OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [jump.c] - Diff between revs 280 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 816
/* Optimize jump instructions, for GNU compiler.
/* Optimize jump instructions, for GNU compiler.
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This is the pathetic reminder of old fame of the jump-optimization pass
/* This is the pathetic reminder of old fame of the jump-optimization pass
   of the compiler.  Now it contains basically a set of utility functions to
   of the compiler.  Now it contains basically a set of utility functions to
   operate with jumps.
   operate with jumps.
 
 
   Each CODE_LABEL has a count of the times it is used
   Each CODE_LABEL has a count of the times it is used
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   has one label that it refers to stored in the
   has one label that it refers to stored in the
   JUMP_LABEL internal field.  With this we can detect labels that
   JUMP_LABEL internal field.  With this we can detect labels that
   become unused because of the deletion of all the jumps that
   become unused because of the deletion of all the jumps that
   formerly used them.  The JUMP_LABEL info is sometimes looked
   formerly used them.  The JUMP_LABEL info is sometimes looked
   at by later passes.
   at by later passes.
 
 
   The subroutines redirect_jump and invert_jump are used
   The subroutines redirect_jump and invert_jump are used
   from other passes as well.  */
   from other passes as well.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "recog.h"
#include "recog.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "real.h"
#include "real.h"
#include "except.h"
#include "except.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "toplev.h"
#include "toplev.h"
#include "reload.h"
#include "reload.h"
#include "predict.h"
#include "predict.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "target.h"
#include "target.h"
 
 
/* Optimize jump y; x: ... y: jumpif... x?
/* Optimize jump y; x: ... y: jumpif... x?
   Don't know if it is worth bothering with.  */
   Don't know if it is worth bothering with.  */
/* Optimize two cases of conditional jump to conditional jump?
/* Optimize two cases of conditional jump to conditional jump?
   This can never delete any instruction or make anything dead,
   This can never delete any instruction or make anything dead,
   or even change what is live at any point.
   or even change what is live at any point.
   So perhaps let combiner do it.  */
   So perhaps let combiner do it.  */
 
 
static void init_label_info (rtx);
static void init_label_info (rtx);
static void mark_all_labels (rtx);
static void mark_all_labels (rtx);
static void mark_jump_label_1 (rtx, rtx, bool, bool);
static void mark_jump_label_1 (rtx, rtx, bool, bool);
static void mark_jump_label_asm (rtx, rtx);
static void mark_jump_label_asm (rtx, rtx);
static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
static int invert_exp_1 (rtx, rtx);
static int invert_exp_1 (rtx, rtx);
static int returnjump_p_1 (rtx *, void *);
static int returnjump_p_1 (rtx *, void *);


/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
   notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
   notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
   instructions and jumping insns that have labels as operands
   instructions and jumping insns that have labels as operands
   (e.g. cbranchsi4).  */
   (e.g. cbranchsi4).  */
void
void
rebuild_jump_labels (rtx f)
rebuild_jump_labels (rtx f)
{
{
  rtx insn;
  rtx insn;
 
 
  timevar_push (TV_REBUILD_JUMP);
  timevar_push (TV_REBUILD_JUMP);
  init_label_info (f);
  init_label_info (f);
  mark_all_labels (f);
  mark_all_labels (f);
 
 
  /* Keep track of labels used from static data; we don't track them
  /* Keep track of labels used from static data; we don't track them
     closely enough to delete them here, so make sure their reference
     closely enough to delete them here, so make sure their reference
     count doesn't drop to zero.  */
     count doesn't drop to zero.  */
 
 
  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
    if (LABEL_P (XEXP (insn, 0)))
    if (LABEL_P (XEXP (insn, 0)))
      LABEL_NUSES (XEXP (insn, 0))++;
      LABEL_NUSES (XEXP (insn, 0))++;
  timevar_pop (TV_REBUILD_JUMP);
  timevar_pop (TV_REBUILD_JUMP);
}
}


/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
   non-fallthru insn.  This is not generally true, as multiple barriers
   non-fallthru insn.  This is not generally true, as multiple barriers
   may have crept in, or the BARRIER may be separated from the last
   may have crept in, or the BARRIER may be separated from the last
   real insn by one or more NOTEs.
   real insn by one or more NOTEs.
 
 
   This simple pass moves barriers and removes duplicates so that the
   This simple pass moves barriers and removes duplicates so that the
   old code is happy.
   old code is happy.
 */
 */
unsigned int
unsigned int
cleanup_barriers (void)
cleanup_barriers (void)
{
{
  rtx insn, next, prev;
  rtx insn, next, prev;
  for (insn = get_insns (); insn; insn = next)
  for (insn = get_insns (); insn; insn = next)
    {
    {
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
      if (BARRIER_P (insn))
      if (BARRIER_P (insn))
        {
        {
          prev = prev_nonnote_insn (insn);
          prev = prev_nonnote_insn (insn);
          if (!prev)
          if (!prev)
            continue;
            continue;
          if (BARRIER_P (prev))
          if (BARRIER_P (prev))
            delete_insn (insn);
            delete_insn (insn);
          else if (prev != PREV_INSN (insn))
          else if (prev != PREV_INSN (insn))
            reorder_insns (insn, insn, prev);
            reorder_insns (insn, insn, prev);
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
struct rtl_opt_pass pass_cleanup_barriers =
struct rtl_opt_pass pass_cleanup_barriers =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "barriers",                           /* name */
  "barriers",                           /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  cleanup_barriers,                     /* execute */
  cleanup_barriers,                     /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_NONE,                              /* tv_id */
  TV_NONE,                              /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func                        /* todo_flags_finish */
  TODO_dump_func                        /* todo_flags_finish */
 }
 }
};
};
 
 


/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
   for remaining targets for JUMP_P.  Delete any REG_LABEL_OPERAND
   for remaining targets for JUMP_P.  Delete any REG_LABEL_OPERAND
   notes whose labels don't occur in the insn any more.  */
   notes whose labels don't occur in the insn any more.  */
 
 
static void
static void
init_label_info (rtx f)
init_label_info (rtx f)
{
{
  rtx insn;
  rtx insn;
 
 
  for (insn = f; insn; insn = NEXT_INSN (insn))
  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
    {
      if (LABEL_P (insn))
      if (LABEL_P (insn))
        LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
        LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
 
 
      /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
      /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
         sticky and not reset here; that way we won't lose association
         sticky and not reset here; that way we won't lose association
         with a label when e.g. the source for a target register
         with a label when e.g. the source for a target register
         disappears out of reach for targets that may use jump-target
         disappears out of reach for targets that may use jump-target
         registers.  Jump transformations are supposed to transform
         registers.  Jump transformations are supposed to transform
         any REG_LABEL_TARGET notes.  The target label reference in a
         any REG_LABEL_TARGET notes.  The target label reference in a
         branch may disappear from the branch (and from the
         branch may disappear from the branch (and from the
         instruction before it) for other reasons, like register
         instruction before it) for other reasons, like register
         allocation.  */
         allocation.  */
 
 
      if (INSN_P (insn))
      if (INSN_P (insn))
        {
        {
          rtx note, next;
          rtx note, next;
 
 
          for (note = REG_NOTES (insn); note; note = next)
          for (note = REG_NOTES (insn); note; note = next)
            {
            {
              next = XEXP (note, 1);
              next = XEXP (note, 1);
              if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
              if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
                  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
                  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
                remove_note (insn, note);
                remove_note (insn, note);
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Mark the label each jump jumps to.
/* Mark the label each jump jumps to.
   Combine consecutive labels, and count uses of labels.  */
   Combine consecutive labels, and count uses of labels.  */
 
 
static void
static void
mark_all_labels (rtx f)
mark_all_labels (rtx f)
{
{
  rtx insn;
  rtx insn;
  rtx prev_nonjump_insn = NULL;
  rtx prev_nonjump_insn = NULL;
 
 
  for (insn = f; insn; insn = NEXT_INSN (insn))
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      {
      {
        mark_jump_label (PATTERN (insn), insn, 0);
        mark_jump_label (PATTERN (insn), insn, 0);
 
 
        /* If the previous non-jump insn sets something to a label,
        /* If the previous non-jump insn sets something to a label,
           something that this jump insn uses, make that label the primary
           something that this jump insn uses, make that label the primary
           target of this insn if we don't yet have any.  That previous
           target of this insn if we don't yet have any.  That previous
           insn must be a single_set and not refer to more than one label.
           insn must be a single_set and not refer to more than one label.
           The jump insn must not refer to other labels as jump targets
           The jump insn must not refer to other labels as jump targets
           and must be a plain (set (pc) ...), maybe in a parallel, and
           and must be a plain (set (pc) ...), maybe in a parallel, and
           may refer to the item being set only directly or as one of the
           may refer to the item being set only directly or as one of the
           arms in an IF_THEN_ELSE.  */
           arms in an IF_THEN_ELSE.  */
        if (! INSN_DELETED_P (insn)
        if (! INSN_DELETED_P (insn)
            && JUMP_P (insn)
            && JUMP_P (insn)
            && JUMP_LABEL (insn) == NULL)
            && JUMP_LABEL (insn) == NULL)
          {
          {
            rtx label_note = NULL;
            rtx label_note = NULL;
            rtx pc = pc_set (insn);
            rtx pc = pc_set (insn);
            rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
            rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
 
 
            if (prev_nonjump_insn != NULL)
            if (prev_nonjump_insn != NULL)
              label_note
              label_note
                = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
                = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
 
 
            if (label_note != NULL && pc_src != NULL)
            if (label_note != NULL && pc_src != NULL)
              {
              {
                rtx label_set = single_set (prev_nonjump_insn);
                rtx label_set = single_set (prev_nonjump_insn);
                rtx label_dest
                rtx label_dest
                  = label_set != NULL ? SET_DEST (label_set) : NULL;
                  = label_set != NULL ? SET_DEST (label_set) : NULL;
 
 
                if (label_set != NULL
                if (label_set != NULL
                    /* The source must be the direct LABEL_REF, not a
                    /* The source must be the direct LABEL_REF, not a
                       PLUS, UNSPEC, IF_THEN_ELSE etc.  */
                       PLUS, UNSPEC, IF_THEN_ELSE etc.  */
                    && GET_CODE (SET_SRC (label_set)) == LABEL_REF
                    && GET_CODE (SET_SRC (label_set)) == LABEL_REF
                    && (rtx_equal_p (label_dest, pc_src)
                    && (rtx_equal_p (label_dest, pc_src)
                        || (GET_CODE (pc_src) == IF_THEN_ELSE
                        || (GET_CODE (pc_src) == IF_THEN_ELSE
                            && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
                            && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
                                || rtx_equal_p (label_dest,
                                || rtx_equal_p (label_dest,
                                                XEXP (pc_src, 2))))))
                                                XEXP (pc_src, 2))))))
 
 
                  {
                  {
                    /* The CODE_LABEL referred to in the note must be the
                    /* The CODE_LABEL referred to in the note must be the
                       CODE_LABEL in the LABEL_REF of the "set".  We can
                       CODE_LABEL in the LABEL_REF of the "set".  We can
                       conveniently use it for the marker function, which
                       conveniently use it for the marker function, which
                       requires a LABEL_REF wrapping.  */
                       requires a LABEL_REF wrapping.  */
                    gcc_assert (XEXP (label_note, 0)
                    gcc_assert (XEXP (label_note, 0)
                                == XEXP (SET_SRC (label_set), 0));
                                == XEXP (SET_SRC (label_set), 0));
 
 
                    mark_jump_label_1 (label_set, insn, false, true);
                    mark_jump_label_1 (label_set, insn, false, true);
                    gcc_assert (JUMP_LABEL (insn)
                    gcc_assert (JUMP_LABEL (insn)
                                == XEXP (SET_SRC (label_set), 0));
                                == XEXP (SET_SRC (label_set), 0));
                  }
                  }
              }
              }
          }
          }
        else if (! INSN_DELETED_P (insn))
        else if (! INSN_DELETED_P (insn))
          prev_nonjump_insn = insn;
          prev_nonjump_insn = insn;
      }
      }
    else if (LABEL_P (insn))
    else if (LABEL_P (insn))
      prev_nonjump_insn = NULL;
      prev_nonjump_insn = NULL;
 
 
  /* If we are in cfglayout mode, there may be non-insns between the
  /* If we are in cfglayout mode, there may be non-insns between the
     basic blocks.  If those non-insns represent tablejump data, they
     basic blocks.  If those non-insns represent tablejump data, they
     contain label references that we must record.  */
     contain label references that we must record.  */
  if (current_ir_type () == IR_RTL_CFGLAYOUT)
  if (current_ir_type () == IR_RTL_CFGLAYOUT)
    {
    {
      basic_block bb;
      basic_block bb;
      rtx insn;
      rtx insn;
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
          for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
            if (INSN_P (insn))
            if (INSN_P (insn))
              {
              {
                gcc_assert (JUMP_TABLE_DATA_P (insn));
                gcc_assert (JUMP_TABLE_DATA_P (insn));
                mark_jump_label (PATTERN (insn), insn, 0);
                mark_jump_label (PATTERN (insn), insn, 0);
              }
              }
 
 
          for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
          for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
            if (INSN_P (insn))
            if (INSN_P (insn))
              {
              {
                gcc_assert (JUMP_TABLE_DATA_P (insn));
                gcc_assert (JUMP_TABLE_DATA_P (insn));
                mark_jump_label (PATTERN (insn), insn, 0);
                mark_jump_label (PATTERN (insn), insn, 0);
              }
              }
        }
        }
    }
    }
}
}


/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
   of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
   of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
   UNKNOWN may be returned in case we are having CC_MODE compare and we don't
   UNKNOWN may be returned in case we are having CC_MODE compare and we don't
   know whether it's source is floating point or integer comparison.  Machine
   know whether it's source is floating point or integer comparison.  Machine
   description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
   description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
   to help this function avoid overhead in these cases.  */
   to help this function avoid overhead in these cases.  */
enum rtx_code
enum rtx_code
reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
                                const_rtx arg1, const_rtx insn)
                                const_rtx arg1, const_rtx insn)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* If this is not actually a comparison, we can't reverse it.  */
  /* If this is not actually a comparison, we can't reverse it.  */
  if (GET_RTX_CLASS (code) != RTX_COMPARE
  if (GET_RTX_CLASS (code) != RTX_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
    return UNKNOWN;
    return UNKNOWN;
 
 
  mode = GET_MODE (arg0);
  mode = GET_MODE (arg0);
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (arg1);
    mode = GET_MODE (arg1);
 
 
  /* First see if machine description supplies us way to reverse the
  /* First see if machine description supplies us way to reverse the
     comparison.  Give it priority over everything else to allow
     comparison.  Give it priority over everything else to allow
     machine description to do tricks.  */
     machine description to do tricks.  */
  if (GET_MODE_CLASS (mode) == MODE_CC
  if (GET_MODE_CLASS (mode) == MODE_CC
      && REVERSIBLE_CC_MODE (mode))
      && REVERSIBLE_CC_MODE (mode))
    {
    {
#ifdef REVERSE_CONDITION
#ifdef REVERSE_CONDITION
      return REVERSE_CONDITION (code, mode);
      return REVERSE_CONDITION (code, mode);
#endif
#endif
      return reverse_condition (code);
      return reverse_condition (code);
    }
    }
 
 
  /* Try a few special cases based on the comparison code.  */
  /* Try a few special cases based on the comparison code.  */
  switch (code)
  switch (code)
    {
    {
    case GEU:
    case GEU:
    case GTU:
    case GTU:
    case LEU:
    case LEU:
    case LTU:
    case LTU:
    case NE:
    case NE:
    case EQ:
    case EQ:
      /* It is always safe to reverse EQ and NE, even for the floating
      /* It is always safe to reverse EQ and NE, even for the floating
         point.  Similarly the unsigned comparisons are never used for
         point.  Similarly the unsigned comparisons are never used for
         floating point so we can reverse them in the default way.  */
         floating point so we can reverse them in the default way.  */
      return reverse_condition (code);
      return reverse_condition (code);
    case ORDERED:
    case ORDERED:
    case UNORDERED:
    case UNORDERED:
    case LTGT:
    case LTGT:
    case UNEQ:
    case UNEQ:
      /* In case we already see unordered comparison, we can be sure to
      /* In case we already see unordered comparison, we can be sure to
         be dealing with floating point so we don't need any more tests.  */
         be dealing with floating point so we don't need any more tests.  */
      return reverse_condition_maybe_unordered (code);
      return reverse_condition_maybe_unordered (code);
    case UNLT:
    case UNLT:
    case UNLE:
    case UNLE:
    case UNGT:
    case UNGT:
    case UNGE:
    case UNGE:
      /* We don't have safe way to reverse these yet.  */
      /* We don't have safe way to reverse these yet.  */
      return UNKNOWN;
      return UNKNOWN;
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
  if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
    {
    {
      const_rtx prev;
      const_rtx prev;
      /* Try to search for the comparison to determine the real mode.
      /* Try to search for the comparison to determine the real mode.
         This code is expensive, but with sane machine description it
         This code is expensive, but with sane machine description it
         will be never used, since REVERSIBLE_CC_MODE will return true
         will be never used, since REVERSIBLE_CC_MODE will return true
         in all cases.  */
         in all cases.  */
      if (! insn)
      if (! insn)
        return UNKNOWN;
        return UNKNOWN;
 
 
      /* These CONST_CAST's are okay because prev_nonnote_insn just
      /* These CONST_CAST's are okay because prev_nonnote_insn just
         returns its argument and we assign it to a const_rtx
         returns its argument and we assign it to a const_rtx
         variable.  */
         variable.  */
      for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
      for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
           prev != 0 && !LABEL_P (prev);
           prev != 0 && !LABEL_P (prev);
           prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
           prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
        {
        {
          const_rtx set = set_of (arg0, prev);
          const_rtx set = set_of (arg0, prev);
          if (set && GET_CODE (set) == SET
          if (set && GET_CODE (set) == SET
              && rtx_equal_p (SET_DEST (set), arg0))
              && rtx_equal_p (SET_DEST (set), arg0))
            {
            {
              rtx src = SET_SRC (set);
              rtx src = SET_SRC (set);
 
 
              if (GET_CODE (src) == COMPARE)
              if (GET_CODE (src) == COMPARE)
                {
                {
                  rtx comparison = src;
                  rtx comparison = src;
                  arg0 = XEXP (src, 0);
                  arg0 = XEXP (src, 0);
                  mode = GET_MODE (arg0);
                  mode = GET_MODE (arg0);
                  if (mode == VOIDmode)
                  if (mode == VOIDmode)
                    mode = GET_MODE (XEXP (comparison, 1));
                    mode = GET_MODE (XEXP (comparison, 1));
                  break;
                  break;
                }
                }
              /* We can get past reg-reg moves.  This may be useful for model
              /* We can get past reg-reg moves.  This may be useful for model
                 of i387 comparisons that first move flag registers around.  */
                 of i387 comparisons that first move flag registers around.  */
              if (REG_P (src))
              if (REG_P (src))
                {
                {
                  arg0 = src;
                  arg0 = src;
                  continue;
                  continue;
                }
                }
            }
            }
          /* If register is clobbered in some ununderstandable way,
          /* If register is clobbered in some ununderstandable way,
             give up.  */
             give up.  */
          if (set)
          if (set)
            return UNKNOWN;
            return UNKNOWN;
        }
        }
    }
    }
 
 
  /* Test for an integer condition, or a floating-point comparison
  /* Test for an integer condition, or a floating-point comparison
     in which NaNs can be ignored.  */
     in which NaNs can be ignored.  */
  if (CONST_INT_P (arg0)
  if (CONST_INT_P (arg0)
      || (GET_MODE (arg0) != VOIDmode
      || (GET_MODE (arg0) != VOIDmode
          && GET_MODE_CLASS (mode) != MODE_CC
          && GET_MODE_CLASS (mode) != MODE_CC
          && !HONOR_NANS (mode)))
          && !HONOR_NANS (mode)))
    return reverse_condition (code);
    return reverse_condition (code);
 
 
  return UNKNOWN;
  return UNKNOWN;
}
}
 
 
/* A wrapper around the previous function to take COMPARISON as rtx
/* A wrapper around the previous function to take COMPARISON as rtx
   expression.  This simplifies many callers.  */
   expression.  This simplifies many callers.  */
enum rtx_code
enum rtx_code
reversed_comparison_code (const_rtx comparison, const_rtx insn)
reversed_comparison_code (const_rtx comparison, const_rtx insn)
{
{
  if (!COMPARISON_P (comparison))
  if (!COMPARISON_P (comparison))
    return UNKNOWN;
    return UNKNOWN;
  return reversed_comparison_code_parts (GET_CODE (comparison),
  return reversed_comparison_code_parts (GET_CODE (comparison),
                                         XEXP (comparison, 0),
                                         XEXP (comparison, 0),
                                         XEXP (comparison, 1), insn);
                                         XEXP (comparison, 1), insn);
}
}
 
 
/* Return comparison with reversed code of EXP.
/* Return comparison with reversed code of EXP.
   Return NULL_RTX in case we fail to do the reversal.  */
   Return NULL_RTX in case we fail to do the reversal.  */
rtx
rtx
reversed_comparison (const_rtx exp, enum machine_mode mode)
reversed_comparison (const_rtx exp, enum machine_mode mode)
{
{
  enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
  enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
  if (reversed_code == UNKNOWN)
  if (reversed_code == UNKNOWN)
    return NULL_RTX;
    return NULL_RTX;
  else
  else
    return simplify_gen_relational (reversed_code, mode, VOIDmode,
    return simplify_gen_relational (reversed_code, mode, VOIDmode,
                                    XEXP (exp, 0), XEXP (exp, 1));
                                    XEXP (exp, 0), XEXP (exp, 1));
}
}
 
 


/* Given an rtx-code for a comparison, return the code for the negated
/* Given an rtx-code for a comparison, return the code for the negated
   comparison.  If no such code exists, return UNKNOWN.
   comparison.  If no such code exists, return UNKNOWN.
 
 
   WATCH OUT!  reverse_condition is not safe to use on a jump that might
   WATCH OUT!  reverse_condition is not safe to use on a jump that might
   be acting on the results of an IEEE floating point comparison, because
   be acting on the results of an IEEE floating point comparison, because
   of the special treatment of non-signaling nans in comparisons.
   of the special treatment of non-signaling nans in comparisons.
   Use reversed_comparison_code instead.  */
   Use reversed_comparison_code instead.  */
 
 
enum rtx_code
enum rtx_code
reverse_condition (enum rtx_code code)
reverse_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
      return NE;
      return NE;
    case NE:
    case NE:
      return EQ;
      return EQ;
    case GT:
    case GT:
      return LE;
      return LE;
    case GE:
    case GE:
      return LT;
      return LT;
    case LT:
    case LT:
      return GE;
      return GE;
    case LE:
    case LE:
      return GT;
      return GT;
    case GTU:
    case GTU:
      return LEU;
      return LEU;
    case GEU:
    case GEU:
      return LTU;
      return LTU;
    case LTU:
    case LTU:
      return GEU;
      return GEU;
    case LEU:
    case LEU:
      return GTU;
      return GTU;
    case UNORDERED:
    case UNORDERED:
      return ORDERED;
      return ORDERED;
    case ORDERED:
    case ORDERED:
      return UNORDERED;
      return UNORDERED;
 
 
    case UNLT:
    case UNLT:
    case UNLE:
    case UNLE:
    case UNGT:
    case UNGT:
    case UNGE:
    case UNGE:
    case UNEQ:
    case UNEQ:
    case LTGT:
    case LTGT:
      return UNKNOWN;
      return UNKNOWN;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similar, but we're allowed to generate unordered comparisons, which
/* Similar, but we're allowed to generate unordered comparisons, which
   makes it safe for IEEE floating-point.  Of course, we have to recognize
   makes it safe for IEEE floating-point.  Of course, we have to recognize
   that the target will support them too...  */
   that the target will support them too...  */
 
 
enum rtx_code
enum rtx_code
reverse_condition_maybe_unordered (enum rtx_code code)
reverse_condition_maybe_unordered (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
      return NE;
      return NE;
    case NE:
    case NE:
      return EQ;
      return EQ;
    case GT:
    case GT:
      return UNLE;
      return UNLE;
    case GE:
    case GE:
      return UNLT;
      return UNLT;
    case LT:
    case LT:
      return UNGE;
      return UNGE;
    case LE:
    case LE:
      return UNGT;
      return UNGT;
    case LTGT:
    case LTGT:
      return UNEQ;
      return UNEQ;
    case UNORDERED:
    case UNORDERED:
      return ORDERED;
      return ORDERED;
    case ORDERED:
    case ORDERED:
      return UNORDERED;
      return UNORDERED;
    case UNLT:
    case UNLT:
      return GE;
      return GE;
    case UNLE:
    case UNLE:
      return GT;
      return GT;
    case UNGT:
    case UNGT:
      return LE;
      return LE;
    case UNGE:
    case UNGE:
      return LT;
      return LT;
    case UNEQ:
    case UNEQ:
      return LTGT;
      return LTGT;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similar, but return the code when two operands of a comparison are swapped.
/* Similar, but return the code when two operands of a comparison are swapped.
   This IS safe for IEEE floating-point.  */
   This IS safe for IEEE floating-point.  */
 
 
enum rtx_code
enum rtx_code
swap_condition (enum rtx_code code)
swap_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
    case NE:
    case NE:
    case UNORDERED:
    case UNORDERED:
    case ORDERED:
    case ORDERED:
    case UNEQ:
    case UNEQ:
    case LTGT:
    case LTGT:
      return code;
      return code;
 
 
    case GT:
    case GT:
      return LT;
      return LT;
    case GE:
    case GE:
      return LE;
      return LE;
    case LT:
    case LT:
      return GT;
      return GT;
    case LE:
    case LE:
      return GE;
      return GE;
    case GTU:
    case GTU:
      return LTU;
      return LTU;
    case GEU:
    case GEU:
      return LEU;
      return LEU;
    case LTU:
    case LTU:
      return GTU;
      return GTU;
    case LEU:
    case LEU:
      return GEU;
      return GEU;
    case UNLT:
    case UNLT:
      return UNGT;
      return UNGT;
    case UNLE:
    case UNLE:
      return UNGE;
      return UNGE;
    case UNGT:
    case UNGT:
      return UNLT;
      return UNLT;
    case UNGE:
    case UNGE:
      return UNLE;
      return UNLE;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Given a comparison CODE, return the corresponding unsigned comparison.
/* Given a comparison CODE, return the corresponding unsigned comparison.
   If CODE is an equality comparison or already an unsigned comparison,
   If CODE is an equality comparison or already an unsigned comparison,
   CODE is returned.  */
   CODE is returned.  */
 
 
enum rtx_code
enum rtx_code
unsigned_condition (enum rtx_code code)
unsigned_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
    case NE:
    case NE:
    case GTU:
    case GTU:
    case GEU:
    case GEU:
    case LTU:
    case LTU:
    case LEU:
    case LEU:
      return code;
      return code;
 
 
    case GT:
    case GT:
      return GTU;
      return GTU;
    case GE:
    case GE:
      return GEU;
      return GEU;
    case LT:
    case LT:
      return LTU;
      return LTU;
    case LE:
    case LE:
      return LEU;
      return LEU;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Similarly, return the signed version of a comparison.  */
/* Similarly, return the signed version of a comparison.  */
 
 
enum rtx_code
enum rtx_code
signed_condition (enum rtx_code code)
signed_condition (enum rtx_code code)
{
{
  switch (code)
  switch (code)
    {
    {
    case EQ:
    case EQ:
    case NE:
    case NE:
    case GT:
    case GT:
    case GE:
    case GE:
    case LT:
    case LT:
    case LE:
    case LE:
      return code;
      return code;
 
 
    case GTU:
    case GTU:
      return GT;
      return GT;
    case GEU:
    case GEU:
      return GE;
      return GE;
    case LTU:
    case LTU:
      return LT;
      return LT;
    case LEU:
    case LEU:
      return LE;
      return LE;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}


/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
   truth of CODE1 implies the truth of CODE2.  */
   truth of CODE1 implies the truth of CODE2.  */
 
 
int
int
comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
{
{
  /* UNKNOWN comparison codes can happen as a result of trying to revert
  /* UNKNOWN comparison codes can happen as a result of trying to revert
     comparison codes.
     comparison codes.
     They can't match anything, so we have to reject them here.  */
     They can't match anything, so we have to reject them here.  */
  if (code1 == UNKNOWN || code2 == UNKNOWN)
  if (code1 == UNKNOWN || code2 == UNKNOWN)
    return 0;
    return 0;
 
 
  if (code1 == code2)
  if (code1 == code2)
    return 1;
    return 1;
 
 
  switch (code1)
  switch (code1)
    {
    {
    case UNEQ:
    case UNEQ:
      if (code2 == UNLE || code2 == UNGE)
      if (code2 == UNLE || code2 == UNGE)
        return 1;
        return 1;
      break;
      break;
 
 
    case EQ:
    case EQ:
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
          || code2 == ORDERED)
          || code2 == ORDERED)
        return 1;
        return 1;
      break;
      break;
 
 
    case UNLT:
    case UNLT:
      if (code2 == UNLE || code2 == NE)
      if (code2 == UNLE || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case LT:
    case LT:
      if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
      if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
        return 1;
        return 1;
      break;
      break;
 
 
    case UNGT:
    case UNGT:
      if (code2 == UNGE || code2 == NE)
      if (code2 == UNGE || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case GT:
    case GT:
      if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
      if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
        return 1;
        return 1;
      break;
      break;
 
 
    case GE:
    case GE:
    case LE:
    case LE:
      if (code2 == ORDERED)
      if (code2 == ORDERED)
        return 1;
        return 1;
      break;
      break;
 
 
    case LTGT:
    case LTGT:
      if (code2 == NE || code2 == ORDERED)
      if (code2 == NE || code2 == ORDERED)
        return 1;
        return 1;
      break;
      break;
 
 
    case LTU:
    case LTU:
      if (code2 == LEU || code2 == NE)
      if (code2 == LEU || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case GTU:
    case GTU:
      if (code2 == GEU || code2 == NE)
      if (code2 == GEU || code2 == NE)
        return 1;
        return 1;
      break;
      break;
 
 
    case UNORDERED:
    case UNORDERED:
      if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
      if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
          || code2 == UNGE || code2 == UNGT)
          || code2 == UNGE || code2 == UNGT)
        return 1;
        return 1;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 0;
  return 0;
}
}


/* Return 1 if INSN is an unconditional jump and nothing else.  */
/* Return 1 if INSN is an unconditional jump and nothing else.  */
 
 
int
int
simplejump_p (const_rtx insn)
simplejump_p (const_rtx insn)
{
{
  return (JUMP_P (insn)
  return (JUMP_P (insn)
          && GET_CODE (PATTERN (insn)) == SET
          && GET_CODE (PATTERN (insn)) == SET
          && GET_CODE (SET_DEST (PATTERN (insn))) == PC
          && GET_CODE (SET_DEST (PATTERN (insn))) == PC
          && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
          && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
}
}
 
 
/* Return nonzero if INSN is a (possibly) conditional jump
/* Return nonzero if INSN is a (possibly) conditional jump
   and nothing more.
   and nothing more.
 
 
   Use of this function is deprecated, since we need to support combined
   Use of this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
 
 
int
int
condjump_p (const_rtx insn)
condjump_p (const_rtx insn)
{
{
  const_rtx x = PATTERN (insn);
  const_rtx x = PATTERN (insn);
 
 
  if (GET_CODE (x) != SET
  if (GET_CODE (x) != SET
      || GET_CODE (SET_DEST (x)) != PC)
      || GET_CODE (SET_DEST (x)) != PC)
    return 0;
    return 0;
 
 
  x = SET_SRC (x);
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
  if (GET_CODE (x) == LABEL_REF)
    return 1;
    return 1;
  else
  else
    return (GET_CODE (x) == IF_THEN_ELSE
    return (GET_CODE (x) == IF_THEN_ELSE
            && ((GET_CODE (XEXP (x, 2)) == PC
            && ((GET_CODE (XEXP (x, 2)) == PC
                 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
                 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
                     || GET_CODE (XEXP (x, 1)) == RETURN))
                     || GET_CODE (XEXP (x, 1)) == RETURN))
                || (GET_CODE (XEXP (x, 1)) == PC
                || (GET_CODE (XEXP (x, 1)) == PC
                    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
                    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
                        || GET_CODE (XEXP (x, 2)) == RETURN))));
                        || GET_CODE (XEXP (x, 2)) == RETURN))));
}
}
 
 
/* Return nonzero if INSN is a (possibly) conditional jump inside a
/* Return nonzero if INSN is a (possibly) conditional jump inside a
   PARALLEL.
   PARALLEL.
 
 
   Use this function is deprecated, since we need to support combined
   Use this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
 
 
int
int
condjump_in_parallel_p (const_rtx insn)
condjump_in_parallel_p (const_rtx insn)
{
{
  const_rtx x = PATTERN (insn);
  const_rtx x = PATTERN (insn);
 
 
  if (GET_CODE (x) != PARALLEL)
  if (GET_CODE (x) != PARALLEL)
    return 0;
    return 0;
  else
  else
    x = XVECEXP (x, 0, 0);
    x = XVECEXP (x, 0, 0);
 
 
  if (GET_CODE (x) != SET)
  if (GET_CODE (x) != SET)
    return 0;
    return 0;
  if (GET_CODE (SET_DEST (x)) != PC)
  if (GET_CODE (SET_DEST (x)) != PC)
    return 0;
    return 0;
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
    return 1;
    return 1;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
    return 0;
  if (XEXP (SET_SRC (x), 2) == pc_rtx
  if (XEXP (SET_SRC (x), 2) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
          || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
          || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
    return 1;
    return 1;
  if (XEXP (SET_SRC (x), 1) == pc_rtx
  if (XEXP (SET_SRC (x), 1) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
          || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
          || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* Return set of PC, otherwise NULL.  */
/* Return set of PC, otherwise NULL.  */
 
 
rtx
rtx
pc_set (const_rtx insn)
pc_set (const_rtx insn)
{
{
  rtx pat;
  rtx pat;
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return NULL_RTX;
    return NULL_RTX;
  pat = PATTERN (insn);
  pat = PATTERN (insn);
 
 
  /* The set is allowed to appear either as the insn pattern or
  /* The set is allowed to appear either as the insn pattern or
     the first set in a PARALLEL.  */
     the first set in a PARALLEL.  */
  if (GET_CODE (pat) == PARALLEL)
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
    pat = XVECEXP (pat, 0, 0);
  if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
  if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
    return pat;
    return pat;
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Return true when insn is an unconditional direct jump,
/* Return true when insn is an unconditional direct jump,
   possibly bundled inside a PARALLEL.  */
   possibly bundled inside a PARALLEL.  */
 
 
int
int
any_uncondjump_p (const_rtx insn)
any_uncondjump_p (const_rtx insn)
{
{
  const_rtx x = pc_set (insn);
  const_rtx x = pc_set (insn);
  if (!x)
  if (!x)
    return 0;
    return 0;
  if (GET_CODE (SET_SRC (x)) != LABEL_REF)
  if (GET_CODE (SET_SRC (x)) != LABEL_REF)
    return 0;
    return 0;
  if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
  if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
    return 0;
    return 0;
  return 1;
  return 1;
}
}
 
 
/* Return true when insn is a conditional jump.  This function works for
/* Return true when insn is a conditional jump.  This function works for
   instructions containing PC sets in PARALLELs.  The instruction may have
   instructions containing PC sets in PARALLELs.  The instruction may have
   various other effects so before removing the jump you must verify
   various other effects so before removing the jump you must verify
   onlyjump_p.
   onlyjump_p.
 
 
   Note that unlike condjump_p it returns false for unconditional jumps.  */
   Note that unlike condjump_p it returns false for unconditional jumps.  */
 
 
int
int
any_condjump_p (const_rtx insn)
any_condjump_p (const_rtx insn)
{
{
  const_rtx x = pc_set (insn);
  const_rtx x = pc_set (insn);
  enum rtx_code a, b;
  enum rtx_code a, b;
 
 
  if (!x)
  if (!x)
    return 0;
    return 0;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
    return 0;
 
 
  a = GET_CODE (XEXP (SET_SRC (x), 1));
  a = GET_CODE (XEXP (SET_SRC (x), 1));
  b = GET_CODE (XEXP (SET_SRC (x), 2));
  b = GET_CODE (XEXP (SET_SRC (x), 2));
 
 
  return ((b == PC && (a == LABEL_REF || a == RETURN))
  return ((b == PC && (a == LABEL_REF || a == RETURN))
          || (a == PC && (b == LABEL_REF || b == RETURN)));
          || (a == PC && (b == LABEL_REF || b == RETURN)));
}
}
 
 
/* Return the label of a conditional jump.  */
/* Return the label of a conditional jump.  */
 
 
rtx
rtx
condjump_label (const_rtx insn)
condjump_label (const_rtx insn)
{
{
  rtx x = pc_set (insn);
  rtx x = pc_set (insn);
 
 
  if (!x)
  if (!x)
    return NULL_RTX;
    return NULL_RTX;
  x = SET_SRC (x);
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
  if (GET_CODE (x) == LABEL_REF)
    return x;
    return x;
  if (GET_CODE (x) != IF_THEN_ELSE)
  if (GET_CODE (x) != IF_THEN_ELSE)
    return NULL_RTX;
    return NULL_RTX;
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
    return XEXP (x, 1);
    return XEXP (x, 1);
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
    return XEXP (x, 2);
    return XEXP (x, 2);
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Return true if INSN is a (possibly conditional) return insn.  */
/* Return true if INSN is a (possibly conditional) return insn.  */
 
 
static int
static int
returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
{
  rtx x = *loc;
  rtx x = *loc;
 
 
  if (x == NULL)
  if (x == NULL)
    return false;
    return false;
 
 
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case RETURN:
    case RETURN:
    case EH_RETURN:
    case EH_RETURN:
      return true;
      return true;
 
 
    case SET:
    case SET:
      return SET_IS_RETURN_P (x);
      return SET_IS_RETURN_P (x);
 
 
    default:
    default:
      return false;
      return false;
    }
    }
}
}
 
 
/* Return TRUE if INSN is a return jump.  */
/* Return TRUE if INSN is a return jump.  */
 
 
int
int
returnjump_p (rtx insn)
returnjump_p (rtx insn)
{
{
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return 0;
    return 0;
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
}
}
 
 
/* Return true if INSN is a (possibly conditional) return insn.  */
/* Return true if INSN is a (possibly conditional) return insn.  */
 
 
static int
static int
eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
{
  return *loc && GET_CODE (*loc) == EH_RETURN;
  return *loc && GET_CODE (*loc) == EH_RETURN;
}
}
 
 
int
int
eh_returnjump_p (rtx insn)
eh_returnjump_p (rtx insn)
{
{
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return 0;
    return 0;
  return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
  return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
}
}
 
 
/* Return true if INSN is a jump that only transfers control and
/* Return true if INSN is a jump that only transfers control and
   nothing more.  */
   nothing more.  */
 
 
int
int
onlyjump_p (const_rtx insn)
onlyjump_p (const_rtx insn)
{
{
  rtx set;
  rtx set;
 
 
  if (!JUMP_P (insn))
  if (!JUMP_P (insn))
    return 0;
    return 0;
 
 
  set = single_set (insn);
  set = single_set (insn);
  if (set == NULL)
  if (set == NULL)
    return 0;
    return 0;
  if (GET_CODE (SET_DEST (set)) != PC)
  if (GET_CODE (SET_DEST (set)) != PC)
    return 0;
    return 0;
  if (side_effects_p (SET_SRC (set)))
  if (side_effects_p (SET_SRC (set)))
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
 
 
/* Return nonzero if X is an RTX that only sets the condition codes
/* Return nonzero if X is an RTX that only sets the condition codes
   and has no side effects.  */
   and has no side effects.  */
 
 
int
int
only_sets_cc0_p (const_rtx x)
only_sets_cc0_p (const_rtx x)
{
{
  if (! x)
  if (! x)
    return 0;
    return 0;
 
 
  if (INSN_P (x))
  if (INSN_P (x))
    x = PATTERN (x);
    x = PATTERN (x);
 
 
  return sets_cc0_p (x) == 1 && ! side_effects_p (x);
  return sets_cc0_p (x) == 1 && ! side_effects_p (x);
}
}
 
 
/* Return 1 if X is an RTX that does nothing but set the condition codes
/* Return 1 if X is an RTX that does nothing but set the condition codes
   and CLOBBER or USE registers.
   and CLOBBER or USE registers.
   Return -1 if X does explicitly set the condition codes,
   Return -1 if X does explicitly set the condition codes,
   but also does other things.  */
   but also does other things.  */
 
 
int
int
sets_cc0_p (const_rtx x)
sets_cc0_p (const_rtx x)
{
{
  if (! x)
  if (! x)
    return 0;
    return 0;
 
 
  if (INSN_P (x))
  if (INSN_P (x))
    x = PATTERN (x);
    x = PATTERN (x);
 
 
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
    return 1;
    return 1;
  if (GET_CODE (x) == PARALLEL)
  if (GET_CODE (x) == PARALLEL)
    {
    {
      int i;
      int i;
      int sets_cc0 = 0;
      int sets_cc0 = 0;
      int other_things = 0;
      int other_things = 0;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
        {
        {
          if (GET_CODE (XVECEXP (x, 0, i)) == SET
          if (GET_CODE (XVECEXP (x, 0, i)) == SET
              && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
              && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
            sets_cc0 = 1;
            sets_cc0 = 1;
          else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
          else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
            other_things = 1;
            other_things = 1;
        }
        }
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
    }
    }
  return 0;
  return 0;
}
}
#endif
#endif


/* Find all CODE_LABELs referred to in X, and increment their use
/* Find all CODE_LABELs referred to in X, and increment their use
   counts.  If INSN is a JUMP_INSN and there is at least one
   counts.  If INSN is a JUMP_INSN and there is at least one
   CODE_LABEL referenced in INSN as a jump target, then store the last
   CODE_LABEL referenced in INSN as a jump target, then store the last
   one in JUMP_LABEL (INSN).  For a tablejump, this must be the label
   one in JUMP_LABEL (INSN).  For a tablejump, this must be the label
   for the ADDR_VEC.  Store any other jump targets as REG_LABEL_TARGET
   for the ADDR_VEC.  Store any other jump targets as REG_LABEL_TARGET
   notes.  If INSN is an INSN or a CALL_INSN or non-target operands of
   notes.  If INSN is an INSN or a CALL_INSN or non-target operands of
   a JUMP_INSN, and there is at least one CODE_LABEL referenced in
   a JUMP_INSN, and there is at least one CODE_LABEL referenced in
   INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
   INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
 
 
   Note that two labels separated by a loop-beginning note
   Note that two labels separated by a loop-beginning note
   must be kept distinct if we have not yet done loop-optimization,
   must be kept distinct if we have not yet done loop-optimization,
   because the gap between them is where loop-optimize
   because the gap between them is where loop-optimize
   will want to move invariant code to.  CROSS_JUMP tells us
   will want to move invariant code to.  CROSS_JUMP tells us
   that loop-optimization is done with.  */
   that loop-optimization is done with.  */
 
 
void
void
mark_jump_label (rtx x, rtx insn, int in_mem)
mark_jump_label (rtx x, rtx insn, int in_mem)
{
{
  rtx asmop = extract_asm_operands (x);
  rtx asmop = extract_asm_operands (x);
  if (asmop)
  if (asmop)
    mark_jump_label_asm (asmop, insn);
    mark_jump_label_asm (asmop, insn);
  else
  else
    mark_jump_label_1 (x, insn, in_mem != 0,
    mark_jump_label_1 (x, insn, in_mem != 0,
                       (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
                       (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
}
}
 
 
/* Worker function for mark_jump_label.  IN_MEM is TRUE when X occurs
/* Worker function for mark_jump_label.  IN_MEM is TRUE when X occurs
   within a (MEM ...).  IS_TARGET is TRUE when X is to be treated as a
   within a (MEM ...).  IS_TARGET is TRUE when X is to be treated as a
   jump-target; when the JUMP_LABEL field of INSN should be set or a
   jump-target; when the JUMP_LABEL field of INSN should be set or a
   REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
   REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
   note.  */
   note.  */
 
 
static void
static void
mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
{
{
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  switch (code)
  switch (code)
    {
    {
    case PC:
    case PC:
    case CC0:
    case CC0:
    case REG:
    case REG:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CLOBBER:
    case CLOBBER:
    case CALL:
    case CALL:
      return;
      return;
 
 
    case MEM:
    case MEM:
      in_mem = true;
      in_mem = true;
      break;
      break;
 
 
    case SEQUENCE:
    case SEQUENCE:
      for (i = 0; i < XVECLEN (x, 0); i++)
      for (i = 0; i < XVECLEN (x, 0); i++)
        mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
        mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
                         XVECEXP (x, 0, i), 0);
                         XVECEXP (x, 0, i), 0);
      return;
      return;
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
      if (!in_mem)
      if (!in_mem)
        return;
        return;
 
 
      /* If this is a constant-pool reference, see if it is a label.  */
      /* If this is a constant-pool reference, see if it is a label.  */
      if (CONSTANT_POOL_ADDRESS_P (x))
      if (CONSTANT_POOL_ADDRESS_P (x))
        mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
        mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
      break;
      break;
 
 
      /* Handle operands in the condition of an if-then-else as for a
      /* Handle operands in the condition of an if-then-else as for a
         non-jump insn.  */
         non-jump insn.  */
    case IF_THEN_ELSE:
    case IF_THEN_ELSE:
      if (!is_target)
      if (!is_target)
        break;
        break;
      mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
      mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
      mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
      mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
      mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
      mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
      return;
      return;
 
 
    case LABEL_REF:
    case LABEL_REF:
      {
      {
        rtx label = XEXP (x, 0);
        rtx label = XEXP (x, 0);
 
 
        /* Ignore remaining references to unreachable labels that
        /* Ignore remaining references to unreachable labels that
           have been deleted.  */
           have been deleted.  */
        if (NOTE_P (label)
        if (NOTE_P (label)
            && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
            && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
          break;
          break;
 
 
        gcc_assert (LABEL_P (label));
        gcc_assert (LABEL_P (label));
 
 
        /* Ignore references to labels of containing functions.  */
        /* Ignore references to labels of containing functions.  */
        if (LABEL_REF_NONLOCAL_P (x))
        if (LABEL_REF_NONLOCAL_P (x))
          break;
          break;
 
 
        XEXP (x, 0) = label;
        XEXP (x, 0) = label;
        if (! insn || ! INSN_DELETED_P (insn))
        if (! insn || ! INSN_DELETED_P (insn))
          ++LABEL_NUSES (label);
          ++LABEL_NUSES (label);
 
 
        if (insn)
        if (insn)
          {
          {
            if (is_target
            if (is_target
                /* Do not change a previous setting of JUMP_LABEL.  If the
                /* Do not change a previous setting of JUMP_LABEL.  If the
                   JUMP_LABEL slot is occupied by a different label,
                   JUMP_LABEL slot is occupied by a different label,
                   create a note for this label.  */
                   create a note for this label.  */
                && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
                && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
              JUMP_LABEL (insn) = label;
              JUMP_LABEL (insn) = label;
            else
            else
              {
              {
                enum reg_note kind
                enum reg_note kind
                  = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
                  = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
 
 
                /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
                /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
                   for LABEL unless there already is one.  All uses of
                   for LABEL unless there already is one.  All uses of
                   a label, except for the primary target of a jump,
                   a label, except for the primary target of a jump,
                   must have such a note.  */
                   must have such a note.  */
                if (! find_reg_note (insn, kind, label))
                if (! find_reg_note (insn, kind, label))
                  add_reg_note (insn, kind, label);
                  add_reg_note (insn, kind, label);
              }
              }
          }
          }
        return;
        return;
      }
      }
 
 
  /* Do walk the labels in a vector, but not the first operand of an
  /* Do walk the labels in a vector, but not the first operand of an
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
      if (! INSN_DELETED_P (insn))
      if (! INSN_DELETED_P (insn))
        {
        {
          int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
          int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
 
 
          for (i = 0; i < XVECLEN (x, eltnum); i++)
          for (i = 0; i < XVECLEN (x, eltnum); i++)
            mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
            mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
                               is_target);
                               is_target);
        }
        }
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
 
 
  /* The primary target of a tablejump is the label of the ADDR_VEC,
  /* The primary target of a tablejump is the label of the ADDR_VEC,
     which is canonically mentioned *last* in the insn.  To get it
     which is canonically mentioned *last* in the insn.  To get it
     marked as JUMP_LABEL, we iterate over items in reverse order.  */
     marked as JUMP_LABEL, we iterate over items in reverse order.  */
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
        mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
 
 
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
            mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
                               is_target);
                               is_target);
        }
        }
    }
    }
}
}
 
 
/* Worker function for mark_jump_label.  Handle asm insns specially.
/* Worker function for mark_jump_label.  Handle asm insns specially.
   In particular, output operands need not be considered so we can
   In particular, output operands need not be considered so we can
   avoid re-scanning the replicated asm_operand.  Also, the asm_labels
   avoid re-scanning the replicated asm_operand.  Also, the asm_labels
   need to be considered targets.  */
   need to be considered targets.  */
 
 
static void
static void
mark_jump_label_asm (rtx asmop, rtx insn)
mark_jump_label_asm (rtx asmop, rtx insn)
{
{
  int i;
  int i;
 
 
  for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
  for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
    mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
    mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
 
 
  for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
  for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
    mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
    mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
}
}


/* Delete insn INSN from the chain of insns and update label ref counts
/* Delete insn INSN from the chain of insns and update label ref counts
   and delete insns now unreachable.
   and delete insns now unreachable.
 
 
   Returns the first insn after INSN that was not deleted.
   Returns the first insn after INSN that was not deleted.
 
 
   Usage of this instruction is deprecated.  Use delete_insn instead and
   Usage of this instruction is deprecated.  Use delete_insn instead and
   subsequent cfg_cleanup pass to delete unreachable code if needed.  */
   subsequent cfg_cleanup pass to delete unreachable code if needed.  */
 
 
rtx
rtx
delete_related_insns (rtx insn)
delete_related_insns (rtx insn)
{
{
  int was_code_label = (LABEL_P (insn));
  int was_code_label = (LABEL_P (insn));
  rtx note;
  rtx note;
  rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
  rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
 
 
  while (next && INSN_DELETED_P (next))
  while (next && INSN_DELETED_P (next))
    next = NEXT_INSN (next);
    next = NEXT_INSN (next);
 
 
  /* This insn is already deleted => return first following nondeleted.  */
  /* This insn is already deleted => return first following nondeleted.  */
  if (INSN_DELETED_P (insn))
  if (INSN_DELETED_P (insn))
    return next;
    return next;
 
 
  delete_insn (insn);
  delete_insn (insn);
 
 
  /* If instruction is followed by a barrier,
  /* If instruction is followed by a barrier,
     delete the barrier too.  */
     delete the barrier too.  */
 
 
  if (next != 0 && BARRIER_P (next))
  if (next != 0 && BARRIER_P (next))
    delete_insn (next);
    delete_insn (next);
 
 
  /* If deleting a jump, decrement the count of the label,
  /* If deleting a jump, decrement the count of the label,
     and delete the label if it is now unused.  */
     and delete the label if it is now unused.  */
 
 
  if (JUMP_P (insn) && JUMP_LABEL (insn))
  if (JUMP_P (insn) && JUMP_LABEL (insn))
    {
    {
      rtx lab = JUMP_LABEL (insn), lab_next;
      rtx lab = JUMP_LABEL (insn), lab_next;
 
 
      if (LABEL_NUSES (lab) == 0)
      if (LABEL_NUSES (lab) == 0)
        /* This can delete NEXT or PREV,
        /* This can delete NEXT or PREV,
           either directly if NEXT is JUMP_LABEL (INSN),
           either directly if NEXT is JUMP_LABEL (INSN),
           or indirectly through more levels of jumps.  */
           or indirectly through more levels of jumps.  */
        delete_related_insns (lab);
        delete_related_insns (lab);
      else if (tablejump_p (insn, NULL, &lab_next))
      else if (tablejump_p (insn, NULL, &lab_next))
        {
        {
          /* If we're deleting the tablejump, delete the dispatch table.
          /* If we're deleting the tablejump, delete the dispatch table.
             We may not be able to kill the label immediately preceding
             We may not be able to kill the label immediately preceding
             just yet, as it might be referenced in code leading up to
             just yet, as it might be referenced in code leading up to
             the tablejump.  */
             the tablejump.  */
          delete_related_insns (lab_next);
          delete_related_insns (lab_next);
        }
        }
    }
    }
 
 
  /* Likewise if we're deleting a dispatch table.  */
  /* Likewise if we're deleting a dispatch table.  */
 
 
  if (JUMP_TABLE_DATA_P (insn))
  if (JUMP_TABLE_DATA_P (insn))
    {
    {
      rtx pat = PATTERN (insn);
      rtx pat = PATTERN (insn);
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int len = XVECLEN (pat, diff_vec_p);
      int len = XVECLEN (pat, diff_vec_p);
 
 
      for (i = 0; i < len; i++)
      for (i = 0; i < len; i++)
        if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
        if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
          delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
          delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
      while (next && INSN_DELETED_P (next))
      while (next && INSN_DELETED_P (next))
        next = NEXT_INSN (next);
        next = NEXT_INSN (next);
      return next;
      return next;
    }
    }
 
 
  /* Likewise for any JUMP_P / INSN / CALL_INSN with a
  /* Likewise for any JUMP_P / INSN / CALL_INSN with a
     REG_LABEL_OPERAND or REG_LABEL_TARGET note.  */
     REG_LABEL_OPERAND or REG_LABEL_TARGET note.  */
  if (INSN_P (insn))
  if (INSN_P (insn))
    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
      if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
      if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
           || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
           || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
          /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
          /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
          && LABEL_P (XEXP (note, 0)))
          && LABEL_P (XEXP (note, 0)))
        if (LABEL_NUSES (XEXP (note, 0)) == 0)
        if (LABEL_NUSES (XEXP (note, 0)) == 0)
          delete_related_insns (XEXP (note, 0));
          delete_related_insns (XEXP (note, 0));
 
 
  while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
  while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
    prev = PREV_INSN (prev);
    prev = PREV_INSN (prev);
 
 
  /* If INSN was a label and a dispatch table follows it,
  /* If INSN was a label and a dispatch table follows it,
     delete the dispatch table.  The tablejump must have gone already.
     delete the dispatch table.  The tablejump must have gone already.
     It isn't useful to fall through into a table.  */
     It isn't useful to fall through into a table.  */
 
 
  if (was_code_label
  if (was_code_label
      && NEXT_INSN (insn) != 0
      && NEXT_INSN (insn) != 0
      && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
      && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
    next = delete_related_insns (NEXT_INSN (insn));
    next = delete_related_insns (NEXT_INSN (insn));
 
 
  /* If INSN was a label, delete insns following it if now unreachable.  */
  /* If INSN was a label, delete insns following it if now unreachable.  */
 
 
  if (was_code_label && prev && BARRIER_P (prev))
  if (was_code_label && prev && BARRIER_P (prev))
    {
    {
      enum rtx_code code;
      enum rtx_code code;
      while (next)
      while (next)
        {
        {
          code = GET_CODE (next);
          code = GET_CODE (next);
          if (code == NOTE)
          if (code == NOTE)
            next = NEXT_INSN (next);
            next = NEXT_INSN (next);
          /* Keep going past other deleted labels to delete what follows.  */
          /* Keep going past other deleted labels to delete what follows.  */
          else if (code == CODE_LABEL && INSN_DELETED_P (next))
          else if (code == CODE_LABEL && INSN_DELETED_P (next))
            next = NEXT_INSN (next);
            next = NEXT_INSN (next);
          else if (code == BARRIER || INSN_P (next))
          else if (code == BARRIER || INSN_P (next))
            /* Note: if this deletes a jump, it can cause more
            /* Note: if this deletes a jump, it can cause more
               deletion of unreachable code, after a different label.
               deletion of unreachable code, after a different label.
               As long as the value from this recursive call is correct,
               As long as the value from this recursive call is correct,
               this invocation functions correctly.  */
               this invocation functions correctly.  */
            next = delete_related_insns (next);
            next = delete_related_insns (next);
          else
          else
            break;
            break;
        }
        }
    }
    }
 
 
  /* I feel a little doubtful about this loop,
  /* I feel a little doubtful about this loop,
     but I see no clean and sure alternative way
     but I see no clean and sure alternative way
     to find the first insn after INSN that is not now deleted.
     to find the first insn after INSN that is not now deleted.
     I hope this works.  */
     I hope this works.  */
  while (next && INSN_DELETED_P (next))
  while (next && INSN_DELETED_P (next))
    next = NEXT_INSN (next);
    next = NEXT_INSN (next);
  return next;
  return next;
}
}


/* Delete a range of insns from FROM to TO, inclusive.
/* Delete a range of insns from FROM to TO, inclusive.
   This is for the sake of peephole optimization, so assume
   This is for the sake of peephole optimization, so assume
   that whatever these insns do will still be done by a new
   that whatever these insns do will still be done by a new
   peephole insn that will replace them.  */
   peephole insn that will replace them.  */
 
 
void
void
delete_for_peephole (rtx from, rtx to)
delete_for_peephole (rtx from, rtx to)
{
{
  rtx insn = from;
  rtx insn = from;
 
 
  while (1)
  while (1)
    {
    {
      rtx next = NEXT_INSN (insn);
      rtx next = NEXT_INSN (insn);
      rtx prev = PREV_INSN (insn);
      rtx prev = PREV_INSN (insn);
 
 
      if (!NOTE_P (insn))
      if (!NOTE_P (insn))
        {
        {
          INSN_DELETED_P (insn) = 1;
          INSN_DELETED_P (insn) = 1;
 
 
          /* Patch this insn out of the chain.  */
          /* Patch this insn out of the chain.  */
          /* We don't do this all at once, because we
          /* We don't do this all at once, because we
             must preserve all NOTEs.  */
             must preserve all NOTEs.  */
          if (prev)
          if (prev)
            NEXT_INSN (prev) = next;
            NEXT_INSN (prev) = next;
 
 
          if (next)
          if (next)
            PREV_INSN (next) = prev;
            PREV_INSN (next) = prev;
        }
        }
 
 
      if (insn == to)
      if (insn == to)
        break;
        break;
      insn = next;
      insn = next;
    }
    }
 
 
  /* Note that if TO is an unconditional jump
  /* Note that if TO is an unconditional jump
     we *do not* delete the BARRIER that follows,
     we *do not* delete the BARRIER that follows,
     since the peephole that replaces this sequence
     since the peephole that replaces this sequence
     is also an unconditional jump in that case.  */
     is also an unconditional jump in that case.  */
}
}


/* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
/* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
   NLABEL as a return.  Accrue modifications into the change group.  */
   NLABEL as a return.  Accrue modifications into the change group.  */
 
 
static void
static void
redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
{
{
  rtx x = *loc;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  if (code == LABEL_REF)
  if (code == LABEL_REF)
    {
    {
      if (XEXP (x, 0) == olabel)
      if (XEXP (x, 0) == olabel)
        {
        {
          rtx n;
          rtx n;
          if (nlabel)
          if (nlabel)
            n = gen_rtx_LABEL_REF (Pmode, nlabel);
            n = gen_rtx_LABEL_REF (Pmode, nlabel);
          else
          else
            n = gen_rtx_RETURN (VOIDmode);
            n = gen_rtx_RETURN (VOIDmode);
 
 
          validate_change (insn, loc, n, 1);
          validate_change (insn, loc, n, 1);
          return;
          return;
        }
        }
    }
    }
  else if (code == RETURN && olabel == 0)
  else if (code == RETURN && olabel == 0)
    {
    {
      if (nlabel)
      if (nlabel)
        x = gen_rtx_LABEL_REF (Pmode, nlabel);
        x = gen_rtx_LABEL_REF (Pmode, nlabel);
      else
      else
        x = gen_rtx_RETURN (VOIDmode);
        x = gen_rtx_RETURN (VOIDmode);
      if (loc == &PATTERN (insn))
      if (loc == &PATTERN (insn))
        x = gen_rtx_SET (VOIDmode, pc_rtx, x);
        x = gen_rtx_SET (VOIDmode, pc_rtx, x);
      validate_change (insn, loc, x, 1);
      validate_change (insn, loc, x, 1);
      return;
      return;
    }
    }
 
 
  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && XEXP (SET_SRC (x), 0) == olabel)
      && XEXP (SET_SRC (x), 0) == olabel)
    {
    {
      validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
      validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
      return;
      return;
    }
    }
 
 
  if (code == IF_THEN_ELSE)
  if (code == IF_THEN_ELSE)
    {
    {
      /* Skip the condition of an IF_THEN_ELSE.  We only want to
      /* Skip the condition of an IF_THEN_ELSE.  We only want to
         change jump destinations, not eventual label comparisons.  */
         change jump destinations, not eventual label comparisons.  */
      redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
      redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
      redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
      redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
      return;
      return;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
        redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
            redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
        }
        }
    }
    }
}
}
 
 
/* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
/* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
   the modifications into the change group.  Return false if we did
   the modifications into the change group.  Return false if we did
   not see how to do that.  */
   not see how to do that.  */
 
 
int
int
redirect_jump_1 (rtx jump, rtx nlabel)
redirect_jump_1 (rtx jump, rtx nlabel)
{
{
  int ochanges = num_validated_changes ();
  int ochanges = num_validated_changes ();
  rtx *loc, asmop;
  rtx *loc, asmop;
 
 
  asmop = extract_asm_operands (PATTERN (jump));
  asmop = extract_asm_operands (PATTERN (jump));
  if (asmop)
  if (asmop)
    {
    {
      if (nlabel == NULL)
      if (nlabel == NULL)
        return 0;
        return 0;
      gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
      gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
      loc = &ASM_OPERANDS_LABEL (asmop, 0);
      loc = &ASM_OPERANDS_LABEL (asmop, 0);
    }
    }
  else if (GET_CODE (PATTERN (jump)) == PARALLEL)
  else if (GET_CODE (PATTERN (jump)) == PARALLEL)
    loc = &XVECEXP (PATTERN (jump), 0, 0);
    loc = &XVECEXP (PATTERN (jump), 0, 0);
  else
  else
    loc = &PATTERN (jump);
    loc = &PATTERN (jump);
 
 
  redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
  redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
  return num_validated_changes () > ochanges;
  return num_validated_changes () > ochanges;
}
}
 
 
/* Make JUMP go to NLABEL instead of where it jumps now.  If the old
/* Make JUMP go to NLABEL instead of where it jumps now.  If the old
   jump target label is unused as a result, it and the code following
   jump target label is unused as a result, it and the code following
   it may be deleted.
   it may be deleted.
 
 
   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   RETURN insn.
   RETURN insn.
 
 
   The return value will be 1 if the change was made, 0 if it wasn't
   The return value will be 1 if the change was made, 0 if it wasn't
   (this can only occur for NLABEL == 0).  */
   (this can only occur for NLABEL == 0).  */
 
 
int
int
redirect_jump (rtx jump, rtx nlabel, int delete_unused)
redirect_jump (rtx jump, rtx nlabel, int delete_unused)
{
{
  rtx olabel = JUMP_LABEL (jump);
  rtx olabel = JUMP_LABEL (jump);
 
 
  if (nlabel == olabel)
  if (nlabel == olabel)
    return 1;
    return 1;
 
 
  if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
  if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
    return 0;
    return 0;
 
 
  redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
  redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
  return 1;
  return 1;
}
}
 
 
/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
   NLABEL in JUMP.
   NLABEL in JUMP.
   If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
   If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
   count has dropped to zero.  */
   count has dropped to zero.  */
void
void
redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
                 int invert)
                 int invert)
{
{
  rtx note;
  rtx note;
 
 
  gcc_assert (JUMP_LABEL (jump) == olabel);
  gcc_assert (JUMP_LABEL (jump) == olabel);
 
 
  /* Negative DELETE_UNUSED used to be used to signalize behavior on
  /* Negative DELETE_UNUSED used to be used to signalize behavior on
     moving FUNCTION_END note.  Just sanity check that no user still worry
     moving FUNCTION_END note.  Just sanity check that no user still worry
     about this.  */
     about this.  */
  gcc_assert (delete_unused >= 0);
  gcc_assert (delete_unused >= 0);
  JUMP_LABEL (jump) = nlabel;
  JUMP_LABEL (jump) = nlabel;
  if (nlabel)
  if (nlabel)
    ++LABEL_NUSES (nlabel);
    ++LABEL_NUSES (nlabel);
 
 
  /* Update labels in any REG_EQUAL note.  */
  /* Update labels in any REG_EQUAL note.  */
  if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
  if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
    {
    {
      if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
      if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
        remove_note (jump, note);
        remove_note (jump, note);
      else
      else
        {
        {
          redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
          redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
          confirm_change_group ();
          confirm_change_group ();
        }
        }
    }
    }
 
 
  if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
  if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
      /* Undefined labels will remain outside the insn stream.  */
      /* Undefined labels will remain outside the insn stream.  */
      && INSN_UID (olabel))
      && INSN_UID (olabel))
    delete_related_insns (olabel);
    delete_related_insns (olabel);
  if (invert)
  if (invert)
    invert_br_probabilities (jump);
    invert_br_probabilities (jump);
}
}
 
 
/* Invert the jump condition X contained in jump insn INSN.  Accrue the
/* Invert the jump condition X contained in jump insn INSN.  Accrue the
   modifications into the change group.  Return nonzero for success.  */
   modifications into the change group.  Return nonzero for success.  */
static int
static int
invert_exp_1 (rtx x, rtx insn)
invert_exp_1 (rtx x, rtx insn)
{
{
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
 
 
  if (code == IF_THEN_ELSE)
  if (code == IF_THEN_ELSE)
    {
    {
      rtx comp = XEXP (x, 0);
      rtx comp = XEXP (x, 0);
      rtx tem;
      rtx tem;
      enum rtx_code reversed_code;
      enum rtx_code reversed_code;
 
 
      /* We can do this in two ways:  The preferable way, which can only
      /* We can do this in two ways:  The preferable way, which can only
         be done if this is not an integer comparison, is to reverse
         be done if this is not an integer comparison, is to reverse
         the comparison code.  Otherwise, swap the THEN-part and ELSE-part
         the comparison code.  Otherwise, swap the THEN-part and ELSE-part
         of the IF_THEN_ELSE.  If we can't do either, fail.  */
         of the IF_THEN_ELSE.  If we can't do either, fail.  */
 
 
      reversed_code = reversed_comparison_code (comp, insn);
      reversed_code = reversed_comparison_code (comp, insn);
 
 
      if (reversed_code != UNKNOWN)
      if (reversed_code != UNKNOWN)
        {
        {
          validate_change (insn, &XEXP (x, 0),
          validate_change (insn, &XEXP (x, 0),
                           gen_rtx_fmt_ee (reversed_code,
                           gen_rtx_fmt_ee (reversed_code,
                                           GET_MODE (comp), XEXP (comp, 0),
                                           GET_MODE (comp), XEXP (comp, 0),
                                           XEXP (comp, 1)),
                                           XEXP (comp, 1)),
                           1);
                           1);
          return 1;
          return 1;
        }
        }
 
 
      tem = XEXP (x, 1);
      tem = XEXP (x, 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
      return 1;
      return 1;
    }
    }
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Invert the condition of the jump JUMP, and make it jump to label
/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Accrue changes into the
   NLABEL instead of where it jumps now.  Accrue changes into the
   change group.  Return false if we didn't see how to perform the
   change group.  Return false if we didn't see how to perform the
   inversion and redirection.  */
   inversion and redirection.  */
 
 
int
int
invert_jump_1 (rtx jump, rtx nlabel)
invert_jump_1 (rtx jump, rtx nlabel)
{
{
  rtx x = pc_set (jump);
  rtx x = pc_set (jump);
  int ochanges;
  int ochanges;
  int ok;
  int ok;
 
 
  ochanges = num_validated_changes ();
  ochanges = num_validated_changes ();
  if (x == NULL)
  if (x == NULL)
    return 0;
    return 0;
  ok = invert_exp_1 (SET_SRC (x), jump);
  ok = invert_exp_1 (SET_SRC (x), jump);
  gcc_assert (ok);
  gcc_assert (ok);
 
 
  if (num_validated_changes () == ochanges)
  if (num_validated_changes () == ochanges)
    return 0;
    return 0;
 
 
  /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
  /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
     in Pmode, so checking this is not merely an optimization.  */
     in Pmode, so checking this is not merely an optimization.  */
  return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
  return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
}
}
 
 
/* Invert the condition of the jump JUMP, and make it jump to label
/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Return true if successful.  */
   NLABEL instead of where it jumps now.  Return true if successful.  */
 
 
int
int
invert_jump (rtx jump, rtx nlabel, int delete_unused)
invert_jump (rtx jump, rtx nlabel, int delete_unused)
{
{
  rtx olabel = JUMP_LABEL (jump);
  rtx olabel = JUMP_LABEL (jump);
 
 
  if (invert_jump_1 (jump, nlabel) && apply_change_group ())
  if (invert_jump_1 (jump, nlabel) && apply_change_group ())
    {
    {
      redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
      redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
      return 1;
      return 1;
    }
    }
  cancel_changes (0);
  cancel_changes (0);
  return 0;
  return 0;
}
}
 
 


/* Like rtx_equal_p except that it considers two REGs as equal
/* Like rtx_equal_p except that it considers two REGs as equal
   if they renumber to the same value and considers two commutative
   if they renumber to the same value and considers two commutative
   operations to be the same if the order of the operands has been
   operations to be the same if the order of the operands has been
   reversed.  */
   reversed.  */
 
 
int
int
rtx_renumbered_equal_p (const_rtx x, const_rtx y)
rtx_renumbered_equal_p (const_rtx x, const_rtx y)
{
{
  int i;
  int i;
  const enum rtx_code code = GET_CODE (x);
  const enum rtx_code code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
 
 
  if (x == y)
  if (x == y)
    return 1;
    return 1;
 
 
  if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
  if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
      && (REG_P (y) || (GET_CODE (y) == SUBREG
      && (REG_P (y) || (GET_CODE (y) == SUBREG
                                  && REG_P (SUBREG_REG (y)))))
                                  && REG_P (SUBREG_REG (y)))))
    {
    {
      int reg_x = -1, reg_y = -1;
      int reg_x = -1, reg_y = -1;
      int byte_x = 0, byte_y = 0;
      int byte_x = 0, byte_y = 0;
      struct subreg_info info;
      struct subreg_info info;
 
 
      if (GET_MODE (x) != GET_MODE (y))
      if (GET_MODE (x) != GET_MODE (y))
        return 0;
        return 0;
 
 
      /* If we haven't done any renumbering, don't
      /* If we haven't done any renumbering, don't
         make any assumptions.  */
         make any assumptions.  */
      if (reg_renumber == 0)
      if (reg_renumber == 0)
        return rtx_equal_p (x, y);
        return rtx_equal_p (x, y);
 
 
      if (code == SUBREG)
      if (code == SUBREG)
        {
        {
          reg_x = REGNO (SUBREG_REG (x));
          reg_x = REGNO (SUBREG_REG (x));
          byte_x = SUBREG_BYTE (x);
          byte_x = SUBREG_BYTE (x);
 
 
          if (reg_renumber[reg_x] >= 0)
          if (reg_renumber[reg_x] >= 0)
            {
            {
              subreg_get_info (reg_renumber[reg_x],
              subreg_get_info (reg_renumber[reg_x],
                               GET_MODE (SUBREG_REG (x)), byte_x,
                               GET_MODE (SUBREG_REG (x)), byte_x,
                               GET_MODE (x), &info);
                               GET_MODE (x), &info);
              if (!info.representable_p)
              if (!info.representable_p)
                return 0;
                return 0;
              reg_x = info.offset;
              reg_x = info.offset;
              byte_x = 0;
              byte_x = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          reg_x = REGNO (x);
          reg_x = REGNO (x);
          if (reg_renumber[reg_x] >= 0)
          if (reg_renumber[reg_x] >= 0)
            reg_x = reg_renumber[reg_x];
            reg_x = reg_renumber[reg_x];
        }
        }
 
 
      if (GET_CODE (y) == SUBREG)
      if (GET_CODE (y) == SUBREG)
        {
        {
          reg_y = REGNO (SUBREG_REG (y));
          reg_y = REGNO (SUBREG_REG (y));
          byte_y = SUBREG_BYTE (y);
          byte_y = SUBREG_BYTE (y);
 
 
          if (reg_renumber[reg_y] >= 0)
          if (reg_renumber[reg_y] >= 0)
            {
            {
              subreg_get_info (reg_renumber[reg_y],
              subreg_get_info (reg_renumber[reg_y],
                               GET_MODE (SUBREG_REG (y)), byte_y,
                               GET_MODE (SUBREG_REG (y)), byte_y,
                               GET_MODE (y), &info);
                               GET_MODE (y), &info);
              if (!info.representable_p)
              if (!info.representable_p)
                return 0;
                return 0;
              reg_y = info.offset;
              reg_y = info.offset;
              byte_y = 0;
              byte_y = 0;
            }
            }
        }
        }
      else
      else
        {
        {
          reg_y = REGNO (y);
          reg_y = REGNO (y);
          if (reg_renumber[reg_y] >= 0)
          if (reg_renumber[reg_y] >= 0)
            reg_y = reg_renumber[reg_y];
            reg_y = reg_renumber[reg_y];
        }
        }
 
 
      return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
      return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
    }
    }
 
 
  /* Now we have disposed of all the cases
  /* Now we have disposed of all the cases
     in which different rtx codes can match.  */
     in which different rtx codes can match.  */
  if (code != GET_CODE (y))
  if (code != GET_CODE (y))
    return 0;
    return 0;
 
 
  switch (code)
  switch (code)
    {
    {
    case PC:
    case PC:
    case CC0:
    case CC0:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
      return 0;
      return 0;
 
 
    case LABEL_REF:
    case LABEL_REF:
      /* We can't assume nonlocal labels have their following insns yet.  */
      /* We can't assume nonlocal labels have their following insns yet.  */
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
        return XEXP (x, 0) == XEXP (y, 0);
        return XEXP (x, 0) == XEXP (y, 0);
 
 
      /* Two label-refs are equivalent if they point at labels
      /* Two label-refs are equivalent if they point at labels
         in the same position in the instruction stream.  */
         in the same position in the instruction stream.  */
      return (next_real_insn (XEXP (x, 0))
      return (next_real_insn (XEXP (x, 0))
              == next_real_insn (XEXP (y, 0)));
              == next_real_insn (XEXP (y, 0)));
 
 
    case SYMBOL_REF:
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
      return XSTR (x, 0) == XSTR (y, 0);
 
 
    case CODE_LABEL:
    case CODE_LABEL:
      /* If we didn't match EQ equality above, they aren't the same.  */
      /* If we didn't match EQ equality above, they aren't the same.  */
      return 0;
      return 0;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
 
 
  if (GET_MODE (x) != GET_MODE (y))
  if (GET_MODE (x) != GET_MODE (y))
    return 0;
    return 0;
 
 
  /* MEMs refering to different address space are not equivalent.  */
  /* MEMs refering to different address space are not equivalent.  */
  if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
  if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
    return 0;
    return 0;
 
 
  /* For commutative operations, the RTX match if the operand match in any
  /* For commutative operations, the RTX match if the operand match in any
     order.  Also handle the simple binary and unary cases without a loop.  */
     order.  Also handle the simple binary and unary cases without a loop.  */
  if (targetm.commutative_p (x, UNKNOWN))
  if (targetm.commutative_p (x, UNKNOWN))
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
             && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
             && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
            || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
            || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
                && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
                && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
  else if (NON_COMMUTATIVE_P (x))
  else if (NON_COMMUTATIVE_P (x))
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
            && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
            && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
  else if (UNARY_P (x))
  else if (UNARY_P (x))
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
 
 
  /* Compare the elements.  If any pair of corresponding elements
  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */
     fail to match, return 0 for the whole things.  */
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      int j;
      int j;
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'w':
        case 'w':
          if (XWINT (x, i) != XWINT (y, i))
          if (XWINT (x, i) != XWINT (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'i':
        case 'i':
          if (XINT (x, i) != XINT (y, i))
          if (XINT (x, i) != XINT (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 't':
        case 't':
          if (XTREE (x, i) != XTREE (y, i))
          if (XTREE (x, i) != XTREE (y, i))
            return 0;
            return 0;
          break;
          break;
 
 
        case 's':
        case 's':
          if (strcmp (XSTR (x, i), XSTR (y, i)))
          if (strcmp (XSTR (x, i), XSTR (y, i)))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'e':
        case 'e':
          if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
          if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
            return 0;
            return 0;
          break;
          break;
 
 
        case 'u':
        case 'u':
          if (XEXP (x, i) != XEXP (y, i))
          if (XEXP (x, i) != XEXP (y, i))
            return 0;
            return 0;
          /* Fall through.  */
          /* Fall through.  */
        case '0':
        case '0':
          break;
          break;
 
 
        case 'E':
        case 'E':
          if (XVECLEN (x, i) != XVECLEN (y, i))
          if (XVECLEN (x, i) != XVECLEN (y, i))
            return 0;
            return 0;
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
            if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
              return 0;
              return 0;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  return 1;
  return 1;
}
}


/* If X is a hard register or equivalent to one or a subregister of one,
/* If X is a hard register or equivalent to one or a subregister of one,
   return the hard register number.  If X is a pseudo register that was not
   return the hard register number.  If X is a pseudo register that was not
   assigned a hard register, return the pseudo register number.  Otherwise,
   assigned a hard register, return the pseudo register number.  Otherwise,
   return -1.  Any rtx is valid for X.  */
   return -1.  Any rtx is valid for X.  */
 
 
int
int
true_regnum (const_rtx x)
true_regnum (const_rtx x)
{
{
  if (REG_P (x))
  if (REG_P (x))
    {
    {
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
        return reg_renumber[REGNO (x)];
        return reg_renumber[REGNO (x)];
      return REGNO (x);
      return REGNO (x);
    }
    }
  if (GET_CODE (x) == SUBREG)
  if (GET_CODE (x) == SUBREG)
    {
    {
      int base = true_regnum (SUBREG_REG (x));
      int base = true_regnum (SUBREG_REG (x));
      if (base >= 0
      if (base >= 0
          && base < FIRST_PSEUDO_REGISTER)
          && base < FIRST_PSEUDO_REGISTER)
        {
        {
          struct subreg_info info;
          struct subreg_info info;
 
 
          subreg_get_info (REGNO (SUBREG_REG (x)),
          subreg_get_info (REGNO (SUBREG_REG (x)),
                           GET_MODE (SUBREG_REG (x)),
                           GET_MODE (SUBREG_REG (x)),
                           SUBREG_BYTE (x), GET_MODE (x), &info);
                           SUBREG_BYTE (x), GET_MODE (x), &info);
 
 
          if (info.representable_p)
          if (info.representable_p)
            return base + info.offset;
            return base + info.offset;
        }
        }
    }
    }
  return -1;
  return -1;
}
}
 
 
/* Return regno of the register REG and handle subregs too.  */
/* Return regno of the register REG and handle subregs too.  */
unsigned int
unsigned int
reg_or_subregno (const_rtx reg)
reg_or_subregno (const_rtx reg)
{
{
  if (GET_CODE (reg) == SUBREG)
  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);
    reg = SUBREG_REG (reg);
  gcc_assert (REG_P (reg));
  gcc_assert (REG_P (reg));
  return REGNO (reg);
  return REGNO (reg);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.