OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [haifa-sched.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Instruction scheduling pass.
/* Instruction scheduling pass.
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
   and currently maintained by, Jim Wilson (wilson@cygnus.com)
   and currently maintained by, Jim Wilson (wilson@cygnus.com)
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* Instruction scheduling pass.  This file, along with sched-deps.c,
/* Instruction scheduling pass.  This file, along with sched-deps.c,
   contains the generic parts.  The actual entry point is found for
   contains the generic parts.  The actual entry point is found for
   the normal instruction scheduling pass is found in sched-rgn.c.
   the normal instruction scheduling pass is found in sched-rgn.c.
 
 
   We compute insn priorities based on data dependencies.  Flow
   We compute insn priorities based on data dependencies.  Flow
   analysis only creates a fraction of the data-dependencies we must
   analysis only creates a fraction of the data-dependencies we must
   observe: namely, only those dependencies which the combiner can be
   observe: namely, only those dependencies which the combiner can be
   expected to use.  For this pass, we must therefore create the
   expected to use.  For this pass, we must therefore create the
   remaining dependencies we need to observe: register dependencies,
   remaining dependencies we need to observe: register dependencies,
   memory dependencies, dependencies to keep function calls in order,
   memory dependencies, dependencies to keep function calls in order,
   and the dependence between a conditional branch and the setting of
   and the dependence between a conditional branch and the setting of
   condition codes are all dealt with here.
   condition codes are all dealt with here.
 
 
   The scheduler first traverses the data flow graph, starting with
   The scheduler first traverses the data flow graph, starting with
   the last instruction, and proceeding to the first, assigning values
   the last instruction, and proceeding to the first, assigning values
   to insn_priority as it goes.  This sorts the instructions
   to insn_priority as it goes.  This sorts the instructions
   topologically by data dependence.
   topologically by data dependence.
 
 
   Once priorities have been established, we order the insns using
   Once priorities have been established, we order the insns using
   list scheduling.  This works as follows: starting with a list of
   list scheduling.  This works as follows: starting with a list of
   all the ready insns, and sorted according to priority number, we
   all the ready insns, and sorted according to priority number, we
   schedule the insn from the end of the list by placing its
   schedule the insn from the end of the list by placing its
   predecessors in the list according to their priority order.  We
   predecessors in the list according to their priority order.  We
   consider this insn scheduled by setting the pointer to the "end" of
   consider this insn scheduled by setting the pointer to the "end" of
   the list to point to the previous insn.  When an insn has no
   the list to point to the previous insn.  When an insn has no
   predecessors, we either queue it until sufficient time has elapsed
   predecessors, we either queue it until sufficient time has elapsed
   or add it to the ready list.  As the instructions are scheduled or
   or add it to the ready list.  As the instructions are scheduled or
   when stalls are introduced, the queue advances and dumps insns into
   when stalls are introduced, the queue advances and dumps insns into
   the ready list.  When all insns down to the lowest priority have
   the ready list.  When all insns down to the lowest priority have
   been scheduled, the critical path of the basic block has been made
   been scheduled, the critical path of the basic block has been made
   as short as possible.  The remaining insns are then scheduled in
   as short as possible.  The remaining insns are then scheduled in
   remaining slots.
   remaining slots.
 
 
   The following list shows the order in which we want to break ties
   The following list shows the order in which we want to break ties
   among insns in the ready list:
   among insns in the ready list:
 
 
   1.  choose insn with the longest path to end of bb, ties
   1.  choose insn with the longest path to end of bb, ties
   broken by
   broken by
   2.  choose insn with least contribution to register pressure,
   2.  choose insn with least contribution to register pressure,
   ties broken by
   ties broken by
   3.  prefer in-block upon interblock motion, ties broken by
   3.  prefer in-block upon interblock motion, ties broken by
   4.  prefer useful upon speculative motion, ties broken by
   4.  prefer useful upon speculative motion, ties broken by
   5.  choose insn with largest control flow probability, ties
   5.  choose insn with largest control flow probability, ties
   broken by
   broken by
   6.  choose insn with the least dependences upon the previously
   6.  choose insn with the least dependences upon the previously
   scheduled insn, or finally
   scheduled insn, or finally
   7   choose the insn which has the most insns dependent on it.
   7   choose the insn which has the most insns dependent on it.
   8.  choose insn with lowest UID.
   8.  choose insn with lowest UID.
 
 
   Memory references complicate matters.  Only if we can be certain
   Memory references complicate matters.  Only if we can be certain
   that memory references are not part of the data dependency graph
   that memory references are not part of the data dependency graph
   (via true, anti, or output dependence), can we move operations past
   (via true, anti, or output dependence), can we move operations past
   memory references.  To first approximation, reads can be done
   memory references.  To first approximation, reads can be done
   independently, while writes introduce dependencies.  Better
   independently, while writes introduce dependencies.  Better
   approximations will yield fewer dependencies.
   approximations will yield fewer dependencies.
 
 
   Before reload, an extended analysis of interblock data dependences
   Before reload, an extended analysis of interblock data dependences
   is required for interblock scheduling.  This is performed in
   is required for interblock scheduling.  This is performed in
   compute_block_backward_dependences ().
   compute_block_backward_dependences ().
 
 
   Dependencies set up by memory references are treated in exactly the
   Dependencies set up by memory references are treated in exactly the
   same way as other dependencies, by using insn backward dependences
   same way as other dependencies, by using insn backward dependences
   INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
   INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
   INSN_FORW_DEPS the purpose of forward list scheduling.
   INSN_FORW_DEPS the purpose of forward list scheduling.
 
 
   Having optimized the critical path, we may have also unduly
   Having optimized the critical path, we may have also unduly
   extended the lifetimes of some registers.  If an operation requires
   extended the lifetimes of some registers.  If an operation requires
   that constants be loaded into registers, it is certainly desirable
   that constants be loaded into registers, it is certainly desirable
   to load those constants as early as necessary, but no earlier.
   to load those constants as early as necessary, but no earlier.
   I.e., it will not do to load up a bunch of registers at the
   I.e., it will not do to load up a bunch of registers at the
   beginning of a basic block only to use them at the end, if they
   beginning of a basic block only to use them at the end, if they
   could be loaded later, since this may result in excessive register
   could be loaded later, since this may result in excessive register
   utilization.
   utilization.
 
 
   Note that since branches are never in basic blocks, but only end
   Note that since branches are never in basic blocks, but only end
   basic blocks, this pass will not move branches.  But that is ok,
   basic blocks, this pass will not move branches.  But that is ok,
   since we can use GNU's delayed branch scheduling pass to take care
   since we can use GNU's delayed branch scheduling pass to take care
   of this case.
   of this case.
 
 
   Also note that no further optimizations based on algebraic
   Also note that no further optimizations based on algebraic
   identities are performed, so this pass would be a good one to
   identities are performed, so this pass would be a good one to
   perform instruction splitting, such as breaking up a multiply
   perform instruction splitting, such as breaking up a multiply
   instruction into shifts and adds where that is profitable.
   instruction into shifts and adds where that is profitable.
 
 
   Given the memory aliasing analysis that this pass should perform,
   Given the memory aliasing analysis that this pass should perform,
   it should be possible to remove redundant stores to memory, and to
   it should be possible to remove redundant stores to memory, and to
   load values from registers instead of hitting memory.
   load values from registers instead of hitting memory.
 
 
   Before reload, speculative insns are moved only if a 'proof' exists
   Before reload, speculative insns are moved only if a 'proof' exists
   that no exception will be caused by this, and if no live registers
   that no exception will be caused by this, and if no live registers
   exist that inhibit the motion (live registers constraints are not
   exist that inhibit the motion (live registers constraints are not
   represented by data dependence edges).
   represented by data dependence edges).
 
 
   This pass must update information that subsequent passes expect to
   This pass must update information that subsequent passes expect to
   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
   reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
   reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
 
 
   The information in the line number notes is carefully retained by
   The information in the line number notes is carefully retained by
   this pass.  Notes that refer to the starting and ending of
   this pass.  Notes that refer to the starting and ending of
   exception regions are also carefully retained by this pass.  All
   exception regions are also carefully retained by this pass.  All
   other NOTE insns are grouped in their same relative order at the
   other NOTE insns are grouped in their same relative order at the
   beginning of basic blocks and regions that have been scheduled.  */
   beginning of basic blocks and regions that have been scheduled.  */


#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "toplev.h"
#include "toplev.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "regs.h"
#include "function.h"
#include "function.h"
#include "flags.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "except.h"
#include "except.h"
#include "toplev.h"
#include "toplev.h"
#include "recog.h"
#include "recog.h"
#include "sched-int.h"
#include "sched-int.h"
#include "target.h"
#include "target.h"
#include "output.h"
#include "output.h"
#include "params.h"
#include "params.h"
#include "vecprim.h"
#include "vecprim.h"
#include "dbgcnt.h"
#include "dbgcnt.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "ira.h"
#include "ira.h"
 
 
#ifdef INSN_SCHEDULING
#ifdef INSN_SCHEDULING
 
 
/* issue_rate is the number of insns that can be scheduled in the same
/* issue_rate is the number of insns that can be scheduled in the same
   machine cycle.  It can be defined in the config/mach/mach.h file,
   machine cycle.  It can be defined in the config/mach/mach.h file,
   otherwise we set it to 1.  */
   otherwise we set it to 1.  */
 
 
int issue_rate;
int issue_rate;
 
 
/* sched-verbose controls the amount of debugging output the
/* sched-verbose controls the amount of debugging output the
   scheduler prints.  It is controlled by -fsched-verbose=N:
   scheduler prints.  It is controlled by -fsched-verbose=N:
   N>0 and no -DSR : the output is directed to stderr.
   N>0 and no -DSR : the output is directed to stderr.
   N>=10 will direct the printouts to stderr (regardless of -dSR).
   N>=10 will direct the printouts to stderr (regardless of -dSR).
   N=1: same as -dSR.
   N=1: same as -dSR.
   N=2: bb's probabilities, detailed ready list info, unit/insn info.
   N=2: bb's probabilities, detailed ready list info, unit/insn info.
   N=3: rtl at abort point, control-flow, regions info.
   N=3: rtl at abort point, control-flow, regions info.
   N=5: dependences info.  */
   N=5: dependences info.  */
 
 
static int sched_verbose_param = 0;
static int sched_verbose_param = 0;
int sched_verbose = 0;
int sched_verbose = 0;
 
 
/* Debugging file.  All printouts are sent to dump, which is always set,
/* Debugging file.  All printouts are sent to dump, which is always set,
   either to stderr, or to the dump listing file (-dRS).  */
   either to stderr, or to the dump listing file (-dRS).  */
FILE *sched_dump = 0;
FILE *sched_dump = 0;
 
 
/* fix_sched_param() is called from toplev.c upon detection
/* fix_sched_param() is called from toplev.c upon detection
   of the -fsched-verbose=N option.  */
   of the -fsched-verbose=N option.  */
 
 
void
void
fix_sched_param (const char *param, const char *val)
fix_sched_param (const char *param, const char *val)
{
{
  if (!strcmp (param, "verbose"))
  if (!strcmp (param, "verbose"))
    sched_verbose_param = atoi (val);
    sched_verbose_param = atoi (val);
  else
  else
    warning (0, "fix_sched_param: unknown param: %s", param);
    warning (0, "fix_sched_param: unknown param: %s", param);
}
}
 
 
/* This is a placeholder for the scheduler parameters common
/* This is a placeholder for the scheduler parameters common
   to all schedulers.  */
   to all schedulers.  */
struct common_sched_info_def *common_sched_info;
struct common_sched_info_def *common_sched_info;
 
 
#define INSN_TICK(INSN) (HID (INSN)->tick)
#define INSN_TICK(INSN) (HID (INSN)->tick)
#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
 
 
/* If INSN_TICK of an instruction is equal to INVALID_TICK,
/* If INSN_TICK of an instruction is equal to INVALID_TICK,
   then it should be recalculated from scratch.  */
   then it should be recalculated from scratch.  */
#define INVALID_TICK (-(max_insn_queue_index + 1))
#define INVALID_TICK (-(max_insn_queue_index + 1))
/* The minimal value of the INSN_TICK of an instruction.  */
/* The minimal value of the INSN_TICK of an instruction.  */
#define MIN_TICK (-max_insn_queue_index)
#define MIN_TICK (-max_insn_queue_index)
 
 
/* Issue points are used to distinguish between instructions in max_issue ().
/* Issue points are used to distinguish between instructions in max_issue ().
   For now, all instructions are equally good.  */
   For now, all instructions are equally good.  */
#define ISSUE_POINTS(INSN) 1
#define ISSUE_POINTS(INSN) 1
 
 
/* List of important notes we must keep around.  This is a pointer to the
/* List of important notes we must keep around.  This is a pointer to the
   last element in the list.  */
   last element in the list.  */
rtx note_list;
rtx note_list;
 
 
static struct spec_info_def spec_info_var;
static struct spec_info_def spec_info_var;
/* Description of the speculative part of the scheduling.
/* Description of the speculative part of the scheduling.
   If NULL - no speculation.  */
   If NULL - no speculation.  */
spec_info_t spec_info = NULL;
spec_info_t spec_info = NULL;
 
 
/* True, if recovery block was added during scheduling of current block.
/* True, if recovery block was added during scheduling of current block.
   Used to determine, if we need to fix INSN_TICKs.  */
   Used to determine, if we need to fix INSN_TICKs.  */
static bool haifa_recovery_bb_recently_added_p;
static bool haifa_recovery_bb_recently_added_p;
 
 
/* True, if recovery block was added during this scheduling pass.
/* True, if recovery block was added during this scheduling pass.
   Used to determine if we should have empty memory pools of dependencies
   Used to determine if we should have empty memory pools of dependencies
   after finishing current region.  */
   after finishing current region.  */
bool haifa_recovery_bb_ever_added_p;
bool haifa_recovery_bb_ever_added_p;
 
 
/* Counters of different types of speculative instructions.  */
/* Counters of different types of speculative instructions.  */
static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
 
 
/* Array used in {unlink, restore}_bb_notes.  */
/* Array used in {unlink, restore}_bb_notes.  */
static rtx *bb_header = 0;
static rtx *bb_header = 0;
 
 
/* Basic block after which recovery blocks will be created.  */
/* Basic block after which recovery blocks will be created.  */
static basic_block before_recovery;
static basic_block before_recovery;
 
 
/* Basic block just before the EXIT_BLOCK and after recovery, if we have
/* Basic block just before the EXIT_BLOCK and after recovery, if we have
   created it.  */
   created it.  */
basic_block after_recovery;
basic_block after_recovery;
 
 
/* FALSE if we add bb to another region, so we don't need to initialize it.  */
/* FALSE if we add bb to another region, so we don't need to initialize it.  */
bool adding_bb_to_current_region_p = true;
bool adding_bb_to_current_region_p = true;
 
 
/* Queues, etc.  */
/* Queues, etc.  */
 
 
/* An instruction is ready to be scheduled when all insns preceding it
/* An instruction is ready to be scheduled when all insns preceding it
   have already been scheduled.  It is important to ensure that all
   have already been scheduled.  It is important to ensure that all
   insns which use its result will not be executed until its result
   insns which use its result will not be executed until its result
   has been computed.  An insn is maintained in one of four structures:
   has been computed.  An insn is maintained in one of four structures:
 
 
   (P) the "Pending" set of insns which cannot be scheduled until
   (P) the "Pending" set of insns which cannot be scheduled until
   their dependencies have been satisfied.
   their dependencies have been satisfied.
   (Q) the "Queued" set of insns that can be scheduled when sufficient
   (Q) the "Queued" set of insns that can be scheduled when sufficient
   time has passed.
   time has passed.
   (R) the "Ready" list of unscheduled, uncommitted insns.
   (R) the "Ready" list of unscheduled, uncommitted insns.
   (S) the "Scheduled" list of insns.
   (S) the "Scheduled" list of insns.
 
 
   Initially, all insns are either "Pending" or "Ready" depending on
   Initially, all insns are either "Pending" or "Ready" depending on
   whether their dependencies are satisfied.
   whether their dependencies are satisfied.
 
 
   Insns move from the "Ready" list to the "Scheduled" list as they
   Insns move from the "Ready" list to the "Scheduled" list as they
   are committed to the schedule.  As this occurs, the insns in the
   are committed to the schedule.  As this occurs, the insns in the
   "Pending" list have their dependencies satisfied and move to either
   "Pending" list have their dependencies satisfied and move to either
   the "Ready" list or the "Queued" set depending on whether
   the "Ready" list or the "Queued" set depending on whether
   sufficient time has passed to make them ready.  As time passes,
   sufficient time has passed to make them ready.  As time passes,
   insns move from the "Queued" set to the "Ready" list.
   insns move from the "Queued" set to the "Ready" list.
 
 
   The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
   The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
   unscheduled insns, i.e., those that are ready, queued, and pending.
   unscheduled insns, i.e., those that are ready, queued, and pending.
   The "Queued" set (Q) is implemented by the variable `insn_queue'.
   The "Queued" set (Q) is implemented by the variable `insn_queue'.
   The "Ready" list (R) is implemented by the variables `ready' and
   The "Ready" list (R) is implemented by the variables `ready' and
   `n_ready'.
   `n_ready'.
   The "Scheduled" list (S) is the new insn chain built by this pass.
   The "Scheduled" list (S) is the new insn chain built by this pass.
 
 
   The transition (R->S) is implemented in the scheduling loop in
   The transition (R->S) is implemented in the scheduling loop in
   `schedule_block' when the best insn to schedule is chosen.
   `schedule_block' when the best insn to schedule is chosen.
   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
   insns move from the ready list to the scheduled list.
   insns move from the ready list to the scheduled list.
   The transition (Q->R) is implemented in 'queue_to_insn' as time
   The transition (Q->R) is implemented in 'queue_to_insn' as time
   passes or stalls are introduced.  */
   passes or stalls are introduced.  */
 
 
/* Implement a circular buffer to delay instructions until sufficient
/* Implement a circular buffer to delay instructions until sufficient
   time has passed.  For the new pipeline description interface,
   time has passed.  For the new pipeline description interface,
   MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
   MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
   than maximal time of instruction execution computed by genattr.c on
   than maximal time of instruction execution computed by genattr.c on
   the base maximal time of functional unit reservations and getting a
   the base maximal time of functional unit reservations and getting a
   result.  This is the longest time an insn may be queued.  */
   result.  This is the longest time an insn may be queued.  */
 
 
static rtx *insn_queue;
static rtx *insn_queue;
static int q_ptr = 0;
static int q_ptr = 0;
static int q_size = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
 
 
#define QUEUE_SCHEDULED (-3)
#define QUEUE_SCHEDULED (-3)
#define QUEUE_NOWHERE   (-2)
#define QUEUE_NOWHERE   (-2)
#define QUEUE_READY     (-1)
#define QUEUE_READY     (-1)
/* QUEUE_SCHEDULED - INSN is scheduled.
/* QUEUE_SCHEDULED - INSN is scheduled.
   QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
   QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
   queue or ready list.
   queue or ready list.
   QUEUE_READY     - INSN is in ready list.
   QUEUE_READY     - INSN is in ready list.
   N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */
   N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */
 
 
#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
 
 
/* The following variable value refers for all current and future
/* The following variable value refers for all current and future
   reservations of the processor units.  */
   reservations of the processor units.  */
state_t curr_state;
state_t curr_state;
 
 
/* The following variable value is size of memory representing all
/* The following variable value is size of memory representing all
   current and future reservations of the processor units.  */
   current and future reservations of the processor units.  */
size_t dfa_state_size;
size_t dfa_state_size;
 
 
/* The following array is used to find the best insn from ready when
/* The following array is used to find the best insn from ready when
   the automaton pipeline interface is used.  */
   the automaton pipeline interface is used.  */
char *ready_try = NULL;
char *ready_try = NULL;
 
 
/* The ready list.  */
/* The ready list.  */
struct ready_list ready = {NULL, 0, 0, 0, 0};
struct ready_list ready = {NULL, 0, 0, 0, 0};
 
 
/* The pointer to the ready list (to be removed).  */
/* The pointer to the ready list (to be removed).  */
static struct ready_list *readyp = &ready;
static struct ready_list *readyp = &ready;
 
 
/* Scheduling clock.  */
/* Scheduling clock.  */
static int clock_var;
static int clock_var;
 
 
static int may_trap_exp (const_rtx, int);
static int may_trap_exp (const_rtx, int);
 
 
/* Nonzero iff the address is comprised from at most 1 register.  */
/* Nonzero iff the address is comprised from at most 1 register.  */
#define CONST_BASED_ADDRESS_P(x)                        \
#define CONST_BASED_ADDRESS_P(x)                        \
  (REG_P (x)                                    \
  (REG_P (x)                                    \
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS   \
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS   \
        || (GET_CODE (x) == LO_SUM))                    \
        || (GET_CODE (x) == LO_SUM))                    \
       && (CONSTANT_P (XEXP (x, 0))                      \
       && (CONSTANT_P (XEXP (x, 0))                      \
           || CONSTANT_P (XEXP (x, 1)))))
           || CONSTANT_P (XEXP (x, 1)))))
 
 
/* Returns a class that insn with GET_DEST(insn)=x may belong to,
/* Returns a class that insn with GET_DEST(insn)=x may belong to,
   as found by analyzing insn's expression.  */
   as found by analyzing insn's expression.  */
 
 


static int haifa_luid_for_non_insn (rtx x);
static int haifa_luid_for_non_insn (rtx x);
 
 
/* Haifa version of sched_info hooks common to all headers.  */
/* Haifa version of sched_info hooks common to all headers.  */
const struct common_sched_info_def haifa_common_sched_info =
const struct common_sched_info_def haifa_common_sched_info =
  {
  {
    NULL, /* fix_recovery_cfg */
    NULL, /* fix_recovery_cfg */
    NULL, /* add_block */
    NULL, /* add_block */
    NULL, /* estimate_number_of_insns */
    NULL, /* estimate_number_of_insns */
    haifa_luid_for_non_insn, /* luid_for_non_insn */
    haifa_luid_for_non_insn, /* luid_for_non_insn */
    SCHED_PASS_UNKNOWN /* sched_pass_id */
    SCHED_PASS_UNKNOWN /* sched_pass_id */
  };
  };
 
 
const struct sched_scan_info_def *sched_scan_info;
const struct sched_scan_info_def *sched_scan_info;
 
 
/* Mapping from instruction UID to its Logical UID.  */
/* Mapping from instruction UID to its Logical UID.  */
VEC (int, heap) *sched_luids = NULL;
VEC (int, heap) *sched_luids = NULL;
 
 
/* Next LUID to assign to an instruction.  */
/* Next LUID to assign to an instruction.  */
int sched_max_luid = 1;
int sched_max_luid = 1;
 
 
/* Haifa Instruction Data.  */
/* Haifa Instruction Data.  */
VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
 
 
void (* sched_init_only_bb) (basic_block, basic_block);
void (* sched_init_only_bb) (basic_block, basic_block);
 
 
/* Split block function.  Different schedulers might use different functions
/* Split block function.  Different schedulers might use different functions
   to handle their internal data consistent.  */
   to handle their internal data consistent.  */
basic_block (* sched_split_block) (basic_block, rtx);
basic_block (* sched_split_block) (basic_block, rtx);
 
 
/* Create empty basic block after the specified block.  */
/* Create empty basic block after the specified block.  */
basic_block (* sched_create_empty_bb) (basic_block);
basic_block (* sched_create_empty_bb) (basic_block);
 
 
static int
static int
may_trap_exp (const_rtx x, int is_store)
may_trap_exp (const_rtx x, int is_store)
{
{
  enum rtx_code code;
  enum rtx_code code;
 
 
  if (x == 0)
  if (x == 0)
    return TRAP_FREE;
    return TRAP_FREE;
  code = GET_CODE (x);
  code = GET_CODE (x);
  if (is_store)
  if (is_store)
    {
    {
      if (code == MEM && may_trap_p (x))
      if (code == MEM && may_trap_p (x))
        return TRAP_RISKY;
        return TRAP_RISKY;
      else
      else
        return TRAP_FREE;
        return TRAP_FREE;
    }
    }
  if (code == MEM)
  if (code == MEM)
    {
    {
      /* The insn uses memory:  a volatile load.  */
      /* The insn uses memory:  a volatile load.  */
      if (MEM_VOLATILE_P (x))
      if (MEM_VOLATILE_P (x))
        return IRISKY;
        return IRISKY;
      /* An exception-free load.  */
      /* An exception-free load.  */
      if (!may_trap_p (x))
      if (!may_trap_p (x))
        return IFREE;
        return IFREE;
      /* A load with 1 base register, to be further checked.  */
      /* A load with 1 base register, to be further checked.  */
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
        return PFREE_CANDIDATE;
        return PFREE_CANDIDATE;
      /* No info on the load, to be further checked.  */
      /* No info on the load, to be further checked.  */
      return PRISKY_CANDIDATE;
      return PRISKY_CANDIDATE;
    }
    }
  else
  else
    {
    {
      const char *fmt;
      const char *fmt;
      int i, insn_class = TRAP_FREE;
      int i, insn_class = TRAP_FREE;
 
 
      /* Neither store nor load, check if it may cause a trap.  */
      /* Neither store nor load, check if it may cause a trap.  */
      if (may_trap_p (x))
      if (may_trap_p (x))
        return TRAP_RISKY;
        return TRAP_RISKY;
      /* Recursive step: walk the insn...  */
      /* Recursive step: walk the insn...  */
      fmt = GET_RTX_FORMAT (code);
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
        {
        {
          if (fmt[i] == 'e')
          if (fmt[i] == 'e')
            {
            {
              int tmp_class = may_trap_exp (XEXP (x, i), is_store);
              int tmp_class = may_trap_exp (XEXP (x, i), is_store);
              insn_class = WORST_CLASS (insn_class, tmp_class);
              insn_class = WORST_CLASS (insn_class, tmp_class);
            }
            }
          else if (fmt[i] == 'E')
          else if (fmt[i] == 'E')
            {
            {
              int j;
              int j;
              for (j = 0; j < XVECLEN (x, i); j++)
              for (j = 0; j < XVECLEN (x, i); j++)
                {
                {
                  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
                  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
                  insn_class = WORST_CLASS (insn_class, tmp_class);
                  insn_class = WORST_CLASS (insn_class, tmp_class);
                  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
                  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
                    break;
                    break;
                }
                }
            }
            }
          if (insn_class == TRAP_RISKY || insn_class == IRISKY)
          if (insn_class == TRAP_RISKY || insn_class == IRISKY)
            break;
            break;
        }
        }
      return insn_class;
      return insn_class;
    }
    }
}
}
 
 
/* Classifies rtx X of an insn for the purpose of verifying that X can be
/* Classifies rtx X of an insn for the purpose of verifying that X can be
   executed speculatively (and consequently the insn can be moved
   executed speculatively (and consequently the insn can be moved
   speculatively), by examining X, returning:
   speculatively), by examining X, returning:
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
   TRAP_FREE: non-load insn.
   TRAP_FREE: non-load insn.
   IFREE: load from a globally safe location.
   IFREE: load from a globally safe location.
   IRISKY: volatile load.
   IRISKY: volatile load.
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
   being either PFREE or PRISKY.  */
   being either PFREE or PRISKY.  */
 
 
static int
static int
haifa_classify_rtx (const_rtx x)
haifa_classify_rtx (const_rtx x)
{
{
  int tmp_class = TRAP_FREE;
  int tmp_class = TRAP_FREE;
  int insn_class = TRAP_FREE;
  int insn_class = TRAP_FREE;
  enum rtx_code code;
  enum rtx_code code;
 
 
  if (GET_CODE (x) == PARALLEL)
  if (GET_CODE (x) == PARALLEL)
    {
    {
      int i, len = XVECLEN (x, 0);
      int i, len = XVECLEN (x, 0);
 
 
      for (i = len - 1; i >= 0; i--)
      for (i = len - 1; i >= 0; i--)
        {
        {
          tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
          tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
          insn_class = WORST_CLASS (insn_class, tmp_class);
          insn_class = WORST_CLASS (insn_class, tmp_class);
          if (insn_class == TRAP_RISKY || insn_class == IRISKY)
          if (insn_class == TRAP_RISKY || insn_class == IRISKY)
            break;
            break;
        }
        }
    }
    }
  else
  else
    {
    {
      code = GET_CODE (x);
      code = GET_CODE (x);
      switch (code)
      switch (code)
        {
        {
        case CLOBBER:
        case CLOBBER:
          /* Test if it is a 'store'.  */
          /* Test if it is a 'store'.  */
          tmp_class = may_trap_exp (XEXP (x, 0), 1);
          tmp_class = may_trap_exp (XEXP (x, 0), 1);
          break;
          break;
        case SET:
        case SET:
          /* Test if it is a store.  */
          /* Test if it is a store.  */
          tmp_class = may_trap_exp (SET_DEST (x), 1);
          tmp_class = may_trap_exp (SET_DEST (x), 1);
          if (tmp_class == TRAP_RISKY)
          if (tmp_class == TRAP_RISKY)
            break;
            break;
          /* Test if it is a load.  */
          /* Test if it is a load.  */
          tmp_class =
          tmp_class =
            WORST_CLASS (tmp_class,
            WORST_CLASS (tmp_class,
                         may_trap_exp (SET_SRC (x), 0));
                         may_trap_exp (SET_SRC (x), 0));
          break;
          break;
        case COND_EXEC:
        case COND_EXEC:
          tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
          tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
          if (tmp_class == TRAP_RISKY)
          if (tmp_class == TRAP_RISKY)
            break;
            break;
          tmp_class = WORST_CLASS (tmp_class,
          tmp_class = WORST_CLASS (tmp_class,
                                   may_trap_exp (COND_EXEC_TEST (x), 0));
                                   may_trap_exp (COND_EXEC_TEST (x), 0));
          break;
          break;
        case TRAP_IF:
        case TRAP_IF:
          tmp_class = TRAP_RISKY;
          tmp_class = TRAP_RISKY;
          break;
          break;
        default:;
        default:;
        }
        }
      insn_class = tmp_class;
      insn_class = tmp_class;
    }
    }
 
 
  return insn_class;
  return insn_class;
}
}
 
 
int
int
haifa_classify_insn (const_rtx insn)
haifa_classify_insn (const_rtx insn)
{
{
  return haifa_classify_rtx (PATTERN (insn));
  return haifa_classify_rtx (PATTERN (insn));
}
}
 
 
/* Forward declarations.  */
/* Forward declarations.  */
 
 
static int priority (rtx);
static int priority (rtx);
static int rank_for_schedule (const void *, const void *);
static int rank_for_schedule (const void *, const void *);
static void swap_sort (rtx *, int);
static void swap_sort (rtx *, int);
static void queue_insn (rtx, int);
static void queue_insn (rtx, int);
static int schedule_insn (rtx);
static int schedule_insn (rtx);
static void adjust_priority (rtx);
static void adjust_priority (rtx);
static void advance_one_cycle (void);
static void advance_one_cycle (void);
static void extend_h_i_d (void);
static void extend_h_i_d (void);
 
 
 
 
/* Notes handling mechanism:
/* Notes handling mechanism:
   =========================
   =========================
   Generally, NOTES are saved before scheduling and restored after scheduling.
   Generally, NOTES are saved before scheduling and restored after scheduling.
   The scheduler distinguishes between two types of notes:
   The scheduler distinguishes between two types of notes:
 
 
   (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
   (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
   Before scheduling a region, a pointer to the note is added to the insn
   Before scheduling a region, a pointer to the note is added to the insn
   that follows or precedes it.  (This happens as part of the data dependence
   that follows or precedes it.  (This happens as part of the data dependence
   computation).  After scheduling an insn, the pointer contained in it is
   computation).  After scheduling an insn, the pointer contained in it is
   used for regenerating the corresponding note (in reemit_notes).
   used for regenerating the corresponding note (in reemit_notes).
 
 
   (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
   (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
   these notes are put in a list (in rm_other_notes() and
   these notes are put in a list (in rm_other_notes() and
   unlink_other_notes ()).  After scheduling the block, these notes are
   unlink_other_notes ()).  After scheduling the block, these notes are
   inserted at the beginning of the block (in schedule_block()).  */
   inserted at the beginning of the block (in schedule_block()).  */
 
 
static void ready_add (struct ready_list *, rtx, bool);
static void ready_add (struct ready_list *, rtx, bool);
static rtx ready_remove_first (struct ready_list *);
static rtx ready_remove_first (struct ready_list *);
 
 
static void queue_to_ready (struct ready_list *);
static void queue_to_ready (struct ready_list *);
static int early_queue_to_ready (state_t, struct ready_list *);
static int early_queue_to_ready (state_t, struct ready_list *);
 
 
static void debug_ready_list (struct ready_list *);
static void debug_ready_list (struct ready_list *);
 
 
/* The following functions are used to implement multi-pass scheduling
/* The following functions are used to implement multi-pass scheduling
   on the first cycle.  */
   on the first cycle.  */
static rtx ready_remove (struct ready_list *, int);
static rtx ready_remove (struct ready_list *, int);
static void ready_remove_insn (rtx);
static void ready_remove_insn (rtx);
 
 
static int choose_ready (struct ready_list *, rtx *);
static int choose_ready (struct ready_list *, rtx *);
 
 
static void fix_inter_tick (rtx, rtx);
static void fix_inter_tick (rtx, rtx);
static int fix_tick_ready (rtx);
static int fix_tick_ready (rtx);
static void change_queue_index (rtx, int);
static void change_queue_index (rtx, int);
 
 
/* The following functions are used to implement scheduling of data/control
/* The following functions are used to implement scheduling of data/control
   speculative instructions.  */
   speculative instructions.  */
 
 
static void extend_h_i_d (void);
static void extend_h_i_d (void);
static void init_h_i_d (rtx);
static void init_h_i_d (rtx);
static void generate_recovery_code (rtx);
static void generate_recovery_code (rtx);
static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
static void begin_speculative_block (rtx);
static void begin_speculative_block (rtx);
static void add_to_speculative_block (rtx);
static void add_to_speculative_block (rtx);
static void init_before_recovery (basic_block *);
static void init_before_recovery (basic_block *);
static void create_check_block_twin (rtx, bool);
static void create_check_block_twin (rtx, bool);
static void fix_recovery_deps (basic_block);
static void fix_recovery_deps (basic_block);
static void haifa_change_pattern (rtx, rtx);
static void haifa_change_pattern (rtx, rtx);
static void dump_new_block_header (int, basic_block, rtx, rtx);
static void dump_new_block_header (int, basic_block, rtx, rtx);
static void restore_bb_notes (basic_block);
static void restore_bb_notes (basic_block);
static void fix_jump_move (rtx);
static void fix_jump_move (rtx);
static void move_block_after_check (rtx);
static void move_block_after_check (rtx);
static void move_succs (VEC(edge,gc) **, basic_block);
static void move_succs (VEC(edge,gc) **, basic_block);
static void sched_remove_insn (rtx);
static void sched_remove_insn (rtx);
static void clear_priorities (rtx, rtx_vec_t *);
static void clear_priorities (rtx, rtx_vec_t *);
static void calc_priorities (rtx_vec_t);
static void calc_priorities (rtx_vec_t);
static void add_jump_dependencies (rtx, rtx);
static void add_jump_dependencies (rtx, rtx);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
static int has_edge_p (VEC(edge,gc) *, int);
static int has_edge_p (VEC(edge,gc) *, int);
static void check_cfg (rtx, rtx);
static void check_cfg (rtx, rtx);
#endif
#endif
 
 
#endif /* INSN_SCHEDULING */
#endif /* INSN_SCHEDULING */


/* Point to state used for the current scheduling pass.  */
/* Point to state used for the current scheduling pass.  */
struct haifa_sched_info *current_sched_info;
struct haifa_sched_info *current_sched_info;


#ifndef INSN_SCHEDULING
#ifndef INSN_SCHEDULING
void
void
schedule_insns (void)
schedule_insns (void)
{
{
}
}
#else
#else
 
 
/* Do register pressure sensitive insn scheduling if the flag is set
/* Do register pressure sensitive insn scheduling if the flag is set
   up.  */
   up.  */
bool sched_pressure_p;
bool sched_pressure_p;
 
 
/* Map regno -> its cover class.  The map defined only when
/* Map regno -> its cover class.  The map defined only when
   SCHED_PRESSURE_P is true.  */
   SCHED_PRESSURE_P is true.  */
enum reg_class *sched_regno_cover_class;
enum reg_class *sched_regno_cover_class;
 
 
/* The current register pressure.  Only elements corresponding cover
/* The current register pressure.  Only elements corresponding cover
   classes are defined.  */
   classes are defined.  */
static int curr_reg_pressure[N_REG_CLASSES];
static int curr_reg_pressure[N_REG_CLASSES];
 
 
/* Saved value of the previous array.  */
/* Saved value of the previous array.  */
static int saved_reg_pressure[N_REG_CLASSES];
static int saved_reg_pressure[N_REG_CLASSES];
 
 
/* Register living at given scheduling point.  */
/* Register living at given scheduling point.  */
static bitmap curr_reg_live;
static bitmap curr_reg_live;
 
 
/* Saved value of the previous array.  */
/* Saved value of the previous array.  */
static bitmap saved_reg_live;
static bitmap saved_reg_live;
 
 
/* Registers mentioned in the current region.  */
/* Registers mentioned in the current region.  */
static bitmap region_ref_regs;
static bitmap region_ref_regs;
 
 
/* Initiate register pressure relative info for scheduling the current
/* Initiate register pressure relative info for scheduling the current
   region.  Currently it is only clearing register mentioned in the
   region.  Currently it is only clearing register mentioned in the
   current region.  */
   current region.  */
void
void
sched_init_region_reg_pressure_info (void)
sched_init_region_reg_pressure_info (void)
{
{
  bitmap_clear (region_ref_regs);
  bitmap_clear (region_ref_regs);
}
}
 
 
/* Update current register pressure related info after birth (if
/* Update current register pressure related info after birth (if
   BIRTH_P) or death of register REGNO.  */
   BIRTH_P) or death of register REGNO.  */
static void
static void
mark_regno_birth_or_death (int regno, bool birth_p)
mark_regno_birth_or_death (int regno, bool birth_p)
{
{
  enum reg_class cover_class;
  enum reg_class cover_class;
 
 
  cover_class = sched_regno_cover_class[regno];
  cover_class = sched_regno_cover_class[regno];
  if (regno >= FIRST_PSEUDO_REGISTER)
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
    {
      if (cover_class != NO_REGS)
      if (cover_class != NO_REGS)
        {
        {
          if (birth_p)
          if (birth_p)
            {
            {
              bitmap_set_bit (curr_reg_live, regno);
              bitmap_set_bit (curr_reg_live, regno);
              curr_reg_pressure[cover_class]
              curr_reg_pressure[cover_class]
                += ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
                += ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
            }
            }
          else
          else
            {
            {
              bitmap_clear_bit (curr_reg_live, regno);
              bitmap_clear_bit (curr_reg_live, regno);
              curr_reg_pressure[cover_class]
              curr_reg_pressure[cover_class]
                -= ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
                -= ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
            }
            }
        }
        }
    }
    }
  else if (cover_class != NO_REGS
  else if (cover_class != NO_REGS
           && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
           && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
    {
    {
      if (birth_p)
      if (birth_p)
        {
        {
          bitmap_set_bit (curr_reg_live, regno);
          bitmap_set_bit (curr_reg_live, regno);
          curr_reg_pressure[cover_class]++;
          curr_reg_pressure[cover_class]++;
        }
        }
      else
      else
        {
        {
          bitmap_clear_bit (curr_reg_live, regno);
          bitmap_clear_bit (curr_reg_live, regno);
          curr_reg_pressure[cover_class]--;
          curr_reg_pressure[cover_class]--;
        }
        }
    }
    }
}
}
 
 
/* Initiate current register pressure related info from living
/* Initiate current register pressure related info from living
   registers given by LIVE.  */
   registers given by LIVE.  */
static void
static void
initiate_reg_pressure_info (bitmap live)
initiate_reg_pressure_info (bitmap live)
{
{
  int i;
  int i;
  unsigned int j;
  unsigned int j;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    curr_reg_pressure[ira_reg_class_cover[i]] = 0;
    curr_reg_pressure[ira_reg_class_cover[i]] = 0;
  bitmap_clear (curr_reg_live);
  bitmap_clear (curr_reg_live);
  EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
  EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
    if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
    if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
      mark_regno_birth_or_death (j, true);
      mark_regno_birth_or_death (j, true);
}
}
 
 
/* Mark registers in X as mentioned in the current region.  */
/* Mark registers in X as mentioned in the current region.  */
static void
static void
setup_ref_regs (rtx x)
setup_ref_regs (rtx x)
{
{
  int i, j, regno;
  int i, j, regno;
  const RTX_CODE code = GET_CODE (x);
  const RTX_CODE code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
 
 
  if (REG_P (x))
  if (REG_P (x))
    {
    {
      regno = REGNO (x);
      regno = REGNO (x);
      if (regno >= FIRST_PSEUDO_REGISTER)
      if (regno >= FIRST_PSEUDO_REGISTER)
        bitmap_set_bit (region_ref_regs, REGNO (x));
        bitmap_set_bit (region_ref_regs, REGNO (x));
      else
      else
        for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
        for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
          bitmap_set_bit (region_ref_regs, regno + i);
          bitmap_set_bit (region_ref_regs, regno + i);
      return;
      return;
    }
    }
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
    if (fmt[i] == 'e')
      setup_ref_regs (XEXP (x, i));
      setup_ref_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
    else if (fmt[i] == 'E')
      {
      {
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          setup_ref_regs (XVECEXP (x, i, j));
          setup_ref_regs (XVECEXP (x, i, j));
      }
      }
}
}
 
 
/* Initiate current register pressure related info at the start of
/* Initiate current register pressure related info at the start of
   basic block BB.  */
   basic block BB.  */
static void
static void
initiate_bb_reg_pressure_info (basic_block bb)
initiate_bb_reg_pressure_info (basic_block bb)
{
{
  /* JPB 1-Sep-10: Fixed warning. */
  /* JPB 1-Sep-10: Fixed warning. */
#ifdef EH_RETURN_DATA_REGNO
#ifdef EH_RETURN_DATA_REGNO
  unsigned int i;
  unsigned int i;
#endif
#endif
  rtx insn;
  rtx insn;
 
 
  if (current_nr_blocks > 1)
  if (current_nr_blocks > 1)
    FOR_BB_INSNS (bb, insn)
    FOR_BB_INSNS (bb, insn)
      if (NONDEBUG_INSN_P (insn))
      if (NONDEBUG_INSN_P (insn))
        setup_ref_regs (PATTERN (insn));
        setup_ref_regs (PATTERN (insn));
  initiate_reg_pressure_info (df_get_live_in (bb));
  initiate_reg_pressure_info (df_get_live_in (bb));
#ifdef EH_RETURN_DATA_REGNO
#ifdef EH_RETURN_DATA_REGNO
  if (bb_has_eh_pred (bb))
  if (bb_has_eh_pred (bb))
    for (i = 0; ; ++i)
    for (i = 0; ; ++i)
      {
      {
        unsigned int regno = EH_RETURN_DATA_REGNO (i);
        unsigned int regno = EH_RETURN_DATA_REGNO (i);
 
 
        if (regno == INVALID_REGNUM)
        if (regno == INVALID_REGNUM)
          break;
          break;
        if (! bitmap_bit_p (df_get_live_in (bb), regno))
        if (! bitmap_bit_p (df_get_live_in (bb), regno))
          mark_regno_birth_or_death (regno, true);
          mark_regno_birth_or_death (regno, true);
      }
      }
#endif
#endif
}
}
 
 
/* Save current register pressure related info.  */
/* Save current register pressure related info.  */
static void
static void
save_reg_pressure (void)
save_reg_pressure (void)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    saved_reg_pressure[ira_reg_class_cover[i]]
    saved_reg_pressure[ira_reg_class_cover[i]]
      = curr_reg_pressure[ira_reg_class_cover[i]];
      = curr_reg_pressure[ira_reg_class_cover[i]];
  bitmap_copy (saved_reg_live, curr_reg_live);
  bitmap_copy (saved_reg_live, curr_reg_live);
}
}
 
 
/* Restore saved register pressure related info.  */
/* Restore saved register pressure related info.  */
static void
static void
restore_reg_pressure (void)
restore_reg_pressure (void)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    curr_reg_pressure[ira_reg_class_cover[i]]
    curr_reg_pressure[ira_reg_class_cover[i]]
      = saved_reg_pressure[ira_reg_class_cover[i]];
      = saved_reg_pressure[ira_reg_class_cover[i]];
  bitmap_copy (curr_reg_live, saved_reg_live);
  bitmap_copy (curr_reg_live, saved_reg_live);
}
}
 
 
/* Return TRUE if the register is dying after its USE.  */
/* Return TRUE if the register is dying after its USE.  */
static bool
static bool
dying_use_p (struct reg_use_data *use)
dying_use_p (struct reg_use_data *use)
{
{
  struct reg_use_data *next;
  struct reg_use_data *next;
 
 
  for (next = use->next_regno_use; next != use; next = next->next_regno_use)
  for (next = use->next_regno_use; next != use; next = next->next_regno_use)
    if (NONDEBUG_INSN_P (next->insn)
    if (NONDEBUG_INSN_P (next->insn)
        && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
        && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
      return false;
      return false;
  return true;
  return true;
}
}
 
 
/* Print info about the current register pressure and its excess for
/* Print info about the current register pressure and its excess for
   each cover class.  */
   each cover class.  */
static void
static void
print_curr_reg_pressure (void)
print_curr_reg_pressure (void)
{
{
  int i;
  int i;
  enum reg_class cl;
  enum reg_class cl;
 
 
  fprintf (sched_dump, ";;\t");
  fprintf (sched_dump, ";;\t");
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    {
    {
      cl = ira_reg_class_cover[i];
      cl = ira_reg_class_cover[i];
      gcc_assert (curr_reg_pressure[cl] >= 0);
      gcc_assert (curr_reg_pressure[cl] >= 0);
      fprintf (sched_dump, "  %s:%d(%d)", reg_class_names[cl],
      fprintf (sched_dump, "  %s:%d(%d)", reg_class_names[cl],
               curr_reg_pressure[cl],
               curr_reg_pressure[cl],
               curr_reg_pressure[cl] - ira_available_class_regs[cl]);
               curr_reg_pressure[cl] - ira_available_class_regs[cl]);
    }
    }
  fprintf (sched_dump, "\n");
  fprintf (sched_dump, "\n");
}
}
 
 
/* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
/* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
   so that insns independent of the last scheduled insn will be preferred
   so that insns independent of the last scheduled insn will be preferred
   over dependent instructions.  */
   over dependent instructions.  */
 
 
static rtx last_scheduled_insn;
static rtx last_scheduled_insn;
 
 
/* Cached cost of the instruction.  Use below function to get cost of the
/* Cached cost of the instruction.  Use below function to get cost of the
   insn.  -1 here means that the field is not initialized.  */
   insn.  -1 here means that the field is not initialized.  */
#define INSN_COST(INSN) (HID (INSN)->cost)
#define INSN_COST(INSN) (HID (INSN)->cost)
 
 
/* Compute cost of executing INSN.
/* Compute cost of executing INSN.
   This is the number of cycles between instruction issue and
   This is the number of cycles between instruction issue and
   instruction results.  */
   instruction results.  */
int
int
insn_cost (rtx insn)
insn_cost (rtx insn)
{
{
  int cost;
  int cost;
 
 
  if (sel_sched_p ())
  if (sel_sched_p ())
    {
    {
      if (recog_memoized (insn) < 0)
      if (recog_memoized (insn) < 0)
        return 0;
        return 0;
 
 
      cost = insn_default_latency (insn);
      cost = insn_default_latency (insn);
      if (cost < 0)
      if (cost < 0)
        cost = 0;
        cost = 0;
 
 
      return cost;
      return cost;
    }
    }
 
 
  cost = INSN_COST (insn);
  cost = INSN_COST (insn);
 
 
  if (cost < 0)
  if (cost < 0)
    {
    {
      /* A USE insn, or something else we don't need to
      /* A USE insn, or something else we don't need to
         understand.  We can't pass these directly to
         understand.  We can't pass these directly to
         result_ready_cost or insn_default_latency because it will
         result_ready_cost or insn_default_latency because it will
         trigger a fatal error for unrecognizable insns.  */
         trigger a fatal error for unrecognizable insns.  */
      if (recog_memoized (insn) < 0)
      if (recog_memoized (insn) < 0)
        {
        {
          INSN_COST (insn) = 0;
          INSN_COST (insn) = 0;
          return 0;
          return 0;
        }
        }
      else
      else
        {
        {
          cost = insn_default_latency (insn);
          cost = insn_default_latency (insn);
          if (cost < 0)
          if (cost < 0)
            cost = 0;
            cost = 0;
 
 
          INSN_COST (insn) = cost;
          INSN_COST (insn) = cost;
        }
        }
    }
    }
 
 
  return cost;
  return cost;
}
}
 
 
/* Compute cost of dependence LINK.
/* Compute cost of dependence LINK.
   This is the number of cycles between instruction issue and
   This is the number of cycles between instruction issue and
   instruction results.
   instruction results.
   ??? We also use this function to call recog_memoized on all insns.  */
   ??? We also use this function to call recog_memoized on all insns.  */
int
int
dep_cost_1 (dep_t link, dw_t dw)
dep_cost_1 (dep_t link, dw_t dw)
{
{
  rtx insn = DEP_PRO (link);
  rtx insn = DEP_PRO (link);
  rtx used = DEP_CON (link);
  rtx used = DEP_CON (link);
  int cost;
  int cost;
 
 
  /* A USE insn should never require the value used to be computed.
  /* A USE insn should never require the value used to be computed.
     This allows the computation of a function's result and parameter
     This allows the computation of a function's result and parameter
     values to overlap the return and call.  We don't care about the
     values to overlap the return and call.  We don't care about the
     the dependence cost when only decreasing register pressure.  */
     the dependence cost when only decreasing register pressure.  */
  if (recog_memoized (used) < 0)
  if (recog_memoized (used) < 0)
    {
    {
      cost = 0;
      cost = 0;
      recog_memoized (insn);
      recog_memoized (insn);
    }
    }
  else
  else
    {
    {
      enum reg_note dep_type = DEP_TYPE (link);
      enum reg_note dep_type = DEP_TYPE (link);
 
 
      cost = insn_cost (insn);
      cost = insn_cost (insn);
 
 
      if (INSN_CODE (insn) >= 0)
      if (INSN_CODE (insn) >= 0)
        {
        {
          if (dep_type == REG_DEP_ANTI)
          if (dep_type == REG_DEP_ANTI)
            cost = 0;
            cost = 0;
          else if (dep_type == REG_DEP_OUTPUT)
          else if (dep_type == REG_DEP_OUTPUT)
            {
            {
              cost = (insn_default_latency (insn)
              cost = (insn_default_latency (insn)
                      - insn_default_latency (used));
                      - insn_default_latency (used));
              if (cost <= 0)
              if (cost <= 0)
                cost = 1;
                cost = 1;
            }
            }
          else if (bypass_p (insn))
          else if (bypass_p (insn))
            cost = insn_latency (insn, used);
            cost = insn_latency (insn, used);
        }
        }
 
 
 
 
      if (targetm.sched.adjust_cost_2)
      if (targetm.sched.adjust_cost_2)
        cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
        cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
                                            dw);
                                            dw);
      else if (targetm.sched.adjust_cost != NULL)
      else if (targetm.sched.adjust_cost != NULL)
        {
        {
          /* This variable is used for backward compatibility with the
          /* This variable is used for backward compatibility with the
             targets.  */
             targets.  */
          rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
          rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
 
 
          /* Make it self-cycled, so that if some tries to walk over this
          /* Make it self-cycled, so that if some tries to walk over this
             incomplete list he/she will be caught in an endless loop.  */
             incomplete list he/she will be caught in an endless loop.  */
          XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
          XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
 
 
          /* Targets use only REG_NOTE_KIND of the link.  */
          /* Targets use only REG_NOTE_KIND of the link.  */
          PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
          PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
 
 
          cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
          cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
                                            insn, cost);
                                            insn, cost);
 
 
          free_INSN_LIST_node (dep_cost_rtx_link);
          free_INSN_LIST_node (dep_cost_rtx_link);
        }
        }
 
 
      if (cost < 0)
      if (cost < 0)
        cost = 0;
        cost = 0;
    }
    }
 
 
  return cost;
  return cost;
}
}
 
 
/* Compute cost of dependence LINK.
/* Compute cost of dependence LINK.
   This is the number of cycles between instruction issue and
   This is the number of cycles between instruction issue and
   instruction results.  */
   instruction results.  */
int
int
dep_cost (dep_t link)
dep_cost (dep_t link)
{
{
  return dep_cost_1 (link, 0);
  return dep_cost_1 (link, 0);
}
}
 
 
/* Use this sel-sched.c friendly function in reorder2 instead of increasing
/* Use this sel-sched.c friendly function in reorder2 instead of increasing
   INSN_PRIORITY explicitly.  */
   INSN_PRIORITY explicitly.  */
void
void
increase_insn_priority (rtx insn, int amount)
increase_insn_priority (rtx insn, int amount)
{
{
  if (!sel_sched_p ())
  if (!sel_sched_p ())
    {
    {
      /* We're dealing with haifa-sched.c INSN_PRIORITY.  */
      /* We're dealing with haifa-sched.c INSN_PRIORITY.  */
      if (INSN_PRIORITY_KNOWN (insn))
      if (INSN_PRIORITY_KNOWN (insn))
          INSN_PRIORITY (insn) += amount;
          INSN_PRIORITY (insn) += amount;
    }
    }
  else
  else
    {
    {
      /* In sel-sched.c INSN_PRIORITY is not kept up to date.
      /* In sel-sched.c INSN_PRIORITY is not kept up to date.
         Use EXPR_PRIORITY instead. */
         Use EXPR_PRIORITY instead. */
      sel_add_to_insn_priority (insn, amount);
      sel_add_to_insn_priority (insn, amount);
    }
    }
}
}
 
 
/* Return 'true' if DEP should be included in priority calculations.  */
/* Return 'true' if DEP should be included in priority calculations.  */
static bool
static bool
contributes_to_priority_p (dep_t dep)
contributes_to_priority_p (dep_t dep)
{
{
  if (DEBUG_INSN_P (DEP_CON (dep))
  if (DEBUG_INSN_P (DEP_CON (dep))
      || DEBUG_INSN_P (DEP_PRO (dep)))
      || DEBUG_INSN_P (DEP_PRO (dep)))
    return false;
    return false;
 
 
  /* Critical path is meaningful in block boundaries only.  */
  /* Critical path is meaningful in block boundaries only.  */
  if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
  if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
                                                    DEP_PRO (dep)))
                                                    DEP_PRO (dep)))
    return false;
    return false;
 
 
  /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
  /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
     then speculative instructions will less likely be
     then speculative instructions will less likely be
     scheduled.  That is because the priority of
     scheduled.  That is because the priority of
     their producers will increase, and, thus, the
     their producers will increase, and, thus, the
     producers will more likely be scheduled, thus,
     producers will more likely be scheduled, thus,
     resolving the dependence.  */
     resolving the dependence.  */
  if (sched_deps_info->generate_spec_deps
  if (sched_deps_info->generate_spec_deps
      && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
      && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
      && (DEP_STATUS (dep) & SPECULATIVE))
      && (DEP_STATUS (dep) & SPECULATIVE))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Compute the number of nondebug forward deps of an insn.  */
/* Compute the number of nondebug forward deps of an insn.  */
 
 
static int
static int
dep_list_size (rtx insn)
dep_list_size (rtx insn)
{
{
  sd_iterator_def sd_it;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_t dep;
  int dbgcount = 0, nodbgcount = 0;
  int dbgcount = 0, nodbgcount = 0;
 
 
  if (!MAY_HAVE_DEBUG_INSNS)
  if (!MAY_HAVE_DEBUG_INSNS)
    return sd_lists_size (insn, SD_LIST_FORW);
    return sd_lists_size (insn, SD_LIST_FORW);
 
 
  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
    {
    {
      if (DEBUG_INSN_P (DEP_CON (dep)))
      if (DEBUG_INSN_P (DEP_CON (dep)))
        dbgcount++;
        dbgcount++;
      else if (!DEBUG_INSN_P (DEP_PRO (dep)))
      else if (!DEBUG_INSN_P (DEP_PRO (dep)))
        nodbgcount++;
        nodbgcount++;
    }
    }
 
 
  gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
  gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
 
 
  return nodbgcount;
  return nodbgcount;
}
}
 
 
/* Compute the priority number for INSN.  */
/* Compute the priority number for INSN.  */
static int
static int
priority (rtx insn)
priority (rtx insn)
{
{
  if (! INSN_P (insn))
  if (! INSN_P (insn))
    return 0;
    return 0;
 
 
  /* We should not be interested in priority of an already scheduled insn.  */
  /* We should not be interested in priority of an already scheduled insn.  */
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
 
 
  if (!INSN_PRIORITY_KNOWN (insn))
  if (!INSN_PRIORITY_KNOWN (insn))
    {
    {
      int this_priority = -1;
      int this_priority = -1;
 
 
      if (dep_list_size (insn) == 0)
      if (dep_list_size (insn) == 0)
        /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
        /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
           some forward deps but all of them are ignored by
           some forward deps but all of them are ignored by
           contributes_to_priority hook.  At the moment we set priority of
           contributes_to_priority hook.  At the moment we set priority of
           such insn to 0.  */
           such insn to 0.  */
        this_priority = insn_cost (insn);
        this_priority = insn_cost (insn);
      else
      else
        {
        {
          rtx prev_first, twin;
          rtx prev_first, twin;
          basic_block rec;
          basic_block rec;
 
 
          /* For recovery check instructions we calculate priority slightly
          /* For recovery check instructions we calculate priority slightly
             different than that of normal instructions.  Instead of walking
             different than that of normal instructions.  Instead of walking
             through INSN_FORW_DEPS (check) list, we walk through
             through INSN_FORW_DEPS (check) list, we walk through
             INSN_FORW_DEPS list of each instruction in the corresponding
             INSN_FORW_DEPS list of each instruction in the corresponding
             recovery block.  */
             recovery block.  */
 
 
          /* Selective scheduling does not define RECOVERY_BLOCK macro.  */
          /* Selective scheduling does not define RECOVERY_BLOCK macro.  */
          rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
          rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
          if (!rec || rec == EXIT_BLOCK_PTR)
          if (!rec || rec == EXIT_BLOCK_PTR)
            {
            {
              prev_first = PREV_INSN (insn);
              prev_first = PREV_INSN (insn);
              twin = insn;
              twin = insn;
            }
            }
          else
          else
            {
            {
              prev_first = NEXT_INSN (BB_HEAD (rec));
              prev_first = NEXT_INSN (BB_HEAD (rec));
              twin = PREV_INSN (BB_END (rec));
              twin = PREV_INSN (BB_END (rec));
            }
            }
 
 
          do
          do
            {
            {
              sd_iterator_def sd_it;
              sd_iterator_def sd_it;
              dep_t dep;
              dep_t dep;
 
 
              FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
              FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
                {
                {
                  rtx next;
                  rtx next;
                  int next_priority;
                  int next_priority;
 
 
                  next = DEP_CON (dep);
                  next = DEP_CON (dep);
 
 
                  if (BLOCK_FOR_INSN (next) != rec)
                  if (BLOCK_FOR_INSN (next) != rec)
                    {
                    {
                      int cost;
                      int cost;
 
 
                      if (!contributes_to_priority_p (dep))
                      if (!contributes_to_priority_p (dep))
                        continue;
                        continue;
 
 
                      if (twin == insn)
                      if (twin == insn)
                        cost = dep_cost (dep);
                        cost = dep_cost (dep);
                      else
                      else
                        {
                        {
                          struct _dep _dep1, *dep1 = &_dep1;
                          struct _dep _dep1, *dep1 = &_dep1;
 
 
                          init_dep (dep1, insn, next, REG_DEP_ANTI);
                          init_dep (dep1, insn, next, REG_DEP_ANTI);
 
 
                          cost = dep_cost (dep1);
                          cost = dep_cost (dep1);
                        }
                        }
 
 
                      next_priority = cost + priority (next);
                      next_priority = cost + priority (next);
 
 
                      if (next_priority > this_priority)
                      if (next_priority > this_priority)
                        this_priority = next_priority;
                        this_priority = next_priority;
                    }
                    }
                }
                }
 
 
              twin = PREV_INSN (twin);
              twin = PREV_INSN (twin);
            }
            }
          while (twin != prev_first);
          while (twin != prev_first);
        }
        }
 
 
      if (this_priority < 0)
      if (this_priority < 0)
        {
        {
          gcc_assert (this_priority == -1);
          gcc_assert (this_priority == -1);
 
 
          this_priority = insn_cost (insn);
          this_priority = insn_cost (insn);
        }
        }
 
 
      INSN_PRIORITY (insn) = this_priority;
      INSN_PRIORITY (insn) = this_priority;
      INSN_PRIORITY_STATUS (insn) = 1;
      INSN_PRIORITY_STATUS (insn) = 1;
    }
    }
 
 
  return INSN_PRIORITY (insn);
  return INSN_PRIORITY (insn);
}
}


/* Macros and functions for keeping the priority queue sorted, and
/* Macros and functions for keeping the priority queue sorted, and
   dealing with queuing and dequeuing of instructions.  */
   dealing with queuing and dequeuing of instructions.  */
 
 
#define SCHED_SORT(READY, N_READY)                                   \
#define SCHED_SORT(READY, N_READY)                                   \
do { if ((N_READY) == 2)                                             \
do { if ((N_READY) == 2)                                             \
       swap_sort (READY, N_READY);                                   \
       swap_sort (READY, N_READY);                                   \
     else if ((N_READY) > 2)                                         \
     else if ((N_READY) > 2)                                         \
         qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
         qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
while (0)
while (0)
 
 
/* Setup info about the current register pressure impact of scheduling
/* Setup info about the current register pressure impact of scheduling
   INSN at the current scheduling point.  */
   INSN at the current scheduling point.  */
static void
static void
setup_insn_reg_pressure_info (rtx insn)
setup_insn_reg_pressure_info (rtx insn)
{
{
  int i, change, before, after, hard_regno;
  int i, change, before, after, hard_regno;
  int excess_cost_change;
  int excess_cost_change;
  enum machine_mode mode;
  enum machine_mode mode;
  enum reg_class cl;
  enum reg_class cl;
  struct reg_pressure_data *pressure_info;
  struct reg_pressure_data *pressure_info;
  int *max_reg_pressure;
  int *max_reg_pressure;
  struct reg_use_data *use;
  struct reg_use_data *use;
  static int death[N_REG_CLASSES];
  static int death[N_REG_CLASSES];
 
 
  excess_cost_change = 0;
  excess_cost_change = 0;
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    death[ira_reg_class_cover[i]] = 0;
    death[ira_reg_class_cover[i]] = 0;
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
    if (dying_use_p (use))
    if (dying_use_p (use))
      {
      {
        cl = sched_regno_cover_class[use->regno];
        cl = sched_regno_cover_class[use->regno];
        if (use->regno < FIRST_PSEUDO_REGISTER)
        if (use->regno < FIRST_PSEUDO_REGISTER)
          death[cl]++;
          death[cl]++;
        else
        else
          death[cl] += ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
          death[cl] += ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
      }
      }
  pressure_info = INSN_REG_PRESSURE (insn);
  pressure_info = INSN_REG_PRESSURE (insn);
  max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
  max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
  gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
  gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    {
    {
      cl = ira_reg_class_cover[i];
      cl = ira_reg_class_cover[i];
      gcc_assert (curr_reg_pressure[cl] >= 0);
      gcc_assert (curr_reg_pressure[cl] >= 0);
      change = (int) pressure_info[i].set_increase - death[cl];
      change = (int) pressure_info[i].set_increase - death[cl];
      before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
      before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
      after = MAX (0, max_reg_pressure[i] + change
      after = MAX (0, max_reg_pressure[i] + change
                   - ira_available_class_regs[cl]);
                   - ira_available_class_regs[cl]);
      hard_regno = ira_class_hard_regs[cl][0];
      hard_regno = ira_class_hard_regs[cl][0];
      gcc_assert (hard_regno >= 0);
      gcc_assert (hard_regno >= 0);
      mode = reg_raw_mode[hard_regno];
      mode = reg_raw_mode[hard_regno];
      excess_cost_change += ((after - before)
      excess_cost_change += ((after - before)
                             * (ira_memory_move_cost[mode][cl][0]
                             * (ira_memory_move_cost[mode][cl][0]
                                + ira_memory_move_cost[mode][cl][1]));
                                + ira_memory_move_cost[mode][cl][1]));
    }
    }
  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
}
}
 
 
/* Returns a positive value if x is preferred; returns a negative value if
/* Returns a positive value if x is preferred; returns a negative value if
   y is preferred.  Should never return 0, since that will make the sort
   y is preferred.  Should never return 0, since that will make the sort
   unstable.  */
   unstable.  */
 
 
static int
static int
rank_for_schedule (const void *x, const void *y)
rank_for_schedule (const void *x, const void *y)
{
{
  rtx tmp = *(const rtx *) y;
  rtx tmp = *(const rtx *) y;
  rtx tmp2 = *(const rtx *) x;
  rtx tmp2 = *(const rtx *) x;
  rtx last;
  rtx last;
  int tmp_class, tmp2_class;
  int tmp_class, tmp2_class;
  int val, priority_val, info_val;
  int val, priority_val, info_val;
 
 
  if (MAY_HAVE_DEBUG_INSNS)
  if (MAY_HAVE_DEBUG_INSNS)
    {
    {
      /* Schedule debug insns as early as possible.  */
      /* Schedule debug insns as early as possible.  */
      if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
      if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
        return -1;
        return -1;
      else if (DEBUG_INSN_P (tmp2))
      else if (DEBUG_INSN_P (tmp2))
        return 1;
        return 1;
    }
    }
 
 
  /* The insn in a schedule group should be issued the first.  */
  /* The insn in a schedule group should be issued the first.  */
  if (flag_sched_group_heuristic &&
  if (flag_sched_group_heuristic &&
      SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
      SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
    return SCHED_GROUP_P (tmp2) ? 1 : -1;
    return SCHED_GROUP_P (tmp2) ? 1 : -1;
 
 
  /* Make sure that priority of TMP and TMP2 are initialized.  */
  /* Make sure that priority of TMP and TMP2 are initialized.  */
  gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
  gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
 
 
  if (sched_pressure_p)
  if (sched_pressure_p)
    {
    {
      int diff;
      int diff;
 
 
      /* Prefer insn whose scheduling results in the smallest register
      /* Prefer insn whose scheduling results in the smallest register
         pressure excess.  */
         pressure excess.  */
      if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
      if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
                   + (INSN_TICK (tmp) > clock_var
                   + (INSN_TICK (tmp) > clock_var
                      ? INSN_TICK (tmp) - clock_var : 0)
                      ? INSN_TICK (tmp) - clock_var : 0)
                   - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
                   - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
                   - (INSN_TICK (tmp2) > clock_var
                   - (INSN_TICK (tmp2) > clock_var
                      ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
                      ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
        return diff;
        return diff;
    }
    }
 
 
 
 
  if (sched_pressure_p
  if (sched_pressure_p
      && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
      && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
    {
    {
      if (INSN_TICK (tmp) <= clock_var)
      if (INSN_TICK (tmp) <= clock_var)
        return -1;
        return -1;
      else if (INSN_TICK (tmp2) <= clock_var)
      else if (INSN_TICK (tmp2) <= clock_var)
        return 1;
        return 1;
      else
      else
        return INSN_TICK (tmp) - INSN_TICK (tmp2);
        return INSN_TICK (tmp) - INSN_TICK (tmp2);
    }
    }
  /* Prefer insn with higher priority.  */
  /* Prefer insn with higher priority.  */
  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
 
 
  if (flag_sched_critical_path_heuristic && priority_val)
  if (flag_sched_critical_path_heuristic && priority_val)
    return priority_val;
    return priority_val;
 
 
  /* Prefer speculative insn with greater dependencies weakness.  */
  /* Prefer speculative insn with greater dependencies weakness.  */
  if (flag_sched_spec_insn_heuristic && spec_info)
  if (flag_sched_spec_insn_heuristic && spec_info)
    {
    {
      ds_t ds1, ds2;
      ds_t ds1, ds2;
      dw_t dw1, dw2;
      dw_t dw1, dw2;
      int dw;
      int dw;
 
 
      ds1 = TODO_SPEC (tmp) & SPECULATIVE;
      ds1 = TODO_SPEC (tmp) & SPECULATIVE;
      if (ds1)
      if (ds1)
        dw1 = ds_weak (ds1);
        dw1 = ds_weak (ds1);
      else
      else
        dw1 = NO_DEP_WEAK;
        dw1 = NO_DEP_WEAK;
 
 
      ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
      ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
      if (ds2)
      if (ds2)
        dw2 = ds_weak (ds2);
        dw2 = ds_weak (ds2);
      else
      else
        dw2 = NO_DEP_WEAK;
        dw2 = NO_DEP_WEAK;
 
 
      dw = dw2 - dw1;
      dw = dw2 - dw1;
      if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
      if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
        return dw;
        return dw;
    }
    }
 
 
  info_val = (*current_sched_info->rank) (tmp, tmp2);
  info_val = (*current_sched_info->rank) (tmp, tmp2);
  if(flag_sched_rank_heuristic && info_val)
  if(flag_sched_rank_heuristic && info_val)
    return info_val;
    return info_val;
 
 
  if (flag_sched_last_insn_heuristic)
  if (flag_sched_last_insn_heuristic)
    {
    {
      last = last_scheduled_insn;
      last = last_scheduled_insn;
 
 
      if (DEBUG_INSN_P (last) && last != current_sched_info->prev_head)
      if (DEBUG_INSN_P (last) && last != current_sched_info->prev_head)
        do
        do
          last = PREV_INSN (last);
          last = PREV_INSN (last);
        while (!NONDEBUG_INSN_P (last)
        while (!NONDEBUG_INSN_P (last)
               && last != current_sched_info->prev_head);
               && last != current_sched_info->prev_head);
    }
    }
 
 
  /* Compare insns based on their relation to the last scheduled
  /* Compare insns based on their relation to the last scheduled
     non-debug insn.  */
     non-debug insn.  */
  if (flag_sched_last_insn_heuristic && NONDEBUG_INSN_P (last))
  if (flag_sched_last_insn_heuristic && NONDEBUG_INSN_P (last))
    {
    {
      dep_t dep1;
      dep_t dep1;
      dep_t dep2;
      dep_t dep2;
 
 
      /* Classify the instructions into three classes:
      /* Classify the instructions into three classes:
         1) Data dependent on last schedule insn.
         1) Data dependent on last schedule insn.
         2) Anti/Output dependent on last scheduled insn.
         2) Anti/Output dependent on last scheduled insn.
         3) Independent of last scheduled insn, or has latency of one.
         3) Independent of last scheduled insn, or has latency of one.
         Choose the insn from the highest numbered class if different.  */
         Choose the insn from the highest numbered class if different.  */
      dep1 = sd_find_dep_between (last, tmp, true);
      dep1 = sd_find_dep_between (last, tmp, true);
 
 
      if (dep1 == NULL || dep_cost (dep1) == 1)
      if (dep1 == NULL || dep_cost (dep1) == 1)
        tmp_class = 3;
        tmp_class = 3;
      else if (/* Data dependence.  */
      else if (/* Data dependence.  */
               DEP_TYPE (dep1) == REG_DEP_TRUE)
               DEP_TYPE (dep1) == REG_DEP_TRUE)
        tmp_class = 1;
        tmp_class = 1;
      else
      else
        tmp_class = 2;
        tmp_class = 2;
 
 
      dep2 = sd_find_dep_between (last, tmp2, true);
      dep2 = sd_find_dep_between (last, tmp2, true);
 
 
      if (dep2 == NULL || dep_cost (dep2)  == 1)
      if (dep2 == NULL || dep_cost (dep2)  == 1)
        tmp2_class = 3;
        tmp2_class = 3;
      else if (/* Data dependence.  */
      else if (/* Data dependence.  */
               DEP_TYPE (dep2) == REG_DEP_TRUE)
               DEP_TYPE (dep2) == REG_DEP_TRUE)
        tmp2_class = 1;
        tmp2_class = 1;
      else
      else
        tmp2_class = 2;
        tmp2_class = 2;
 
 
      if ((val = tmp2_class - tmp_class))
      if ((val = tmp2_class - tmp_class))
        return val;
        return val;
    }
    }
 
 
  /* Prefer the insn which has more later insns that depend on it.
  /* Prefer the insn which has more later insns that depend on it.
     This gives the scheduler more freedom when scheduling later
     This gives the scheduler more freedom when scheduling later
     instructions at the expense of added register pressure.  */
     instructions at the expense of added register pressure.  */
 
 
  val = (dep_list_size (tmp2) - dep_list_size (tmp));
  val = (dep_list_size (tmp2) - dep_list_size (tmp));
 
 
  if (flag_sched_dep_count_heuristic && val != 0)
  if (flag_sched_dep_count_heuristic && val != 0)
    return val;
    return val;
 
 
  /* If insns are equally good, sort by INSN_LUID (original insn order),
  /* If insns are equally good, sort by INSN_LUID (original insn order),
     so that we make the sort stable.  This minimizes instruction movement,
     so that we make the sort stable.  This minimizes instruction movement,
     thus minimizing sched's effect on debugging and cross-jumping.  */
     thus minimizing sched's effect on debugging and cross-jumping.  */
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
}
}
 
 
/* Resort the array A in which only element at index N may be out of order.  */
/* Resort the array A in which only element at index N may be out of order.  */
 
 
HAIFA_INLINE static void
HAIFA_INLINE static void
swap_sort (rtx *a, int n)
swap_sort (rtx *a, int n)
{
{
  rtx insn = a[n - 1];
  rtx insn = a[n - 1];
  int i = n - 2;
  int i = n - 2;
 
 
  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
    {
    {
      a[i + 1] = a[i];
      a[i + 1] = a[i];
      i -= 1;
      i -= 1;
    }
    }
  a[i + 1] = insn;
  a[i + 1] = insn;
}
}
 
 
/* Add INSN to the insn queue so that it can be executed at least
/* Add INSN to the insn queue so that it can be executed at least
   N_CYCLES after the currently executing insn.  Preserve insns
   N_CYCLES after the currently executing insn.  Preserve insns
   chain for debugging purposes.  */
   chain for debugging purposes.  */
 
 
HAIFA_INLINE static void
HAIFA_INLINE static void
queue_insn (rtx insn, int n_cycles)
queue_insn (rtx insn, int n_cycles)
{
{
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
  rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
  rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
 
 
  gcc_assert (n_cycles <= max_insn_queue_index);
  gcc_assert (n_cycles <= max_insn_queue_index);
  gcc_assert (!DEBUG_INSN_P (insn));
  gcc_assert (!DEBUG_INSN_P (insn));
 
 
  insn_queue[next_q] = link;
  insn_queue[next_q] = link;
  q_size += 1;
  q_size += 1;
 
 
  if (sched_verbose >= 2)
  if (sched_verbose >= 2)
    {
    {
      fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
      fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
               (*current_sched_info->print_insn) (insn, 0));
               (*current_sched_info->print_insn) (insn, 0));
 
 
      fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
      fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
    }
    }
 
 
  QUEUE_INDEX (insn) = next_q;
  QUEUE_INDEX (insn) = next_q;
}
}
 
 
/* Remove INSN from queue.  */
/* Remove INSN from queue.  */
static void
static void
queue_remove (rtx insn)
queue_remove (rtx insn)
{
{
  gcc_assert (QUEUE_INDEX (insn) >= 0);
  gcc_assert (QUEUE_INDEX (insn) >= 0);
  remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
  remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
  q_size--;
  q_size--;
  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
}
}
 
 
/* Return a pointer to the bottom of the ready list, i.e. the insn
/* Return a pointer to the bottom of the ready list, i.e. the insn
   with the lowest priority.  */
   with the lowest priority.  */
 
 
rtx *
rtx *
ready_lastpos (struct ready_list *ready)
ready_lastpos (struct ready_list *ready)
{
{
  gcc_assert (ready->n_ready >= 1);
  gcc_assert (ready->n_ready >= 1);
  return ready->vec + ready->first - ready->n_ready + 1;
  return ready->vec + ready->first - ready->n_ready + 1;
}
}
 
 
/* Add an element INSN to the ready list so that it ends up with the
/* Add an element INSN to the ready list so that it ends up with the
   lowest/highest priority depending on FIRST_P.  */
   lowest/highest priority depending on FIRST_P.  */
 
 
HAIFA_INLINE static void
HAIFA_INLINE static void
ready_add (struct ready_list *ready, rtx insn, bool first_p)
ready_add (struct ready_list *ready, rtx insn, bool first_p)
{
{
  if (!first_p)
  if (!first_p)
    {
    {
      if (ready->first == ready->n_ready)
      if (ready->first == ready->n_ready)
        {
        {
          memmove (ready->vec + ready->veclen - ready->n_ready,
          memmove (ready->vec + ready->veclen - ready->n_ready,
                   ready_lastpos (ready),
                   ready_lastpos (ready),
                   ready->n_ready * sizeof (rtx));
                   ready->n_ready * sizeof (rtx));
          ready->first = ready->veclen - 1;
          ready->first = ready->veclen - 1;
        }
        }
      ready->vec[ready->first - ready->n_ready] = insn;
      ready->vec[ready->first - ready->n_ready] = insn;
    }
    }
  else
  else
    {
    {
      if (ready->first == ready->veclen - 1)
      if (ready->first == ready->veclen - 1)
        {
        {
          if (ready->n_ready)
          if (ready->n_ready)
            /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
            /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
            memmove (ready->vec + ready->veclen - ready->n_ready - 1,
            memmove (ready->vec + ready->veclen - ready->n_ready - 1,
                     ready_lastpos (ready),
                     ready_lastpos (ready),
                     ready->n_ready * sizeof (rtx));
                     ready->n_ready * sizeof (rtx));
          ready->first = ready->veclen - 2;
          ready->first = ready->veclen - 2;
        }
        }
      ready->vec[++(ready->first)] = insn;
      ready->vec[++(ready->first)] = insn;
    }
    }
 
 
  ready->n_ready++;
  ready->n_ready++;
  if (DEBUG_INSN_P (insn))
  if (DEBUG_INSN_P (insn))
    ready->n_debug++;
    ready->n_debug++;
 
 
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
  QUEUE_INDEX (insn) = QUEUE_READY;
  QUEUE_INDEX (insn) = QUEUE_READY;
}
}
 
 
/* Remove the element with the highest priority from the ready list and
/* Remove the element with the highest priority from the ready list and
   return it.  */
   return it.  */
 
 
HAIFA_INLINE static rtx
HAIFA_INLINE static rtx
ready_remove_first (struct ready_list *ready)
ready_remove_first (struct ready_list *ready)
{
{
  rtx t;
  rtx t;
 
 
  gcc_assert (ready->n_ready);
  gcc_assert (ready->n_ready);
  t = ready->vec[ready->first--];
  t = ready->vec[ready->first--];
  ready->n_ready--;
  ready->n_ready--;
  if (DEBUG_INSN_P (t))
  if (DEBUG_INSN_P (t))
    ready->n_debug--;
    ready->n_debug--;
  /* If the queue becomes empty, reset it.  */
  /* If the queue becomes empty, reset it.  */
  if (ready->n_ready == 0)
  if (ready->n_ready == 0)
    ready->first = ready->veclen - 1;
    ready->first = ready->veclen - 1;
 
 
  gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
  gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
 
 
  return t;
  return t;
}
}
 
 
/* The following code implements multi-pass scheduling for the first
/* The following code implements multi-pass scheduling for the first
   cycle.  In other words, we will try to choose ready insn which
   cycle.  In other words, we will try to choose ready insn which
   permits to start maximum number of insns on the same cycle.  */
   permits to start maximum number of insns on the same cycle.  */
 
 
/* Return a pointer to the element INDEX from the ready.  INDEX for
/* Return a pointer to the element INDEX from the ready.  INDEX for
   insn with the highest priority is 0, and the lowest priority has
   insn with the highest priority is 0, and the lowest priority has
   N_READY - 1.  */
   N_READY - 1.  */
 
 
rtx
rtx
ready_element (struct ready_list *ready, int index)
ready_element (struct ready_list *ready, int index)
{
{
  gcc_assert (ready->n_ready && index < ready->n_ready);
  gcc_assert (ready->n_ready && index < ready->n_ready);
 
 
  return ready->vec[ready->first - index];
  return ready->vec[ready->first - index];
}
}
 
 
/* Remove the element INDEX from the ready list and return it.  INDEX
/* Remove the element INDEX from the ready list and return it.  INDEX
   for insn with the highest priority is 0, and the lowest priority
   for insn with the highest priority is 0, and the lowest priority
   has N_READY - 1.  */
   has N_READY - 1.  */
 
 
HAIFA_INLINE static rtx
HAIFA_INLINE static rtx
ready_remove (struct ready_list *ready, int index)
ready_remove (struct ready_list *ready, int index)
{
{
  rtx t;
  rtx t;
  int i;
  int i;
 
 
  if (index == 0)
  if (index == 0)
    return ready_remove_first (ready);
    return ready_remove_first (ready);
  gcc_assert (ready->n_ready && index < ready->n_ready);
  gcc_assert (ready->n_ready && index < ready->n_ready);
  t = ready->vec[ready->first - index];
  t = ready->vec[ready->first - index];
  ready->n_ready--;
  ready->n_ready--;
  if (DEBUG_INSN_P (t))
  if (DEBUG_INSN_P (t))
    ready->n_debug--;
    ready->n_debug--;
  for (i = index; i < ready->n_ready; i++)
  for (i = index; i < ready->n_ready; i++)
    ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
    ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
  return t;
  return t;
}
}
 
 
/* Remove INSN from the ready list.  */
/* Remove INSN from the ready list.  */
static void
static void
ready_remove_insn (rtx insn)
ready_remove_insn (rtx insn)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < readyp->n_ready; i++)
  for (i = 0; i < readyp->n_ready; i++)
    if (ready_element (readyp, i) == insn)
    if (ready_element (readyp, i) == insn)
      {
      {
        ready_remove (readyp, i);
        ready_remove (readyp, i);
        return;
        return;
      }
      }
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* Sort the ready list READY by ascending priority, using the SCHED_SORT
/* Sort the ready list READY by ascending priority, using the SCHED_SORT
   macro.  */
   macro.  */
 
 
void
void
ready_sort (struct ready_list *ready)
ready_sort (struct ready_list *ready)
{
{
  int i;
  int i;
  rtx *first = ready_lastpos (ready);
  rtx *first = ready_lastpos (ready);
 
 
  if (sched_pressure_p)
  if (sched_pressure_p)
    {
    {
      for (i = 0; i < ready->n_ready; i++)
      for (i = 0; i < ready->n_ready; i++)
        setup_insn_reg_pressure_info (first[i]);
        setup_insn_reg_pressure_info (first[i]);
    }
    }
  SCHED_SORT (first, ready->n_ready);
  SCHED_SORT (first, ready->n_ready);
}
}
 
 
/* PREV is an insn that is ready to execute.  Adjust its priority if that
/* PREV is an insn that is ready to execute.  Adjust its priority if that
   will help shorten or lengthen register lifetimes as appropriate.  Also
   will help shorten or lengthen register lifetimes as appropriate.  Also
   provide a hook for the target to tweak itself.  */
   provide a hook for the target to tweak itself.  */
 
 
HAIFA_INLINE static void
HAIFA_INLINE static void
adjust_priority (rtx prev)
adjust_priority (rtx prev)
{
{
  /* ??? There used to be code here to try and estimate how an insn
  /* ??? There used to be code here to try and estimate how an insn
     affected register lifetimes, but it did it by looking at REG_DEAD
     affected register lifetimes, but it did it by looking at REG_DEAD
     notes, which we removed in schedule_region.  Nor did it try to
     notes, which we removed in schedule_region.  Nor did it try to
     take into account register pressure or anything useful like that.
     take into account register pressure or anything useful like that.
 
 
     Revisit when we have a machine model to work with and not before.  */
     Revisit when we have a machine model to work with and not before.  */
 
 
  if (targetm.sched.adjust_priority)
  if (targetm.sched.adjust_priority)
    INSN_PRIORITY (prev) =
    INSN_PRIORITY (prev) =
      targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
      targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
}
}
 
 
/* Advance DFA state STATE on one cycle.  */
/* Advance DFA state STATE on one cycle.  */
void
void
advance_state (state_t state)
advance_state (state_t state)
{
{
  if (targetm.sched.dfa_pre_advance_cycle)
  if (targetm.sched.dfa_pre_advance_cycle)
    targetm.sched.dfa_pre_advance_cycle ();
    targetm.sched.dfa_pre_advance_cycle ();
 
 
  if (targetm.sched.dfa_pre_cycle_insn)
  if (targetm.sched.dfa_pre_cycle_insn)
    state_transition (state,
    state_transition (state,
                      targetm.sched.dfa_pre_cycle_insn ());
                      targetm.sched.dfa_pre_cycle_insn ());
 
 
  state_transition (state, NULL);
  state_transition (state, NULL);
 
 
  if (targetm.sched.dfa_post_cycle_insn)
  if (targetm.sched.dfa_post_cycle_insn)
    state_transition (state,
    state_transition (state,
                      targetm.sched.dfa_post_cycle_insn ());
                      targetm.sched.dfa_post_cycle_insn ());
 
 
  if (targetm.sched.dfa_post_advance_cycle)
  if (targetm.sched.dfa_post_advance_cycle)
    targetm.sched.dfa_post_advance_cycle ();
    targetm.sched.dfa_post_advance_cycle ();
}
}
 
 
/* Advance time on one cycle.  */
/* Advance time on one cycle.  */
HAIFA_INLINE static void
HAIFA_INLINE static void
advance_one_cycle (void)
advance_one_cycle (void)
{
{
  advance_state (curr_state);
  advance_state (curr_state);
  if (sched_verbose >= 6)
  if (sched_verbose >= 6)
    fprintf (sched_dump, ";;\tAdvanced a state.\n");
    fprintf (sched_dump, ";;\tAdvanced a state.\n");
}
}
 
 
/* Clock at which the previous instruction was issued.  */
/* Clock at which the previous instruction was issued.  */
static int last_clock_var;
static int last_clock_var;
 
 
/* Update register pressure after scheduling INSN.  */
/* Update register pressure after scheduling INSN.  */
static void
static void
update_register_pressure (rtx insn)
update_register_pressure (rtx insn)
{
{
  struct reg_use_data *use;
  struct reg_use_data *use;
  struct reg_set_data *set;
  struct reg_set_data *set;
 
 
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
    if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
    if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
      mark_regno_birth_or_death (use->regno, false);
      mark_regno_birth_or_death (use->regno, false);
  for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
  for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
    mark_regno_birth_or_death (set->regno, true);
    mark_regno_birth_or_death (set->regno, true);
}
}
 
 
/* Set up or update (if UPDATE_P) max register pressure (see its
/* Set up or update (if UPDATE_P) max register pressure (see its
   meaning in sched-int.h::_haifa_insn_data) for all current BB insns
   meaning in sched-int.h::_haifa_insn_data) for all current BB insns
   after insn AFTER.  */
   after insn AFTER.  */
static void
static void
setup_insn_max_reg_pressure (rtx after, bool update_p)
setup_insn_max_reg_pressure (rtx after, bool update_p)
{
{
  int i, p;
  int i, p;
  bool eq_p;
  bool eq_p;
  rtx insn;
  rtx insn;
  static int max_reg_pressure[N_REG_CLASSES];
  static int max_reg_pressure[N_REG_CLASSES];
 
 
  save_reg_pressure ();
  save_reg_pressure ();
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    max_reg_pressure[ira_reg_class_cover[i]]
    max_reg_pressure[ira_reg_class_cover[i]]
      = curr_reg_pressure[ira_reg_class_cover[i]];
      = curr_reg_pressure[ira_reg_class_cover[i]];
  for (insn = NEXT_INSN (after);
  for (insn = NEXT_INSN (after);
       insn != NULL_RTX && ! BARRIER_P (insn)
       insn != NULL_RTX && ! BARRIER_P (insn)
         && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
         && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
       insn = NEXT_INSN (insn))
       insn = NEXT_INSN (insn))
    if (NONDEBUG_INSN_P (insn))
    if (NONDEBUG_INSN_P (insn))
      {
      {
        eq_p = true;
        eq_p = true;
        for (i = 0; i < ira_reg_class_cover_size; i++)
        for (i = 0; i < ira_reg_class_cover_size; i++)
          {
          {
            p = max_reg_pressure[ira_reg_class_cover[i]];
            p = max_reg_pressure[ira_reg_class_cover[i]];
            if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
            if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
              {
              {
                eq_p = false;
                eq_p = false;
                INSN_MAX_REG_PRESSURE (insn)[i]
                INSN_MAX_REG_PRESSURE (insn)[i]
                  = max_reg_pressure[ira_reg_class_cover[i]];
                  = max_reg_pressure[ira_reg_class_cover[i]];
              }
              }
          }
          }
        if (update_p && eq_p)
        if (update_p && eq_p)
          break;
          break;
        update_register_pressure (insn);
        update_register_pressure (insn);
        for (i = 0; i < ira_reg_class_cover_size; i++)
        for (i = 0; i < ira_reg_class_cover_size; i++)
          if (max_reg_pressure[ira_reg_class_cover[i]]
          if (max_reg_pressure[ira_reg_class_cover[i]]
              < curr_reg_pressure[ira_reg_class_cover[i]])
              < curr_reg_pressure[ira_reg_class_cover[i]])
            max_reg_pressure[ira_reg_class_cover[i]]
            max_reg_pressure[ira_reg_class_cover[i]]
              = curr_reg_pressure[ira_reg_class_cover[i]];
              = curr_reg_pressure[ira_reg_class_cover[i]];
      }
      }
  restore_reg_pressure ();
  restore_reg_pressure ();
}
}
 
 
/* Update the current register pressure after scheduling INSN.  Update
/* Update the current register pressure after scheduling INSN.  Update
   also max register pressure for unscheduled insns of the current
   also max register pressure for unscheduled insns of the current
   BB.  */
   BB.  */
static void
static void
update_reg_and_insn_max_reg_pressure (rtx insn)
update_reg_and_insn_max_reg_pressure (rtx insn)
{
{
  int i;
  int i;
  int before[N_REG_CLASSES];
  int before[N_REG_CLASSES];
 
 
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    before[i] = curr_reg_pressure[ira_reg_class_cover[i]];
    before[i] = curr_reg_pressure[ira_reg_class_cover[i]];
  update_register_pressure (insn);
  update_register_pressure (insn);
  for (i = 0; i < ira_reg_class_cover_size; i++)
  for (i = 0; i < ira_reg_class_cover_size; i++)
    if (curr_reg_pressure[ira_reg_class_cover[i]] != before[i])
    if (curr_reg_pressure[ira_reg_class_cover[i]] != before[i])
      break;
      break;
  if (i < ira_reg_class_cover_size)
  if (i < ira_reg_class_cover_size)
    setup_insn_max_reg_pressure (insn, true);
    setup_insn_max_reg_pressure (insn, true);
}
}
 
 
/* Set up register pressure at the beginning of basic block BB whose
/* Set up register pressure at the beginning of basic block BB whose
   insns starting after insn AFTER.  Set up also max register pressure
   insns starting after insn AFTER.  Set up also max register pressure
   for all insns of the basic block.  */
   for all insns of the basic block.  */
void
void
sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
{
{
  gcc_assert (sched_pressure_p);
  gcc_assert (sched_pressure_p);
  initiate_bb_reg_pressure_info (bb);
  initiate_bb_reg_pressure_info (bb);
  setup_insn_max_reg_pressure (after, false);
  setup_insn_max_reg_pressure (after, false);
}
}
 
 
/* INSN is the "currently executing insn".  Launch each insn which was
/* INSN is the "currently executing insn".  Launch each insn which was
   waiting on INSN.  READY is the ready list which contains the insns
   waiting on INSN.  READY is the ready list which contains the insns
   that are ready to fire.  CLOCK is the current cycle.  The function
   that are ready to fire.  CLOCK is the current cycle.  The function
   returns necessary cycle advance after issuing the insn (it is not
   returns necessary cycle advance after issuing the insn (it is not
   zero for insns in a schedule group).  */
   zero for insns in a schedule group).  */
 
 
static int
static int
schedule_insn (rtx insn)
schedule_insn (rtx insn)
{
{
  sd_iterator_def sd_it;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_t dep;
  int i;
  int i;
  int advance = 0;
  int advance = 0;
 
 
  if (sched_verbose >= 1)
  if (sched_verbose >= 1)
    {
    {
      struct reg_pressure_data *pressure_info;
      struct reg_pressure_data *pressure_info;
      char buf[2048];
      char buf[2048];
 
 
      print_insn (buf, insn, 0);
      print_insn (buf, insn, 0);
      buf[40] = 0;
      buf[40] = 0;
      fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
      fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
 
 
      if (recog_memoized (insn) < 0)
      if (recog_memoized (insn) < 0)
        fprintf (sched_dump, "nothing");
        fprintf (sched_dump, "nothing");
      else
      else
        print_reservation (sched_dump, insn);
        print_reservation (sched_dump, insn);
      pressure_info = INSN_REG_PRESSURE (insn);
      pressure_info = INSN_REG_PRESSURE (insn);
      if (pressure_info != NULL)
      if (pressure_info != NULL)
        {
        {
          fputc (':', sched_dump);
          fputc (':', sched_dump);
          for (i = 0; i < ira_reg_class_cover_size; i++)
          for (i = 0; i < ira_reg_class_cover_size; i++)
            fprintf (sched_dump, "%s%+d(%d)",
            fprintf (sched_dump, "%s%+d(%d)",
                     reg_class_names[ira_reg_class_cover[i]],
                     reg_class_names[ira_reg_class_cover[i]],
                     pressure_info[i].set_increase, pressure_info[i].change);
                     pressure_info[i].set_increase, pressure_info[i].change);
        }
        }
      fputc ('\n', sched_dump);
      fputc ('\n', sched_dump);
    }
    }
 
 
  if (sched_pressure_p)
  if (sched_pressure_p)
    update_reg_and_insn_max_reg_pressure (insn);
    update_reg_and_insn_max_reg_pressure (insn);
 
 
  /* Scheduling instruction should have all its dependencies resolved and
  /* Scheduling instruction should have all its dependencies resolved and
     should have been removed from the ready list.  */
     should have been removed from the ready list.  */
  gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
  gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
 
 
  /* Reset debug insns invalidated by moving this insn.  */
  /* Reset debug insns invalidated by moving this insn.  */
  if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
  if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
    for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
    for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
         sd_iterator_cond (&sd_it, &dep);)
         sd_iterator_cond (&sd_it, &dep);)
      {
      {
        rtx dbg = DEP_PRO (dep);
        rtx dbg = DEP_PRO (dep);
        struct reg_use_data *use, *next;
        struct reg_use_data *use, *next;
 
 
        gcc_assert (DEBUG_INSN_P (dbg));
        gcc_assert (DEBUG_INSN_P (dbg));
 
 
        if (sched_verbose >= 6)
        if (sched_verbose >= 6)
          fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
          fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
                   INSN_UID (dbg));
                   INSN_UID (dbg));
 
 
        /* ??? Rather than resetting the debug insn, we might be able
        /* ??? Rather than resetting the debug insn, we might be able
           to emit a debug temp before the just-scheduled insn, but
           to emit a debug temp before the just-scheduled insn, but
           this would involve checking that the expression at the
           this would involve checking that the expression at the
           point of the debug insn is equivalent to the expression
           point of the debug insn is equivalent to the expression
           before the just-scheduled insn.  They might not be: the
           before the just-scheduled insn.  They might not be: the
           expression in the debug insn may depend on other insns not
           expression in the debug insn may depend on other insns not
           yet scheduled that set MEMs, REGs or even other debug
           yet scheduled that set MEMs, REGs or even other debug
           insns.  It's not clear that attempting to preserve debug
           insns.  It's not clear that attempting to preserve debug
           information in these cases is worth the effort, given how
           information in these cases is worth the effort, given how
           uncommon these resets are and the likelihood that the debug
           uncommon these resets are and the likelihood that the debug
           temps introduced won't survive the schedule change.  */
           temps introduced won't survive the schedule change.  */
        INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
        INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
        df_insn_rescan (dbg);
        df_insn_rescan (dbg);
 
 
        /* Unknown location doesn't use any registers.  */
        /* Unknown location doesn't use any registers.  */
        for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
        for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
          {
          {
            struct reg_use_data *prev = use;
            struct reg_use_data *prev = use;
 
 
            /* Remove use from the cyclic next_regno_use chain first.  */
            /* Remove use from the cyclic next_regno_use chain first.  */
            while (prev->next_regno_use != use)
            while (prev->next_regno_use != use)
              prev = prev->next_regno_use;
              prev = prev->next_regno_use;
            prev->next_regno_use = use->next_regno_use;
            prev->next_regno_use = use->next_regno_use;
            next = use->next_insn_use;
            next = use->next_insn_use;
            free (use);
            free (use);
          }
          }
        INSN_REG_USE_LIST (dbg) = NULL;
        INSN_REG_USE_LIST (dbg) = NULL;
 
 
        /* We delete rather than resolve these deps, otherwise we
        /* We delete rather than resolve these deps, otherwise we
           crash in sched_free_deps(), because forward deps are
           crash in sched_free_deps(), because forward deps are
           expected to be released before backward deps.  */
           expected to be released before backward deps.  */
        sd_delete_dep (sd_it);
        sd_delete_dep (sd_it);
      }
      }
 
 
  gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
  gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
  QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
  QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
 
 
  gcc_assert (INSN_TICK (insn) >= MIN_TICK);
  gcc_assert (INSN_TICK (insn) >= MIN_TICK);
  if (INSN_TICK (insn) > clock_var)
  if (INSN_TICK (insn) > clock_var)
    /* INSN has been prematurely moved from the queue to the ready list.
    /* INSN has been prematurely moved from the queue to the ready list.
       This is possible only if following flag is set.  */
       This is possible only if following flag is set.  */
    gcc_assert (flag_sched_stalled_insns);
    gcc_assert (flag_sched_stalled_insns);
 
 
  /* ??? Probably, if INSN is scheduled prematurely, we should leave
  /* ??? Probably, if INSN is scheduled prematurely, we should leave
     INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
     INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
  INSN_TICK (insn) = clock_var;
  INSN_TICK (insn) = clock_var;
 
 
  /* Update dependent instructions.  */
  /* Update dependent instructions.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
       sd_iterator_cond (&sd_it, &dep);)
       sd_iterator_cond (&sd_it, &dep);)
    {
    {
      rtx next = DEP_CON (dep);
      rtx next = DEP_CON (dep);
 
 
      /* Resolve the dependence between INSN and NEXT.
      /* Resolve the dependence between INSN and NEXT.
         sd_resolve_dep () moves current dep to another list thus
         sd_resolve_dep () moves current dep to another list thus
         advancing the iterator.  */
         advancing the iterator.  */
      sd_resolve_dep (sd_it);
      sd_resolve_dep (sd_it);
 
 
      /* Don't bother trying to mark next as ready if insn is a debug
      /* Don't bother trying to mark next as ready if insn is a debug
         insn.  If insn is the last hard dependency, it will have
         insn.  If insn is the last hard dependency, it will have
         already been discounted.  */
         already been discounted.  */
      if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
      if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
        continue;
        continue;
 
 
      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
        {
        {
          int effective_cost;
          int effective_cost;
 
 
          effective_cost = try_ready (next);
          effective_cost = try_ready (next);
 
 
          if (effective_cost >= 0
          if (effective_cost >= 0
              && SCHED_GROUP_P (next)
              && SCHED_GROUP_P (next)
              && advance < effective_cost)
              && advance < effective_cost)
            advance = effective_cost;
            advance = effective_cost;
        }
        }
      else
      else
        /* Check always has only one forward dependence (to the first insn in
        /* Check always has only one forward dependence (to the first insn in
           the recovery block), therefore, this will be executed only once.  */
           the recovery block), therefore, this will be executed only once.  */
        {
        {
          gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
          gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
          fix_recovery_deps (RECOVERY_BLOCK (insn));
          fix_recovery_deps (RECOVERY_BLOCK (insn));
        }
        }
    }
    }
 
 
  /* This is the place where scheduler doesn't *basically* need backward and
  /* This is the place where scheduler doesn't *basically* need backward and
     forward dependencies for INSN anymore.  Nevertheless they are used in
     forward dependencies for INSN anymore.  Nevertheless they are used in
     heuristics in rank_for_schedule (), early_queue_to_ready () and in
     heuristics in rank_for_schedule (), early_queue_to_ready () and in
     some targets (e.g. rs6000).  Thus the earliest place where we *can*
     some targets (e.g. rs6000).  Thus the earliest place where we *can*
     remove dependencies is after targetm.sched.md_finish () call in
     remove dependencies is after targetm.sched.md_finish () call in
     schedule_block ().  But, on the other side, the safest place to remove
     schedule_block ().  But, on the other side, the safest place to remove
     dependencies is when we are finishing scheduling entire region.  As we
     dependencies is when we are finishing scheduling entire region.  As we
     don't generate [many] dependencies during scheduling itself, we won't
     don't generate [many] dependencies during scheduling itself, we won't
     need memory until beginning of next region.
     need memory until beginning of next region.
     Bottom line: Dependencies are removed for all insns in the end of
     Bottom line: Dependencies are removed for all insns in the end of
     scheduling the region.  */
     scheduling the region.  */
 
 
  /* Annotate the instruction with issue information -- TImode
  /* Annotate the instruction with issue information -- TImode
     indicates that the instruction is expected not to be able
     indicates that the instruction is expected not to be able
     to issue on the same cycle as the previous insn.  A machine
     to issue on the same cycle as the previous insn.  A machine
     may use this information to decide how the instruction should
     may use this information to decide how the instruction should
     be aligned.  */
     be aligned.  */
  if (issue_rate > 1
  if (issue_rate > 1
      && GET_CODE (PATTERN (insn)) != USE
      && GET_CODE (PATTERN (insn)) != USE
      && GET_CODE (PATTERN (insn)) != CLOBBER
      && GET_CODE (PATTERN (insn)) != CLOBBER
      && !DEBUG_INSN_P (insn))
      && !DEBUG_INSN_P (insn))
    {
    {
      if (reload_completed)
      if (reload_completed)
        PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
        PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
      last_clock_var = clock_var;
      last_clock_var = clock_var;
    }
    }
 
 
  return advance;
  return advance;
}
}
 
 
/* Functions for handling of notes.  */
/* Functions for handling of notes.  */
 
 
/* Add note list that ends on FROM_END to the end of TO_ENDP.  */
/* Add note list that ends on FROM_END to the end of TO_ENDP.  */
void
void
concat_note_lists (rtx from_end, rtx *to_endp)
concat_note_lists (rtx from_end, rtx *to_endp)
{
{
  rtx from_start;
  rtx from_start;
 
 
  /* It's easy when have nothing to concat.  */
  /* It's easy when have nothing to concat.  */
  if (from_end == NULL)
  if (from_end == NULL)
    return;
    return;
 
 
  /* It's also easy when destination is empty.  */
  /* It's also easy when destination is empty.  */
  if (*to_endp == NULL)
  if (*to_endp == NULL)
    {
    {
      *to_endp = from_end;
      *to_endp = from_end;
      return;
      return;
    }
    }
 
 
  from_start = from_end;
  from_start = from_end;
  while (PREV_INSN (from_start) != NULL)
  while (PREV_INSN (from_start) != NULL)
    from_start = PREV_INSN (from_start);
    from_start = PREV_INSN (from_start);
 
 
  PREV_INSN (from_start) = *to_endp;
  PREV_INSN (from_start) = *to_endp;
  NEXT_INSN (*to_endp) = from_start;
  NEXT_INSN (*to_endp) = from_start;
  *to_endp = from_end;
  *to_endp = from_end;
}
}
 
 
/* Delete notes between HEAD and TAIL and put them in the chain
/* Delete notes between HEAD and TAIL and put them in the chain
   of notes ended by NOTE_LIST.  */
   of notes ended by NOTE_LIST.  */
void
void
remove_notes (rtx head, rtx tail)
remove_notes (rtx head, rtx tail)
{
{
  rtx next_tail, insn, next;
  rtx next_tail, insn, next;
 
 
  note_list = 0;
  note_list = 0;
  if (head == tail && !INSN_P (head))
  if (head == tail && !INSN_P (head))
    return;
    return;
 
 
  next_tail = NEXT_INSN (tail);
  next_tail = NEXT_INSN (tail);
  for (insn = head; insn != next_tail; insn = next)
  for (insn = head; insn != next_tail; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      if (!NOTE_P (insn))
      if (!NOTE_P (insn))
        continue;
        continue;
 
 
      switch (NOTE_KIND (insn))
      switch (NOTE_KIND (insn))
        {
        {
        case NOTE_INSN_BASIC_BLOCK:
        case NOTE_INSN_BASIC_BLOCK:
          continue;
          continue;
 
 
        case NOTE_INSN_EPILOGUE_BEG:
        case NOTE_INSN_EPILOGUE_BEG:
          if (insn != tail)
          if (insn != tail)
            {
            {
              remove_insn (insn);
              remove_insn (insn);
              add_reg_note (next, REG_SAVE_NOTE,
              add_reg_note (next, REG_SAVE_NOTE,
                            GEN_INT (NOTE_INSN_EPILOGUE_BEG));
                            GEN_INT (NOTE_INSN_EPILOGUE_BEG));
              break;
              break;
            }
            }
          /* FALLTHRU */
          /* FALLTHRU */
 
 
        default:
        default:
          remove_insn (insn);
          remove_insn (insn);
 
 
          /* Add the note to list that ends at NOTE_LIST.  */
          /* Add the note to list that ends at NOTE_LIST.  */
          PREV_INSN (insn) = note_list;
          PREV_INSN (insn) = note_list;
          NEXT_INSN (insn) = NULL_RTX;
          NEXT_INSN (insn) = NULL_RTX;
          if (note_list)
          if (note_list)
            NEXT_INSN (note_list) = insn;
            NEXT_INSN (note_list) = insn;
          note_list = insn;
          note_list = insn;
          break;
          break;
        }
        }
 
 
      gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
      gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
    }
    }
}
}
 
 
 
 
/* Return the head and tail pointers of ebb starting at BEG and ending
/* Return the head and tail pointers of ebb starting at BEG and ending
   at END.  */
   at END.  */
void
void
get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
{
{
  rtx beg_head = BB_HEAD (beg);
  rtx beg_head = BB_HEAD (beg);
  rtx beg_tail = BB_END (beg);
  rtx beg_tail = BB_END (beg);
  rtx end_head = BB_HEAD (end);
  rtx end_head = BB_HEAD (end);
  rtx end_tail = BB_END (end);
  rtx end_tail = BB_END (end);
 
 
  /* Don't include any notes or labels at the beginning of the BEG
  /* Don't include any notes or labels at the beginning of the BEG
     basic block, or notes at the end of the END basic blocks.  */
     basic block, or notes at the end of the END basic blocks.  */
 
 
  if (LABEL_P (beg_head))
  if (LABEL_P (beg_head))
    beg_head = NEXT_INSN (beg_head);
    beg_head = NEXT_INSN (beg_head);
 
 
  while (beg_head != beg_tail)
  while (beg_head != beg_tail)
    if (NOTE_P (beg_head) || BOUNDARY_DEBUG_INSN_P (beg_head))
    if (NOTE_P (beg_head) || BOUNDARY_DEBUG_INSN_P (beg_head))
      beg_head = NEXT_INSN (beg_head);
      beg_head = NEXT_INSN (beg_head);
    else
    else
      break;
      break;
 
 
  *headp = beg_head;
  *headp = beg_head;
 
 
  if (beg == end)
  if (beg == end)
    end_head = beg_head;
    end_head = beg_head;
  else if (LABEL_P (end_head))
  else if (LABEL_P (end_head))
    end_head = NEXT_INSN (end_head);
    end_head = NEXT_INSN (end_head);
 
 
  while (end_head != end_tail)
  while (end_head != end_tail)
    if (NOTE_P (end_tail) || BOUNDARY_DEBUG_INSN_P (end_tail))
    if (NOTE_P (end_tail) || BOUNDARY_DEBUG_INSN_P (end_tail))
      end_tail = PREV_INSN (end_tail);
      end_tail = PREV_INSN (end_tail);
    else
    else
      break;
      break;
 
 
  *tailp = end_tail;
  *tailp = end_tail;
}
}
 
 
/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
 
 
int
int
no_real_insns_p (const_rtx head, const_rtx tail)
no_real_insns_p (const_rtx head, const_rtx tail)
{
{
  while (head != NEXT_INSN (tail))
  while (head != NEXT_INSN (tail))
    {
    {
      if (!NOTE_P (head) && !LABEL_P (head)
      if (!NOTE_P (head) && !LABEL_P (head)
          && !BOUNDARY_DEBUG_INSN_P (head))
          && !BOUNDARY_DEBUG_INSN_P (head))
        return 0;
        return 0;
      head = NEXT_INSN (head);
      head = NEXT_INSN (head);
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
   previously found among the insns.  Insert them just before HEAD.  */
   previously found among the insns.  Insert them just before HEAD.  */
rtx
rtx
restore_other_notes (rtx head, basic_block head_bb)
restore_other_notes (rtx head, basic_block head_bb)
{
{
  if (note_list != 0)
  if (note_list != 0)
    {
    {
      rtx note_head = note_list;
      rtx note_head = note_list;
 
 
      if (head)
      if (head)
        head_bb = BLOCK_FOR_INSN (head);
        head_bb = BLOCK_FOR_INSN (head);
      else
      else
        head = NEXT_INSN (bb_note (head_bb));
        head = NEXT_INSN (bb_note (head_bb));
 
 
      while (PREV_INSN (note_head))
      while (PREV_INSN (note_head))
        {
        {
          set_block_for_insn (note_head, head_bb);
          set_block_for_insn (note_head, head_bb);
          note_head = PREV_INSN (note_head);
          note_head = PREV_INSN (note_head);
        }
        }
      /* In the above cycle we've missed this note.  */
      /* In the above cycle we've missed this note.  */
      set_block_for_insn (note_head, head_bb);
      set_block_for_insn (note_head, head_bb);
 
 
      PREV_INSN (note_head) = PREV_INSN (head);
      PREV_INSN (note_head) = PREV_INSN (head);
      NEXT_INSN (PREV_INSN (head)) = note_head;
      NEXT_INSN (PREV_INSN (head)) = note_head;
      PREV_INSN (head) = note_list;
      PREV_INSN (head) = note_list;
      NEXT_INSN (note_list) = head;
      NEXT_INSN (note_list) = head;
 
 
      if (BLOCK_FOR_INSN (head) != head_bb)
      if (BLOCK_FOR_INSN (head) != head_bb)
        BB_END (head_bb) = note_list;
        BB_END (head_bb) = note_list;
 
 
      head = note_head;
      head = note_head;
    }
    }
 
 
  return head;
  return head;
}
}
 
 
/* Move insns that became ready to fire from queue to ready list.  */
/* Move insns that became ready to fire from queue to ready list.  */
 
 
static void
static void
queue_to_ready (struct ready_list *ready)
queue_to_ready (struct ready_list *ready)
{
{
  rtx insn;
  rtx insn;
  rtx link;
  rtx link;
  rtx skip_insn;
  rtx skip_insn;
 
 
  q_ptr = NEXT_Q (q_ptr);
  q_ptr = NEXT_Q (q_ptr);
 
 
  if (dbg_cnt (sched_insn) == false)
  if (dbg_cnt (sched_insn) == false)
    /* If debug counter is activated do not requeue insn next after
    /* If debug counter is activated do not requeue insn next after
       last_scheduled_insn.  */
       last_scheduled_insn.  */
    skip_insn = next_nonnote_nondebug_insn (last_scheduled_insn);
    skip_insn = next_nonnote_nondebug_insn (last_scheduled_insn);
  else
  else
    skip_insn = NULL_RTX;
    skip_insn = NULL_RTX;
 
 
  /* Add all pending insns that can be scheduled without stalls to the
  /* Add all pending insns that can be scheduled without stalls to the
     ready list.  */
     ready list.  */
  for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
  for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
    {
    {
      insn = XEXP (link, 0);
      insn = XEXP (link, 0);
      q_size -= 1;
      q_size -= 1;
 
 
      if (sched_verbose >= 2)
      if (sched_verbose >= 2)
        fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
        fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
                 (*current_sched_info->print_insn) (insn, 0));
                 (*current_sched_info->print_insn) (insn, 0));
 
 
      /* If the ready list is full, delay the insn for 1 cycle.
      /* If the ready list is full, delay the insn for 1 cycle.
         See the comment in schedule_block for the rationale.  */
         See the comment in schedule_block for the rationale.  */
      if (!reload_completed
      if (!reload_completed
          && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
          && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
          && !SCHED_GROUP_P (insn)
          && !SCHED_GROUP_P (insn)
          && insn != skip_insn)
          && insn != skip_insn)
        {
        {
          if (sched_verbose >= 2)
          if (sched_verbose >= 2)
            fprintf (sched_dump, "requeued because ready full\n");
            fprintf (sched_dump, "requeued because ready full\n");
          queue_insn (insn, 1);
          queue_insn (insn, 1);
        }
        }
      else
      else
        {
        {
          ready_add (ready, insn, false);
          ready_add (ready, insn, false);
          if (sched_verbose >= 2)
          if (sched_verbose >= 2)
            fprintf (sched_dump, "moving to ready without stalls\n");
            fprintf (sched_dump, "moving to ready without stalls\n");
        }
        }
    }
    }
  free_INSN_LIST_list (&insn_queue[q_ptr]);
  free_INSN_LIST_list (&insn_queue[q_ptr]);
 
 
  /* If there are no ready insns, stall until one is ready and add all
  /* If there are no ready insns, stall until one is ready and add all
     of the pending insns at that point to the ready list.  */
     of the pending insns at that point to the ready list.  */
  if (ready->n_ready == 0)
  if (ready->n_ready == 0)
    {
    {
      int stalls;
      int stalls;
 
 
      for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
      for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
        {
        {
          if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
          if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
            {
            {
              for (; link; link = XEXP (link, 1))
              for (; link; link = XEXP (link, 1))
                {
                {
                  insn = XEXP (link, 0);
                  insn = XEXP (link, 0);
                  q_size -= 1;
                  q_size -= 1;
 
 
                  if (sched_verbose >= 2)
                  if (sched_verbose >= 2)
                    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
                    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
                             (*current_sched_info->print_insn) (insn, 0));
                             (*current_sched_info->print_insn) (insn, 0));
 
 
                  ready_add (ready, insn, false);
                  ready_add (ready, insn, false);
                  if (sched_verbose >= 2)
                  if (sched_verbose >= 2)
                    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
                    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
                }
                }
              free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
              free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
 
 
              advance_one_cycle ();
              advance_one_cycle ();
 
 
              break;
              break;
            }
            }
 
 
          advance_one_cycle ();
          advance_one_cycle ();
        }
        }
 
 
      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
      clock_var += stalls;
      clock_var += stalls;
    }
    }
}
}
 
 
/* Used by early_queue_to_ready.  Determines whether it is "ok" to
/* Used by early_queue_to_ready.  Determines whether it is "ok" to
   prematurely move INSN from the queue to the ready list.  Currently,
   prematurely move INSN from the queue to the ready list.  Currently,
   if a target defines the hook 'is_costly_dependence', this function
   if a target defines the hook 'is_costly_dependence', this function
   uses the hook to check whether there exist any dependences which are
   uses the hook to check whether there exist any dependences which are
   considered costly by the target, between INSN and other insns that
   considered costly by the target, between INSN and other insns that
   have already been scheduled.  Dependences are checked up to Y cycles
   have already been scheduled.  Dependences are checked up to Y cycles
   back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
   back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
   controlling this value.
   controlling this value.
   (Other considerations could be taken into account instead (or in
   (Other considerations could be taken into account instead (or in
   addition) depending on user flags and target hooks.  */
   addition) depending on user flags and target hooks.  */
 
 
static bool
static bool
ok_for_early_queue_removal (rtx insn)
ok_for_early_queue_removal (rtx insn)
{
{
  int n_cycles;
  int n_cycles;
  rtx prev_insn = last_scheduled_insn;
  rtx prev_insn = last_scheduled_insn;
 
 
  if (targetm.sched.is_costly_dependence)
  if (targetm.sched.is_costly_dependence)
    {
    {
      for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
      for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
        {
        {
          for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
          for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
            {
            {
              int cost;
              int cost;
 
 
              if (prev_insn == current_sched_info->prev_head)
              if (prev_insn == current_sched_info->prev_head)
                {
                {
                  prev_insn = NULL;
                  prev_insn = NULL;
                  break;
                  break;
                }
                }
 
 
              if (!NOTE_P (prev_insn))
              if (!NOTE_P (prev_insn))
                {
                {
                  dep_t dep;
                  dep_t dep;
 
 
                  dep = sd_find_dep_between (prev_insn, insn, true);
                  dep = sd_find_dep_between (prev_insn, insn, true);
 
 
                  if (dep != NULL)
                  if (dep != NULL)
                    {
                    {
                      cost = dep_cost (dep);
                      cost = dep_cost (dep);
 
 
                      if (targetm.sched.is_costly_dependence (dep, cost,
                      if (targetm.sched.is_costly_dependence (dep, cost,
                                flag_sched_stalled_insns_dep - n_cycles))
                                flag_sched_stalled_insns_dep - n_cycles))
                        return false;
                        return false;
                    }
                    }
                }
                }
 
 
              if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
              if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
                break;
                break;
            }
            }
 
 
          if (!prev_insn)
          if (!prev_insn)
            break;
            break;
          prev_insn = PREV_INSN (prev_insn);
          prev_insn = PREV_INSN (prev_insn);
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
 
 
/* Remove insns from the queue, before they become "ready" with respect
/* Remove insns from the queue, before they become "ready" with respect
   to FU latency considerations.  */
   to FU latency considerations.  */
 
 
static int
static int
early_queue_to_ready (state_t state, struct ready_list *ready)
early_queue_to_ready (state_t state, struct ready_list *ready)
{
{
  rtx insn;
  rtx insn;
  rtx link;
  rtx link;
  rtx next_link;
  rtx next_link;
  rtx prev_link;
  rtx prev_link;
  bool move_to_ready;
  bool move_to_ready;
  int cost;
  int cost;
  state_t temp_state = alloca (dfa_state_size);
  state_t temp_state = alloca (dfa_state_size);
  int stalls;
  int stalls;
  int insns_removed = 0;
  int insns_removed = 0;
 
 
  /*
  /*
     Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
     Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
     function:
     function:
 
 
     X == 0: There is no limit on how many queued insns can be removed
     X == 0: There is no limit on how many queued insns can be removed
             prematurely.  (flag_sched_stalled_insns = -1).
             prematurely.  (flag_sched_stalled_insns = -1).
 
 
     X >= 1: Only X queued insns can be removed prematurely in each
     X >= 1: Only X queued insns can be removed prematurely in each
             invocation.  (flag_sched_stalled_insns = X).
             invocation.  (flag_sched_stalled_insns = X).
 
 
     Otherwise: Early queue removal is disabled.
     Otherwise: Early queue removal is disabled.
         (flag_sched_stalled_insns = 0)
         (flag_sched_stalled_insns = 0)
  */
  */
 
 
  if (! flag_sched_stalled_insns)
  if (! flag_sched_stalled_insns)
    return 0;
    return 0;
 
 
  for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
  for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
    {
    {
      if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
      if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
        {
        {
          if (sched_verbose > 6)
          if (sched_verbose > 6)
            fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
            fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
 
 
          prev_link = 0;
          prev_link = 0;
          while (link)
          while (link)
            {
            {
              next_link = XEXP (link, 1);
              next_link = XEXP (link, 1);
              insn = XEXP (link, 0);
              insn = XEXP (link, 0);
              if (insn && sched_verbose > 6)
              if (insn && sched_verbose > 6)
                print_rtl_single (sched_dump, insn);
                print_rtl_single (sched_dump, insn);
 
 
              memcpy (temp_state, state, dfa_state_size);
              memcpy (temp_state, state, dfa_state_size);
              if (recog_memoized (insn) < 0)
              if (recog_memoized (insn) < 0)
                /* non-negative to indicate that it's not ready
                /* non-negative to indicate that it's not ready
                   to avoid infinite Q->R->Q->R... */
                   to avoid infinite Q->R->Q->R... */
                cost = 0;
                cost = 0;
              else
              else
                cost = state_transition (temp_state, insn);
                cost = state_transition (temp_state, insn);
 
 
              if (sched_verbose >= 6)
              if (sched_verbose >= 6)
                fprintf (sched_dump, "transition cost = %d\n", cost);
                fprintf (sched_dump, "transition cost = %d\n", cost);
 
 
              move_to_ready = false;
              move_to_ready = false;
              if (cost < 0)
              if (cost < 0)
                {
                {
                  move_to_ready = ok_for_early_queue_removal (insn);
                  move_to_ready = ok_for_early_queue_removal (insn);
                  if (move_to_ready == true)
                  if (move_to_ready == true)
                    {
                    {
                      /* move from Q to R */
                      /* move from Q to R */
                      q_size -= 1;
                      q_size -= 1;
                      ready_add (ready, insn, false);
                      ready_add (ready, insn, false);
 
 
                      if (prev_link)
                      if (prev_link)
                        XEXP (prev_link, 1) = next_link;
                        XEXP (prev_link, 1) = next_link;
                      else
                      else
                        insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
                        insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
 
 
                      free_INSN_LIST_node (link);
                      free_INSN_LIST_node (link);
 
 
                      if (sched_verbose >= 2)
                      if (sched_verbose >= 2)
                        fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
                        fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
                                 (*current_sched_info->print_insn) (insn, 0));
                                 (*current_sched_info->print_insn) (insn, 0));
 
 
                      insns_removed++;
                      insns_removed++;
                      if (insns_removed == flag_sched_stalled_insns)
                      if (insns_removed == flag_sched_stalled_insns)
                        /* Remove no more than flag_sched_stalled_insns insns
                        /* Remove no more than flag_sched_stalled_insns insns
                           from Q at a time.  */
                           from Q at a time.  */
                        return insns_removed;
                        return insns_removed;
                    }
                    }
                }
                }
 
 
              if (move_to_ready == false)
              if (move_to_ready == false)
                prev_link = link;
                prev_link = link;
 
 
              link = next_link;
              link = next_link;
            } /* while link */
            } /* while link */
        } /* if link */
        } /* if link */
 
 
    } /* for stalls.. */
    } /* for stalls.. */
 
 
  return insns_removed;
  return insns_removed;
}
}
 
 
 
 
/* Print the ready list for debugging purposes.  Callable from debugger.  */
/* Print the ready list for debugging purposes.  Callable from debugger.  */
 
 
static void
static void
debug_ready_list (struct ready_list *ready)
debug_ready_list (struct ready_list *ready)
{
{
  rtx *p;
  rtx *p;
  int i;
  int i;
 
 
  if (ready->n_ready == 0)
  if (ready->n_ready == 0)
    {
    {
      fprintf (sched_dump, "\n");
      fprintf (sched_dump, "\n");
      return;
      return;
    }
    }
 
 
  p = ready_lastpos (ready);
  p = ready_lastpos (ready);
  for (i = 0; i < ready->n_ready; i++)
  for (i = 0; i < ready->n_ready; i++)
    {
    {
      fprintf (sched_dump, "  %s:%d",
      fprintf (sched_dump, "  %s:%d",
               (*current_sched_info->print_insn) (p[i], 0),
               (*current_sched_info->print_insn) (p[i], 0),
               INSN_LUID (p[i]));
               INSN_LUID (p[i]));
      if (sched_pressure_p)
      if (sched_pressure_p)
        fprintf (sched_dump, "(cost=%d",
        fprintf (sched_dump, "(cost=%d",
                 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
                 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
      if (INSN_TICK (p[i]) > clock_var)
      if (INSN_TICK (p[i]) > clock_var)
        fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
        fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
      if (sched_pressure_p)
      if (sched_pressure_p)
        fprintf (sched_dump, ")");
        fprintf (sched_dump, ")");
    }
    }
  fprintf (sched_dump, "\n");
  fprintf (sched_dump, "\n");
}
}
 
 
/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
   NOTEs.  This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
   NOTEs.  This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
   replaces the epilogue note in the correct basic block.  */
   replaces the epilogue note in the correct basic block.  */
void
void
reemit_notes (rtx insn)
reemit_notes (rtx insn)
{
{
  rtx note, last = insn;
  rtx note, last = insn;
 
 
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    {
    {
      if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
      if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
        {
        {
          enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
          enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
 
 
          last = emit_note_before (note_type, last);
          last = emit_note_before (note_type, last);
          remove_note (insn, note);
          remove_note (insn, note);
        }
        }
    }
    }
}
}
 
 
/* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
/* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
static void
static void
move_insn (rtx insn, rtx last, rtx nt)
move_insn (rtx insn, rtx last, rtx nt)
{
{
  if (PREV_INSN (insn) != last)
  if (PREV_INSN (insn) != last)
    {
    {
      basic_block bb;
      basic_block bb;
      rtx note;
      rtx note;
      int jump_p = 0;
      int jump_p = 0;
 
 
      bb = BLOCK_FOR_INSN (insn);
      bb = BLOCK_FOR_INSN (insn);
 
 
      /* BB_HEAD is either LABEL or NOTE.  */
      /* BB_HEAD is either LABEL or NOTE.  */
      gcc_assert (BB_HEAD (bb) != insn);
      gcc_assert (BB_HEAD (bb) != insn);
 
 
      if (BB_END (bb) == insn)
      if (BB_END (bb) == insn)
        /* If this is last instruction in BB, move end marker one
        /* If this is last instruction in BB, move end marker one
           instruction up.  */
           instruction up.  */
        {
        {
          /* Jumps are always placed at the end of basic block.  */
          /* Jumps are always placed at the end of basic block.  */
          jump_p = control_flow_insn_p (insn);
          jump_p = control_flow_insn_p (insn);
 
 
          gcc_assert (!jump_p
          gcc_assert (!jump_p
                      || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
                      || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
                          && IS_SPECULATION_BRANCHY_CHECK_P (insn))
                          && IS_SPECULATION_BRANCHY_CHECK_P (insn))
                      || (common_sched_info->sched_pass_id
                      || (common_sched_info->sched_pass_id
                          == SCHED_EBB_PASS));
                          == SCHED_EBB_PASS));
 
 
          gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
          gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
 
 
          BB_END (bb) = PREV_INSN (insn);
          BB_END (bb) = PREV_INSN (insn);
        }
        }
 
 
      gcc_assert (BB_END (bb) != last);
      gcc_assert (BB_END (bb) != last);
 
 
      if (jump_p)
      if (jump_p)
        /* We move the block note along with jump.  */
        /* We move the block note along with jump.  */
        {
        {
          gcc_assert (nt);
          gcc_assert (nt);
 
 
          note = NEXT_INSN (insn);
          note = NEXT_INSN (insn);
          while (NOTE_NOT_BB_P (note) && note != nt)
          while (NOTE_NOT_BB_P (note) && note != nt)
            note = NEXT_INSN (note);
            note = NEXT_INSN (note);
 
 
          if (note != nt
          if (note != nt
              && (LABEL_P (note)
              && (LABEL_P (note)
                  || BARRIER_P (note)))
                  || BARRIER_P (note)))
            note = NEXT_INSN (note);
            note = NEXT_INSN (note);
 
 
          gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
          gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
        }
        }
      else
      else
        note = insn;
        note = insn;
 
 
      NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
      NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
      PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
      PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
 
 
      NEXT_INSN (note) = NEXT_INSN (last);
      NEXT_INSN (note) = NEXT_INSN (last);
      PREV_INSN (NEXT_INSN (last)) = note;
      PREV_INSN (NEXT_INSN (last)) = note;
 
 
      NEXT_INSN (last) = insn;
      NEXT_INSN (last) = insn;
      PREV_INSN (insn) = last;
      PREV_INSN (insn) = last;
 
 
      bb = BLOCK_FOR_INSN (last);
      bb = BLOCK_FOR_INSN (last);
 
 
      if (jump_p)
      if (jump_p)
        {
        {
          fix_jump_move (insn);
          fix_jump_move (insn);
 
 
          if (BLOCK_FOR_INSN (insn) != bb)
          if (BLOCK_FOR_INSN (insn) != bb)
            move_block_after_check (insn);
            move_block_after_check (insn);
 
 
          gcc_assert (BB_END (bb) == last);
          gcc_assert (BB_END (bb) == last);
        }
        }
 
 
      df_insn_change_bb (insn, bb);
      df_insn_change_bb (insn, bb);
 
 
      /* Update BB_END, if needed.  */
      /* Update BB_END, if needed.  */
      if (BB_END (bb) == last)
      if (BB_END (bb) == last)
        BB_END (bb) = insn;
        BB_END (bb) = insn;
    }
    }
 
 
  SCHED_GROUP_P (insn) = 0;
  SCHED_GROUP_P (insn) = 0;
}
}
 
 
/* Return true if scheduling INSN will finish current clock cycle.  */
/* Return true if scheduling INSN will finish current clock cycle.  */
static bool
static bool
insn_finishes_cycle_p (rtx insn)
insn_finishes_cycle_p (rtx insn)
{
{
  if (SCHED_GROUP_P (insn))
  if (SCHED_GROUP_P (insn))
    /* After issuing INSN, rest of the sched_group will be forced to issue
    /* After issuing INSN, rest of the sched_group will be forced to issue
       in order.  Don't make any plans for the rest of cycle.  */
       in order.  Don't make any plans for the rest of cycle.  */
    return true;
    return true;
 
 
  /* Finishing the block will, apparently, finish the cycle.  */
  /* Finishing the block will, apparently, finish the cycle.  */
  if (current_sched_info->insn_finishes_block_p
  if (current_sched_info->insn_finishes_block_p
      && current_sched_info->insn_finishes_block_p (insn))
      && current_sched_info->insn_finishes_block_p (insn))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 
/* The following structure describe an entry of the stack of choices.  */
/* The following structure describe an entry of the stack of choices.  */
struct choice_entry
struct choice_entry
{
{
  /* Ordinal number of the issued insn in the ready queue.  */
  /* Ordinal number of the issued insn in the ready queue.  */
  int index;
  int index;
  /* The number of the rest insns whose issues we should try.  */
  /* The number of the rest insns whose issues we should try.  */
  int rest;
  int rest;
  /* The number of issued essential insns.  */
  /* The number of issued essential insns.  */
  int n;
  int n;
  /* State after issuing the insn.  */
  /* State after issuing the insn.  */
  state_t state;
  state_t state;
};
};
 
 
/* The following array is used to implement a stack of choices used in
/* The following array is used to implement a stack of choices used in
   function max_issue.  */
   function max_issue.  */
static struct choice_entry *choice_stack;
static struct choice_entry *choice_stack;
 
 
/* The following variable value is number of essential insns issued on
/* The following variable value is number of essential insns issued on
   the current cycle.  An insn is essential one if it changes the
   the current cycle.  An insn is essential one if it changes the
   processors state.  */
   processors state.  */
int cycle_issued_insns;
int cycle_issued_insns;
 
 
/* This holds the value of the target dfa_lookahead hook.  */
/* This holds the value of the target dfa_lookahead hook.  */
int dfa_lookahead;
int dfa_lookahead;
 
 
/* The following variable value is maximal number of tries of issuing
/* The following variable value is maximal number of tries of issuing
   insns for the first cycle multipass insn scheduling.  We define
   insns for the first cycle multipass insn scheduling.  We define
   this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
   this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
   need this constraint if all real insns (with non-negative codes)
   need this constraint if all real insns (with non-negative codes)
   had reservations because in this case the algorithm complexity is
   had reservations because in this case the algorithm complexity is
   O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
   O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
   might be incomplete and such insn might occur.  For such
   might be incomplete and such insn might occur.  For such
   descriptions, the complexity of algorithm (without the constraint)
   descriptions, the complexity of algorithm (without the constraint)
   could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
   could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
static int max_lookahead_tries;
static int max_lookahead_tries;
 
 
/* The following value is value of hook
/* The following value is value of hook
   `first_cycle_multipass_dfa_lookahead' at the last call of
   `first_cycle_multipass_dfa_lookahead' at the last call of
   `max_issue'.  */
   `max_issue'.  */
static int cached_first_cycle_multipass_dfa_lookahead = 0;
static int cached_first_cycle_multipass_dfa_lookahead = 0;
 
 
/* The following value is value of `issue_rate' at the last call of
/* The following value is value of `issue_rate' at the last call of
   `sched_init'.  */
   `sched_init'.  */
static int cached_issue_rate = 0;
static int cached_issue_rate = 0;
 
 
/* The following function returns maximal (or close to maximal) number
/* The following function returns maximal (or close to maximal) number
   of insns which can be issued on the same cycle and one of which
   of insns which can be issued on the same cycle and one of which
   insns is insns with the best rank (the first insn in READY).  To
   insns is insns with the best rank (the first insn in READY).  To
   make this function tries different samples of ready insns.  READY
   make this function tries different samples of ready insns.  READY
   is current queue `ready'.  Global array READY_TRY reflects what
   is current queue `ready'.  Global array READY_TRY reflects what
   insns are already issued in this try.  MAX_POINTS is the sum of points
   insns are already issued in this try.  MAX_POINTS is the sum of points
   of all instructions in READY.  The function stops immediately,
   of all instructions in READY.  The function stops immediately,
   if it reached the such a solution, that all instruction can be issued.
   if it reached the such a solution, that all instruction can be issued.
   INDEX will contain index of the best insn in READY.  The following
   INDEX will contain index of the best insn in READY.  The following
   function is used only for first cycle multipass scheduling.
   function is used only for first cycle multipass scheduling.
 
 
   PRIVILEGED_N >= 0
   PRIVILEGED_N >= 0
 
 
   This function expects recognized insns only.  All USEs,
   This function expects recognized insns only.  All USEs,
   CLOBBERs, etc must be filtered elsewhere.  */
   CLOBBERs, etc must be filtered elsewhere.  */
int
int
max_issue (struct ready_list *ready, int privileged_n, state_t state,
max_issue (struct ready_list *ready, int privileged_n, state_t state,
           int *index)
           int *index)
{
{
  int n, i, all, n_ready, best, delay, tries_num, max_points;
  int n, i, all, n_ready, best, delay, tries_num, max_points;
  int more_issue;
  int more_issue;
  struct choice_entry *top;
  struct choice_entry *top;
  rtx insn;
  rtx insn;
 
 
  n_ready = ready->n_ready;
  n_ready = ready->n_ready;
  gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
  gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
              && privileged_n <= n_ready);
              && privileged_n <= n_ready);
 
 
  /* Init MAX_LOOKAHEAD_TRIES.  */
  /* Init MAX_LOOKAHEAD_TRIES.  */
  if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
  if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
    {
    {
      cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
      cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
      max_lookahead_tries = 100;
      max_lookahead_tries = 100;
      for (i = 0; i < issue_rate; i++)
      for (i = 0; i < issue_rate; i++)
        max_lookahead_tries *= dfa_lookahead;
        max_lookahead_tries *= dfa_lookahead;
    }
    }
 
 
  /* Init max_points.  */
  /* Init max_points.  */
  max_points = 0;
  max_points = 0;
  more_issue = issue_rate - cycle_issued_insns;
  more_issue = issue_rate - cycle_issued_insns;
 
 
  /* ??? We used to assert here that we never issue more insns than issue_rate.
  /* ??? We used to assert here that we never issue more insns than issue_rate.
     However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
     However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
     achieved to get better performance.  Until these targets are fixed to use
     achieved to get better performance.  Until these targets are fixed to use
     scheduler hooks to manipulate insns priority instead, the assert should
     scheduler hooks to manipulate insns priority instead, the assert should
     be disabled.
     be disabled.
 
 
     gcc_assert (more_issue >= 0);  */
     gcc_assert (more_issue >= 0);  */
 
 
  for (i = 0; i < n_ready; i++)
  for (i = 0; i < n_ready; i++)
    if (!ready_try [i])
    if (!ready_try [i])
      {
      {
        if (more_issue-- > 0)
        if (more_issue-- > 0)
          max_points += ISSUE_POINTS (ready_element (ready, i));
          max_points += ISSUE_POINTS (ready_element (ready, i));
        else
        else
          break;
          break;
      }
      }
 
 
  /* The number of the issued insns in the best solution.  */
  /* The number of the issued insns in the best solution.  */
  best = 0;
  best = 0;
 
 
  top = choice_stack;
  top = choice_stack;
 
 
  /* Set initial state of the search.  */
  /* Set initial state of the search.  */
  memcpy (top->state, state, dfa_state_size);
  memcpy (top->state, state, dfa_state_size);
  top->rest = dfa_lookahead;
  top->rest = dfa_lookahead;
  top->n = 0;
  top->n = 0;
 
 
  /* Count the number of the insns to search among.  */
  /* Count the number of the insns to search among.  */
  for (all = i = 0; i < n_ready; i++)
  for (all = i = 0; i < n_ready; i++)
    if (!ready_try [i])
    if (!ready_try [i])
      all++;
      all++;
 
 
  /* I is the index of the insn to try next.  */
  /* I is the index of the insn to try next.  */
  i = 0;
  i = 0;
  tries_num = 0;
  tries_num = 0;
  for (;;)
  for (;;)
    {
    {
      if (/* If we've reached a dead end or searched enough of what we have
      if (/* If we've reached a dead end or searched enough of what we have
             been asked...  */
             been asked...  */
          top->rest == 0
          top->rest == 0
          /* Or have nothing else to try.  */
          /* Or have nothing else to try.  */
          || i >= n_ready)
          || i >= n_ready)
        {
        {
          /* ??? (... || i == n_ready).  */
          /* ??? (... || i == n_ready).  */
          gcc_assert (i <= n_ready);
          gcc_assert (i <= n_ready);
 
 
          if (top == choice_stack)
          if (top == choice_stack)
            break;
            break;
 
 
          if (best < top - choice_stack)
          if (best < top - choice_stack)
            {
            {
              if (privileged_n)
              if (privileged_n)
                {
                {
                  n = privileged_n;
                  n = privileged_n;
                  /* Try to find issued privileged insn.  */
                  /* Try to find issued privileged insn.  */
                  while (n && !ready_try[--n]);
                  while (n && !ready_try[--n]);
                }
                }
 
 
              if (/* If all insns are equally good...  */
              if (/* If all insns are equally good...  */
                  privileged_n == 0
                  privileged_n == 0
                  /* Or a privileged insn will be issued.  */
                  /* Or a privileged insn will be issued.  */
                  || ready_try[n])
                  || ready_try[n])
                /* Then we have a solution.  */
                /* Then we have a solution.  */
                {
                {
                  best = top - choice_stack;
                  best = top - choice_stack;
                  /* This is the index of the insn issued first in this
                  /* This is the index of the insn issued first in this
                     solution.  */
                     solution.  */
                  *index = choice_stack [1].index;
                  *index = choice_stack [1].index;
                  if (top->n == max_points || best == all)
                  if (top->n == max_points || best == all)
                    break;
                    break;
                }
                }
            }
            }
 
 
          /* Set ready-list index to point to the last insn
          /* Set ready-list index to point to the last insn
             ('i++' below will advance it to the next insn).  */
             ('i++' below will advance it to the next insn).  */
          i = top->index;
          i = top->index;
 
 
          /* Backtrack.  */
          /* Backtrack.  */
          ready_try [i] = 0;
          ready_try [i] = 0;
          top--;
          top--;
          memcpy (state, top->state, dfa_state_size);
          memcpy (state, top->state, dfa_state_size);
        }
        }
      else if (!ready_try [i])
      else if (!ready_try [i])
        {
        {
          tries_num++;
          tries_num++;
          if (tries_num > max_lookahead_tries)
          if (tries_num > max_lookahead_tries)
            break;
            break;
          insn = ready_element (ready, i);
          insn = ready_element (ready, i);
          delay = state_transition (state, insn);
          delay = state_transition (state, insn);
          if (delay < 0)
          if (delay < 0)
            {
            {
              if (state_dead_lock_p (state)
              if (state_dead_lock_p (state)
                  || insn_finishes_cycle_p (insn))
                  || insn_finishes_cycle_p (insn))
                /* We won't issue any more instructions in the next
                /* We won't issue any more instructions in the next
                   choice_state.  */
                   choice_state.  */
                top->rest = 0;
                top->rest = 0;
              else
              else
                top->rest--;
                top->rest--;
 
 
              n = top->n;
              n = top->n;
              if (memcmp (top->state, state, dfa_state_size) != 0)
              if (memcmp (top->state, state, dfa_state_size) != 0)
                n += ISSUE_POINTS (insn);
                n += ISSUE_POINTS (insn);
 
 
              /* Advance to the next choice_entry.  */
              /* Advance to the next choice_entry.  */
              top++;
              top++;
              /* Initialize it.  */
              /* Initialize it.  */
              top->rest = dfa_lookahead;
              top->rest = dfa_lookahead;
              top->index = i;
              top->index = i;
              top->n = n;
              top->n = n;
              memcpy (top->state, state, dfa_state_size);
              memcpy (top->state, state, dfa_state_size);
 
 
              ready_try [i] = 1;
              ready_try [i] = 1;
              i = -1;
              i = -1;
            }
            }
        }
        }
 
 
      /* Increase ready-list index.  */
      /* Increase ready-list index.  */
      i++;
      i++;
    }
    }
 
 
  /* Restore the original state of the DFA.  */
  /* Restore the original state of the DFA.  */
  memcpy (state, choice_stack->state, dfa_state_size);
  memcpy (state, choice_stack->state, dfa_state_size);
 
 
  return best;
  return best;
}
}
 
 
/* The following function chooses insn from READY and modifies
/* The following function chooses insn from READY and modifies
   READY.  The following function is used only for first
   READY.  The following function is used only for first
   cycle multipass scheduling.
   cycle multipass scheduling.
   Return:
   Return:
   -1 if cycle should be advanced,
   -1 if cycle should be advanced,
   0 if INSN_PTR is set to point to the desirable insn,
   0 if INSN_PTR is set to point to the desirable insn,
   1 if choose_ready () should be restarted without advancing the cycle.  */
   1 if choose_ready () should be restarted without advancing the cycle.  */
static int
static int
choose_ready (struct ready_list *ready, rtx *insn_ptr)
choose_ready (struct ready_list *ready, rtx *insn_ptr)
{
{
  int lookahead;
  int lookahead;
 
 
  if (dbg_cnt (sched_insn) == false)
  if (dbg_cnt (sched_insn) == false)
    {
    {
      rtx insn;
      rtx insn;
 
 
      insn = next_nonnote_insn (last_scheduled_insn);
      insn = next_nonnote_insn (last_scheduled_insn);
 
 
      if (QUEUE_INDEX (insn) == QUEUE_READY)
      if (QUEUE_INDEX (insn) == QUEUE_READY)
        /* INSN is in the ready_list.  */
        /* INSN is in the ready_list.  */
        {
        {
          ready_remove_insn (insn);
          ready_remove_insn (insn);
          *insn_ptr = insn;
          *insn_ptr = insn;
          return 0;
          return 0;
        }
        }
 
 
      /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
      /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
      return -1;
      return -1;
    }
    }
 
 
  lookahead = 0;
  lookahead = 0;
 
 
  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
    lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
    lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
  if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
  if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
      || DEBUG_INSN_P (ready_element (ready, 0)))
      || DEBUG_INSN_P (ready_element (ready, 0)))
    {
    {
      *insn_ptr = ready_remove_first (ready);
      *insn_ptr = ready_remove_first (ready);
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      /* Try to choose the better insn.  */
      /* Try to choose the better insn.  */
      int index = 0, i, n;
      int index = 0, i, n;
      rtx insn;
      rtx insn;
      int try_data = 1, try_control = 1;
      int try_data = 1, try_control = 1;
      ds_t ts;
      ds_t ts;
 
 
      insn = ready_element (ready, 0);
      insn = ready_element (ready, 0);
      if (INSN_CODE (insn) < 0)
      if (INSN_CODE (insn) < 0)
        {
        {
          *insn_ptr = ready_remove_first (ready);
          *insn_ptr = ready_remove_first (ready);
          return 0;
          return 0;
        }
        }
 
 
      if (spec_info
      if (spec_info
          && spec_info->flags & (PREFER_NON_DATA_SPEC
          && spec_info->flags & (PREFER_NON_DATA_SPEC
                                 | PREFER_NON_CONTROL_SPEC))
                                 | PREFER_NON_CONTROL_SPEC))
        {
        {
          for (i = 0, n = ready->n_ready; i < n; i++)
          for (i = 0, n = ready->n_ready; i < n; i++)
            {
            {
              rtx x;
              rtx x;
              ds_t s;
              ds_t s;
 
 
              x = ready_element (ready, i);
              x = ready_element (ready, i);
              s = TODO_SPEC (x);
              s = TODO_SPEC (x);
 
 
              if (spec_info->flags & PREFER_NON_DATA_SPEC
              if (spec_info->flags & PREFER_NON_DATA_SPEC
                  && !(s & DATA_SPEC))
                  && !(s & DATA_SPEC))
                {
                {
                  try_data = 0;
                  try_data = 0;
                  if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
                  if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
                      || !try_control)
                      || !try_control)
                    break;
                    break;
                }
                }
 
 
              if (spec_info->flags & PREFER_NON_CONTROL_SPEC
              if (spec_info->flags & PREFER_NON_CONTROL_SPEC
                  && !(s & CONTROL_SPEC))
                  && !(s & CONTROL_SPEC))
                {
                {
                  try_control = 0;
                  try_control = 0;
                  if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
                  if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
                    break;
                    break;
                }
                }
            }
            }
        }
        }
 
 
      ts = TODO_SPEC (insn);
      ts = TODO_SPEC (insn);
      if ((ts & SPECULATIVE)
      if ((ts & SPECULATIVE)
          && (((!try_data && (ts & DATA_SPEC))
          && (((!try_data && (ts & DATA_SPEC))
               || (!try_control && (ts & CONTROL_SPEC)))
               || (!try_control && (ts & CONTROL_SPEC)))
              || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
              || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
                  && !targetm.sched
                  && !targetm.sched
                  .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
                  .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
        /* Discard speculative instruction that stands first in the ready
        /* Discard speculative instruction that stands first in the ready
           list.  */
           list.  */
        {
        {
          change_queue_index (insn, 1);
          change_queue_index (insn, 1);
          return 1;
          return 1;
        }
        }
 
 
      ready_try[0] = 0;
      ready_try[0] = 0;
 
 
      for (i = 1; i < ready->n_ready; i++)
      for (i = 1; i < ready->n_ready; i++)
        {
        {
          insn = ready_element (ready, i);
          insn = ready_element (ready, i);
 
 
          ready_try [i]
          ready_try [i]
            = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
            = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
               || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
               || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
        }
        }
 
 
      /* Let the target filter the search space.  */
      /* Let the target filter the search space.  */
      for (i = 1; i < ready->n_ready; i++)
      for (i = 1; i < ready->n_ready; i++)
        if (!ready_try[i])
        if (!ready_try[i])
          {
          {
            insn = ready_element (ready, i);
            insn = ready_element (ready, i);
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
            /* If this insn is recognizable we should have already
            /* If this insn is recognizable we should have already
               recognized it earlier.
               recognized it earlier.
               ??? Not very clear where this is supposed to be done.
               ??? Not very clear where this is supposed to be done.
               See dep_cost_1.  */
               See dep_cost_1.  */
            gcc_assert (INSN_CODE (insn) >= 0
            gcc_assert (INSN_CODE (insn) >= 0
                        || recog_memoized (insn) < 0);
                        || recog_memoized (insn) < 0);
#endif
#endif
 
 
            ready_try [i]
            ready_try [i]
              = (/* INSN_CODE check can be omitted here as it is also done later
              = (/* INSN_CODE check can be omitted here as it is also done later
                    in max_issue ().  */
                    in max_issue ().  */
                 INSN_CODE (insn) < 0
                 INSN_CODE (insn) < 0
                 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
                 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
                     && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
                     && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
                     (insn)));
                     (insn)));
          }
          }
 
 
      if (max_issue (ready, 1, curr_state, &index) == 0)
      if (max_issue (ready, 1, curr_state, &index) == 0)
        {
        {
          *insn_ptr = ready_remove_first (ready);
          *insn_ptr = ready_remove_first (ready);
          if (sched_verbose >= 4)
          if (sched_verbose >= 4)
            fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
            fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
                     (*current_sched_info->print_insn) (*insn_ptr, 0));
                     (*current_sched_info->print_insn) (*insn_ptr, 0));
          return 0;
          return 0;
        }
        }
      else
      else
        {
        {
          if (sched_verbose >= 4)
          if (sched_verbose >= 4)
            fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
            fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
                     (*current_sched_info->print_insn)
                     (*current_sched_info->print_insn)
                     (ready_element (ready, index), 0));
                     (ready_element (ready, index), 0));
 
 
          *insn_ptr = ready_remove (ready, index);
          *insn_ptr = ready_remove (ready, index);
          return 0;
          return 0;
        }
        }
    }
    }
}
}
 
 
/* Use forward list scheduling to rearrange insns of block pointed to by
/* Use forward list scheduling to rearrange insns of block pointed to by
   TARGET_BB, possibly bringing insns from subsequent blocks in the same
   TARGET_BB, possibly bringing insns from subsequent blocks in the same
   region.  */
   region.  */
 
 
void
void
schedule_block (basic_block *target_bb)
schedule_block (basic_block *target_bb)
{
{
  int i, first_cycle_insn_p;
  int i, first_cycle_insn_p;
  int can_issue_more;
  int can_issue_more;
  state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
  state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
  int sort_p, advance, start_clock_var;
  int sort_p, advance, start_clock_var;
 
 
  /* Head/tail info for this block.  */
  /* Head/tail info for this block.  */
  rtx prev_head = current_sched_info->prev_head;
  rtx prev_head = current_sched_info->prev_head;
  rtx next_tail = current_sched_info->next_tail;
  rtx next_tail = current_sched_info->next_tail;
  rtx head = NEXT_INSN (prev_head);
  rtx head = NEXT_INSN (prev_head);
  rtx tail = PREV_INSN (next_tail);
  rtx tail = PREV_INSN (next_tail);
 
 
  /* We used to have code to avoid getting parameters moved from hard
  /* We used to have code to avoid getting parameters moved from hard
     argument registers into pseudos.
     argument registers into pseudos.
 
 
     However, it was removed when it proved to be of marginal benefit
     However, it was removed when it proved to be of marginal benefit
     and caused problems because schedule_block and compute_forward_dependences
     and caused problems because schedule_block and compute_forward_dependences
     had different notions of what the "head" insn was.  */
     had different notions of what the "head" insn was.  */
 
 
  gcc_assert (head != tail || INSN_P (head));
  gcc_assert (head != tail || INSN_P (head));
 
 
  haifa_recovery_bb_recently_added_p = false;
  haifa_recovery_bb_recently_added_p = false;
 
 
  /* Debug info.  */
  /* Debug info.  */
  if (sched_verbose)
  if (sched_verbose)
    dump_new_block_header (0, *target_bb, head, tail);
    dump_new_block_header (0, *target_bb, head, tail);
 
 
  state_reset (curr_state);
  state_reset (curr_state);
 
 
  /* Clear the ready list.  */
  /* Clear the ready list.  */
  ready.first = ready.veclen - 1;
  ready.first = ready.veclen - 1;
  ready.n_ready = 0;
  ready.n_ready = 0;
  ready.n_debug = 0;
  ready.n_debug = 0;
 
 
  /* It is used for first cycle multipass scheduling.  */
  /* It is used for first cycle multipass scheduling.  */
  temp_state = alloca (dfa_state_size);
  temp_state = alloca (dfa_state_size);
 
 
  if (targetm.sched.md_init)
  if (targetm.sched.md_init)
    targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
    targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
 
 
  /* We start inserting insns after PREV_HEAD.  */
  /* We start inserting insns after PREV_HEAD.  */
  last_scheduled_insn = prev_head;
  last_scheduled_insn = prev_head;
 
 
  gcc_assert ((NOTE_P (last_scheduled_insn)
  gcc_assert ((NOTE_P (last_scheduled_insn)
               || BOUNDARY_DEBUG_INSN_P (last_scheduled_insn))
               || BOUNDARY_DEBUG_INSN_P (last_scheduled_insn))
              && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
              && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
 
 
  /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
  /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
     queue.  */
     queue.  */
  q_ptr = 0;
  q_ptr = 0;
  q_size = 0;
  q_size = 0;
 
 
  insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
  insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
  memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
  memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
 
 
  /* Start just before the beginning of time.  */
  /* Start just before the beginning of time.  */
  clock_var = -1;
  clock_var = -1;
 
 
  /* We need queue and ready lists and clock_var be initialized
  /* We need queue and ready lists and clock_var be initialized
     in try_ready () (which is called through init_ready_list ()).  */
     in try_ready () (which is called through init_ready_list ()).  */
  (*current_sched_info->init_ready_list) ();
  (*current_sched_info->init_ready_list) ();
 
 
  /* The algorithm is O(n^2) in the number of ready insns at any given
  /* The algorithm is O(n^2) in the number of ready insns at any given
     time in the worst case.  Before reload we are more likely to have
     time in the worst case.  Before reload we are more likely to have
     big lists so truncate them to a reasonable size.  */
     big lists so truncate them to a reasonable size.  */
  if (!reload_completed
  if (!reload_completed
      && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
      && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
    {
    {
      ready_sort (&ready);
      ready_sort (&ready);
 
 
      /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
      /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
         If there are debug insns, we know they're first.  */
         If there are debug insns, we know they're first.  */
      for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
      for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
        if (!SCHED_GROUP_P (ready_element (&ready, i)))
        if (!SCHED_GROUP_P (ready_element (&ready, i)))
          break;
          break;
 
 
      if (sched_verbose >= 2)
      if (sched_verbose >= 2)
        {
        {
          fprintf (sched_dump,
          fprintf (sched_dump,
                   ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
                   ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
          fprintf (sched_dump,
          fprintf (sched_dump,
                   ";;\t\t before reload => truncated to %d insns\n", i);
                   ";;\t\t before reload => truncated to %d insns\n", i);
        }
        }
 
 
      /* Delay all insns past it for 1 cycle.  If debug counter is
      /* Delay all insns past it for 1 cycle.  If debug counter is
         activated make an exception for the insn right after
         activated make an exception for the insn right after
         last_scheduled_insn.  */
         last_scheduled_insn.  */
      {
      {
        rtx skip_insn;
        rtx skip_insn;
 
 
        if (dbg_cnt (sched_insn) == false)
        if (dbg_cnt (sched_insn) == false)
          skip_insn = next_nonnote_insn (last_scheduled_insn);
          skip_insn = next_nonnote_insn (last_scheduled_insn);
        else
        else
          skip_insn = NULL_RTX;
          skip_insn = NULL_RTX;
 
 
        while (i < ready.n_ready)
        while (i < ready.n_ready)
          {
          {
            rtx insn;
            rtx insn;
 
 
            insn = ready_remove (&ready, i);
            insn = ready_remove (&ready, i);
 
 
            if (insn != skip_insn)
            if (insn != skip_insn)
              queue_insn (insn, 1);
              queue_insn (insn, 1);
          }
          }
      }
      }
    }
    }
 
 
  /* Now we can restore basic block notes and maintain precise cfg.  */
  /* Now we can restore basic block notes and maintain precise cfg.  */
  restore_bb_notes (*target_bb);
  restore_bb_notes (*target_bb);
 
 
  last_clock_var = -1;
  last_clock_var = -1;
 
 
  advance = 0;
  advance = 0;
 
 
  sort_p = TRUE;
  sort_p = TRUE;
  /* Loop until all the insns in BB are scheduled.  */
  /* Loop until all the insns in BB are scheduled.  */
  while ((*current_sched_info->schedule_more_p) ())
  while ((*current_sched_info->schedule_more_p) ())
    {
    {
      do
      do
        {
        {
          start_clock_var = clock_var;
          start_clock_var = clock_var;
 
 
          clock_var++;
          clock_var++;
 
 
          advance_one_cycle ();
          advance_one_cycle ();
 
 
          /* Add to the ready list all pending insns that can be issued now.
          /* Add to the ready list all pending insns that can be issued now.
             If there are no ready insns, increment clock until one
             If there are no ready insns, increment clock until one
             is ready and add all pending insns at that point to the ready
             is ready and add all pending insns at that point to the ready
             list.  */
             list.  */
          queue_to_ready (&ready);
          queue_to_ready (&ready);
 
 
          gcc_assert (ready.n_ready);
          gcc_assert (ready.n_ready);
 
 
          if (sched_verbose >= 2)
          if (sched_verbose >= 2)
            {
            {
              fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:  ");
              fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:  ");
              debug_ready_list (&ready);
              debug_ready_list (&ready);
            }
            }
          advance -= clock_var - start_clock_var;
          advance -= clock_var - start_clock_var;
        }
        }
      while (advance > 0);
      while (advance > 0);
 
 
      if (sort_p)
      if (sort_p)
        {
        {
          /* Sort the ready list based on priority.  */
          /* Sort the ready list based on priority.  */
          ready_sort (&ready);
          ready_sort (&ready);
 
 
          if (sched_verbose >= 2)
          if (sched_verbose >= 2)
            {
            {
              fprintf (sched_dump, ";;\t\tReady list after ready_sort:  ");
              fprintf (sched_dump, ";;\t\tReady list after ready_sort:  ");
              debug_ready_list (&ready);
              debug_ready_list (&ready);
            }
            }
        }
        }
 
 
      /* We don't want md sched reorder to even see debug isns, so put
      /* We don't want md sched reorder to even see debug isns, so put
         them out right away.  */
         them out right away.  */
      if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
      if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
        {
        {
          if (control_flow_insn_p (last_scheduled_insn))
          if (control_flow_insn_p (last_scheduled_insn))
            {
            {
              *target_bb = current_sched_info->advance_target_bb
              *target_bb = current_sched_info->advance_target_bb
                (*target_bb, 0);
                (*target_bb, 0);
 
 
              if (sched_verbose)
              if (sched_verbose)
                {
                {
                  rtx x;
                  rtx x;
 
 
                  x = next_real_insn (last_scheduled_insn);
                  x = next_real_insn (last_scheduled_insn);
                  gcc_assert (x);
                  gcc_assert (x);
                  dump_new_block_header (1, *target_bb, x, tail);
                  dump_new_block_header (1, *target_bb, x, tail);
                }
                }
 
 
              last_scheduled_insn = bb_note (*target_bb);
              last_scheduled_insn = bb_note (*target_bb);
            }
            }
 
 
          while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
          while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
            {
            {
              rtx insn = ready_remove_first (&ready);
              rtx insn = ready_remove_first (&ready);
              gcc_assert (DEBUG_INSN_P (insn));
              gcc_assert (DEBUG_INSN_P (insn));
              (*current_sched_info->begin_schedule_ready) (insn,
              (*current_sched_info->begin_schedule_ready) (insn,
                                                           last_scheduled_insn);
                                                           last_scheduled_insn);
              move_insn (insn, last_scheduled_insn,
              move_insn (insn, last_scheduled_insn,
                         current_sched_info->next_tail);
                         current_sched_info->next_tail);
              last_scheduled_insn = insn;
              last_scheduled_insn = insn;
              advance = schedule_insn (insn);
              advance = schedule_insn (insn);
              gcc_assert (advance == 0);
              gcc_assert (advance == 0);
              if (ready.n_ready > 0)
              if (ready.n_ready > 0)
                ready_sort (&ready);
                ready_sort (&ready);
            }
            }
 
 
          if (!ready.n_ready)
          if (!ready.n_ready)
            continue;
            continue;
        }
        }
 
 
      /* Allow the target to reorder the list, typically for
      /* Allow the target to reorder the list, typically for
         better instruction bundling.  */
         better instruction bundling.  */
      if (sort_p && targetm.sched.reorder
      if (sort_p && targetm.sched.reorder
          && (ready.n_ready == 0
          && (ready.n_ready == 0
              || !SCHED_GROUP_P (ready_element (&ready, 0))))
              || !SCHED_GROUP_P (ready_element (&ready, 0))))
        can_issue_more =
        can_issue_more =
          targetm.sched.reorder (sched_dump, sched_verbose,
          targetm.sched.reorder (sched_dump, sched_verbose,
                                 ready_lastpos (&ready),
                                 ready_lastpos (&ready),
                                 &ready.n_ready, clock_var);
                                 &ready.n_ready, clock_var);
      else
      else
        can_issue_more = issue_rate;
        can_issue_more = issue_rate;
 
 
      first_cycle_insn_p = 1;
      first_cycle_insn_p = 1;
      cycle_issued_insns = 0;
      cycle_issued_insns = 0;
      for (;;)
      for (;;)
        {
        {
          rtx insn;
          rtx insn;
          int cost;
          int cost;
          bool asm_p = false;
          bool asm_p = false;
 
 
          if (sched_verbose >= 2)
          if (sched_verbose >= 2)
            {
            {
              fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
              fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
                       clock_var);
                       clock_var);
              debug_ready_list (&ready);
              debug_ready_list (&ready);
              if (sched_pressure_p)
              if (sched_pressure_p)
                print_curr_reg_pressure ();
                print_curr_reg_pressure ();
            }
            }
 
 
          if (ready.n_ready == 0
          if (ready.n_ready == 0
              && can_issue_more
              && can_issue_more
              && reload_completed)
              && reload_completed)
            {
            {
              /* Allow scheduling insns directly from the queue in case
              /* Allow scheduling insns directly from the queue in case
                 there's nothing better to do (ready list is empty) but
                 there's nothing better to do (ready list is empty) but
                 there are still vacant dispatch slots in the current cycle.  */
                 there are still vacant dispatch slots in the current cycle.  */
              if (sched_verbose >= 6)
              if (sched_verbose >= 6)
                fprintf (sched_dump,";;\t\tSecond chance\n");
                fprintf (sched_dump,";;\t\tSecond chance\n");
              memcpy (temp_state, curr_state, dfa_state_size);
              memcpy (temp_state, curr_state, dfa_state_size);
              if (early_queue_to_ready (temp_state, &ready))
              if (early_queue_to_ready (temp_state, &ready))
                ready_sort (&ready);
                ready_sort (&ready);
            }
            }
 
 
          if (ready.n_ready == 0
          if (ready.n_ready == 0
              || !can_issue_more
              || !can_issue_more
              || state_dead_lock_p (curr_state)
              || state_dead_lock_p (curr_state)
              || !(*current_sched_info->schedule_more_p) ())
              || !(*current_sched_info->schedule_more_p) ())
            break;
            break;
 
 
          /* Select and remove the insn from the ready list.  */
          /* Select and remove the insn from the ready list.  */
          if (sort_p)
          if (sort_p)
            {
            {
              int res;
              int res;
 
 
              insn = NULL_RTX;
              insn = NULL_RTX;
              res = choose_ready (&ready, &insn);
              res = choose_ready (&ready, &insn);
 
 
              if (res < 0)
              if (res < 0)
                /* Finish cycle.  */
                /* Finish cycle.  */
                break;
                break;
              if (res > 0)
              if (res > 0)
                /* Restart choose_ready ().  */
                /* Restart choose_ready ().  */
                continue;
                continue;
 
 
              gcc_assert (insn != NULL_RTX);
              gcc_assert (insn != NULL_RTX);
            }
            }
          else
          else
            insn = ready_remove_first (&ready);
            insn = ready_remove_first (&ready);
 
 
          if (sched_pressure_p && INSN_TICK (insn) > clock_var)
          if (sched_pressure_p && INSN_TICK (insn) > clock_var)
            {
            {
              ready_add (&ready, insn, true);
              ready_add (&ready, insn, true);
              advance = 1;
              advance = 1;
              break;
              break;
            }
            }
 
 
          if (targetm.sched.dfa_new_cycle
          if (targetm.sched.dfa_new_cycle
              && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
              && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
                                              insn, last_clock_var,
                                              insn, last_clock_var,
                                              clock_var, &sort_p))
                                              clock_var, &sort_p))
            /* SORT_P is used by the target to override sorting
            /* SORT_P is used by the target to override sorting
               of the ready list.  This is needed when the target
               of the ready list.  This is needed when the target
               has modified its internal structures expecting that
               has modified its internal structures expecting that
               the insn will be issued next.  As we need the insn
               the insn will be issued next.  As we need the insn
               to have the highest priority (so it will be returned by
               to have the highest priority (so it will be returned by
               the ready_remove_first call above), we invoke
               the ready_remove_first call above), we invoke
               ready_add (&ready, insn, true).
               ready_add (&ready, insn, true).
               But, still, there is one issue: INSN can be later
               But, still, there is one issue: INSN can be later
               discarded by scheduler's front end through
               discarded by scheduler's front end through
               current_sched_info->can_schedule_ready_p, hence, won't
               current_sched_info->can_schedule_ready_p, hence, won't
               be issued next.  */
               be issued next.  */
            {
            {
              ready_add (&ready, insn, true);
              ready_add (&ready, insn, true);
              break;
              break;
            }
            }
 
 
          sort_p = TRUE;
          sort_p = TRUE;
          memcpy (temp_state, curr_state, dfa_state_size);
          memcpy (temp_state, curr_state, dfa_state_size);
          if (recog_memoized (insn) < 0)
          if (recog_memoized (insn) < 0)
            {
            {
              asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
              asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
                       || asm_noperands (PATTERN (insn)) >= 0);
                       || asm_noperands (PATTERN (insn)) >= 0);
              if (!first_cycle_insn_p && asm_p)
              if (!first_cycle_insn_p && asm_p)
                /* This is asm insn which is tried to be issued on the
                /* This is asm insn which is tried to be issued on the
                   cycle not first.  Issue it on the next cycle.  */
                   cycle not first.  Issue it on the next cycle.  */
                cost = 1;
                cost = 1;
              else
              else
                /* A USE insn, or something else we don't need to
                /* A USE insn, or something else we don't need to
                   understand.  We can't pass these directly to
                   understand.  We can't pass these directly to
                   state_transition because it will trigger a
                   state_transition because it will trigger a
                   fatal error for unrecognizable insns.  */
                   fatal error for unrecognizable insns.  */
                cost = 0;
                cost = 0;
            }
            }
          else if (sched_pressure_p)
          else if (sched_pressure_p)
            cost = 0;
            cost = 0;
          else
          else
            {
            {
              cost = state_transition (temp_state, insn);
              cost = state_transition (temp_state, insn);
              if (cost < 0)
              if (cost < 0)
                cost = 0;
                cost = 0;
              else if (cost == 0)
              else if (cost == 0)
                cost = 1;
                cost = 1;
            }
            }
 
 
          if (cost >= 1)
          if (cost >= 1)
            {
            {
              queue_insn (insn, cost);
              queue_insn (insn, cost);
              if (SCHED_GROUP_P (insn))
              if (SCHED_GROUP_P (insn))
                {
                {
                  advance = cost;
                  advance = cost;
                  break;
                  break;
                }
                }
 
 
              continue;
              continue;
            }
            }
 
 
          if (current_sched_info->can_schedule_ready_p
          if (current_sched_info->can_schedule_ready_p
              && ! (*current_sched_info->can_schedule_ready_p) (insn))
              && ! (*current_sched_info->can_schedule_ready_p) (insn))
            /* We normally get here only if we don't want to move
            /* We normally get here only if we don't want to move
               insn from the split block.  */
               insn from the split block.  */
            {
            {
              TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
              TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
              continue;
              continue;
            }
            }
 
 
          /* DECISION is made.  */
          /* DECISION is made.  */
 
 
          if (TODO_SPEC (insn) & SPECULATIVE)
          if (TODO_SPEC (insn) & SPECULATIVE)
            generate_recovery_code (insn);
            generate_recovery_code (insn);
 
 
          if (control_flow_insn_p (last_scheduled_insn)
          if (control_flow_insn_p (last_scheduled_insn)
              /* This is used to switch basic blocks by request
              /* This is used to switch basic blocks by request
                 from scheduler front-end (actually, sched-ebb.c only).
                 from scheduler front-end (actually, sched-ebb.c only).
                 This is used to process blocks with single fallthru
                 This is used to process blocks with single fallthru
                 edge.  If succeeding block has jump, it [jump] will try
                 edge.  If succeeding block has jump, it [jump] will try
                 move at the end of current bb, thus corrupting CFG.  */
                 move at the end of current bb, thus corrupting CFG.  */
              || current_sched_info->advance_target_bb (*target_bb, insn))
              || current_sched_info->advance_target_bb (*target_bb, insn))
            {
            {
              *target_bb = current_sched_info->advance_target_bb
              *target_bb = current_sched_info->advance_target_bb
                (*target_bb, 0);
                (*target_bb, 0);
 
 
              if (sched_verbose)
              if (sched_verbose)
                {
                {
                  rtx x;
                  rtx x;
 
 
                  x = next_real_insn (last_scheduled_insn);
                  x = next_real_insn (last_scheduled_insn);
                  gcc_assert (x);
                  gcc_assert (x);
                  dump_new_block_header (1, *target_bb, x, tail);
                  dump_new_block_header (1, *target_bb, x, tail);
                }
                }
 
 
              last_scheduled_insn = bb_note (*target_bb);
              last_scheduled_insn = bb_note (*target_bb);
            }
            }
 
 
          /* Update counters, etc in the scheduler's front end.  */
          /* Update counters, etc in the scheduler's front end.  */
          (*current_sched_info->begin_schedule_ready) (insn,
          (*current_sched_info->begin_schedule_ready) (insn,
                                                       last_scheduled_insn);
                                                       last_scheduled_insn);
 
 
          move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
          move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
          reemit_notes (insn);
          reemit_notes (insn);
          last_scheduled_insn = insn;
          last_scheduled_insn = insn;
 
 
          if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
          if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
            {
            {
              cycle_issued_insns++;
              cycle_issued_insns++;
              memcpy (curr_state, temp_state, dfa_state_size);
              memcpy (curr_state, temp_state, dfa_state_size);
            }
            }
 
 
          if (targetm.sched.variable_issue)
          if (targetm.sched.variable_issue)
            can_issue_more =
            can_issue_more =
              targetm.sched.variable_issue (sched_dump, sched_verbose,
              targetm.sched.variable_issue (sched_dump, sched_verbose,
                                            insn, can_issue_more);
                                            insn, can_issue_more);
          /* A naked CLOBBER or USE generates no instruction, so do
          /* A naked CLOBBER or USE generates no instruction, so do
             not count them against the issue rate.  */
             not count them against the issue rate.  */
          else if (GET_CODE (PATTERN (insn)) != USE
          else if (GET_CODE (PATTERN (insn)) != USE
                   && GET_CODE (PATTERN (insn)) != CLOBBER)
                   && GET_CODE (PATTERN (insn)) != CLOBBER)
            can_issue_more--;
            can_issue_more--;
          advance = schedule_insn (insn);
          advance = schedule_insn (insn);
 
 
          /* After issuing an asm insn we should start a new cycle.  */
          /* After issuing an asm insn we should start a new cycle.  */
          if (advance == 0 && asm_p)
          if (advance == 0 && asm_p)
            advance = 1;
            advance = 1;
          if (advance != 0)
          if (advance != 0)
            break;
            break;
 
 
          first_cycle_insn_p = 0;
          first_cycle_insn_p = 0;
 
 
          /* Sort the ready list based on priority.  This must be
          /* Sort the ready list based on priority.  This must be
             redone here, as schedule_insn may have readied additional
             redone here, as schedule_insn may have readied additional
             insns that will not be sorted correctly.  */
             insns that will not be sorted correctly.  */
          if (ready.n_ready > 0)
          if (ready.n_ready > 0)
            ready_sort (&ready);
            ready_sort (&ready);
 
 
          /* Quickly go through debug insns such that md sched
          /* Quickly go through debug insns such that md sched
             reorder2 doesn't have to deal with debug insns.  */
             reorder2 doesn't have to deal with debug insns.  */
          if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
          if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
              && (*current_sched_info->schedule_more_p) ())
              && (*current_sched_info->schedule_more_p) ())
            {
            {
              if (control_flow_insn_p (last_scheduled_insn))
              if (control_flow_insn_p (last_scheduled_insn))
                {
                {
                  *target_bb = current_sched_info->advance_target_bb
                  *target_bb = current_sched_info->advance_target_bb
                    (*target_bb, 0);
                    (*target_bb, 0);
 
 
                  if (sched_verbose)
                  if (sched_verbose)
                    {
                    {
                      rtx x;
                      rtx x;
 
 
                      x = next_real_insn (last_scheduled_insn);
                      x = next_real_insn (last_scheduled_insn);
                      gcc_assert (x);
                      gcc_assert (x);
                      dump_new_block_header (1, *target_bb, x, tail);
                      dump_new_block_header (1, *target_bb, x, tail);
                    }
                    }
 
 
                  last_scheduled_insn = bb_note (*target_bb);
                  last_scheduled_insn = bb_note (*target_bb);
                }
                }
 
 
              while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
              while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
                {
                {
                  insn = ready_remove_first (&ready);
                  insn = ready_remove_first (&ready);
                  gcc_assert (DEBUG_INSN_P (insn));
                  gcc_assert (DEBUG_INSN_P (insn));
                  (*current_sched_info->begin_schedule_ready)
                  (*current_sched_info->begin_schedule_ready)
                    (insn, last_scheduled_insn);
                    (insn, last_scheduled_insn);
                  move_insn (insn, last_scheduled_insn,
                  move_insn (insn, last_scheduled_insn,
                             current_sched_info->next_tail);
                             current_sched_info->next_tail);
                  advance = schedule_insn (insn);
                  advance = schedule_insn (insn);
                  last_scheduled_insn = insn;
                  last_scheduled_insn = insn;
                  gcc_assert (advance == 0);
                  gcc_assert (advance == 0);
                  if (ready.n_ready > 0)
                  if (ready.n_ready > 0)
                    ready_sort (&ready);
                    ready_sort (&ready);
                }
                }
            }
            }
 
 
          if (targetm.sched.reorder2
          if (targetm.sched.reorder2
              && (ready.n_ready == 0
              && (ready.n_ready == 0
                  || !SCHED_GROUP_P (ready_element (&ready, 0))))
                  || !SCHED_GROUP_P (ready_element (&ready, 0))))
            {
            {
              can_issue_more =
              can_issue_more =
                targetm.sched.reorder2 (sched_dump, sched_verbose,
                targetm.sched.reorder2 (sched_dump, sched_verbose,
                                        ready.n_ready
                                        ready.n_ready
                                        ? ready_lastpos (&ready) : NULL,
                                        ? ready_lastpos (&ready) : NULL,
                                        &ready.n_ready, clock_var);
                                        &ready.n_ready, clock_var);
            }
            }
        }
        }
    }
    }
 
 
  /* Debug info.  */
  /* Debug info.  */
  if (sched_verbose)
  if (sched_verbose)
    {
    {
      fprintf (sched_dump, ";;\tReady list (final):  ");
      fprintf (sched_dump, ";;\tReady list (final):  ");
      debug_ready_list (&ready);
      debug_ready_list (&ready);
    }
    }
 
 
  if (current_sched_info->queue_must_finish_empty)
  if (current_sched_info->queue_must_finish_empty)
    /* Sanity check -- queue must be empty now.  Meaningless if region has
    /* Sanity check -- queue must be empty now.  Meaningless if region has
       multiple bbs.  */
       multiple bbs.  */
    gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
    gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
  else
  else
    {
    {
      /* We must maintain QUEUE_INDEX between blocks in region.  */
      /* We must maintain QUEUE_INDEX between blocks in region.  */
      for (i = ready.n_ready - 1; i >= 0; i--)
      for (i = ready.n_ready - 1; i >= 0; i--)
        {
        {
          rtx x;
          rtx x;
 
 
          x = ready_element (&ready, i);
          x = ready_element (&ready, i);
          QUEUE_INDEX (x) = QUEUE_NOWHERE;
          QUEUE_INDEX (x) = QUEUE_NOWHERE;
          TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
          TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
        }
        }
 
 
      if (q_size)
      if (q_size)
        for (i = 0; i <= max_insn_queue_index; i++)
        for (i = 0; i <= max_insn_queue_index; i++)
          {
          {
            rtx link;
            rtx link;
            for (link = insn_queue[i]; link; link = XEXP (link, 1))
            for (link = insn_queue[i]; link; link = XEXP (link, 1))
              {
              {
                rtx x;
                rtx x;
 
 
                x = XEXP (link, 0);
                x = XEXP (link, 0);
                QUEUE_INDEX (x) = QUEUE_NOWHERE;
                QUEUE_INDEX (x) = QUEUE_NOWHERE;
                TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
                TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
              }
              }
            free_INSN_LIST_list (&insn_queue[i]);
            free_INSN_LIST_list (&insn_queue[i]);
          }
          }
    }
    }
 
 
  if (sched_verbose)
  if (sched_verbose)
    fprintf (sched_dump, ";;   total time = %d\n", clock_var);
    fprintf (sched_dump, ";;   total time = %d\n", clock_var);
 
 
  if (!current_sched_info->queue_must_finish_empty
  if (!current_sched_info->queue_must_finish_empty
      || haifa_recovery_bb_recently_added_p)
      || haifa_recovery_bb_recently_added_p)
    {
    {
      /* INSN_TICK (minimum clock tick at which the insn becomes
      /* INSN_TICK (minimum clock tick at which the insn becomes
         ready) may be not correct for the insn in the subsequent
         ready) may be not correct for the insn in the subsequent
         blocks of the region.  We should use a correct value of
         blocks of the region.  We should use a correct value of
         `clock_var' or modify INSN_TICK.  It is better to keep
         `clock_var' or modify INSN_TICK.  It is better to keep
         clock_var value equal to 0 at the start of a basic block.
         clock_var value equal to 0 at the start of a basic block.
         Therefore we modify INSN_TICK here.  */
         Therefore we modify INSN_TICK here.  */
      fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
      fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
    }
    }
 
 
  if (targetm.sched.md_finish)
  if (targetm.sched.md_finish)
    {
    {
      targetm.sched.md_finish (sched_dump, sched_verbose);
      targetm.sched.md_finish (sched_dump, sched_verbose);
      /* Target might have added some instructions to the scheduled block
      /* Target might have added some instructions to the scheduled block
         in its md_finish () hook.  These new insns don't have any data
         in its md_finish () hook.  These new insns don't have any data
         initialized and to identify them we extend h_i_d so that they'll
         initialized and to identify them we extend h_i_d so that they'll
         get zero luids.  */
         get zero luids.  */
      sched_init_luids (NULL, NULL, NULL, NULL);
      sched_init_luids (NULL, NULL, NULL, NULL);
    }
    }
 
 
  if (sched_verbose)
  if (sched_verbose)
    fprintf (sched_dump, ";;   new head = %d\n;;   new tail = %d\n\n",
    fprintf (sched_dump, ";;   new head = %d\n;;   new tail = %d\n\n",
             INSN_UID (head), INSN_UID (tail));
             INSN_UID (head), INSN_UID (tail));
 
 
  /* Update head/tail boundaries.  */
  /* Update head/tail boundaries.  */
  head = NEXT_INSN (prev_head);
  head = NEXT_INSN (prev_head);
  tail = last_scheduled_insn;
  tail = last_scheduled_insn;
 
 
  head = restore_other_notes (head, NULL);
  head = restore_other_notes (head, NULL);
 
 
  current_sched_info->head = head;
  current_sched_info->head = head;
  current_sched_info->tail = tail;
  current_sched_info->tail = tail;
}
}


/* Set_priorities: compute priority of each insn in the block.  */
/* Set_priorities: compute priority of each insn in the block.  */
 
 
int
int
set_priorities (rtx head, rtx tail)
set_priorities (rtx head, rtx tail)
{
{
  rtx insn;
  rtx insn;
  int n_insn;
  int n_insn;
  int sched_max_insns_priority =
  int sched_max_insns_priority =
        current_sched_info->sched_max_insns_priority;
        current_sched_info->sched_max_insns_priority;
  rtx prev_head;
  rtx prev_head;
 
 
  if (head == tail && (! INSN_P (head) || BOUNDARY_DEBUG_INSN_P (head)))
  if (head == tail && (! INSN_P (head) || BOUNDARY_DEBUG_INSN_P (head)))
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  n_insn = 0;
  n_insn = 0;
 
 
  prev_head = PREV_INSN (head);
  prev_head = PREV_INSN (head);
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
    {
    {
      if (!INSN_P (insn))
      if (!INSN_P (insn))
        continue;
        continue;
 
 
      n_insn++;
      n_insn++;
      (void) priority (insn);
      (void) priority (insn);
 
 
      gcc_assert (INSN_PRIORITY_KNOWN (insn));
      gcc_assert (INSN_PRIORITY_KNOWN (insn));
 
 
      sched_max_insns_priority = MAX (sched_max_insns_priority,
      sched_max_insns_priority = MAX (sched_max_insns_priority,
                                      INSN_PRIORITY (insn));
                                      INSN_PRIORITY (insn));
    }
    }
 
 
  current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
  current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
 
 
  return n_insn;
  return n_insn;
}
}
 
 
/* Set dump and sched_verbose for the desired debugging output.  If no
/* Set dump and sched_verbose for the desired debugging output.  If no
   dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
   dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
   For -fsched-verbose=N, N>=10, print everything to stderr.  */
   For -fsched-verbose=N, N>=10, print everything to stderr.  */
void
void
setup_sched_dump (void)
setup_sched_dump (void)
{
{
  sched_verbose = sched_verbose_param;
  sched_verbose = sched_verbose_param;
  if (sched_verbose_param == 0 && dump_file)
  if (sched_verbose_param == 0 && dump_file)
    sched_verbose = 1;
    sched_verbose = 1;
  sched_dump = ((sched_verbose_param >= 10 || !dump_file)
  sched_dump = ((sched_verbose_param >= 10 || !dump_file)
                ? stderr : dump_file);
                ? stderr : dump_file);
}
}
 
 
/* Initialize some global state for the scheduler.  This function works
/* Initialize some global state for the scheduler.  This function works
   with the common data shared between all the schedulers.  It is called
   with the common data shared between all the schedulers.  It is called
   from the scheduler specific initialization routine.  */
   from the scheduler specific initialization routine.  */
 
 
void
void
sched_init (void)
sched_init (void)
{
{
  /* Disable speculative loads in their presence if cc0 defined.  */
  /* Disable speculative loads in their presence if cc0 defined.  */
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  flag_schedule_speculative_load = 0;
  flag_schedule_speculative_load = 0;
#endif
#endif
 
 
  sched_pressure_p = (flag_sched_pressure && ! reload_completed
  sched_pressure_p = (flag_sched_pressure && ! reload_completed
                      && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
                      && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
  if (sched_pressure_p)
  if (sched_pressure_p)
    ira_setup_eliminable_regset ();
    ira_setup_eliminable_regset ();
 
 
  /* Initialize SPEC_INFO.  */
  /* Initialize SPEC_INFO.  */
  if (targetm.sched.set_sched_flags)
  if (targetm.sched.set_sched_flags)
    {
    {
      spec_info = &spec_info_var;
      spec_info = &spec_info_var;
      targetm.sched.set_sched_flags (spec_info);
      targetm.sched.set_sched_flags (spec_info);
 
 
      if (spec_info->mask != 0)
      if (spec_info->mask != 0)
        {
        {
          spec_info->data_weakness_cutoff =
          spec_info->data_weakness_cutoff =
            (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
            (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
          spec_info->control_weakness_cutoff =
          spec_info->control_weakness_cutoff =
            (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
            (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
             * REG_BR_PROB_BASE) / 100;
             * REG_BR_PROB_BASE) / 100;
        }
        }
      else
      else
        /* So we won't read anything accidentally.  */
        /* So we won't read anything accidentally.  */
        spec_info = NULL;
        spec_info = NULL;
 
 
    }
    }
  else
  else
    /* So we won't read anything accidentally.  */
    /* So we won't read anything accidentally.  */
    spec_info = 0;
    spec_info = 0;
 
 
  /* Initialize issue_rate.  */
  /* Initialize issue_rate.  */
  if (targetm.sched.issue_rate)
  if (targetm.sched.issue_rate)
    issue_rate = targetm.sched.issue_rate ();
    issue_rate = targetm.sched.issue_rate ();
  else
  else
    issue_rate = 1;
    issue_rate = 1;
 
 
  if (cached_issue_rate != issue_rate)
  if (cached_issue_rate != issue_rate)
    {
    {
      cached_issue_rate = issue_rate;
      cached_issue_rate = issue_rate;
      /* To invalidate max_lookahead_tries:  */
      /* To invalidate max_lookahead_tries:  */
      cached_first_cycle_multipass_dfa_lookahead = 0;
      cached_first_cycle_multipass_dfa_lookahead = 0;
    }
    }
 
 
  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
    dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
    dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
  else
  else
    dfa_lookahead = 0;
    dfa_lookahead = 0;
 
 
  if (targetm.sched.init_dfa_pre_cycle_insn)
  if (targetm.sched.init_dfa_pre_cycle_insn)
    targetm.sched.init_dfa_pre_cycle_insn ();
    targetm.sched.init_dfa_pre_cycle_insn ();
 
 
  if (targetm.sched.init_dfa_post_cycle_insn)
  if (targetm.sched.init_dfa_post_cycle_insn)
    targetm.sched.init_dfa_post_cycle_insn ();
    targetm.sched.init_dfa_post_cycle_insn ();
 
 
  dfa_start ();
  dfa_start ();
  dfa_state_size = state_size ();
  dfa_state_size = state_size ();
 
 
  init_alias_analysis ();
  init_alias_analysis ();
 
 
  df_set_flags (DF_LR_RUN_DCE);
  df_set_flags (DF_LR_RUN_DCE);
  df_note_add_problem ();
  df_note_add_problem ();
 
 
  /* More problems needed for interloop dep calculation in SMS.  */
  /* More problems needed for interloop dep calculation in SMS.  */
  if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
  if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
    {
    {
      df_rd_add_problem ();
      df_rd_add_problem ();
      df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
      df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
    }
    }
 
 
  df_analyze ();
  df_analyze ();
 
 
  /* Do not run DCE after reload, as this can kill nops inserted
  /* Do not run DCE after reload, as this can kill nops inserted
     by bundling.  */
     by bundling.  */
  if (reload_completed)
  if (reload_completed)
    df_clear_flags (DF_LR_RUN_DCE);
    df_clear_flags (DF_LR_RUN_DCE);
 
 
  regstat_compute_calls_crossed ();
  regstat_compute_calls_crossed ();
 
 
  if (targetm.sched.md_init_global)
  if (targetm.sched.md_init_global)
    targetm.sched.md_init_global (sched_dump, sched_verbose,
    targetm.sched.md_init_global (sched_dump, sched_verbose,
                                  get_max_uid () + 1);
                                  get_max_uid () + 1);
 
 
  if (sched_pressure_p)
  if (sched_pressure_p)
    {
    {
      int i, max_regno = max_reg_num ();
      int i, max_regno = max_reg_num ();
 
 
      ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
      ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
      sched_regno_cover_class
      sched_regno_cover_class
        = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
        = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
      for (i = 0; i < max_regno; i++)
      for (i = 0; i < max_regno; i++)
        sched_regno_cover_class[i]
        sched_regno_cover_class[i]
          = (i < FIRST_PSEUDO_REGISTER
          = (i < FIRST_PSEUDO_REGISTER
             ? ira_class_translate[REGNO_REG_CLASS (i)]
             ? ira_class_translate[REGNO_REG_CLASS (i)]
             : reg_cover_class (i));
             : reg_cover_class (i));
      curr_reg_live = BITMAP_ALLOC (NULL);
      curr_reg_live = BITMAP_ALLOC (NULL);
      saved_reg_live = BITMAP_ALLOC (NULL);
      saved_reg_live = BITMAP_ALLOC (NULL);
      region_ref_regs = BITMAP_ALLOC (NULL);
      region_ref_regs = BITMAP_ALLOC (NULL);
    }
    }
 
 
  curr_state = xmalloc (dfa_state_size);
  curr_state = xmalloc (dfa_state_size);
}
}
 
 
static void haifa_init_only_bb (basic_block, basic_block);
static void haifa_init_only_bb (basic_block, basic_block);
 
 
/* Initialize data structures specific to the Haifa scheduler.  */
/* Initialize data structures specific to the Haifa scheduler.  */
void
void
haifa_sched_init (void)
haifa_sched_init (void)
{
{
  setup_sched_dump ();
  setup_sched_dump ();
  sched_init ();
  sched_init ();
 
 
  if (spec_info != NULL)
  if (spec_info != NULL)
    {
    {
      sched_deps_info->use_deps_list = 1;
      sched_deps_info->use_deps_list = 1;
      sched_deps_info->generate_spec_deps = 1;
      sched_deps_info->generate_spec_deps = 1;
    }
    }
 
 
  /* Initialize luids, dependency caches, target and h_i_d for the
  /* Initialize luids, dependency caches, target and h_i_d for the
     whole function.  */
     whole function.  */
  {
  {
    bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
    bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
    basic_block bb;
    basic_block bb;
 
 
    sched_init_bbs ();
    sched_init_bbs ();
 
 
    FOR_EACH_BB (bb)
    FOR_EACH_BB (bb)
      VEC_quick_push (basic_block, bbs, bb);
      VEC_quick_push (basic_block, bbs, bb);
    sched_init_luids (bbs, NULL, NULL, NULL);
    sched_init_luids (bbs, NULL, NULL, NULL);
    sched_deps_init (true);
    sched_deps_init (true);
    sched_extend_target ();
    sched_extend_target ();
    haifa_init_h_i_d (bbs, NULL, NULL, NULL);
    haifa_init_h_i_d (bbs, NULL, NULL, NULL);
 
 
    VEC_free (basic_block, heap, bbs);
    VEC_free (basic_block, heap, bbs);
  }
  }
 
 
  sched_init_only_bb = haifa_init_only_bb;
  sched_init_only_bb = haifa_init_only_bb;
  sched_split_block = sched_split_block_1;
  sched_split_block = sched_split_block_1;
  sched_create_empty_bb = sched_create_empty_bb_1;
  sched_create_empty_bb = sched_create_empty_bb_1;
  haifa_recovery_bb_ever_added_p = false;
  haifa_recovery_bb_ever_added_p = false;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  /* This is used preferably for finding bugs in check_cfg () itself.
  /* This is used preferably for finding bugs in check_cfg () itself.
     We must call sched_bbs_init () before check_cfg () because check_cfg ()
     We must call sched_bbs_init () before check_cfg () because check_cfg ()
     assumes that the last insn in the last bb has a non-null successor.  */
     assumes that the last insn in the last bb has a non-null successor.  */
  check_cfg (0, 0);
  check_cfg (0, 0);
#endif
#endif
 
 
  nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
  nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
  before_recovery = 0;
  before_recovery = 0;
  after_recovery = 0;
  after_recovery = 0;
}
}
 
 
/* Finish work with the data specific to the Haifa scheduler.  */
/* Finish work with the data specific to the Haifa scheduler.  */
void
void
haifa_sched_finish (void)
haifa_sched_finish (void)
{
{
  sched_create_empty_bb = NULL;
  sched_create_empty_bb = NULL;
  sched_split_block = NULL;
  sched_split_block = NULL;
  sched_init_only_bb = NULL;
  sched_init_only_bb = NULL;
 
 
  if (spec_info && spec_info->dump)
  if (spec_info && spec_info->dump)
    {
    {
      char c = reload_completed ? 'a' : 'b';
      char c = reload_completed ? 'a' : 'b';
 
 
      fprintf (spec_info->dump,
      fprintf (spec_info->dump,
               ";; %s:\n", current_function_name ());
               ";; %s:\n", current_function_name ());
 
 
      fprintf (spec_info->dump,
      fprintf (spec_info->dump,
               ";; Procedure %cr-begin-data-spec motions == %d\n",
               ";; Procedure %cr-begin-data-spec motions == %d\n",
               c, nr_begin_data);
               c, nr_begin_data);
      fprintf (spec_info->dump,
      fprintf (spec_info->dump,
               ";; Procedure %cr-be-in-data-spec motions == %d\n",
               ";; Procedure %cr-be-in-data-spec motions == %d\n",
               c, nr_be_in_data);
               c, nr_be_in_data);
      fprintf (spec_info->dump,
      fprintf (spec_info->dump,
               ";; Procedure %cr-begin-control-spec motions == %d\n",
               ";; Procedure %cr-begin-control-spec motions == %d\n",
               c, nr_begin_control);
               c, nr_begin_control);
      fprintf (spec_info->dump,
      fprintf (spec_info->dump,
               ";; Procedure %cr-be-in-control-spec motions == %d\n",
               ";; Procedure %cr-be-in-control-spec motions == %d\n",
               c, nr_be_in_control);
               c, nr_be_in_control);
    }
    }
 
 
  /* Finalize h_i_d, dependency caches, and luids for the whole
  /* Finalize h_i_d, dependency caches, and luids for the whole
     function.  Target will be finalized in md_global_finish ().  */
     function.  Target will be finalized in md_global_finish ().  */
  sched_deps_finish ();
  sched_deps_finish ();
  sched_finish_luids ();
  sched_finish_luids ();
  current_sched_info = NULL;
  current_sched_info = NULL;
  sched_finish ();
  sched_finish ();
}
}
 
 
/* Free global data used during insn scheduling.  This function works with
/* Free global data used during insn scheduling.  This function works with
   the common data shared between the schedulers.  */
   the common data shared between the schedulers.  */
 
 
void
void
sched_finish (void)
sched_finish (void)
{
{
  haifa_finish_h_i_d ();
  haifa_finish_h_i_d ();
  if (sched_pressure_p)
  if (sched_pressure_p)
    {
    {
      free (sched_regno_cover_class);
      free (sched_regno_cover_class);
      BITMAP_FREE (region_ref_regs);
      BITMAP_FREE (region_ref_regs);
      BITMAP_FREE (saved_reg_live);
      BITMAP_FREE (saved_reg_live);
      BITMAP_FREE (curr_reg_live);
      BITMAP_FREE (curr_reg_live);
    }
    }
  free (curr_state);
  free (curr_state);
 
 
  if (targetm.sched.md_finish_global)
  if (targetm.sched.md_finish_global)
    targetm.sched.md_finish_global (sched_dump, sched_verbose);
    targetm.sched.md_finish_global (sched_dump, sched_verbose);
 
 
  end_alias_analysis ();
  end_alias_analysis ();
 
 
  regstat_free_calls_crossed ();
  regstat_free_calls_crossed ();
 
 
  dfa_finish ();
  dfa_finish ();
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  /* After reload ia64 backend clobbers CFG, so can't check anything.  */
  /* After reload ia64 backend clobbers CFG, so can't check anything.  */
  if (!reload_completed)
  if (!reload_completed)
    check_cfg (0, 0);
    check_cfg (0, 0);
#endif
#endif
}
}
 
 
/* Fix INSN_TICKs of the instructions in the current block as well as
/* Fix INSN_TICKs of the instructions in the current block as well as
   INSN_TICKs of their dependents.
   INSN_TICKs of their dependents.
   HEAD and TAIL are the begin and the end of the current scheduled block.  */
   HEAD and TAIL are the begin and the end of the current scheduled block.  */
static void
static void
fix_inter_tick (rtx head, rtx tail)
fix_inter_tick (rtx head, rtx tail)
{
{
  /* Set of instructions with corrected INSN_TICK.  */
  /* Set of instructions with corrected INSN_TICK.  */
  bitmap_head processed;
  bitmap_head processed;
  /* ??? It is doubtful if we should assume that cycle advance happens on
  /* ??? It is doubtful if we should assume that cycle advance happens on
     basic block boundaries.  Basically insns that are unconditionally ready
     basic block boundaries.  Basically insns that are unconditionally ready
     on the start of the block are more preferable then those which have
     on the start of the block are more preferable then those which have
     a one cycle dependency over insn from the previous block.  */
     a one cycle dependency over insn from the previous block.  */
  int next_clock = clock_var + 1;
  int next_clock = clock_var + 1;
 
 
  bitmap_initialize (&processed, 0);
  bitmap_initialize (&processed, 0);
 
 
  /* Iterates over scheduled instructions and fix their INSN_TICKs and
  /* Iterates over scheduled instructions and fix their INSN_TICKs and
     INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
     INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
     across different blocks.  */
     across different blocks.  */
  for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
  for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
    {
    {
      if (INSN_P (head))
      if (INSN_P (head))
        {
        {
          int tick;
          int tick;
          sd_iterator_def sd_it;
          sd_iterator_def sd_it;
          dep_t dep;
          dep_t dep;
 
 
          tick = INSN_TICK (head);
          tick = INSN_TICK (head);
          gcc_assert (tick >= MIN_TICK);
          gcc_assert (tick >= MIN_TICK);
 
 
          /* Fix INSN_TICK of instruction from just scheduled block.  */
          /* Fix INSN_TICK of instruction from just scheduled block.  */
          if (!bitmap_bit_p (&processed, INSN_LUID (head)))
          if (!bitmap_bit_p (&processed, INSN_LUID (head)))
            {
            {
              bitmap_set_bit (&processed, INSN_LUID (head));
              bitmap_set_bit (&processed, INSN_LUID (head));
              tick -= next_clock;
              tick -= next_clock;
 
 
              if (tick < MIN_TICK)
              if (tick < MIN_TICK)
                tick = MIN_TICK;
                tick = MIN_TICK;
 
 
              INSN_TICK (head) = tick;
              INSN_TICK (head) = tick;
            }
            }
 
 
          FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
          FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
            {
            {
              rtx next;
              rtx next;
 
 
              next = DEP_CON (dep);
              next = DEP_CON (dep);
              tick = INSN_TICK (next);
              tick = INSN_TICK (next);
 
 
              if (tick != INVALID_TICK
              if (tick != INVALID_TICK
                  /* If NEXT has its INSN_TICK calculated, fix it.
                  /* If NEXT has its INSN_TICK calculated, fix it.
                     If not - it will be properly calculated from
                     If not - it will be properly calculated from
                     scratch later in fix_tick_ready.  */
                     scratch later in fix_tick_ready.  */
                  && !bitmap_bit_p (&processed, INSN_LUID (next)))
                  && !bitmap_bit_p (&processed, INSN_LUID (next)))
                {
                {
                  bitmap_set_bit (&processed, INSN_LUID (next));
                  bitmap_set_bit (&processed, INSN_LUID (next));
                  tick -= next_clock;
                  tick -= next_clock;
 
 
                  if (tick < MIN_TICK)
                  if (tick < MIN_TICK)
                    tick = MIN_TICK;
                    tick = MIN_TICK;
 
 
                  if (tick > INTER_TICK (next))
                  if (tick > INTER_TICK (next))
                    INTER_TICK (next) = tick;
                    INTER_TICK (next) = tick;
                  else
                  else
                    tick = INTER_TICK (next);
                    tick = INTER_TICK (next);
 
 
                  INSN_TICK (next) = tick;
                  INSN_TICK (next) = tick;
                }
                }
            }
            }
        }
        }
    }
    }
  bitmap_clear (&processed);
  bitmap_clear (&processed);
}
}
 
 
static int haifa_speculate_insn (rtx, ds_t, rtx *);
static int haifa_speculate_insn (rtx, ds_t, rtx *);
 
 
/* Check if NEXT is ready to be added to the ready or queue list.
/* Check if NEXT is ready to be added to the ready or queue list.
   If "yes", add it to the proper list.
   If "yes", add it to the proper list.
   Returns:
   Returns:
      -1 - is not ready yet,
      -1 - is not ready yet,
       0 - added to the ready list,
       0 - added to the ready list,
   0 < N - queued for N cycles.  */
   0 < N - queued for N cycles.  */
int
int
try_ready (rtx next)
try_ready (rtx next)
{
{
  ds_t old_ts, *ts;
  ds_t old_ts, *ts;
 
 
  ts = &TODO_SPEC (next);
  ts = &TODO_SPEC (next);
  old_ts = *ts;
  old_ts = *ts;
 
 
  gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
  gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
              && ((old_ts & HARD_DEP)
              && ((old_ts & HARD_DEP)
                  || (old_ts & SPECULATIVE)));
                  || (old_ts & SPECULATIVE)));
 
 
  if (sd_lists_empty_p (next, SD_LIST_BACK))
  if (sd_lists_empty_p (next, SD_LIST_BACK))
    /* NEXT has all its dependencies resolved.  */
    /* NEXT has all its dependencies resolved.  */
    {
    {
      /* Remove HARD_DEP bit from NEXT's status.  */
      /* Remove HARD_DEP bit from NEXT's status.  */
      *ts &= ~HARD_DEP;
      *ts &= ~HARD_DEP;
 
 
      if (current_sched_info->flags & DO_SPECULATION)
      if (current_sched_info->flags & DO_SPECULATION)
        /* Remove all speculative bits from NEXT's status.  */
        /* Remove all speculative bits from NEXT's status.  */
        *ts &= ~SPECULATIVE;
        *ts &= ~SPECULATIVE;
    }
    }
  else
  else
    {
    {
      /* One of the NEXT's dependencies has been resolved.
      /* One of the NEXT's dependencies has been resolved.
         Recalculate NEXT's status.  */
         Recalculate NEXT's status.  */
 
 
      *ts &= ~SPECULATIVE & ~HARD_DEP;
      *ts &= ~SPECULATIVE & ~HARD_DEP;
 
 
      if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
      if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
        /* Now we've got NEXT with speculative deps only.
        /* Now we've got NEXT with speculative deps only.
           1. Look at the deps to see what we have to do.
           1. Look at the deps to see what we have to do.
           2. Check if we can do 'todo'.  */
           2. Check if we can do 'todo'.  */
        {
        {
          sd_iterator_def sd_it;
          sd_iterator_def sd_it;
          dep_t dep;
          dep_t dep;
          bool first_p = true;
          bool first_p = true;
 
 
          FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
          FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
            {
            {
              ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
              ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
 
 
              if (DEBUG_INSN_P (DEP_PRO (dep))
              if (DEBUG_INSN_P (DEP_PRO (dep))
                  && !DEBUG_INSN_P (next))
                  && !DEBUG_INSN_P (next))
                continue;
                continue;
 
 
              if (first_p)
              if (first_p)
                {
                {
                  first_p = false;
                  first_p = false;
 
 
                  *ts = ds;
                  *ts = ds;
                }
                }
              else
              else
                *ts = ds_merge (*ts, ds);
                *ts = ds_merge (*ts, ds);
            }
            }
 
 
          if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
          if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
            /* Too few points.  */
            /* Too few points.  */
            *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
            *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
        }
        }
      else
      else
        *ts |= HARD_DEP;
        *ts |= HARD_DEP;
    }
    }
 
 
  if (*ts & HARD_DEP)
  if (*ts & HARD_DEP)
    gcc_assert (*ts == old_ts
    gcc_assert (*ts == old_ts
                && QUEUE_INDEX (next) == QUEUE_NOWHERE);
                && QUEUE_INDEX (next) == QUEUE_NOWHERE);
  else if (current_sched_info->new_ready)
  else if (current_sched_info->new_ready)
    *ts = current_sched_info->new_ready (next, *ts);
    *ts = current_sched_info->new_ready (next, *ts);
 
 
  /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
  /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
     have its original pattern or changed (speculative) one.  This is due
     have its original pattern or changed (speculative) one.  This is due
     to changing ebb in region scheduling.
     to changing ebb in region scheduling.
     * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
     * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
     has speculative pattern.
     has speculative pattern.
 
 
     We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
     We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
     control-speculative NEXT could have been discarded by sched-rgn.c
     control-speculative NEXT could have been discarded by sched-rgn.c
     (the same case as when discarded by can_schedule_ready_p ()).  */
     (the same case as when discarded by can_schedule_ready_p ()).  */
 
 
  if ((*ts & SPECULATIVE)
  if ((*ts & SPECULATIVE)
      /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
      /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
         need to change anything.  */
         need to change anything.  */
      && *ts != old_ts)
      && *ts != old_ts)
    {
    {
      int res;
      int res;
      rtx new_pat;
      rtx new_pat;
 
 
      gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
      gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
 
 
      res = haifa_speculate_insn (next, *ts, &new_pat);
      res = haifa_speculate_insn (next, *ts, &new_pat);
 
 
      switch (res)
      switch (res)
        {
        {
        case -1:
        case -1:
          /* It would be nice to change DEP_STATUS of all dependences,
          /* It would be nice to change DEP_STATUS of all dependences,
             which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
             which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
             so we won't reanalyze anything.  */
             so we won't reanalyze anything.  */
          *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
          *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
          break;
          break;
 
 
        case 0:
        case 0:
          /* We follow the rule, that every speculative insn
          /* We follow the rule, that every speculative insn
             has non-null ORIG_PAT.  */
             has non-null ORIG_PAT.  */
          if (!ORIG_PAT (next))
          if (!ORIG_PAT (next))
            ORIG_PAT (next) = PATTERN (next);
            ORIG_PAT (next) = PATTERN (next);
          break;
          break;
 
 
        case 1:
        case 1:
          if (!ORIG_PAT (next))
          if (!ORIG_PAT (next))
            /* If we gonna to overwrite the original pattern of insn,
            /* If we gonna to overwrite the original pattern of insn,
               save it.  */
               save it.  */
            ORIG_PAT (next) = PATTERN (next);
            ORIG_PAT (next) = PATTERN (next);
 
 
          haifa_change_pattern (next, new_pat);
          haifa_change_pattern (next, new_pat);
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  /* We need to restore pattern only if (*ts == 0), because otherwise it is
  /* We need to restore pattern only if (*ts == 0), because otherwise it is
     either correct (*ts & SPECULATIVE),
     either correct (*ts & SPECULATIVE),
     or we simply don't care (*ts & HARD_DEP).  */
     or we simply don't care (*ts & HARD_DEP).  */
 
 
  gcc_assert (!ORIG_PAT (next)
  gcc_assert (!ORIG_PAT (next)
              || !IS_SPECULATION_BRANCHY_CHECK_P (next));
              || !IS_SPECULATION_BRANCHY_CHECK_P (next));
 
 
  if (*ts & HARD_DEP)
  if (*ts & HARD_DEP)
    {
    {
      /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
      /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
         control-speculative NEXT could have been discarded by sched-rgn.c
         control-speculative NEXT could have been discarded by sched-rgn.c
         (the same case as when discarded by can_schedule_ready_p ()).  */
         (the same case as when discarded by can_schedule_ready_p ()).  */
      /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
      /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
 
 
      change_queue_index (next, QUEUE_NOWHERE);
      change_queue_index (next, QUEUE_NOWHERE);
      return -1;
      return -1;
    }
    }
  else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
  else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
    /* We should change pattern of every previously speculative
    /* We should change pattern of every previously speculative
       instruction - and we determine if NEXT was speculative by using
       instruction - and we determine if NEXT was speculative by using
       ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
       ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
       pat too, so skip them.  */
       pat too, so skip them.  */
    {
    {
      haifa_change_pattern (next, ORIG_PAT (next));
      haifa_change_pattern (next, ORIG_PAT (next));
      ORIG_PAT (next) = 0;
      ORIG_PAT (next) = 0;
    }
    }
 
 
  if (sched_verbose >= 2)
  if (sched_verbose >= 2)
    {
    {
      int s = TODO_SPEC (next);
      int s = TODO_SPEC (next);
 
 
      fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
      fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
               (*current_sched_info->print_insn) (next, 0));
               (*current_sched_info->print_insn) (next, 0));
 
 
      if (spec_info && spec_info->dump)
      if (spec_info && spec_info->dump)
        {
        {
          if (s & BEGIN_DATA)
          if (s & BEGIN_DATA)
            fprintf (spec_info->dump, "; data-spec;");
            fprintf (spec_info->dump, "; data-spec;");
          if (s & BEGIN_CONTROL)
          if (s & BEGIN_CONTROL)
            fprintf (spec_info->dump, "; control-spec;");
            fprintf (spec_info->dump, "; control-spec;");
          if (s & BE_IN_CONTROL)
          if (s & BE_IN_CONTROL)
            fprintf (spec_info->dump, "; in-control-spec;");
            fprintf (spec_info->dump, "; in-control-spec;");
        }
        }
 
 
      fprintf (sched_dump, "\n");
      fprintf (sched_dump, "\n");
    }
    }
 
 
  adjust_priority (next);
  adjust_priority (next);
 
 
  return fix_tick_ready (next);
  return fix_tick_ready (next);
}
}
 
 
/* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
/* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
static int
static int
fix_tick_ready (rtx next)
fix_tick_ready (rtx next)
{
{
  int tick, delay;
  int tick, delay;
 
 
  if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
  if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
    {
    {
      int full_p;
      int full_p;
      sd_iterator_def sd_it;
      sd_iterator_def sd_it;
      dep_t dep;
      dep_t dep;
 
 
      tick = INSN_TICK (next);
      tick = INSN_TICK (next);
      /* if tick is not equal to INVALID_TICK, then update
      /* if tick is not equal to INVALID_TICK, then update
         INSN_TICK of NEXT with the most recent resolved dependence
         INSN_TICK of NEXT with the most recent resolved dependence
         cost.  Otherwise, recalculate from scratch.  */
         cost.  Otherwise, recalculate from scratch.  */
      full_p = (tick == INVALID_TICK);
      full_p = (tick == INVALID_TICK);
 
 
      FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
      FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
        {
        {
          rtx pro = DEP_PRO (dep);
          rtx pro = DEP_PRO (dep);
          int tick1;
          int tick1;
 
 
          gcc_assert (INSN_TICK (pro) >= MIN_TICK);
          gcc_assert (INSN_TICK (pro) >= MIN_TICK);
 
 
          tick1 = INSN_TICK (pro) + dep_cost (dep);
          tick1 = INSN_TICK (pro) + dep_cost (dep);
          if (tick1 > tick)
          if (tick1 > tick)
            tick = tick1;
            tick = tick1;
 
 
          if (!full_p)
          if (!full_p)
            break;
            break;
        }
        }
    }
    }
  else
  else
    tick = -1;
    tick = -1;
 
 
  INSN_TICK (next) = tick;
  INSN_TICK (next) = tick;
 
 
  delay = tick - clock_var;
  delay = tick - clock_var;
  if (delay <= 0 || sched_pressure_p)
  if (delay <= 0 || sched_pressure_p)
    delay = QUEUE_READY;
    delay = QUEUE_READY;
 
 
  change_queue_index (next, delay);
  change_queue_index (next, delay);
 
 
  return delay;
  return delay;
}
}
 
 
/* Move NEXT to the proper queue list with (DELAY >= 1),
/* Move NEXT to the proper queue list with (DELAY >= 1),
   or add it to the ready list (DELAY == QUEUE_READY),
   or add it to the ready list (DELAY == QUEUE_READY),
   or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
   or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
static void
static void
change_queue_index (rtx next, int delay)
change_queue_index (rtx next, int delay)
{
{
  int i = QUEUE_INDEX (next);
  int i = QUEUE_INDEX (next);
 
 
  gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
  gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
              && delay != 0);
              && delay != 0);
  gcc_assert (i != QUEUE_SCHEDULED);
  gcc_assert (i != QUEUE_SCHEDULED);
 
 
  if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
  if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
      || (delay < 0 && delay == i))
      || (delay < 0 && delay == i))
    /* We have nothing to do.  */
    /* We have nothing to do.  */
    return;
    return;
 
 
  /* Remove NEXT from wherever it is now.  */
  /* Remove NEXT from wherever it is now.  */
  if (i == QUEUE_READY)
  if (i == QUEUE_READY)
    ready_remove_insn (next);
    ready_remove_insn (next);
  else if (i >= 0)
  else if (i >= 0)
    queue_remove (next);
    queue_remove (next);
 
 
  /* Add it to the proper place.  */
  /* Add it to the proper place.  */
  if (delay == QUEUE_READY)
  if (delay == QUEUE_READY)
    ready_add (readyp, next, false);
    ready_add (readyp, next, false);
  else if (delay >= 1)
  else if (delay >= 1)
    queue_insn (next, delay);
    queue_insn (next, delay);
 
 
  if (sched_verbose >= 2)
  if (sched_verbose >= 2)
    {
    {
      fprintf (sched_dump, ";;\t\ttick updated: insn %s",
      fprintf (sched_dump, ";;\t\ttick updated: insn %s",
               (*current_sched_info->print_insn) (next, 0));
               (*current_sched_info->print_insn) (next, 0));
 
 
      if (delay == QUEUE_READY)
      if (delay == QUEUE_READY)
        fprintf (sched_dump, " into ready\n");
        fprintf (sched_dump, " into ready\n");
      else if (delay >= 1)
      else if (delay >= 1)
        fprintf (sched_dump, " into queue with cost=%d\n", delay);
        fprintf (sched_dump, " into queue with cost=%d\n", delay);
      else
      else
        fprintf (sched_dump, " removed from ready or queue lists\n");
        fprintf (sched_dump, " removed from ready or queue lists\n");
    }
    }
}
}
 
 
static int sched_ready_n_insns = -1;
static int sched_ready_n_insns = -1;
 
 
/* Initialize per region data structures.  */
/* Initialize per region data structures.  */
void
void
sched_extend_ready_list (int new_sched_ready_n_insns)
sched_extend_ready_list (int new_sched_ready_n_insns)
{
{
  int i;
  int i;
 
 
  if (sched_ready_n_insns == -1)
  if (sched_ready_n_insns == -1)
    /* At the first call we need to initialize one more choice_stack
    /* At the first call we need to initialize one more choice_stack
       entry.  */
       entry.  */
    {
    {
      i = 0;
      i = 0;
      sched_ready_n_insns = 0;
      sched_ready_n_insns = 0;
    }
    }
  else
  else
    i = sched_ready_n_insns + 1;
    i = sched_ready_n_insns + 1;
 
 
  ready.veclen = new_sched_ready_n_insns + issue_rate;
  ready.veclen = new_sched_ready_n_insns + issue_rate;
  ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
  ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
 
 
  gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
  gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
 
 
  ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
  ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
                                  sched_ready_n_insns, sizeof (*ready_try));
                                  sched_ready_n_insns, sizeof (*ready_try));
 
 
  /* We allocate +1 element to save initial state in the choice_stack[0]
  /* We allocate +1 element to save initial state in the choice_stack[0]
     entry.  */
     entry.  */
  choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
  choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
                             new_sched_ready_n_insns + 1);
                             new_sched_ready_n_insns + 1);
 
 
  for (; i <= new_sched_ready_n_insns; i++)
  for (; i <= new_sched_ready_n_insns; i++)
    choice_stack[i].state = xmalloc (dfa_state_size);
    choice_stack[i].state = xmalloc (dfa_state_size);
 
 
  sched_ready_n_insns = new_sched_ready_n_insns;
  sched_ready_n_insns = new_sched_ready_n_insns;
}
}
 
 
/* Free per region data structures.  */
/* Free per region data structures.  */
void
void
sched_finish_ready_list (void)
sched_finish_ready_list (void)
{
{
  int i;
  int i;
 
 
  free (ready.vec);
  free (ready.vec);
  ready.vec = NULL;
  ready.vec = NULL;
  ready.veclen = 0;
  ready.veclen = 0;
 
 
  free (ready_try);
  free (ready_try);
  ready_try = NULL;
  ready_try = NULL;
 
 
  for (i = 0; i <= sched_ready_n_insns; i++)
  for (i = 0; i <= sched_ready_n_insns; i++)
    free (choice_stack [i].state);
    free (choice_stack [i].state);
  free (choice_stack);
  free (choice_stack);
  choice_stack = NULL;
  choice_stack = NULL;
 
 
  sched_ready_n_insns = -1;
  sched_ready_n_insns = -1;
}
}
 
 
static int
static int
haifa_luid_for_non_insn (rtx x)
haifa_luid_for_non_insn (rtx x)
{
{
  gcc_assert (NOTE_P (x) || LABEL_P (x));
  gcc_assert (NOTE_P (x) || LABEL_P (x));
 
 
  return 0;
  return 0;
}
}
 
 
/* Generates recovery code for INSN.  */
/* Generates recovery code for INSN.  */
static void
static void
generate_recovery_code (rtx insn)
generate_recovery_code (rtx insn)
{
{
  if (TODO_SPEC (insn) & BEGIN_SPEC)
  if (TODO_SPEC (insn) & BEGIN_SPEC)
    begin_speculative_block (insn);
    begin_speculative_block (insn);
 
 
  /* Here we have insn with no dependencies to
  /* Here we have insn with no dependencies to
     instructions other then CHECK_SPEC ones.  */
     instructions other then CHECK_SPEC ones.  */
 
 
  if (TODO_SPEC (insn) & BE_IN_SPEC)
  if (TODO_SPEC (insn) & BE_IN_SPEC)
    add_to_speculative_block (insn);
    add_to_speculative_block (insn);
}
}
 
 
/* Helper function.
/* Helper function.
   Tries to add speculative dependencies of type FS between instructions
   Tries to add speculative dependencies of type FS between instructions
   in deps_list L and TWIN.  */
   in deps_list L and TWIN.  */
static void
static void
process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
{
{
  sd_iterator_def sd_it;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_t dep;
 
 
  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
    {
    {
      ds_t ds;
      ds_t ds;
      rtx consumer;
      rtx consumer;
 
 
      consumer = DEP_CON (dep);
      consumer = DEP_CON (dep);
 
 
      ds = DEP_STATUS (dep);
      ds = DEP_STATUS (dep);
 
 
      if (/* If we want to create speculative dep.  */
      if (/* If we want to create speculative dep.  */
          fs
          fs
          /* And we can do that because this is a true dep.  */
          /* And we can do that because this is a true dep.  */
          && (ds & DEP_TYPES) == DEP_TRUE)
          && (ds & DEP_TYPES) == DEP_TRUE)
        {
        {
          gcc_assert (!(ds & BE_IN_SPEC));
          gcc_assert (!(ds & BE_IN_SPEC));
 
 
          if (/* If this dep can be overcome with 'begin speculation'.  */
          if (/* If this dep can be overcome with 'begin speculation'.  */
              ds & BEGIN_SPEC)
              ds & BEGIN_SPEC)
            /* Then we have a choice: keep the dep 'begin speculative'
            /* Then we have a choice: keep the dep 'begin speculative'
               or transform it into 'be in speculative'.  */
               or transform it into 'be in speculative'.  */
            {
            {
              if (/* In try_ready we assert that if insn once became ready
              if (/* In try_ready we assert that if insn once became ready
                     it can be removed from the ready (or queue) list only
                     it can be removed from the ready (or queue) list only
                     due to backend decision.  Hence we can't let the
                     due to backend decision.  Hence we can't let the
                     probability of the speculative dep to decrease.  */
                     probability of the speculative dep to decrease.  */
                  ds_weak (ds) <= ds_weak (fs))
                  ds_weak (ds) <= ds_weak (fs))
                {
                {
                  ds_t new_ds;
                  ds_t new_ds;
 
 
                  new_ds = (ds & ~BEGIN_SPEC) | fs;
                  new_ds = (ds & ~BEGIN_SPEC) | fs;
 
 
                  if (/* consumer can 'be in speculative'.  */
                  if (/* consumer can 'be in speculative'.  */
                      sched_insn_is_legitimate_for_speculation_p (consumer,
                      sched_insn_is_legitimate_for_speculation_p (consumer,
                                                                  new_ds))
                                                                  new_ds))
                    /* Transform it to be in speculative.  */
                    /* Transform it to be in speculative.  */
                    ds = new_ds;
                    ds = new_ds;
                }
                }
            }
            }
          else
          else
            /* Mark the dep as 'be in speculative'.  */
            /* Mark the dep as 'be in speculative'.  */
            ds |= fs;
            ds |= fs;
        }
        }
 
 
      {
      {
        dep_def _new_dep, *new_dep = &_new_dep;
        dep_def _new_dep, *new_dep = &_new_dep;
 
 
        init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
        init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
        sd_add_dep (new_dep, false);
        sd_add_dep (new_dep, false);
      }
      }
    }
    }
}
}
 
 
/* Generates recovery code for BEGIN speculative INSN.  */
/* Generates recovery code for BEGIN speculative INSN.  */
static void
static void
begin_speculative_block (rtx insn)
begin_speculative_block (rtx insn)
{
{
  if (TODO_SPEC (insn) & BEGIN_DATA)
  if (TODO_SPEC (insn) & BEGIN_DATA)
    nr_begin_data++;
    nr_begin_data++;
  if (TODO_SPEC (insn) & BEGIN_CONTROL)
  if (TODO_SPEC (insn) & BEGIN_CONTROL)
    nr_begin_control++;
    nr_begin_control++;
 
 
  create_check_block_twin (insn, false);
  create_check_block_twin (insn, false);
 
 
  TODO_SPEC (insn) &= ~BEGIN_SPEC;
  TODO_SPEC (insn) &= ~BEGIN_SPEC;
}
}
 
 
static void haifa_init_insn (rtx);
static void haifa_init_insn (rtx);
 
 
/* Generates recovery code for BE_IN speculative INSN.  */
/* Generates recovery code for BE_IN speculative INSN.  */
static void
static void
add_to_speculative_block (rtx insn)
add_to_speculative_block (rtx insn)
{
{
  ds_t ts;
  ds_t ts;
  sd_iterator_def sd_it;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_t dep;
  rtx twins = NULL;
  rtx twins = NULL;
  rtx_vec_t priorities_roots;
  rtx_vec_t priorities_roots;
 
 
  ts = TODO_SPEC (insn);
  ts = TODO_SPEC (insn);
  gcc_assert (!(ts & ~BE_IN_SPEC));
  gcc_assert (!(ts & ~BE_IN_SPEC));
 
 
  if (ts & BE_IN_DATA)
  if (ts & BE_IN_DATA)
    nr_be_in_data++;
    nr_be_in_data++;
  if (ts & BE_IN_CONTROL)
  if (ts & BE_IN_CONTROL)
    nr_be_in_control++;
    nr_be_in_control++;
 
 
  TODO_SPEC (insn) &= ~BE_IN_SPEC;
  TODO_SPEC (insn) &= ~BE_IN_SPEC;
  gcc_assert (!TODO_SPEC (insn));
  gcc_assert (!TODO_SPEC (insn));
 
 
  DONE_SPEC (insn) |= ts;
  DONE_SPEC (insn) |= ts;
 
 
  /* First we convert all simple checks to branchy.  */
  /* First we convert all simple checks to branchy.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep);)
       sd_iterator_cond (&sd_it, &dep);)
    {
    {
      rtx check = DEP_PRO (dep);
      rtx check = DEP_PRO (dep);
 
 
      if (IS_SPECULATION_SIMPLE_CHECK_P (check))
      if (IS_SPECULATION_SIMPLE_CHECK_P (check))
        {
        {
          create_check_block_twin (check, true);
          create_check_block_twin (check, true);
 
 
          /* Restart search.  */
          /* Restart search.  */
          sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
          sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
        }
        }
      else
      else
        /* Continue search.  */
        /* Continue search.  */
        sd_iterator_next (&sd_it);
        sd_iterator_next (&sd_it);
    }
    }
 
 
  priorities_roots = NULL;
  priorities_roots = NULL;
  clear_priorities (insn, &priorities_roots);
  clear_priorities (insn, &priorities_roots);
 
 
  while (1)
  while (1)
    {
    {
      rtx check, twin;
      rtx check, twin;
      basic_block rec;
      basic_block rec;
 
 
      /* Get the first backward dependency of INSN.  */
      /* Get the first backward dependency of INSN.  */
      sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
      sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
      if (!sd_iterator_cond (&sd_it, &dep))
      if (!sd_iterator_cond (&sd_it, &dep))
        /* INSN has no backward dependencies left.  */
        /* INSN has no backward dependencies left.  */
        break;
        break;
 
 
      gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
      gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
                  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
                  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
                  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
                  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
 
 
      check = DEP_PRO (dep);
      check = DEP_PRO (dep);
 
 
      gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
      gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
                  && QUEUE_INDEX (check) == QUEUE_NOWHERE);
                  && QUEUE_INDEX (check) == QUEUE_NOWHERE);
 
 
      rec = BLOCK_FOR_INSN (check);
      rec = BLOCK_FOR_INSN (check);
 
 
      twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
      twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
      haifa_init_insn (twin);
      haifa_init_insn (twin);
 
 
      sd_copy_back_deps (twin, insn, true);
      sd_copy_back_deps (twin, insn, true);
 
 
      if (sched_verbose && spec_info->dump)
      if (sched_verbose && spec_info->dump)
        /* INSN_BB (insn) isn't determined for twin insns yet.
        /* INSN_BB (insn) isn't determined for twin insns yet.
           So we can't use current_sched_info->print_insn.  */
           So we can't use current_sched_info->print_insn.  */
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
                 INSN_UID (twin), rec->index);
                 INSN_UID (twin), rec->index);
 
 
      twins = alloc_INSN_LIST (twin, twins);
      twins = alloc_INSN_LIST (twin, twins);
 
 
      /* Add dependences between TWIN and all appropriate
      /* Add dependences between TWIN and all appropriate
         instructions from REC.  */
         instructions from REC.  */
      FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
      FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
        {
        {
          rtx pro = DEP_PRO (dep);
          rtx pro = DEP_PRO (dep);
 
 
          gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
          gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
 
 
          /* INSN might have dependencies from the instructions from
          /* INSN might have dependencies from the instructions from
             several recovery blocks.  At this iteration we process those
             several recovery blocks.  At this iteration we process those
             producers that reside in REC.  */
             producers that reside in REC.  */
          if (BLOCK_FOR_INSN (pro) == rec)
          if (BLOCK_FOR_INSN (pro) == rec)
            {
            {
              dep_def _new_dep, *new_dep = &_new_dep;
              dep_def _new_dep, *new_dep = &_new_dep;
 
 
              init_dep (new_dep, pro, twin, REG_DEP_TRUE);
              init_dep (new_dep, pro, twin, REG_DEP_TRUE);
              sd_add_dep (new_dep, false);
              sd_add_dep (new_dep, false);
            }
            }
        }
        }
 
 
      process_insn_forw_deps_be_in_spec (insn, twin, ts);
      process_insn_forw_deps_be_in_spec (insn, twin, ts);
 
 
      /* Remove all dependencies between INSN and insns in REC.  */
      /* Remove all dependencies between INSN and insns in REC.  */
      for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
      for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
           sd_iterator_cond (&sd_it, &dep);)
           sd_iterator_cond (&sd_it, &dep);)
        {
        {
          rtx pro = DEP_PRO (dep);
          rtx pro = DEP_PRO (dep);
 
 
          if (BLOCK_FOR_INSN (pro) == rec)
          if (BLOCK_FOR_INSN (pro) == rec)
            sd_delete_dep (sd_it);
            sd_delete_dep (sd_it);
          else
          else
            sd_iterator_next (&sd_it);
            sd_iterator_next (&sd_it);
        }
        }
    }
    }
 
 
  /* We couldn't have added the dependencies between INSN and TWINS earlier
  /* We couldn't have added the dependencies between INSN and TWINS earlier
     because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
     because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
  while (twins)
  while (twins)
    {
    {
      rtx twin;
      rtx twin;
 
 
      twin = XEXP (twins, 0);
      twin = XEXP (twins, 0);
 
 
      {
      {
        dep_def _new_dep, *new_dep = &_new_dep;
        dep_def _new_dep, *new_dep = &_new_dep;
 
 
        init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
        init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
        sd_add_dep (new_dep, false);
        sd_add_dep (new_dep, false);
      }
      }
 
 
      twin = XEXP (twins, 1);
      twin = XEXP (twins, 1);
      free_INSN_LIST_node (twins);
      free_INSN_LIST_node (twins);
      twins = twin;
      twins = twin;
    }
    }
 
 
  calc_priorities (priorities_roots);
  calc_priorities (priorities_roots);
  VEC_free (rtx, heap, priorities_roots);
  VEC_free (rtx, heap, priorities_roots);
}
}
 
 
/* Extends and fills with zeros (only the new part) array pointed to by P.  */
/* Extends and fills with zeros (only the new part) array pointed to by P.  */
void *
void *
xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
{
{
  gcc_assert (new_nmemb >= old_nmemb);
  gcc_assert (new_nmemb >= old_nmemb);
  p = XRESIZEVAR (void, p, new_nmemb * size);
  p = XRESIZEVAR (void, p, new_nmemb * size);
  memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
  memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
  return p;
  return p;
}
}
 
 
/* Helper function.
/* Helper function.
   Find fallthru edge from PRED.  */
   Find fallthru edge from PRED.  */
edge
edge
find_fallthru_edge (basic_block pred)
find_fallthru_edge (basic_block pred)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  basic_block succ;
  basic_block succ;
 
 
  succ = pred->next_bb;
  succ = pred->next_bb;
  gcc_assert (succ->prev_bb == pred);
  gcc_assert (succ->prev_bb == pred);
 
 
  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
    {
    {
      FOR_EACH_EDGE (e, ei, pred->succs)
      FOR_EACH_EDGE (e, ei, pred->succs)
        if (e->flags & EDGE_FALLTHRU)
        if (e->flags & EDGE_FALLTHRU)
          {
          {
            gcc_assert (e->dest == succ);
            gcc_assert (e->dest == succ);
            return e;
            return e;
          }
          }
    }
    }
  else
  else
    {
    {
      FOR_EACH_EDGE (e, ei, succ->preds)
      FOR_EACH_EDGE (e, ei, succ->preds)
        if (e->flags & EDGE_FALLTHRU)
        if (e->flags & EDGE_FALLTHRU)
          {
          {
            gcc_assert (e->src == pred);
            gcc_assert (e->src == pred);
            return e;
            return e;
          }
          }
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Extend per basic block data structures.  */
/* Extend per basic block data structures.  */
static void
static void
sched_extend_bb (void)
sched_extend_bb (void)
{
{
  rtx insn;
  rtx insn;
 
 
  /* The following is done to keep current_sched_info->next_tail non null.  */
  /* The following is done to keep current_sched_info->next_tail non null.  */
  insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
  insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
  if (NEXT_INSN (insn) == 0
  if (NEXT_INSN (insn) == 0
      || (!NOTE_P (insn)
      || (!NOTE_P (insn)
          && !LABEL_P (insn)
          && !LABEL_P (insn)
          /* Don't emit a NOTE if it would end up before a BARRIER.  */
          /* Don't emit a NOTE if it would end up before a BARRIER.  */
          && !BARRIER_P (NEXT_INSN (insn))))
          && !BARRIER_P (NEXT_INSN (insn))))
    {
    {
      rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
      rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
      /* Make insn appear outside BB.  */
      /* Make insn appear outside BB.  */
      set_block_for_insn (note, NULL);
      set_block_for_insn (note, NULL);
      BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
      BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
    }
    }
}
}
 
 
/* Init per basic block data structures.  */
/* Init per basic block data structures.  */
void
void
sched_init_bbs (void)
sched_init_bbs (void)
{
{
  sched_extend_bb ();
  sched_extend_bb ();
}
}
 
 
/* Initialize BEFORE_RECOVERY variable.  */
/* Initialize BEFORE_RECOVERY variable.  */
static void
static void
init_before_recovery (basic_block *before_recovery_ptr)
init_before_recovery (basic_block *before_recovery_ptr)
{
{
  basic_block last;
  basic_block last;
  edge e;
  edge e;
 
 
  last = EXIT_BLOCK_PTR->prev_bb;
  last = EXIT_BLOCK_PTR->prev_bb;
  e = find_fallthru_edge (last);
  e = find_fallthru_edge (last);
 
 
  if (e)
  if (e)
    {
    {
      /* We create two basic blocks:
      /* We create two basic blocks:
         1. Single instruction block is inserted right after E->SRC
         1. Single instruction block is inserted right after E->SRC
         and has jump to
         and has jump to
         2. Empty block right before EXIT_BLOCK.
         2. Empty block right before EXIT_BLOCK.
         Between these two blocks recovery blocks will be emitted.  */
         Between these two blocks recovery blocks will be emitted.  */
 
 
      basic_block single, empty;
      basic_block single, empty;
      rtx x, label;
      rtx x, label;
 
 
      /* If the fallthrough edge to exit we've found is from the block we've
      /* If the fallthrough edge to exit we've found is from the block we've
         created before, don't do anything more.  */
         created before, don't do anything more.  */
      if (last == after_recovery)
      if (last == after_recovery)
        return;
        return;
 
 
      adding_bb_to_current_region_p = false;
      adding_bb_to_current_region_p = false;
 
 
      single = sched_create_empty_bb (last);
      single = sched_create_empty_bb (last);
      empty = sched_create_empty_bb (single);
      empty = sched_create_empty_bb (single);
 
 
      /* Add new blocks to the root loop.  */
      /* Add new blocks to the root loop.  */
      if (current_loops != NULL)
      if (current_loops != NULL)
        {
        {
          add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
          add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
          add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
          add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
        }
        }
 
 
      single->count = last->count;
      single->count = last->count;
      empty->count = last->count;
      empty->count = last->count;
      single->frequency = last->frequency;
      single->frequency = last->frequency;
      empty->frequency = last->frequency;
      empty->frequency = last->frequency;
      BB_COPY_PARTITION (single, last);
      BB_COPY_PARTITION (single, last);
      BB_COPY_PARTITION (empty, last);
      BB_COPY_PARTITION (empty, last);
 
 
      redirect_edge_succ (e, single);
      redirect_edge_succ (e, single);
      make_single_succ_edge (single, empty, 0);
      make_single_succ_edge (single, empty, 0);
      make_single_succ_edge (empty, EXIT_BLOCK_PTR,
      make_single_succ_edge (empty, EXIT_BLOCK_PTR,
                             EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
                             EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
 
 
      label = block_label (empty);
      label = block_label (empty);
      x = emit_jump_insn_after (gen_jump (label), BB_END (single));
      x = emit_jump_insn_after (gen_jump (label), BB_END (single));
      JUMP_LABEL (x) = label;
      JUMP_LABEL (x) = label;
      LABEL_NUSES (label)++;
      LABEL_NUSES (label)++;
      haifa_init_insn (x);
      haifa_init_insn (x);
 
 
      emit_barrier_after (x);
      emit_barrier_after (x);
 
 
      sched_init_only_bb (empty, NULL);
      sched_init_only_bb (empty, NULL);
      sched_init_only_bb (single, NULL);
      sched_init_only_bb (single, NULL);
      sched_extend_bb ();
      sched_extend_bb ();
 
 
      adding_bb_to_current_region_p = true;
      adding_bb_to_current_region_p = true;
      before_recovery = single;
      before_recovery = single;
      after_recovery = empty;
      after_recovery = empty;
 
 
      if (before_recovery_ptr)
      if (before_recovery_ptr)
        *before_recovery_ptr = before_recovery;
        *before_recovery_ptr = before_recovery;
 
 
      if (sched_verbose >= 2 && spec_info->dump)
      if (sched_verbose >= 2 && spec_info->dump)
        fprintf (spec_info->dump,
        fprintf (spec_info->dump,
                 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
                 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
                 last->index, single->index, empty->index);
                 last->index, single->index, empty->index);
    }
    }
  else
  else
    before_recovery = last;
    before_recovery = last;
}
}
 
 
/* Returns new recovery block.  */
/* Returns new recovery block.  */
basic_block
basic_block
sched_create_recovery_block (basic_block *before_recovery_ptr)
sched_create_recovery_block (basic_block *before_recovery_ptr)
{
{
  rtx label;
  rtx label;
  rtx barrier;
  rtx barrier;
  basic_block rec;
  basic_block rec;
 
 
  haifa_recovery_bb_recently_added_p = true;
  haifa_recovery_bb_recently_added_p = true;
  haifa_recovery_bb_ever_added_p = true;
  haifa_recovery_bb_ever_added_p = true;
 
 
  init_before_recovery (before_recovery_ptr);
  init_before_recovery (before_recovery_ptr);
 
 
  barrier = get_last_bb_insn (before_recovery);
  barrier = get_last_bb_insn (before_recovery);
  gcc_assert (BARRIER_P (barrier));
  gcc_assert (BARRIER_P (barrier));
 
 
  label = emit_label_after (gen_label_rtx (), barrier);
  label = emit_label_after (gen_label_rtx (), barrier);
 
 
  rec = create_basic_block (label, label, before_recovery);
  rec = create_basic_block (label, label, before_recovery);
 
 
  /* A recovery block always ends with an unconditional jump.  */
  /* A recovery block always ends with an unconditional jump.  */
  emit_barrier_after (BB_END (rec));
  emit_barrier_after (BB_END (rec));
 
 
  if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
  if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
    BB_SET_PARTITION (rec, BB_COLD_PARTITION);
    BB_SET_PARTITION (rec, BB_COLD_PARTITION);
 
 
  if (sched_verbose && spec_info->dump)
  if (sched_verbose && spec_info->dump)
    fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
    fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
             rec->index);
             rec->index);
 
 
  return rec;
  return rec;
}
}
 
 
/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
   and emit necessary jumps.  */
   and emit necessary jumps.  */
void
void
sched_create_recovery_edges (basic_block first_bb, basic_block rec,
sched_create_recovery_edges (basic_block first_bb, basic_block rec,
                             basic_block second_bb)
                             basic_block second_bb)
{
{
  rtx label;
  rtx label;
  rtx jump;
  rtx jump;
  int edge_flags;
  int edge_flags;
 
 
  /* This is fixing of incoming edge.  */
  /* This is fixing of incoming edge.  */
  /* ??? Which other flags should be specified?  */
  /* ??? Which other flags should be specified?  */
  if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
  if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
    /* Partition type is the same, if it is "unpartitioned".  */
    /* Partition type is the same, if it is "unpartitioned".  */
    edge_flags = EDGE_CROSSING;
    edge_flags = EDGE_CROSSING;
  else
  else
    edge_flags = 0;
    edge_flags = 0;
 
 
  make_edge (first_bb, rec, edge_flags);
  make_edge (first_bb, rec, edge_flags);
  label = block_label (second_bb);
  label = block_label (second_bb);
  jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
  jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
  JUMP_LABEL (jump) = label;
  JUMP_LABEL (jump) = label;
  LABEL_NUSES (label)++;
  LABEL_NUSES (label)++;
 
 
  if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
  if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
    /* Partition type is the same, if it is "unpartitioned".  */
    /* Partition type is the same, if it is "unpartitioned".  */
    {
    {
      /* Rewritten from cfgrtl.c.  */
      /* Rewritten from cfgrtl.c.  */
      if (flag_reorder_blocks_and_partition
      if (flag_reorder_blocks_and_partition
          && targetm.have_named_sections)
          && targetm.have_named_sections)
        {
        {
          /* We don't need the same note for the check because
          /* We don't need the same note for the check because
             any_condjump_p (check) == true.  */
             any_condjump_p (check) == true.  */
          add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
          add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
        }
        }
      edge_flags = EDGE_CROSSING;
      edge_flags = EDGE_CROSSING;
    }
    }
  else
  else
    edge_flags = 0;
    edge_flags = 0;
 
 
  make_single_succ_edge (rec, second_bb, edge_flags);
  make_single_succ_edge (rec, second_bb, edge_flags);
}
}
 
 
/* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
/* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
   INSN is a simple check, that should be converted to branchy one.  */
   INSN is a simple check, that should be converted to branchy one.  */
static void
static void
create_check_block_twin (rtx insn, bool mutate_p)
create_check_block_twin (rtx insn, bool mutate_p)
{
{
  basic_block rec;
  basic_block rec;
  rtx label, check, twin;
  rtx label, check, twin;
  ds_t fs;
  ds_t fs;
  sd_iterator_def sd_it;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_t dep;
  dep_def _new_dep, *new_dep = &_new_dep;
  dep_def _new_dep, *new_dep = &_new_dep;
  ds_t todo_spec;
  ds_t todo_spec;
 
 
  gcc_assert (ORIG_PAT (insn) != NULL_RTX);
  gcc_assert (ORIG_PAT (insn) != NULL_RTX);
 
 
  if (!mutate_p)
  if (!mutate_p)
    todo_spec = TODO_SPEC (insn);
    todo_spec = TODO_SPEC (insn);
  else
  else
    {
    {
      gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
      gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
                  && (TODO_SPEC (insn) & SPECULATIVE) == 0);
                  && (TODO_SPEC (insn) & SPECULATIVE) == 0);
 
 
      todo_spec = CHECK_SPEC (insn);
      todo_spec = CHECK_SPEC (insn);
    }
    }
 
 
  todo_spec &= SPECULATIVE;
  todo_spec &= SPECULATIVE;
 
 
  /* Create recovery block.  */
  /* Create recovery block.  */
  if (mutate_p || targetm.sched.needs_block_p (todo_spec))
  if (mutate_p || targetm.sched.needs_block_p (todo_spec))
    {
    {
      rec = sched_create_recovery_block (NULL);
      rec = sched_create_recovery_block (NULL);
      label = BB_HEAD (rec);
      label = BB_HEAD (rec);
    }
    }
  else
  else
    {
    {
      rec = EXIT_BLOCK_PTR;
      rec = EXIT_BLOCK_PTR;
      label = NULL_RTX;
      label = NULL_RTX;
    }
    }
 
 
  /* Emit CHECK.  */
  /* Emit CHECK.  */
  check = targetm.sched.gen_spec_check (insn, label, todo_spec);
  check = targetm.sched.gen_spec_check (insn, label, todo_spec);
 
 
  if (rec != EXIT_BLOCK_PTR)
  if (rec != EXIT_BLOCK_PTR)
    {
    {
      /* To have mem_reg alive at the beginning of second_bb,
      /* To have mem_reg alive at the beginning of second_bb,
         we emit check BEFORE insn, so insn after splitting
         we emit check BEFORE insn, so insn after splitting
         insn will be at the beginning of second_bb, which will
         insn will be at the beginning of second_bb, which will
         provide us with the correct life information.  */
         provide us with the correct life information.  */
      check = emit_jump_insn_before (check, insn);
      check = emit_jump_insn_before (check, insn);
      JUMP_LABEL (check) = label;
      JUMP_LABEL (check) = label;
      LABEL_NUSES (label)++;
      LABEL_NUSES (label)++;
    }
    }
  else
  else
    check = emit_insn_before (check, insn);
    check = emit_insn_before (check, insn);
 
 
  /* Extend data structures.  */
  /* Extend data structures.  */
  haifa_init_insn (check);
  haifa_init_insn (check);
 
 
  /* CHECK is being added to current region.  Extend ready list.  */
  /* CHECK is being added to current region.  Extend ready list.  */
  gcc_assert (sched_ready_n_insns != -1);
  gcc_assert (sched_ready_n_insns != -1);
  sched_extend_ready_list (sched_ready_n_insns + 1);
  sched_extend_ready_list (sched_ready_n_insns + 1);
 
 
  if (current_sched_info->add_remove_insn)
  if (current_sched_info->add_remove_insn)
    current_sched_info->add_remove_insn (insn, 0);
    current_sched_info->add_remove_insn (insn, 0);
 
 
  RECOVERY_BLOCK (check) = rec;
  RECOVERY_BLOCK (check) = rec;
 
 
  if (sched_verbose && spec_info->dump)
  if (sched_verbose && spec_info->dump)
    fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
    fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
             (*current_sched_info->print_insn) (check, 0));
             (*current_sched_info->print_insn) (check, 0));
 
 
  gcc_assert (ORIG_PAT (insn));
  gcc_assert (ORIG_PAT (insn));
 
 
  /* Initialize TWIN (twin is a duplicate of original instruction
  /* Initialize TWIN (twin is a duplicate of original instruction
     in the recovery block).  */
     in the recovery block).  */
  if (rec != EXIT_BLOCK_PTR)
  if (rec != EXIT_BLOCK_PTR)
    {
    {
      sd_iterator_def sd_it;
      sd_iterator_def sd_it;
      dep_t dep;
      dep_t dep;
 
 
      FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
      FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
        if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
        if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
          {
          {
            struct _dep _dep2, *dep2 = &_dep2;
            struct _dep _dep2, *dep2 = &_dep2;
 
 
            init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
            init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
 
 
            sd_add_dep (dep2, true);
            sd_add_dep (dep2, true);
          }
          }
 
 
      twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
      twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
      haifa_init_insn (twin);
      haifa_init_insn (twin);
 
 
      if (sched_verbose && spec_info->dump)
      if (sched_verbose && spec_info->dump)
        /* INSN_BB (insn) isn't determined for twin insns yet.
        /* INSN_BB (insn) isn't determined for twin insns yet.
           So we can't use current_sched_info->print_insn.  */
           So we can't use current_sched_info->print_insn.  */
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
                 INSN_UID (twin), rec->index);
                 INSN_UID (twin), rec->index);
    }
    }
  else
  else
    {
    {
      ORIG_PAT (check) = ORIG_PAT (insn);
      ORIG_PAT (check) = ORIG_PAT (insn);
      HAS_INTERNAL_DEP (check) = 1;
      HAS_INTERNAL_DEP (check) = 1;
      twin = check;
      twin = check;
      /* ??? We probably should change all OUTPUT dependencies to
      /* ??? We probably should change all OUTPUT dependencies to
         (TRUE | OUTPUT).  */
         (TRUE | OUTPUT).  */
    }
    }
 
 
  /* Copy all resolved back dependencies of INSN to TWIN.  This will
  /* Copy all resolved back dependencies of INSN to TWIN.  This will
     provide correct value for INSN_TICK (TWIN).  */
     provide correct value for INSN_TICK (TWIN).  */
  sd_copy_back_deps (twin, insn, true);
  sd_copy_back_deps (twin, insn, true);
 
 
  if (rec != EXIT_BLOCK_PTR)
  if (rec != EXIT_BLOCK_PTR)
    /* In case of branchy check, fix CFG.  */
    /* In case of branchy check, fix CFG.  */
    {
    {
      basic_block first_bb, second_bb;
      basic_block first_bb, second_bb;
      rtx jump;
      rtx jump;
 
 
      first_bb = BLOCK_FOR_INSN (check);
      first_bb = BLOCK_FOR_INSN (check);
      second_bb = sched_split_block (first_bb, check);
      second_bb = sched_split_block (first_bb, check);
 
 
      sched_create_recovery_edges (first_bb, rec, second_bb);
      sched_create_recovery_edges (first_bb, rec, second_bb);
 
 
      sched_init_only_bb (second_bb, first_bb);
      sched_init_only_bb (second_bb, first_bb);
      sched_init_only_bb (rec, EXIT_BLOCK_PTR);
      sched_init_only_bb (rec, EXIT_BLOCK_PTR);
 
 
      jump = BB_END (rec);
      jump = BB_END (rec);
      haifa_init_insn (jump);
      haifa_init_insn (jump);
    }
    }
 
 
  /* Move backward dependences from INSN to CHECK and
  /* Move backward dependences from INSN to CHECK and
     move forward dependences from INSN to TWIN.  */
     move forward dependences from INSN to TWIN.  */
 
 
  /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
  /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
    {
      rtx pro = DEP_PRO (dep);
      rtx pro = DEP_PRO (dep);
      ds_t ds;
      ds_t ds;
 
 
      /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
      /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
         check --TRUE--> producer  ??? or ANTI ???
         check --TRUE--> producer  ??? or ANTI ???
         twin  --TRUE--> producer
         twin  --TRUE--> producer
         twin  --ANTI--> check
         twin  --ANTI--> check
 
 
         If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
         If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
         check --ANTI--> producer
         check --ANTI--> producer
         twin  --ANTI--> producer
         twin  --ANTI--> producer
         twin  --ANTI--> check
         twin  --ANTI--> check
 
 
         If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
         If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
         check ~~TRUE~~> producer
         check ~~TRUE~~> producer
         twin  ~~TRUE~~> producer
         twin  ~~TRUE~~> producer
         twin  --ANTI--> check  */
         twin  --ANTI--> check  */
 
 
      ds = DEP_STATUS (dep);
      ds = DEP_STATUS (dep);
 
 
      if (ds & BEGIN_SPEC)
      if (ds & BEGIN_SPEC)
        {
        {
          gcc_assert (!mutate_p);
          gcc_assert (!mutate_p);
          ds &= ~BEGIN_SPEC;
          ds &= ~BEGIN_SPEC;
        }
        }
 
 
      init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
      init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
      sd_add_dep (new_dep, false);
      sd_add_dep (new_dep, false);
 
 
      if (rec != EXIT_BLOCK_PTR)
      if (rec != EXIT_BLOCK_PTR)
        {
        {
          DEP_CON (new_dep) = twin;
          DEP_CON (new_dep) = twin;
          sd_add_dep (new_dep, false);
          sd_add_dep (new_dep, false);
        }
        }
    }
    }
 
 
  /* Second, remove backward dependencies of INSN.  */
  /* Second, remove backward dependencies of INSN.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep);)
       sd_iterator_cond (&sd_it, &dep);)
    {
    {
      if ((DEP_STATUS (dep) & BEGIN_SPEC)
      if ((DEP_STATUS (dep) & BEGIN_SPEC)
          || mutate_p)
          || mutate_p)
        /* We can delete this dep because we overcome it with
        /* We can delete this dep because we overcome it with
           BEGIN_SPECULATION.  */
           BEGIN_SPECULATION.  */
        sd_delete_dep (sd_it);
        sd_delete_dep (sd_it);
      else
      else
        sd_iterator_next (&sd_it);
        sd_iterator_next (&sd_it);
    }
    }
 
 
  /* Future Speculations.  Determine what BE_IN speculations will be like.  */
  /* Future Speculations.  Determine what BE_IN speculations will be like.  */
  fs = 0;
  fs = 0;
 
 
  /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
  /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
     here.  */
     here.  */
 
 
  gcc_assert (!DONE_SPEC (insn));
  gcc_assert (!DONE_SPEC (insn));
 
 
  if (!mutate_p)
  if (!mutate_p)
    {
    {
      ds_t ts = TODO_SPEC (insn);
      ds_t ts = TODO_SPEC (insn);
 
 
      DONE_SPEC (insn) = ts & BEGIN_SPEC;
      DONE_SPEC (insn) = ts & BEGIN_SPEC;
      CHECK_SPEC (check) = ts & BEGIN_SPEC;
      CHECK_SPEC (check) = ts & BEGIN_SPEC;
 
 
      /* Luckiness of future speculations solely depends upon initial
      /* Luckiness of future speculations solely depends upon initial
         BEGIN speculation.  */
         BEGIN speculation.  */
      if (ts & BEGIN_DATA)
      if (ts & BEGIN_DATA)
        fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
        fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
      if (ts & BEGIN_CONTROL)
      if (ts & BEGIN_CONTROL)
        fs = set_dep_weak (fs, BE_IN_CONTROL,
        fs = set_dep_weak (fs, BE_IN_CONTROL,
                           get_dep_weak (ts, BEGIN_CONTROL));
                           get_dep_weak (ts, BEGIN_CONTROL));
    }
    }
  else
  else
    CHECK_SPEC (check) = CHECK_SPEC (insn);
    CHECK_SPEC (check) = CHECK_SPEC (insn);
 
 
  /* Future speculations: call the helper.  */
  /* Future speculations: call the helper.  */
  process_insn_forw_deps_be_in_spec (insn, twin, fs);
  process_insn_forw_deps_be_in_spec (insn, twin, fs);
 
 
  if (rec != EXIT_BLOCK_PTR)
  if (rec != EXIT_BLOCK_PTR)
    {
    {
      /* Which types of dependencies should we use here is,
      /* Which types of dependencies should we use here is,
         generally, machine-dependent question...  But, for now,
         generally, machine-dependent question...  But, for now,
         it is not.  */
         it is not.  */
 
 
      if (!mutate_p)
      if (!mutate_p)
        {
        {
          init_dep (new_dep, insn, check, REG_DEP_TRUE);
          init_dep (new_dep, insn, check, REG_DEP_TRUE);
          sd_add_dep (new_dep, false);
          sd_add_dep (new_dep, false);
 
 
          init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
          init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
          sd_add_dep (new_dep, false);
          sd_add_dep (new_dep, false);
        }
        }
      else
      else
        {
        {
          if (spec_info->dump)
          if (spec_info->dump)
            fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
            fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
                     (*current_sched_info->print_insn) (insn, 0));
                     (*current_sched_info->print_insn) (insn, 0));
 
 
          /* Remove all dependencies of the INSN.  */
          /* Remove all dependencies of the INSN.  */
          {
          {
            sd_it = sd_iterator_start (insn, (SD_LIST_FORW
            sd_it = sd_iterator_start (insn, (SD_LIST_FORW
                                              | SD_LIST_BACK
                                              | SD_LIST_BACK
                                              | SD_LIST_RES_BACK));
                                              | SD_LIST_RES_BACK));
            while (sd_iterator_cond (&sd_it, &dep))
            while (sd_iterator_cond (&sd_it, &dep))
              sd_delete_dep (sd_it);
              sd_delete_dep (sd_it);
          }
          }
 
 
          /* If former check (INSN) already was moved to the ready (or queue)
          /* If former check (INSN) already was moved to the ready (or queue)
             list, add new check (CHECK) there too.  */
             list, add new check (CHECK) there too.  */
          if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
          if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
            try_ready (check);
            try_ready (check);
 
 
          /* Remove old check from instruction stream and free its
          /* Remove old check from instruction stream and free its
             data.  */
             data.  */
          sched_remove_insn (insn);
          sched_remove_insn (insn);
        }
        }
 
 
      init_dep (new_dep, check, twin, REG_DEP_ANTI);
      init_dep (new_dep, check, twin, REG_DEP_ANTI);
      sd_add_dep (new_dep, false);
      sd_add_dep (new_dep, false);
    }
    }
  else
  else
    {
    {
      init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
      init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
      sd_add_dep (new_dep, false);
      sd_add_dep (new_dep, false);
    }
    }
 
 
  if (!mutate_p)
  if (!mutate_p)
    /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
    /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
       because it'll be done later in add_to_speculative_block.  */
       because it'll be done later in add_to_speculative_block.  */
    {
    {
      rtx_vec_t priorities_roots = NULL;
      rtx_vec_t priorities_roots = NULL;
 
 
      clear_priorities (twin, &priorities_roots);
      clear_priorities (twin, &priorities_roots);
      calc_priorities (priorities_roots);
      calc_priorities (priorities_roots);
      VEC_free (rtx, heap, priorities_roots);
      VEC_free (rtx, heap, priorities_roots);
    }
    }
}
}
 
 
/* Removes dependency between instructions in the recovery block REC
/* Removes dependency between instructions in the recovery block REC
   and usual region instructions.  It keeps inner dependences so it
   and usual region instructions.  It keeps inner dependences so it
   won't be necessary to recompute them.  */
   won't be necessary to recompute them.  */
static void
static void
fix_recovery_deps (basic_block rec)
fix_recovery_deps (basic_block rec)
{
{
  rtx note, insn, jump, ready_list = 0;
  rtx note, insn, jump, ready_list = 0;
  bitmap_head in_ready;
  bitmap_head in_ready;
  rtx link;
  rtx link;
 
 
  bitmap_initialize (&in_ready, 0);
  bitmap_initialize (&in_ready, 0);
 
 
  /* NOTE - a basic block note.  */
  /* NOTE - a basic block note.  */
  note = NEXT_INSN (BB_HEAD (rec));
  note = NEXT_INSN (BB_HEAD (rec));
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  insn = BB_END (rec);
  insn = BB_END (rec);
  gcc_assert (JUMP_P (insn));
  gcc_assert (JUMP_P (insn));
  insn = PREV_INSN (insn);
  insn = PREV_INSN (insn);
 
 
  do
  do
    {
    {
      sd_iterator_def sd_it;
      sd_iterator_def sd_it;
      dep_t dep;
      dep_t dep;
 
 
      for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
      for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
           sd_iterator_cond (&sd_it, &dep);)
           sd_iterator_cond (&sd_it, &dep);)
        {
        {
          rtx consumer = DEP_CON (dep);
          rtx consumer = DEP_CON (dep);
 
 
          if (BLOCK_FOR_INSN (consumer) != rec)
          if (BLOCK_FOR_INSN (consumer) != rec)
            {
            {
              sd_delete_dep (sd_it);
              sd_delete_dep (sd_it);
 
 
              if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
              if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
                {
                {
                  ready_list = alloc_INSN_LIST (consumer, ready_list);
                  ready_list = alloc_INSN_LIST (consumer, ready_list);
                  bitmap_set_bit (&in_ready, INSN_LUID (consumer));
                  bitmap_set_bit (&in_ready, INSN_LUID (consumer));
                }
                }
            }
            }
          else
          else
            {
            {
              gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
              gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
 
 
              sd_iterator_next (&sd_it);
              sd_iterator_next (&sd_it);
            }
            }
        }
        }
 
 
      insn = PREV_INSN (insn);
      insn = PREV_INSN (insn);
    }
    }
  while (insn != note);
  while (insn != note);
 
 
  bitmap_clear (&in_ready);
  bitmap_clear (&in_ready);
 
 
  /* Try to add instructions to the ready or queue list.  */
  /* Try to add instructions to the ready or queue list.  */
  for (link = ready_list; link; link = XEXP (link, 1))
  for (link = ready_list; link; link = XEXP (link, 1))
    try_ready (XEXP (link, 0));
    try_ready (XEXP (link, 0));
  free_INSN_LIST_list (&ready_list);
  free_INSN_LIST_list (&ready_list);
 
 
  /* Fixing jump's dependences.  */
  /* Fixing jump's dependences.  */
  insn = BB_HEAD (rec);
  insn = BB_HEAD (rec);
  jump = BB_END (rec);
  jump = BB_END (rec);
 
 
  gcc_assert (LABEL_P (insn));
  gcc_assert (LABEL_P (insn));
  insn = NEXT_INSN (insn);
  insn = NEXT_INSN (insn);
 
 
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
  add_jump_dependencies (insn, jump);
  add_jump_dependencies (insn, jump);
}
}
 
 
/* Change pattern of INSN to NEW_PAT.  */
/* Change pattern of INSN to NEW_PAT.  */
void
void
sched_change_pattern (rtx insn, rtx new_pat)
sched_change_pattern (rtx insn, rtx new_pat)
{
{
  int t;
  int t;
 
 
  t = validate_change (insn, &PATTERN (insn), new_pat, 0);
  t = validate_change (insn, &PATTERN (insn), new_pat, 0);
  gcc_assert (t);
  gcc_assert (t);
  dfa_clear_single_insn_cache (insn);
  dfa_clear_single_insn_cache (insn);
}
}
 
 
/* Change pattern of INSN to NEW_PAT.  Invalidate cached haifa
/* Change pattern of INSN to NEW_PAT.  Invalidate cached haifa
   instruction data.  */
   instruction data.  */
static void
static void
haifa_change_pattern (rtx insn, rtx new_pat)
haifa_change_pattern (rtx insn, rtx new_pat)
{
{
  sched_change_pattern (insn, new_pat);
  sched_change_pattern (insn, new_pat);
 
 
  /* Invalidate INSN_COST, so it'll be recalculated.  */
  /* Invalidate INSN_COST, so it'll be recalculated.  */
  INSN_COST (insn) = -1;
  INSN_COST (insn) = -1;
  /* Invalidate INSN_TICK, so it'll be recalculated.  */
  /* Invalidate INSN_TICK, so it'll be recalculated.  */
  INSN_TICK (insn) = INVALID_TICK;
  INSN_TICK (insn) = INVALID_TICK;
}
}
 
 
/* -1 - can't speculate,
/* -1 - can't speculate,
   0 - for speculation with REQUEST mode it is OK to use
   0 - for speculation with REQUEST mode it is OK to use
   current instruction pattern,
   current instruction pattern,
   1 - need to change pattern for *NEW_PAT to be speculative.  */
   1 - need to change pattern for *NEW_PAT to be speculative.  */
int
int
sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
{
{
  gcc_assert (current_sched_info->flags & DO_SPECULATION
  gcc_assert (current_sched_info->flags & DO_SPECULATION
              && (request & SPECULATIVE)
              && (request & SPECULATIVE)
              && sched_insn_is_legitimate_for_speculation_p (insn, request));
              && sched_insn_is_legitimate_for_speculation_p (insn, request));
 
 
  if ((request & spec_info->mask) != request)
  if ((request & spec_info->mask) != request)
    return -1;
    return -1;
 
 
  if (request & BE_IN_SPEC
  if (request & BE_IN_SPEC
      && !(request & BEGIN_SPEC))
      && !(request & BEGIN_SPEC))
    return 0;
    return 0;
 
 
  return targetm.sched.speculate_insn (insn, request, new_pat);
  return targetm.sched.speculate_insn (insn, request, new_pat);
}
}
 
 
static int
static int
haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
{
{
  gcc_assert (sched_deps_info->generate_spec_deps
  gcc_assert (sched_deps_info->generate_spec_deps
              && !IS_SPECULATION_CHECK_P (insn));
              && !IS_SPECULATION_CHECK_P (insn));
 
 
  if (HAS_INTERNAL_DEP (insn)
  if (HAS_INTERNAL_DEP (insn)
      || SCHED_GROUP_P (insn))
      || SCHED_GROUP_P (insn))
    return -1;
    return -1;
 
 
  return sched_speculate_insn (insn, request, new_pat);
  return sched_speculate_insn (insn, request, new_pat);
}
}
 
 
/* Print some information about block BB, which starts with HEAD and
/* Print some information about block BB, which starts with HEAD and
   ends with TAIL, before scheduling it.
   ends with TAIL, before scheduling it.
   I is zero, if scheduler is about to start with the fresh ebb.  */
   I is zero, if scheduler is about to start with the fresh ebb.  */
static void
static void
dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
{
{
  if (!i)
  if (!i)
    fprintf (sched_dump,
    fprintf (sched_dump,
             ";;   ======================================================\n");
             ";;   ======================================================\n");
  else
  else
    fprintf (sched_dump,
    fprintf (sched_dump,
             ";;   =====================ADVANCING TO=====================\n");
             ";;   =====================ADVANCING TO=====================\n");
  fprintf (sched_dump,
  fprintf (sched_dump,
           ";;   -- basic block %d from %d to %d -- %s reload\n",
           ";;   -- basic block %d from %d to %d -- %s reload\n",
           bb->index, INSN_UID (head), INSN_UID (tail),
           bb->index, INSN_UID (head), INSN_UID (tail),
           (reload_completed ? "after" : "before"));
           (reload_completed ? "after" : "before"));
  fprintf (sched_dump,
  fprintf (sched_dump,
           ";;   ======================================================\n");
           ";;   ======================================================\n");
  fprintf (sched_dump, "\n");
  fprintf (sched_dump, "\n");
}
}
 
 
/* Unlink basic block notes and labels and saves them, so they
/* Unlink basic block notes and labels and saves them, so they
   can be easily restored.  We unlink basic block notes in EBB to
   can be easily restored.  We unlink basic block notes in EBB to
   provide back-compatibility with the previous code, as target backends
   provide back-compatibility with the previous code, as target backends
   assume, that there'll be only instructions between
   assume, that there'll be only instructions between
   current_sched_info->{head and tail}.  We restore these notes as soon
   current_sched_info->{head and tail}.  We restore these notes as soon
   as we can.
   as we can.
   FIRST (LAST) is the first (last) basic block in the ebb.
   FIRST (LAST) is the first (last) basic block in the ebb.
   NB: In usual case (FIRST == LAST) nothing is really done.  */
   NB: In usual case (FIRST == LAST) nothing is really done.  */
void
void
unlink_bb_notes (basic_block first, basic_block last)
unlink_bb_notes (basic_block first, basic_block last)
{
{
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  if (first == last)
  if (first == last)
    return;
    return;
 
 
  bb_header = XNEWVEC (rtx, last_basic_block);
  bb_header = XNEWVEC (rtx, last_basic_block);
 
 
  /* Make a sentinel.  */
  /* Make a sentinel.  */
  if (last->next_bb != EXIT_BLOCK_PTR)
  if (last->next_bb != EXIT_BLOCK_PTR)
    bb_header[last->next_bb->index] = 0;
    bb_header[last->next_bb->index] = 0;
 
 
  first = first->next_bb;
  first = first->next_bb;
  do
  do
    {
    {
      rtx prev, label, note, next;
      rtx prev, label, note, next;
 
 
      label = BB_HEAD (last);
      label = BB_HEAD (last);
      if (LABEL_P (label))
      if (LABEL_P (label))
        note = NEXT_INSN (label);
        note = NEXT_INSN (label);
      else
      else
        note = label;
        note = label;
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
 
 
      prev = PREV_INSN (label);
      prev = PREV_INSN (label);
      next = NEXT_INSN (note);
      next = NEXT_INSN (note);
      gcc_assert (prev && next);
      gcc_assert (prev && next);
 
 
      NEXT_INSN (prev) = next;
      NEXT_INSN (prev) = next;
      PREV_INSN (next) = prev;
      PREV_INSN (next) = prev;
 
 
      bb_header[last->index] = label;
      bb_header[last->index] = label;
 
 
      if (last == first)
      if (last == first)
        break;
        break;
 
 
      last = last->prev_bb;
      last = last->prev_bb;
    }
    }
  while (1);
  while (1);
}
}
 
 
/* Restore basic block notes.
/* Restore basic block notes.
   FIRST is the first basic block in the ebb.  */
   FIRST is the first basic block in the ebb.  */
static void
static void
restore_bb_notes (basic_block first)
restore_bb_notes (basic_block first)
{
{
  if (!bb_header)
  if (!bb_header)
    return;
    return;
 
 
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  first = first->next_bb;
  first = first->next_bb;
  /* Remember: FIRST is actually a second basic block in the ebb.  */
  /* Remember: FIRST is actually a second basic block in the ebb.  */
 
 
  while (first != EXIT_BLOCK_PTR
  while (first != EXIT_BLOCK_PTR
         && bb_header[first->index])
         && bb_header[first->index])
    {
    {
      rtx prev, label, note, next;
      rtx prev, label, note, next;
 
 
      label = bb_header[first->index];
      label = bb_header[first->index];
      prev = PREV_INSN (label);
      prev = PREV_INSN (label);
      next = NEXT_INSN (prev);
      next = NEXT_INSN (prev);
 
 
      if (LABEL_P (label))
      if (LABEL_P (label))
        note = NEXT_INSN (label);
        note = NEXT_INSN (label);
      else
      else
        note = label;
        note = label;
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
 
 
      bb_header[first->index] = 0;
      bb_header[first->index] = 0;
 
 
      NEXT_INSN (prev) = label;
      NEXT_INSN (prev) = label;
      NEXT_INSN (note) = next;
      NEXT_INSN (note) = next;
      PREV_INSN (next) = note;
      PREV_INSN (next) = note;
 
 
      first = first->next_bb;
      first = first->next_bb;
    }
    }
 
 
  free (bb_header);
  free (bb_header);
  bb_header = 0;
  bb_header = 0;
}
}
 
 
/* Helper function.
/* Helper function.
   Fix CFG after both in- and inter-block movement of
   Fix CFG after both in- and inter-block movement of
   control_flow_insn_p JUMP.  */
   control_flow_insn_p JUMP.  */
static void
static void
fix_jump_move (rtx jump)
fix_jump_move (rtx jump)
{
{
  basic_block bb, jump_bb, jump_bb_next;
  basic_block bb, jump_bb, jump_bb_next;
 
 
  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb_next = jump_bb->next_bb;
  jump_bb_next = jump_bb->next_bb;
 
 
  gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
  gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
              || IS_SPECULATION_BRANCHY_CHECK_P (jump));
              || IS_SPECULATION_BRANCHY_CHECK_P (jump));
 
 
  if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
  if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
    /* if jump_bb_next is not empty.  */
    /* if jump_bb_next is not empty.  */
    BB_END (jump_bb) = BB_END (jump_bb_next);
    BB_END (jump_bb) = BB_END (jump_bb_next);
 
 
  if (BB_END (bb) != PREV_INSN (jump))
  if (BB_END (bb) != PREV_INSN (jump))
    /* Then there are instruction after jump that should be placed
    /* Then there are instruction after jump that should be placed
       to jump_bb_next.  */
       to jump_bb_next.  */
    BB_END (jump_bb_next) = BB_END (bb);
    BB_END (jump_bb_next) = BB_END (bb);
  else
  else
    /* Otherwise jump_bb_next is empty.  */
    /* Otherwise jump_bb_next is empty.  */
    BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
    BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
 
 
  /* To make assertion in move_insn happy.  */
  /* To make assertion in move_insn happy.  */
  BB_END (bb) = PREV_INSN (jump);
  BB_END (bb) = PREV_INSN (jump);
 
 
  update_bb_for_insn (jump_bb_next);
  update_bb_for_insn (jump_bb_next);
}
}
 
 
/* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
/* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
static void
static void
move_block_after_check (rtx jump)
move_block_after_check (rtx jump)
{
{
  basic_block bb, jump_bb, jump_bb_next;
  basic_block bb, jump_bb, jump_bb_next;
  VEC(edge,gc) *t;
  VEC(edge,gc) *t;
 
 
  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb_next = jump_bb->next_bb;
  jump_bb_next = jump_bb->next_bb;
 
 
  update_bb_for_insn (jump_bb);
  update_bb_for_insn (jump_bb);
 
 
  gcc_assert (IS_SPECULATION_CHECK_P (jump)
  gcc_assert (IS_SPECULATION_CHECK_P (jump)
              || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
              || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
 
 
  unlink_block (jump_bb_next);
  unlink_block (jump_bb_next);
  link_block (jump_bb_next, bb);
  link_block (jump_bb_next, bb);
 
 
  t = bb->succs;
  t = bb->succs;
  bb->succs = 0;
  bb->succs = 0;
  move_succs (&(jump_bb->succs), bb);
  move_succs (&(jump_bb->succs), bb);
  move_succs (&(jump_bb_next->succs), jump_bb);
  move_succs (&(jump_bb_next->succs), jump_bb);
  move_succs (&t, jump_bb_next);
  move_succs (&t, jump_bb_next);
 
 
  df_mark_solutions_dirty ();
  df_mark_solutions_dirty ();
 
 
  common_sched_info->fix_recovery_cfg
  common_sched_info->fix_recovery_cfg
    (bb->index, jump_bb->index, jump_bb_next->index);
    (bb->index, jump_bb->index, jump_bb_next->index);
}
}
 
 
/* Helper function for move_block_after_check.
/* Helper function for move_block_after_check.
   This functions attaches edge vector pointed to by SUCCSP to
   This functions attaches edge vector pointed to by SUCCSP to
   block TO.  */
   block TO.  */
static void
static void
move_succs (VEC(edge,gc) **succsp, basic_block to)
move_succs (VEC(edge,gc) **succsp, basic_block to)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  gcc_assert (to->succs == 0);
  gcc_assert (to->succs == 0);
 
 
  to->succs = *succsp;
  to->succs = *succsp;
 
 
  FOR_EACH_EDGE (e, ei, to->succs)
  FOR_EACH_EDGE (e, ei, to->succs)
    e->src = to;
    e->src = to;
 
 
  *succsp = 0;
  *succsp = 0;
}
}
 
 
/* Remove INSN from the instruction stream.
/* Remove INSN from the instruction stream.
   INSN should have any dependencies.  */
   INSN should have any dependencies.  */
static void
static void
sched_remove_insn (rtx insn)
sched_remove_insn (rtx insn)
{
{
  sd_finish_insn (insn);
  sd_finish_insn (insn);
 
 
  change_queue_index (insn, QUEUE_NOWHERE);
  change_queue_index (insn, QUEUE_NOWHERE);
  current_sched_info->add_remove_insn (insn, 1);
  current_sched_info->add_remove_insn (insn, 1);
  remove_insn (insn);
  remove_insn (insn);
}
}
 
 
/* Clear priorities of all instructions, that are forward dependent on INSN.
/* Clear priorities of all instructions, that are forward dependent on INSN.
   Store in vector pointed to by ROOTS_PTR insns on which priority () should
   Store in vector pointed to by ROOTS_PTR insns on which priority () should
   be invoked to initialize all cleared priorities.  */
   be invoked to initialize all cleared priorities.  */
static void
static void
clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
{
{
  sd_iterator_def sd_it;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_t dep;
  bool insn_is_root_p = true;
  bool insn_is_root_p = true;
 
 
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
 
 
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
    {
      rtx pro = DEP_PRO (dep);
      rtx pro = DEP_PRO (dep);
 
 
      if (INSN_PRIORITY_STATUS (pro) >= 0
      if (INSN_PRIORITY_STATUS (pro) >= 0
          && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
          && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
        {
        {
          /* If DEP doesn't contribute to priority then INSN itself should
          /* If DEP doesn't contribute to priority then INSN itself should
             be added to priority roots.  */
             be added to priority roots.  */
          if (contributes_to_priority_p (dep))
          if (contributes_to_priority_p (dep))
            insn_is_root_p = false;
            insn_is_root_p = false;
 
 
          INSN_PRIORITY_STATUS (pro) = -1;
          INSN_PRIORITY_STATUS (pro) = -1;
          clear_priorities (pro, roots_ptr);
          clear_priorities (pro, roots_ptr);
        }
        }
    }
    }
 
 
  if (insn_is_root_p)
  if (insn_is_root_p)
    VEC_safe_push (rtx, heap, *roots_ptr, insn);
    VEC_safe_push (rtx, heap, *roots_ptr, insn);
}
}
 
 
/* Recompute priorities of instructions, whose priorities might have been
/* Recompute priorities of instructions, whose priorities might have been
   changed.  ROOTS is a vector of instructions whose priority computation will
   changed.  ROOTS is a vector of instructions whose priority computation will
   trigger initialization of all cleared priorities.  */
   trigger initialization of all cleared priorities.  */
static void
static void
calc_priorities (rtx_vec_t roots)
calc_priorities (rtx_vec_t roots)
{
{
  int i;
  int i;
  rtx insn;
  rtx insn;
 
 
  for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
  for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
    priority (insn);
    priority (insn);
}
}
 
 
 
 
/* Add dependences between JUMP and other instructions in the recovery
/* Add dependences between JUMP and other instructions in the recovery
   block.  INSN is the first insn the recovery block.  */
   block.  INSN is the first insn the recovery block.  */
static void
static void
add_jump_dependencies (rtx insn, rtx jump)
add_jump_dependencies (rtx insn, rtx jump)
{
{
  do
  do
    {
    {
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
      if (insn == jump)
      if (insn == jump)
        break;
        break;
 
 
      if (dep_list_size (insn) == 0)
      if (dep_list_size (insn) == 0)
        {
        {
          dep_def _new_dep, *new_dep = &_new_dep;
          dep_def _new_dep, *new_dep = &_new_dep;
 
 
          init_dep (new_dep, insn, jump, REG_DEP_ANTI);
          init_dep (new_dep, insn, jump, REG_DEP_ANTI);
          sd_add_dep (new_dep, false);
          sd_add_dep (new_dep, false);
        }
        }
    }
    }
  while (1);
  while (1);
 
 
  gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
  gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
}
}
 
 
/* Return the NOTE_INSN_BASIC_BLOCK of BB.  */
/* Return the NOTE_INSN_BASIC_BLOCK of BB.  */
rtx
rtx
bb_note (basic_block bb)
bb_note (basic_block bb)
{
{
  rtx note;
  rtx note;
 
 
  note = BB_HEAD (bb);
  note = BB_HEAD (bb);
  if (LABEL_P (note))
  if (LABEL_P (note))
    note = NEXT_INSN (note);
    note = NEXT_INSN (note);
 
 
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  return note;
  return note;
}
}
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
/* Helper function for check_cfg.
/* Helper function for check_cfg.
   Return nonzero, if edge vector pointed to by EL has edge with TYPE in
   Return nonzero, if edge vector pointed to by EL has edge with TYPE in
   its flags.  */
   its flags.  */
static int
static int
has_edge_p (VEC(edge,gc) *el, int type)
has_edge_p (VEC(edge,gc) *el, int type)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, el)
  FOR_EACH_EDGE (e, ei, el)
    if (e->flags & type)
    if (e->flags & type)
      return 1;
      return 1;
  return 0;
  return 0;
}
}
 
 
/* Search back, starting at INSN, for an insn that is not a
/* Search back, starting at INSN, for an insn that is not a
   NOTE_INSN_VAR_LOCATION.  Don't search beyond HEAD, and return it if
   NOTE_INSN_VAR_LOCATION.  Don't search beyond HEAD, and return it if
   no such insn can be found.  */
   no such insn can be found.  */
static inline rtx
static inline rtx
prev_non_location_insn (rtx insn, rtx head)
prev_non_location_insn (rtx insn, rtx head)
{
{
  while (insn != head && NOTE_P (insn)
  while (insn != head && NOTE_P (insn)
         && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
         && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
    insn = PREV_INSN (insn);
    insn = PREV_INSN (insn);
 
 
  return insn;
  return insn;
}
}
 
 
/* Check few properties of CFG between HEAD and TAIL.
/* Check few properties of CFG between HEAD and TAIL.
   If HEAD (TAIL) is NULL check from the beginning (till the end) of the
   If HEAD (TAIL) is NULL check from the beginning (till the end) of the
   instruction stream.  */
   instruction stream.  */
static void
static void
check_cfg (rtx head, rtx tail)
check_cfg (rtx head, rtx tail)
{
{
  rtx next_tail;
  rtx next_tail;
  basic_block bb = 0;
  basic_block bb = 0;
  int not_first = 0, not_last;
  int not_first = 0, not_last;
 
 
  if (head == NULL)
  if (head == NULL)
    head = get_insns ();
    head = get_insns ();
  if (tail == NULL)
  if (tail == NULL)
    tail = get_last_insn ();
    tail = get_last_insn ();
  next_tail = NEXT_INSN (tail);
  next_tail = NEXT_INSN (tail);
 
 
  do
  do
    {
    {
      not_last = head != tail;
      not_last = head != tail;
 
 
      if (not_first)
      if (not_first)
        gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
        gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
      if (not_last)
      if (not_last)
        gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
        gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
 
 
      if (LABEL_P (head)
      if (LABEL_P (head)
          || (NOTE_INSN_BASIC_BLOCK_P (head)
          || (NOTE_INSN_BASIC_BLOCK_P (head)
              && (!not_first
              && (!not_first
                  || (not_first && !LABEL_P (PREV_INSN (head))))))
                  || (not_first && !LABEL_P (PREV_INSN (head))))))
        {
        {
          gcc_assert (bb == 0);
          gcc_assert (bb == 0);
          bb = BLOCK_FOR_INSN (head);
          bb = BLOCK_FOR_INSN (head);
          if (bb != 0)
          if (bb != 0)
            gcc_assert (BB_HEAD (bb) == head);
            gcc_assert (BB_HEAD (bb) == head);
          else
          else
            /* This is the case of jump table.  See inside_basic_block_p ().  */
            /* This is the case of jump table.  See inside_basic_block_p ().  */
            gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
            gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
        }
        }
 
 
      if (bb == 0)
      if (bb == 0)
        {
        {
          gcc_assert (!inside_basic_block_p (head));
          gcc_assert (!inside_basic_block_p (head));
          head = NEXT_INSN (head);
          head = NEXT_INSN (head);
        }
        }
      else
      else
        {
        {
          gcc_assert (inside_basic_block_p (head)
          gcc_assert (inside_basic_block_p (head)
                      || NOTE_P (head));
                      || NOTE_P (head));
          gcc_assert (BLOCK_FOR_INSN (head) == bb);
          gcc_assert (BLOCK_FOR_INSN (head) == bb);
 
 
          if (LABEL_P (head))
          if (LABEL_P (head))
            {
            {
              head = NEXT_INSN (head);
              head = NEXT_INSN (head);
              gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
              gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
            }
            }
          else
          else
            {
            {
              if (control_flow_insn_p (head))
              if (control_flow_insn_p (head))
                {
                {
                  gcc_assert (prev_non_location_insn (BB_END (bb), head)
                  gcc_assert (prev_non_location_insn (BB_END (bb), head)
                              == head);
                              == head);
 
 
                  if (any_uncondjump_p (head))
                  if (any_uncondjump_p (head))
                    gcc_assert (EDGE_COUNT (bb->succs) == 1
                    gcc_assert (EDGE_COUNT (bb->succs) == 1
                                && BARRIER_P (NEXT_INSN (head)));
                                && BARRIER_P (NEXT_INSN (head)));
                  else if (any_condjump_p (head))
                  else if (any_condjump_p (head))
                    gcc_assert (/* Usual case.  */
                    gcc_assert (/* Usual case.  */
                                (EDGE_COUNT (bb->succs) > 1
                                (EDGE_COUNT (bb->succs) > 1
                                 && !BARRIER_P (NEXT_INSN (head)))
                                 && !BARRIER_P (NEXT_INSN (head)))
                                /* Or jump to the next instruction.  */
                                /* Or jump to the next instruction.  */
                                || (EDGE_COUNT (bb->succs) == 1
                                || (EDGE_COUNT (bb->succs) == 1
                                    && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
                                    && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
                                        == JUMP_LABEL (head))));
                                        == JUMP_LABEL (head))));
                }
                }
              if (BB_END (bb) == head)
              if (BB_END (bb) == head)
                {
                {
                  if (EDGE_COUNT (bb->succs) > 1)
                  if (EDGE_COUNT (bb->succs) > 1)
                    gcc_assert (control_flow_insn_p (prev_non_location_insn
                    gcc_assert (control_flow_insn_p (prev_non_location_insn
                                                     (head, BB_HEAD (bb)))
                                                     (head, BB_HEAD (bb)))
                                || has_edge_p (bb->succs, EDGE_COMPLEX));
                                || has_edge_p (bb->succs, EDGE_COMPLEX));
                  bb = 0;
                  bb = 0;
                }
                }
 
 
              head = NEXT_INSN (head);
              head = NEXT_INSN (head);
            }
            }
        }
        }
 
 
      not_first = 1;
      not_first = 1;
    }
    }
  while (head != next_tail);
  while (head != next_tail);
 
 
  gcc_assert (bb == 0);
  gcc_assert (bb == 0);
}
}
 
 
#endif /* ENABLE_CHECKING */
#endif /* ENABLE_CHECKING */
 
 
/* Extend per basic block data structures.  */
/* Extend per basic block data structures.  */
static void
static void
extend_bb (void)
extend_bb (void)
{
{
  if (sched_scan_info->extend_bb)
  if (sched_scan_info->extend_bb)
    sched_scan_info->extend_bb ();
    sched_scan_info->extend_bb ();
}
}
 
 
/* Init data for BB.  */
/* Init data for BB.  */
static void
static void
init_bb (basic_block bb)
init_bb (basic_block bb)
{
{
  if (sched_scan_info->init_bb)
  if (sched_scan_info->init_bb)
    sched_scan_info->init_bb (bb);
    sched_scan_info->init_bb (bb);
}
}
 
 
/* Extend per insn data structures.  */
/* Extend per insn data structures.  */
static void
static void
extend_insn (void)
extend_insn (void)
{
{
  if (sched_scan_info->extend_insn)
  if (sched_scan_info->extend_insn)
    sched_scan_info->extend_insn ();
    sched_scan_info->extend_insn ();
}
}
 
 
/* Init data structures for INSN.  */
/* Init data structures for INSN.  */
static void
static void
init_insn (rtx insn)
init_insn (rtx insn)
{
{
  if (sched_scan_info->init_insn)
  if (sched_scan_info->init_insn)
    sched_scan_info->init_insn (insn);
    sched_scan_info->init_insn (insn);
}
}
 
 
/* Init all insns in BB.  */
/* Init all insns in BB.  */
static void
static void
init_insns_in_bb (basic_block bb)
init_insns_in_bb (basic_block bb)
{
{
  rtx insn;
  rtx insn;
 
 
  FOR_BB_INSNS (bb, insn)
  FOR_BB_INSNS (bb, insn)
    init_insn (insn);
    init_insn (insn);
}
}
 
 
/* A driver function to add a set of basic blocks (BBS),
/* A driver function to add a set of basic blocks (BBS),
   a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
   a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
   to the scheduling region.  */
   to the scheduling region.  */
void
void
sched_scan (const struct sched_scan_info_def *ssi,
sched_scan (const struct sched_scan_info_def *ssi,
            bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
            bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
{
{
  sched_scan_info = ssi;
  sched_scan_info = ssi;
 
 
  if (bbs != NULL || bb != NULL)
  if (bbs != NULL || bb != NULL)
    {
    {
      extend_bb ();
      extend_bb ();
 
 
      if (bbs != NULL)
      if (bbs != NULL)
        {
        {
          unsigned i;
          unsigned i;
          basic_block x;
          basic_block x;
 
 
          for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
          for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
            init_bb (x);
            init_bb (x);
        }
        }
 
 
      if (bb != NULL)
      if (bb != NULL)
        init_bb (bb);
        init_bb (bb);
    }
    }
 
 
  extend_insn ();
  extend_insn ();
 
 
  if (bbs != NULL)
  if (bbs != NULL)
    {
    {
      unsigned i;
      unsigned i;
      basic_block x;
      basic_block x;
 
 
      for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
      for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
        init_insns_in_bb (x);
        init_insns_in_bb (x);
    }
    }
 
 
  if (bb != NULL)
  if (bb != NULL)
    init_insns_in_bb (bb);
    init_insns_in_bb (bb);
 
 
  if (insns != NULL)
  if (insns != NULL)
    {
    {
      unsigned i;
      unsigned i;
      rtx x;
      rtx x;
 
 
      for (i = 0; VEC_iterate (rtx, insns, i, x); i++)
      for (i = 0; VEC_iterate (rtx, insns, i, x); i++)
        init_insn (x);
        init_insn (x);
    }
    }
 
 
  if (insn != NULL)
  if (insn != NULL)
    init_insn (insn);
    init_insn (insn);
}
}
 
 
 
 
/* Extend data structures for logical insn UID.  */
/* Extend data structures for logical insn UID.  */
static void
static void
luids_extend_insn (void)
luids_extend_insn (void)
{
{
  int new_luids_max_uid = get_max_uid () + 1;
  int new_luids_max_uid = get_max_uid () + 1;
 
 
  VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
  VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
}
}
 
 
/* Initialize LUID for INSN.  */
/* Initialize LUID for INSN.  */
static void
static void
luids_init_insn (rtx insn)
luids_init_insn (rtx insn)
{
{
  int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
  int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
  int luid;
  int luid;
 
 
  if (i >= 0)
  if (i >= 0)
    {
    {
      luid = sched_max_luid;
      luid = sched_max_luid;
      sched_max_luid += i;
      sched_max_luid += i;
    }
    }
  else
  else
    luid = -1;
    luid = -1;
 
 
  SET_INSN_LUID (insn, luid);
  SET_INSN_LUID (insn, luid);
}
}
 
 
/* Initialize luids for BBS, BB, INSNS and INSN.
/* Initialize luids for BBS, BB, INSNS and INSN.
   The hook common_sched_info->luid_for_non_insn () is used to determine
   The hook common_sched_info->luid_for_non_insn () is used to determine
   if notes, labels, etc. need luids.  */
   if notes, labels, etc. need luids.  */
void
void
sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
{
{
  const struct sched_scan_info_def ssi =
  const struct sched_scan_info_def ssi =
    {
    {
      NULL, /* extend_bb */
      NULL, /* extend_bb */
      NULL, /* init_bb */
      NULL, /* init_bb */
      luids_extend_insn, /* extend_insn */
      luids_extend_insn, /* extend_insn */
      luids_init_insn /* init_insn */
      luids_init_insn /* init_insn */
    };
    };
 
 
  sched_scan (&ssi, bbs, bb, insns, insn);
  sched_scan (&ssi, bbs, bb, insns, insn);
}
}
 
 
/* Free LUIDs.  */
/* Free LUIDs.  */
void
void
sched_finish_luids (void)
sched_finish_luids (void)
{
{
  VEC_free (int, heap, sched_luids);
  VEC_free (int, heap, sched_luids);
  sched_max_luid = 1;
  sched_max_luid = 1;
}
}
 
 
/* Return logical uid of INSN.  Helpful while debugging.  */
/* Return logical uid of INSN.  Helpful while debugging.  */
int
int
insn_luid (rtx insn)
insn_luid (rtx insn)
{
{
  return INSN_LUID (insn);
  return INSN_LUID (insn);
}
}
 
 
/* Extend per insn data in the target.  */
/* Extend per insn data in the target.  */
void
void
sched_extend_target (void)
sched_extend_target (void)
{
{
  if (targetm.sched.h_i_d_extended)
  if (targetm.sched.h_i_d_extended)
    targetm.sched.h_i_d_extended ();
    targetm.sched.h_i_d_extended ();
}
}
 
 
/* Extend global scheduler structures (those, that live across calls to
/* Extend global scheduler structures (those, that live across calls to
   schedule_block) to include information about just emitted INSN.  */
   schedule_block) to include information about just emitted INSN.  */
static void
static void
extend_h_i_d (void)
extend_h_i_d (void)
{
{
  int reserve = (get_max_uid () + 1
  int reserve = (get_max_uid () + 1
                 - VEC_length (haifa_insn_data_def, h_i_d));
                 - VEC_length (haifa_insn_data_def, h_i_d));
  if (reserve > 0
  if (reserve > 0
      && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
      && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
    {
    {
      VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
      VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
                             3 * get_max_uid () / 2);
                             3 * get_max_uid () / 2);
      sched_extend_target ();
      sched_extend_target ();
    }
    }
}
}
 
 
/* Initialize h_i_d entry of the INSN with default values.
/* Initialize h_i_d entry of the INSN with default values.
   Values, that are not explicitly initialized here, hold zero.  */
   Values, that are not explicitly initialized here, hold zero.  */
static void
static void
init_h_i_d (rtx insn)
init_h_i_d (rtx insn)
{
{
  if (INSN_LUID (insn) > 0)
  if (INSN_LUID (insn) > 0)
    {
    {
      INSN_COST (insn) = -1;
      INSN_COST (insn) = -1;
      QUEUE_INDEX (insn) = QUEUE_NOWHERE;
      QUEUE_INDEX (insn) = QUEUE_NOWHERE;
      INSN_TICK (insn) = INVALID_TICK;
      INSN_TICK (insn) = INVALID_TICK;
      INTER_TICK (insn) = INVALID_TICK;
      INTER_TICK (insn) = INVALID_TICK;
      TODO_SPEC (insn) = HARD_DEP;
      TODO_SPEC (insn) = HARD_DEP;
    }
    }
}
}
 
 
/* Initialize haifa_insn_data for BBS, BB, INSNS and INSN.  */
/* Initialize haifa_insn_data for BBS, BB, INSNS and INSN.  */
void
void
haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
{
{
  const struct sched_scan_info_def ssi =
  const struct sched_scan_info_def ssi =
    {
    {
      NULL, /* extend_bb */
      NULL, /* extend_bb */
      NULL, /* init_bb */
      NULL, /* init_bb */
      extend_h_i_d, /* extend_insn */
      extend_h_i_d, /* extend_insn */
      init_h_i_d /* init_insn */
      init_h_i_d /* init_insn */
    };
    };
 
 
  sched_scan (&ssi, bbs, bb, insns, insn);
  sched_scan (&ssi, bbs, bb, insns, insn);
}
}
 
 
/* Finalize haifa_insn_data.  */
/* Finalize haifa_insn_data.  */
void
void
haifa_finish_h_i_d (void)
haifa_finish_h_i_d (void)
{
{
  int i;
  int i;
  haifa_insn_data_t data;
  haifa_insn_data_t data;
  struct reg_use_data *use, *next;
  struct reg_use_data *use, *next;
 
 
  for (i = 0; VEC_iterate (haifa_insn_data_def, h_i_d, i, data); i++)
  for (i = 0; VEC_iterate (haifa_insn_data_def, h_i_d, i, data); i++)
    {
    {
      if (data->reg_pressure != NULL)
      if (data->reg_pressure != NULL)
        free (data->reg_pressure);
        free (data->reg_pressure);
      for (use = data->reg_use_list; use != NULL; use = next)
      for (use = data->reg_use_list; use != NULL; use = next)
        {
        {
          next = use->next_insn_use;
          next = use->next_insn_use;
          free (use);
          free (use);
        }
        }
    }
    }
  VEC_free (haifa_insn_data_def, heap, h_i_d);
  VEC_free (haifa_insn_data_def, heap, h_i_d);
}
}
 
 
/* Init data for the new insn INSN.  */
/* Init data for the new insn INSN.  */
static void
static void
haifa_init_insn (rtx insn)
haifa_init_insn (rtx insn)
{
{
  gcc_assert (insn != NULL);
  gcc_assert (insn != NULL);
 
 
  sched_init_luids (NULL, NULL, NULL, insn);
  sched_init_luids (NULL, NULL, NULL, insn);
  sched_extend_target ();
  sched_extend_target ();
  sched_deps_init (false);
  sched_deps_init (false);
  haifa_init_h_i_d (NULL, NULL, NULL, insn);
  haifa_init_h_i_d (NULL, NULL, NULL, insn);
 
 
  if (adding_bb_to_current_region_p)
  if (adding_bb_to_current_region_p)
    {
    {
      sd_init_insn (insn);
      sd_init_insn (insn);
 
 
      /* Extend dependency caches by one element.  */
      /* Extend dependency caches by one element.  */
      extend_dependency_caches (1, false);
      extend_dependency_caches (1, false);
    }
    }
}
}
 
 
/* Init data for the new basic block BB which comes after AFTER.  */
/* Init data for the new basic block BB which comes after AFTER.  */
static void
static void
haifa_init_only_bb (basic_block bb, basic_block after)
haifa_init_only_bb (basic_block bb, basic_block after)
{
{
  gcc_assert (bb != NULL);
  gcc_assert (bb != NULL);
 
 
  sched_init_bbs ();
  sched_init_bbs ();
 
 
  if (common_sched_info->add_block)
  if (common_sched_info->add_block)
    /* This changes only data structures of the front-end.  */
    /* This changes only data structures of the front-end.  */
    common_sched_info->add_block (bb, after);
    common_sched_info->add_block (bb, after);
}
}
 
 
/* A generic version of sched_split_block ().  */
/* A generic version of sched_split_block ().  */
basic_block
basic_block
sched_split_block_1 (basic_block first_bb, rtx after)
sched_split_block_1 (basic_block first_bb, rtx after)
{
{
  edge e;
  edge e;
 
 
  e = split_block (first_bb, after);
  e = split_block (first_bb, after);
  gcc_assert (e->src == first_bb);
  gcc_assert (e->src == first_bb);
 
 
  /* sched_split_block emits note if *check == BB_END.  Probably it
  /* sched_split_block emits note if *check == BB_END.  Probably it
     is better to rip that note off.  */
     is better to rip that note off.  */
 
 
  return e->dest;
  return e->dest;
}
}
 
 
/* A generic version of sched_create_empty_bb ().  */
/* A generic version of sched_create_empty_bb ().  */
basic_block
basic_block
sched_create_empty_bb_1 (basic_block after)
sched_create_empty_bb_1 (basic_block after)
{
{
  return create_empty_bb (after);
  return create_empty_bb (after);
}
}
 
 
/* Insert PAT as an INSN into the schedule and update the necessary data
/* Insert PAT as an INSN into the schedule and update the necessary data
   structures to account for it. */
   structures to account for it. */
rtx
rtx
sched_emit_insn (rtx pat)
sched_emit_insn (rtx pat)
{
{
  rtx insn = emit_insn_after (pat, last_scheduled_insn);
  rtx insn = emit_insn_after (pat, last_scheduled_insn);
  last_scheduled_insn = insn;
  last_scheduled_insn = insn;
  haifa_init_insn (insn);
  haifa_init_insn (insn);
  return insn;
  return insn;
}
}
 
 
#endif /* INSN_SCHEDULING */
#endif /* INSN_SCHEDULING */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.