 
  VEC_free (scop_p, heap, scops);
  VEC_free (scop_p, heap, scops);
}
}
 
 
/* Generates a polyhedral black box only if the bb contains interesting
/* Generates a polyhedral black box only if the bb contains interesting
   information.  */
   information.  */
 
 
static void
static void
try_generate_gimple_bb (scop_p scop, basic_block bb, sbitmap reductions)
try_generate_gimple_bb (scop_p scop, basic_block bb, sbitmap reductions)
{
{
  VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
  VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
  loop_p nest = outermost_loop_in_sese (SCOP_REGION (scop), bb);
  loop_p nest = outermost_loop_in_sese (SCOP_REGION (scop), bb);
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      gimple stmt = gsi_stmt (gsi);
      gimple stmt = gsi_stmt (gsi);
      if (!is_gimple_debug (stmt))
      if (!is_gimple_debug (stmt))
        graphite_find_data_references_in_stmt (nest, stmt, &drs);
        graphite_find_data_references_in_stmt (nest, stmt, &drs);
    }
    }
 
 
  if (!graphite_stmt_p (SCOP_REGION (scop), bb, drs))
  if (!graphite_stmt_p (SCOP_REGION (scop), bb, drs))
    free_data_refs (drs);
    free_data_refs (drs);
  else
  else
    new_poly_bb (scop, new_gimple_bb (bb, drs), TEST_BIT (reductions,
    new_poly_bb (scop, new_gimple_bb (bb, drs), TEST_BIT (reductions,
                                                          bb->index));
                                                          bb->index));
}
}
 
 
/* Returns true if all predecessors of BB, that are not dominated by BB, are
/* Returns true if all predecessors of BB, that are not dominated by BB, are
   marked in MAP.  The predecessors dominated by BB are loop latches and will
   marked in MAP.  The predecessors dominated by BB are loop latches and will
   be handled after BB.  */
   be handled after BB.  */
 
 
static bool
static bool
all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (!TEST_BIT (map, e->src->index)
    if (!TEST_BIT (map, e->src->index)
        && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
        && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
        return false;
        return false;
 
 
  return true;
  return true;
}
}
 
 
/* Compare the depth of two basic_block's P1 and P2.  */
/* Compare the depth of two basic_block's P1 and P2.  */
 
 
static int
static int
compare_bb_depths (const void *p1, const void *p2)
compare_bb_depths (const void *p1, const void *p2)
{
{
  const_basic_block const bb1 = *(const_basic_block const*)p1;
  const_basic_block const bb1 = *(const_basic_block const*)p1;
  const_basic_block const bb2 = *(const_basic_block const*)p2;
  const_basic_block const bb2 = *(const_basic_block const*)p2;
  int d1 = loop_depth (bb1->loop_father);
  int d1 = loop_depth (bb1->loop_father);
  int d2 = loop_depth (bb2->loop_father);
  int d2 = loop_depth (bb2->loop_father);
 
 
  if (d1 < d2)
  if (d1 < d2)
    return 1;
    return 1;
 
 
  if (d1 > d2)
  if (d1 > d2)
    return -1;
    return -1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Sort the basic blocks from DOM such that the first are the ones at
/* Sort the basic blocks from DOM such that the first are the ones at
   a deepest loop level.  */
   a deepest loop level.  */
 
 
static void
static void
graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
{
{
  size_t len = VEC_length (basic_block, dom);
  size_t len = VEC_length (basic_block, dom);
 
 
  qsort (VEC_address (basic_block, dom), len, sizeof (basic_block),
  qsort (VEC_address (basic_block, dom), len, sizeof (basic_block),
         compare_bb_depths);
         compare_bb_depths);
}
}
 
 
/* Recursive helper function for build_scops_bbs.  */
/* Recursive helper function for build_scops_bbs.  */
 
 
static void
static void
build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb, sbitmap reductions)
build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb, sbitmap reductions)
{
{
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
  VEC (basic_block, heap) *dom;
  VEC (basic_block, heap) *dom;
 
 
  if (TEST_BIT (visited, bb->index)
  if (TEST_BIT (visited, bb->index)
      || !bb_in_sese_p (bb, region))
      || !bb_in_sese_p (bb, region))
    return;
    return;
 
 
  try_generate_gimple_bb (scop, bb, reductions);
  try_generate_gimple_bb (scop, bb, reductions);
  SET_BIT (visited, bb->index);
  SET_BIT (visited, bb->index);
 
 
  dom = get_dominated_by (CDI_DOMINATORS, bb);
  dom = get_dominated_by (CDI_DOMINATORS, bb);
 
 
  if (dom == NULL)
  if (dom == NULL)
    return;
    return;
 
 
  graphite_sort_dominated_info (dom);
  graphite_sort_dominated_info (dom);
 
 
  while (!VEC_empty (basic_block, dom))
  while (!VEC_empty (basic_block, dom))
    {
    {
      int i;
      int i;
      basic_block dom_bb;
      basic_block dom_bb;
 
 
      for (i = 0; VEC_iterate (basic_block, dom, i, dom_bb); i++)
      for (i = 0; VEC_iterate (basic_block, dom, i, dom_bb); i++)
        if (all_non_dominated_preds_marked_p (dom_bb, visited))
        if (all_non_dominated_preds_marked_p (dom_bb, visited))
          {
          {
            build_scop_bbs_1 (scop, visited, dom_bb, reductions);
            build_scop_bbs_1 (scop, visited, dom_bb, reductions);
            VEC_unordered_remove (basic_block, dom, i);
            VEC_unordered_remove (basic_block, dom, i);
            break;
            break;
          }
          }
    }
    }
 
 
  VEC_free (basic_block, heap, dom);
  VEC_free (basic_block, heap, dom);
}
}
 
 
/* Gather the basic blocks belonging to the SCOP.  */
/* Gather the basic blocks belonging to the SCOP.  */
 
 
static void
static void
build_scop_bbs (scop_p scop, sbitmap reductions)
build_scop_bbs (scop_p scop, sbitmap reductions)
{
{
  sbitmap visited = sbitmap_alloc (last_basic_block);
  sbitmap visited = sbitmap_alloc (last_basic_block);
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
 
 
  sbitmap_zero (visited);
  sbitmap_zero (visited);
  build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region), reductions);
  build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region), reductions);
  sbitmap_free (visited);
  sbitmap_free (visited);
}
}
 
 
/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
   We generate SCATTERING_DIMENSIONS scattering dimensions.
   We generate SCATTERING_DIMENSIONS scattering dimensions.
 
 
   CLooG 0.15.0 and previous versions require, that all
   CLooG 0.15.0 and previous versions require, that all
   scattering functions of one CloogProgram have the same number of
   scattering functions of one CloogProgram have the same number of
   scattering dimensions, therefore we allow to specify it.  This
   scattering dimensions, therefore we allow to specify it.  This
   should be removed in future versions of CLooG.
   should be removed in future versions of CLooG.
 
 
   The scattering polyhedron consists of these dimensions: scattering,
   The scattering polyhedron consists of these dimensions: scattering,
   loop_iterators, parameters.
   loop_iterators, parameters.
 
 
   Example:
   Example:
 
 
   | scattering_dimensions = 5
   | scattering_dimensions = 5
   | used_scattering_dimensions = 3
   | used_scattering_dimensions = 3
   | nb_iterators = 1
   | nb_iterators = 1
   | scop_nb_params = 2
   | scop_nb_params = 2
   |
   |
   | Schedule:
   | Schedule:
   |   i
   |   i
   | 4 5
   | 4 5
   |
   |
   | Scattering polyhedron:
   | Scattering polyhedron:
   |
   |
   | scattering: {s1, s2, s3, s4, s5}
   | scattering: {s1, s2, s3, s4, s5}
   | loop_iterators: {i}
   | loop_iterators: {i}
   | parameters: {p1, p2}
   | parameters: {p1, p2}
   |
   |
   | s1  s2  s3  s4  s5  i   p1  p2  1
   | s1  s2  s3  s4  s5  i   p1  p2  1
   | 1   0   0   0   0   0   0   0  -4  = 0
   | 1   0   0   0   0   0   0   0  -4  = 0
   | 0   1   0   0   0  -1   0   0   0  = 0
   | 0   1   0   0   0  -1   0   0   0  = 0
   | 0   0   1   0   0   0   0   0  -5  = 0  */
   | 0   0   1   0   0   0   0   0  -5  = 0  */
 
 
static void
static void
build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
                                  poly_bb_p pbb, int scattering_dimensions)
                                  poly_bb_p pbb, int scattering_dimensions)
{
{
  int i;
  int i;
  scop_p scop = PBB_SCOP (pbb);
  scop_p scop = PBB_SCOP (pbb);
  int nb_iterators = pbb_dim_iter_domain (pbb);
  int nb_iterators = pbb_dim_iter_domain (pbb);
  int used_scattering_dimensions = nb_iterators * 2 + 1;
  int used_scattering_dimensions = nb_iterators * 2 + 1;
  int nb_params = scop_nb_params (scop);
  int nb_params = scop_nb_params (scop);
  ppl_Coefficient_t c;
  ppl_Coefficient_t c;
  ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
  ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
  Value v;
  Value v;
 
 
  gcc_assert (scattering_dimensions >= used_scattering_dimensions);
  gcc_assert (scattering_dimensions >= used_scattering_dimensions);
 
 
  value_init (v);
  value_init (v);
  ppl_new_Coefficient (&c);
  ppl_new_Coefficient (&c);
  PBB_TRANSFORMED (pbb) = poly_scattering_new ();
  PBB_TRANSFORMED (pbb) = poly_scattering_new ();
  ppl_new_C_Polyhedron_from_space_dimension
  ppl_new_C_Polyhedron_from_space_dimension
    (&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
    (&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
 
 
  PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
  PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
 
 
  for (i = 0; i < scattering_dimensions; i++)
  for (i = 0; i < scattering_dimensions; i++)
    {
    {
      ppl_Constraint_t cstr;
      ppl_Constraint_t cstr;
      ppl_Linear_Expression_t expr;
      ppl_Linear_Expression_t expr;
 
 
      ppl_new_Linear_Expression_with_dimension (&expr, dim);
      ppl_new_Linear_Expression_with_dimension (&expr, dim);
      value_set_si (v, 1);
      value_set_si (v, 1);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_Linear_Expression_add_to_coefficient (expr, i, c);
      ppl_Linear_Expression_add_to_coefficient (expr, i, c);
 
 
      /* Textual order inside this loop.  */
      /* Textual order inside this loop.  */
      if ((i % 2) == 0)
      if ((i % 2) == 0)
        {
        {
          ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
          ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
          ppl_Coefficient_to_mpz_t (c, v);
          ppl_Coefficient_to_mpz_t (c, v);
          value_oppose (v, v);
          value_oppose (v, v);
          ppl_assign_Coefficient_from_mpz_t (c, v);
          ppl_assign_Coefficient_from_mpz_t (c, v);
          ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
          ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
        }
        }
 
 
      /* Iterations of this loop.  */
      /* Iterations of this loop.  */
      else /* if ((i % 2) == 1) */
      else /* if ((i % 2) == 1) */
        {
        {
          int loop = (i - 1) / 2;
          int loop = (i - 1) / 2;
 
 
          value_set_si (v, -1);
          value_set_si (v, -1);
          ppl_assign_Coefficient_from_mpz_t (c, v);
          ppl_assign_Coefficient_from_mpz_t (c, v);
          ppl_Linear_Expression_add_to_coefficient
          ppl_Linear_Expression_add_to_coefficient
            (expr, scattering_dimensions + loop, c);
            (expr, scattering_dimensions + loop, c);
        }
        }
 
 
      ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
      ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
      ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
      ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
      ppl_delete_Linear_Expression (expr);
      ppl_delete_Linear_Expression (expr);
      ppl_delete_Constraint (cstr);
      ppl_delete_Constraint (cstr);
    }
    }
 
 
  value_clear (v);
  value_clear (v);
  ppl_delete_Coefficient (c);
  ppl_delete_Coefficient (c);
 
 
  PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
  PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
}
}
 
 
/* Build for BB the static schedule.
/* Build for BB the static schedule.
 
 
   The static schedule is a Dewey numbering of the abstract syntax
   The static schedule is a Dewey numbering of the abstract syntax
   tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
   tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
 
 
   The following example informally defines the static schedule:
   The following example informally defines the static schedule:
 
 
   A
   A
   for (i: ...)
   for (i: ...)
     {
     {
       for (j: ...)
       for (j: ...)
         {
         {
           B
           B
           C
           C
         }
         }
 
 
       for (k: ...)
       for (k: ...)
         {
         {
           D
           D
           E
           E
         }
         }
     }
     }
   F
   F
 
 
   Static schedules for A to F:
   Static schedules for A to F:
 
 
     DEPTH
     DEPTH
     0 1 2
     0 1 2
   A 0
   A 0
   B 1 0 0
   B 1 0 0
   C 1 0 1
   C 1 0 1
   D 1 1 0
   D 1 1 0
   E 1 1 1
   E 1 1 1
   F 2
   F 2
*/
*/
 
 
static void
static void
build_scop_scattering (scop_p scop)
build_scop_scattering (scop_p scop)
{
{
  int i;
  int i;
  poly_bb_p pbb;
  poly_bb_p pbb;
  gimple_bb_p previous_gbb = NULL;
  gimple_bb_p previous_gbb = NULL;
  ppl_Linear_Expression_t static_schedule;
  ppl_Linear_Expression_t static_schedule;
  ppl_Coefficient_t c;
  ppl_Coefficient_t c;
  Value v;
  Value v;
 
 
  value_init (v);
  value_init (v);
  ppl_new_Coefficient (&c);
  ppl_new_Coefficient (&c);
  ppl_new_Linear_Expression (&static_schedule);
  ppl_new_Linear_Expression (&static_schedule);
 
 
  /* We have to start schedules at 0 on the first component and
  /* We have to start schedules at 0 on the first component and
     because we cannot compare_prefix_loops against a previous loop,
     because we cannot compare_prefix_loops against a previous loop,
     prefix will be equal to zero, and that index will be
     prefix will be equal to zero, and that index will be
     incremented before copying.  */
     incremented before copying.  */
  value_set_si (v, -1);
  value_set_si (v, -1);
  ppl_assign_Coefficient_from_mpz_t (c, v);
  ppl_assign_Coefficient_from_mpz_t (c, v);
  ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
  ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    {
    {
      gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
      gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
      ppl_Linear_Expression_t common;
      ppl_Linear_Expression_t common;
      int prefix;
      int prefix;
      int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
      int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
 
 
      if (previous_gbb)
      if (previous_gbb)
        prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
        prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
      else
      else
        prefix = 0;
        prefix = 0;
 
 
      previous_gbb = gbb;
      previous_gbb = gbb;
      ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
      ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
      ppl_assign_Linear_Expression_from_Linear_Expression (common,
      ppl_assign_Linear_Expression_from_Linear_Expression (common,
                                                           static_schedule);
                                                           static_schedule);
 
 
      value_set_si (v, 1);
      value_set_si (v, 1);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
      ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
      ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
      ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
                                                           common);
                                                           common);
 
 
      build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
      build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
 
 
      ppl_delete_Linear_Expression (common);
      ppl_delete_Linear_Expression (common);
    }
    }
 
 
  value_clear (v);
  value_clear (v);
  ppl_delete_Coefficient (c);
  ppl_delete_Coefficient (c);
  ppl_delete_Linear_Expression (static_schedule);
  ppl_delete_Linear_Expression (static_schedule);
}
}
 
 
/* Add the value K to the dimension D of the linear expression EXPR.  */
/* Add the value K to the dimension D of the linear expression EXPR.  */
 
 
static void
static void
add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
                  Value k)
                  Value k)
{
{
  Value val;
  Value val;
  ppl_Coefficient_t coef;
  ppl_Coefficient_t coef;
 
 
  ppl_new_Coefficient (&coef);
  ppl_new_Coefficient (&coef);
  ppl_Linear_Expression_coefficient (expr, d, coef);
  ppl_Linear_Expression_coefficient (expr, d, coef);
  value_init (val);
  value_init (val);
  ppl_Coefficient_to_mpz_t (coef, val);
  ppl_Coefficient_to_mpz_t (coef, val);
 
 
  value_addto (val, val, k);
  value_addto (val, val, k);
 
 
  ppl_assign_Coefficient_from_mpz_t (coef, val);
  ppl_assign_Coefficient_from_mpz_t (coef, val);
  ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
  ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
  value_clear (val);
  value_clear (val);
  ppl_delete_Coefficient (coef);
  ppl_delete_Coefficient (coef);
}
}
 
 
/* In the context of scop S, scan E, the right hand side of a scalar
/* In the context of scop S, scan E, the right hand side of a scalar
   evolution function in loop VAR, and translate it to a linear
   evolution function in loop VAR, and translate it to a linear
   expression EXPR.  */
   expression EXPR.  */
 
 
static void
static void
scan_tree_for_params_right_scev (sese s, tree e, int var,
scan_tree_for_params_right_scev (sese s, tree e, int var,
                                 ppl_Linear_Expression_t expr)
                                 ppl_Linear_Expression_t expr)
{
{
  if (expr)
  if (expr)
    {
    {
      loop_p loop = get_loop (var);
      loop_p loop = get_loop (var);
      ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
      ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
      Value val;
      Value val;
 
 
      /* Scalar evolutions should happen in the sese region.  */
      /* Scalar evolutions should happen in the sese region.  */
      gcc_assert (sese_loop_depth (s, loop) > 0);
      gcc_assert (sese_loop_depth (s, loop) > 0);
 
 
      /* We can not deal with parametric strides like:
      /* We can not deal with parametric strides like:
 
 
      | p = parameter;
      | p = parameter;
      |
      |
      | for i:
      | for i:
      |   a [i * p] = ...   */
      |   a [i * p] = ...   */
      gcc_assert (TREE_CODE (e) == INTEGER_CST);
      gcc_assert (TREE_CODE (e) == INTEGER_CST);
 
 
      value_init (val);
      value_init (val);
      value_set_si (val, int_cst_value (e));
      value_set_si (val, int_cst_value (e));
      add_value_to_dim (l, expr, val);
      add_value_to_dim (l, expr, val);
      value_clear (val);
      value_clear (val);
    }
    }
}
}
 
 
/* Scan the integer constant CST, and add it to the inhomogeneous part of the
/* Scan the integer constant CST, and add it to the inhomogeneous part of the
   linear expression EXPR.  K is the multiplier of the constant.  */
   linear expression EXPR.  K is the multiplier of the constant.  */
 
 
static void
static void
scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, Value k)
scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, Value k)
{
{
  Value val;
  Value val;
  ppl_Coefficient_t coef;
  ppl_Coefficient_t coef;
  int v = int_cst_value (cst);
  int v = int_cst_value (cst);
 
 
  value_init (val);
  value_init (val);
  value_set_si (val, 0);
  value_set_si (val, 0);
 
 
  /* Necessary to not get "-1 = 2^n - 1". */
  /* Necessary to not get "-1 = 2^n - 1". */
  if (v < 0)
  if (v < 0)
    value_sub_int (val, val, -v);
    value_sub_int (val, val, -v);
  else
  else
    value_add_int (val, val, v);
    value_add_int (val, val, v);
 
 
  value_multiply (val, val, k);
  value_multiply (val, val, k);
  ppl_new_Coefficient (&coef);
  ppl_new_Coefficient (&coef);
  ppl_assign_Coefficient_from_mpz_t (coef, val);
  ppl_assign_Coefficient_from_mpz_t (coef, val);
  ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
  ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
  value_clear (val);
  value_clear (val);
  ppl_delete_Coefficient (coef);
  ppl_delete_Coefficient (coef);
}
}
 
 
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
   Otherwise returns -1.  */
   Otherwise returns -1.  */
 
 
static inline int
static inline int
parameter_index_in_region_1 (tree name, sese region)
parameter_index_in_region_1 (tree name, sese region)
{
{
  int i;
  int i;
  tree p;
  tree p;
 
 
  gcc_assert (TREE_CODE (name) == SSA_NAME);
  gcc_assert (TREE_CODE (name) == SSA_NAME);
 
 
  for (i = 0; VEC_iterate (tree, SESE_PARAMS (region), i, p); i++)
  for (i = 0; VEC_iterate (tree, SESE_PARAMS (region), i, p); i++)
    if (p == name)
    if (p == name)
      return i;
      return i;
 
 
  return -1;
  return -1;
}
}
 
 
/* When the parameter NAME is in REGION, returns its index in
/* When the parameter NAME is in REGION, returns its index in
   SESE_PARAMS.  Otherwise this function inserts NAME in SESE_PARAMS
   SESE_PARAMS.  Otherwise this function inserts NAME in SESE_PARAMS
   and returns the index of NAME.  */
   and returns the index of NAME.  */
 
 
static int
static int
parameter_index_in_region (tree name, sese region)
parameter_index_in_region (tree name, sese region)
{
{
  int i;
  int i;
 
 
  gcc_assert (TREE_CODE (name) == SSA_NAME);
  gcc_assert (TREE_CODE (name) == SSA_NAME);
 
 
  i = parameter_index_in_region_1 (name, region);
  i = parameter_index_in_region_1 (name, region);
  if (i != -1)
  if (i != -1)
    return i;
    return i;
 
 
  gcc_assert (SESE_ADD_PARAMS (region));
  gcc_assert (SESE_ADD_PARAMS (region));
 
 
  i = VEC_length (tree, SESE_PARAMS (region));
  i = VEC_length (tree, SESE_PARAMS (region));
  VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
  VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
  return i;
  return i;
}
}
 
 
/* In the context of sese S, scan the expression E and translate it to
/* In the context of sese S, scan the expression E and translate it to
   a linear expression C.  When parsing a symbolic multiplication, K
   a linear expression C.  When parsing a symbolic multiplication, K
   represents the constant multiplier of an expression containing
   represents the constant multiplier of an expression containing
   parameters.  */
   parameters.  */
 
 
static void
static void
scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
                      Value k)
                      Value k)
{
{
  if (e == chrec_dont_know)
  if (e == chrec_dont_know)
    return;
    return;
 
 
  switch (TREE_CODE (e))
  switch (TREE_CODE (e))
    {
    {
    case POLYNOMIAL_CHREC:
    case POLYNOMIAL_CHREC:
      scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
      scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
                                       CHREC_VARIABLE (e), c);
                                       CHREC_VARIABLE (e), c);
      scan_tree_for_params (s, CHREC_LEFT (e), c, k);
      scan_tree_for_params (s, CHREC_LEFT (e), c, k);
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
      if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
        {
        {
          if (c)
          if (c)
            {
            {
              Value val;
              Value val;
              gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
              gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
              value_init (val);
              value_init (val);
              value_set_si (val, int_cst_value (TREE_OPERAND (e, 1)));
              value_set_si (val, int_cst_value (TREE_OPERAND (e, 1)));
              value_multiply (val, val, k);
              value_multiply (val, val, k);
              scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
              scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
              value_clear (val);
              value_clear (val);
            }
            }
          else
          else
            scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
            scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
        }
        }
      else
      else
        {
        {
          if (c)
          if (c)
            {
            {
              Value val;
              Value val;
              gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
              gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
              value_init (val);
              value_init (val);
              value_set_si (val, int_cst_value (TREE_OPERAND (e, 0)));
              value_set_si (val, int_cst_value (TREE_OPERAND (e, 0)));
              value_multiply (val, val, k);
              value_multiply (val, val, k);
              scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
              scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
              value_clear (val);
              value_clear (val);
            }
            }
          else
          else
            scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
            scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
        }
        }
      break;
      break;
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case POINTER_PLUS_EXPR:
      scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
      scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
      scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
      scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
      break;
      break;
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      {
      {
        ppl_Linear_Expression_t tmp_expr = NULL;
        ppl_Linear_Expression_t tmp_expr = NULL;
 
 
        if (c)
        if (c)
          {
          {
            ppl_dimension_type dim;
            ppl_dimension_type dim;
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
            ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
          }
          }
 
 
        scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
        scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
        scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
        scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
 
 
        if (c)
        if (c)
          {
          {
            ppl_subtract_Linear_Expression_from_Linear_Expression (c,
            ppl_subtract_Linear_Expression_from_Linear_Expression (c,
                                                                   tmp_expr);
                                                                   tmp_expr);
            ppl_delete_Linear_Expression (tmp_expr);
            ppl_delete_Linear_Expression (tmp_expr);
          }
          }
 
 
        break;
        break;
      }
      }
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      {
      {
        ppl_Linear_Expression_t tmp_expr = NULL;
        ppl_Linear_Expression_t tmp_expr = NULL;
 
 
        if (c)
        if (c)
          {
          {
            ppl_dimension_type dim;
            ppl_dimension_type dim;
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
            ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
          }
          }
 
 
        scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
        scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
 
 
        if (c)
        if (c)
          {
          {
            ppl_subtract_Linear_Expression_from_Linear_Expression (c,
            ppl_subtract_Linear_Expression_from_Linear_Expression (c,
                                                                   tmp_expr);
                                                                   tmp_expr);
            ppl_delete_Linear_Expression (tmp_expr);
            ppl_delete_Linear_Expression (tmp_expr);
          }
          }
 
 
        break;
        break;
      }
      }
 
 
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      {
      {
        ppl_Linear_Expression_t tmp_expr = NULL;
        ppl_Linear_Expression_t tmp_expr = NULL;
 
 
        if (c)
        if (c)
          {
          {
            ppl_dimension_type dim;
            ppl_dimension_type dim;
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
            ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
          }
          }
 
 
        scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
        scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
 
 
        if (c)
        if (c)
          {
          {
            ppl_Coefficient_t coef;
            ppl_Coefficient_t coef;
            Value minus_one;
            Value minus_one;
 
 
            ppl_subtract_Linear_Expression_from_Linear_Expression (c,
            ppl_subtract_Linear_Expression_from_Linear_Expression (c,
                                                                   tmp_expr);
                                                                   tmp_expr);
            ppl_delete_Linear_Expression (tmp_expr);
            ppl_delete_Linear_Expression (tmp_expr);
            value_init (minus_one);
            value_init (minus_one);
            value_set_si (minus_one, -1);
            value_set_si (minus_one, -1);
            ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
            ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
            ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
            ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
            value_clear (minus_one);
            value_clear (minus_one);
            ppl_delete_Coefficient (coef);
            ppl_delete_Coefficient (coef);
          }
          }
 
 
        break;
        break;
      }
      }
 
 
    case SSA_NAME:
    case SSA_NAME:
      {
      {
        ppl_dimension_type p = parameter_index_in_region (e, s);
        ppl_dimension_type p = parameter_index_in_region (e, s);
 
 
        if (c)
        if (c)
          {
          {
            ppl_dimension_type dim;
            ppl_dimension_type dim;
            ppl_Linear_Expression_space_dimension (c, &dim);
            ppl_Linear_Expression_space_dimension (c, &dim);
            p += dim - sese_nb_params (s);
            p += dim - sese_nb_params (s);
            add_value_to_dim (p, c, k);
            add_value_to_dim (p, c, k);
          }
          }
        break;
        break;
      }
      }
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      if (c)
      if (c)
        scan_tree_for_params_int (e, c, k);
        scan_tree_for_params_int (e, c, k);
      break;
      break;
 
 
    CASE_CONVERT:
    CASE_CONVERT:
    case NON_LVALUE_EXPR:
    case NON_LVALUE_EXPR:
      scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
      scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
      break;
      break;
 
 
   default:
   default:
      gcc_unreachable ();
      gcc_unreachable ();
      break;
      break;
    }
    }
}
}
 
 
/* Find parameters with respect to REGION in BB. We are looking in memory
/* Find parameters with respect to REGION in BB. We are looking in memory
   access functions, conditions and loop bounds.  */
   access functions, conditions and loop bounds.  */
 
 
static void
static void
find_params_in_bb (sese region, gimple_bb_p gbb)
find_params_in_bb (sese region, gimple_bb_p gbb)
{
{
  int i;
  int i;
  unsigned j;
  unsigned j;
  data_reference_p dr;
  data_reference_p dr;
  gimple stmt;
  gimple stmt;
  loop_p loop = GBB_BB (gbb)->loop_father;
  loop_p loop = GBB_BB (gbb)->loop_father;
  Value one;
  Value one;
 
 
  value_init (one);
  value_init (one);
  value_set_si (one, 1);
  value_set_si (one, 1);
 
 
  /* Find parameters in the access functions of data references.  */
  /* Find parameters in the access functions of data references.  */
  for (i = 0; VEC_iterate (data_reference_p, GBB_DATA_REFS (gbb), i, dr); i++)
  for (i = 0; VEC_iterate (data_reference_p, GBB_DATA_REFS (gbb), i, dr); i++)
    for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
    for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
      scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
      scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
 
 
  /* Find parameters in conditional statements.  */
  /* Find parameters in conditional statements.  */
  for (i = 0; VEC_iterate (gimple, GBB_CONDITIONS (gbb), i, stmt); i++)
  for (i = 0; VEC_iterate (gimple, GBB_CONDITIONS (gbb), i, stmt); i++)
    {
    {
      tree lhs = scalar_evolution_in_region (region, loop,
      tree lhs = scalar_evolution_in_region (region, loop,
                                             gimple_cond_lhs (stmt));
                                             gimple_cond_lhs (stmt));
      tree rhs = scalar_evolution_in_region (region, loop,
      tree rhs = scalar_evolution_in_region (region, loop,
                                             gimple_cond_rhs (stmt));
                                             gimple_cond_rhs (stmt));
 
 
      scan_tree_for_params (region, lhs, NULL, one);
      scan_tree_for_params (region, lhs, NULL, one);
      scan_tree_for_params (region, rhs, NULL, one);
      scan_tree_for_params (region, rhs, NULL, one);
    }
    }
 
 
  value_clear (one);
  value_clear (one);
}
}
 
 
/* Record the parameters used in the SCOP.  A variable is a parameter
/* Record the parameters used in the SCOP.  A variable is a parameter
   in a scop if it does not vary during the execution of that scop.  */
   in a scop if it does not vary during the execution of that scop.  */
 
 
static void
static void
find_scop_parameters (scop_p scop)
find_scop_parameters (scop_p scop)
{
{
  poly_bb_p pbb;
  poly_bb_p pbb;
  unsigned i;
  unsigned i;
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
  struct loop *loop;
  struct loop *loop;
  Value one;
  Value one;
 
 
  value_init (one);
  value_init (one);
  value_set_si (one, 1);
  value_set_si (one, 1);
 
 
  /* Find the parameters used in the loop bounds.  */
  /* Find the parameters used in the loop bounds.  */
  for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
  for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
    {
    {
      tree nb_iters = number_of_latch_executions (loop);
      tree nb_iters = number_of_latch_executions (loop);
 
 
      if (!chrec_contains_symbols (nb_iters))
      if (!chrec_contains_symbols (nb_iters))
        continue;
        continue;
 
 
      nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
      nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
      scan_tree_for_params (region, nb_iters, NULL, one);
      scan_tree_for_params (region, nb_iters, NULL, one);
    }
    }
 
 
  value_clear (one);
  value_clear (one);
 
 
  /* Find the parameters used in data accesses.  */
  /* Find the parameters used in data accesses.  */
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    find_params_in_bb (region, PBB_BLACK_BOX (pbb));
    find_params_in_bb (region, PBB_BLACK_BOX (pbb));
 
 
  scop_set_nb_params (scop, sese_nb_params (region));
  scop_set_nb_params (scop, sese_nb_params (region));
  SESE_ADD_PARAMS (region) = false;
  SESE_ADD_PARAMS (region) = false;
 
 
  ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
  ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
    (&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
    (&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
}
}
 
 
/* Returns a gimple_bb from BB.  */
/* Returns a gimple_bb from BB.  */
 
 
static inline gimple_bb_p
static inline gimple_bb_p
gbb_from_bb (basic_block bb)
gbb_from_bb (basic_block bb)
{
{
  return (gimple_bb_p) bb->aux;
  return (gimple_bb_p) bb->aux;
}
}
 
 
/* Insert in the SCOP context constraints from the estimation of the
/* Insert in the SCOP context constraints from the estimation of the
   number of iterations.  UB_EXPR is a linear expression describing
   number of iterations.  UB_EXPR is a linear expression describing
   the number of iterations in a loop.  This expression is bounded by
   the number of iterations in a loop.  This expression is bounded by
   the estimation NIT.  */
   the estimation NIT.  */
 
 
static void
static void
add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
                                     ppl_dimension_type dim,
                                     ppl_dimension_type dim,
                                     ppl_Linear_Expression_t ub_expr)
                                     ppl_Linear_Expression_t ub_expr)
{
{
  Value val;
  Value val;
  ppl_Linear_Expression_t nb_iters_le;
  ppl_Linear_Expression_t nb_iters_le;
  ppl_Polyhedron_t pol;
  ppl_Polyhedron_t pol;
  ppl_Coefficient_t coef;
  ppl_Coefficient_t coef;
  ppl_Constraint_t ub;
  ppl_Constraint_t ub;
 
 
  ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
  ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
  ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
  ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
  ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
  ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
                                                    ub_expr);
                                                    ub_expr);
 
 
  /* Construct the negated number of last iteration in VAL.  */
  /* Construct the negated number of last iteration in VAL.  */
  value_init (val);
  value_init (val);
  mpz_set_double_int (val, nit, false);
  mpz_set_double_int (val, nit, false);
  value_sub_int (val, val, 1);
  value_sub_int (val, val, 1);
  value_oppose (val, val);
  value_oppose (val, val);
 
 
  /* NB_ITERS_LE holds the number of last iteration in
  /* NB_ITERS_LE holds the number of last iteration in
     parametrical form.  Subtract estimated number of last
     parametrical form.  Subtract estimated number of last
     iteration and assert that result is not positive.  */
     iteration and assert that result is not positive.  */
  ppl_new_Coefficient_from_mpz_t (&coef, val);
  ppl_new_Coefficient_from_mpz_t (&coef, val);
  ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
  ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
  ppl_delete_Coefficient (coef);
  ppl_delete_Coefficient (coef);
  ppl_new_Constraint (&ub, nb_iters_le,
  ppl_new_Constraint (&ub, nb_iters_le,
                      PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
                      PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
  ppl_Polyhedron_add_constraint (pol, ub);
  ppl_Polyhedron_add_constraint (pol, ub);
 
 
  /* Remove all but last GDIM dimensions from POL to obtain
  /* Remove all but last GDIM dimensions from POL to obtain
     only the constraints on the parameters.  */
     only the constraints on the parameters.  */
  {
  {
    graphite_dim_t gdim = scop_nb_params (scop);
    graphite_dim_t gdim = scop_nb_params (scop);
    ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
    ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
    graphite_dim_t i;
    graphite_dim_t i;
 
 
    for (i = 0; i < dim - gdim; i++)
    for (i = 0; i < dim - gdim; i++)
      dims[i] = i;
      dims[i] = i;
 
 
    ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
    ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
    XDELETEVEC (dims);
    XDELETEVEC (dims);
  }
  }
 
 
  /* Add the constraints on the parameters to the SCoP context.  */
  /* Add the constraints on the parameters to the SCoP context.  */
  {
  {
    ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
    ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
 
 
    ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
    ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
      (&constraints_ps, pol);
      (&constraints_ps, pol);
    ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
    ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
      (SCOP_CONTEXT (scop), constraints_ps);
      (SCOP_CONTEXT (scop), constraints_ps);
    ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
    ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
  }
  }
 
 
  ppl_delete_Polyhedron (pol);
  ppl_delete_Polyhedron (pol);
  ppl_delete_Linear_Expression (nb_iters_le);
  ppl_delete_Linear_Expression (nb_iters_le);
  ppl_delete_Constraint (ub);
  ppl_delete_Constraint (ub);
  value_clear (val);
  value_clear (val);
}
}
 
 
/* Builds the constraint polyhedra for LOOP in SCOP.  OUTER_PH gives
/* Builds the constraint polyhedra for LOOP in SCOP.  OUTER_PH gives
   the constraints for the surrounding loops.  */
   the constraints for the surrounding loops.  */
 
 
static void
static void
build_loop_iteration_domains (scop_p scop, struct loop *loop,
build_loop_iteration_domains (scop_p scop, struct loop *loop,
                              ppl_Polyhedron_t outer_ph, int nb,
                              ppl_Polyhedron_t outer_ph, int nb,
                              ppl_Pointset_Powerset_C_Polyhedron_t *domains)
                              ppl_Pointset_Powerset_C_Polyhedron_t *domains)
{
{
  int i;
  int i;
  ppl_Polyhedron_t ph;
  ppl_Polyhedron_t ph;
  tree nb_iters = number_of_latch_executions (loop);
  tree nb_iters = number_of_latch_executions (loop);
  ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
  ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
 
 
  {
  {
    ppl_const_Constraint_System_t pcs;
    ppl_const_Constraint_System_t pcs;
    ppl_dimension_type *map
    ppl_dimension_type *map
      = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
      = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
 
 
    ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
    ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
    ppl_Polyhedron_get_constraints (outer_ph, &pcs);
    ppl_Polyhedron_get_constraints (outer_ph, &pcs);
    ppl_Polyhedron_add_constraints (ph, pcs);
    ppl_Polyhedron_add_constraints (ph, pcs);
 
 
    for (i = 0; i < (int) nb; i++)
    for (i = 0; i < (int) nb; i++)
      map[i] = i;
      map[i] = i;
    for (i = (int) nb; i < (int) dim - 1; i++)
    for (i = (int) nb; i < (int) dim - 1; i++)
      map[i] = i + 1;
      map[i] = i + 1;
    map[dim - 1] = nb;
    map[dim - 1] = nb;
 
 
    ppl_Polyhedron_map_space_dimensions (ph, map, dim);
    ppl_Polyhedron_map_space_dimensions (ph, map, dim);
    free (map);
    free (map);
  }
  }
 
 
  /* 0 <= loop_i */
  /* 0 <= loop_i */
  {
  {
    ppl_Constraint_t lb;
    ppl_Constraint_t lb;
    ppl_Linear_Expression_t lb_expr;
    ppl_Linear_Expression_t lb_expr;
 
 
    ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
    ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
    ppl_set_coef (lb_expr, nb, 1);
    ppl_set_coef (lb_expr, nb, 1);
    ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
    ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
    ppl_delete_Linear_Expression (lb_expr);
    ppl_delete_Linear_Expression (lb_expr);
    ppl_Polyhedron_add_constraint (ph, lb);
    ppl_Polyhedron_add_constraint (ph, lb);
    ppl_delete_Constraint (lb);
    ppl_delete_Constraint (lb);
  }
  }
 
 
  if (TREE_CODE (nb_iters) == INTEGER_CST)
  if (TREE_CODE (nb_iters) == INTEGER_CST)
    {
    {
      ppl_Constraint_t ub;
      ppl_Constraint_t ub;
      ppl_Linear_Expression_t ub_expr;
      ppl_Linear_Expression_t ub_expr;
 
 
      ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
      ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
 
 
      /* loop_i <= cst_nb_iters */
      /* loop_i <= cst_nb_iters */
      ppl_set_coef (ub_expr, nb, -1);
      ppl_set_coef (ub_expr, nb, -1);
      ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
      ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
      ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
      ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
      ppl_Polyhedron_add_constraint (ph, ub);
      ppl_Polyhedron_add_constraint (ph, ub);
      ppl_delete_Linear_Expression (ub_expr);
      ppl_delete_Linear_Expression (ub_expr);
      ppl_delete_Constraint (ub);
      ppl_delete_Constraint (ub);
    }
    }
  else if (!chrec_contains_undetermined (nb_iters))
  else if (!chrec_contains_undetermined (nb_iters))
    {
    {
      Value one;
      Value one;
      ppl_Constraint_t ub;
      ppl_Constraint_t ub;
      ppl_Linear_Expression_t ub_expr;
      ppl_Linear_Expression_t ub_expr;
      double_int nit;
      double_int nit;
 
 
      value_init (one);
      value_init (one);
      value_set_si (one, 1);
      value_set_si (one, 1);
      ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
      ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
      nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
      nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
      scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
      scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
      value_clear (one);
      value_clear (one);
 
 
      if (estimated_loop_iterations (loop, true, &nit))
      if (estimated_loop_iterations (loop, true, &nit))
        add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
        add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
 
 
      /* loop_i <= expr_nb_iters */
      /* loop_i <= expr_nb_iters */
      ppl_set_coef (ub_expr, nb, -1);
      ppl_set_coef (ub_expr, nb, -1);
      ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
      ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
      ppl_Polyhedron_add_constraint (ph, ub);
      ppl_Polyhedron_add_constraint (ph, ub);
      ppl_delete_Linear_Expression (ub_expr);
      ppl_delete_Linear_Expression (ub_expr);
      ppl_delete_Constraint (ub);
      ppl_delete_Constraint (ub);
    }
    }
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  if (loop->inner && loop_in_sese_p (loop->inner, region))
  if (loop->inner && loop_in_sese_p (loop->inner, region))
    build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
    build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
 
 
  if (nb != 0
  if (nb != 0
      && loop->next
      && loop->next
      && loop_in_sese_p (loop->next, region))
      && loop_in_sese_p (loop->next, region))
    build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
    build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
 
 
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
    (&domains[loop->num], ph);
    (&domains[loop->num], ph);
 
 
  ppl_delete_Polyhedron (ph);
  ppl_delete_Polyhedron (ph);
}
}
 
 
/* Returns a linear expression for tree T evaluated in PBB.  */
/* Returns a linear expression for tree T evaluated in PBB.  */
 
 
static ppl_Linear_Expression_t
static ppl_Linear_Expression_t
create_linear_expr_from_tree (poly_bb_p pbb, tree t)
create_linear_expr_from_tree (poly_bb_p pbb, tree t)
{
{
  Value one;
  Value one;
  ppl_Linear_Expression_t res;
  ppl_Linear_Expression_t res;
  ppl_dimension_type dim;
  ppl_dimension_type dim;
  sese region = SCOP_REGION (PBB_SCOP (pbb));
  sese region = SCOP_REGION (PBB_SCOP (pbb));
  loop_p loop = pbb_loop (pbb);
  loop_p loop = pbb_loop (pbb);
 
 
  dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
  dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
  ppl_new_Linear_Expression_with_dimension (&res, dim);
  ppl_new_Linear_Expression_with_dimension (&res, dim);
 
 
  t = scalar_evolution_in_region (region, loop, t);
  t = scalar_evolution_in_region (region, loop, t);
  gcc_assert (!automatically_generated_chrec_p (t));
  gcc_assert (!automatically_generated_chrec_p (t));
 
 
  value_init (one);
  value_init (one);
  value_set_si (one, 1);
  value_set_si (one, 1);
  scan_tree_for_params (region, t, res, one);
  scan_tree_for_params (region, t, res, one);
  value_clear (one);
  value_clear (one);
 
 
  return res;
  return res;
}
}
 
 
/* Returns the ppl constraint type from the gimple tree code CODE.  */
/* Returns the ppl constraint type from the gimple tree code CODE.  */
 
 
static enum ppl_enum_Constraint_Type
static enum ppl_enum_Constraint_Type
ppl_constraint_type_from_tree_code (enum tree_code code)
ppl_constraint_type_from_tree_code (enum tree_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    /* We do not support LT and GT to be able to work with C_Polyhedron.
    /* We do not support LT and GT to be able to work with C_Polyhedron.
       As we work on integer polyhedron "a < b" can be expressed by
       As we work on integer polyhedron "a < b" can be expressed by
       "a + 1 <= b".  */
       "a + 1 <= b".  */
    case LT_EXPR:
    case LT_EXPR:
    case GT_EXPR:
    case GT_EXPR:
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case LE_EXPR:
    case LE_EXPR:
      return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
      return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
 
 
    case GE_EXPR:
    case GE_EXPR:
      return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
      return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
 
 
    case EQ_EXPR:
    case EQ_EXPR:
      return PPL_CONSTRAINT_TYPE_EQUAL;
      return PPL_CONSTRAINT_TYPE_EQUAL;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Add conditional statement STMT to PS.  It is evaluated in PBB and
/* Add conditional statement STMT to PS.  It is evaluated in PBB and
   CODE is used as the comparison operator.  This allows us to invert the
   CODE is used as the comparison operator.  This allows us to invert the
   condition or to handle inequalities.  */
   condition or to handle inequalities.  */
 
 
static void
static void
add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
                         poly_bb_p pbb, enum tree_code code)
                         poly_bb_p pbb, enum tree_code code)
{
{
  Value v;
  Value v;
  ppl_Coefficient_t c;
  ppl_Coefficient_t c;
  ppl_Linear_Expression_t left, right;
  ppl_Linear_Expression_t left, right;
  ppl_Constraint_t cstr;
  ppl_Constraint_t cstr;
  enum ppl_enum_Constraint_Type type;
  enum ppl_enum_Constraint_Type type;
 
 
  left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
  left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
  right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
  right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
 
 
  /* If we have < or > expressions convert them to <= or >= by adding 1 to
  /* If we have < or > expressions convert them to <= or >= by adding 1 to
     the left or the right side of the expression. */
     the left or the right side of the expression. */
  if (code == LT_EXPR)
  if (code == LT_EXPR)
    {
    {
      value_init (v);
      value_init (v);
      value_set_si (v, 1);
      value_set_si (v, 1);
      ppl_new_Coefficient (&c);
      ppl_new_Coefficient (&c);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_Linear_Expression_add_to_inhomogeneous (left, c);
      ppl_Linear_Expression_add_to_inhomogeneous (left, c);
      ppl_delete_Coefficient (c);
      ppl_delete_Coefficient (c);
      value_clear (v);
      value_clear (v);
 
 
      code = LE_EXPR;
      code = LE_EXPR;
    }
    }
  else if (code == GT_EXPR)
  else if (code == GT_EXPR)
    {
    {
      value_init (v);
      value_init (v);
      value_set_si (v, 1);
      value_set_si (v, 1);
      ppl_new_Coefficient (&c);
      ppl_new_Coefficient (&c);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_assign_Coefficient_from_mpz_t (c, v);
      ppl_Linear_Expression_add_to_inhomogeneous (right, c);
      ppl_Linear_Expression_add_to_inhomogeneous (right, c);
      ppl_delete_Coefficient (c);
      ppl_delete_Coefficient (c);
      value_clear (v);
      value_clear (v);
 
 
      code = GE_EXPR;
      code = GE_EXPR;
    }
    }
 
 
  type = ppl_constraint_type_from_tree_code (code);
  type = ppl_constraint_type_from_tree_code (code);
 
 
  ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
  ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
 
 
  ppl_new_Constraint (&cstr, left, type);
  ppl_new_Constraint (&cstr, left, type);
  ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
  ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
 
 
  ppl_delete_Constraint (cstr);
  ppl_delete_Constraint (cstr);
  ppl_delete_Linear_Expression (left);
  ppl_delete_Linear_Expression (left);
  ppl_delete_Linear_Expression (right);
  ppl_delete_Linear_Expression (right);
}
}
 
 
/* Add conditional statement STMT to pbb.  CODE is used as the comparision
/* Add conditional statement STMT to pbb.  CODE is used as the comparision
   operator.  This allows us to invert the condition or to handle
   operator.  This allows us to invert the condition or to handle
   inequalities.  */
   inequalities.  */
 
 
static void
static void
add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
{
{
  if (code == NE_EXPR)
  if (code == NE_EXPR)
    {
    {
      ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
      ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
      ppl_Pointset_Powerset_C_Polyhedron_t right;
      ppl_Pointset_Powerset_C_Polyhedron_t right;
      ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
      ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
        (&right, left);
        (&right, left);
      add_condition_to_domain (left, stmt, pbb, LT_EXPR);
      add_condition_to_domain (left, stmt, pbb, LT_EXPR);
      add_condition_to_domain (right, stmt, pbb, GT_EXPR);
      add_condition_to_domain (right, stmt, pbb, GT_EXPR);
      ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left,
      ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left,
                                                               right);
                                                               right);
      ppl_delete_Pointset_Powerset_C_Polyhedron (right);
      ppl_delete_Pointset_Powerset_C_Polyhedron (right);
    }
    }
  else
  else
    add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
    add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
}
}
 
 
/* Add conditions to the domain of PBB.  */
/* Add conditions to the domain of PBB.  */
 
 
static void
static void
add_conditions_to_domain (poly_bb_p pbb)
add_conditions_to_domain (poly_bb_p pbb)
{
{
  unsigned int i;
  unsigned int i;
  gimple stmt;
  gimple stmt;
  gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
  gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
  VEC (gimple, heap) *conditions = GBB_CONDITIONS (gbb);
  VEC (gimple, heap) *conditions = GBB_CONDITIONS (gbb);
 
 
  if (VEC_empty (gimple, conditions))
  if (VEC_empty (gimple, conditions))
    return;
    return;
 
 
  for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++)
  for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++)
    switch (gimple_code (stmt))
    switch (gimple_code (stmt))
      {
      {
      case GIMPLE_COND:
      case GIMPLE_COND:
          {
          {
            enum tree_code code = gimple_cond_code (stmt);
            enum tree_code code = gimple_cond_code (stmt);
 
 
            /* The conditions for ELSE-branches are inverted.  */
            /* The conditions for ELSE-branches are inverted.  */
            if (VEC_index (gimple, gbb->condition_cases, i) == NULL)
            if (VEC_index (gimple, gbb->condition_cases, i) == NULL)
              code = invert_tree_comparison (code, false);
              code = invert_tree_comparison (code, false);
 
 
            add_condition_to_pbb (pbb, stmt, code);
            add_condition_to_pbb (pbb, stmt, code);
            break;
            break;
          }
          }
 
 
      case GIMPLE_SWITCH:
      case GIMPLE_SWITCH:
        /* Switch statements are not supported right now - fall throught.  */
        /* Switch statements are not supported right now - fall throught.  */
 
 
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
        break;
        break;
      }
      }
}
}
 
 
/* Structure used to pass data to dom_walk.  */
/* Structure used to pass data to dom_walk.  */
 
 
struct bsc
struct bsc
{
{
  VEC (gimple, heap) **conditions, **cases;
  VEC (gimple, heap) **conditions, **cases;
  sese region;
  sese region;
};
};
 
 
/* Returns non NULL when BB has a single predecessor and the last
/* Returns non NULL when BB has a single predecessor and the last
   statement of that predecessor is a COND_EXPR.  */
   statement of that predecessor is a COND_EXPR.  */
 
 
static gimple
static gimple
single_pred_cond (basic_block bb)
single_pred_cond (basic_block bb)
{
{
  if (single_pred_p (bb))
  if (single_pred_p (bb))
    {
    {
      edge e = single_pred_edge (bb);
      edge e = single_pred_edge (bb);
      basic_block pred = e->src;
      basic_block pred = e->src;
      gimple stmt = last_stmt (pred);
      gimple stmt = last_stmt (pred);
 
 
      if (stmt && gimple_code (stmt) == GIMPLE_COND)
      if (stmt && gimple_code (stmt) == GIMPLE_COND)
        return stmt;
        return stmt;
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Call-back for dom_walk executed before visiting the dominated
/* Call-back for dom_walk executed before visiting the dominated
   blocks.  */
   blocks.  */
 
 
static void
static void
build_sese_conditions_before (struct dom_walk_data *dw_data,
build_sese_conditions_before (struct dom_walk_data *dw_data,
                              basic_block bb)
                              basic_block bb)
{
{
  struct bsc *data = (struct bsc *) dw_data->global_data;
  struct bsc *data = (struct bsc *) dw_data->global_data;
  VEC (gimple, heap) **conditions = data->conditions;
  VEC (gimple, heap) **conditions = data->conditions;
  VEC (gimple, heap) **cases = data->cases;
  VEC (gimple, heap) **cases = data->cases;
  gimple_bb_p gbb = gbb_from_bb (bb);
  gimple_bb_p gbb = gbb_from_bb (bb);
  gimple stmt = single_pred_cond (bb);
  gimple stmt = single_pred_cond (bb);
 
 
  if (!bb_in_sese_p (bb, data->region))
  if (!bb_in_sese_p (bb, data->region))
    return;
    return;
 
 
  if (stmt)
  if (stmt)
    {
    {
      edge e = single_pred_edge (bb);
      edge e = single_pred_edge (bb);
 
 
      VEC_safe_push (gimple, heap, *conditions, stmt);
      VEC_safe_push (gimple, heap, *conditions, stmt);
 
 
      if (e->flags & EDGE_TRUE_VALUE)
      if (e->flags & EDGE_TRUE_VALUE)
        VEC_safe_push (gimple, heap, *cases, stmt);
        VEC_safe_push (gimple, heap, *cases, stmt);
      else
      else
        VEC_safe_push (gimple, heap, *cases, NULL);
        VEC_safe_push (gimple, heap, *cases, NULL);
    }
    }
 
 
  if (gbb)
  if (gbb)
    {
    {
      GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
      GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
      GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
      GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
    }
    }
}
}
 
 
/* Call-back for dom_walk executed after visiting the dominated
/* Call-back for dom_walk executed after visiting the dominated
   blocks.  */
   blocks.  */
 
 
static void
static void
build_sese_conditions_after (struct dom_walk_data *dw_data,
build_sese_conditions_after (struct dom_walk_data *dw_data,
                             basic_block bb)
                             basic_block bb)
{
{
  struct bsc *data = (struct bsc *) dw_data->global_data;
  struct bsc *data = (struct bsc *) dw_data->global_data;
  VEC (gimple, heap) **conditions = data->conditions;
  VEC (gimple, heap) **conditions = data->conditions;
  VEC (gimple, heap) **cases = data->cases;
  VEC (gimple, heap) **cases = data->cases;
 
 
  if (!bb_in_sese_p (bb, data->region))
  if (!bb_in_sese_p (bb, data->region))
    return;
    return;
 
 
  if (single_pred_cond (bb))
  if (single_pred_cond (bb))
    {
    {
      VEC_pop (gimple, *conditions);
      VEC_pop (gimple, *conditions);
      VEC_pop (gimple, *cases);
      VEC_pop (gimple, *cases);
    }
    }
}
}
 
 
/* Record all conditions in REGION.  */
/* Record all conditions in REGION.  */
 
 
static void
static void
build_sese_conditions (sese region)
build_sese_conditions (sese region)
{
{
  struct dom_walk_data walk_data;
  struct dom_walk_data walk_data;
  VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
  VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
  VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
  VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
  struct bsc data;
  struct bsc data;
 
 
  data.conditions = &conditions;
  data.conditions = &conditions;
  data.cases = &cases;
  data.cases = &cases;
  data.region = region;
  data.region = region;
 
 
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = NULL;
  walk_data.initialize_block_local_data = NULL;
  walk_data.before_dom_children = build_sese_conditions_before;
  walk_data.before_dom_children = build_sese_conditions_before;
  walk_data.after_dom_children = build_sese_conditions_after;
  walk_data.after_dom_children = build_sese_conditions_after;
  walk_data.global_data = &data;
  walk_data.global_data = &data;
  walk_data.block_local_data_size = 0;
  walk_data.block_local_data_size = 0;
 
 
  init_walk_dominator_tree (&walk_data);
  init_walk_dominator_tree (&walk_data);
  walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
  walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
  fini_walk_dominator_tree (&walk_data);
  fini_walk_dominator_tree (&walk_data);
 
 
  VEC_free (gimple, heap, conditions);
  VEC_free (gimple, heap, conditions);
  VEC_free (gimple, heap, cases);
  VEC_free (gimple, heap, cases);
}
}
 
 
/* Traverses all the GBBs of the SCOP and add their constraints to the
/* Traverses all the GBBs of the SCOP and add their constraints to the
   iteration domains.  */
   iteration domains.  */
 
 
static void
static void
add_conditions_to_constraints (scop_p scop)
add_conditions_to_constraints (scop_p scop)
{
{
  int i;
  int i;
  poly_bb_p pbb;
  poly_bb_p pbb;
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    add_conditions_to_domain (pbb);
    add_conditions_to_domain (pbb);
}
}
 
 
/* Add constraints on the possible values of parameter P from the type
/* Add constraints on the possible values of parameter P from the type
   of P.  */
   of P.  */
 
 
static void
static void
add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
{
{
  ppl_Constraint_t cstr;
  ppl_Constraint_t cstr;
  ppl_Linear_Expression_t le;
  ppl_Linear_Expression_t le;
  tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
  tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
  tree type = TREE_TYPE (parameter);
  tree type = TREE_TYPE (parameter);
  tree lb = NULL_TREE;
  tree lb = NULL_TREE;
  tree ub = NULL_TREE;
  tree ub = NULL_TREE;
 
 
  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
    lb = lower_bound_in_type (type, type);
    lb = lower_bound_in_type (type, type);
  else
  else
    lb = TYPE_MIN_VALUE (type);
    lb = TYPE_MIN_VALUE (type);
 
 
  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
    ub = upper_bound_in_type (type, type);
    ub = upper_bound_in_type (type, type);
  else
  else
    ub = TYPE_MAX_VALUE (type);
    ub = TYPE_MAX_VALUE (type);
 
 
  if (lb)
  if (lb)
    {
    {
      ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
      ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
      ppl_set_coef (le, p, -1);
      ppl_set_coef (le, p, -1);
      ppl_set_inhomogeneous_tree (le, lb);
      ppl_set_inhomogeneous_tree (le, lb);
      ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
      ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
      ppl_Polyhedron_add_constraint (context, cstr);
      ppl_Polyhedron_add_constraint (context, cstr);
      ppl_delete_Linear_Expression (le);
      ppl_delete_Linear_Expression (le);
      ppl_delete_Constraint (cstr);
      ppl_delete_Constraint (cstr);
    }
    }
 
 
  if (ub)
  if (ub)
    {
    {
      ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
      ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
      ppl_set_coef (le, p, -1);
      ppl_set_coef (le, p, -1);
      ppl_set_inhomogeneous_tree (le, ub);
      ppl_set_inhomogeneous_tree (le, ub);
      ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
      ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
      ppl_Polyhedron_add_constraint (context, cstr);
      ppl_Polyhedron_add_constraint (context, cstr);
      ppl_delete_Linear_Expression (le);
      ppl_delete_Linear_Expression (le);
      ppl_delete_Constraint (cstr);
      ppl_delete_Constraint (cstr);
    }
    }
}
}
 
 
/* Build the context of the SCOP.  The context usually contains extra
/* Build the context of the SCOP.  The context usually contains extra
   constraints that are added to the iteration domains that constrain
   constraints that are added to the iteration domains that constrain
   some parameters.  */
   some parameters.  */
 
 
static void
static void
build_scop_context (scop_p scop)
build_scop_context (scop_p scop)
{
{
  ppl_Polyhedron_t context;
  ppl_Polyhedron_t context;
  ppl_Pointset_Powerset_C_Polyhedron_t ps;
  ppl_Pointset_Powerset_C_Polyhedron_t ps;
  graphite_dim_t p, n = scop_nb_params (scop);
  graphite_dim_t p, n = scop_nb_params (scop);
 
 
  ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
  ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
 
 
  for (p = 0; p < n; p++)
  for (p = 0; p < n; p++)
    add_param_constraints (scop, context, p);
    add_param_constraints (scop, context, p);
 
 
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
    (&ps, context);
    (&ps, context);
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
    (SCOP_CONTEXT (scop), ps);
    (SCOP_CONTEXT (scop), ps);
 
 
  ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
  ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
  ppl_delete_Polyhedron (context);
  ppl_delete_Polyhedron (context);
}
}
 
 
/* Build the iteration domains: the loops belonging to the current
/* Build the iteration domains: the loops belonging to the current
   SCOP, and that vary for the execution of the current basic block.
   SCOP, and that vary for the execution of the current basic block.
   Returns false if there is no loop in SCOP.  */
   Returns false if there is no loop in SCOP.  */
 
 
static void
static void
build_scop_iteration_domain (scop_p scop)
build_scop_iteration_domain (scop_p scop)
{
{
  struct loop *loop;
  struct loop *loop;
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
  int i;
  int i;
  ppl_Polyhedron_t ph;
  ppl_Polyhedron_t ph;
  poly_bb_p pbb;
  poly_bb_p pbb;
  int nb_loops = number_of_loops ();
  int nb_loops = number_of_loops ();
  ppl_Pointset_Powerset_C_Polyhedron_t *domains
  ppl_Pointset_Powerset_C_Polyhedron_t *domains
    = XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
    = XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
 
 
  for (i = 0; i < nb_loops; i++)
  for (i = 0; i < nb_loops; i++)
    domains[i] = NULL;
    domains[i] = NULL;
 
 
  ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
  ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
 
 
  for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
  for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
    if (!loop_in_sese_p (loop_outer (loop), region))
    if (!loop_in_sese_p (loop_outer (loop), region))
      build_loop_iteration_domains (scop, loop, ph, 0, domains);
      build_loop_iteration_domains (scop, loop, ph, 0, domains);
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
    if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
      ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
      ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
        (&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
        (&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
         domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
         domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
    else
    else
      ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
      ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
        (&PBB_DOMAIN (pbb), ph);
        (&PBB_DOMAIN (pbb), ph);
 
 
  for (i = 0; i < nb_loops; i++)
  for (i = 0; i < nb_loops; i++)
    if (domains[i])
    if (domains[i])
      ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
      ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
 
 
  ppl_delete_Polyhedron (ph);
  ppl_delete_Polyhedron (ph);
  free (domains);
  free (domains);
}
}
 
 
/* Add a constrain to the ACCESSES polyhedron for the alias set of
/* Add a constrain to the ACCESSES polyhedron for the alias set of
   data reference DR.  ACCESSP_NB_DIMS is the dimension of the
   data reference DR.  ACCESSP_NB_DIMS is the dimension of the
   ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
   ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
   domain.  */
   domain.  */
 
 
static void
static void
pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
                   ppl_dimension_type accessp_nb_dims,
                   ppl_dimension_type accessp_nb_dims,
                   ppl_dimension_type dom_nb_dims)
                   ppl_dimension_type dom_nb_dims)
{
{
  ppl_Linear_Expression_t alias;
  ppl_Linear_Expression_t alias;
  ppl_Constraint_t cstr;
  ppl_Constraint_t cstr;
  int alias_set_num = 0;
  int alias_set_num = 0;
  base_alias_pair *bap = (base_alias_pair *)(dr->aux);
  base_alias_pair *bap = (base_alias_pair *)(dr->aux);
 
 
  if (bap && bap->alias_set)
  if (bap && bap->alias_set)
    alias_set_num = *(bap->alias_set);
    alias_set_num = *(bap->alias_set);
 
 
  ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
  ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
 
 
  ppl_set_coef (alias, dom_nb_dims, 1);
  ppl_set_coef (alias, dom_nb_dims, 1);
  ppl_set_inhomogeneous (alias, -alias_set_num);
  ppl_set_inhomogeneous (alias, -alias_set_num);
  ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
  ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
  ppl_Polyhedron_add_constraint (accesses, cstr);
  ppl_Polyhedron_add_constraint (accesses, cstr);
 
 
  ppl_delete_Linear_Expression (alias);
  ppl_delete_Linear_Expression (alias);
  ppl_delete_Constraint (cstr);
  ppl_delete_Constraint (cstr);
}
}
 
 
/* Add to ACCESSES polyhedron equalities defining the access functions
/* Add to ACCESSES polyhedron equalities defining the access functions
   to the memory.  ACCESSP_NB_DIMS is the dimension of the ACCESSES
   to the memory.  ACCESSP_NB_DIMS is the dimension of the ACCESSES
   polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
   polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
   PBB is the poly_bb_p that contains the data reference DR.  */
   PBB is the poly_bb_p that contains the data reference DR.  */
 
 
static void
static void
pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
                         ppl_dimension_type accessp_nb_dims,
                         ppl_dimension_type accessp_nb_dims,
                         ppl_dimension_type dom_nb_dims,
                         ppl_dimension_type dom_nb_dims,
                         poly_bb_p pbb)
                         poly_bb_p pbb)
{
{
  int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
  int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
  Value v;
  Value v;
  scop_p scop = PBB_SCOP (pbb);
  scop_p scop = PBB_SCOP (pbb);
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
 
 
  value_init (v);
  value_init (v);
 
 
  for (i = 0; i < nb_subscripts; i++)
  for (i = 0; i < nb_subscripts; i++)
    {
    {
      ppl_Linear_Expression_t fn, access;
      ppl_Linear_Expression_t fn, access;
      ppl_Constraint_t cstr;
      ppl_Constraint_t cstr;
      ppl_dimension_type subscript = dom_nb_dims + 1 + i;
      ppl_dimension_type subscript = dom_nb_dims + 1 + i;
      tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
      tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
 
 
      ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
      ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
      ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
      ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
 
 
      value_set_si (v, 1);
      value_set_si (v, 1);
      scan_tree_for_params (region, afn, fn, v);
      scan_tree_for_params (region, afn, fn, v);
      ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
      ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
 
 
      ppl_set_coef (access, subscript, -1);
      ppl_set_coef (access, subscript, -1);
      ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
      ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
      ppl_Polyhedron_add_constraint (accesses, cstr);
      ppl_Polyhedron_add_constraint (accesses, cstr);
 
 
      ppl_delete_Linear_Expression (fn);
      ppl_delete_Linear_Expression (fn);
      ppl_delete_Linear_Expression (access);
      ppl_delete_Linear_Expression (access);
      ppl_delete_Constraint (cstr);
      ppl_delete_Constraint (cstr);
    }
    }
 
 
  value_clear (v);
  value_clear (v);
}
}
 
 
/* Add constrains representing the size of the accessed data to the
/* Add constrains representing the size of the accessed data to the
   ACCESSES polyhedron.  ACCESSP_NB_DIMS is the dimension of the
   ACCESSES polyhedron.  ACCESSP_NB_DIMS is the dimension of the
   ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
   ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
   domain.  */
   domain.  */
 
 
static void
static void
pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
                         ppl_dimension_type accessp_nb_dims,
                         ppl_dimension_type accessp_nb_dims,
                         ppl_dimension_type dom_nb_dims)
                         ppl_dimension_type dom_nb_dims)
{
{
  tree ref = DR_REF (dr);
  tree ref = DR_REF (dr);
  int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
  int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
 
 
  for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
  for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
    {
    {
      ppl_Linear_Expression_t expr;
      ppl_Linear_Expression_t expr;
      ppl_Constraint_t cstr;
      ppl_Constraint_t cstr;
      ppl_dimension_type subscript = dom_nb_dims + 1 + i;
      ppl_dimension_type subscript = dom_nb_dims + 1 + i;
      tree low, high;
      tree low, high;
 
 
      if (TREE_CODE (ref) != ARRAY_REF)
      if (TREE_CODE (ref) != ARRAY_REF)
        break;
        break;
 
 
      low = array_ref_low_bound (ref);
      low = array_ref_low_bound (ref);
 
 
      /* subscript - low >= 0 */
      /* subscript - low >= 0 */
      if (host_integerp (low, 0))
      if (host_integerp (low, 0))
        {
        {
          ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
          ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
          ppl_set_coef (expr, subscript, 1);
          ppl_set_coef (expr, subscript, 1);
 
 
          ppl_set_inhomogeneous (expr, -int_cst_value (low));
          ppl_set_inhomogeneous (expr, -int_cst_value (low));
 
 
          ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
          ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
          ppl_Polyhedron_add_constraint (accesses, cstr);
          ppl_Polyhedron_add_constraint (accesses, cstr);
          ppl_delete_Linear_Expression (expr);
          ppl_delete_Linear_Expression (expr);
          ppl_delete_Constraint (cstr);
          ppl_delete_Constraint (cstr);
        }
        }
 
 
      high = array_ref_up_bound (ref);
      high = array_ref_up_bound (ref);
 
 
      /* high - subscript >= 0 */
      /* high - subscript >= 0 */
      if (high && host_integerp (high, 0)
      if (high && host_integerp (high, 0)
          /* 1-element arrays at end of structures may extend over
          /* 1-element arrays at end of structures may extend over
             their declared size.  */
             their declared size.  */
          && !(array_at_struct_end_p (ref)
          && !(array_at_struct_end_p (ref)
               && operand_equal_p (low, high, 0)))
               && operand_equal_p (low, high, 0)))
        {
        {
          ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
          ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
          ppl_set_coef (expr, subscript, -1);
          ppl_set_coef (expr, subscript, -1);
 
 
          ppl_set_inhomogeneous (expr, int_cst_value (high));
          ppl_set_inhomogeneous (expr, int_cst_value (high));
 
 
          ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
          ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
          ppl_Polyhedron_add_constraint (accesses, cstr);
          ppl_Polyhedron_add_constraint (accesses, cstr);
          ppl_delete_Linear_Expression (expr);
          ppl_delete_Linear_Expression (expr);
          ppl_delete_Constraint (cstr);
          ppl_delete_Constraint (cstr);
        }
        }
    }
    }
}
}
 
 
/* Build data accesses for DR in PBB.  */
/* Build data accesses for DR in PBB.  */
 
 
static void
static void
build_poly_dr (data_reference_p dr, poly_bb_p pbb)
build_poly_dr (data_reference_p dr, poly_bb_p pbb)
{
{
  ppl_Polyhedron_t accesses;
  ppl_Polyhedron_t accesses;
  ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
  ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
  ppl_dimension_type dom_nb_dims;
  ppl_dimension_type dom_nb_dims;
  ppl_dimension_type accessp_nb_dims;
  ppl_dimension_type accessp_nb_dims;
  int dr_base_object_set;
  int dr_base_object_set;
 
 
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
                                                      &dom_nb_dims);
                                                      &dom_nb_dims);
  accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
  accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
 
 
  ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
  ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
 
 
  pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
  pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
  pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
  pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
  pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
  pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
 
 
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
                                                            accesses);
                                                            accesses);
  ppl_delete_Polyhedron (accesses);
  ppl_delete_Polyhedron (accesses);
 
 
  if (dr->aux)
  if (dr->aux)
    dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
    dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
 
 
  new_poly_dr (pbb, dr_base_object_set, accesses_ps, DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
  new_poly_dr (pbb, dr_base_object_set, accesses_ps, DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
               dr, DR_NUM_DIMENSIONS (dr));
               dr, DR_NUM_DIMENSIONS (dr));
}
}
 
 
/* Write to FILE the alias graph of data references in DIMACS format.  */
/* Write to FILE the alias graph of data references in DIMACS format.  */
 
 
static inline bool
static inline bool
write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
                                   VEC (data_reference_p, heap) *drs)
                                   VEC (data_reference_p, heap) *drs)
{
{
  int num_vertex = VEC_length (data_reference_p, drs);
  int num_vertex = VEC_length (data_reference_p, drs);
  int edge_num = 0;
  int edge_num = 0;
  data_reference_p dr1, dr2;
  data_reference_p dr1, dr2;
  int i, j;
  int i, j;
 
 
  if (num_vertex == 0)
  if (num_vertex == 0)
    return true;
    return true;
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
      if (dr_may_alias_p (dr1, dr2))
      if (dr_may_alias_p (dr1, dr2))
        edge_num++;
        edge_num++;
 
 
  fprintf (file, "$\n");
  fprintf (file, "$\n");
 
 
  if (comment)
  if (comment)
    fprintf (file, "c %s\n", comment);
    fprintf (file, "c %s\n", comment);
 
 
  fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
  fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
      if (dr_may_alias_p (dr1, dr2))
      if (dr_may_alias_p (dr1, dr2))
        fprintf (file, "e %d %d\n", i + 1, j + 1);
        fprintf (file, "e %d %d\n", i + 1, j + 1);
 
 
  return true;
  return true;
}
}
 
 
/* Write to FILE the alias graph of data references in DOT format.  */
/* Write to FILE the alias graph of data references in DOT format.  */
 
 
static inline bool
static inline bool
write_alias_graph_to_ascii_dot (FILE *file, char *comment,
write_alias_graph_to_ascii_dot (FILE *file, char *comment,
                                VEC (data_reference_p, heap) *drs)
                                VEC (data_reference_p, heap) *drs)
{
{
  int num_vertex = VEC_length (data_reference_p, drs);
  int num_vertex = VEC_length (data_reference_p, drs);
  data_reference_p dr1, dr2;
  data_reference_p dr1, dr2;
  int i, j;
  int i, j;
 
 
  if (num_vertex == 0)
  if (num_vertex == 0)
    return true;
    return true;
 
 
  fprintf (file, "$\n");
  fprintf (file, "$\n");
 
 
  if (comment)
  if (comment)
    fprintf (file, "c %s\n", comment);
    fprintf (file, "c %s\n", comment);
 
 
  /* First print all the vertices.  */
  /* First print all the vertices.  */
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    fprintf (file, "n%d;\n", i);
    fprintf (file, "n%d;\n", i);
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
      if (dr_may_alias_p (dr1, dr2))
      if (dr_may_alias_p (dr1, dr2))
        fprintf (file, "n%d n%d\n", i, j);
        fprintf (file, "n%d n%d\n", i, j);
 
 
  return true;
  return true;
}
}
 
 
/* Write to FILE the alias graph of data references in ECC format.  */
/* Write to FILE the alias graph of data references in ECC format.  */
 
 
static inline bool
static inline bool
write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
                                VEC (data_reference_p, heap) *drs)
                                VEC (data_reference_p, heap) *drs)
{
{
  int num_vertex = VEC_length (data_reference_p, drs);
  int num_vertex = VEC_length (data_reference_p, drs);
  data_reference_p dr1, dr2;
  data_reference_p dr1, dr2;
  int i, j;
  int i, j;
 
 
  if (num_vertex == 0)
  if (num_vertex == 0)
    return true;
    return true;
 
 
  fprintf (file, "$\n");
  fprintf (file, "$\n");
 
 
  if (comment)
  if (comment)
    fprintf (file, "c %s\n", comment);
    fprintf (file, "c %s\n", comment);
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
      if (dr_may_alias_p (dr1, dr2))
      if (dr_may_alias_p (dr1, dr2))
        fprintf (file, "%d %d\n", i, j);
        fprintf (file, "%d %d\n", i, j);
 
 
  return true;
  return true;
}
}
 
 
/* Check if DR1 and DR2 are in the same object set.  */
/* Check if DR1 and DR2 are in the same object set.  */
 
 
static bool
static bool
dr_same_base_object_p (const struct data_reference *dr1,
dr_same_base_object_p (const struct data_reference *dr1,
                       const struct data_reference *dr2)
                       const struct data_reference *dr2)
{
{
  return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
  return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
}
}
 
 
/* Uses DFS component number as representative of alias-sets. Also tests for
/* Uses DFS component number as representative of alias-sets. Also tests for
   optimality by verifying if every connected component is a clique. Returns
   optimality by verifying if every connected component is a clique. Returns
   true (1) if the above test is true, and false (0) otherwise.  */
   true (1) if the above test is true, and false (0) otherwise.  */
 
 
static int
static int
build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
{
{
  int num_vertices = VEC_length (data_reference_p, drs);
  int num_vertices = VEC_length (data_reference_p, drs);
  struct graph *g = new_graph (num_vertices);
  struct graph *g = new_graph (num_vertices);
  data_reference_p dr1, dr2;
  data_reference_p dr1, dr2;
  int i, j;
  int i, j;
  int num_connected_components;
  int num_connected_components;
  int v_indx1, v_indx2, num_vertices_in_component;
  int v_indx1, v_indx2, num_vertices_in_component;
  int *all_vertices;
  int *all_vertices;
  int *vertices;
  int *vertices;
  struct graph_edge *e;
  struct graph_edge *e;
  int this_component_is_clique;
  int this_component_is_clique;
  int all_components_are_cliques = 1;
  int all_components_are_cliques = 1;
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
    for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
      if (dr_may_alias_p (dr1, dr2))
      if (dr_may_alias_p (dr1, dr2))
        {
        {
          add_edge (g, i, j);
          add_edge (g, i, j);
          add_edge (g, j, i);
          add_edge (g, j, i);
        }
        }
 
 
  all_vertices = XNEWVEC (int, num_vertices);
  all_vertices = XNEWVEC (int, num_vertices);
  vertices = XNEWVEC (int, num_vertices);
  vertices = XNEWVEC (int, num_vertices);
  for (i = 0; i < num_vertices; i++)
  for (i = 0; i < num_vertices; i++)
    all_vertices[i] = i;
    all_vertices[i] = i;
 
 
  num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
  num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
                                          NULL, true, NULL);
                                          NULL, true, NULL);
  for (i = 0; i < g->n_vertices; i++)
  for (i = 0; i < g->n_vertices; i++)
    {
    {
      data_reference_p dr = VEC_index (data_reference_p, drs, i);
      data_reference_p dr = VEC_index (data_reference_p, drs, i);
      base_alias_pair *bap;
      base_alias_pair *bap;
 
 
      if (dr->aux)
      if (dr->aux)
        bap = (base_alias_pair *)(dr->aux);
        bap = (base_alias_pair *)(dr->aux);
 
 
      bap->alias_set = XNEW (int);
      bap->alias_set = XNEW (int);
      *(bap->alias_set) = g->vertices[i].component + 1;
      *(bap->alias_set) = g->vertices[i].component + 1;
    }
    }
 
 
  /* Verify if the DFS numbering results in optimal solution.  */
  /* Verify if the DFS numbering results in optimal solution.  */
  for (i = 0; i < num_connected_components; i++)
  for (i = 0; i < num_connected_components; i++)
    {
    {
      num_vertices_in_component = 0;
      num_vertices_in_component = 0;
      /* Get all vertices whose DFS component number is the same as i.  */
      /* Get all vertices whose DFS component number is the same as i.  */
      for (j = 0; j < num_vertices; j++)
      for (j = 0; j < num_vertices; j++)
        if (g->vertices[j].component == i)
        if (g->vertices[j].component == i)
          vertices[num_vertices_in_component++] = j;
          vertices[num_vertices_in_component++] = j;
 
 
      /* Now test if the vertices in 'vertices' form a clique, by testing
      /* Now test if the vertices in 'vertices' form a clique, by testing
         for edges among each pair.  */
         for edges among each pair.  */
      this_component_is_clique = 1;
      this_component_is_clique = 1;
      for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
      for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
        {
        {
          for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
          for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
            {
            {
              /* Check if the two vertices are connected by iterating
              /* Check if the two vertices are connected by iterating
                 through all the edges which have one of these are source.  */
                 through all the edges which have one of these are source.  */
              e = g->vertices[vertices[v_indx2]].pred;
              e = g->vertices[vertices[v_indx2]].pred;
              while (e)
              while (e)
                {
                {
                  if (e->src == vertices[v_indx1])
                  if (e->src == vertices[v_indx1])
                    break;
                    break;
                  e = e->pred_next;
                  e = e->pred_next;
                }
                }
              if (!e)
              if (!e)
                {
                {
                  this_component_is_clique = 0;
                  this_component_is_clique = 0;
                  break;
                  break;
                }
                }
            }
            }
          if (!this_component_is_clique)
          if (!this_component_is_clique)
            all_components_are_cliques = 0;
            all_components_are_cliques = 0;
        }
        }
    }
    }
 
 
  free (all_vertices);
  free (all_vertices);
  free (vertices);
  free (vertices);
  free_graph (g);
  free_graph (g);
  return all_components_are_cliques;
  return all_components_are_cliques;
}
}
 
 
/* Group each data reference in DRS with it's base object set num.  */
/* Group each data reference in DRS with it's base object set num.  */
 
 
static void
static void
build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
{
{
  int num_vertex = VEC_length (data_reference_p, drs);
  int num_vertex = VEC_length (data_reference_p, drs);
  struct graph *g = new_graph (num_vertex);
  struct graph *g = new_graph (num_vertex);
  data_reference_p dr1, dr2;
  data_reference_p dr1, dr2;
  int i, j;
  int i, j;
  int *queue;
  int *queue;
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
    for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
      if (dr_same_base_object_p (dr1, dr2))
      if (dr_same_base_object_p (dr1, dr2))
        {
        {
          add_edge (g, i, j);
          add_edge (g, i, j);
          add_edge (g, j, i);
          add_edge (g, j, i);
        }
        }
 
 
  queue = XNEWVEC (int, num_vertex);
  queue = XNEWVEC (int, num_vertex);
  for (i = 0; i < num_vertex; i++)
  for (i = 0; i < num_vertex; i++)
    queue[i] = i;
    queue[i] = i;
 
 
  graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
  graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
 
 
  for (i = 0; i < g->n_vertices; i++)
  for (i = 0; i < g->n_vertices; i++)
    {
    {
      data_reference_p dr = VEC_index (data_reference_p, drs, i);
      data_reference_p dr = VEC_index (data_reference_p, drs, i);
      base_alias_pair *bap;
      base_alias_pair *bap;
 
 
      if (dr->aux)
      if (dr->aux)
        bap = (base_alias_pair *)(dr->aux);
        bap = (base_alias_pair *)(dr->aux);
 
 
      bap->base_obj_set = g->vertices[i].component + 1;
      bap->base_obj_set = g->vertices[i].component + 1;
    }
    }
 
 
  free (queue);
  free (queue);
  free_graph (g);
  free_graph (g);
}
}
 
 
/* Build the data references for PBB.  */
/* Build the data references for PBB.  */
 
 
static void
static void
build_pbb_drs (poly_bb_p pbb)
build_pbb_drs (poly_bb_p pbb)
{
{
  int j;
  int j;
  data_reference_p dr;
  data_reference_p dr;
  VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
  VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
 
 
  for (j = 0; VEC_iterate (data_reference_p, gbb_drs, j, dr); j++)
  for (j = 0; VEC_iterate (data_reference_p, gbb_drs, j, dr); j++)
    build_poly_dr (dr, pbb);
    build_poly_dr (dr, pbb);
}
}
 
 
/* Dump to file the alias graphs for the data references in DRS.  */
/* Dump to file the alias graphs for the data references in DRS.  */
 
 
static void
static void
dump_alias_graphs (VEC (data_reference_p, heap) *drs)
dump_alias_graphs (VEC (data_reference_p, heap) *drs)
{
{
  char comment[100];
  char comment[100];
  FILE *file_dimacs, *file_ecc, *file_dot;
  FILE *file_dimacs, *file_ecc, *file_dot;
 
 
  file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
  file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
  if (file_dimacs)
  if (file_dimacs)
    {
    {
      snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
      snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
                current_function_name ());
                current_function_name ());
      write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
      write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
      fclose (file_dimacs);
      fclose (file_dimacs);
    }
    }
 
 
  file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
  file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
  if (file_ecc)
  if (file_ecc)
    {
    {
      snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
      snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
                current_function_name ());
                current_function_name ());
      write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
      write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
      fclose (file_ecc);
      fclose (file_ecc);
    }
    }
 
 
  file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
  file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
  if (file_dot)
  if (file_dot)
    {
    {
      snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
      snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
                current_function_name ());
                current_function_name ());
      write_alias_graph_to_ascii_dot (file_dot, comment, drs);
      write_alias_graph_to_ascii_dot (file_dot, comment, drs);
      fclose (file_dot);
      fclose (file_dot);
    }
    }
}
}
 
 
/* Build data references in SCOP.  */
/* Build data references in SCOP.  */
 
 
static void
static void
build_scop_drs (scop_p scop)
build_scop_drs (scop_p scop)
{
{
  int i, j;
  int i, j;
  poly_bb_p pbb;
  poly_bb_p pbb;
  data_reference_p dr;
  data_reference_p dr;
  VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
  VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    for (j = 0; VEC_iterate (data_reference_p,
    for (j = 0; VEC_iterate (data_reference_p,
                             GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
                             GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
      VEC_safe_push (data_reference_p, heap, drs, dr);
      VEC_safe_push (data_reference_p, heap, drs, dr);
 
 
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr); i++)
  for (i = 0; VEC_iterate (data_reference_p, drs, i, dr); i++)
    dr->aux = XNEW (base_alias_pair);
    dr->aux = XNEW (base_alias_pair);
 
 
  if (!build_alias_set_optimal_p (drs))
  if (!build_alias_set_optimal_p (drs))
    {
    {
      /* TODO: Add support when building alias set is not optimal.  */
      /* TODO: Add support when building alias set is not optimal.  */
      ;
      ;
    }
    }
 
 
  build_base_obj_set_for_drs (drs);
  build_base_obj_set_for_drs (drs);
 
 
  /* When debugging, enable the following code.  This cannot be used
  /* When debugging, enable the following code.  This cannot be used
     in production compilers.  */
     in production compilers.  */
  if (0)
  if (0)
    dump_alias_graphs (drs);
    dump_alias_graphs (drs);
 
 
  VEC_free (data_reference_p, heap, drs);
  VEC_free (data_reference_p, heap, drs);
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    build_pbb_drs (pbb);
    build_pbb_drs (pbb);
}
}
 
 
/* Return a gsi at the position of the phi node STMT.  */
/* Return a gsi at the position of the phi node STMT.  */
 
 
static gimple_stmt_iterator
static gimple_stmt_iterator
gsi_for_phi_node (gimple stmt)
gsi_for_phi_node (gimple stmt)
{
{
  gimple_stmt_iterator psi;
  gimple_stmt_iterator psi;
  basic_block bb = gimple_bb (stmt);
  basic_block bb = gimple_bb (stmt);
 
 
  for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
  for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
    if (stmt == gsi_stmt (psi))
    if (stmt == gsi_stmt (psi))
      return psi;
      return psi;
 
 
  gcc_unreachable ();
  gcc_unreachable ();
  return psi;
  return psi;
}
}
 
 
/* Insert the assignment "RES := VAR" just after the definition of VAR.  */
/* Insert the assignment "RES := VAR" just after the definition of VAR.  */
 
 
static void
static void
insert_out_of_ssa_copy (tree res, tree var)
insert_out_of_ssa_copy (tree res, tree var)
{
{
  gimple stmt;
  gimple stmt;
  gimple_seq stmts;
  gimple_seq stmts;
  gimple_stmt_iterator si;
  gimple_stmt_iterator si;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  var = force_gimple_operand (var, &stmts, true, NULL_TREE);
  var = force_gimple_operand (var, &stmts, true, NULL_TREE);
  stmt = gimple_build_assign (res, var);
  stmt = gimple_build_assign (res, var);
  if (!stmts)
  if (!stmts)
    stmts = gimple_seq_alloc ();
    stmts = gimple_seq_alloc ();
  si = gsi_last (stmts);
  si = gsi_last (stmts);
  gsi_insert_after (&si, stmt, GSI_NEW_STMT);
  gsi_insert_after (&si, stmt, GSI_NEW_STMT);
 
 
  stmt = SSA_NAME_DEF_STMT (var);
  stmt = SSA_NAME_DEF_STMT (var);
  if (gimple_code (stmt) == GIMPLE_PHI)
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
    {
      gsi = gsi_after_labels (gimple_bb (stmt));
      gsi = gsi_after_labels (gimple_bb (stmt));
      gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
      gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
    }
    }
  else
  else
    {
    {
      gsi = gsi_for_stmt (stmt);
      gsi = gsi_for_stmt (stmt);
      gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
      gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
    }
    }
}
}
 
 
/* Insert on edge E the assignment "RES := EXPR".  */
/* Insert on edge E the assignment "RES := EXPR".  */
 
 
static void
static void
insert_out_of_ssa_copy_on_edge (edge e, tree res, tree expr)
insert_out_of_ssa_copy_on_edge (edge e, tree res, tree expr)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  gimple_seq stmts;
  gimple_seq stmts;
  tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
  tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
  gimple stmt = gimple_build_assign (res, var);
  gimple stmt = gimple_build_assign (res, var);
 
 
  if (!stmts)
  if (!stmts)
    stmts = gimple_seq_alloc ();
    stmts = gimple_seq_alloc ();
 
 
  gsi = gsi_last (stmts);
  gsi = gsi_last (stmts);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  gsi_insert_seq_on_edge (e, stmts);
  gsi_insert_seq_on_edge (e, stmts);
  gsi_commit_edge_inserts ();
  gsi_commit_edge_inserts ();
}
}
 
 
/* Creates a zero dimension array of the same type as VAR.  */
/* Creates a zero dimension array of the same type as VAR.  */
 
 
static tree
static tree
create_zero_dim_array (tree var, const char *base_name)
create_zero_dim_array (tree var, const char *base_name)
{
{
  tree index_type = build_index_type (integer_zero_node);
  tree index_type = build_index_type (integer_zero_node);
  tree elt_type = TREE_TYPE (var);
  tree elt_type = TREE_TYPE (var);
  tree array_type = build_array_type (elt_type, index_type);
  tree array_type = build_array_type (elt_type, index_type);
  tree base = create_tmp_var (array_type, base_name);
  tree base = create_tmp_var (array_type, base_name);
 
 
  add_referenced_var (base);
  add_referenced_var (base);
 
 
  return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
  return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
                 NULL_TREE);
                 NULL_TREE);
}
}
 
 
/* Returns true when PHI is a loop close phi node.  */
/* Returns true when PHI is a loop close phi node.  */
 
 
static bool
static bool
scalar_close_phi_node_p (gimple phi)
scalar_close_phi_node_p (gimple phi)
{
{
  if (gimple_code (phi) != GIMPLE_PHI
  if (gimple_code (phi) != GIMPLE_PHI
      || !is_gimple_reg (gimple_phi_result (phi)))
      || !is_gimple_reg (gimple_phi_result (phi)))
    return false;
    return false;
 
 
  return (gimple_phi_num_args (phi) == 1);
  return (gimple_phi_num_args (phi) == 1);
}
}
 
 
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
   dimension array for it.  */
   dimension array for it.  */
 
 
static void
static void
rewrite_close_phi_out_of_ssa (gimple_stmt_iterator *psi)
rewrite_close_phi_out_of_ssa (gimple_stmt_iterator *psi)
{
{
  gimple phi = gsi_stmt (*psi);
  gimple phi = gsi_stmt (*psi);
  tree res = gimple_phi_result (phi);
  tree res = gimple_phi_result (phi);
  tree var = SSA_NAME_VAR (res);
  tree var = SSA_NAME_VAR (res);
  tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
  tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
  gimple_stmt_iterator gsi = gsi_after_labels (gimple_bb (phi));
  gimple_stmt_iterator gsi = gsi_after_labels (gimple_bb (phi));
  gimple stmt = gimple_build_assign (res, zero_dim_array);
  gimple stmt = gimple_build_assign (res, zero_dim_array);
  tree arg = gimple_phi_arg_def (phi, 0);
  tree arg = gimple_phi_arg_def (phi, 0);
 
 
  if (TREE_CODE (arg) == SSA_NAME
  if (TREE_CODE (arg) == SSA_NAME
      && !SSA_NAME_IS_DEFAULT_DEF (arg))
      && !SSA_NAME_IS_DEFAULT_DEF (arg))
    insert_out_of_ssa_copy (zero_dim_array, arg);
    insert_out_of_ssa_copy (zero_dim_array, arg);
  else
  else
    insert_out_of_ssa_copy_on_edge (single_pred_edge (gimple_bb (phi)),
    insert_out_of_ssa_copy_on_edge (single_pred_edge (gimple_bb (phi)),
                                    zero_dim_array, arg);
                                    zero_dim_array, arg);
 
 
  remove_phi_node (psi, false);
  remove_phi_node (psi, false);
  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
  SSA_NAME_DEF_STMT (res) = stmt;
  SSA_NAME_DEF_STMT (res) = stmt;
}
}
 
 
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
   dimension array for it.  */
   dimension array for it.  */
 
 
static void
static void
rewrite_phi_out_of_ssa (gimple_stmt_iterator *psi)
rewrite_phi_out_of_ssa (gimple_stmt_iterator *psi)
{
{
  size_t i;
  size_t i;
  gimple phi = gsi_stmt (*psi);
  gimple phi = gsi_stmt (*psi);
  basic_block bb = gimple_bb (phi);
  basic_block bb = gimple_bb (phi);
  tree res = gimple_phi_result (phi);
  tree res = gimple_phi_result (phi);
  tree var = SSA_NAME_VAR (res);
  tree var = SSA_NAME_VAR (res);
  tree zero_dim_array = create_zero_dim_array (var, "General_Reduction");
  tree zero_dim_array = create_zero_dim_array (var, "General_Reduction");
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  gimple stmt;
  gimple stmt;
  gimple_seq stmts;
  gimple_seq stmts;
 
 
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
    {
      tree arg = gimple_phi_arg_def (phi, i);
      tree arg = gimple_phi_arg_def (phi, i);
 
 
      /* Try to avoid the insertion on edges as much as possible: this
      /* Try to avoid the insertion on edges as much as possible: this
         would avoid the insertion of code on loop latch edges, making
         would avoid the insertion of code on loop latch edges, making
         the pattern matching of the vectorizer happy, or it would
         the pattern matching of the vectorizer happy, or it would
         avoid the insertion of useless basic blocks.  Note that it is
         avoid the insertion of useless basic blocks.  Note that it is
         incorrect to insert out of SSA copies close by their
         incorrect to insert out of SSA copies close by their
         definition when they are more than two loop levels apart:
         definition when they are more than two loop levels apart:
         for example, starting from a double nested loop
         for example, starting from a double nested loop
 
 
         | a = ...
         | a = ...
         | loop_1
         | loop_1
         |  loop_2
         |  loop_2
         |    b = phi (a, c)
         |    b = phi (a, c)
         |    c = ...
         |    c = ...
         |  end_2
         |  end_2
         | end_1
         | end_1
 
 
         the following transform is incorrect
         the following transform is incorrect
 
 
         | a = ...
         | a = ...
         | Red[0] = a
         | Red[0] = a
         | loop_1
         | loop_1
         |  loop_2
         |  loop_2
         |    b = Red[0]
         |    b = Red[0]
         |    c = ...
         |    c = ...
         |    Red[0] = c
         |    Red[0] = c
         |  end_2
         |  end_2
         | end_1
         | end_1
 
 
         whereas inserting the copy on the incoming edge is correct
         whereas inserting the copy on the incoming edge is correct
 
 
         | a = ...
         | a = ...
         | loop_1
         | loop_1
         |  Red[0] = a
         |  Red[0] = a
         |  loop_2
         |  loop_2
         |    b = Red[0]
         |    b = Red[0]
         |    c = ...
         |    c = ...
         |    Red[0] = c
         |    Red[0] = c
         |  end_2
         |  end_2
         | end_1
         | end_1
      */
      */
      if (TREE_CODE (arg) == SSA_NAME
      if (TREE_CODE (arg) == SSA_NAME
          && is_gimple_reg (arg)
          && is_gimple_reg (arg)
          && gimple_bb (SSA_NAME_DEF_STMT (arg))
          && gimple_bb (SSA_NAME_DEF_STMT (arg))
          && (flow_bb_inside_loop_p (bb->loop_father,
          && (flow_bb_inside_loop_p (bb->loop_father,
                                     gimple_bb (SSA_NAME_DEF_STMT (arg)))
                                     gimple_bb (SSA_NAME_DEF_STMT (arg)))
              || flow_bb_inside_loop_p (loop_outer (bb->loop_father),
              || flow_bb_inside_loop_p (loop_outer (bb->loop_father),
                                        gimple_bb (SSA_NAME_DEF_STMT (arg)))))
                                        gimple_bb (SSA_NAME_DEF_STMT (arg)))))
        insert_out_of_ssa_copy (zero_dim_array, arg);
        insert_out_of_ssa_copy (zero_dim_array, arg);
      else
      else
        insert_out_of_ssa_copy_on_edge (gimple_phi_arg_edge (phi, i),
        insert_out_of_ssa_copy_on_edge (gimple_phi_arg_edge (phi, i),
                                        zero_dim_array, arg);
                                        zero_dim_array, arg);
    }
    }
 
 
  var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
  var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
 
 
  if (!stmts)
  if (!stmts)
    stmts = gimple_seq_alloc ();
    stmts = gimple_seq_alloc ();
 
 
  stmt = gimple_build_assign (res, var);
  stmt = gimple_build_assign (res, var);
  remove_phi_node (psi, false);
  remove_phi_node (psi, false);
  SSA_NAME_DEF_STMT (res) = stmt;
  SSA_NAME_DEF_STMT (res) = stmt;
 
 
  gsi = gsi_last (stmts);
  gsi = gsi_last (stmts);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
 
 
  gsi = gsi_after_labels (bb);
  gsi = gsi_after_labels (bb);
  gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
  gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
}
}
 
 
/* Return true when DEF can be analyzed in REGION by the scalar
/* Return true when DEF can be analyzed in REGION by the scalar
   evolution analyzer.  */
   evolution analyzer.  */
 
 
static bool
static bool
scev_analyzable_p (tree def, sese region)
scev_analyzable_p (tree def, sese region)
{
{
  gimple stmt = SSA_NAME_DEF_STMT (def);
  gimple stmt = SSA_NAME_DEF_STMT (def);
  loop_p loop = loop_containing_stmt (stmt);
  loop_p loop = loop_containing_stmt (stmt);
  tree scev = scalar_evolution_in_region (region, loop, def);
  tree scev = scalar_evolution_in_region (region, loop, def);
 
 
  return !chrec_contains_undetermined (scev);
  return !chrec_contains_undetermined (scev);
}
}
 
 
/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
   read from ZERO_DIM_ARRAY.  */
   read from ZERO_DIM_ARRAY.  */
 
 
static void
static void
rewrite_cross_bb_scalar_dependence (tree zero_dim_array, tree def, gimple use_stmt)
rewrite_cross_bb_scalar_dependence (tree zero_dim_array, tree def, gimple use_stmt)
{
{
  tree var = SSA_NAME_VAR (def);
  tree var = SSA_NAME_VAR (def);
  gimple name_stmt = gimple_build_assign (var, zero_dim_array);
  gimple name_stmt = gimple_build_assign (var, zero_dim_array);
  tree name = make_ssa_name (var, name_stmt);
  tree name = make_ssa_name (var, name_stmt);
  ssa_op_iter iter;
  ssa_op_iter iter;
  use_operand_p use_p;
  use_operand_p use_p;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
  gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
 
 
  gimple_assign_set_lhs (name_stmt, name);
  gimple_assign_set_lhs (name_stmt, name);
 
 
  gsi = gsi_for_stmt (use_stmt);
  gsi = gsi_for_stmt (use_stmt);
  gsi_insert_before (&gsi, name_stmt, GSI_NEW_STMT);
  gsi_insert_before (&gsi, name_stmt, GSI_NEW_STMT);
 
 
  FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
  FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
    if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
    if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
      replace_exp (use_p, name);
      replace_exp (use_p, name);
 
 
  update_stmt (use_stmt);
  update_stmt (use_stmt);
}
}
 
 
/* Rewrite the scalar dependences crossing the boundary of the BB
/* Rewrite the scalar dependences crossing the boundary of the BB
   containing STMT with an array.  */
   containing STMT with an array.  */
 
 
static void
static void
rewrite_cross_bb_scalar_deps (sese region, gimple_stmt_iterator *gsi)
rewrite_cross_bb_scalar_deps (sese region, gimple_stmt_iterator *gsi)
{
{
  gimple stmt = gsi_stmt (*gsi);
  gimple stmt = gsi_stmt (*gsi);
  imm_use_iterator imm_iter;
  imm_use_iterator imm_iter;
  tree def;
  tree def;
  basic_block def_bb;
  basic_block def_bb;
  tree zero_dim_array = NULL_TREE;
  tree zero_dim_array = NULL_TREE;
  gimple use_stmt;
  gimple use_stmt;
 
 
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return;
    return;
 
 
  def = gimple_assign_lhs (stmt);
  def = gimple_assign_lhs (stmt);
  if (!is_gimple_reg (def)
  if (!is_gimple_reg (def)
      || scev_analyzable_p (def, region))
      || scev_analyzable_p (def, region))
    return;
    return;
 
 
  def_bb = gimple_bb (stmt);
  def_bb = gimple_bb (stmt);
 
 
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
    if (def_bb != gimple_bb (use_stmt)
    if (def_bb != gimple_bb (use_stmt)
        && gimple_code (use_stmt) != GIMPLE_PHI
        && gimple_code (use_stmt) != GIMPLE_PHI
        && !is_gimple_debug (use_stmt))
        && !is_gimple_debug (use_stmt))
      {
      {
        if (!zero_dim_array)
        if (!zero_dim_array)
          {
          {
            zero_dim_array = create_zero_dim_array
            zero_dim_array = create_zero_dim_array
              (SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
              (SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
            insert_out_of_ssa_copy (zero_dim_array, def);
            insert_out_of_ssa_copy (zero_dim_array, def);
            gsi_next (gsi);
            gsi_next (gsi);
          }
          }
 
 
        rewrite_cross_bb_scalar_dependence (zero_dim_array, def, use_stmt);
        rewrite_cross_bb_scalar_dependence (zero_dim_array, def, use_stmt);
      }
      }
}
}
 
 
/* Rewrite out of SSA all the reduction phi nodes of SCOP.  */
/* Rewrite out of SSA all the reduction phi nodes of SCOP.  */
 
 
static void
static void
rewrite_reductions_out_of_ssa (scop_p scop)
rewrite_reductions_out_of_ssa (scop_p scop)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator psi;
  gimple_stmt_iterator psi;
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    if (bb_in_sese_p (bb, region))
    if (bb_in_sese_p (bb, region))
      for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
      for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
        {
        {
          if (scalar_close_phi_node_p (gsi_stmt (psi)))
          if (scalar_close_phi_node_p (gsi_stmt (psi)))
            rewrite_close_phi_out_of_ssa (&psi);
            rewrite_close_phi_out_of_ssa (&psi);
          else if (reduction_phi_p (region, &psi))
          else if (reduction_phi_p (region, &psi))
            rewrite_phi_out_of_ssa (&psi);
            rewrite_phi_out_of_ssa (&psi);
        }
        }
 
 
  update_ssa (TODO_update_ssa);
  update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_ssa (false);
  verify_ssa (false);
  verify_loop_closed_ssa ();
  verify_loop_closed_ssa ();
#endif
#endif
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    if (bb_in_sese_p (bb, region))
    if (bb_in_sese_p (bb, region))
      for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
      for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
        rewrite_cross_bb_scalar_deps (region, &psi);
        rewrite_cross_bb_scalar_deps (region, &psi);
 
 
  update_ssa (TODO_update_ssa);
  update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_ssa (false);
  verify_ssa (false);
  verify_loop_closed_ssa ();
  verify_loop_closed_ssa ();
#endif
#endif
}
}
 
 
/* Returns the number of pbbs that are in loops contained in SCOP.  */
/* Returns the number of pbbs that are in loops contained in SCOP.  */
 
 
static int
static int
nb_pbbs_in_loops (scop_p scop)
nb_pbbs_in_loops (scop_p scop)
{
{
  int i;
  int i;
  poly_bb_p pbb;
  poly_bb_p pbb;
  int res = 0;
  int res = 0;
 
 
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
    if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
    if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
      res++;
      res++;
 
 
  return res;
  return res;
}
}
 
 
/* Return the number of data references in BB that write in
/* Return the number of data references in BB that write in
   memory.  */
   memory.  */
 
 
static int
static int
nb_data_writes_in_bb (basic_block bb)
nb_data_writes_in_bb (basic_block bb)
{
{
  int res = 0;
  int res = 0;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    if (gimple_vdef (gsi_stmt (gsi)))
    if (gimple_vdef (gsi_stmt (gsi)))
      res++;
      res++;
 
 
  return res;
  return res;
}
}
 
 
/* Splits STMT out of its current BB.  */
/* Splits STMT out of its current BB.  */
 
 
static basic_block
static basic_block
split_reduction_stmt (gimple stmt)
split_reduction_stmt (gimple stmt)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  basic_block bb = gimple_bb (stmt);
  basic_block bb = gimple_bb (stmt);
  edge e;
  edge e;
 
 
  /* Do not split basic blocks with no writes to memory: the reduction
  /* Do not split basic blocks with no writes to memory: the reduction
     will be the only write to memory.  */
     will be the only write to memory.  */
  if (nb_data_writes_in_bb (bb) == 0)
  if (nb_data_writes_in_bb (bb) == 0)
    return bb;
    return bb;
 
 
  split_block (bb, stmt);
  split_block (bb, stmt);
 
 
  if (gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
  if (gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
    return bb;
    return bb;
 
 
  gsi = gsi_last_bb (bb);
  gsi = gsi_last_bb (bb);
  gsi_prev (&gsi);
  gsi_prev (&gsi);
  e = split_block (bb, gsi_stmt (gsi));
  e = split_block (bb, gsi_stmt (gsi));
 
 
  return e->dest;
  return e->dest;
}
}
 
 
/* Return true when stmt is a reduction operation.  */
/* Return true when stmt is a reduction operation.  */
 
 
static inline bool
static inline bool
is_reduction_operation_p (gimple stmt)
is_reduction_operation_p (gimple stmt)
{
{
  enum tree_code code;
  enum tree_code code;
 
 
  gcc_assert (is_gimple_assign (stmt));
  gcc_assert (is_gimple_assign (stmt));
  code = gimple_assign_rhs_code (stmt);
  code = gimple_assign_rhs_code (stmt);
 
 
  return flag_associative_math
  return flag_associative_math
    && commutative_tree_code (code)
    && commutative_tree_code (code)
    && associative_tree_code (code);
    && associative_tree_code (code);
}
}
 
 
/* Returns true when PHI contains an argument ARG.  */
/* Returns true when PHI contains an argument ARG.  */
 
 
static bool
static bool
phi_contains_arg (gimple phi, tree arg)
phi_contains_arg (gimple phi, tree arg)
{
{
  size_t i;
  size_t i;
 
 
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
    if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 
/* Return a loop phi node that corresponds to a reduction containing LHS.  */
/* Return a loop phi node that corresponds to a reduction containing LHS.  */
 
 
static gimple
static gimple
follow_ssa_with_commutative_ops (tree arg, tree lhs)
follow_ssa_with_commutative_ops (tree arg, tree lhs)
{
{
  gimple stmt;
  gimple stmt;
 
 
  if (TREE_CODE (arg) != SSA_NAME)
  if (TREE_CODE (arg) != SSA_NAME)
    return NULL;
    return NULL;
 
 
  stmt = SSA_NAME_DEF_STMT (arg);
  stmt = SSA_NAME_DEF_STMT (arg);
 
 
  if (gimple_code (stmt) == GIMPLE_NOP
  if (gimple_code (stmt) == GIMPLE_NOP
      || gimple_code (stmt) == GIMPLE_CALL)
      || gimple_code (stmt) == GIMPLE_CALL)
    return NULL;
    return NULL;
 
 
  if (gimple_code (stmt) == GIMPLE_PHI)
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
    {
      if (phi_contains_arg (stmt, lhs))
      if (phi_contains_arg (stmt, lhs))
        return stmt;
        return stmt;
      return NULL;
      return NULL;
    }
    }
 
 
  if (!is_gimple_assign (stmt))
  if (!is_gimple_assign (stmt))
    return NULL;
    return NULL;
 
 
  if (gimple_num_ops (stmt) == 2)
  if (gimple_num_ops (stmt) == 2)
    return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
    return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
 
 
  if (is_reduction_operation_p (stmt))
  if (is_reduction_operation_p (stmt))
    {
    {
      gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
      gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
 
 
      return res ? res :
      return res ? res :
        follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
        follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Detect commutative and associative scalar reductions starting at
/* Detect commutative and associative scalar reductions starting at
   the STMT.  Return the phi node of the reduction cycle, or NULL.  */
   the STMT.  Return the phi node of the reduction cycle, or NULL.  */
 
 
static gimple
static gimple
detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
                                  VEC (gimple, heap) **in,
                                  VEC (gimple, heap) **in,
                                  VEC (gimple, heap) **out)
                                  VEC (gimple, heap) **out)
{
{
  gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
  gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
 
 
  if (!phi)
  if (!phi)
    return NULL;
    return NULL;
 
 
  VEC_safe_push (gimple, heap, *in, stmt);
  VEC_safe_push (gimple, heap, *in, stmt);
  VEC_safe_push (gimple, heap, *out, stmt);
  VEC_safe_push (gimple, heap, *out, stmt);
  return phi;
  return phi;
}
}
 
 
/* Detect commutative and associative scalar reductions starting at
/* Detect commutative and associative scalar reductions starting at
   the STMT.  Return the phi node of the reduction cycle, or NULL.  */
   the STMT.  Return the phi node of the reduction cycle, or NULL.  */
 
 
static gimple
static gimple
detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
                                     VEC (gimple, heap) **out)
                                     VEC (gimple, heap) **out)
{
{
  tree lhs = gimple_assign_lhs (stmt);
  tree lhs = gimple_assign_lhs (stmt);
 
 
  if (gimple_num_ops (stmt) == 2)
  if (gimple_num_ops (stmt) == 2)
    return detect_commutative_reduction_arg (lhs, stmt,
    return detect_commutative_reduction_arg (lhs, stmt,
                                             gimple_assign_rhs1 (stmt),
                                             gimple_assign_rhs1 (stmt),
                                             in, out);
                                             in, out);
 
 
  if (is_reduction_operation_p (stmt))
  if (is_reduction_operation_p (stmt))
    {
    {
      gimple res = detect_commutative_reduction_arg (lhs, stmt,
      gimple res = detect_commutative_reduction_arg (lhs, stmt,
                                                     gimple_assign_rhs1 (stmt),
                                                     gimple_assign_rhs1 (stmt),
                                                     in, out);
                                                     in, out);
      return res ? res
      return res ? res
        : detect_commutative_reduction_arg (lhs, stmt,
        : detect_commutative_reduction_arg (lhs, stmt,
                                            gimple_assign_rhs2 (stmt),
                                            gimple_assign_rhs2 (stmt),
                                            in, out);
                                            in, out);
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Return a loop phi node that corresponds to a reduction containing LHS.  */
/* Return a loop phi node that corresponds to a reduction containing LHS.  */
 
 
static gimple
static gimple
follow_inital_value_to_phi (tree arg, tree lhs)
follow_inital_value_to_phi (tree arg, tree lhs)
{
{
  gimple stmt;
  gimple stmt;
 
 
  if (!arg || TREE_CODE (arg) != SSA_NAME)
  if (!arg || TREE_CODE (arg) != SSA_NAME)
    return NULL;
    return NULL;
 
 
  stmt = SSA_NAME_DEF_STMT (arg);
  stmt = SSA_NAME_DEF_STMT (arg);
 
 
  if (gimple_code (stmt) == GIMPLE_PHI
  if (gimple_code (stmt) == GIMPLE_PHI
      && phi_contains_arg (stmt, lhs))
      && phi_contains_arg (stmt, lhs))
    return stmt;
    return stmt;
 
 
  return NULL;
  return NULL;
}
}
 
 
 
 
/* Return the argument of the loop PHI that is the inital value coming
/* Return the argument of the loop PHI that is the inital value coming
   from outside the loop.  */
   from outside the loop.  */
 
 
static edge
static edge
edge_initial_value_for_loop_phi (gimple phi)
edge_initial_value_for_loop_phi (gimple phi)
{
{
  size_t i;
  size_t i;
 
 
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
    {
      edge e = gimple_phi_arg_edge (phi, i);
      edge e = gimple_phi_arg_edge (phi, i);
 
 
      if (loop_depth (e->src->loop_father)
      if (loop_depth (e->src->loop_father)
          < loop_depth (e->dest->loop_father))
          < loop_depth (e->dest->loop_father))
        return e;
        return e;
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Return the argument of the loop PHI that is the inital value coming
/* Return the argument of the loop PHI that is the inital value coming
   from outside the loop.  */
   from outside the loop.  */
 
 
static tree
static tree
initial_value_for_loop_phi (gimple phi)
initial_value_for_loop_phi (gimple phi)
{
{
  size_t i;
  size_t i;
 
 
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
    {
      edge e = gimple_phi_arg_edge (phi, i);
      edge e = gimple_phi_arg_edge (phi, i);
 
 
      if (loop_depth (e->src->loop_father)
      if (loop_depth (e->src->loop_father)
          < loop_depth (e->dest->loop_father))
          < loop_depth (e->dest->loop_father))
        return gimple_phi_arg_def (phi, i);
        return gimple_phi_arg_def (phi, i);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Detect commutative and associative scalar reductions starting at
/* Detect commutative and associative scalar reductions starting at
   the loop closed phi node CLOSE_PHI.  Return the phi node of the
   the loop closed phi node CLOSE_PHI.  Return the phi node of the
   reduction cycle, or NULL.  */
   reduction cycle, or NULL.  */
 
 
static gimple
static gimple
detect_commutative_reduction (gimple stmt, VEC (gimple, heap) **in,
detect_commutative_reduction (gimple stmt, VEC (gimple, heap) **in,
                              VEC (gimple, heap) **out)
                              VEC (gimple, heap) **out)
{
{
  if (scalar_close_phi_node_p (stmt))
  if (scalar_close_phi_node_p (stmt))
    {
    {
      tree arg = gimple_phi_arg_def (stmt, 0);
      tree arg = gimple_phi_arg_def (stmt, 0);
      gimple def, loop_phi;
      gimple def, loop_phi;
 
 
      if (TREE_CODE (arg) != SSA_NAME)
      if (TREE_CODE (arg) != SSA_NAME)
        return NULL;
        return NULL;
 
 
      def = SSA_NAME_DEF_STMT (arg);
      def = SSA_NAME_DEF_STMT (arg);
      loop_phi = detect_commutative_reduction (def, in, out);
      loop_phi = detect_commutative_reduction (def, in, out);
 
 
      if (loop_phi)
      if (loop_phi)
        {
        {
          tree lhs = gimple_phi_result (stmt);
          tree lhs = gimple_phi_result (stmt);
          tree init = initial_value_for_loop_phi (loop_phi);
          tree init = initial_value_for_loop_phi (loop_phi);
          gimple phi = follow_inital_value_to_phi (init, lhs);
          gimple phi = follow_inital_value_to_phi (init, lhs);
 
 
          VEC_safe_push (gimple, heap, *in, loop_phi);
          VEC_safe_push (gimple, heap, *in, loop_phi);
          VEC_safe_push (gimple, heap, *out, stmt);
          VEC_safe_push (gimple, heap, *out, stmt);
          return phi;
          return phi;
        }
        }
      else
      else
        return NULL;
        return NULL;
    }
    }
 
 
  if (gimple_code (stmt) == GIMPLE_ASSIGN)
  if (gimple_code (stmt) == GIMPLE_ASSIGN)
    return detect_commutative_reduction_assign (stmt, in, out);
    return detect_commutative_reduction_assign (stmt, in, out);
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Translate the scalar reduction statement STMT to an array RED
/* Translate the scalar reduction statement STMT to an array RED
   knowing that its recursive phi node is LOOP_PHI.  */
   knowing that its recursive phi node is LOOP_PHI.  */
 
 
static void
static void
translate_scalar_reduction_to_array_for_stmt (tree red, gimple stmt,
translate_scalar_reduction_to_array_for_stmt (tree red, gimple stmt,
                                              gimple loop_phi)
                                              gimple loop_phi)
{
{
  gimple_stmt_iterator insert_gsi = gsi_after_labels (gimple_bb (loop_phi));
  gimple_stmt_iterator insert_gsi = gsi_after_labels (gimple_bb (loop_phi));
  tree res = gimple_phi_result (loop_phi);
  tree res = gimple_phi_result (loop_phi);
  gimple assign = gimple_build_assign (res, red);
  gimple assign = gimple_build_assign (res, red);
 
 
  gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
  gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
 
 
  insert_gsi = gsi_after_labels (gimple_bb (stmt));
  insert_gsi = gsi_after_labels (gimple_bb (stmt));
  assign = gimple_build_assign (red, gimple_assign_lhs (stmt));
  assign = gimple_build_assign (red, gimple_assign_lhs (stmt));
  insert_gsi = gsi_for_stmt (stmt);
  insert_gsi = gsi_for_stmt (stmt);
  gsi_insert_after (&insert_gsi, assign, GSI_SAME_STMT);
  gsi_insert_after (&insert_gsi, assign, GSI_SAME_STMT);
}
}
 
 
/* Insert the assignment "result (CLOSE_PHI) = RED".  */
/* Insert the assignment "result (CLOSE_PHI) = RED".  */
 
 
static void
static void
insert_copyout (tree red, gimple close_phi)
insert_copyout (tree red, gimple close_phi)
{
{
  tree res = gimple_phi_result (close_phi);
  tree res = gimple_phi_result (close_phi);
  basic_block bb = gimple_bb (close_phi);
  basic_block bb = gimple_bb (close_phi);
  gimple_stmt_iterator insert_gsi = gsi_after_labels (bb);
  gimple_stmt_iterator insert_gsi = gsi_after_labels (bb);
  gimple assign = gimple_build_assign (res, red);
  gimple assign = gimple_build_assign (res, red);
 
 
  gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
  gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
}
}
 
 
/* Insert the assignment "RED = initial_value (LOOP_PHI)".  */
/* Insert the assignment "RED = initial_value (LOOP_PHI)".  */
 
 
static void
static void
insert_copyin (tree red, gimple loop_phi)
insert_copyin (tree red, gimple loop_phi)
{
{
  gimple_seq stmts;
  gimple_seq stmts;
  tree init = initial_value_for_loop_phi (loop_phi);
  tree init = initial_value_for_loop_phi (loop_phi);
  tree expr = build2 (MODIFY_EXPR, TREE_TYPE (init), red, init);
  tree expr = build2 (MODIFY_EXPR, TREE_TYPE (init), red, init);
 
 
  force_gimple_operand (expr, &stmts, true, NULL);
  force_gimple_operand (expr, &stmts, true, NULL);
  gsi_insert_seq_on_edge (edge_initial_value_for_loop_phi (loop_phi), stmts);
  gsi_insert_seq_on_edge (edge_initial_value_for_loop_phi (loop_phi), stmts);
}
}
 
 
/* Removes the PHI node and resets all the debug stmts that are using
/* Removes the PHI node and resets all the debug stmts that are using
   the PHI_RESULT.  */
   the PHI_RESULT.  */
 
 
static void
static void
remove_phi (gimple phi)
remove_phi (gimple phi)
{
{
  imm_use_iterator imm_iter;
  imm_use_iterator imm_iter;
  tree def;
  tree def;
  use_operand_p use_p;
  use_operand_p use_p;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
  VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
  unsigned int i;
  unsigned int i;
  gimple stmt;
  gimple stmt;
 
 
  def = PHI_RESULT (phi);
  def = PHI_RESULT (phi);
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
    {
    {
      stmt = USE_STMT (use_p);
      stmt = USE_STMT (use_p);
 
 
      if (is_gimple_debug (stmt))
      if (is_gimple_debug (stmt))
        {
        {
          gimple_debug_bind_reset_value (stmt);
          gimple_debug_bind_reset_value (stmt);
          VEC_safe_push (gimple, heap, update, stmt);
          VEC_safe_push (gimple, heap, update, stmt);
        }
        }
    }
    }
 
 
  for (i = 0; VEC_iterate (gimple, update, i, stmt); i++)
  for (i = 0; VEC_iterate (gimple, update, i, stmt); i++)
    update_stmt (stmt);
    update_stmt (stmt);
 
 
  VEC_free (gimple, heap, update);
  VEC_free (gimple, heap, update);
 
 
  gsi = gsi_for_phi_node (phi);
  gsi = gsi_for_phi_node (phi);
  remove_phi_node (&gsi, false);
  remove_phi_node (&gsi, false);
}
}
 
 
/* Rewrite out of SSA the reduction described by the loop phi nodes
/* Rewrite out of SSA the reduction described by the loop phi nodes
   IN, and the close phi nodes OUT.  IN and OUT are structured by loop
   IN, and the close phi nodes OUT.  IN and OUT are structured by loop
   levels like this:
   levels like this:
 
 
   IN: stmt, loop_n, ..., loop_0
   IN: stmt, loop_n, ..., loop_0
   OUT: stmt, close_n, ..., close_0
   OUT: stmt, close_n, ..., close_0
 
 
   the first element is the reduction statement, and the next elements
   the first element is the reduction statement, and the next elements
   are the loop and close phi nodes of each of the outer loops.  */
   are the loop and close phi nodes of each of the outer loops.  */
 
 
static void
static void
translate_scalar_reduction_to_array (VEC (gimple, heap) *in,
translate_scalar_reduction_to_array (VEC (gimple, heap) *in,
                                     VEC (gimple, heap) *out,
                                     VEC (gimple, heap) *out,
                                     sbitmap reductions)
                                     sbitmap reductions)
{
{
  unsigned int i;
  unsigned int i;
  gimple loop_phi;
  gimple loop_phi;
  tree red = NULL_TREE;
  tree red = NULL_TREE;
 
 
  for (i = 0; VEC_iterate (gimple, in, i, loop_phi); i++)
  for (i = 0; VEC_iterate (gimple, in, i, loop_phi); i++)
    {
    {
      gimple close_phi = VEC_index (gimple, out, i);
      gimple close_phi = VEC_index (gimple, out, i);
 
 
      if (i == 0)
      if (i == 0)
        {
        {
          gimple stmt = loop_phi;
          gimple stmt = loop_phi;
          basic_block bb = split_reduction_stmt (stmt);
          basic_block bb = split_reduction_stmt (stmt);
 
 
          SET_BIT (reductions, bb->index);
          SET_BIT (reductions, bb->index);
          gcc_assert (close_phi == loop_phi);
          gcc_assert (close_phi == loop_phi);
 
 
          red = create_zero_dim_array
          red = create_zero_dim_array
            (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
            (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
          translate_scalar_reduction_to_array_for_stmt
          translate_scalar_reduction_to_array_for_stmt
            (red, stmt, VEC_index (gimple, in, 1));
            (red, stmt, VEC_index (gimple, in, 1));
          continue;
          continue;
        }
        }
 
 
      if (i == VEC_length (gimple, in) - 1)
      if (i == VEC_length (gimple, in) - 1)
        {
        {
          insert_copyout (red, close_phi);
          insert_copyout (red, close_phi);
          insert_copyin (red, loop_phi);
          insert_copyin (red, loop_phi);
        }
        }
 
 
      remove_phi (loop_phi);
      remove_phi (loop_phi);
      remove_phi (close_phi);
      remove_phi (close_phi);
    }
    }
}
}
 
 
/* Rewrites out of SSA a commutative reduction at CLOSE_PHI.  */
/* Rewrites out of SSA a commutative reduction at CLOSE_PHI.  */
 
 
static void
static void
rewrite_commutative_reductions_out_of_ssa_close_phi (gimple close_phi,
rewrite_commutative_reductions_out_of_ssa_close_phi (gimple close_phi,
                                                     sbitmap reductions)
                                                     sbitmap reductions)
{
{
  VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
  VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
  VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
  VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
 
 
  detect_commutative_reduction (close_phi, &in, &out);
  detect_commutative_reduction (close_phi, &in, &out);
  if (VEC_length (gimple, in) > 0)
  if (VEC_length (gimple, in) > 0)
    translate_scalar_reduction_to_array (in, out, reductions);
    translate_scalar_reduction_to_array (in, out, reductions);
 
 
  VEC_free (gimple, heap, in);
  VEC_free (gimple, heap, in);
  VEC_free (gimple, heap, out);
  VEC_free (gimple, heap, out);
}
}
 
 
/* Rewrites all the commutative reductions from LOOP out of SSA.  */
/* Rewrites all the commutative reductions from LOOP out of SSA.  */
 
 
static void
static void
rewrite_commutative_reductions_out_of_ssa_loop (loop_p loop,
rewrite_commutative_reductions_out_of_ssa_loop (loop_p loop,
                                                sbitmap reductions)
                                                sbitmap reductions)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  edge exit = single_exit (loop);
  edge exit = single_exit (loop);
 
 
  if (!exit)
  if (!exit)
    return;
    return;
 
 
  for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    rewrite_commutative_reductions_out_of_ssa_close_phi (gsi_stmt (gsi),
    rewrite_commutative_reductions_out_of_ssa_close_phi (gsi_stmt (gsi),
                                                         reductions);
                                                         reductions);
}
}
 
 
/* Rewrites all the commutative reductions from SCOP out of SSA.  */
/* Rewrites all the commutative reductions from SCOP out of SSA.  */
 
 
static void
static void
rewrite_commutative_reductions_out_of_ssa (sese region, sbitmap reductions)
rewrite_commutative_reductions_out_of_ssa (sese region, sbitmap reductions)
{
{
  loop_iterator li;
  loop_iterator li;
  loop_p loop;
  loop_p loop;
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    if (loop_in_sese_p (loop, region))
    if (loop_in_sese_p (loop, region))
      rewrite_commutative_reductions_out_of_ssa_loop (loop, reductions);
      rewrite_commutative_reductions_out_of_ssa_loop (loop, reductions);
 
 
  gsi_commit_edge_inserts ();
  gsi_commit_edge_inserts ();
  update_ssa (TODO_update_ssa);
  update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_ssa (false);
  verify_ssa (false);
  verify_loop_closed_ssa ();
  verify_loop_closed_ssa ();
#endif
#endif
}
}
 
 
/* A LOOP is in normal form for Graphite when it contains only one
/* A LOOP is in normal form for Graphite when it contains only one
   scalar phi node that defines the main induction variable of the
   scalar phi node that defines the main induction variable of the
   loop, only one increment of the IV, and only one exit condition.  */
   loop, only one increment of the IV, and only one exit condition.  */
 
 
static void
static void
graphite_loop_normal_form (loop_p loop)
graphite_loop_normal_form (loop_p loop)
{
{
  struct tree_niter_desc niter;
  struct tree_niter_desc niter;
  tree nit;
  tree nit;
  gimple_seq stmts;
  gimple_seq stmts;
  edge exit = single_dom_exit (loop);
  edge exit = single_dom_exit (loop);
 
 
  bool known_niter = number_of_iterations_exit (loop, exit, &niter, false);
  bool known_niter = number_of_iterations_exit (loop, exit, &niter, false);
 
 
  /* At this point we should know the number of iterations.  */
  /* At this point we should know the number of iterations.  */
  gcc_assert (known_niter);
  gcc_assert (known_niter);
 
 
  nit = force_gimple_operand (unshare_expr (niter.niter), &stmts, true,
  nit = force_gimple_operand (unshare_expr (niter.niter), &stmts, true,
                              NULL_TREE);
                              NULL_TREE);
  if (stmts)
  if (stmts)
    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
 
 
  loop->single_iv = canonicalize_loop_ivs (loop, &nit, false);
  loop->single_iv = canonicalize_loop_ivs (loop, &nit, false);
}
}
 
 
/* Rewrite all the loops of SCOP in normal form: one induction
/* Rewrite all the loops of SCOP in normal form: one induction
   variable per loop.  */
   variable per loop.  */
 
 
static void
static void
scop_canonicalize_loops (scop_p scop)
scop_canonicalize_loops (scop_p scop)
{
{
  loop_iterator li;
  loop_iterator li;
  loop_p loop;
  loop_p loop;
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    if (loop_in_sese_p (loop, SCOP_REGION (scop)))
    if (loop_in_sese_p (loop, SCOP_REGION (scop)))
      graphite_loop_normal_form (loop);
      graphite_loop_normal_form (loop);
}
}
 
 
/* Java does not initialize long_long_integer_type_node.  */
/* Java does not initialize long_long_integer_type_node.  */
#define my_long_long (long_long_integer_type_node ? long_long_integer_type_node : ssizetype)
#define my_long_long (long_long_integer_type_node ? long_long_integer_type_node : ssizetype)
 
 
/* Can all ivs be represented by a signed integer?
/* Can all ivs be represented by a signed integer?
   As CLooG might generate negative values in its expressions, signed loop ivs
   As CLooG might generate negative values in its expressions, signed loop ivs
   are required in the backend. */
   are required in the backend. */
static bool
static bool
scop_ivs_can_be_represented (scop_p scop)
scop_ivs_can_be_represented (scop_p scop)
{
{
  loop_iterator li;
  loop_iterator li;
  loop_p loop;
  loop_p loop;
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      tree type;
      tree type;
      int precision;
      int precision;
 
 
      if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
      if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
        continue;
        continue;
 
 
      if (!loop->single_iv)
      if (!loop->single_iv)
        continue;
        continue;
 
 
      type = TREE_TYPE(loop->single_iv);
      type = TREE_TYPE(loop->single_iv);
      precision = TYPE_PRECISION (type);
      precision = TYPE_PRECISION (type);
 
 
      if (TYPE_UNSIGNED (type)
      if (TYPE_UNSIGNED (type)
          && precision >= TYPE_PRECISION (my_long_long))
          && precision >= TYPE_PRECISION (my_long_long))
        return false;
        return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
#undef my_long_long
#undef my_long_long
 
 
/* Builds the polyhedral representation for a SESE region.  */
/* Builds the polyhedral representation for a SESE region.  */
 
 
void
void
build_poly_scop (scop_p scop)
build_poly_scop (scop_p scop)
{
{
  sese region = SCOP_REGION (scop);
  sese region = SCOP_REGION (scop);
  sbitmap reductions = sbitmap_alloc (last_basic_block * 2);
  sbitmap reductions = sbitmap_alloc (last_basic_block * 2);
  graphite_dim_t max_dim;
  graphite_dim_t max_dim;
 
 
  sbitmap_zero (reductions);
  sbitmap_zero (reductions);
  rewrite_commutative_reductions_out_of_ssa (region, reductions);
  rewrite_commutative_reductions_out_of_ssa (region, reductions);
  rewrite_reductions_out_of_ssa (scop);
  rewrite_reductions_out_of_ssa (scop);
  build_scop_bbs (scop, reductions);
  build_scop_bbs (scop, reductions);
  sbitmap_free (reductions);
  sbitmap_free (reductions);
 
 
  /* FIXME: This restriction is needed to avoid a problem in CLooG.
  /* FIXME: This restriction is needed to avoid a problem in CLooG.
     Once CLooG is fixed, remove this guard.  Anyways, it makes no
     Once CLooG is fixed, remove this guard.  Anyways, it makes no
     sense to optimize a scop containing only PBBs that do not belong
     sense to optimize a scop containing only PBBs that do not belong
     to any loops.  */
     to any loops.  */
  if (nb_pbbs_in_loops (scop) == 0)
  if (nb_pbbs_in_loops (scop) == 0)
    return;
    return;
 
 
  scop_canonicalize_loops (scop);
  scop_canonicalize_loops (scop);
  if (!scop_ivs_can_be_represented (scop))
  if (!scop_ivs_can_be_represented (scop))
    return;
    return;
 
 
  build_sese_loop_nests (region);
  build_sese_loop_nests (region);
  build_sese_conditions (region);
  build_sese_conditions (region);
  find_scop_parameters (scop);
  find_scop_parameters (scop);
 
 
  max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
  max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
  if (scop_nb_params (scop) > max_dim)
  if (scop_nb_params (scop) > max_dim)
    return;
    return;
 
 
  build_scop_iteration_domain (scop);
  build_scop_iteration_domain (scop);
  build_scop_context (scop);
  build_scop_context (scop);
 
 
  add_conditions_to_constraints (scop);
  add_conditions_to_constraints (scop);
  scop_to_lst (scop);
  scop_to_lst (scop);
  build_scop_scattering (scop);
  build_scop_scattering (scop);
  build_scop_drs (scop);
  build_scop_drs (scop);
 
 
  /* This SCoP has been translated to the polyhedral
  /* This SCoP has been translated to the polyhedral
     representation.  */
     representation.  */
  POLY_SCOP_P (scop) = true;
  POLY_SCOP_P (scop) = true;
}
}
 
 
/* Always return false.  Exercise the scop_to_clast function.  */
/* Always return false.  Exercise the scop_to_clast function.  */
 
 
void
void
check_poly_representation (scop_p scop ATTRIBUTE_UNUSED)
check_poly_representation (scop_p scop ATTRIBUTE_UNUSED)
{
{
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  cloog_prog_clast pc = scop_to_clast (scop);
  cloog_prog_clast pc = scop_to_clast (scop);
  cloog_clast_free (pc.stmt);
  cloog_clast_free (pc.stmt);
  cloog_program_free (pc.prog);
  cloog_program_free (pc.prog);
#endif
#endif
}
}
#endif
#endif
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.