OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [regrename.c] - Diff between revs 816 and 826

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Register renaming for the GNU compiler.
/* Register renaming for the GNU compiler.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   2010 Free Software Foundation, Inc.
   2010 Free Software Foundation, Inc.
 
 
   This file is part of GCC.
   This file is part of GCC.
 
 
   GCC is free software; you can redistribute it and/or modify it
   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GCC is distributed in the hope that it will be useful, but WITHOUT
   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.
   License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */
   <http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-config.h"
#include "regs.h"
#include "regs.h"
#include "addresses.h"
#include "addresses.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "reload.h"
#include "reload.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "recog.h"
#include "recog.h"
#include "flags.h"
#include "flags.h"
#include "toplev.h"
#include "toplev.h"
#include "obstack.h"
#include "obstack.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "df.h"
#include "df.h"
 
 
#if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
#if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
#error "Use a different bitmap implementation for untracked_operands."
#error "Use a different bitmap implementation for untracked_operands."
#endif
#endif
 
 
/* We keep linked lists of DU_HEAD structures, each of which describes
/* We keep linked lists of DU_HEAD structures, each of which describes
   a chain of occurrences of a reg.  */
   a chain of occurrences of a reg.  */
struct du_head
struct du_head
{
{
  /* The next chain.  */
  /* The next chain.  */
  struct du_head *next_chain;
  struct du_head *next_chain;
  /* The first and last elements of this chain.  */
  /* The first and last elements of this chain.  */
  struct du_chain *first, *last;
  struct du_chain *first, *last;
  /* Describes the register being tracked.  */
  /* Describes the register being tracked.  */
  unsigned regno, nregs;
  unsigned regno, nregs;
 
 
  /* A unique id to be used as an index into the conflicts bitmaps.  */
  /* A unique id to be used as an index into the conflicts bitmaps.  */
  unsigned id;
  unsigned id;
  /* A bitmap to record conflicts with other chains.  */
  /* A bitmap to record conflicts with other chains.  */
  bitmap_head conflicts;
  bitmap_head conflicts;
  /* Conflicts with untracked hard registers.  */
  /* Conflicts with untracked hard registers.  */
  HARD_REG_SET hard_conflicts;
  HARD_REG_SET hard_conflicts;
 
 
  /* Nonzero if the chain is finished; zero if it is still open.  */
  /* Nonzero if the chain is finished; zero if it is still open.  */
  unsigned int terminated:1;
  unsigned int terminated:1;
  /* Nonzero if the chain crosses a call.  */
  /* Nonzero if the chain crosses a call.  */
  unsigned int need_caller_save_reg:1;
  unsigned int need_caller_save_reg:1;
  /* Nonzero if the register is used in a way that prevents renaming,
  /* Nonzero if the register is used in a way that prevents renaming,
     such as the SET_DEST of a CALL_INSN or an asm operand that used
     such as the SET_DEST of a CALL_INSN or an asm operand that used
     to be a hard register.  */
     to be a hard register.  */
  unsigned int cannot_rename:1;
  unsigned int cannot_rename:1;
};
};
 
 
/* This struct describes a single occurrence of a register.  */
/* This struct describes a single occurrence of a register.  */
struct du_chain
struct du_chain
{
{
  /* Links to the next occurrence of the register.  */
  /* Links to the next occurrence of the register.  */
  struct du_chain *next_use;
  struct du_chain *next_use;
 
 
  /* The insn where the register appears.  */
  /* The insn where the register appears.  */
  rtx insn;
  rtx insn;
  /* The location inside the insn.  */
  /* The location inside the insn.  */
  rtx *loc;
  rtx *loc;
  /* The register class required by the insn at this location.  */
  /* The register class required by the insn at this location.  */
  ENUM_BITFIELD(reg_class) cl : 16;
  ENUM_BITFIELD(reg_class) cl : 16;
};
};
 
 
enum scan_actions
enum scan_actions
{
{
  terminate_write,
  terminate_write,
  terminate_dead,
  terminate_dead,
  mark_all_read,
  mark_all_read,
  mark_read,
  mark_read,
  mark_write,
  mark_write,
  /* mark_access is for marking the destination regs in
  /* mark_access is for marking the destination regs in
     REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
     REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
     note is updated properly.  */
     note is updated properly.  */
  mark_access
  mark_access
};
};
 
 
static const char * const scan_actions_name[] =
static const char * const scan_actions_name[] =
{
{
  "terminate_write",
  "terminate_write",
  "terminate_dead",
  "terminate_dead",
  "mark_all_read",
  "mark_all_read",
  "mark_read",
  "mark_read",
  "mark_write",
  "mark_write",
  "mark_access"
  "mark_access"
};
};
 
 
static struct obstack rename_obstack;
static struct obstack rename_obstack;
 
 
static void do_replace (struct du_head *, int);
static void do_replace (struct du_head *, int);
static void scan_rtx_reg (rtx, rtx *, enum reg_class,
static void scan_rtx_reg (rtx, rtx *, enum reg_class,
                          enum scan_actions, enum op_type);
                          enum scan_actions, enum op_type);
static void scan_rtx_address (rtx, rtx *, enum reg_class,
static void scan_rtx_address (rtx, rtx *, enum reg_class,
                              enum scan_actions, enum machine_mode);
                              enum scan_actions, enum machine_mode);
static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
                      enum op_type);
                      enum op_type);
static struct du_head *build_def_use (basic_block);
static struct du_head *build_def_use (basic_block);
static void dump_def_use_chain (struct du_head *);
static void dump_def_use_chain (struct du_head *);
 
 
typedef struct du_head *du_head_p;
typedef struct du_head *du_head_p;
DEF_VEC_P (du_head_p);
DEF_VEC_P (du_head_p);
DEF_VEC_ALLOC_P (du_head_p, heap);
DEF_VEC_ALLOC_P (du_head_p, heap);
static VEC(du_head_p, heap) *id_to_chain;
static VEC(du_head_p, heap) *id_to_chain;
 
 
static void
static void
free_chain_data (void)
free_chain_data (void)
{
{
  int i;
  int i;
  du_head_p ptr;
  du_head_p ptr;
  for (i = 0; VEC_iterate(du_head_p, id_to_chain, i, ptr); i++)
  for (i = 0; VEC_iterate(du_head_p, id_to_chain, i, ptr); i++)
    bitmap_clear (&ptr->conflicts);
    bitmap_clear (&ptr->conflicts);
 
 
  VEC_free (du_head_p, heap, id_to_chain);
  VEC_free (du_head_p, heap, id_to_chain);
}
}
 
 
/* For a def-use chain HEAD, find which registers overlap its lifetime and
/* For a def-use chain HEAD, find which registers overlap its lifetime and
   set the corresponding bits in *PSET.  */
   set the corresponding bits in *PSET.  */
 
 
static void
static void
merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
{
{
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned i;
  unsigned i;
  IOR_HARD_REG_SET (*pset, head->hard_conflicts);
  IOR_HARD_REG_SET (*pset, head->hard_conflicts);
  EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
    {
    {
      du_head_p other = VEC_index (du_head_p, id_to_chain, i);
      du_head_p other = VEC_index (du_head_p, id_to_chain, i);
      unsigned j = other->nregs;
      unsigned j = other->nregs;
      while (j-- > 0)
      while (j-- > 0)
        SET_HARD_REG_BIT (*pset, other->regno + j);
        SET_HARD_REG_BIT (*pset, other->regno + j);
    }
    }
}
}
 
 
/* Perform register renaming on the current function.  */
/* Perform register renaming on the current function.  */
 
 
static unsigned int
static unsigned int
regrename_optimize (void)
regrename_optimize (void)
{
{
  int tick[FIRST_PSEUDO_REGISTER];
  int tick[FIRST_PSEUDO_REGISTER];
  int this_tick = 0;
  int this_tick = 0;
  basic_block bb;
  basic_block bb;
  char *first_obj;
  char *first_obj;
 
 
  df_set_flags (DF_LR_RUN_DCE);
  df_set_flags (DF_LR_RUN_DCE);
  df_note_add_problem ();
  df_note_add_problem ();
  df_analyze ();
  df_analyze ();
  df_set_flags (DF_DEFER_INSN_RESCAN);
  df_set_flags (DF_DEFER_INSN_RESCAN);
 
 
  memset (tick, 0, sizeof tick);
  memset (tick, 0, sizeof tick);
 
 
  gcc_obstack_init (&rename_obstack);
  gcc_obstack_init (&rename_obstack);
  first_obj = XOBNEWVAR (&rename_obstack, char, 0);
  first_obj = XOBNEWVAR (&rename_obstack, char, 0);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      struct du_head *all_chains = 0;
      struct du_head *all_chains = 0;
      HARD_REG_SET unavailable;
      HARD_REG_SET unavailable;
#if 0
#if 0
      HARD_REG_SET regs_seen;
      HARD_REG_SET regs_seen;
      CLEAR_HARD_REG_SET (regs_seen);
      CLEAR_HARD_REG_SET (regs_seen);
#endif
#endif
 
 
      id_to_chain = VEC_alloc (du_head_p, heap, 0);
      id_to_chain = VEC_alloc (du_head_p, heap, 0);
 
 
      CLEAR_HARD_REG_SET (unavailable);
      CLEAR_HARD_REG_SET (unavailable);
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "\nBasic block %d:\n", bb->index);
        fprintf (dump_file, "\nBasic block %d:\n", bb->index);
 
 
      all_chains = build_def_use (bb);
      all_chains = build_def_use (bb);
 
 
      if (dump_file)
      if (dump_file)
        dump_def_use_chain (all_chains);
        dump_def_use_chain (all_chains);
 
 
      CLEAR_HARD_REG_SET (unavailable);
      CLEAR_HARD_REG_SET (unavailable);
      /* Don't clobber traceback for noreturn functions.  */
      /* Don't clobber traceback for noreturn functions.  */
      if (frame_pointer_needed)
      if (frame_pointer_needed)
        {
        {
          add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
          add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
          add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
          add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
#endif
#endif
        }
        }
 
 
      while (all_chains)
      while (all_chains)
        {
        {
          int new_reg, best_new_reg, best_nregs;
          int new_reg, best_new_reg, best_nregs;
          int n_uses;
          int n_uses;
          struct du_head *this_head = all_chains;
          struct du_head *this_head = all_chains;
          struct du_chain *tmp;
          struct du_chain *tmp;
          HARD_REG_SET this_unavailable;
          HARD_REG_SET this_unavailable;
          int reg = this_head->regno;
          int reg = this_head->regno;
          int i;
          int i;
 
 
          all_chains = this_head->next_chain;
          all_chains = this_head->next_chain;
 
 
          if (this_head->cannot_rename)
          if (this_head->cannot_rename)
            continue;
            continue;
 
 
          best_new_reg = reg;
          best_new_reg = reg;
          best_nregs = this_head->nregs;
          best_nregs = this_head->nregs;
 
 
#if 0 /* This just disables optimization opportunities.  */
#if 0 /* This just disables optimization opportunities.  */
          /* Only rename once we've seen the reg more than once.  */
          /* Only rename once we've seen the reg more than once.  */
          if (! TEST_HARD_REG_BIT (regs_seen, reg))
          if (! TEST_HARD_REG_BIT (regs_seen, reg))
            {
            {
              SET_HARD_REG_BIT (regs_seen, reg);
              SET_HARD_REG_BIT (regs_seen, reg);
              continue;
              continue;
            }
            }
#endif
#endif
 
 
          if (fixed_regs[reg] || global_regs[reg]
          if (fixed_regs[reg] || global_regs[reg]
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
              || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
              || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
#else
#else
              || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
              || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
#endif
#endif
              )
              )
            continue;
            continue;
 
 
          COPY_HARD_REG_SET (this_unavailable, unavailable);
          COPY_HARD_REG_SET (this_unavailable, unavailable);
 
 
          /* Count number of uses, and narrow the set of registers we can
          /* Count number of uses, and narrow the set of registers we can
             use for renaming.  */
             use for renaming.  */
          n_uses = 0;
          n_uses = 0;
          for (tmp = this_head->first; tmp; tmp = tmp->next_use)
          for (tmp = this_head->first; tmp; tmp = tmp->next_use)
            {
            {
              if (DEBUG_INSN_P (tmp->insn))
              if (DEBUG_INSN_P (tmp->insn))
                continue;
                continue;
              n_uses++;
              n_uses++;
              IOR_COMPL_HARD_REG_SET (this_unavailable,
              IOR_COMPL_HARD_REG_SET (this_unavailable,
                                      reg_class_contents[tmp->cl]);
                                      reg_class_contents[tmp->cl]);
            }
            }
 
 
          if (n_uses < 2)
          if (n_uses < 2)
            continue;
            continue;
 
 
          if (this_head->need_caller_save_reg)
          if (this_head->need_caller_save_reg)
            IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
            IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
 
 
          merge_overlapping_regs (&this_unavailable, this_head);
          merge_overlapping_regs (&this_unavailable, this_head);
 
 
          /* Now potential_regs is a reasonable approximation, let's
          /* Now potential_regs is a reasonable approximation, let's
             have a closer look at each register still in there.  */
             have a closer look at each register still in there.  */
          for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
          for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
            {
            {
              enum machine_mode mode = GET_MODE (*this_head->first->loc);
              enum machine_mode mode = GET_MODE (*this_head->first->loc);
              int nregs = hard_regno_nregs[new_reg][mode];
              int nregs = hard_regno_nregs[new_reg][mode];
 
 
              for (i = nregs - 1; i >= 0; --i)
              for (i = nregs - 1; i >= 0; --i)
                if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
                if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
                    || fixed_regs[new_reg + i]
                    || fixed_regs[new_reg + i]
                    || global_regs[new_reg + i]
                    || global_regs[new_reg + i]
                    /* Can't use regs which aren't saved by the prologue.  */
                    /* Can't use regs which aren't saved by the prologue.  */
                    || (! df_regs_ever_live_p (new_reg + i)
                    || (! df_regs_ever_live_p (new_reg + i)
                        && ! call_used_regs[new_reg + i])
                        && ! call_used_regs[new_reg + i])
#ifdef LEAF_REGISTERS
#ifdef LEAF_REGISTERS
                    /* We can't use a non-leaf register if we're in a
                    /* We can't use a non-leaf register if we're in a
                       leaf function.  */
                       leaf function.  */
                    || (current_function_is_leaf
                    || (current_function_is_leaf
                        && !LEAF_REGISTERS[new_reg + i])
                        && !LEAF_REGISTERS[new_reg + i])
#endif
#endif
#ifdef HARD_REGNO_RENAME_OK
#ifdef HARD_REGNO_RENAME_OK
                    || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
                    || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
#endif
#endif
                    )
                    )
                  break;
                  break;
              if (i >= 0)
              if (i >= 0)
                continue;
                continue;
 
 
              /* See whether it accepts all modes that occur in
              /* See whether it accepts all modes that occur in
                 definition and uses.  */
                 definition and uses.  */
              for (tmp = this_head->first; tmp; tmp = tmp->next_use)
              for (tmp = this_head->first; tmp; tmp = tmp->next_use)
                if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
                if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
                     && ! DEBUG_INSN_P (tmp->insn))
                     && ! DEBUG_INSN_P (tmp->insn))
                    || (this_head->need_caller_save_reg
                    || (this_head->need_caller_save_reg
                        && ! (HARD_REGNO_CALL_PART_CLOBBERED
                        && ! (HARD_REGNO_CALL_PART_CLOBBERED
                              (reg, GET_MODE (*tmp->loc)))
                              (reg, GET_MODE (*tmp->loc)))
                        && (HARD_REGNO_CALL_PART_CLOBBERED
                        && (HARD_REGNO_CALL_PART_CLOBBERED
                            (new_reg, GET_MODE (*tmp->loc)))))
                            (new_reg, GET_MODE (*tmp->loc)))))
                  break;
                  break;
              if (! tmp)
              if (! tmp)
                {
                {
                  if (tick[best_new_reg] > tick[new_reg])
                  if (tick[best_new_reg] > tick[new_reg])
                    {
                    {
                      best_new_reg = new_reg;
                      best_new_reg = new_reg;
                      best_nregs = nregs;
                      best_nregs = nregs;
                    }
                    }
                }
                }
            }
            }
 
 
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file, "Register %s in insn %d",
              fprintf (dump_file, "Register %s in insn %d",
                       reg_names[reg], INSN_UID (this_head->first->insn));
                       reg_names[reg], INSN_UID (this_head->first->insn));
              if (this_head->need_caller_save_reg)
              if (this_head->need_caller_save_reg)
                fprintf (dump_file, " crosses a call");
                fprintf (dump_file, " crosses a call");
            }
            }
 
 
          if (best_new_reg == reg)
          if (best_new_reg == reg)
            {
            {
              tick[reg] = ++this_tick;
              tick[reg] = ++this_tick;
              if (dump_file)
              if (dump_file)
                fprintf (dump_file, "; no available better choice\n");
                fprintf (dump_file, "; no available better choice\n");
              continue;
              continue;
            }
            }
 
 
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
            fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
 
 
          do_replace (this_head, best_new_reg);
          do_replace (this_head, best_new_reg);
          this_head->regno = best_new_reg;
          this_head->regno = best_new_reg;
          this_head->nregs = best_nregs;
          this_head->nregs = best_nregs;
          tick[best_new_reg] = ++this_tick;
          tick[best_new_reg] = ++this_tick;
          df_set_regs_ever_live (best_new_reg, true);
          df_set_regs_ever_live (best_new_reg, true);
        }
        }
 
 
      free_chain_data ();
      free_chain_data ();
      obstack_free (&rename_obstack, first_obj);
      obstack_free (&rename_obstack, first_obj);
    }
    }
 
 
  obstack_free (&rename_obstack, NULL);
  obstack_free (&rename_obstack, NULL);
 
 
  if (dump_file)
  if (dump_file)
    fputc ('\n', dump_file);
    fputc ('\n', dump_file);
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
do_replace (struct du_head *head, int reg)
do_replace (struct du_head *head, int reg)
{
{
  struct du_chain *chain;
  struct du_chain *chain;
  unsigned int base_regno = head->regno;
  unsigned int base_regno = head->regno;
  bool found_note = false;
  bool found_note = false;
 
 
  gcc_assert (! DEBUG_INSN_P (head->first->insn));
  gcc_assert (! DEBUG_INSN_P (head->first->insn));
 
 
  for (chain = head->first; chain; chain = chain->next_use)
  for (chain = head->first; chain; chain = chain->next_use)
    {
    {
      unsigned int regno = ORIGINAL_REGNO (*chain->loc);
      unsigned int regno = ORIGINAL_REGNO (*chain->loc);
      struct reg_attrs *attr = REG_ATTRS (*chain->loc);
      struct reg_attrs *attr = REG_ATTRS (*chain->loc);
      int reg_ptr = REG_POINTER (*chain->loc);
      int reg_ptr = REG_POINTER (*chain->loc);
 
 
      if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
      if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
        INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC ();
        INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC ();
      else
      else
        {
        {
          rtx note;
          rtx note;
 
 
          *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
          *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
          if (regno >= FIRST_PSEUDO_REGISTER)
          if (regno >= FIRST_PSEUDO_REGISTER)
            ORIGINAL_REGNO (*chain->loc) = regno;
            ORIGINAL_REGNO (*chain->loc) = regno;
          REG_ATTRS (*chain->loc) = attr;
          REG_ATTRS (*chain->loc) = attr;
          REG_POINTER (*chain->loc) = reg_ptr;
          REG_POINTER (*chain->loc) = reg_ptr;
 
 
          for (note = REG_NOTES (chain->insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (chain->insn); note; note = XEXP (note, 1))
            {
            {
              enum reg_note kind = REG_NOTE_KIND (note);
              enum reg_note kind = REG_NOTE_KIND (note);
              if (kind == REG_DEAD || kind == REG_UNUSED)
              if (kind == REG_DEAD || kind == REG_UNUSED)
                {
                {
                  rtx reg = XEXP (note, 0);
                  rtx reg = XEXP (note, 0);
                  gcc_assert (HARD_REGISTER_P (reg));
                  gcc_assert (HARD_REGISTER_P (reg));
 
 
                  if (REGNO (reg) == base_regno)
                  if (REGNO (reg) == base_regno)
                    {
                    {
                      found_note = true;
                      found_note = true;
                      if (kind == REG_DEAD
                      if (kind == REG_DEAD
                          && reg_set_p (*chain->loc, chain->insn))
                          && reg_set_p (*chain->loc, chain->insn))
                        remove_note (chain->insn, note);
                        remove_note (chain->insn, note);
                      else
                      else
                        XEXP (note, 0) = *chain->loc;
                        XEXP (note, 0) = *chain->loc;
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
        }
        }
 
 
      df_insn_rescan (chain->insn);
      df_insn_rescan (chain->insn);
    }
    }
  if (!found_note)
  if (!found_note)
    {
    {
      /* If the chain's first insn is the same as the last, we should have
      /* If the chain's first insn is the same as the last, we should have
         found a REG_UNUSED note.  */
         found a REG_UNUSED note.  */
      gcc_assert (head->first->insn != head->last->insn);
      gcc_assert (head->first->insn != head->last->insn);
      if (!reg_set_p (*head->last->loc, head->last->insn))
      if (!reg_set_p (*head->last->loc, head->last->insn))
        add_reg_note (head->last->insn, REG_DEAD, *head->last->loc);
        add_reg_note (head->last->insn, REG_DEAD, *head->last->loc);
    }
    }
}
}
 
 
 
 
/* Walk all chains starting with CHAINS and record that they conflict with
/* Walk all chains starting with CHAINS and record that they conflict with
   another chain whose id is ID.  */
   another chain whose id is ID.  */
 
 
static void
static void
mark_conflict (struct du_head *chains, unsigned id)
mark_conflict (struct du_head *chains, unsigned id)
{
{
  while (chains)
  while (chains)
    {
    {
      bitmap_set_bit (&chains->conflicts, id);
      bitmap_set_bit (&chains->conflicts, id);
      chains = chains->next_chain;
      chains = chains->next_chain;
    }
    }
}
}
 
 
/* True if we found a register with a size mismatch, which means that we
/* True if we found a register with a size mismatch, which means that we
   can't track its lifetime accurately.  If so, we abort the current block
   can't track its lifetime accurately.  If so, we abort the current block
   without renaming.  */
   without renaming.  */
static bool fail_current_block;
static bool fail_current_block;
 
 
/* The id to be given to the next opened chain.  */
/* The id to be given to the next opened chain.  */
static unsigned current_id;
static unsigned current_id;
 
 
/* List of currently open chains, and closed chains that can be renamed.  */
/* List of currently open chains, and closed chains that can be renamed.  */
static struct du_head *open_chains;
static struct du_head *open_chains;
static struct du_head *closed_chains;
static struct du_head *closed_chains;
 
 
/* Bitmap of open chains.  The bits set always match the list found in
/* Bitmap of open chains.  The bits set always match the list found in
   open_chains.  */
   open_chains.  */
static bitmap_head open_chains_set;
static bitmap_head open_chains_set;
 
 
/* Record the registers being tracked in open_chains.  */
/* Record the registers being tracked in open_chains.  */
static HARD_REG_SET live_in_chains;
static HARD_REG_SET live_in_chains;
 
 
/* Record the registers that are live but not tracked.  The intersection
/* Record the registers that are live but not tracked.  The intersection
   between this and live_in_chains is empty.  */
   between this and live_in_chains is empty.  */
static HARD_REG_SET live_hard_regs;
static HARD_REG_SET live_hard_regs;
 
 
/* Return true if OP is a reg for which all bits are set in PSET, false
/* Return true if OP is a reg for which all bits are set in PSET, false
   if all bits are clear.
   if all bits are clear.
   In other cases, set fail_current_block and return false.  */
   In other cases, set fail_current_block and return false.  */
 
 
static bool
static bool
verify_reg_in_set (rtx op, HARD_REG_SET *pset)
verify_reg_in_set (rtx op, HARD_REG_SET *pset)
{
{
  unsigned regno, nregs;
  unsigned regno, nregs;
  bool all_live, all_dead;
  bool all_live, all_dead;
  if (!REG_P (op))
  if (!REG_P (op))
    return false;
    return false;
 
 
  regno = REGNO (op);
  regno = REGNO (op);
  nregs = hard_regno_nregs[regno][GET_MODE (op)];
  nregs = hard_regno_nregs[regno][GET_MODE (op)];
  all_live = all_dead = true;
  all_live = all_dead = true;
  while (nregs-- > 0)
  while (nregs-- > 0)
    if (TEST_HARD_REG_BIT (*pset, regno + nregs))
    if (TEST_HARD_REG_BIT (*pset, regno + nregs))
      all_dead = false;
      all_dead = false;
    else
    else
      all_live = false;
      all_live = false;
  if (!all_dead && !all_live)
  if (!all_dead && !all_live)
    {
    {
      fail_current_block = true;
      fail_current_block = true;
      return false;
      return false;
    }
    }
  return all_live;
  return all_live;
}
}
 
 
/* Return true if OP is a reg that is being tracked already in some form.
/* Return true if OP is a reg that is being tracked already in some form.
   May set fail_current_block if it sees an unhandled case of overlap.  */
   May set fail_current_block if it sees an unhandled case of overlap.  */
 
 
static bool
static bool
verify_reg_tracked (rtx op)
verify_reg_tracked (rtx op)
{
{
  return (verify_reg_in_set (op, &live_hard_regs)
  return (verify_reg_in_set (op, &live_hard_regs)
          || verify_reg_in_set (op, &live_in_chains));
          || verify_reg_in_set (op, &live_in_chains));
}
}
 
 
/* Called through note_stores.  DATA points to a rtx_code, either SET or
/* Called through note_stores.  DATA points to a rtx_code, either SET or
   CLOBBER, which tells us which kind of rtx to look at.  If we have a
   CLOBBER, which tells us which kind of rtx to look at.  If we have a
   match, record the set register in live_hard_regs and in the hard_conflicts
   match, record the set register in live_hard_regs and in the hard_conflicts
   bitmap of open chains.  */
   bitmap of open chains.  */
 
 
static void
static void
note_sets_clobbers (rtx x, const_rtx set, void *data)
note_sets_clobbers (rtx x, const_rtx set, void *data)
{
{
  enum rtx_code code = *(enum rtx_code *)data;
  enum rtx_code code = *(enum rtx_code *)data;
  struct du_head *chain;
  struct du_head *chain;
 
 
  if (GET_CODE (x) == SUBREG)
  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);
    x = SUBREG_REG (x);
  if (!REG_P (x) || GET_CODE (set) != code)
  if (!REG_P (x) || GET_CODE (set) != code)
    return;
    return;
  /* There must not be pseudos at this point.  */
  /* There must not be pseudos at this point.  */
  gcc_assert (HARD_REGISTER_P (x));
  gcc_assert (HARD_REGISTER_P (x));
  add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
  add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
  for (chain = open_chains; chain; chain = chain->next_chain)
  for (chain = open_chains; chain; chain = chain->next_chain)
    add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
    add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
}
}
 
 
/* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
/* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
   and record its occurrence in *LOC, which is being written to in INSN.
   and record its occurrence in *LOC, which is being written to in INSN.
   This access requires a register of class CL.  */
   This access requires a register of class CL.  */
 
 
static void
static void
create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
                  rtx insn, enum reg_class cl)
                  rtx insn, enum reg_class cl)
{
{
  struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
  struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
  struct du_chain *this_du;
  struct du_chain *this_du;
  int nregs;
  int nregs;
 
 
  head->next_chain = open_chains;
  head->next_chain = open_chains;
  open_chains = head;
  open_chains = head;
  head->regno = this_regno;
  head->regno = this_regno;
  head->nregs = this_nregs;
  head->nregs = this_nregs;
  head->need_caller_save_reg = 0;
  head->need_caller_save_reg = 0;
  head->cannot_rename = 0;
  head->cannot_rename = 0;
  head->terminated = 0;
  head->terminated = 0;
 
 
  VEC_safe_push (du_head_p, heap, id_to_chain, head);
  VEC_safe_push (du_head_p, heap, id_to_chain, head);
  head->id = current_id++;
  head->id = current_id++;
 
 
  bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
  bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
  bitmap_copy (&head->conflicts, &open_chains_set);
  bitmap_copy (&head->conflicts, &open_chains_set);
  mark_conflict (open_chains, head->id);
  mark_conflict (open_chains, head->id);
 
 
  /* Since we're tracking this as a chain now, remove it from the
  /* Since we're tracking this as a chain now, remove it from the
     list of conflicting live hard registers and track it in
     list of conflicting live hard registers and track it in
     live_in_chains instead.  */
     live_in_chains instead.  */
  nregs = head->nregs;
  nregs = head->nregs;
  while (nregs-- > 0)
  while (nregs-- > 0)
    {
    {
      SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
      SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
      CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
      CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
    }
    }
 
 
  COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
  COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
  bitmap_set_bit (&open_chains_set, head->id);
  bitmap_set_bit (&open_chains_set, head->id);
 
 
  open_chains = head;
  open_chains = head;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Creating chain %s (%d)",
      fprintf (dump_file, "Creating chain %s (%d)",
               reg_names[head->regno], head->id);
               reg_names[head->regno], head->id);
      if (insn != NULL_RTX)
      if (insn != NULL_RTX)
        fprintf (dump_file, " at insn %d", INSN_UID (insn));
        fprintf (dump_file, " at insn %d", INSN_UID (insn));
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  if (insn == NULL_RTX)
  if (insn == NULL_RTX)
    {
    {
      head->first = head->last = NULL;
      head->first = head->last = NULL;
      return;
      return;
    }
    }
 
 
  this_du = XOBNEW (&rename_obstack, struct du_chain);
  this_du = XOBNEW (&rename_obstack, struct du_chain);
  head->first = head->last = this_du;
  head->first = head->last = this_du;
 
 
  this_du->next_use = 0;
  this_du->next_use = 0;
  this_du->loc = loc;
  this_du->loc = loc;
  this_du->insn = insn;
  this_du->insn = insn;
  this_du->cl = cl;
  this_du->cl = cl;
}
}
 
 
static void
static void
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
              enum op_type type)
              enum op_type type)
{
{
  struct du_head **p;
  struct du_head **p;
  rtx x = *loc;
  rtx x = *loc;
  enum machine_mode mode = GET_MODE (x);
  enum machine_mode mode = GET_MODE (x);
  unsigned this_regno = REGNO (x);
  unsigned this_regno = REGNO (x);
  unsigned this_nregs = hard_regno_nregs[this_regno][mode];
  unsigned this_nregs = hard_regno_nregs[this_regno][mode];
 
 
  if (action == mark_write)
  if (action == mark_write)
    {
    {
      if (type == OP_OUT)
      if (type == OP_OUT)
        create_new_chain (this_regno, this_nregs, loc, insn, cl);
        create_new_chain (this_regno, this_nregs, loc, insn, cl);
      return;
      return;
    }
    }
 
 
  if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
  if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
    return;
    return;
 
 
  for (p = &open_chains; *p;)
  for (p = &open_chains; *p;)
    {
    {
      struct du_head *head = *p;
      struct du_head *head = *p;
      struct du_head *next = head->next_chain;
      struct du_head *next = head->next_chain;
      int exact_match = (head->regno == this_regno
      int exact_match = (head->regno == this_regno
                         && head->nregs == this_nregs);
                         && head->nregs == this_nregs);
      int superset = (this_regno <= head->regno
      int superset = (this_regno <= head->regno
                      && this_regno + this_nregs >= head->regno + head->nregs);
                      && this_regno + this_nregs >= head->regno + head->nregs);
      int subset = (this_regno >= head->regno
      int subset = (this_regno >= head->regno
                      && this_regno + this_nregs <= head->regno + head->nregs);
                      && this_regno + this_nregs <= head->regno + head->nregs);
 
 
      if (head->terminated
      if (head->terminated
          || head->regno + head->nregs <= this_regno
          || head->regno + head->nregs <= this_regno
          || this_regno + this_nregs <= head->regno)
          || this_regno + this_nregs <= head->regno)
        {
        {
          p = &head->next_chain;
          p = &head->next_chain;
          continue;
          continue;
        }
        }
 
 
      if (action == mark_read || action == mark_access)
      if (action == mark_read || action == mark_access)
        {
        {
          /* ??? Class NO_REGS can happen if the md file makes use of
          /* ??? Class NO_REGS can happen if the md file makes use of
             EXTRA_CONSTRAINTS to match registers.  Which is arguably
             EXTRA_CONSTRAINTS to match registers.  Which is arguably
             wrong, but there we are.  */
             wrong, but there we are.  */
 
 
          if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
          if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
            {
            {
              if (dump_file)
              if (dump_file)
                fprintf (dump_file,
                fprintf (dump_file,
                         "Cannot rename chain %s (%d) at insn %d (%s)\n",
                         "Cannot rename chain %s (%d) at insn %d (%s)\n",
                         reg_names[head->regno], head->id, INSN_UID (insn),
                         reg_names[head->regno], head->id, INSN_UID (insn),
                         scan_actions_name[(int) action]);
                         scan_actions_name[(int) action]);
              head->cannot_rename = 1;
              head->cannot_rename = 1;
              if (superset)
              if (superset)
                {
                {
                  unsigned nregs = this_nregs;
                  unsigned nregs = this_nregs;
                  head->regno = this_regno;
                  head->regno = this_regno;
                  head->nregs = this_nregs;
                  head->nregs = this_nregs;
                  while (nregs-- > 0)
                  while (nregs-- > 0)
                    SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
                    SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "Widening register in chain %s (%d) at insn %d\n",
                             "Widening register in chain %s (%d) at insn %d\n",
                             reg_names[head->regno], head->id, INSN_UID (insn));
                             reg_names[head->regno], head->id, INSN_UID (insn));
                }
                }
              else if (!subset)
              else if (!subset)
                {
                {
                  fail_current_block = true;
                  fail_current_block = true;
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "Failing basic block due to unhandled overlap\n");
                             "Failing basic block due to unhandled overlap\n");
                }
                }
            }
            }
          else
          else
            {
            {
              struct du_chain *this_du;
              struct du_chain *this_du;
              this_du = XOBNEW (&rename_obstack, struct du_chain);
              this_du = XOBNEW (&rename_obstack, struct du_chain);
              this_du->next_use = 0;
              this_du->next_use = 0;
              this_du->loc = loc;
              this_du->loc = loc;
              this_du->insn = insn;
              this_du->insn = insn;
              this_du->cl = cl;
              this_du->cl = cl;
              if (head->first == NULL)
              if (head->first == NULL)
                head->first = this_du;
                head->first = this_du;
              else
              else
                head->last->next_use = this_du;
                head->last->next_use = this_du;
              head->last = this_du;
              head->last = this_du;
 
 
            }
            }
          /* Avoid adding the same location in a DEBUG_INSN multiple times,
          /* Avoid adding the same location in a DEBUG_INSN multiple times,
             which could happen with non-exact overlap.  */
             which could happen with non-exact overlap.  */
          if (DEBUG_INSN_P (insn))
          if (DEBUG_INSN_P (insn))
            return;
            return;
          /* Otherwise, find any other chains that do not match exactly;
          /* Otherwise, find any other chains that do not match exactly;
             ensure they all get marked unrenamable.  */
             ensure they all get marked unrenamable.  */
          p = &head->next_chain;
          p = &head->next_chain;
          continue;
          continue;
        }
        }
 
 
      /* Whether the terminated chain can be used for renaming
      /* Whether the terminated chain can be used for renaming
         depends on the action and this being an exact match.
         depends on the action and this being an exact match.
         In either case, we remove this element from open_chains.  */
         In either case, we remove this element from open_chains.  */
 
 
      if ((action == terminate_dead || action == terminate_write)
      if ((action == terminate_dead || action == terminate_write)
          && superset)
          && superset)
        {
        {
          unsigned nregs;
          unsigned nregs;
 
 
          head->terminated = 1;
          head->terminated = 1;
          head->next_chain = closed_chains;
          head->next_chain = closed_chains;
          closed_chains = head;
          closed_chains = head;
          bitmap_clear_bit (&open_chains_set, head->id);
          bitmap_clear_bit (&open_chains_set, head->id);
 
 
          nregs = head->nregs;
          nregs = head->nregs;
          while (nregs-- > 0)
          while (nregs-- > 0)
            CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
            CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
 
 
          *p = next;
          *p = next;
          if (dump_file)
          if (dump_file)
            fprintf (dump_file,
            fprintf (dump_file,
                     "Closing chain %s (%d) at insn %d (%s)\n",
                     "Closing chain %s (%d) at insn %d (%s)\n",
                     reg_names[head->regno], head->id, INSN_UID (insn),
                     reg_names[head->regno], head->id, INSN_UID (insn),
                     scan_actions_name[(int) action]);
                     scan_actions_name[(int) action]);
        }
        }
      else if (action == terminate_dead || action == terminate_write)
      else if (action == terminate_dead || action == terminate_write)
        {
        {
          /* In this case, tracking liveness gets too hard.  Fail the
          /* In this case, tracking liveness gets too hard.  Fail the
             entire basic block.  */
             entire basic block.  */
          if (dump_file)
          if (dump_file)
            fprintf (dump_file,
            fprintf (dump_file,
                     "Failing basic block due to unhandled overlap\n");
                     "Failing basic block due to unhandled overlap\n");
          fail_current_block = true;
          fail_current_block = true;
          return;
          return;
        }
        }
      else
      else
        {
        {
          head->cannot_rename = 1;
          head->cannot_rename = 1;
          if (dump_file)
          if (dump_file)
            fprintf (dump_file,
            fprintf (dump_file,
                     "Cannot rename chain %s (%d) at insn %d (%s)\n",
                     "Cannot rename chain %s (%d) at insn %d (%s)\n",
                     reg_names[head->regno], head->id, INSN_UID (insn),
                     reg_names[head->regno], head->id, INSN_UID (insn),
                     scan_actions_name[(int) action]);
                     scan_actions_name[(int) action]);
          p = &head->next_chain;
          p = &head->next_chain;
        }
        }
    }
    }
}
}
 
 
/* Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
/* Adapted from find_reloads_address_1.  CL is INDEX_REG_CLASS or
   BASE_REG_CLASS depending on how the register is being considered.  */
   BASE_REG_CLASS depending on how the register is being considered.  */
 
 
static void
static void
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
                  enum scan_actions action, enum machine_mode mode)
                  enum scan_actions action, enum machine_mode mode)
{
{
  rtx x = *loc;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  const char *fmt;
  int i, j;
  int i, j;
 
 
  if (action == mark_write || action == mark_access)
  if (action == mark_write || action == mark_access)
    return;
    return;
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS:
    case PLUS:
      {
      {
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op0 = XEXP (x, 0);
        rtx orig_op1 = XEXP (x, 1);
        rtx orig_op1 = XEXP (x, 1);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code0 = GET_CODE (orig_op0);
        RTX_CODE code1 = GET_CODE (orig_op1);
        RTX_CODE code1 = GET_CODE (orig_op1);
        rtx op0 = orig_op0;
        rtx op0 = orig_op0;
        rtx op1 = orig_op1;
        rtx op1 = orig_op1;
        rtx *locI = NULL;
        rtx *locI = NULL;
        rtx *locB = NULL;
        rtx *locB = NULL;
        enum rtx_code index_code = SCRATCH;
        enum rtx_code index_code = SCRATCH;
 
 
        if (GET_CODE (op0) == SUBREG)
        if (GET_CODE (op0) == SUBREG)
          {
          {
            op0 = SUBREG_REG (op0);
            op0 = SUBREG_REG (op0);
            code0 = GET_CODE (op0);
            code0 = GET_CODE (op0);
          }
          }
 
 
        if (GET_CODE (op1) == SUBREG)
        if (GET_CODE (op1) == SUBREG)
          {
          {
            op1 = SUBREG_REG (op1);
            op1 = SUBREG_REG (op1);
            code1 = GET_CODE (op1);
            code1 = GET_CODE (op1);
          }
          }
 
 
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
        if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
            || code0 == ZERO_EXTEND || code1 == MEM)
            || code0 == ZERO_EXTEND || code1 == MEM)
          {
          {
            locI = &XEXP (x, 0);
            locI = &XEXP (x, 0);
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
        else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
                 || code1 == ZERO_EXTEND || code0 == MEM)
                 || code1 == ZERO_EXTEND || code0 == MEM)
          {
          {
            locI = &XEXP (x, 1);
            locI = &XEXP (x, 1);
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code0 == CONST_INT || code0 == CONST
        else if (code0 == CONST_INT || code0 == CONST
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
                 || code0 == SYMBOL_REF || code0 == LABEL_REF)
          {
          {
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (XEXP (x, 0));
            index_code = GET_CODE (XEXP (x, 0));
          }
          }
        else if (code1 == CONST_INT || code1 == CONST
        else if (code1 == CONST_INT || code1 == CONST
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
                 || code1 == SYMBOL_REF || code1 == LABEL_REF)
          {
          {
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (XEXP (x, 1));
            index_code = GET_CODE (XEXP (x, 1));
          }
          }
        else if (code0 == REG && code1 == REG)
        else if (code0 == REG && code1 == REG)
          {
          {
            int index_op;
            int index_op;
            unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
            unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
 
 
            if (REGNO_OK_FOR_INDEX_P (regno1)
            if (REGNO_OK_FOR_INDEX_P (regno1)
                && regno_ok_for_base_p (regno0, mode, PLUS, REG))
                && regno_ok_for_base_p (regno0, mode, PLUS, REG))
              index_op = 1;
              index_op = 1;
            else if (REGNO_OK_FOR_INDEX_P (regno0)
            else if (REGNO_OK_FOR_INDEX_P (regno0)
                     && regno_ok_for_base_p (regno1, mode, PLUS, REG))
                     && regno_ok_for_base_p (regno1, mode, PLUS, REG))
              index_op = 0;
              index_op = 0;
            else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
            else if (regno_ok_for_base_p (regno0, mode, PLUS, REG)
                     || REGNO_OK_FOR_INDEX_P (regno1))
                     || REGNO_OK_FOR_INDEX_P (regno1))
              index_op = 1;
              index_op = 1;
            else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
            else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
              index_op = 0;
              index_op = 0;
            else
            else
              index_op = 1;
              index_op = 1;
 
 
            locI = &XEXP (x, index_op);
            locI = &XEXP (x, index_op);
            locB = &XEXP (x, !index_op);
            locB = &XEXP (x, !index_op);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code0 == REG)
        else if (code0 == REG)
          {
          {
            locI = &XEXP (x, 0);
            locI = &XEXP (x, 0);
            locB = &XEXP (x, 1);
            locB = &XEXP (x, 1);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
        else if (code1 == REG)
        else if (code1 == REG)
          {
          {
            locI = &XEXP (x, 1);
            locI = &XEXP (x, 1);
            locB = &XEXP (x, 0);
            locB = &XEXP (x, 0);
            index_code = GET_CODE (*locI);
            index_code = GET_CODE (*locI);
          }
          }
 
 
        if (locI)
        if (locI)
          scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
          scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
        if (locB)
        if (locB)
          scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
          scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
                            action, mode);
                            action, mode);
 
 
        return;
        return;
      }
      }
 
 
    case POST_INC:
    case POST_INC:
    case POST_DEC:
    case POST_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_INC:
    case PRE_INC:
    case PRE_DEC:
    case PRE_DEC:
    case PRE_MODIFY:
    case PRE_MODIFY:
#ifndef AUTO_INC_DEC
#ifndef AUTO_INC_DEC
      /* If the target doesn't claim to handle autoinc, this must be
      /* If the target doesn't claim to handle autoinc, this must be
         something special, like a stack push.  Kill this chain.  */
         something special, like a stack push.  Kill this chain.  */
      action = mark_all_read;
      action = mark_all_read;
#endif
#endif
      break;
      break;
 
 
    case MEM:
    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
      scan_rtx_address (insn, &XEXP (x, 0),
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        GET_MODE (x));
                        GET_MODE (x));
      return;
      return;
 
 
    case REG:
    case REG:
      scan_rtx_reg (insn, loc, cl, action, OP_IN);
      scan_rtx_reg (insn, loc, cl, action, OP_IN);
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
        scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
          scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
    }
    }
}
}
 
 
static void
static void
scan_rtx (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
scan_rtx (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
          enum op_type type)
          enum op_type type)
{
{
  const char *fmt;
  const char *fmt;
  rtx x = *loc;
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  int i, j;
  int i, j;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_FIXED:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case CC0:
    case CC0:
    case PC:
    case PC:
      return;
      return;
 
 
    case REG:
    case REG:
      scan_rtx_reg (insn, loc, cl, action, type);
      scan_rtx_reg (insn, loc, cl, action, type);
      return;
      return;
 
 
    case MEM:
    case MEM:
      scan_rtx_address (insn, &XEXP (x, 0),
      scan_rtx_address (insn, &XEXP (x, 0),
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
                        GET_MODE (x));
                        GET_MODE (x));
      return;
      return;
 
 
    case SET:
    case SET:
      scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
      scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
      scan_rtx (insn, &SET_DEST (x), cl, action,
      scan_rtx (insn, &SET_DEST (x), cl, action,
                (GET_CODE (PATTERN (insn)) == COND_EXEC
                (GET_CODE (PATTERN (insn)) == COND_EXEC
                 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
                 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
      return;
      return;
 
 
    case STRICT_LOW_PART:
    case STRICT_LOW_PART:
      scan_rtx (insn, &XEXP (x, 0), cl, action,
      scan_rtx (insn, &XEXP (x, 0), cl, action,
                verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
                verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
      return;
      return;
 
 
    case ZERO_EXTRACT:
    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
    case SIGN_EXTRACT:
      scan_rtx (insn, &XEXP (x, 0), cl, action,
      scan_rtx (insn, &XEXP (x, 0), cl, action,
                (type == OP_IN ? OP_IN :
                (type == OP_IN ? OP_IN :
                 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
                 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
      scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
      scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
      scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
      scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
      return;
      return;
 
 
    case POST_INC:
    case POST_INC:
    case PRE_INC:
    case PRE_INC:
    case POST_DEC:
    case POST_DEC:
    case PRE_DEC:
    case PRE_DEC:
    case POST_MODIFY:
    case POST_MODIFY:
    case PRE_MODIFY:
    case PRE_MODIFY:
      /* Should only happen inside MEM.  */
      /* Should only happen inside MEM.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case CLOBBER:
    case CLOBBER:
      scan_rtx (insn, &SET_DEST (x), cl, action,
      scan_rtx (insn, &SET_DEST (x), cl, action,
                (GET_CODE (PATTERN (insn)) == COND_EXEC
                (GET_CODE (PATTERN (insn)) == COND_EXEC
                 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
                 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
      return;
      return;
 
 
    case EXPR_LIST:
    case EXPR_LIST:
      scan_rtx (insn, &XEXP (x, 0), cl, action, type);
      scan_rtx (insn, &XEXP (x, 0), cl, action, type);
      if (XEXP (x, 1))
      if (XEXP (x, 1))
        scan_rtx (insn, &XEXP (x, 1), cl, action, type);
        scan_rtx (insn, &XEXP (x, 1), cl, action, type);
      return;
      return;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        scan_rtx (insn, &XEXP (x, i), cl, action, type);
        scan_rtx (insn, &XEXP (x, i), cl, action, type);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
          scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
    }
    }
}
}
 
 
/* Hide operands of the current insn (of which there are N_OPS) by
/* Hide operands of the current insn (of which there are N_OPS) by
   substituting cc0 for them.
   substituting cc0 for them.
   Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
   Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
   For every bit set in DO_NOT_HIDE, we leave the operand alone.
   For every bit set in DO_NOT_HIDE, we leave the operand alone.
   If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
   If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
   and earlyclobbers.  */
   and earlyclobbers.  */
 
 
static void
static void
hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
               unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
               unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
{
{
  int i;
  int i;
  int alt = which_alternative;
  int alt = which_alternative;
  for (i = 0; i < n_ops; i++)
  for (i = 0; i < n_ops; i++)
    {
    {
      old_operands[i] = recog_data.operand[i];
      old_operands[i] = recog_data.operand[i];
      /* Don't squash match_operator or match_parallel here, since
      /* Don't squash match_operator or match_parallel here, since
         we don't know that all of the contained registers are
         we don't know that all of the contained registers are
         reachable by proper operands.  */
         reachable by proper operands.  */
      if (recog_data.constraints[i][0] == '\0')
      if (recog_data.constraints[i][0] == '\0')
        continue;
        continue;
      if (do_not_hide & (1 << i))
      if (do_not_hide & (1 << i))
        continue;
        continue;
      if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
      if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
          || recog_op_alt[i][alt].earlyclobber)
          || recog_op_alt[i][alt].earlyclobber)
        *recog_data.operand_loc[i] = cc0_rtx;
        *recog_data.operand_loc[i] = cc0_rtx;
    }
    }
  for (i = 0; i < recog_data.n_dups; i++)
  for (i = 0; i < recog_data.n_dups; i++)
    {
    {
      int opn = recog_data.dup_num[i];
      int opn = recog_data.dup_num[i];
      old_dups[i] = *recog_data.dup_loc[i];
      old_dups[i] = *recog_data.dup_loc[i];
      if (do_not_hide & (1 << opn))
      if (do_not_hide & (1 << opn))
        continue;
        continue;
      if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
      if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
          || recog_op_alt[opn][alt].earlyclobber)
          || recog_op_alt[opn][alt].earlyclobber)
        *recog_data.dup_loc[i] = cc0_rtx;
        *recog_data.dup_loc[i] = cc0_rtx;
    }
    }
}
}
 
 
/* Undo the substitution performed by hide_operands.  INSN is the insn we
/* Undo the substitution performed by hide_operands.  INSN is the insn we
   are processing; the arguments are the same as in hide_operands.  */
   are processing; the arguments are the same as in hide_operands.  */
 
 
static void
static void
restore_operands (rtx insn, int n_ops, rtx *old_operands, rtx *old_dups)
restore_operands (rtx insn, int n_ops, rtx *old_operands, rtx *old_dups)
{
{
  int i;
  int i;
  for (i = 0; i < recog_data.n_dups; i++)
  for (i = 0; i < recog_data.n_dups; i++)
    *recog_data.dup_loc[i] = old_dups[i];
    *recog_data.dup_loc[i] = old_dups[i];
  for (i = 0; i < n_ops; i++)
  for (i = 0; i < n_ops; i++)
    *recog_data.operand_loc[i] = old_operands[i];
    *recog_data.operand_loc[i] = old_operands[i];
  if (recog_data.n_dups)
  if (recog_data.n_dups)
    df_insn_rescan (insn);
    df_insn_rescan (insn);
}
}
 
 
/* For each output operand of INSN, call scan_rtx to create a new
/* For each output operand of INSN, call scan_rtx to create a new
   open chain.  Do this only for normal or earlyclobber outputs,
   open chain.  Do this only for normal or earlyclobber outputs,
   depending on EARLYCLOBBER.  */
   depending on EARLYCLOBBER.  */
 
 
static void
static void
record_out_operands (rtx insn, bool earlyclobber)
record_out_operands (rtx insn, bool earlyclobber)
{
{
  int n_ops = recog_data.n_operands;
  int n_ops = recog_data.n_operands;
  int alt = which_alternative;
  int alt = which_alternative;
 
 
  int i;
  int i;
 
 
  for (i = 0; i < n_ops + recog_data.n_dups; i++)
  for (i = 0; i < n_ops + recog_data.n_dups; i++)
    {
    {
      int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
      int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
      rtx *loc = (i < n_ops
      rtx *loc = (i < n_ops
                  ? recog_data.operand_loc[opn]
                  ? recog_data.operand_loc[opn]
                  : recog_data.dup_loc[i - n_ops]);
                  : recog_data.dup_loc[i - n_ops]);
      rtx op = *loc;
      rtx op = *loc;
      enum reg_class cl = recog_op_alt[opn][alt].cl;
      enum reg_class cl = recog_op_alt[opn][alt].cl;
 
 
      struct du_head *prev_open;
      struct du_head *prev_open;
 
 
      if (recog_data.operand_type[opn] != OP_OUT
      if (recog_data.operand_type[opn] != OP_OUT
          || recog_op_alt[opn][alt].earlyclobber != earlyclobber)
          || recog_op_alt[opn][alt].earlyclobber != earlyclobber)
        continue;
        continue;
 
 
      prev_open = open_chains;
      prev_open = open_chains;
      scan_rtx (insn, loc, cl, mark_write, OP_OUT);
      scan_rtx (insn, loc, cl, mark_write, OP_OUT);
 
 
      /* ??? Many targets have output constraints on the SET_DEST
      /* ??? Many targets have output constraints on the SET_DEST
         of a call insn, which is stupid, since these are certainly
         of a call insn, which is stupid, since these are certainly
         ABI defined hard registers.  For these, and for asm operands
         ABI defined hard registers.  For these, and for asm operands
         that originally referenced hard registers, we must record that
         that originally referenced hard registers, we must record that
         the chain cannot be renamed.  */
         the chain cannot be renamed.  */
      if (CALL_P (insn)
      if (CALL_P (insn)
          || (asm_noperands (PATTERN (insn)) > 0
          || (asm_noperands (PATTERN (insn)) > 0
              && REG_P (op)
              && REG_P (op)
              && REGNO (op) == ORIGINAL_REGNO (op)))
              && REGNO (op) == ORIGINAL_REGNO (op)))
        {
        {
          if (prev_open != open_chains)
          if (prev_open != open_chains)
            open_chains->cannot_rename = 1;
            open_chains->cannot_rename = 1;
        }
        }
    }
    }
}
}
 
 
/* Build def/use chain.  */
/* Build def/use chain.  */
 
 
static struct du_head *
static struct du_head *
build_def_use (basic_block bb)
build_def_use (basic_block bb)
{
{
  rtx insn;
  rtx insn;
  df_ref *def_rec;
  df_ref *def_rec;
  unsigned HOST_WIDE_INT untracked_operands;
  unsigned HOST_WIDE_INT untracked_operands;
 
 
  open_chains = closed_chains = NULL;
  open_chains = closed_chains = NULL;
 
 
  fail_current_block = false;
  fail_current_block = false;
 
 
  current_id = 0;
  current_id = 0;
  bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
  bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
  CLEAR_HARD_REG_SET (live_in_chains);
  CLEAR_HARD_REG_SET (live_in_chains);
  REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
  REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
    {
    {
      df_ref def = *def_rec;
      df_ref def = *def_rec;
      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
        SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
        SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
    }
    }
 
 
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
    {
    {
      if (NONDEBUG_INSN_P (insn))
      if (NONDEBUG_INSN_P (insn))
        {
        {
          int n_ops;
          int n_ops;
          rtx note;
          rtx note;
          rtx old_operands[MAX_RECOG_OPERANDS];
          rtx old_operands[MAX_RECOG_OPERANDS];
          rtx old_dups[MAX_DUP_OPERANDS];
          rtx old_dups[MAX_DUP_OPERANDS];
          int i;
          int i;
          int alt;
          int alt;
          int predicated;
          int predicated;
          enum rtx_code set_code = SET;
          enum rtx_code set_code = SET;
          enum rtx_code clobber_code = CLOBBER;
          enum rtx_code clobber_code = CLOBBER;
 
 
          /* Process the insn, determining its effect on the def-use
          /* Process the insn, determining its effect on the def-use
             chains and live hard registers.  We perform the following
             chains and live hard registers.  We perform the following
             steps with the register references in the insn, simulating
             steps with the register references in the insn, simulating
             its effect:
             its effect:
             (1) Deal with earlyclobber operands and CLOBBERs of non-operands
             (1) Deal with earlyclobber operands and CLOBBERs of non-operands
                 by creating chains and marking hard regs live.
                 by creating chains and marking hard regs live.
             (2) Any read outside an operand causes any chain it overlaps
             (2) Any read outside an operand causes any chain it overlaps
                 with to be marked unrenamable.
                 with to be marked unrenamable.
             (3) Any read inside an operand is added if there's already
             (3) Any read inside an operand is added if there's already
                 an open chain for it.
                 an open chain for it.
             (4) For any REG_DEAD note we find, close open chains that
             (4) For any REG_DEAD note we find, close open chains that
                 overlap it.
                 overlap it.
             (5) For any non-earlyclobber write we find, close open chains
             (5) For any non-earlyclobber write we find, close open chains
                 that overlap it.
                 that overlap it.
             (6) For any non-earlyclobber write we find in an operand, make
             (6) For any non-earlyclobber write we find in an operand, make
                 a new chain or mark the hard register as live.
                 a new chain or mark the hard register as live.
             (7) For any REG_UNUSED, close any chains we just opened.
             (7) For any REG_UNUSED, close any chains we just opened.
 
 
             We cannot deal with situations where we track a reg in one mode
             We cannot deal with situations where we track a reg in one mode
             and see a reference in another mode; these will cause the chain
             and see a reference in another mode; these will cause the chain
             to be marked unrenamable or even cause us to abort the entire
             to be marked unrenamable or even cause us to abort the entire
             basic block.  */
             basic block.  */
 
 
          extract_insn (insn);
          extract_insn (insn);
          if (! constrain_operands (1))
          if (! constrain_operands (1))
            fatal_insn_not_found (insn);
            fatal_insn_not_found (insn);
          preprocess_constraints ();
          preprocess_constraints ();
          alt = which_alternative;
          alt = which_alternative;
          n_ops = recog_data.n_operands;
          n_ops = recog_data.n_operands;
          untracked_operands = 0;
          untracked_operands = 0;
 
 
          /* Simplify the code below by rewriting things to reflect
          /* Simplify the code below by rewriting things to reflect
             matching constraints.  Also promote OP_OUT to OP_INOUT in
             matching constraints.  Also promote OP_OUT to OP_INOUT in
             predicated instructions, but only for register operands
             predicated instructions, but only for register operands
             that are already tracked, so that we can create a chain
             that are already tracked, so that we can create a chain
             when the first SET makes a register live.  */
             when the first SET makes a register live.  */
 
 
          predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
          predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
          for (i = 0; i < n_ops; ++i)
          for (i = 0; i < n_ops; ++i)
            {
            {
              rtx op = recog_data.operand[i];
              rtx op = recog_data.operand[i];
              int matches = recog_op_alt[i][alt].matches;
              int matches = recog_op_alt[i][alt].matches;
              if (matches >= 0)
              if (matches >= 0)
                recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
                recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
              if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
              if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
                  || (predicated && recog_data.operand_type[i] == OP_OUT))
                  || (predicated && recog_data.operand_type[i] == OP_OUT))
                {
                {
                  recog_data.operand_type[i] = OP_INOUT;
                  recog_data.operand_type[i] = OP_INOUT;
                  /* A special case to deal with instruction patterns that
                  /* A special case to deal with instruction patterns that
                     have matching operands with different modes.  If we're
                     have matching operands with different modes.  If we're
                     not already tracking such a reg, we won't start here,
                     not already tracking such a reg, we won't start here,
                     and we must instead make sure to make the operand visible
                     and we must instead make sure to make the operand visible
                     to the machinery that tracks hard registers.  */
                     to the machinery that tracks hard registers.  */
                  if (matches >= 0
                  if (matches >= 0
                      && (GET_MODE_SIZE (recog_data.operand_mode[i])
                      && (GET_MODE_SIZE (recog_data.operand_mode[i])
                          != GET_MODE_SIZE (recog_data.operand_mode[matches]))
                          != GET_MODE_SIZE (recog_data.operand_mode[matches]))
                      && !verify_reg_in_set (op, &live_in_chains))
                      && !verify_reg_in_set (op, &live_in_chains))
                    {
                    {
                      untracked_operands |= 1 << i;
                      untracked_operands |= 1 << i;
                      untracked_operands |= 1 << matches;
                      untracked_operands |= 1 << matches;
                    }
                    }
                }
                }
              /* If there's an in-out operand with a register that is not
              /* If there's an in-out operand with a register that is not
                 being tracked at all yet, open a chain.  */
                 being tracked at all yet, open a chain.  */
              if (recog_data.operand_type[i] == OP_INOUT
              if (recog_data.operand_type[i] == OP_INOUT
                  && !(untracked_operands & (1 << i))
                  && !(untracked_operands & (1 << i))
                  && REG_P (op)
                  && REG_P (op)
                  && !verify_reg_tracked (op))
                  && !verify_reg_tracked (op))
                {
                {
                  enum machine_mode mode = GET_MODE (op);
                  enum machine_mode mode = GET_MODE (op);
                  unsigned this_regno = REGNO (op);
                  unsigned this_regno = REGNO (op);
                  unsigned this_nregs = hard_regno_nregs[this_regno][mode];
                  unsigned this_nregs = hard_regno_nregs[this_regno][mode];
                  create_new_chain (this_regno, this_nregs, NULL, NULL_RTX,
                  create_new_chain (this_regno, this_nregs, NULL, NULL_RTX,
                                    NO_REGS);
                                    NO_REGS);
                }
                }
            }
            }
 
 
          if (fail_current_block)
          if (fail_current_block)
            break;
            break;
 
 
          /* Step 1a: Mark hard registers that are clobbered in this insn,
          /* Step 1a: Mark hard registers that are clobbered in this insn,
             outside an operand, as live.  */
             outside an operand, as live.  */
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
                         false);
                         false);
          note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
          note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
          restore_operands (insn, n_ops, old_operands, old_dups);
          restore_operands (insn, n_ops, old_operands, old_dups);
 
 
          /* Step 1b: Begin new chains for earlyclobbered writes inside
          /* Step 1b: Begin new chains for earlyclobbered writes inside
             operands.  */
             operands.  */
          record_out_operands (insn, true);
          record_out_operands (insn, true);
 
 
          /* Step 2: Mark chains for which we have reads outside operands
          /* Step 2: Mark chains for which we have reads outside operands
             as unrenamable.
             as unrenamable.
             We do this by munging all operands into CC0, and closing
             We do this by munging all operands into CC0, and closing
             everything remaining.  */
             everything remaining.  */
 
 
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
                         false);
                         false);
          scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
          scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
          restore_operands (insn, n_ops, old_operands, old_dups);
          restore_operands (insn, n_ops, old_operands, old_dups);
 
 
          /* Step 2B: Can't rename function call argument registers.  */
          /* Step 2B: Can't rename function call argument registers.  */
          if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
          if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
            scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
            scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
                      NO_REGS, mark_all_read, OP_IN);
                      NO_REGS, mark_all_read, OP_IN);
 
 
          /* Step 2C: Can't rename asm operands that were originally
          /* Step 2C: Can't rename asm operands that were originally
             hard registers.  */
             hard registers.  */
          if (asm_noperands (PATTERN (insn)) > 0)
          if (asm_noperands (PATTERN (insn)) > 0)
            for (i = 0; i < n_ops; i++)
            for (i = 0; i < n_ops; i++)
              {
              {
                rtx *loc = recog_data.operand_loc[i];
                rtx *loc = recog_data.operand_loc[i];
                rtx op = *loc;
                rtx op = *loc;
 
 
                if (REG_P (op)
                if (REG_P (op)
                    && REGNO (op) == ORIGINAL_REGNO (op)
                    && REGNO (op) == ORIGINAL_REGNO (op)
                    && (recog_data.operand_type[i] == OP_IN
                    && (recog_data.operand_type[i] == OP_IN
                        || recog_data.operand_type[i] == OP_INOUT))
                        || recog_data.operand_type[i] == OP_INOUT))
                  scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
                  scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
              }
              }
 
 
          /* Step 3: Append to chains for reads inside operands.  */
          /* Step 3: Append to chains for reads inside operands.  */
          for (i = 0; i < n_ops + recog_data.n_dups; i++)
          for (i = 0; i < n_ops + recog_data.n_dups; i++)
            {
            {
              int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
              int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
              rtx *loc = (i < n_ops
              rtx *loc = (i < n_ops
                          ? recog_data.operand_loc[opn]
                          ? recog_data.operand_loc[opn]
                          : recog_data.dup_loc[i - n_ops]);
                          : recog_data.dup_loc[i - n_ops]);
              enum reg_class cl = recog_op_alt[opn][alt].cl;
              enum reg_class cl = recog_op_alt[opn][alt].cl;
              enum op_type type = recog_data.operand_type[opn];
              enum op_type type = recog_data.operand_type[opn];
 
 
              /* Don't scan match_operand here, since we've no reg class
              /* Don't scan match_operand here, since we've no reg class
                 information to pass down.  Any operands that we could
                 information to pass down.  Any operands that we could
                 substitute in will be represented elsewhere.  */
                 substitute in will be represented elsewhere.  */
              if (recog_data.constraints[opn][0] == '\0'
              if (recog_data.constraints[opn][0] == '\0'
                  || untracked_operands & (1 << opn))
                  || untracked_operands & (1 << opn))
                continue;
                continue;
 
 
              if (recog_op_alt[opn][alt].is_address)
              if (recog_op_alt[opn][alt].is_address)
                scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
                scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
              else
              else
                scan_rtx (insn, loc, cl, mark_read, type);
                scan_rtx (insn, loc, cl, mark_read, type);
            }
            }
 
 
          /* Step 3B: Record updates for regs in REG_INC notes, and
          /* Step 3B: Record updates for regs in REG_INC notes, and
             source regs in REG_FRAME_RELATED_EXPR notes.  */
             source regs in REG_FRAME_RELATED_EXPR notes.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_INC
            if (REG_NOTE_KIND (note) == REG_INC
                || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
                || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
                        OP_INOUT);
                        OP_INOUT);
 
 
          /* Step 4: Close chains for registers that die here.  */
          /* Step 4: Close chains for registers that die here.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_DEAD)
            if (REG_NOTE_KIND (note) == REG_DEAD)
              {
              {
                remove_from_hard_reg_set (&live_hard_regs,
                remove_from_hard_reg_set (&live_hard_regs,
                                          GET_MODE (XEXP (note, 0)),
                                          GET_MODE (XEXP (note, 0)),
                                          REGNO (XEXP (note, 0)));
                                          REGNO (XEXP (note, 0)));
                scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
                scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
                          OP_IN);
                          OP_IN);
              }
              }
 
 
          /* Step 4B: If this is a call, any chain live at this point
          /* Step 4B: If this is a call, any chain live at this point
             requires a caller-saved reg.  */
             requires a caller-saved reg.  */
          if (CALL_P (insn))
          if (CALL_P (insn))
            {
            {
              struct du_head *p;
              struct du_head *p;
              for (p = open_chains; p; p = p->next_chain)
              for (p = open_chains; p; p = p->next_chain)
                p->need_caller_save_reg = 1;
                p->need_caller_save_reg = 1;
            }
            }
 
 
          /* Step 5: Close open chains that overlap writes.  Similar to
          /* Step 5: Close open chains that overlap writes.  Similar to
             step 2, we hide in-out operands, since we do not want to
             step 2, we hide in-out operands, since we do not want to
             close these chains.  We also hide earlyclobber operands,
             close these chains.  We also hide earlyclobber operands,
             since we've opened chains for them in step 1, and earlier
             since we've opened chains for them in step 1, and earlier
             chains they would overlap with must have been closed at
             chains they would overlap with must have been closed at
             the previous insn at the latest, as such operands cannot
             the previous insn at the latest, as such operands cannot
             possibly overlap with any input operands.  */
             possibly overlap with any input operands.  */
 
 
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
                         true);
                         true);
          scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
          scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
          restore_operands (insn, n_ops, old_operands, old_dups);
          restore_operands (insn, n_ops, old_operands, old_dups);
 
 
          /* Step 6a: Mark hard registers that are set in this insn,
          /* Step 6a: Mark hard registers that are set in this insn,
             outside an operand, as live.  */
             outside an operand, as live.  */
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
          hide_operands (n_ops, old_operands, old_dups, untracked_operands,
                         false);
                         false);
          note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
          note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
          restore_operands (insn, n_ops, old_operands, old_dups);
          restore_operands (insn, n_ops, old_operands, old_dups);
 
 
          /* Step 6b: Begin new chains for writes inside operands.  */
          /* Step 6b: Begin new chains for writes inside operands.  */
          record_out_operands (insn, false);
          record_out_operands (insn, false);
 
 
          /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
          /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
             notes for update.  */
             notes for update.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
            if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
              scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
                        OP_INOUT);
                        OP_INOUT);
 
 
          /* Step 7: Close chains for registers that were never
          /* Step 7: Close chains for registers that were never
             really used here.  */
             really used here.  */
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
            if (REG_NOTE_KIND (note) == REG_UNUSED)
            if (REG_NOTE_KIND (note) == REG_UNUSED)
              {
              {
                remove_from_hard_reg_set (&live_hard_regs,
                remove_from_hard_reg_set (&live_hard_regs,
                                          GET_MODE (XEXP (note, 0)),
                                          GET_MODE (XEXP (note, 0)),
                                          REGNO (XEXP (note, 0)));
                                          REGNO (XEXP (note, 0)));
                scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
                scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
                          OP_IN);
                          OP_IN);
              }
              }
        }
        }
      else if (DEBUG_INSN_P (insn)
      else if (DEBUG_INSN_P (insn)
               && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
               && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
        {
        {
          scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
          scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
                    ALL_REGS, mark_read, OP_IN);
                    ALL_REGS, mark_read, OP_IN);
        }
        }
      if (insn == BB_END (bb))
      if (insn == BB_END (bb))
        break;
        break;
    }
    }
 
 
  bitmap_clear (&open_chains_set);
  bitmap_clear (&open_chains_set);
 
 
  if (fail_current_block)
  if (fail_current_block)
    return NULL;
    return NULL;
 
 
  /* Since we close every chain when we find a REG_DEAD note, anything that
  /* Since we close every chain when we find a REG_DEAD note, anything that
     is still open lives past the basic block, so it can't be renamed.  */
     is still open lives past the basic block, so it can't be renamed.  */
  return closed_chains;
  return closed_chains;
}
}
 
 
/* Dump all def/use chains in CHAINS to DUMP_FILE.  They are
/* Dump all def/use chains in CHAINS to DUMP_FILE.  They are
   printed in reverse order as that's how we build them.  */
   printed in reverse order as that's how we build them.  */
 
 
static void
static void
dump_def_use_chain (struct du_head *head)
dump_def_use_chain (struct du_head *head)
{
{
  while (head)
  while (head)
    {
    {
      struct du_chain *this_du = head->first;
      struct du_chain *this_du = head->first;
      fprintf (dump_file, "Register %s (%d):",
      fprintf (dump_file, "Register %s (%d):",
               reg_names[head->regno], head->nregs);
               reg_names[head->regno], head->nregs);
      while (this_du)
      while (this_du)
        {
        {
          fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
          fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
                   reg_class_names[this_du->cl]);
                   reg_class_names[this_du->cl]);
          this_du = this_du->next_use;
          this_du = this_du->next_use;
        }
        }
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
      head = head->next_chain;
      head = head->next_chain;
    }
    }
}
}
 
 


static bool
static bool
gate_handle_regrename (void)
gate_handle_regrename (void)
{
{
  return (optimize > 0 && (flag_rename_registers));
  return (optimize > 0 && (flag_rename_registers));
}
}
 
 
struct rtl_opt_pass pass_regrename =
struct rtl_opt_pass pass_regrename =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "rnreg",                              /* name */
  "rnreg",                              /* name */
  gate_handle_regrename,                /* gate */
  gate_handle_regrename,                /* gate */
  regrename_optimize,                   /* execute */
  regrename_optimize,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_RENAME_REGISTERS,                  /* tv_id */
  TV_RENAME_REGISTERS,                  /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_df_finish | TODO_verify_rtl_sharing |
  TODO_df_finish | TODO_verify_rtl_sharing |
  TODO_dump_func                        /* todo_flags_finish */
  TODO_dump_func                        /* todo_flags_finish */
 }
 }
};
};
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.