OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [loop-invariant.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* RTL-level loop invariant motion.
/* RTL-level loop invariant motion.
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This implements the loop invariant motion pass.  It is very simple
/* This implements the loop invariant motion pass.  It is very simple
   (no calls, no loads/stores, etc.).  This should be sufficient to cleanup
   (no calls, no loads/stores, etc.).  This should be sufficient to cleanup
   things like address arithmetics -- other more complicated invariants should
   things like address arithmetics -- other more complicated invariants should
   be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
   be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
 
 
   We proceed loop by loop -- it is simpler than trying to handle things
   We proceed loop by loop -- it is simpler than trying to handle things
   globally and should not lose much.  First we inspect all sets inside loop
   globally and should not lose much.  First we inspect all sets inside loop
   and create a dependency graph on insns (saying "to move this insn, you must
   and create a dependency graph on insns (saying "to move this insn, you must
   also move the following insns").
   also move the following insns").
 
 
   We then need to determine what to move.  We estimate the number of registers
   We then need to determine what to move.  We estimate the number of registers
   used and move as many invariants as possible while we still have enough free
   used and move as many invariants as possible while we still have enough free
   registers.  We prefer the expensive invariants.
   registers.  We prefer the expensive invariants.
 
 
   Then we move the selected invariants out of the loop, creating a new
   Then we move the selected invariants out of the loop, creating a new
   temporaries for them if necessary.  */
   temporaries for them if necessary.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "obstack.h"
#include "obstack.h"
#include "basic-block.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "expr.h"
#include "expr.h"
#include "recog.h"
#include "recog.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "flags.h"
#include "flags.h"
#include "df.h"
#include "df.h"
#include "hashtab.h"
#include "hashtab.h"
#include "except.h"
#include "except.h"
#include "params.h"
#include "params.h"
#include "regs.h"
#include "regs.h"
#include "ira.h"
#include "ira.h"
 
 
/* The data stored for the loop.  */
/* The data stored for the loop.  */
 
 
struct loop_data
struct loop_data
{
{
  struct loop *outermost_exit;  /* The outermost exit of the loop.  */
  struct loop *outermost_exit;  /* The outermost exit of the loop.  */
  bool has_call;                /* True if the loop contains a call.  */
  bool has_call;                /* True if the loop contains a call.  */
  /* Maximal register pressure inside loop for given register class
  /* Maximal register pressure inside loop for given register class
     (defined only for the cover classes).  */
     (defined only for the cover classes).  */
  int max_reg_pressure[N_REG_CLASSES];
  int max_reg_pressure[N_REG_CLASSES];
  /* Loop regs referenced and live pseudo-registers.  */
  /* Loop regs referenced and live pseudo-registers.  */
  bitmap_head regs_ref;
  bitmap_head regs_ref;
  bitmap_head regs_live;
  bitmap_head regs_live;
};
};
 
 
#define LOOP_DATA(LOOP) ((struct loop_data *) (LOOP)->aux)
#define LOOP_DATA(LOOP) ((struct loop_data *) (LOOP)->aux)
 
 
/* The description of an use.  */
/* The description of an use.  */
 
 
struct use
struct use
{
{
  rtx *pos;                     /* Position of the use.  */
  rtx *pos;                     /* Position of the use.  */
  rtx insn;                     /* The insn in that the use occurs.  */
  rtx insn;                     /* The insn in that the use occurs.  */
  unsigned addr_use_p;          /* Whether the use occurs in an address.  */
  unsigned addr_use_p;          /* Whether the use occurs in an address.  */
  struct use *next;             /* Next use in the list.  */
  struct use *next;             /* Next use in the list.  */
};
};
 
 
/* The description of a def.  */
/* The description of a def.  */
 
 
struct def
struct def
{
{
  struct use *uses;             /* The list of uses that are uniquely reached
  struct use *uses;             /* The list of uses that are uniquely reached
                                   by it.  */
                                   by it.  */
  unsigned n_uses;              /* Number of such uses.  */
  unsigned n_uses;              /* Number of such uses.  */
  unsigned n_addr_uses;         /* Number of uses in addresses.  */
  unsigned n_addr_uses;         /* Number of uses in addresses.  */
  unsigned invno;               /* The corresponding invariant.  */
  unsigned invno;               /* The corresponding invariant.  */
};
};
 
 
/* The data stored for each invariant.  */
/* The data stored for each invariant.  */
 
 
struct invariant
struct invariant
{
{
  /* The number of the invariant.  */
  /* The number of the invariant.  */
  unsigned invno;
  unsigned invno;
 
 
  /* The number of the invariant with the same value.  */
  /* The number of the invariant with the same value.  */
  unsigned eqto;
  unsigned eqto;
 
 
  /* If we moved the invariant out of the loop, the register that contains its
  /* If we moved the invariant out of the loop, the register that contains its
     value.  */
     value.  */
  rtx reg;
  rtx reg;
 
 
  /* If we moved the invariant out of the loop, the original regno
  /* If we moved the invariant out of the loop, the original regno
     that contained its value.  */
     that contained its value.  */
  int orig_regno;
  int orig_regno;
 
 
  /* The definition of the invariant.  */
  /* The definition of the invariant.  */
  struct def *def;
  struct def *def;
 
 
  /* The insn in that it is defined.  */
  /* The insn in that it is defined.  */
  rtx insn;
  rtx insn;
 
 
  /* Whether it is always executed.  */
  /* Whether it is always executed.  */
  bool always_executed;
  bool always_executed;
 
 
  /* Whether to move the invariant.  */
  /* Whether to move the invariant.  */
  bool move;
  bool move;
 
 
  /* Whether the invariant is cheap when used as an address.  */
  /* Whether the invariant is cheap when used as an address.  */
  bool cheap_address;
  bool cheap_address;
 
 
  /* Cost of the invariant.  */
  /* Cost of the invariant.  */
  unsigned cost;
  unsigned cost;
 
 
  /* The invariants it depends on.  */
  /* The invariants it depends on.  */
  bitmap depends_on;
  bitmap depends_on;
 
 
  /* Used for detecting already visited invariants during determining
  /* Used for detecting already visited invariants during determining
     costs of movements.  */
     costs of movements.  */
  unsigned stamp;
  unsigned stamp;
};
};
 
 
/* Currently processed loop.  */
/* Currently processed loop.  */
static struct loop *curr_loop;
static struct loop *curr_loop;
 
 
/* Table of invariants indexed by the df_ref uid field.  */
/* Table of invariants indexed by the df_ref uid field.  */
 
 
static unsigned int invariant_table_size = 0;
static unsigned int invariant_table_size = 0;
static struct invariant ** invariant_table;
static struct invariant ** invariant_table;
 
 
/* Entry for hash table of invariant expressions.  */
/* Entry for hash table of invariant expressions.  */
 
 
struct invariant_expr_entry
struct invariant_expr_entry
{
{
  /* The invariant.  */
  /* The invariant.  */
  struct invariant *inv;
  struct invariant *inv;
 
 
  /* Its value.  */
  /* Its value.  */
  rtx expr;
  rtx expr;
 
 
  /* Its mode.  */
  /* Its mode.  */
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* Its hash.  */
  /* Its hash.  */
  hashval_t hash;
  hashval_t hash;
};
};
 
 
/* The actual stamp for marking already visited invariants during determining
/* The actual stamp for marking already visited invariants during determining
   costs of movements.  */
   costs of movements.  */
 
 
static unsigned actual_stamp;
static unsigned actual_stamp;
 
 
typedef struct invariant *invariant_p;
typedef struct invariant *invariant_p;
 
 
DEF_VEC_P(invariant_p);
DEF_VEC_P(invariant_p);
DEF_VEC_ALLOC_P(invariant_p, heap);
DEF_VEC_ALLOC_P(invariant_p, heap);
 
 
/* The invariants.  */
/* The invariants.  */
 
 
static VEC(invariant_p,heap) *invariants;
static VEC(invariant_p,heap) *invariants;
 
 
/* Check the size of the invariant table and realloc if necessary.  */
/* Check the size of the invariant table and realloc if necessary.  */
 
 
static void
static void
check_invariant_table_size (void)
check_invariant_table_size (void)
{
{
  if (invariant_table_size < DF_DEFS_TABLE_SIZE())
  if (invariant_table_size < DF_DEFS_TABLE_SIZE())
    {
    {
      unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
      unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
      invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
      invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
      memset (&invariant_table[invariant_table_size], 0,
      memset (&invariant_table[invariant_table_size], 0,
              (new_size - invariant_table_size) * sizeof (struct rtx_iv *));
              (new_size - invariant_table_size) * sizeof (struct rtx_iv *));
      invariant_table_size = new_size;
      invariant_table_size = new_size;
    }
    }
}
}
 
 
/* Test for possibility of invariantness of X.  */
/* Test for possibility of invariantness of X.  */
 
 
static bool
static bool
check_maybe_invariant (rtx x)
check_maybe_invariant (rtx x)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_FIXED:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CONST:
    case CONST:
    case LABEL_REF:
    case LABEL_REF:
      return true;
      return true;
 
 
    case PC:
    case PC:
    case CC0:
    case CC0:
    case UNSPEC_VOLATILE:
    case UNSPEC_VOLATILE:
    case CALL:
    case CALL:
      return false;
      return false;
 
 
    case REG:
    case REG:
      return true;
      return true;
 
 
    case MEM:
    case MEM:
      /* Load/store motion is done elsewhere.  ??? Perhaps also add it here?
      /* Load/store motion is done elsewhere.  ??? Perhaps also add it here?
         It should not be hard, and might be faster than "elsewhere".  */
         It should not be hard, and might be faster than "elsewhere".  */
 
 
      /* Just handle the most trivial case where we load from an unchanging
      /* Just handle the most trivial case where we load from an unchanging
         location (most importantly, pic tables).  */
         location (most importantly, pic tables).  */
      if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
      if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
        break;
        break;
 
 
      return false;
      return false;
 
 
    case ASM_OPERANDS:
    case ASM_OPERANDS:
      /* Don't mess with insns declared volatile.  */
      /* Don't mess with insns declared volatile.  */
      if (MEM_VOLATILE_P (x))
      if (MEM_VOLATILE_P (x))
        return false;
        return false;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          if (!check_maybe_invariant (XEXP (x, i)))
          if (!check_maybe_invariant (XEXP (x, i)))
            return false;
            return false;
        }
        }
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            if (!check_maybe_invariant (XVECEXP (x, i, j)))
            if (!check_maybe_invariant (XVECEXP (x, i, j)))
              return false;
              return false;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Returns the invariant definition for USE, or NULL if USE is not
/* Returns the invariant definition for USE, or NULL if USE is not
   invariant.  */
   invariant.  */
 
 
static struct invariant *
static struct invariant *
invariant_for_use (df_ref use)
invariant_for_use (df_ref use)
{
{
  struct df_link *defs;
  struct df_link *defs;
  df_ref def;
  df_ref def;
  basic_block bb = DF_REF_BB (use), def_bb;
  basic_block bb = DF_REF_BB (use), def_bb;
 
 
  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
    return NULL;
    return NULL;
 
 
  defs = DF_REF_CHAIN (use);
  defs = DF_REF_CHAIN (use);
  if (!defs || defs->next)
  if (!defs || defs->next)
    return NULL;
    return NULL;
  def = defs->ref;
  def = defs->ref;
  check_invariant_table_size ();
  check_invariant_table_size ();
  if (!invariant_table[DF_REF_ID(def)])
  if (!invariant_table[DF_REF_ID(def)])
    return NULL;
    return NULL;
 
 
  def_bb = DF_REF_BB (def);
  def_bb = DF_REF_BB (def);
  if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
  if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
    return NULL;
    return NULL;
  return invariant_table[DF_REF_ID(def)];
  return invariant_table[DF_REF_ID(def)];
}
}
 
 
/* Computes hash value for invariant expression X in INSN.  */
/* Computes hash value for invariant expression X in INSN.  */
 
 
static hashval_t
static hashval_t
hash_invariant_expr_1 (rtx insn, rtx x)
hash_invariant_expr_1 (rtx insn, rtx x)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
  hashval_t val = code;
  hashval_t val = code;
  int do_not_record_p;
  int do_not_record_p;
  df_ref use;
  df_ref use;
  struct invariant *inv;
  struct invariant *inv;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_FIXED:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CONST:
    case CONST:
    case LABEL_REF:
    case LABEL_REF:
      return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
      return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
 
 
    case REG:
    case REG:
      use = df_find_use (insn, x);
      use = df_find_use (insn, x);
      if (!use)
      if (!use)
        return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
        return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
      inv = invariant_for_use (use);
      inv = invariant_for_use (use);
      if (!inv)
      if (!inv)
        return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
        return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
 
 
      gcc_assert (inv->eqto != ~0u);
      gcc_assert (inv->eqto != ~0u);
      return inv->eqto;
      return inv->eqto;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
        val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
            val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
        }
        }
      else if (fmt[i] == 'i' || fmt[i] == 'n')
      else if (fmt[i] == 'i' || fmt[i] == 'n')
        val ^= XINT (x, i);
        val ^= XINT (x, i);
    }
    }
 
 
  return val;
  return val;
}
}
 
 
/* Returns true if the invariant expressions E1 and E2 used in insns INSN1
/* Returns true if the invariant expressions E1 and E2 used in insns INSN1
   and INSN2 have always the same value.  */
   and INSN2 have always the same value.  */
 
 
static bool
static bool
invariant_expr_equal_p (rtx insn1, rtx e1, rtx insn2, rtx e2)
invariant_expr_equal_p (rtx insn1, rtx e1, rtx insn2, rtx e2)
{
{
  enum rtx_code code = GET_CODE (e1);
  enum rtx_code code = GET_CODE (e1);
  int i, j;
  int i, j;
  const char *fmt;
  const char *fmt;
  df_ref use1, use2;
  df_ref use1, use2;
  struct invariant *inv1 = NULL, *inv2 = NULL;
  struct invariant *inv1 = NULL, *inv2 = NULL;
  rtx sub1, sub2;
  rtx sub1, sub2;
 
 
  /* If mode of only one of the operands is VOIDmode, it is not equivalent to
  /* If mode of only one of the operands is VOIDmode, it is not equivalent to
     the other one.  If both are VOIDmode, we rely on the caller of this
     the other one.  If both are VOIDmode, we rely on the caller of this
     function to verify that their modes are the same.  */
     function to verify that their modes are the same.  */
  if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
  if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
    return false;
    return false;
 
 
  switch (code)
  switch (code)
    {
    {
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_FIXED:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case CONST:
    case CONST:
    case LABEL_REF:
    case LABEL_REF:
      return rtx_equal_p (e1, e2);
      return rtx_equal_p (e1, e2);
 
 
    case REG:
    case REG:
      use1 = df_find_use (insn1, e1);
      use1 = df_find_use (insn1, e1);
      use2 = df_find_use (insn2, e2);
      use2 = df_find_use (insn2, e2);
      if (use1)
      if (use1)
        inv1 = invariant_for_use (use1);
        inv1 = invariant_for_use (use1);
      if (use2)
      if (use2)
        inv2 = invariant_for_use (use2);
        inv2 = invariant_for_use (use2);
 
 
      if (!inv1 && !inv2)
      if (!inv1 && !inv2)
        return rtx_equal_p (e1, e2);
        return rtx_equal_p (e1, e2);
 
 
      if (!inv1 || !inv2)
      if (!inv1 || !inv2)
        return false;
        return false;
 
 
      gcc_assert (inv1->eqto != ~0u);
      gcc_assert (inv1->eqto != ~0u);
      gcc_assert (inv2->eqto != ~0u);
      gcc_assert (inv2->eqto != ~0u);
      return inv1->eqto == inv2->eqto;
      return inv1->eqto == inv2->eqto;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        {
        {
          sub1 = XEXP (e1, i);
          sub1 = XEXP (e1, i);
          sub2 = XEXP (e2, i);
          sub2 = XEXP (e2, i);
 
 
          if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
          if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
            return false;
            return false;
        }
        }
 
 
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          if (XVECLEN (e1, i) != XVECLEN (e2, i))
          if (XVECLEN (e1, i) != XVECLEN (e2, i))
            return false;
            return false;
 
 
          for (j = 0; j < XVECLEN (e1, i); j++)
          for (j = 0; j < XVECLEN (e1, i); j++)
            {
            {
              sub1 = XVECEXP (e1, i, j);
              sub1 = XVECEXP (e1, i, j);
              sub2 = XVECEXP (e2, i, j);
              sub2 = XVECEXP (e2, i, j);
 
 
              if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
              if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
                return false;
                return false;
            }
            }
        }
        }
      else if (fmt[i] == 'i' || fmt[i] == 'n')
      else if (fmt[i] == 'i' || fmt[i] == 'n')
        {
        {
          if (XINT (e1, i) != XINT (e2, i))
          if (XINT (e1, i) != XINT (e2, i))
            return false;
            return false;
        }
        }
      /* Unhandled type of subexpression, we fail conservatively.  */
      /* Unhandled type of subexpression, we fail conservatively.  */
      else
      else
        return false;
        return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Returns hash value for invariant expression entry E.  */
/* Returns hash value for invariant expression entry E.  */
 
 
static hashval_t
static hashval_t
hash_invariant_expr (const void *e)
hash_invariant_expr (const void *e)
{
{
  const struct invariant_expr_entry *const entry =
  const struct invariant_expr_entry *const entry =
    (const struct invariant_expr_entry *) e;
    (const struct invariant_expr_entry *) e;
 
 
  return entry->hash;
  return entry->hash;
}
}
 
 
/* Compares invariant expression entries E1 and E2.  */
/* Compares invariant expression entries E1 and E2.  */
 
 
static int
static int
eq_invariant_expr (const void *e1, const void *e2)
eq_invariant_expr (const void *e1, const void *e2)
{
{
  const struct invariant_expr_entry *const entry1 =
  const struct invariant_expr_entry *const entry1 =
    (const struct invariant_expr_entry *) e1;
    (const struct invariant_expr_entry *) e1;
  const struct invariant_expr_entry *const entry2 =
  const struct invariant_expr_entry *const entry2 =
    (const struct invariant_expr_entry *) e2;
    (const struct invariant_expr_entry *) e2;
 
 
  if (entry1->mode != entry2->mode)
  if (entry1->mode != entry2->mode)
    return 0;
    return 0;
 
 
  return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
  return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
                                 entry2->inv->insn, entry2->expr);
                                 entry2->inv->insn, entry2->expr);
}
}
 
 
/* Checks whether invariant with value EXPR in machine mode MODE is
/* Checks whether invariant with value EXPR in machine mode MODE is
   recorded in EQ.  If this is the case, return the invariant.  Otherwise
   recorded in EQ.  If this is the case, return the invariant.  Otherwise
   insert INV to the table for this expression and return INV.  */
   insert INV to the table for this expression and return INV.  */
 
 
static struct invariant *
static struct invariant *
find_or_insert_inv (htab_t eq, rtx expr, enum machine_mode mode,
find_or_insert_inv (htab_t eq, rtx expr, enum machine_mode mode,
                    struct invariant *inv)
                    struct invariant *inv)
{
{
  hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
  hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
  struct invariant_expr_entry *entry;
  struct invariant_expr_entry *entry;
  struct invariant_expr_entry pentry;
  struct invariant_expr_entry pentry;
  PTR *slot;
  PTR *slot;
 
 
  pentry.expr = expr;
  pentry.expr = expr;
  pentry.inv = inv;
  pentry.inv = inv;
  pentry.mode = mode;
  pentry.mode = mode;
  slot = htab_find_slot_with_hash (eq, &pentry, hash, INSERT);
  slot = htab_find_slot_with_hash (eq, &pentry, hash, INSERT);
  entry = (struct invariant_expr_entry *) *slot;
  entry = (struct invariant_expr_entry *) *slot;
 
 
  if (entry)
  if (entry)
    return entry->inv;
    return entry->inv;
 
 
  entry = XNEW (struct invariant_expr_entry);
  entry = XNEW (struct invariant_expr_entry);
  entry->inv = inv;
  entry->inv = inv;
  entry->expr = expr;
  entry->expr = expr;
  entry->mode = mode;
  entry->mode = mode;
  entry->hash = hash;
  entry->hash = hash;
  *slot = entry;
  *slot = entry;
 
 
  return inv;
  return inv;
}
}
 
 
/* Finds invariants identical to INV and records the equivalence.  EQ is the
/* Finds invariants identical to INV and records the equivalence.  EQ is the
   hash table of the invariants.  */
   hash table of the invariants.  */
 
 
static void
static void
find_identical_invariants (htab_t eq, struct invariant *inv)
find_identical_invariants (htab_t eq, struct invariant *inv)
{
{
  unsigned depno;
  unsigned depno;
  bitmap_iterator bi;
  bitmap_iterator bi;
  struct invariant *dep;
  struct invariant *dep;
  rtx expr, set;
  rtx expr, set;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  if (inv->eqto != ~0u)
  if (inv->eqto != ~0u)
    return;
    return;
 
 
  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
    {
    {
      dep = VEC_index (invariant_p, invariants, depno);
      dep = VEC_index (invariant_p, invariants, depno);
      find_identical_invariants (eq, dep);
      find_identical_invariants (eq, dep);
    }
    }
 
 
  set = single_set (inv->insn);
  set = single_set (inv->insn);
  expr = SET_SRC (set);
  expr = SET_SRC (set);
  mode = GET_MODE (expr);
  mode = GET_MODE (expr);
  if (mode == VOIDmode)
  if (mode == VOIDmode)
    mode = GET_MODE (SET_DEST (set));
    mode = GET_MODE (SET_DEST (set));
  inv->eqto = find_or_insert_inv (eq, expr, mode, inv)->invno;
  inv->eqto = find_or_insert_inv (eq, expr, mode, inv)->invno;
 
 
  if (dump_file && inv->eqto != inv->invno)
  if (dump_file && inv->eqto != inv->invno)
    fprintf (dump_file,
    fprintf (dump_file,
             "Invariant %d is equivalent to invariant %d.\n",
             "Invariant %d is equivalent to invariant %d.\n",
             inv->invno, inv->eqto);
             inv->invno, inv->eqto);
}
}
 
 
/* Find invariants with the same value and record the equivalences.  */
/* Find invariants with the same value and record the equivalences.  */
 
 
static void
static void
merge_identical_invariants (void)
merge_identical_invariants (void)
{
{
  unsigned i;
  unsigned i;
  struct invariant *inv;
  struct invariant *inv;
  htab_t eq = htab_create (VEC_length (invariant_p, invariants),
  htab_t eq = htab_create (VEC_length (invariant_p, invariants),
                           hash_invariant_expr, eq_invariant_expr, free);
                           hash_invariant_expr, eq_invariant_expr, free);
 
 
  for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
  for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
    find_identical_invariants (eq, inv);
    find_identical_invariants (eq, inv);
 
 
  htab_delete (eq);
  htab_delete (eq);
}
}
 
 
/* Determines the basic blocks inside LOOP that are always executed and
/* Determines the basic blocks inside LOOP that are always executed and
   stores their bitmap to ALWAYS_REACHED.  MAY_EXIT is a bitmap of
   stores their bitmap to ALWAYS_REACHED.  MAY_EXIT is a bitmap of
   basic blocks that may either exit the loop, or contain the call that
   basic blocks that may either exit the loop, or contain the call that
   does not have to return.  BODY is body of the loop obtained by
   does not have to return.  BODY is body of the loop obtained by
   get_loop_body_in_dom_order.  */
   get_loop_body_in_dom_order.  */
 
 
static void
static void
compute_always_reached (struct loop *loop, basic_block *body,
compute_always_reached (struct loop *loop, basic_block *body,
                        bitmap may_exit, bitmap always_reached)
                        bitmap may_exit, bitmap always_reached)
{
{
  unsigned i;
  unsigned i;
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
      if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
        bitmap_set_bit (always_reached, i);
        bitmap_set_bit (always_reached, i);
 
 
      if (bitmap_bit_p (may_exit, i))
      if (bitmap_bit_p (may_exit, i))
        return;
        return;
    }
    }
}
}
 
 
/* Finds exits out of the LOOP with body BODY.  Marks blocks in that we may
/* Finds exits out of the LOOP with body BODY.  Marks blocks in that we may
   exit the loop by cfg edge to HAS_EXIT and MAY_EXIT.  In MAY_EXIT
   exit the loop by cfg edge to HAS_EXIT and MAY_EXIT.  In MAY_EXIT
   additionally mark blocks that may exit due to a call.  */
   additionally mark blocks that may exit due to a call.  */
 
 
static void
static void
find_exits (struct loop *loop, basic_block *body,
find_exits (struct loop *loop, basic_block *body,
            bitmap may_exit, bitmap has_exit)
            bitmap may_exit, bitmap has_exit)
{
{
  unsigned i;
  unsigned i;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
  struct loop *outermost_exit = loop, *aexit;
  struct loop *outermost_exit = loop, *aexit;
  bool has_call = false;
  bool has_call = false;
  rtx insn;
  rtx insn;
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      if (body[i]->loop_father == loop)
      if (body[i]->loop_father == loop)
        {
        {
          FOR_BB_INSNS (body[i], insn)
          FOR_BB_INSNS (body[i], insn)
            {
            {
              if (CALL_P (insn)
              if (CALL_P (insn)
                  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
                  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
                      || !RTL_CONST_OR_PURE_CALL_P (insn)))
                      || !RTL_CONST_OR_PURE_CALL_P (insn)))
                {
                {
                  has_call = true;
                  has_call = true;
                  bitmap_set_bit (may_exit, i);
                  bitmap_set_bit (may_exit, i);
                  break;
                  break;
                }
                }
            }
            }
 
 
          FOR_EACH_EDGE (e, ei, body[i]->succs)
          FOR_EACH_EDGE (e, ei, body[i]->succs)
            {
            {
              if (flow_bb_inside_loop_p (loop, e->dest))
              if (flow_bb_inside_loop_p (loop, e->dest))
                continue;
                continue;
 
 
              bitmap_set_bit (may_exit, i);
              bitmap_set_bit (may_exit, i);
              bitmap_set_bit (has_exit, i);
              bitmap_set_bit (has_exit, i);
              outermost_exit = find_common_loop (outermost_exit,
              outermost_exit = find_common_loop (outermost_exit,
                                                 e->dest->loop_father);
                                                 e->dest->loop_father);
            }
            }
          continue;
          continue;
        }
        }
 
 
      /* Use the data stored for the subloop to decide whether we may exit
      /* Use the data stored for the subloop to decide whether we may exit
         through it.  It is sufficient to do this for header of the loop,
         through it.  It is sufficient to do this for header of the loop,
         as other basic blocks inside it must be dominated by it.  */
         as other basic blocks inside it must be dominated by it.  */
      if (body[i]->loop_father->header != body[i])
      if (body[i]->loop_father->header != body[i])
        continue;
        continue;
 
 
      if (LOOP_DATA (body[i]->loop_father)->has_call)
      if (LOOP_DATA (body[i]->loop_father)->has_call)
        {
        {
          has_call = true;
          has_call = true;
          bitmap_set_bit (may_exit, i);
          bitmap_set_bit (may_exit, i);
        }
        }
      aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
      aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
      if (aexit != loop)
      if (aexit != loop)
        {
        {
          bitmap_set_bit (may_exit, i);
          bitmap_set_bit (may_exit, i);
          bitmap_set_bit (has_exit, i);
          bitmap_set_bit (has_exit, i);
 
 
          if (flow_loop_nested_p (aexit, outermost_exit))
          if (flow_loop_nested_p (aexit, outermost_exit))
            outermost_exit = aexit;
            outermost_exit = aexit;
        }
        }
    }
    }
 
 
  if (loop->aux == NULL)
  if (loop->aux == NULL)
    {
    {
      loop->aux = xcalloc (1, sizeof (struct loop_data));
      loop->aux = xcalloc (1, sizeof (struct loop_data));
      bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
      bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
      bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
      bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
    }
    }
  LOOP_DATA (loop)->outermost_exit = outermost_exit;
  LOOP_DATA (loop)->outermost_exit = outermost_exit;
  LOOP_DATA (loop)->has_call = has_call;
  LOOP_DATA (loop)->has_call = has_call;
}
}
 
 
/* Check whether we may assign a value to X from a register.  */
/* Check whether we may assign a value to X from a register.  */
 
 
static bool
static bool
may_assign_reg_p (rtx x)
may_assign_reg_p (rtx x)
{
{
  return (GET_MODE (x) != VOIDmode
  return (GET_MODE (x) != VOIDmode
          && GET_MODE (x) != BLKmode
          && GET_MODE (x) != BLKmode
          && can_copy_p (GET_MODE (x))
          && can_copy_p (GET_MODE (x))
          && (!REG_P (x)
          && (!REG_P (x)
              || !HARD_REGISTER_P (x)
              || !HARD_REGISTER_P (x)
              || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
              || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
}
}
 
 
/* Finds definitions that may correspond to invariants in LOOP with body
/* Finds definitions that may correspond to invariants in LOOP with body
   BODY.  */
   BODY.  */
 
 
static void
static void
find_defs (struct loop *loop, basic_block *body)
find_defs (struct loop *loop, basic_block *body)
{
{
  unsigned i;
  unsigned i;
  bitmap blocks = BITMAP_ALLOC (NULL);
  bitmap blocks = BITMAP_ALLOC (NULL);
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    bitmap_set_bit (blocks, body[i]->index);
    bitmap_set_bit (blocks, body[i]->index);
 
 
  df_remove_problem (df_chain);
  df_remove_problem (df_chain);
  df_process_deferred_rescans ();
  df_process_deferred_rescans ();
  df_chain_add_problem (DF_UD_CHAIN);
  df_chain_add_problem (DF_UD_CHAIN);
  df_set_blocks (blocks);
  df_set_blocks (blocks);
  df_analyze ();
  df_analyze ();
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      df_dump_region (dump_file);
      df_dump_region (dump_file);
      fprintf (dump_file, "*****starting processing of loop  ******\n");
      fprintf (dump_file, "*****starting processing of loop  ******\n");
      print_rtl_with_bb (dump_file, get_insns ());
      print_rtl_with_bb (dump_file, get_insns ());
      fprintf (dump_file, "*****ending processing of loop  ******\n");
      fprintf (dump_file, "*****ending processing of loop  ******\n");
    }
    }
  check_invariant_table_size ();
  check_invariant_table_size ();
 
 
  BITMAP_FREE (blocks);
  BITMAP_FREE (blocks);
}
}
 
 
/* Creates a new invariant for definition DEF in INSN, depending on invariants
/* Creates a new invariant for definition DEF in INSN, depending on invariants
   in DEPENDS_ON.  ALWAYS_EXECUTED is true if the insn is always executed,
   in DEPENDS_ON.  ALWAYS_EXECUTED is true if the insn is always executed,
   unless the program ends due to a function call.  The newly created invariant
   unless the program ends due to a function call.  The newly created invariant
   is returned.  */
   is returned.  */
 
 
static struct invariant *
static struct invariant *
create_new_invariant (struct def *def, rtx insn, bitmap depends_on,
create_new_invariant (struct def *def, rtx insn, bitmap depends_on,
                      bool always_executed)
                      bool always_executed)
{
{
  struct invariant *inv = XNEW (struct invariant);
  struct invariant *inv = XNEW (struct invariant);
  rtx set = single_set (insn);
  rtx set = single_set (insn);
  bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
  bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
 
 
  inv->def = def;
  inv->def = def;
  inv->always_executed = always_executed;
  inv->always_executed = always_executed;
  inv->depends_on = depends_on;
  inv->depends_on = depends_on;
 
 
  /* If the set is simple, usually by moving it we move the whole store out of
  /* If the set is simple, usually by moving it we move the whole store out of
     the loop.  Otherwise we save only cost of the computation.  */
     the loop.  Otherwise we save only cost of the computation.  */
  if (def)
  if (def)
    {
    {
      inv->cost = rtx_cost (set, SET, speed);
      inv->cost = rtx_cost (set, SET, speed);
      /* ??? Try to determine cheapness of address computation.  Unfortunately
      /* ??? Try to determine cheapness of address computation.  Unfortunately
         the address cost is only a relative measure, we can't really compare
         the address cost is only a relative measure, we can't really compare
         it with any absolute number, but only with other address costs.
         it with any absolute number, but only with other address costs.
         But here we don't have any other addresses, so compare with a magic
         But here we don't have any other addresses, so compare with a magic
         number anyway.  It has to be large enough to not regress PR33928
         number anyway.  It has to be large enough to not regress PR33928
         (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
         (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
         enough to not regress 410.bwaves either (by still moving reg+reg
         enough to not regress 410.bwaves either (by still moving reg+reg
         invariants).
         invariants).
         See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html .  */
         See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html .  */
      inv->cheap_address = address_cost (SET_SRC (set), word_mode,
      inv->cheap_address = address_cost (SET_SRC (set), word_mode,
                                         ADDR_SPACE_GENERIC, speed) < 3;
                                         ADDR_SPACE_GENERIC, speed) < 3;
    }
    }
  else
  else
    {
    {
      inv->cost = rtx_cost (SET_SRC (set), SET, speed);
      inv->cost = rtx_cost (SET_SRC (set), SET, speed);
      inv->cheap_address = false;
      inv->cheap_address = false;
    }
    }
 
 
  inv->move = false;
  inv->move = false;
  inv->reg = NULL_RTX;
  inv->reg = NULL_RTX;
  inv->orig_regno = -1;
  inv->orig_regno = -1;
  inv->stamp = 0;
  inv->stamp = 0;
  inv->insn = insn;
  inv->insn = insn;
 
 
  inv->invno = VEC_length (invariant_p, invariants);
  inv->invno = VEC_length (invariant_p, invariants);
  inv->eqto = ~0u;
  inv->eqto = ~0u;
  if (def)
  if (def)
    def->invno = inv->invno;
    def->invno = inv->invno;
  VEC_safe_push (invariant_p, heap, invariants, inv);
  VEC_safe_push (invariant_p, heap, invariants, inv);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "Set in insn %d is invariant (%d), cost %d, depends on ",
               "Set in insn %d is invariant (%d), cost %d, depends on ",
               INSN_UID (insn), inv->invno, inv->cost);
               INSN_UID (insn), inv->invno, inv->cost);
      dump_bitmap (dump_file, inv->depends_on);
      dump_bitmap (dump_file, inv->depends_on);
    }
    }
 
 
  return inv;
  return inv;
}
}
 
 
/* Record USE at DEF.  */
/* Record USE at DEF.  */
 
 
static void
static void
record_use (struct def *def, df_ref use)
record_use (struct def *def, df_ref use)
{
{
  struct use *u = XNEW (struct use);
  struct use *u = XNEW (struct use);
 
 
  u->pos = DF_REF_REAL_LOC (use);
  u->pos = DF_REF_REAL_LOC (use);
  u->insn = DF_REF_INSN (use);
  u->insn = DF_REF_INSN (use);
  u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
  u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
                   || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
                   || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
  u->next = def->uses;
  u->next = def->uses;
  def->uses = u;
  def->uses = u;
  def->n_uses++;
  def->n_uses++;
  if (u->addr_use_p)
  if (u->addr_use_p)
    def->n_addr_uses++;
    def->n_addr_uses++;
}
}
 
 
/* Finds the invariants USE depends on and store them to the DEPENDS_ON
/* Finds the invariants USE depends on and store them to the DEPENDS_ON
   bitmap.  Returns true if all dependencies of USE are known to be
   bitmap.  Returns true if all dependencies of USE are known to be
   loop invariants, false otherwise.  */
   loop invariants, false otherwise.  */
 
 
static bool
static bool
check_dependency (basic_block bb, df_ref use, bitmap depends_on)
check_dependency (basic_block bb, df_ref use, bitmap depends_on)
{
{
  df_ref def;
  df_ref def;
  basic_block def_bb;
  basic_block def_bb;
  struct df_link *defs;
  struct df_link *defs;
  struct def *def_data;
  struct def *def_data;
  struct invariant *inv;
  struct invariant *inv;
 
 
  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
    return false;
    return false;
 
 
  defs = DF_REF_CHAIN (use);
  defs = DF_REF_CHAIN (use);
  if (!defs)
  if (!defs)
    return true;
    return true;
 
 
  if (defs->next)
  if (defs->next)
    return false;
    return false;
 
 
  def = defs->ref;
  def = defs->ref;
  check_invariant_table_size ();
  check_invariant_table_size ();
  inv = invariant_table[DF_REF_ID(def)];
  inv = invariant_table[DF_REF_ID(def)];
  if (!inv)
  if (!inv)
    return false;
    return false;
 
 
  def_data = inv->def;
  def_data = inv->def;
  gcc_assert (def_data != NULL);
  gcc_assert (def_data != NULL);
 
 
  def_bb = DF_REF_BB (def);
  def_bb = DF_REF_BB (def);
  /* Note that in case bb == def_bb, we know that the definition
  /* Note that in case bb == def_bb, we know that the definition
     dominates insn, because def has invariant_table[DF_REF_ID(def)]
     dominates insn, because def has invariant_table[DF_REF_ID(def)]
     defined and we process the insns in the basic block bb
     defined and we process the insns in the basic block bb
     sequentially.  */
     sequentially.  */
  if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
  if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
    return false;
    return false;
 
 
  bitmap_set_bit (depends_on, def_data->invno);
  bitmap_set_bit (depends_on, def_data->invno);
  return true;
  return true;
}
}
 
 
 
 
/* Finds the invariants INSN depends on and store them to the DEPENDS_ON
/* Finds the invariants INSN depends on and store them to the DEPENDS_ON
   bitmap.  Returns true if all dependencies of INSN are known to be
   bitmap.  Returns true if all dependencies of INSN are known to be
   loop invariants, false otherwise.  */
   loop invariants, false otherwise.  */
 
 
static bool
static bool
check_dependencies (rtx insn, bitmap depends_on)
check_dependencies (rtx insn, bitmap depends_on)
{
{
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref *use_rec;
  df_ref *use_rec;
  basic_block bb = BLOCK_FOR_INSN (insn);
  basic_block bb = BLOCK_FOR_INSN (insn);
 
 
  for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
  for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
    if (!check_dependency (bb, *use_rec, depends_on))
    if (!check_dependency (bb, *use_rec, depends_on))
      return false;
      return false;
  for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
  for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
    if (!check_dependency (bb, *use_rec, depends_on))
    if (!check_dependency (bb, *use_rec, depends_on))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Finds invariant in INSN.  ALWAYS_REACHED is true if the insn is always
/* Finds invariant in INSN.  ALWAYS_REACHED is true if the insn is always
   executed.  ALWAYS_EXECUTED is true if the insn is always executed,
   executed.  ALWAYS_EXECUTED is true if the insn is always executed,
   unless the program ends due to a function call.  */
   unless the program ends due to a function call.  */
 
 
static void
static void
find_invariant_insn (rtx insn, bool always_reached, bool always_executed)
find_invariant_insn (rtx insn, bool always_reached, bool always_executed)
{
{
  df_ref ref;
  df_ref ref;
  struct def *def;
  struct def *def;
  bitmap depends_on;
  bitmap depends_on;
  rtx set, dest;
  rtx set, dest;
  bool simple = true;
  bool simple = true;
  struct invariant *inv;
  struct invariant *inv;
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  /* We can't move a CC0 setter without the user.  */
  /* We can't move a CC0 setter without the user.  */
  if (sets_cc0_p (insn))
  if (sets_cc0_p (insn))
    return;
    return;
#endif
#endif
 
 
  set = single_set (insn);
  set = single_set (insn);
  if (!set)
  if (!set)
    return;
    return;
  dest = SET_DEST (set);
  dest = SET_DEST (set);
 
 
  if (!REG_P (dest)
  if (!REG_P (dest)
      || HARD_REGISTER_P (dest))
      || HARD_REGISTER_P (dest))
    simple = false;
    simple = false;
 
 
  if (!may_assign_reg_p (SET_DEST (set))
  if (!may_assign_reg_p (SET_DEST (set))
      || !check_maybe_invariant (SET_SRC (set)))
      || !check_maybe_invariant (SET_SRC (set)))
    return;
    return;
 
 
  /* If the insn can throw exception, we cannot move it at all without changing
  /* If the insn can throw exception, we cannot move it at all without changing
     cfg.  */
     cfg.  */
  if (can_throw_internal (insn))
  if (can_throw_internal (insn))
    return;
    return;
 
 
  /* We cannot make trapping insn executed, unless it was executed before.  */
  /* We cannot make trapping insn executed, unless it was executed before.  */
  if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
  if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
    return;
    return;
 
 
  depends_on = BITMAP_ALLOC (NULL);
  depends_on = BITMAP_ALLOC (NULL);
  if (!check_dependencies (insn, depends_on))
  if (!check_dependencies (insn, depends_on))
    {
    {
      BITMAP_FREE (depends_on);
      BITMAP_FREE (depends_on);
      return;
      return;
    }
    }
 
 
  if (simple)
  if (simple)
    def = XCNEW (struct def);
    def = XCNEW (struct def);
  else
  else
    def = NULL;
    def = NULL;
 
 
  inv = create_new_invariant (def, insn, depends_on, always_executed);
  inv = create_new_invariant (def, insn, depends_on, always_executed);
 
 
  if (simple)
  if (simple)
    {
    {
      ref = df_find_def (insn, dest);
      ref = df_find_def (insn, dest);
      check_invariant_table_size ();
      check_invariant_table_size ();
      invariant_table[DF_REF_ID(ref)] = inv;
      invariant_table[DF_REF_ID(ref)] = inv;
    }
    }
}
}
 
 
/* Record registers used in INSN that have a unique invariant definition.  */
/* Record registers used in INSN that have a unique invariant definition.  */
 
 
static void
static void
record_uses (rtx insn)
record_uses (rtx insn)
{
{
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
  df_ref *use_rec;
  df_ref *use_rec;
  struct invariant *inv;
  struct invariant *inv;
 
 
  for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
  for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
    {
    {
      df_ref use = *use_rec;
      df_ref use = *use_rec;
      inv = invariant_for_use (use);
      inv = invariant_for_use (use);
      if (inv)
      if (inv)
        record_use (inv->def, use);
        record_use (inv->def, use);
    }
    }
  for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
  for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
    {
    {
      df_ref use = *use_rec;
      df_ref use = *use_rec;
      inv = invariant_for_use (use);
      inv = invariant_for_use (use);
      if (inv)
      if (inv)
        record_use (inv->def, use);
        record_use (inv->def, use);
    }
    }
}
}
 
 
/* Finds invariants in INSN.  ALWAYS_REACHED is true if the insn is always
/* Finds invariants in INSN.  ALWAYS_REACHED is true if the insn is always
   executed.  ALWAYS_EXECUTED is true if the insn is always executed,
   executed.  ALWAYS_EXECUTED is true if the insn is always executed,
   unless the program ends due to a function call.  */
   unless the program ends due to a function call.  */
 
 
static void
static void
find_invariants_insn (rtx insn, bool always_reached, bool always_executed)
find_invariants_insn (rtx insn, bool always_reached, bool always_executed)
{
{
  find_invariant_insn (insn, always_reached, always_executed);
  find_invariant_insn (insn, always_reached, always_executed);
  record_uses (insn);
  record_uses (insn);
}
}
 
 
/* Finds invariants in basic block BB.  ALWAYS_REACHED is true if the
/* Finds invariants in basic block BB.  ALWAYS_REACHED is true if the
   basic block is always executed.  ALWAYS_EXECUTED is true if the basic
   basic block is always executed.  ALWAYS_EXECUTED is true if the basic
   block is always executed, unless the program ends due to a function
   block is always executed, unless the program ends due to a function
   call.  */
   call.  */
 
 
static void
static void
find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
{
{
  rtx insn;
  rtx insn;
 
 
  FOR_BB_INSNS (bb, insn)
  FOR_BB_INSNS (bb, insn)
    {
    {
      if (!NONDEBUG_INSN_P (insn))
      if (!NONDEBUG_INSN_P (insn))
        continue;
        continue;
 
 
      find_invariants_insn (insn, always_reached, always_executed);
      find_invariants_insn (insn, always_reached, always_executed);
 
 
      if (always_reached
      if (always_reached
          && CALL_P (insn)
          && CALL_P (insn)
          && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
          && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
              || ! RTL_CONST_OR_PURE_CALL_P (insn)))
              || ! RTL_CONST_OR_PURE_CALL_P (insn)))
        always_reached = false;
        always_reached = false;
    }
    }
}
}
 
 
/* Finds invariants in LOOP with body BODY.  ALWAYS_REACHED is the bitmap of
/* Finds invariants in LOOP with body BODY.  ALWAYS_REACHED is the bitmap of
   basic blocks in BODY that are always executed.  ALWAYS_EXECUTED is the
   basic blocks in BODY that are always executed.  ALWAYS_EXECUTED is the
   bitmap of basic blocks in BODY that are always executed unless the program
   bitmap of basic blocks in BODY that are always executed unless the program
   ends due to a function call.  */
   ends due to a function call.  */
 
 
static void
static void
find_invariants_body (struct loop *loop, basic_block *body,
find_invariants_body (struct loop *loop, basic_block *body,
                      bitmap always_reached, bitmap always_executed)
                      bitmap always_reached, bitmap always_executed)
{
{
  unsigned i;
  unsigned i;
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    find_invariants_bb (body[i],
    find_invariants_bb (body[i],
                        bitmap_bit_p (always_reached, i),
                        bitmap_bit_p (always_reached, i),
                        bitmap_bit_p (always_executed, i));
                        bitmap_bit_p (always_executed, i));
}
}
 
 
/* Finds invariants in LOOP.  */
/* Finds invariants in LOOP.  */
 
 
static void
static void
find_invariants (struct loop *loop)
find_invariants (struct loop *loop)
{
{
  bitmap may_exit = BITMAP_ALLOC (NULL);
  bitmap may_exit = BITMAP_ALLOC (NULL);
  bitmap always_reached = BITMAP_ALLOC (NULL);
  bitmap always_reached = BITMAP_ALLOC (NULL);
  bitmap has_exit = BITMAP_ALLOC (NULL);
  bitmap has_exit = BITMAP_ALLOC (NULL);
  bitmap always_executed = BITMAP_ALLOC (NULL);
  bitmap always_executed = BITMAP_ALLOC (NULL);
  basic_block *body = get_loop_body_in_dom_order (loop);
  basic_block *body = get_loop_body_in_dom_order (loop);
 
 
  find_exits (loop, body, may_exit, has_exit);
  find_exits (loop, body, may_exit, has_exit);
  compute_always_reached (loop, body, may_exit, always_reached);
  compute_always_reached (loop, body, may_exit, always_reached);
  compute_always_reached (loop, body, has_exit, always_executed);
  compute_always_reached (loop, body, has_exit, always_executed);
 
 
  find_defs (loop, body);
  find_defs (loop, body);
  find_invariants_body (loop, body, always_reached, always_executed);
  find_invariants_body (loop, body, always_reached, always_executed);
  merge_identical_invariants ();
  merge_identical_invariants ();
 
 
  BITMAP_FREE (always_reached);
  BITMAP_FREE (always_reached);
  BITMAP_FREE (always_executed);
  BITMAP_FREE (always_executed);
  BITMAP_FREE (may_exit);
  BITMAP_FREE (may_exit);
  BITMAP_FREE (has_exit);
  BITMAP_FREE (has_exit);
  free (body);
  free (body);
}
}
 
 
/* Frees a list of uses USE.  */
/* Frees a list of uses USE.  */
 
 
static void
static void
free_use_list (struct use *use)
free_use_list (struct use *use)
{
{
  struct use *next;
  struct use *next;
 
 
  for (; use; use = next)
  for (; use; use = next)
    {
    {
      next = use->next;
      next = use->next;
      free (use);
      free (use);
    }
    }
}
}
 
 
/* Return cover class and number of hard registers (through *NREGS)
/* Return cover class and number of hard registers (through *NREGS)
   for destination of INSN. */
   for destination of INSN. */
static enum reg_class
static enum reg_class
get_cover_class_and_nregs (rtx insn, int *nregs)
get_cover_class_and_nregs (rtx insn, int *nregs)
{
{
  rtx reg;
  rtx reg;
  enum reg_class cover_class;
  enum reg_class cover_class;
  rtx set = single_set (insn);
  rtx set = single_set (insn);
 
 
  /* Considered invariant insns have only one set.  */
  /* Considered invariant insns have only one set.  */
  gcc_assert (set != NULL_RTX);
  gcc_assert (set != NULL_RTX);
  reg = SET_DEST (set);
  reg = SET_DEST (set);
  if (GET_CODE (reg) == SUBREG)
  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);
    reg = SUBREG_REG (reg);
  if (MEM_P (reg))
  if (MEM_P (reg))
    {
    {
      *nregs = 0;
      *nregs = 0;
      cover_class = NO_REGS;
      cover_class = NO_REGS;
    }
    }
  else
  else
    {
    {
      if (! REG_P (reg))
      if (! REG_P (reg))
        reg = NULL_RTX;
        reg = NULL_RTX;
      if (reg == NULL_RTX)
      if (reg == NULL_RTX)
        cover_class = GENERAL_REGS;
        cover_class = GENERAL_REGS;
      else
      else
        cover_class = reg_cover_class (REGNO (reg));
        cover_class = reg_cover_class (REGNO (reg));
      *nregs = ira_reg_class_nregs[cover_class][GET_MODE (SET_SRC (set))];
      *nregs = ira_reg_class_nregs[cover_class][GET_MODE (SET_SRC (set))];
    }
    }
  return cover_class;
  return cover_class;
}
}
 
 
/* Calculates cost and number of registers needed for moving invariant INV
/* Calculates cost and number of registers needed for moving invariant INV
   out of the loop and stores them to *COST and *REGS_NEEDED.  */
   out of the loop and stores them to *COST and *REGS_NEEDED.  */
 
 
static void
static void
get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed)
get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed)
{
{
  int i, acomp_cost;
  int i, acomp_cost;
  unsigned aregs_needed[N_REG_CLASSES];
  unsigned aregs_needed[N_REG_CLASSES];
  unsigned depno;
  unsigned depno;
  struct invariant *dep;
  struct invariant *dep;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  /* Find the representative of the class of the equivalent invariants.  */
  /* Find the representative of the class of the equivalent invariants.  */
  inv = VEC_index (invariant_p, invariants, inv->eqto);
  inv = VEC_index (invariant_p, invariants, inv->eqto);
 
 
  *comp_cost = 0;
  *comp_cost = 0;
  if (! flag_ira_loop_pressure)
  if (! flag_ira_loop_pressure)
    regs_needed[0] = 0;
    regs_needed[0] = 0;
  else
  else
    {
    {
      for (i = 0; i < ira_reg_class_cover_size; i++)
      for (i = 0; i < ira_reg_class_cover_size; i++)
        regs_needed[ira_reg_class_cover[i]] = 0;
        regs_needed[ira_reg_class_cover[i]] = 0;
    }
    }
 
 
  if (inv->move
  if (inv->move
      || inv->stamp == actual_stamp)
      || inv->stamp == actual_stamp)
    return;
    return;
  inv->stamp = actual_stamp;
  inv->stamp = actual_stamp;
 
 
  if (! flag_ira_loop_pressure)
  if (! flag_ira_loop_pressure)
    regs_needed[0]++;
    regs_needed[0]++;
  else
  else
    {
    {
      int nregs;
      int nregs;
      enum reg_class cover_class;
      enum reg_class cover_class;
 
 
      cover_class = get_cover_class_and_nregs (inv->insn, &nregs);
      cover_class = get_cover_class_and_nregs (inv->insn, &nregs);
      regs_needed[cover_class] += nregs;
      regs_needed[cover_class] += nregs;
    }
    }
 
 
  if (!inv->cheap_address
  if (!inv->cheap_address
      || inv->def->n_addr_uses < inv->def->n_uses)
      || inv->def->n_addr_uses < inv->def->n_uses)
    (*comp_cost) += inv->cost;
    (*comp_cost) += inv->cost;
 
 
#ifdef STACK_REGS
#ifdef STACK_REGS
  {
  {
    /* Hoisting constant pool constants into stack regs may cost more than
    /* Hoisting constant pool constants into stack regs may cost more than
       just single register.  On x87, the balance is affected both by the
       just single register.  On x87, the balance is affected both by the
       small number of FP registers, and by its register stack organization,
       small number of FP registers, and by its register stack organization,
       that forces us to add compensation code in and around the loop to
       that forces us to add compensation code in and around the loop to
       shuffle the operands to the top of stack before use, and pop them
       shuffle the operands to the top of stack before use, and pop them
       from the stack after the loop finishes.
       from the stack after the loop finishes.
 
 
       To model this effect, we increase the number of registers needed for
       To model this effect, we increase the number of registers needed for
       stack registers by two: one register push, and one register pop.
       stack registers by two: one register push, and one register pop.
       This usually has the effect that FP constant loads from the constant
       This usually has the effect that FP constant loads from the constant
       pool are not moved out of the loop.
       pool are not moved out of the loop.
 
 
       Note that this also means that dependent invariants can not be moved.
       Note that this also means that dependent invariants can not be moved.
       However, the primary purpose of this pass is to move loop invariant
       However, the primary purpose of this pass is to move loop invariant
       address arithmetic out of loops, and address arithmetic that depends
       address arithmetic out of loops, and address arithmetic that depends
       on floating point constants is unlikely to ever occur.  */
       on floating point constants is unlikely to ever occur.  */
    rtx set = single_set (inv->insn);
    rtx set = single_set (inv->insn);
    if (set
    if (set
        && IS_STACK_MODE (GET_MODE (SET_SRC (set)))
        && IS_STACK_MODE (GET_MODE (SET_SRC (set)))
        && constant_pool_constant_p (SET_SRC (set)))
        && constant_pool_constant_p (SET_SRC (set)))
      {
      {
        if (flag_ira_loop_pressure)
        if (flag_ira_loop_pressure)
          regs_needed[STACK_REG_COVER_CLASS] += 2;
          regs_needed[STACK_REG_COVER_CLASS] += 2;
        else
        else
          regs_needed[0] += 2;
          regs_needed[0] += 2;
      }
      }
  }
  }
#endif
#endif
 
 
  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
    {
    {
      bool check_p;
      bool check_p;
 
 
      dep = VEC_index (invariant_p, invariants, depno);
      dep = VEC_index (invariant_p, invariants, depno);
 
 
      get_inv_cost (dep, &acomp_cost, aregs_needed);
      get_inv_cost (dep, &acomp_cost, aregs_needed);
 
 
      if (! flag_ira_loop_pressure)
      if (! flag_ira_loop_pressure)
        check_p = aregs_needed[0] != 0;
        check_p = aregs_needed[0] != 0;
      else
      else
        {
        {
          for (i = 0; i < ira_reg_class_cover_size; i++)
          for (i = 0; i < ira_reg_class_cover_size; i++)
            if (aregs_needed[ira_reg_class_cover[i]] != 0)
            if (aregs_needed[ira_reg_class_cover[i]] != 0)
              break;
              break;
          check_p = i < ira_reg_class_cover_size;
          check_p = i < ira_reg_class_cover_size;
        }
        }
      if (check_p
      if (check_p
          /* We need to check always_executed, since if the original value of
          /* We need to check always_executed, since if the original value of
             the invariant may be preserved, we may need to keep it in a
             the invariant may be preserved, we may need to keep it in a
             separate register.  TODO check whether the register has an
             separate register.  TODO check whether the register has an
             use outside of the loop.  */
             use outside of the loop.  */
          && dep->always_executed
          && dep->always_executed
          && !dep->def->uses->next)
          && !dep->def->uses->next)
        {
        {
          /* If this is a single use, after moving the dependency we will not
          /* If this is a single use, after moving the dependency we will not
             need a new register.  */
             need a new register.  */
          if (! flag_ira_loop_pressure)
          if (! flag_ira_loop_pressure)
            aregs_needed[0]--;
            aregs_needed[0]--;
          else
          else
            {
            {
              int nregs;
              int nregs;
              enum reg_class cover_class;
              enum reg_class cover_class;
 
 
              cover_class = get_cover_class_and_nregs (inv->insn, &nregs);
              cover_class = get_cover_class_and_nregs (inv->insn, &nregs);
              aregs_needed[cover_class] -= nregs;
              aregs_needed[cover_class] -= nregs;
            }
            }
        }
        }
 
 
      if (! flag_ira_loop_pressure)
      if (! flag_ira_loop_pressure)
        regs_needed[0] += aregs_needed[0];
        regs_needed[0] += aregs_needed[0];
      else
      else
        {
        {
          for (i = 0; i < ira_reg_class_cover_size; i++)
          for (i = 0; i < ira_reg_class_cover_size; i++)
            regs_needed[ira_reg_class_cover[i]]
            regs_needed[ira_reg_class_cover[i]]
              += aregs_needed[ira_reg_class_cover[i]];
              += aregs_needed[ira_reg_class_cover[i]];
        }
        }
      (*comp_cost) += acomp_cost;
      (*comp_cost) += acomp_cost;
    }
    }
}
}
 
 
/* Calculates gain for eliminating invariant INV.  REGS_USED is the number
/* Calculates gain for eliminating invariant INV.  REGS_USED is the number
   of registers used in the loop, NEW_REGS is the number of new variables
   of registers used in the loop, NEW_REGS is the number of new variables
   already added due to the invariant motion.  The number of registers needed
   already added due to the invariant motion.  The number of registers needed
   for it is stored in *REGS_NEEDED.  */
   for it is stored in *REGS_NEEDED.  */
 
 
static int
static int
gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
                    unsigned *new_regs, unsigned regs_used, bool speed)
                    unsigned *new_regs, unsigned regs_used, bool speed)
{
{
  int comp_cost, size_cost;
  int comp_cost, size_cost;
 
 
  actual_stamp++;
  actual_stamp++;
 
 
  get_inv_cost (inv, &comp_cost, regs_needed);
  get_inv_cost (inv, &comp_cost, regs_needed);
 
 
  if (! flag_ira_loop_pressure)
  if (! flag_ira_loop_pressure)
    {
    {
      size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
      size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
                                               regs_used, speed)
                                               regs_used, speed)
                   - estimate_reg_pressure_cost (new_regs[0],
                   - estimate_reg_pressure_cost (new_regs[0],
                                                 regs_used, speed));
                                                 regs_used, speed));
    }
    }
  else
  else
    {
    {
      int i;
      int i;
      enum reg_class cover_class;
      enum reg_class cover_class;
 
 
      for (i = 0; i < ira_reg_class_cover_size; i++)
      for (i = 0; i < ira_reg_class_cover_size; i++)
        {
        {
          cover_class = ira_reg_class_cover[i];
          cover_class = ira_reg_class_cover[i];
          if ((int) new_regs[cover_class]
          if ((int) new_regs[cover_class]
              + (int) regs_needed[cover_class]
              + (int) regs_needed[cover_class]
              + LOOP_DATA (curr_loop)->max_reg_pressure[cover_class]
              + LOOP_DATA (curr_loop)->max_reg_pressure[cover_class]
              + IRA_LOOP_RESERVED_REGS
              + IRA_LOOP_RESERVED_REGS
              > ira_available_class_regs[cover_class])
              > ira_available_class_regs[cover_class])
            break;
            break;
        }
        }
      if (i < ira_reg_class_cover_size)
      if (i < ira_reg_class_cover_size)
        /* There will be register pressure excess and we want not to
        /* There will be register pressure excess and we want not to
           make this loop invariant motion.  All loop invariants with
           make this loop invariant motion.  All loop invariants with
           non-positive gains will be rejected in function
           non-positive gains will be rejected in function
           find_invariants_to_move.  Therefore we return the negative
           find_invariants_to_move.  Therefore we return the negative
           number here.
           number here.
 
 
           One could think that this rejects also expensive loop
           One could think that this rejects also expensive loop
           invariant motions and this will hurt code performance.
           invariant motions and this will hurt code performance.
           However numerous experiments with different heuristics
           However numerous experiments with different heuristics
           taking invariant cost into account did not confirm this
           taking invariant cost into account did not confirm this
           assumption.  There are possible explanations for this
           assumption.  There are possible explanations for this
           result:
           result:
           o probably all expensive invariants were already moved out
           o probably all expensive invariants were already moved out
             of the loop by PRE and gimple invariant motion pass.
             of the loop by PRE and gimple invariant motion pass.
           o expensive invariant execution will be hidden by insn
           o expensive invariant execution will be hidden by insn
             scheduling or OOO processor hardware because usually such
             scheduling or OOO processor hardware because usually such
             invariants have a lot of freedom to be executed
             invariants have a lot of freedom to be executed
             out-of-order.
             out-of-order.
           Another reason for ignoring invariant cost vs spilling cost
           Another reason for ignoring invariant cost vs spilling cost
           heuristics is also in difficulties to evaluate accurately
           heuristics is also in difficulties to evaluate accurately
           spill cost at this stage.  */
           spill cost at this stage.  */
        return -1;
        return -1;
      else
      else
        size_cost = 0;
        size_cost = 0;
    }
    }
 
 
  return comp_cost - size_cost;
  return comp_cost - size_cost;
}
}
 
 
/* Finds invariant with best gain for moving.  Returns the gain, stores
/* Finds invariant with best gain for moving.  Returns the gain, stores
   the invariant in *BEST and number of registers needed for it to
   the invariant in *BEST and number of registers needed for it to
   *REGS_NEEDED.  REGS_USED is the number of registers used in the loop.
   *REGS_NEEDED.  REGS_USED is the number of registers used in the loop.
   NEW_REGS is the number of new variables already added due to invariant
   NEW_REGS is the number of new variables already added due to invariant
   motion.  */
   motion.  */
 
 
static int
static int
best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
                         unsigned *new_regs, unsigned regs_used, bool speed)
                         unsigned *new_regs, unsigned regs_used, bool speed)
{
{
  struct invariant *inv;
  struct invariant *inv;
  int i, gain = 0, again;
  int i, gain = 0, again;
  unsigned aregs_needed[N_REG_CLASSES], invno;
  unsigned aregs_needed[N_REG_CLASSES], invno;
 
 
  for (invno = 0; VEC_iterate (invariant_p, invariants, invno, inv); invno++)
  for (invno = 0; VEC_iterate (invariant_p, invariants, invno, inv); invno++)
    {
    {
      if (inv->move)
      if (inv->move)
        continue;
        continue;
 
 
      /* Only consider the "representatives" of equivalent invariants.  */
      /* Only consider the "representatives" of equivalent invariants.  */
      if (inv->eqto != inv->invno)
      if (inv->eqto != inv->invno)
        continue;
        continue;
 
 
      again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
      again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
                                  speed);
                                  speed);
      if (again > gain)
      if (again > gain)
        {
        {
          gain = again;
          gain = again;
          *best = inv;
          *best = inv;
          if (! flag_ira_loop_pressure)
          if (! flag_ira_loop_pressure)
            regs_needed[0] = aregs_needed[0];
            regs_needed[0] = aregs_needed[0];
          else
          else
            {
            {
              for (i = 0; i < ira_reg_class_cover_size; i++)
              for (i = 0; i < ira_reg_class_cover_size; i++)
                regs_needed[ira_reg_class_cover[i]]
                regs_needed[ira_reg_class_cover[i]]
                  = aregs_needed[ira_reg_class_cover[i]];
                  = aregs_needed[ira_reg_class_cover[i]];
            }
            }
        }
        }
    }
    }
 
 
  return gain;
  return gain;
}
}
 
 
/* Marks invariant INVNO and all its dependencies for moving.  */
/* Marks invariant INVNO and all its dependencies for moving.  */
 
 
static void
static void
set_move_mark (unsigned invno, int gain)
set_move_mark (unsigned invno, int gain)
{
{
  struct invariant *inv = VEC_index (invariant_p, invariants, invno);
  struct invariant *inv = VEC_index (invariant_p, invariants, invno);
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  /* Find the representative of the class of the equivalent invariants.  */
  /* Find the representative of the class of the equivalent invariants.  */
  inv = VEC_index (invariant_p, invariants, inv->eqto);
  inv = VEC_index (invariant_p, invariants, inv->eqto);
 
 
  if (inv->move)
  if (inv->move)
    return;
    return;
  inv->move = true;
  inv->move = true;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      if (gain >= 0)
      if (gain >= 0)
        fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
        fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
                 invno, gain);
                 invno, gain);
      else
      else
        fprintf (dump_file, "Decided to move dependent invariant %d\n",
        fprintf (dump_file, "Decided to move dependent invariant %d\n",
                 invno);
                 invno);
    };
    };
 
 
  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
    {
    {
      set_move_mark (invno, -1);
      set_move_mark (invno, -1);
    }
    }
}
}
 
 
/* Determines which invariants to move.  */
/* Determines which invariants to move.  */
 
 
static void
static void
find_invariants_to_move (bool speed)
find_invariants_to_move (bool speed)
{
{
  int gain;
  int gain;
  unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
  unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
  struct invariant *inv = NULL;
  struct invariant *inv = NULL;
 
 
  if (!VEC_length (invariant_p, invariants))
  if (!VEC_length (invariant_p, invariants))
    return;
    return;
 
 
  if (flag_ira_loop_pressure)
  if (flag_ira_loop_pressure)
    /* REGS_USED is actually never used when the flag is on.  */
    /* REGS_USED is actually never used when the flag is on.  */
    regs_used = 0;
    regs_used = 0;
  else
  else
    /* We do not really do a good job in estimating number of
    /* We do not really do a good job in estimating number of
       registers used; we put some initial bound here to stand for
       registers used; we put some initial bound here to stand for
       induction variables etc.  that we do not detect.  */
       induction variables etc.  that we do not detect.  */
    {
    {
      unsigned int n_regs = DF_REG_SIZE (df);
      unsigned int n_regs = DF_REG_SIZE (df);
 
 
      regs_used = 2;
      regs_used = 2;
 
 
      for (i = 0; i < n_regs; i++)
      for (i = 0; i < n_regs; i++)
        {
        {
          if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
          if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
            {
            {
              /* This is a value that is used but not changed inside loop.  */
              /* This is a value that is used but not changed inside loop.  */
              regs_used++;
              regs_used++;
            }
            }
        }
        }
    }
    }
 
 
  if (! flag_ira_loop_pressure)
  if (! flag_ira_loop_pressure)
    new_regs[0] = regs_needed[0] = 0;
    new_regs[0] = regs_needed[0] = 0;
  else
  else
    {
    {
      for (i = 0; (int) i < ira_reg_class_cover_size; i++)
      for (i = 0; (int) i < ira_reg_class_cover_size; i++)
        new_regs[ira_reg_class_cover[i]] = 0;
        new_regs[ira_reg_class_cover[i]] = 0;
    }
    }
  while ((gain = best_gain_for_invariant (&inv, regs_needed,
  while ((gain = best_gain_for_invariant (&inv, regs_needed,
                                          new_regs, regs_used, speed)) > 0)
                                          new_regs, regs_used, speed)) > 0)
    {
    {
      set_move_mark (inv->invno, gain);
      set_move_mark (inv->invno, gain);
      if (! flag_ira_loop_pressure)
      if (! flag_ira_loop_pressure)
        new_regs[0] += regs_needed[0];
        new_regs[0] += regs_needed[0];
      else
      else
        {
        {
          for (i = 0; (int) i < ira_reg_class_cover_size; i++)
          for (i = 0; (int) i < ira_reg_class_cover_size; i++)
            new_regs[ira_reg_class_cover[i]]
            new_regs[ira_reg_class_cover[i]]
              += regs_needed[ira_reg_class_cover[i]];
              += regs_needed[ira_reg_class_cover[i]];
        }
        }
    }
    }
}
}
 
 
/* Move invariant INVNO out of the LOOP.  Returns true if this succeeds, false
/* Move invariant INVNO out of the LOOP.  Returns true if this succeeds, false
   otherwise.  */
   otherwise.  */
 
 
static bool
static bool
move_invariant_reg (struct loop *loop, unsigned invno)
move_invariant_reg (struct loop *loop, unsigned invno)
{
{
  struct invariant *inv = VEC_index (invariant_p, invariants, invno);
  struct invariant *inv = VEC_index (invariant_p, invariants, invno);
  struct invariant *repr = VEC_index (invariant_p, invariants, inv->eqto);
  struct invariant *repr = VEC_index (invariant_p, invariants, inv->eqto);
  unsigned i;
  unsigned i;
  basic_block preheader = loop_preheader_edge (loop)->src;
  basic_block preheader = loop_preheader_edge (loop)->src;
  rtx reg, set, dest, note;
  rtx reg, set, dest, note;
  struct use *use;
  struct use *use;
  bitmap_iterator bi;
  bitmap_iterator bi;
  int regno;
  int regno;
 
 
  if (inv->reg)
  if (inv->reg)
    return true;
    return true;
  if (!repr->move)
  if (!repr->move)
    return false;
    return false;
  regno = -1;
  regno = -1;
  /* If this is a representative of the class of equivalent invariants,
  /* If this is a representative of the class of equivalent invariants,
     really move the invariant.  Otherwise just replace its use with
     really move the invariant.  Otherwise just replace its use with
     the register used for the representative.  */
     the register used for the representative.  */
  if (inv == repr)
  if (inv == repr)
    {
    {
      if (inv->depends_on)
      if (inv->depends_on)
        {
        {
          EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
          EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
            {
            {
              if (!move_invariant_reg (loop, i))
              if (!move_invariant_reg (loop, i))
                goto fail;
                goto fail;
            }
            }
        }
        }
 
 
      /* Move the set out of the loop.  If the set is always executed (we could
      /* Move the set out of the loop.  If the set is always executed (we could
         omit this condition if we know that the register is unused outside of the
         omit this condition if we know that the register is unused outside of the
         loop, but it does not seem worth finding out) and it has no uses that
         loop, but it does not seem worth finding out) and it has no uses that
         would not be dominated by it, we may just move it (TODO).  Otherwise we
         would not be dominated by it, we may just move it (TODO).  Otherwise we
         need to create a temporary register.  */
         need to create a temporary register.  */
      set = single_set (inv->insn);
      set = single_set (inv->insn);
      reg = dest = SET_DEST (set);
      reg = dest = SET_DEST (set);
      if (GET_CODE (reg) == SUBREG)
      if (GET_CODE (reg) == SUBREG)
        reg = SUBREG_REG (reg);
        reg = SUBREG_REG (reg);
      if (REG_P (reg))
      if (REG_P (reg))
        regno = REGNO (reg);
        regno = REGNO (reg);
 
 
      reg = gen_reg_rtx_and_attrs (dest);
      reg = gen_reg_rtx_and_attrs (dest);
 
 
      /* Try replacing the destination by a new pseudoregister.  */
      /* Try replacing the destination by a new pseudoregister.  */
      if (!validate_change (inv->insn, &SET_DEST (set), reg, false))
      if (!validate_change (inv->insn, &SET_DEST (set), reg, false))
        goto fail;
        goto fail;
      df_insn_rescan (inv->insn);
      df_insn_rescan (inv->insn);
 
 
      emit_insn_after (gen_move_insn (dest, reg), inv->insn);
      emit_insn_after (gen_move_insn (dest, reg), inv->insn);
      reorder_insns (inv->insn, inv->insn, BB_END (preheader));
      reorder_insns (inv->insn, inv->insn, BB_END (preheader));
 
 
      /* If there is a REG_EQUAL note on the insn we just moved, and the
      /* If there is a REG_EQUAL note on the insn we just moved, and the
         insn is in a basic block that is not always executed or the note
         insn is in a basic block that is not always executed or the note
         contains something for which we don't know the invariant status,
         contains something for which we don't know the invariant status,
         the note may no longer be valid after we move the insn.  Note that
         the note may no longer be valid after we move the insn.  Note that
         uses in REG_EQUAL notes are taken into account in the computation
         uses in REG_EQUAL notes are taken into account in the computation
         of invariants, so it is safe to retain the note even if it contains
         of invariants, so it is safe to retain the note even if it contains
         register references for which we know the invariant status.  */
         register references for which we know the invariant status.  */
      if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
      if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
          && (!inv->always_executed
          && (!inv->always_executed
              || !check_maybe_invariant (XEXP (note, 0))))
              || !check_maybe_invariant (XEXP (note, 0))))
        remove_note (inv->insn, note);
        remove_note (inv->insn, note);
    }
    }
  else
  else
    {
    {
      if (!move_invariant_reg (loop, repr->invno))
      if (!move_invariant_reg (loop, repr->invno))
        goto fail;
        goto fail;
      reg = repr->reg;
      reg = repr->reg;
      regno = repr->orig_regno;
      regno = repr->orig_regno;
      set = single_set (inv->insn);
      set = single_set (inv->insn);
      emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
      emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
      delete_insn (inv->insn);
      delete_insn (inv->insn);
    }
    }
 
 
 
 
  inv->reg = reg;
  inv->reg = reg;
  inv->orig_regno = regno;
  inv->orig_regno = regno;
 
 
  /* Replace the uses we know to be dominated.  It saves work for copy
  /* Replace the uses we know to be dominated.  It saves work for copy
     propagation, and also it is necessary so that dependent invariants
     propagation, and also it is necessary so that dependent invariants
     are computed right.  */
     are computed right.  */
  if (inv->def)
  if (inv->def)
    {
    {
      for (use = inv->def->uses; use; use = use->next)
      for (use = inv->def->uses; use; use = use->next)
        {
        {
          *use->pos = reg;
          *use->pos = reg;
          df_insn_rescan (use->insn);
          df_insn_rescan (use->insn);
        }
        }
    }
    }
 
 
  return true;
  return true;
 
 
fail:
fail:
  /* If we failed, clear move flag, so that we do not try to move inv
  /* If we failed, clear move flag, so that we do not try to move inv
     again.  */
     again.  */
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Failed to move invariant %d\n", invno);
    fprintf (dump_file, "Failed to move invariant %d\n", invno);
  inv->move = false;
  inv->move = false;
  inv->reg = NULL_RTX;
  inv->reg = NULL_RTX;
  inv->orig_regno = -1;
  inv->orig_regno = -1;
 
 
  return false;
  return false;
}
}
 
 
/* Move selected invariant out of the LOOP.  Newly created regs are marked
/* Move selected invariant out of the LOOP.  Newly created regs are marked
   in TEMPORARY_REGS.  */
   in TEMPORARY_REGS.  */
 
 
static void
static void
move_invariants (struct loop *loop)
move_invariants (struct loop *loop)
{
{
  struct invariant *inv;
  struct invariant *inv;
  unsigned i;
  unsigned i;
 
 
  for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
  for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
    move_invariant_reg (loop, i);
    move_invariant_reg (loop, i);
  if (flag_ira_loop_pressure && resize_reg_info ())
  if (flag_ira_loop_pressure && resize_reg_info ())
    {
    {
      for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
      for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
        if (inv->reg != NULL_RTX)
        if (inv->reg != NULL_RTX)
          {
          {
            if (inv->orig_regno >= 0)
            if (inv->orig_regno >= 0)
              setup_reg_classes (REGNO (inv->reg),
              setup_reg_classes (REGNO (inv->reg),
                                 reg_preferred_class (inv->orig_regno),
                                 reg_preferred_class (inv->orig_regno),
                                 reg_alternate_class (inv->orig_regno),
                                 reg_alternate_class (inv->orig_regno),
                                 reg_cover_class (inv->orig_regno));
                                 reg_cover_class (inv->orig_regno));
            else
            else
              setup_reg_classes (REGNO (inv->reg),
              setup_reg_classes (REGNO (inv->reg),
                                 GENERAL_REGS, NO_REGS, GENERAL_REGS);
                                 GENERAL_REGS, NO_REGS, GENERAL_REGS);
          }
          }
    }
    }
}
}
 
 
/* Initializes invariant motion data.  */
/* Initializes invariant motion data.  */
 
 
static void
static void
init_inv_motion_data (void)
init_inv_motion_data (void)
{
{
  actual_stamp = 1;
  actual_stamp = 1;
 
 
  invariants = VEC_alloc (invariant_p, heap, 100);
  invariants = VEC_alloc (invariant_p, heap, 100);
}
}
 
 
/* Frees the data allocated by invariant motion.  */
/* Frees the data allocated by invariant motion.  */
 
 
static void
static void
free_inv_motion_data (void)
free_inv_motion_data (void)
{
{
  unsigned i;
  unsigned i;
  struct def *def;
  struct def *def;
  struct invariant *inv;
  struct invariant *inv;
 
 
  check_invariant_table_size ();
  check_invariant_table_size ();
  for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
  for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
    {
    {
      inv = invariant_table[i];
      inv = invariant_table[i];
      if (inv)
      if (inv)
        {
        {
          def = inv->def;
          def = inv->def;
          gcc_assert (def != NULL);
          gcc_assert (def != NULL);
 
 
          free_use_list (def->uses);
          free_use_list (def->uses);
          free (def);
          free (def);
          invariant_table[i] = NULL;
          invariant_table[i] = NULL;
        }
        }
    }
    }
 
 
  for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
  for (i = 0; VEC_iterate (invariant_p, invariants, i, inv); i++)
    {
    {
      BITMAP_FREE (inv->depends_on);
      BITMAP_FREE (inv->depends_on);
      free (inv);
      free (inv);
    }
    }
  VEC_free (invariant_p, heap, invariants);
  VEC_free (invariant_p, heap, invariants);
}
}
 
 
/* Move the invariants out of the LOOP.  */
/* Move the invariants out of the LOOP.  */
 
 
static void
static void
move_single_loop_invariants (struct loop *loop)
move_single_loop_invariants (struct loop *loop)
{
{
  init_inv_motion_data ();
  init_inv_motion_data ();
 
 
  find_invariants (loop);
  find_invariants (loop);
  find_invariants_to_move (optimize_loop_for_speed_p (loop));
  find_invariants_to_move (optimize_loop_for_speed_p (loop));
  move_invariants (loop);
  move_invariants (loop);
 
 
  free_inv_motion_data ();
  free_inv_motion_data ();
}
}
 
 
/* Releases the auxiliary data for LOOP.  */
/* Releases the auxiliary data for LOOP.  */
 
 
static void
static void
free_loop_data (struct loop *loop)
free_loop_data (struct loop *loop)
{
{
  struct loop_data *data = LOOP_DATA (loop);
  struct loop_data *data = LOOP_DATA (loop);
  if (!data)
  if (!data)
    return;
    return;
 
 
  bitmap_clear (&LOOP_DATA (loop)->regs_ref);
  bitmap_clear (&LOOP_DATA (loop)->regs_ref);
  bitmap_clear (&LOOP_DATA (loop)->regs_live);
  bitmap_clear (&LOOP_DATA (loop)->regs_live);
  free (data);
  free (data);
  loop->aux = NULL;
  loop->aux = NULL;
}
}
 
 


 
 
/* Registers currently living.  */
/* Registers currently living.  */
static bitmap_head curr_regs_live;
static bitmap_head curr_regs_live;
 
 
/* Current reg pressure for each cover class.  */
/* Current reg pressure for each cover class.  */
static int curr_reg_pressure[N_REG_CLASSES];
static int curr_reg_pressure[N_REG_CLASSES];
 
 
/* Record all regs that are set in any one insn.  Communication from
/* Record all regs that are set in any one insn.  Communication from
   mark_reg_{store,clobber} and global_conflicts.  Asm can refer to
   mark_reg_{store,clobber} and global_conflicts.  Asm can refer to
   all hard-registers.  */
   all hard-registers.  */
static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
                     ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
                     ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
/* Number of regs stored in the previous array.  */
/* Number of regs stored in the previous array.  */
static int n_regs_set;
static int n_regs_set;
 
 
/* Return cover class and number of needed hard registers (through
/* Return cover class and number of needed hard registers (through
   *NREGS) of register REGNO.  */
   *NREGS) of register REGNO.  */
static enum reg_class
static enum reg_class
get_regno_cover_class (int regno, int *nregs)
get_regno_cover_class (int regno, int *nregs)
{
{
  if (regno >= FIRST_PSEUDO_REGISTER)
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
    {
      enum reg_class cover_class = reg_cover_class (regno);
      enum reg_class cover_class = reg_cover_class (regno);
 
 
      *nregs = ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
      *nregs = ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
      return cover_class;
      return cover_class;
    }
    }
  else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
  else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
           && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
           && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
    {
    {
      *nregs = 1;
      *nregs = 1;
      return ira_class_translate[REGNO_REG_CLASS (regno)];
      return ira_class_translate[REGNO_REG_CLASS (regno)];
    }
    }
  else
  else
    {
    {
      *nregs = 0;
      *nregs = 0;
      return NO_REGS;
      return NO_REGS;
    }
    }
}
}
 
 
/* Increase (if INCR_P) or decrease current register pressure for
/* Increase (if INCR_P) or decrease current register pressure for
   register REGNO.  */
   register REGNO.  */
static void
static void
change_pressure (int regno, bool incr_p)
change_pressure (int regno, bool incr_p)
{
{
  int nregs;
  int nregs;
  enum reg_class cover_class;
  enum reg_class cover_class;
 
 
  cover_class = get_regno_cover_class (regno, &nregs);
  cover_class = get_regno_cover_class (regno, &nregs);
  if (! incr_p)
  if (! incr_p)
    curr_reg_pressure[cover_class] -= nregs;
    curr_reg_pressure[cover_class] -= nregs;
  else
  else
    {
    {
      curr_reg_pressure[cover_class] += nregs;
      curr_reg_pressure[cover_class] += nregs;
      if (LOOP_DATA (curr_loop)->max_reg_pressure[cover_class]
      if (LOOP_DATA (curr_loop)->max_reg_pressure[cover_class]
          < curr_reg_pressure[cover_class])
          < curr_reg_pressure[cover_class])
        LOOP_DATA (curr_loop)->max_reg_pressure[cover_class]
        LOOP_DATA (curr_loop)->max_reg_pressure[cover_class]
          = curr_reg_pressure[cover_class];
          = curr_reg_pressure[cover_class];
    }
    }
}
}
 
 
/* Mark REGNO birth.  */
/* Mark REGNO birth.  */
static void
static void
mark_regno_live (int regno)
mark_regno_live (int regno)
{
{
  struct loop *loop;
  struct loop *loop;
 
 
  for (loop = curr_loop;
  for (loop = curr_loop;
       loop != current_loops->tree_root;
       loop != current_loops->tree_root;
       loop = loop_outer (loop))
       loop = loop_outer (loop))
    bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
    bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
  if (bitmap_bit_p (&curr_regs_live, regno))
  if (bitmap_bit_p (&curr_regs_live, regno))
    return;
    return;
  bitmap_set_bit (&curr_regs_live, regno);
  bitmap_set_bit (&curr_regs_live, regno);
  change_pressure (regno, true);
  change_pressure (regno, true);
}
}
 
 
/* Mark REGNO death.  */
/* Mark REGNO death.  */
static void
static void
mark_regno_death (int regno)
mark_regno_death (int regno)
{
{
  if (! bitmap_bit_p (&curr_regs_live, regno))
  if (! bitmap_bit_p (&curr_regs_live, regno))
    return;
    return;
  bitmap_clear_bit (&curr_regs_live, regno);
  bitmap_clear_bit (&curr_regs_live, regno);
  change_pressure (regno, false);
  change_pressure (regno, false);
}
}
 
 
/* Mark setting register REG.  */
/* Mark setting register REG.  */
static void
static void
mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
                void *data ATTRIBUTE_UNUSED)
                void *data ATTRIBUTE_UNUSED)
{
{
  int regno;
  int regno;
 
 
  if (GET_CODE (reg) == SUBREG)
  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);
    reg = SUBREG_REG (reg);
 
 
  if (! REG_P (reg))
  if (! REG_P (reg))
    return;
    return;
 
 
  regs_set[n_regs_set++] = reg;
  regs_set[n_regs_set++] = reg;
 
 
  regno = REGNO (reg);
  regno = REGNO (reg);
 
 
  if (regno >= FIRST_PSEUDO_REGISTER)
  if (regno >= FIRST_PSEUDO_REGISTER)
    mark_regno_live (regno);
    mark_regno_live (regno);
  else
  else
    {
    {
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
 
 
      while (regno < last)
      while (regno < last)
        {
        {
          mark_regno_live (regno);
          mark_regno_live (regno);
          regno++;
          regno++;
        }
        }
    }
    }
}
}
 
 
/* Mark clobbering register REG.  */
/* Mark clobbering register REG.  */
static void
static void
mark_reg_clobber (rtx reg, const_rtx setter, void *data)
mark_reg_clobber (rtx reg, const_rtx setter, void *data)
{
{
  if (GET_CODE (setter) == CLOBBER)
  if (GET_CODE (setter) == CLOBBER)
    mark_reg_store (reg, setter, data);
    mark_reg_store (reg, setter, data);
}
}
 
 
/* Mark register REG death.  */
/* Mark register REG death.  */
static void
static void
mark_reg_death (rtx reg)
mark_reg_death (rtx reg)
{
{
  int regno = REGNO (reg);
  int regno = REGNO (reg);
 
 
  if (regno >= FIRST_PSEUDO_REGISTER)
  if (regno >= FIRST_PSEUDO_REGISTER)
    mark_regno_death (regno);
    mark_regno_death (regno);
  else
  else
    {
    {
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
 
 
      while (regno < last)
      while (regno < last)
        {
        {
          mark_regno_death (regno);
          mark_regno_death (regno);
          regno++;
          regno++;
        }
        }
    }
    }
}
}
 
 
/* Mark occurrence of registers in X for the current loop.  */
/* Mark occurrence of registers in X for the current loop.  */
static void
static void
mark_ref_regs (rtx x)
mark_ref_regs (rtx x)
{
{
  RTX_CODE code;
  RTX_CODE code;
  int i;
  int i;
  const char *fmt;
  const char *fmt;
 
 
  if (!x)
  if (!x)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  if (code == REG)
  if (code == REG)
    {
    {
      struct loop *loop;
      struct loop *loop;
 
 
      for (loop = curr_loop;
      for (loop = curr_loop;
           loop != current_loops->tree_root;
           loop != current_loops->tree_root;
           loop = loop_outer (loop))
           loop = loop_outer (loop))
        bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
        bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
      return;
      return;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
    if (fmt[i] == 'e')
      mark_ref_regs (XEXP (x, i));
      mark_ref_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
    else if (fmt[i] == 'E')
      {
      {
        int j;
        int j;
 
 
        for (j = 0; j < XVECLEN (x, i); j++)
        for (j = 0; j < XVECLEN (x, i); j++)
          mark_ref_regs (XVECEXP (x, i, j));
          mark_ref_regs (XVECEXP (x, i, j));
      }
      }
}
}
 
 
/* Calculate register pressure in the loops.  */
/* Calculate register pressure in the loops.  */
static void
static void
calculate_loop_reg_pressure (void)
calculate_loop_reg_pressure (void)
{
{
  int i;
  int i;
  unsigned int j;
  unsigned int j;
  bitmap_iterator bi;
  bitmap_iterator bi;
  basic_block bb;
  basic_block bb;
  rtx insn, link;
  rtx insn, link;
  struct loop *loop, *parent;
  struct loop *loop, *parent;
  loop_iterator li;
  loop_iterator li;
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    if (loop->aux == NULL)
    if (loop->aux == NULL)
      {
      {
        loop->aux = xcalloc (1, sizeof (struct loop_data));
        loop->aux = xcalloc (1, sizeof (struct loop_data));
        bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
        bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
        bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
        bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
      }
      }
  ira_setup_eliminable_regset ();
  ira_setup_eliminable_regset ();
  bitmap_initialize (&curr_regs_live, &reg_obstack);
  bitmap_initialize (&curr_regs_live, &reg_obstack);
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      curr_loop = bb->loop_father;
      curr_loop = bb->loop_father;
      if (curr_loop == current_loops->tree_root)
      if (curr_loop == current_loops->tree_root)
        continue;
        continue;
 
 
      for (loop = curr_loop;
      for (loop = curr_loop;
           loop != current_loops->tree_root;
           loop != current_loops->tree_root;
           loop = loop_outer (loop))
           loop = loop_outer (loop))
        bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
        bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
 
 
      bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
      bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
      for (i = 0; i < ira_reg_class_cover_size; i++)
      for (i = 0; i < ira_reg_class_cover_size; i++)
        curr_reg_pressure[ira_reg_class_cover[i]] = 0;
        curr_reg_pressure[ira_reg_class_cover[i]] = 0;
      EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
      EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
        change_pressure (j, true);
        change_pressure (j, true);
 
 
      FOR_BB_INSNS (bb, insn)
      FOR_BB_INSNS (bb, insn)
        {
        {
          if (! NONDEBUG_INSN_P (insn))
          if (! NONDEBUG_INSN_P (insn))
            continue;
            continue;
 
 
          mark_ref_regs (PATTERN (insn));
          mark_ref_regs (PATTERN (insn));
          n_regs_set = 0;
          n_regs_set = 0;
          note_stores (PATTERN (insn), mark_reg_clobber, NULL);
          note_stores (PATTERN (insn), mark_reg_clobber, NULL);
 
 
          /* Mark any registers dead after INSN as dead now.  */
          /* Mark any registers dead after INSN as dead now.  */
 
 
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
            if (REG_NOTE_KIND (link) == REG_DEAD)
            if (REG_NOTE_KIND (link) == REG_DEAD)
              mark_reg_death (XEXP (link, 0));
              mark_reg_death (XEXP (link, 0));
 
 
          /* Mark any registers set in INSN as live,
          /* Mark any registers set in INSN as live,
             and mark them as conflicting with all other live regs.
             and mark them as conflicting with all other live regs.
             Clobbers are processed again, so they conflict with
             Clobbers are processed again, so they conflict with
             the registers that are set.  */
             the registers that are set.  */
 
 
          note_stores (PATTERN (insn), mark_reg_store, NULL);
          note_stores (PATTERN (insn), mark_reg_store, NULL);
 
 
#ifdef AUTO_INC_DEC
#ifdef AUTO_INC_DEC
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
            if (REG_NOTE_KIND (link) == REG_INC)
            if (REG_NOTE_KIND (link) == REG_INC)
              mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
              mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
#endif
#endif
          while (n_regs_set-- > 0)
          while (n_regs_set-- > 0)
            {
            {
              rtx note = find_regno_note (insn, REG_UNUSED,
              rtx note = find_regno_note (insn, REG_UNUSED,
                                          REGNO (regs_set[n_regs_set]));
                                          REGNO (regs_set[n_regs_set]));
              if (! note)
              if (! note)
                continue;
                continue;
 
 
              mark_reg_death (XEXP (note, 0));
              mark_reg_death (XEXP (note, 0));
            }
            }
        }
        }
    }
    }
  bitmap_clear (&curr_regs_live);
  bitmap_clear (&curr_regs_live);
  if (flag_ira_region == IRA_REGION_MIXED
  if (flag_ira_region == IRA_REGION_MIXED
      || flag_ira_region == IRA_REGION_ALL)
      || flag_ira_region == IRA_REGION_ALL)
    FOR_EACH_LOOP (li, loop, 0)
    FOR_EACH_LOOP (li, loop, 0)
      {
      {
        EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
        EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
          if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
          if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
            {
            {
              enum reg_class cover_class;
              enum reg_class cover_class;
              int nregs;
              int nregs;
 
 
              cover_class = get_regno_cover_class (j, &nregs);
              cover_class = get_regno_cover_class (j, &nregs);
              LOOP_DATA (loop)->max_reg_pressure[cover_class] -= nregs;
              LOOP_DATA (loop)->max_reg_pressure[cover_class] -= nregs;
            }
            }
      }
      }
  if (dump_file == NULL)
  if (dump_file == NULL)
    return;
    return;
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      parent = loop_outer (loop);
      parent = loop_outer (loop);
      fprintf (dump_file, "\n  Loop %d (parent %d, header bb%d, depth %d)\n",
      fprintf (dump_file, "\n  Loop %d (parent %d, header bb%d, depth %d)\n",
               loop->num, (parent == NULL ? -1 : parent->num),
               loop->num, (parent == NULL ? -1 : parent->num),
               loop->header->index, loop_depth (loop));
               loop->header->index, loop_depth (loop));
      fprintf (dump_file, "\n    ref. regnos:");
      fprintf (dump_file, "\n    ref. regnos:");
      EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
      EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
        fprintf (dump_file, " %d", j);
        fprintf (dump_file, " %d", j);
      fprintf (dump_file, "\n    live regnos:");
      fprintf (dump_file, "\n    live regnos:");
      EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
      EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
        fprintf (dump_file, " %d", j);
        fprintf (dump_file, " %d", j);
      fprintf (dump_file, "\n    Pressure:");
      fprintf (dump_file, "\n    Pressure:");
      for (i = 0; (int) i < ira_reg_class_cover_size; i++)
      for (i = 0; (int) i < ira_reg_class_cover_size; i++)
        {
        {
          enum reg_class cover_class;
          enum reg_class cover_class;
 
 
          cover_class = ira_reg_class_cover[i];
          cover_class = ira_reg_class_cover[i];
          if (LOOP_DATA (loop)->max_reg_pressure[cover_class] == 0)
          if (LOOP_DATA (loop)->max_reg_pressure[cover_class] == 0)
            continue;
            continue;
          fprintf (dump_file, " %s=%d", reg_class_names[cover_class],
          fprintf (dump_file, " %s=%d", reg_class_names[cover_class],
                   LOOP_DATA (loop)->max_reg_pressure[cover_class]);
                   LOOP_DATA (loop)->max_reg_pressure[cover_class]);
        }
        }
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
}
}
 
 


 
 
/* Move the invariants out of the loops.  */
/* Move the invariants out of the loops.  */
 
 
void
void
move_loop_invariants (void)
move_loop_invariants (void)
{
{
  struct loop *loop;
  struct loop *loop;
  loop_iterator li;
  loop_iterator li;
 
 
  if (flag_ira_loop_pressure)
  if (flag_ira_loop_pressure)
    {
    {
      df_analyze ();
      df_analyze ();
      ira_set_pseudo_classes (dump_file);
      ira_set_pseudo_classes (dump_file);
      calculate_loop_reg_pressure ();
      calculate_loop_reg_pressure ();
    }
    }
  df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
  df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
  /* Process the loops, innermost first.  */
  /* Process the loops, innermost first.  */
  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
    {
    {
      curr_loop = loop;
      curr_loop = loop;
      /* move_single_loop_invariants for very large loops
      /* move_single_loop_invariants for very large loops
         is time consuming and might need a lot of memory.  */
         is time consuming and might need a lot of memory.  */
      if (loop->num_nodes <= (unsigned) LOOP_INVARIANT_MAX_BBS_IN_LOOP)
      if (loop->num_nodes <= (unsigned) LOOP_INVARIANT_MAX_BBS_IN_LOOP)
        move_single_loop_invariants (loop);
        move_single_loop_invariants (loop);
    }
    }
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      free_loop_data (loop);
      free_loop_data (loop);
    }
    }
 
 
  if (flag_ira_loop_pressure)
  if (flag_ira_loop_pressure)
    /* There is no sense to keep this info because it was most
    /* There is no sense to keep this info because it was most
       probably outdated by subsequent passes.  */
       probably outdated by subsequent passes.  */
    free_reg_info ();
    free_reg_info ();
  free (invariant_table);
  free (invariant_table);
  invariant_table = NULL;
  invariant_table = NULL;
  invariant_table_size = 0;
  invariant_table_size = 0;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_flow_info ();
  verify_flow_info ();
#endif
#endif
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.