OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [tree-inline.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Tree inlining.
/* Tree inlining.
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Alexandre Oliva <aoliva@redhat.com>
   Contributed by Alexandre Oliva <aoliva@redhat.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "toplev.h"
#include "toplev.h"
#include "tree.h"
#include "tree.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "rtl.h"
#include "rtl.h"
#include "expr.h"
#include "expr.h"
#include "flags.h"
#include "flags.h"
#include "params.h"
#include "params.h"
#include "input.h"
#include "input.h"
#include "insn-config.h"
#include "insn-config.h"
#include "hashtab.h"
#include "hashtab.h"
#include "langhooks.h"
#include "langhooks.h"
#include "basic-block.h"
#include "basic-block.h"
#include "tree-iterator.h"
#include "tree-iterator.h"
#include "cgraph.h"
#include "cgraph.h"
#include "intl.h"
#include "intl.h"
#include "tree-mudflap.h"
#include "tree-mudflap.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "function.h"
#include "function.h"
#include "ggc.h"
#include "ggc.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "except.h"
#include "except.h"
#include "debug.h"
#include "debug.h"
#include "pointer-set.h"
#include "pointer-set.h"
#include "ipa-prop.h"
#include "ipa-prop.h"
#include "value-prof.h"
#include "value-prof.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "target.h"
#include "target.h"
#include "integrate.h"
#include "integrate.h"
 
 
/* I'm not real happy about this, but we need to handle gimple and
/* I'm not real happy about this, but we need to handle gimple and
   non-gimple trees.  */
   non-gimple trees.  */
#include "gimple.h"
#include "gimple.h"
 
 
/* Inlining, Cloning, Versioning, Parallelization
/* Inlining, Cloning, Versioning, Parallelization
 
 
   Inlining: a function body is duplicated, but the PARM_DECLs are
   Inlining: a function body is duplicated, but the PARM_DECLs are
   remapped into VAR_DECLs, and non-void RETURN_EXPRs become
   remapped into VAR_DECLs, and non-void RETURN_EXPRs become
   MODIFY_EXPRs that store to a dedicated returned-value variable.
   MODIFY_EXPRs that store to a dedicated returned-value variable.
   The duplicated eh_region info of the copy will later be appended
   The duplicated eh_region info of the copy will later be appended
   to the info for the caller; the eh_region info in copied throwing
   to the info for the caller; the eh_region info in copied throwing
   statements and RESX statements are adjusted accordingly.
   statements and RESX statements are adjusted accordingly.
 
 
   Cloning: (only in C++) We have one body for a con/de/structor, and
   Cloning: (only in C++) We have one body for a con/de/structor, and
   multiple function decls, each with a unique parameter list.
   multiple function decls, each with a unique parameter list.
   Duplicate the body, using the given splay tree; some parameters
   Duplicate the body, using the given splay tree; some parameters
   will become constants (like 0 or 1).
   will become constants (like 0 or 1).
 
 
   Versioning: a function body is duplicated and the result is a new
   Versioning: a function body is duplicated and the result is a new
   function rather than into blocks of an existing function as with
   function rather than into blocks of an existing function as with
   inlining.  Some parameters will become constants.
   inlining.  Some parameters will become constants.
 
 
   Parallelization: a region of a function is duplicated resulting in
   Parallelization: a region of a function is duplicated resulting in
   a new function.  Variables may be replaced with complex expressions
   a new function.  Variables may be replaced with complex expressions
   to enable shared variable semantics.
   to enable shared variable semantics.
 
 
   All of these will simultaneously lookup any callgraph edges.  If
   All of these will simultaneously lookup any callgraph edges.  If
   we're going to inline the duplicated function body, and the given
   we're going to inline the duplicated function body, and the given
   function has some cloned callgraph nodes (one for each place this
   function has some cloned callgraph nodes (one for each place this
   function will be inlined) those callgraph edges will be duplicated.
   function will be inlined) those callgraph edges will be duplicated.
   If we're cloning the body, those callgraph edges will be
   If we're cloning the body, those callgraph edges will be
   updated to point into the new body.  (Note that the original
   updated to point into the new body.  (Note that the original
   callgraph node and edge list will not be altered.)
   callgraph node and edge list will not be altered.)
 
 
   See the CALL_EXPR handling case in copy_tree_body_r ().  */
   See the CALL_EXPR handling case in copy_tree_body_r ().  */
 
 
/* To Do:
/* To Do:
 
 
   o In order to make inlining-on-trees work, we pessimized
   o In order to make inlining-on-trees work, we pessimized
     function-local static constants.  In particular, they are now
     function-local static constants.  In particular, they are now
     always output, even when not addressed.  Fix this by treating
     always output, even when not addressed.  Fix this by treating
     function-local static constants just like global static
     function-local static constants just like global static
     constants; the back-end already knows not to output them if they
     constants; the back-end already knows not to output them if they
     are not needed.
     are not needed.
 
 
   o Provide heuristics to clamp inlining of recursive template
   o Provide heuristics to clamp inlining of recursive template
     calls?  */
     calls?  */
 
 
 
 
/* Weights that estimate_num_insns uses for heuristics in inlining.  */
/* Weights that estimate_num_insns uses for heuristics in inlining.  */
 
 
eni_weights eni_inlining_weights;
eni_weights eni_inlining_weights;
 
 
/* Weights that estimate_num_insns uses to estimate the size of the
/* Weights that estimate_num_insns uses to estimate the size of the
   produced code.  */
   produced code.  */
 
 
eni_weights eni_size_weights;
eni_weights eni_size_weights;
 
 
/* Weights that estimate_num_insns uses to estimate the time necessary
/* Weights that estimate_num_insns uses to estimate the time necessary
   to execute the produced code.  */
   to execute the produced code.  */
 
 
eni_weights eni_time_weights;
eni_weights eni_time_weights;
 
 
/* Prototypes.  */
/* Prototypes.  */
 
 
static tree declare_return_variable (copy_body_data *, tree, tree);
static tree declare_return_variable (copy_body_data *, tree, tree);
static void remap_block (tree *, copy_body_data *);
static void remap_block (tree *, copy_body_data *);
static void copy_bind_expr (tree *, int *, copy_body_data *);
static void copy_bind_expr (tree *, int *, copy_body_data *);
static tree mark_local_for_remap_r (tree *, int *, void *);
static tree mark_local_for_remap_r (tree *, int *, void *);
static void unsave_expr_1 (tree);
static void unsave_expr_1 (tree);
static tree unsave_r (tree *, int *, void *);
static tree unsave_r (tree *, int *, void *);
static void declare_inline_vars (tree, tree);
static void declare_inline_vars (tree, tree);
static void remap_save_expr (tree *, void *, int *);
static void remap_save_expr (tree *, void *, int *);
static void prepend_lexical_block (tree current_block, tree new_block);
static void prepend_lexical_block (tree current_block, tree new_block);
static tree copy_decl_to_var (tree, copy_body_data *);
static tree copy_decl_to_var (tree, copy_body_data *);
static tree copy_result_decl_to_var (tree, copy_body_data *);
static tree copy_result_decl_to_var (tree, copy_body_data *);
static tree copy_decl_maybe_to_var (tree, copy_body_data *);
static tree copy_decl_maybe_to_var (tree, copy_body_data *);
static gimple remap_gimple_stmt (gimple, copy_body_data *);
static gimple remap_gimple_stmt (gimple, copy_body_data *);
static bool delete_unreachable_blocks_update_callgraph (copy_body_data *id);
static bool delete_unreachable_blocks_update_callgraph (copy_body_data *id);
 
 
/* Insert a tree->tree mapping for ID.  Despite the name suggests
/* Insert a tree->tree mapping for ID.  Despite the name suggests
   that the trees should be variables, it is used for more than that.  */
   that the trees should be variables, it is used for more than that.  */
 
 
void
void
insert_decl_map (copy_body_data *id, tree key, tree value)
insert_decl_map (copy_body_data *id, tree key, tree value)
{
{
  *pointer_map_insert (id->decl_map, key) = value;
  *pointer_map_insert (id->decl_map, key) = value;
 
 
  /* Always insert an identity map as well.  If we see this same new
  /* Always insert an identity map as well.  If we see this same new
     node again, we won't want to duplicate it a second time.  */
     node again, we won't want to duplicate it a second time.  */
  if (key != value)
  if (key != value)
    *pointer_map_insert (id->decl_map, value) = value;
    *pointer_map_insert (id->decl_map, value) = value;
}
}
 
 
/* Insert a tree->tree mapping for ID.  This is only used for
/* Insert a tree->tree mapping for ID.  This is only used for
   variables.  */
   variables.  */
 
 
static void
static void
insert_debug_decl_map (copy_body_data *id, tree key, tree value)
insert_debug_decl_map (copy_body_data *id, tree key, tree value)
{
{
  if (!gimple_in_ssa_p (id->src_cfun))
  if (!gimple_in_ssa_p (id->src_cfun))
    return;
    return;
 
 
  if (!MAY_HAVE_DEBUG_STMTS)
  if (!MAY_HAVE_DEBUG_STMTS)
    return;
    return;
 
 
  if (!target_for_debug_bind (key))
  if (!target_for_debug_bind (key))
    return;
    return;
 
 
  gcc_assert (TREE_CODE (key) == PARM_DECL);
  gcc_assert (TREE_CODE (key) == PARM_DECL);
  gcc_assert (TREE_CODE (value) == VAR_DECL);
  gcc_assert (TREE_CODE (value) == VAR_DECL);
 
 
  if (!id->debug_map)
  if (!id->debug_map)
    id->debug_map = pointer_map_create ();
    id->debug_map = pointer_map_create ();
 
 
  *pointer_map_insert (id->debug_map, key) = value;
  *pointer_map_insert (id->debug_map, key) = value;
}
}
 
 
/* If nonzero, we're remapping the contents of inlined debug
/* If nonzero, we're remapping the contents of inlined debug
   statements.  If negative, an error has occurred, such as a
   statements.  If negative, an error has occurred, such as a
   reference to a variable that isn't available in the inlined
   reference to a variable that isn't available in the inlined
   context.  */
   context.  */
static int processing_debug_stmt = 0;
static int processing_debug_stmt = 0;
 
 
/* Construct new SSA name for old NAME. ID is the inline context.  */
/* Construct new SSA name for old NAME. ID is the inline context.  */
 
 
static tree
static tree
remap_ssa_name (tree name, copy_body_data *id)
remap_ssa_name (tree name, copy_body_data *id)
{
{
  tree new_tree;
  tree new_tree;
  tree *n;
  tree *n;
 
 
  gcc_assert (TREE_CODE (name) == SSA_NAME);
  gcc_assert (TREE_CODE (name) == SSA_NAME);
 
 
  n = (tree *) pointer_map_contains (id->decl_map, name);
  n = (tree *) pointer_map_contains (id->decl_map, name);
  if (n)
  if (n)
    return unshare_expr (*n);
    return unshare_expr (*n);
 
 
  if (processing_debug_stmt)
  if (processing_debug_stmt)
    {
    {
      processing_debug_stmt = -1;
      processing_debug_stmt = -1;
      return name;
      return name;
    }
    }
 
 
  /* Do not set DEF_STMT yet as statement is not copied yet. We do that
  /* Do not set DEF_STMT yet as statement is not copied yet. We do that
     in copy_bb.  */
     in copy_bb.  */
  new_tree = remap_decl (SSA_NAME_VAR (name), id);
  new_tree = remap_decl (SSA_NAME_VAR (name), id);
 
 
  /* We might've substituted constant or another SSA_NAME for
  /* We might've substituted constant or another SSA_NAME for
     the variable.
     the variable.
 
 
     Replace the SSA name representing RESULT_DECL by variable during
     Replace the SSA name representing RESULT_DECL by variable during
     inlining:  this saves us from need to introduce PHI node in a case
     inlining:  this saves us from need to introduce PHI node in a case
     return value is just partly initialized.  */
     return value is just partly initialized.  */
  if ((TREE_CODE (new_tree) == VAR_DECL || TREE_CODE (new_tree) == PARM_DECL)
  if ((TREE_CODE (new_tree) == VAR_DECL || TREE_CODE (new_tree) == PARM_DECL)
      && (TREE_CODE (SSA_NAME_VAR (name)) != RESULT_DECL
      && (TREE_CODE (SSA_NAME_VAR (name)) != RESULT_DECL
          || !id->transform_return_to_modify))
          || !id->transform_return_to_modify))
    {
    {
      new_tree = make_ssa_name (new_tree, NULL);
      new_tree = make_ssa_name (new_tree, NULL);
      insert_decl_map (id, name, new_tree);
      insert_decl_map (id, name, new_tree);
      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree)
      SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree)
        = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name);
        = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name);
      TREE_TYPE (new_tree) = TREE_TYPE (SSA_NAME_VAR (new_tree));
      TREE_TYPE (new_tree) = TREE_TYPE (SSA_NAME_VAR (new_tree));
      if (gimple_nop_p (SSA_NAME_DEF_STMT (name)))
      if (gimple_nop_p (SSA_NAME_DEF_STMT (name)))
        {
        {
          /* By inlining function having uninitialized variable, we might
          /* By inlining function having uninitialized variable, we might
             extend the lifetime (variable might get reused).  This cause
             extend the lifetime (variable might get reused).  This cause
             ICE in the case we end up extending lifetime of SSA name across
             ICE in the case we end up extending lifetime of SSA name across
             abnormal edge, but also increase register pressure.
             abnormal edge, but also increase register pressure.
 
 
             We simply initialize all uninitialized vars by 0 except
             We simply initialize all uninitialized vars by 0 except
             for case we are inlining to very first BB.  We can avoid
             for case we are inlining to very first BB.  We can avoid
             this for all BBs that are not inside strongly connected
             this for all BBs that are not inside strongly connected
             regions of the CFG, but this is expensive to test.  */
             regions of the CFG, but this is expensive to test.  */
          if (id->entry_bb
          if (id->entry_bb
              && is_gimple_reg (SSA_NAME_VAR (name))
              && is_gimple_reg (SSA_NAME_VAR (name))
              && TREE_CODE (SSA_NAME_VAR (name)) != PARM_DECL
              && TREE_CODE (SSA_NAME_VAR (name)) != PARM_DECL
              && (id->entry_bb != EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
              && (id->entry_bb != EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
                  || EDGE_COUNT (id->entry_bb->preds) != 1))
                  || EDGE_COUNT (id->entry_bb->preds) != 1))
            {
            {
              gimple_stmt_iterator gsi = gsi_last_bb (id->entry_bb);
              gimple_stmt_iterator gsi = gsi_last_bb (id->entry_bb);
              gimple init_stmt;
              gimple init_stmt;
 
 
              init_stmt = gimple_build_assign (new_tree,
              init_stmt = gimple_build_assign (new_tree,
                                               fold_convert (TREE_TYPE (new_tree),
                                               fold_convert (TREE_TYPE (new_tree),
                                                            integer_zero_node));
                                                            integer_zero_node));
              gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
              gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
              SSA_NAME_IS_DEFAULT_DEF (new_tree) = 0;
              SSA_NAME_IS_DEFAULT_DEF (new_tree) = 0;
            }
            }
          else
          else
            {
            {
              SSA_NAME_DEF_STMT (new_tree) = gimple_build_nop ();
              SSA_NAME_DEF_STMT (new_tree) = gimple_build_nop ();
              if (gimple_default_def (id->src_cfun, SSA_NAME_VAR (name))
              if (gimple_default_def (id->src_cfun, SSA_NAME_VAR (name))
                  == name)
                  == name)
                set_default_def (SSA_NAME_VAR (new_tree), new_tree);
                set_default_def (SSA_NAME_VAR (new_tree), new_tree);
            }
            }
        }
        }
    }
    }
  else
  else
    insert_decl_map (id, name, new_tree);
    insert_decl_map (id, name, new_tree);
  return new_tree;
  return new_tree;
}
}
 
 
/* Remap DECL during the copying of the BLOCK tree for the function.  */
/* Remap DECL during the copying of the BLOCK tree for the function.  */
 
 
tree
tree
remap_decl (tree decl, copy_body_data *id)
remap_decl (tree decl, copy_body_data *id)
{
{
  tree *n;
  tree *n;
 
 
  /* We only remap local variables in the current function.  */
  /* We only remap local variables in the current function.  */
 
 
  /* See if we have remapped this declaration.  */
  /* See if we have remapped this declaration.  */
 
 
  n = (tree *) pointer_map_contains (id->decl_map, decl);
  n = (tree *) pointer_map_contains (id->decl_map, decl);
 
 
  if (!n && processing_debug_stmt)
  if (!n && processing_debug_stmt)
    {
    {
      processing_debug_stmt = -1;
      processing_debug_stmt = -1;
      return decl;
      return decl;
    }
    }
 
 
  /* If we didn't already have an equivalent for this declaration,
  /* If we didn't already have an equivalent for this declaration,
     create one now.  */
     create one now.  */
  if (!n)
  if (!n)
    {
    {
      /* Make a copy of the variable or label.  */
      /* Make a copy of the variable or label.  */
      tree t = id->copy_decl (decl, id);
      tree t = id->copy_decl (decl, id);
 
 
      /* Remember it, so that if we encounter this local entity again
      /* Remember it, so that if we encounter this local entity again
         we can reuse this copy.  Do this early because remap_type may
         we can reuse this copy.  Do this early because remap_type may
         need this decl for TYPE_STUB_DECL.  */
         need this decl for TYPE_STUB_DECL.  */
      insert_decl_map (id, decl, t);
      insert_decl_map (id, decl, t);
 
 
      if (!DECL_P (t))
      if (!DECL_P (t))
        return t;
        return t;
 
 
      /* Remap types, if necessary.  */
      /* Remap types, if necessary.  */
      TREE_TYPE (t) = remap_type (TREE_TYPE (t), id);
      TREE_TYPE (t) = remap_type (TREE_TYPE (t), id);
      if (TREE_CODE (t) == TYPE_DECL)
      if (TREE_CODE (t) == TYPE_DECL)
        DECL_ORIGINAL_TYPE (t) = remap_type (DECL_ORIGINAL_TYPE (t), id);
        DECL_ORIGINAL_TYPE (t) = remap_type (DECL_ORIGINAL_TYPE (t), id);
 
 
      /* Remap sizes as necessary.  */
      /* Remap sizes as necessary.  */
      walk_tree (&DECL_SIZE (t), copy_tree_body_r, id, NULL);
      walk_tree (&DECL_SIZE (t), copy_tree_body_r, id, NULL);
      walk_tree (&DECL_SIZE_UNIT (t), copy_tree_body_r, id, NULL);
      walk_tree (&DECL_SIZE_UNIT (t), copy_tree_body_r, id, NULL);
 
 
      /* If fields, do likewise for offset and qualifier.  */
      /* If fields, do likewise for offset and qualifier.  */
      if (TREE_CODE (t) == FIELD_DECL)
      if (TREE_CODE (t) == FIELD_DECL)
        {
        {
          walk_tree (&DECL_FIELD_OFFSET (t), copy_tree_body_r, id, NULL);
          walk_tree (&DECL_FIELD_OFFSET (t), copy_tree_body_r, id, NULL);
          if (TREE_CODE (DECL_CONTEXT (t)) == QUAL_UNION_TYPE)
          if (TREE_CODE (DECL_CONTEXT (t)) == QUAL_UNION_TYPE)
            walk_tree (&DECL_QUALIFIER (t), copy_tree_body_r, id, NULL);
            walk_tree (&DECL_QUALIFIER (t), copy_tree_body_r, id, NULL);
        }
        }
 
 
      if (cfun && gimple_in_ssa_p (cfun)
      if (cfun && gimple_in_ssa_p (cfun)
          && (TREE_CODE (t) == VAR_DECL
          && (TREE_CODE (t) == VAR_DECL
              || TREE_CODE (t) == RESULT_DECL || TREE_CODE (t) == PARM_DECL))
              || TREE_CODE (t) == RESULT_DECL || TREE_CODE (t) == PARM_DECL))
        {
        {
          get_var_ann (t);
          get_var_ann (t);
          add_referenced_var (t);
          add_referenced_var (t);
        }
        }
      return t;
      return t;
    }
    }
 
 
  if (id->do_not_unshare)
  if (id->do_not_unshare)
    return *n;
    return *n;
  else
  else
    return unshare_expr (*n);
    return unshare_expr (*n);
}
}
 
 
static tree
static tree
remap_type_1 (tree type, copy_body_data *id)
remap_type_1 (tree type, copy_body_data *id)
{
{
  tree new_tree, t;
  tree new_tree, t;
 
 
  /* We do need a copy.  build and register it now.  If this is a pointer or
  /* We do need a copy.  build and register it now.  If this is a pointer or
     reference type, remap the designated type and make a new pointer or
     reference type, remap the designated type and make a new pointer or
     reference type.  */
     reference type.  */
  if (TREE_CODE (type) == POINTER_TYPE)
  if (TREE_CODE (type) == POINTER_TYPE)
    {
    {
      new_tree = build_pointer_type_for_mode (remap_type (TREE_TYPE (type), id),
      new_tree = build_pointer_type_for_mode (remap_type (TREE_TYPE (type), id),
                                         TYPE_MODE (type),
                                         TYPE_MODE (type),
                                         TYPE_REF_CAN_ALIAS_ALL (type));
                                         TYPE_REF_CAN_ALIAS_ALL (type));
      if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type))
      if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type))
        new_tree = build_type_attribute_qual_variant (new_tree,
        new_tree = build_type_attribute_qual_variant (new_tree,
                                                      TYPE_ATTRIBUTES (type),
                                                      TYPE_ATTRIBUTES (type),
                                                      TYPE_QUALS (type));
                                                      TYPE_QUALS (type));
      insert_decl_map (id, type, new_tree);
      insert_decl_map (id, type, new_tree);
      return new_tree;
      return new_tree;
    }
    }
  else if (TREE_CODE (type) == REFERENCE_TYPE)
  else if (TREE_CODE (type) == REFERENCE_TYPE)
    {
    {
      new_tree = build_reference_type_for_mode (remap_type (TREE_TYPE (type), id),
      new_tree = build_reference_type_for_mode (remap_type (TREE_TYPE (type), id),
                                            TYPE_MODE (type),
                                            TYPE_MODE (type),
                                            TYPE_REF_CAN_ALIAS_ALL (type));
                                            TYPE_REF_CAN_ALIAS_ALL (type));
      if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type))
      if (TYPE_ATTRIBUTES (type) || TYPE_QUALS (type))
        new_tree = build_type_attribute_qual_variant (new_tree,
        new_tree = build_type_attribute_qual_variant (new_tree,
                                                      TYPE_ATTRIBUTES (type),
                                                      TYPE_ATTRIBUTES (type),
                                                      TYPE_QUALS (type));
                                                      TYPE_QUALS (type));
      insert_decl_map (id, type, new_tree);
      insert_decl_map (id, type, new_tree);
      return new_tree;
      return new_tree;
    }
    }
  else
  else
    new_tree = copy_node (type);
    new_tree = copy_node (type);
 
 
  insert_decl_map (id, type, new_tree);
  insert_decl_map (id, type, new_tree);
 
 
  /* This is a new type, not a copy of an old type.  Need to reassociate
  /* This is a new type, not a copy of an old type.  Need to reassociate
     variants.  We can handle everything except the main variant lazily.  */
     variants.  We can handle everything except the main variant lazily.  */
  t = TYPE_MAIN_VARIANT (type);
  t = TYPE_MAIN_VARIANT (type);
  if (type != t)
  if (type != t)
    {
    {
      t = remap_type (t, id);
      t = remap_type (t, id);
      TYPE_MAIN_VARIANT (new_tree) = t;
      TYPE_MAIN_VARIANT (new_tree) = t;
      TYPE_NEXT_VARIANT (new_tree) = TYPE_NEXT_VARIANT (t);
      TYPE_NEXT_VARIANT (new_tree) = TYPE_NEXT_VARIANT (t);
      TYPE_NEXT_VARIANT (t) = new_tree;
      TYPE_NEXT_VARIANT (t) = new_tree;
    }
    }
  else
  else
    {
    {
      TYPE_MAIN_VARIANT (new_tree) = new_tree;
      TYPE_MAIN_VARIANT (new_tree) = new_tree;
      TYPE_NEXT_VARIANT (new_tree) = NULL;
      TYPE_NEXT_VARIANT (new_tree) = NULL;
    }
    }
 
 
  if (TYPE_STUB_DECL (type))
  if (TYPE_STUB_DECL (type))
    TYPE_STUB_DECL (new_tree) = remap_decl (TYPE_STUB_DECL (type), id);
    TYPE_STUB_DECL (new_tree) = remap_decl (TYPE_STUB_DECL (type), id);
 
 
  /* Lazily create pointer and reference types.  */
  /* Lazily create pointer and reference types.  */
  TYPE_POINTER_TO (new_tree) = NULL;
  TYPE_POINTER_TO (new_tree) = NULL;
  TYPE_REFERENCE_TO (new_tree) = NULL;
  TYPE_REFERENCE_TO (new_tree) = NULL;
 
 
  switch (TREE_CODE (new_tree))
  switch (TREE_CODE (new_tree))
    {
    {
    case INTEGER_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
    case FIXED_POINT_TYPE:
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      t = TYPE_MIN_VALUE (new_tree);
      t = TYPE_MIN_VALUE (new_tree);
      if (t && TREE_CODE (t) != INTEGER_CST)
      if (t && TREE_CODE (t) != INTEGER_CST)
        walk_tree (&TYPE_MIN_VALUE (new_tree), copy_tree_body_r, id, NULL);
        walk_tree (&TYPE_MIN_VALUE (new_tree), copy_tree_body_r, id, NULL);
 
 
      t = TYPE_MAX_VALUE (new_tree);
      t = TYPE_MAX_VALUE (new_tree);
      if (t && TREE_CODE (t) != INTEGER_CST)
      if (t && TREE_CODE (t) != INTEGER_CST)
        walk_tree (&TYPE_MAX_VALUE (new_tree), copy_tree_body_r, id, NULL);
        walk_tree (&TYPE_MAX_VALUE (new_tree), copy_tree_body_r, id, NULL);
      return new_tree;
      return new_tree;
 
 
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
      TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id);
      TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id);
      walk_tree (&TYPE_ARG_TYPES (new_tree), copy_tree_body_r, id, NULL);
      walk_tree (&TYPE_ARG_TYPES (new_tree), copy_tree_body_r, id, NULL);
      return new_tree;
      return new_tree;
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id);
      TREE_TYPE (new_tree) = remap_type (TREE_TYPE (new_tree), id);
      TYPE_DOMAIN (new_tree) = remap_type (TYPE_DOMAIN (new_tree), id);
      TYPE_DOMAIN (new_tree) = remap_type (TYPE_DOMAIN (new_tree), id);
      break;
      break;
 
 
    case RECORD_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
      {
        tree f, nf = NULL;
        tree f, nf = NULL;
 
 
        for (f = TYPE_FIELDS (new_tree); f ; f = TREE_CHAIN (f))
        for (f = TYPE_FIELDS (new_tree); f ; f = TREE_CHAIN (f))
          {
          {
            t = remap_decl (f, id);
            t = remap_decl (f, id);
            DECL_CONTEXT (t) = new_tree;
            DECL_CONTEXT (t) = new_tree;
            TREE_CHAIN (t) = nf;
            TREE_CHAIN (t) = nf;
            nf = t;
            nf = t;
          }
          }
        TYPE_FIELDS (new_tree) = nreverse (nf);
        TYPE_FIELDS (new_tree) = nreverse (nf);
      }
      }
      break;
      break;
 
 
    case OFFSET_TYPE:
    case OFFSET_TYPE:
    default:
    default:
      /* Shouldn't have been thought variable sized.  */
      /* Shouldn't have been thought variable sized.  */
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  walk_tree (&TYPE_SIZE (new_tree), copy_tree_body_r, id, NULL);
  walk_tree (&TYPE_SIZE (new_tree), copy_tree_body_r, id, NULL);
  walk_tree (&TYPE_SIZE_UNIT (new_tree), copy_tree_body_r, id, NULL);
  walk_tree (&TYPE_SIZE_UNIT (new_tree), copy_tree_body_r, id, NULL);
 
 
  return new_tree;
  return new_tree;
}
}
 
 
tree
tree
remap_type (tree type, copy_body_data *id)
remap_type (tree type, copy_body_data *id)
{
{
  tree *node;
  tree *node;
  tree tmp;
  tree tmp;
 
 
  if (type == NULL)
  if (type == NULL)
    return type;
    return type;
 
 
  /* See if we have remapped this type.  */
  /* See if we have remapped this type.  */
  node = (tree *) pointer_map_contains (id->decl_map, type);
  node = (tree *) pointer_map_contains (id->decl_map, type);
  if (node)
  if (node)
    return *node;
    return *node;
 
 
  /* The type only needs remapping if it's variably modified.  */
  /* The type only needs remapping if it's variably modified.  */
  if (! variably_modified_type_p (type, id->src_fn))
  if (! variably_modified_type_p (type, id->src_fn))
    {
    {
      insert_decl_map (id, type, type);
      insert_decl_map (id, type, type);
      return type;
      return type;
    }
    }
 
 
  id->remapping_type_depth++;
  id->remapping_type_depth++;
  tmp = remap_type_1 (type, id);
  tmp = remap_type_1 (type, id);
  id->remapping_type_depth--;
  id->remapping_type_depth--;
 
 
  return tmp;
  return tmp;
}
}
 
 
/* Return previously remapped type of TYPE in ID.  Return NULL if TYPE
/* Return previously remapped type of TYPE in ID.  Return NULL if TYPE
   is NULL or TYPE has not been remapped before.  */
   is NULL or TYPE has not been remapped before.  */
 
 
static tree
static tree
remapped_type (tree type, copy_body_data *id)
remapped_type (tree type, copy_body_data *id)
{
{
  tree *node;
  tree *node;
 
 
  if (type == NULL)
  if (type == NULL)
    return type;
    return type;
 
 
  /* See if we have remapped this type.  */
  /* See if we have remapped this type.  */
  node = (tree *) pointer_map_contains (id->decl_map, type);
  node = (tree *) pointer_map_contains (id->decl_map, type);
  if (node)
  if (node)
    return *node;
    return *node;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
  /* The type only needs remapping if it's variably modified.  */
  /* The type only needs remapping if it's variably modified.  */
/* Decide if DECL can be put into BLOCK_NONLOCAL_VARs.  */
/* Decide if DECL can be put into BLOCK_NONLOCAL_VARs.  */
 
 
static bool
static bool
can_be_nonlocal (tree decl, copy_body_data *id)
can_be_nonlocal (tree decl, copy_body_data *id)
{
{
  /* We can not duplicate function decls.  */
  /* We can not duplicate function decls.  */
  if (TREE_CODE (decl) == FUNCTION_DECL)
  if (TREE_CODE (decl) == FUNCTION_DECL)
    return true;
    return true;
 
 
  /* Local static vars must be non-local or we get multiple declaration
  /* Local static vars must be non-local or we get multiple declaration
     problems.  */
     problems.  */
  if (TREE_CODE (decl) == VAR_DECL
  if (TREE_CODE (decl) == VAR_DECL
      && !auto_var_in_fn_p (decl, id->src_fn))
      && !auto_var_in_fn_p (decl, id->src_fn))
    return true;
    return true;
 
 
  /* At the moment dwarf2out can handle only these types of nodes.  We
  /* At the moment dwarf2out can handle only these types of nodes.  We
     can support more later.  */
     can support more later.  */
  if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
  if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
    return false;
    return false;
 
 
  /* We must use global type.  We call remapped_type instead of
  /* We must use global type.  We call remapped_type instead of
     remap_type since we don't want to remap this type here if it
     remap_type since we don't want to remap this type here if it
     hasn't been remapped before.  */
     hasn't been remapped before.  */
  if (TREE_TYPE (decl) != remapped_type (TREE_TYPE (decl), id))
  if (TREE_TYPE (decl) != remapped_type (TREE_TYPE (decl), id))
    return false;
    return false;
 
 
  /* Wihtout SSA we can't tell if variable is used.  */
  /* Wihtout SSA we can't tell if variable is used.  */
  if (!gimple_in_ssa_p (cfun))
  if (!gimple_in_ssa_p (cfun))
    return false;
    return false;
 
 
  /* Live variables must be copied so we can attach DECL_RTL.  */
  /* Live variables must be copied so we can attach DECL_RTL.  */
  if (var_ann (decl))
  if (var_ann (decl))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
static tree
static tree
remap_decls (tree decls, VEC(tree,gc) **nonlocalized_list, copy_body_data *id)
remap_decls (tree decls, VEC(tree,gc) **nonlocalized_list, copy_body_data *id)
{
{
  tree old_var;
  tree old_var;
  tree new_decls = NULL_TREE;
  tree new_decls = NULL_TREE;
 
 
  /* Remap its variables.  */
  /* Remap its variables.  */
  for (old_var = decls; old_var; old_var = TREE_CHAIN (old_var))
  for (old_var = decls; old_var; old_var = TREE_CHAIN (old_var))
    {
    {
      tree new_var;
      tree new_var;
 
 
      if (can_be_nonlocal (old_var, id))
      if (can_be_nonlocal (old_var, id))
        {
        {
          if (TREE_CODE (old_var) == VAR_DECL
          if (TREE_CODE (old_var) == VAR_DECL
              && ! DECL_EXTERNAL (old_var)
              && ! DECL_EXTERNAL (old_var)
              && (var_ann (old_var) || !gimple_in_ssa_p (cfun)))
              && (var_ann (old_var) || !gimple_in_ssa_p (cfun)))
            cfun->local_decls = tree_cons (NULL_TREE, old_var,
            cfun->local_decls = tree_cons (NULL_TREE, old_var,
                                                   cfun->local_decls);
                                                   cfun->local_decls);
          if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE)
          if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE)
              && !DECL_IGNORED_P (old_var)
              && !DECL_IGNORED_P (old_var)
              && nonlocalized_list)
              && nonlocalized_list)
            VEC_safe_push (tree, gc, *nonlocalized_list, old_var);
            VEC_safe_push (tree, gc, *nonlocalized_list, old_var);
          continue;
          continue;
        }
        }
 
 
      /* Remap the variable.  */
      /* Remap the variable.  */
      new_var = remap_decl (old_var, id);
      new_var = remap_decl (old_var, id);
 
 
      /* If we didn't remap this variable, we can't mess with its
      /* If we didn't remap this variable, we can't mess with its
         TREE_CHAIN.  If we remapped this variable to the return slot, it's
         TREE_CHAIN.  If we remapped this variable to the return slot, it's
         already declared somewhere else, so don't declare it here.  */
         already declared somewhere else, so don't declare it here.  */
 
 
      if (new_var == id->retvar)
      if (new_var == id->retvar)
        ;
        ;
      else if (!new_var)
      else if (!new_var)
        {
        {
          if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE)
          if ((!optimize || debug_info_level > DINFO_LEVEL_TERSE)
              && !DECL_IGNORED_P (old_var)
              && !DECL_IGNORED_P (old_var)
              && nonlocalized_list)
              && nonlocalized_list)
            VEC_safe_push (tree, gc, *nonlocalized_list, old_var);
            VEC_safe_push (tree, gc, *nonlocalized_list, old_var);
        }
        }
      else
      else
        {
        {
          gcc_assert (DECL_P (new_var));
          gcc_assert (DECL_P (new_var));
          TREE_CHAIN (new_var) = new_decls;
          TREE_CHAIN (new_var) = new_decls;
          new_decls = new_var;
          new_decls = new_var;
        }
        }
    }
    }
 
 
  return nreverse (new_decls);
  return nreverse (new_decls);
}
}
 
 
/* Copy the BLOCK to contain remapped versions of the variables
/* Copy the BLOCK to contain remapped versions of the variables
   therein.  And hook the new block into the block-tree.  */
   therein.  And hook the new block into the block-tree.  */
 
 
static void
static void
remap_block (tree *block, copy_body_data *id)
remap_block (tree *block, copy_body_data *id)
{
{
  tree old_block;
  tree old_block;
  tree new_block;
  tree new_block;
 
 
  /* Make the new block.  */
  /* Make the new block.  */
  old_block = *block;
  old_block = *block;
  new_block = make_node (BLOCK);
  new_block = make_node (BLOCK);
  TREE_USED (new_block) = TREE_USED (old_block);
  TREE_USED (new_block) = TREE_USED (old_block);
  BLOCK_ABSTRACT_ORIGIN (new_block) = old_block;
  BLOCK_ABSTRACT_ORIGIN (new_block) = old_block;
  BLOCK_SOURCE_LOCATION (new_block) = BLOCK_SOURCE_LOCATION (old_block);
  BLOCK_SOURCE_LOCATION (new_block) = BLOCK_SOURCE_LOCATION (old_block);
  BLOCK_NONLOCALIZED_VARS (new_block)
  BLOCK_NONLOCALIZED_VARS (new_block)
    = VEC_copy (tree, gc, BLOCK_NONLOCALIZED_VARS (old_block));
    = VEC_copy (tree, gc, BLOCK_NONLOCALIZED_VARS (old_block));
  *block = new_block;
  *block = new_block;
 
 
  /* Remap its variables.  */
  /* Remap its variables.  */
  BLOCK_VARS (new_block) = remap_decls (BLOCK_VARS (old_block),
  BLOCK_VARS (new_block) = remap_decls (BLOCK_VARS (old_block),
                                        &BLOCK_NONLOCALIZED_VARS (new_block),
                                        &BLOCK_NONLOCALIZED_VARS (new_block),
                                        id);
                                        id);
 
 
  if (id->transform_lang_insert_block)
  if (id->transform_lang_insert_block)
    id->transform_lang_insert_block (new_block);
    id->transform_lang_insert_block (new_block);
 
 
  /* Remember the remapped block.  */
  /* Remember the remapped block.  */
  insert_decl_map (id, old_block, new_block);
  insert_decl_map (id, old_block, new_block);
}
}
 
 
/* Copy the whole block tree and root it in id->block.  */
/* Copy the whole block tree and root it in id->block.  */
static tree
static tree
remap_blocks (tree block, copy_body_data *id)
remap_blocks (tree block, copy_body_data *id)
{
{
  tree t;
  tree t;
  tree new_tree = block;
  tree new_tree = block;
 
 
  if (!block)
  if (!block)
    return NULL;
    return NULL;
 
 
  remap_block (&new_tree, id);
  remap_block (&new_tree, id);
  gcc_assert (new_tree != block);
  gcc_assert (new_tree != block);
  for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
  for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
    prepend_lexical_block (new_tree, remap_blocks (t, id));
    prepend_lexical_block (new_tree, remap_blocks (t, id));
  /* Blocks are in arbitrary order, but make things slightly prettier and do
  /* Blocks are in arbitrary order, but make things slightly prettier and do
     not swap order when producing a copy.  */
     not swap order when producing a copy.  */
  BLOCK_SUBBLOCKS (new_tree) = blocks_nreverse (BLOCK_SUBBLOCKS (new_tree));
  BLOCK_SUBBLOCKS (new_tree) = blocks_nreverse (BLOCK_SUBBLOCKS (new_tree));
  return new_tree;
  return new_tree;
}
}
 
 
static void
static void
copy_statement_list (tree *tp)
copy_statement_list (tree *tp)
{
{
  tree_stmt_iterator oi, ni;
  tree_stmt_iterator oi, ni;
  tree new_tree;
  tree new_tree;
 
 
  new_tree = alloc_stmt_list ();
  new_tree = alloc_stmt_list ();
  ni = tsi_start (new_tree);
  ni = tsi_start (new_tree);
  oi = tsi_start (*tp);
  oi = tsi_start (*tp);
  TREE_TYPE (new_tree) = TREE_TYPE (*tp);
  TREE_TYPE (new_tree) = TREE_TYPE (*tp);
  *tp = new_tree;
  *tp = new_tree;
 
 
  for (; !tsi_end_p (oi); tsi_next (&oi))
  for (; !tsi_end_p (oi); tsi_next (&oi))
    {
    {
      tree stmt = tsi_stmt (oi);
      tree stmt = tsi_stmt (oi);
      if (TREE_CODE (stmt) == STATEMENT_LIST)
      if (TREE_CODE (stmt) == STATEMENT_LIST)
        copy_statement_list (&stmt);
        copy_statement_list (&stmt);
      tsi_link_after (&ni, stmt, TSI_CONTINUE_LINKING);
      tsi_link_after (&ni, stmt, TSI_CONTINUE_LINKING);
    }
    }
}
}
 
 
static void
static void
copy_bind_expr (tree *tp, int *walk_subtrees, copy_body_data *id)
copy_bind_expr (tree *tp, int *walk_subtrees, copy_body_data *id)
{
{
  tree block = BIND_EXPR_BLOCK (*tp);
  tree block = BIND_EXPR_BLOCK (*tp);
  tree t;
  tree t;
  /* Copy (and replace) the statement.  */
  /* Copy (and replace) the statement.  */
  copy_tree_r (tp, walk_subtrees, NULL);
  copy_tree_r (tp, walk_subtrees, NULL);
  if (block)
  if (block)
    {
    {
      remap_block (&block, id);
      remap_block (&block, id);
      BIND_EXPR_BLOCK (*tp) = block;
      BIND_EXPR_BLOCK (*tp) = block;
    }
    }
 
 
  if (BIND_EXPR_VARS (*tp))
  if (BIND_EXPR_VARS (*tp))
    {
    {
      /* This will remap a lot of the same decls again, but this should be
      /* This will remap a lot of the same decls again, but this should be
         harmless.  */
         harmless.  */
      BIND_EXPR_VARS (*tp) = remap_decls (BIND_EXPR_VARS (*tp), NULL, id);
      BIND_EXPR_VARS (*tp) = remap_decls (BIND_EXPR_VARS (*tp), NULL, id);
 
 
      /* Also copy value-expressions.  */
      /* Also copy value-expressions.  */
      for (t = BIND_EXPR_VARS (*tp); t; t = TREE_CHAIN (t))
      for (t = BIND_EXPR_VARS (*tp); t; t = TREE_CHAIN (t))
        if (TREE_CODE (t) == VAR_DECL
        if (TREE_CODE (t) == VAR_DECL
            && DECL_HAS_VALUE_EXPR_P (t))
            && DECL_HAS_VALUE_EXPR_P (t))
          {
          {
            tree tem = DECL_VALUE_EXPR (t);
            tree tem = DECL_VALUE_EXPR (t);
            walk_tree (&tem, copy_tree_body_r, id, NULL);
            walk_tree (&tem, copy_tree_body_r, id, NULL);
            SET_DECL_VALUE_EXPR (t, tem);
            SET_DECL_VALUE_EXPR (t, tem);
          }
          }
    }
    }
}
}
 
 
 
 
/* Create a new gimple_seq by remapping all the statements in BODY
/* Create a new gimple_seq by remapping all the statements in BODY
   using the inlining information in ID.  */
   using the inlining information in ID.  */
 
 
gimple_seq
gimple_seq
remap_gimple_seq (gimple_seq body, copy_body_data *id)
remap_gimple_seq (gimple_seq body, copy_body_data *id)
{
{
  gimple_stmt_iterator si;
  gimple_stmt_iterator si;
  gimple_seq new_body = NULL;
  gimple_seq new_body = NULL;
 
 
  for (si = gsi_start (body); !gsi_end_p (si); gsi_next (&si))
  for (si = gsi_start (body); !gsi_end_p (si); gsi_next (&si))
    {
    {
      gimple new_stmt = remap_gimple_stmt (gsi_stmt (si), id);
      gimple new_stmt = remap_gimple_stmt (gsi_stmt (si), id);
      gimple_seq_add_stmt (&new_body, new_stmt);
      gimple_seq_add_stmt (&new_body, new_stmt);
    }
    }
 
 
  return new_body;
  return new_body;
}
}
 
 
 
 
/* Copy a GIMPLE_BIND statement STMT, remapping all the symbols in its
/* Copy a GIMPLE_BIND statement STMT, remapping all the symbols in its
   block using the mapping information in ID.  */
   block using the mapping information in ID.  */
 
 
static gimple
static gimple
copy_gimple_bind (gimple stmt, copy_body_data *id)
copy_gimple_bind (gimple stmt, copy_body_data *id)
{
{
  gimple new_bind;
  gimple new_bind;
  tree new_block, new_vars;
  tree new_block, new_vars;
  gimple_seq body, new_body;
  gimple_seq body, new_body;
 
 
  /* Copy the statement.  Note that we purposely don't use copy_stmt
  /* Copy the statement.  Note that we purposely don't use copy_stmt
     here because we need to remap statements as we copy.  */
     here because we need to remap statements as we copy.  */
  body = gimple_bind_body (stmt);
  body = gimple_bind_body (stmt);
  new_body = remap_gimple_seq (body, id);
  new_body = remap_gimple_seq (body, id);
 
 
  new_block = gimple_bind_block (stmt);
  new_block = gimple_bind_block (stmt);
  if (new_block)
  if (new_block)
    remap_block (&new_block, id);
    remap_block (&new_block, id);
 
 
  /* This will remap a lot of the same decls again, but this should be
  /* This will remap a lot of the same decls again, but this should be
     harmless.  */
     harmless.  */
  new_vars = gimple_bind_vars (stmt);
  new_vars = gimple_bind_vars (stmt);
  if (new_vars)
  if (new_vars)
    new_vars = remap_decls (new_vars, NULL, id);
    new_vars = remap_decls (new_vars, NULL, id);
 
 
  new_bind = gimple_build_bind (new_vars, new_body, new_block);
  new_bind = gimple_build_bind (new_vars, new_body, new_block);
 
 
  return new_bind;
  return new_bind;
}
}
 
 
 
 
/* Remap the GIMPLE operand pointed to by *TP.  DATA is really a
/* Remap the GIMPLE operand pointed to by *TP.  DATA is really a
   'struct walk_stmt_info *'.  DATA->INFO is a 'copy_body_data *'.
   'struct walk_stmt_info *'.  DATA->INFO is a 'copy_body_data *'.
   WALK_SUBTREES is used to indicate walk_gimple_op whether to keep
   WALK_SUBTREES is used to indicate walk_gimple_op whether to keep
   recursing into the children nodes of *TP.  */
   recursing into the children nodes of *TP.  */
 
 
static tree
static tree
remap_gimple_op_r (tree *tp, int *walk_subtrees, void *data)
remap_gimple_op_r (tree *tp, int *walk_subtrees, void *data)
{
{
  struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
  struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
  copy_body_data *id = (copy_body_data *) wi_p->info;
  copy_body_data *id = (copy_body_data *) wi_p->info;
  tree fn = id->src_fn;
  tree fn = id->src_fn;
 
 
  if (TREE_CODE (*tp) == SSA_NAME)
  if (TREE_CODE (*tp) == SSA_NAME)
    {
    {
      *tp = remap_ssa_name (*tp, id);
      *tp = remap_ssa_name (*tp, id);
      *walk_subtrees = 0;
      *walk_subtrees = 0;
      return NULL;
      return NULL;
    }
    }
  else if (auto_var_in_fn_p (*tp, fn))
  else if (auto_var_in_fn_p (*tp, fn))
    {
    {
      /* Local variables and labels need to be replaced by equivalent
      /* Local variables and labels need to be replaced by equivalent
         variables.  We don't want to copy static variables; there's
         variables.  We don't want to copy static variables; there's
         only one of those, no matter how many times we inline the
         only one of those, no matter how many times we inline the
         containing function.  Similarly for globals from an outer
         containing function.  Similarly for globals from an outer
         function.  */
         function.  */
      tree new_decl;
      tree new_decl;
 
 
      /* Remap the declaration.  */
      /* Remap the declaration.  */
      new_decl = remap_decl (*tp, id);
      new_decl = remap_decl (*tp, id);
      gcc_assert (new_decl);
      gcc_assert (new_decl);
      /* Replace this variable with the copy.  */
      /* Replace this variable with the copy.  */
      STRIP_TYPE_NOPS (new_decl);
      STRIP_TYPE_NOPS (new_decl);
      /* ???  The C++ frontend uses void * pointer zero to initialize
      /* ???  The C++ frontend uses void * pointer zero to initialize
         any other type.  This confuses the middle-end type verification.
         any other type.  This confuses the middle-end type verification.
         As cloned bodies do not go through gimplification again the fixup
         As cloned bodies do not go through gimplification again the fixup
         there doesn't trigger.  */
         there doesn't trigger.  */
      if (TREE_CODE (new_decl) == INTEGER_CST
      if (TREE_CODE (new_decl) == INTEGER_CST
          && !useless_type_conversion_p (TREE_TYPE (*tp), TREE_TYPE (new_decl)))
          && !useless_type_conversion_p (TREE_TYPE (*tp), TREE_TYPE (new_decl)))
        new_decl = fold_convert (TREE_TYPE (*tp), new_decl);
        new_decl = fold_convert (TREE_TYPE (*tp), new_decl);
      *tp = new_decl;
      *tp = new_decl;
      *walk_subtrees = 0;
      *walk_subtrees = 0;
    }
    }
  else if (TREE_CODE (*tp) == STATEMENT_LIST)
  else if (TREE_CODE (*tp) == STATEMENT_LIST)
    gcc_unreachable ();
    gcc_unreachable ();
  else if (TREE_CODE (*tp) == SAVE_EXPR)
  else if (TREE_CODE (*tp) == SAVE_EXPR)
    gcc_unreachable ();
    gcc_unreachable ();
  else if (TREE_CODE (*tp) == LABEL_DECL
  else if (TREE_CODE (*tp) == LABEL_DECL
           && (!DECL_CONTEXT (*tp)
           && (!DECL_CONTEXT (*tp)
               || decl_function_context (*tp) == id->src_fn))
               || decl_function_context (*tp) == id->src_fn))
    /* These may need to be remapped for EH handling.  */
    /* These may need to be remapped for EH handling.  */
    *tp = remap_decl (*tp, id);
    *tp = remap_decl (*tp, id);
  else if (TYPE_P (*tp))
  else if (TYPE_P (*tp))
    /* Types may need remapping as well.  */
    /* Types may need remapping as well.  */
    *tp = remap_type (*tp, id);
    *tp = remap_type (*tp, id);
  else if (CONSTANT_CLASS_P (*tp))
  else if (CONSTANT_CLASS_P (*tp))
    {
    {
      /* If this is a constant, we have to copy the node iff the type
      /* If this is a constant, we have to copy the node iff the type
         will be remapped.  copy_tree_r will not copy a constant.  */
         will be remapped.  copy_tree_r will not copy a constant.  */
      tree new_type = remap_type (TREE_TYPE (*tp), id);
      tree new_type = remap_type (TREE_TYPE (*tp), id);
 
 
      if (new_type == TREE_TYPE (*tp))
      if (new_type == TREE_TYPE (*tp))
        *walk_subtrees = 0;
        *walk_subtrees = 0;
 
 
      else if (TREE_CODE (*tp) == INTEGER_CST)
      else if (TREE_CODE (*tp) == INTEGER_CST)
        *tp = build_int_cst_wide (new_type, TREE_INT_CST_LOW (*tp),
        *tp = build_int_cst_wide (new_type, TREE_INT_CST_LOW (*tp),
                                  TREE_INT_CST_HIGH (*tp));
                                  TREE_INT_CST_HIGH (*tp));
      else
      else
        {
        {
          *tp = copy_node (*tp);
          *tp = copy_node (*tp);
          TREE_TYPE (*tp) = new_type;
          TREE_TYPE (*tp) = new_type;
        }
        }
    }
    }
  else
  else
    {
    {
      /* Otherwise, just copy the node.  Note that copy_tree_r already
      /* Otherwise, just copy the node.  Note that copy_tree_r already
         knows not to copy VAR_DECLs, etc., so this is safe.  */
         knows not to copy VAR_DECLs, etc., so this is safe.  */
      if (TREE_CODE (*tp) == INDIRECT_REF)
      if (TREE_CODE (*tp) == INDIRECT_REF)
        {
        {
          /* Get rid of *& from inline substitutions that can happen when a
          /* Get rid of *& from inline substitutions that can happen when a
             pointer argument is an ADDR_EXPR.  */
             pointer argument is an ADDR_EXPR.  */
          tree decl = TREE_OPERAND (*tp, 0);
          tree decl = TREE_OPERAND (*tp, 0);
          tree *n;
          tree *n;
 
 
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          if (n)
          if (n)
            {
            {
              tree type, new_tree, old;
              tree type, new_tree, old;
 
 
              /* If we happen to get an ADDR_EXPR in n->value, strip
              /* If we happen to get an ADDR_EXPR in n->value, strip
                 it manually here as we'll eventually get ADDR_EXPRs
                 it manually here as we'll eventually get ADDR_EXPRs
                 which lie about their types pointed to.  In this case
                 which lie about their types pointed to.  In this case
                 build_fold_indirect_ref wouldn't strip the
                 build_fold_indirect_ref wouldn't strip the
                 INDIRECT_REF, but we absolutely rely on that.  As
                 INDIRECT_REF, but we absolutely rely on that.  As
                 fold_indirect_ref does other useful transformations,
                 fold_indirect_ref does other useful transformations,
                 try that first, though.  */
                 try that first, though.  */
              type = TREE_TYPE (TREE_TYPE (*n));
              type = TREE_TYPE (TREE_TYPE (*n));
              new_tree = unshare_expr (*n);
              new_tree = unshare_expr (*n);
              old = *tp;
              old = *tp;
              *tp = gimple_fold_indirect_ref (new_tree);
              *tp = gimple_fold_indirect_ref (new_tree);
              if (!*tp)
              if (!*tp)
                {
                {
                  if (TREE_CODE (new_tree) == ADDR_EXPR)
                  if (TREE_CODE (new_tree) == ADDR_EXPR)
                    {
                    {
                      *tp = fold_indirect_ref_1 (EXPR_LOCATION (new_tree),
                      *tp = fold_indirect_ref_1 (EXPR_LOCATION (new_tree),
                                                 type, new_tree);
                                                 type, new_tree);
                      /* ???  We should either assert here or build
                      /* ???  We should either assert here or build
                         a VIEW_CONVERT_EXPR instead of blindly leaking
                         a VIEW_CONVERT_EXPR instead of blindly leaking
                         incompatible types to our IL.  */
                         incompatible types to our IL.  */
                      if (! *tp)
                      if (! *tp)
                        *tp = TREE_OPERAND (new_tree, 0);
                        *tp = TREE_OPERAND (new_tree, 0);
                    }
                    }
                  else
                  else
                    {
                    {
                      *tp = build1 (INDIRECT_REF, type, new_tree);
                      *tp = build1 (INDIRECT_REF, type, new_tree);
                      TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old);
                      TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old);
                      TREE_NO_WARNING (*tp) = TREE_NO_WARNING (old);
                      TREE_NO_WARNING (*tp) = TREE_NO_WARNING (old);
                    }
                    }
                }
                }
              *walk_subtrees = 0;
              *walk_subtrees = 0;
              return NULL;
              return NULL;
            }
            }
        }
        }
 
 
      /* Here is the "usual case".  Copy this tree node, and then
      /* Here is the "usual case".  Copy this tree node, and then
         tweak some special cases.  */
         tweak some special cases.  */
      copy_tree_r (tp, walk_subtrees, NULL);
      copy_tree_r (tp, walk_subtrees, NULL);
 
 
      /* Global variables we haven't seen yet need to go into referenced
      /* Global variables we haven't seen yet need to go into referenced
         vars.  If not referenced from types only.  */
         vars.  If not referenced from types only.  */
      if (gimple_in_ssa_p (cfun)
      if (gimple_in_ssa_p (cfun)
          && TREE_CODE (*tp) == VAR_DECL
          && TREE_CODE (*tp) == VAR_DECL
          && id->remapping_type_depth == 0
          && id->remapping_type_depth == 0
          && !processing_debug_stmt)
          && !processing_debug_stmt)
        add_referenced_var (*tp);
        add_referenced_var (*tp);
 
 
      /* We should never have TREE_BLOCK set on non-statements.  */
      /* We should never have TREE_BLOCK set on non-statements.  */
      if (EXPR_P (*tp))
      if (EXPR_P (*tp))
        gcc_assert (!TREE_BLOCK (*tp));
        gcc_assert (!TREE_BLOCK (*tp));
 
 
      if (TREE_CODE (*tp) != OMP_CLAUSE)
      if (TREE_CODE (*tp) != OMP_CLAUSE)
        TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id);
        TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id);
 
 
      if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3))
      if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3))
        {
        {
          /* The copied TARGET_EXPR has never been expanded, even if the
          /* The copied TARGET_EXPR has never been expanded, even if the
             original node was expanded already.  */
             original node was expanded already.  */
          TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3);
          TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3);
          TREE_OPERAND (*tp, 3) = NULL_TREE;
          TREE_OPERAND (*tp, 3) = NULL_TREE;
        }
        }
      else if (TREE_CODE (*tp) == ADDR_EXPR)
      else if (TREE_CODE (*tp) == ADDR_EXPR)
        {
        {
          /* Variable substitution need not be simple.  In particular,
          /* Variable substitution need not be simple.  In particular,
             the INDIRECT_REF substitution above.  Make sure that
             the INDIRECT_REF substitution above.  Make sure that
             TREE_CONSTANT and friends are up-to-date.  But make sure
             TREE_CONSTANT and friends are up-to-date.  But make sure
             to not improperly set TREE_BLOCK on some sub-expressions.  */
             to not improperly set TREE_BLOCK on some sub-expressions.  */
          int invariant = is_gimple_min_invariant (*tp);
          int invariant = is_gimple_min_invariant (*tp);
          tree block = id->block;
          tree block = id->block;
          id->block = NULL_TREE;
          id->block = NULL_TREE;
          walk_tree (&TREE_OPERAND (*tp, 0), copy_tree_body_r, id, NULL);
          walk_tree (&TREE_OPERAND (*tp, 0), copy_tree_body_r, id, NULL);
          id->block = block;
          id->block = block;
 
 
          /* Handle the case where we substituted an INDIRECT_REF
          /* Handle the case where we substituted an INDIRECT_REF
             into the operand of the ADDR_EXPR.  */
             into the operand of the ADDR_EXPR.  */
          if (TREE_CODE (TREE_OPERAND (*tp, 0)) == INDIRECT_REF)
          if (TREE_CODE (TREE_OPERAND (*tp, 0)) == INDIRECT_REF)
            *tp = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0);
            *tp = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0);
          else
          else
            recompute_tree_invariant_for_addr_expr (*tp);
            recompute_tree_invariant_for_addr_expr (*tp);
 
 
          /* If this used to be invariant, but is not any longer,
          /* If this used to be invariant, but is not any longer,
             then regimplification is probably needed.  */
             then regimplification is probably needed.  */
          if (invariant && !is_gimple_min_invariant (*tp))
          if (invariant && !is_gimple_min_invariant (*tp))
            id->regimplify = true;
            id->regimplify = true;
 
 
          *walk_subtrees = 0;
          *walk_subtrees = 0;
        }
        }
    }
    }
 
 
  /* Keep iterating.  */
  /* Keep iterating.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Called from copy_body_id via walk_tree.  DATA is really a
/* Called from copy_body_id via walk_tree.  DATA is really a
   `copy_body_data *'.  */
   `copy_body_data *'.  */
 
 
tree
tree
copy_tree_body_r (tree *tp, int *walk_subtrees, void *data)
copy_tree_body_r (tree *tp, int *walk_subtrees, void *data)
{
{
  copy_body_data *id = (copy_body_data *) data;
  copy_body_data *id = (copy_body_data *) data;
  tree fn = id->src_fn;
  tree fn = id->src_fn;
  tree new_block;
  tree new_block;
 
 
  /* Begin by recognizing trees that we'll completely rewrite for the
  /* Begin by recognizing trees that we'll completely rewrite for the
     inlining context.  Our output for these trees is completely
     inlining context.  Our output for these trees is completely
     different from out input (e.g. RETURN_EXPR is deleted, and morphs
     different from out input (e.g. RETURN_EXPR is deleted, and morphs
     into an edge).  Further down, we'll handle trees that get
     into an edge).  Further down, we'll handle trees that get
     duplicated and/or tweaked.  */
     duplicated and/or tweaked.  */
 
 
  /* When requested, RETURN_EXPRs should be transformed to just the
  /* When requested, RETURN_EXPRs should be transformed to just the
     contained MODIFY_EXPR.  The branch semantics of the return will
     contained MODIFY_EXPR.  The branch semantics of the return will
     be handled elsewhere by manipulating the CFG rather than a statement.  */
     be handled elsewhere by manipulating the CFG rather than a statement.  */
  if (TREE_CODE (*tp) == RETURN_EXPR && id->transform_return_to_modify)
  if (TREE_CODE (*tp) == RETURN_EXPR && id->transform_return_to_modify)
    {
    {
      tree assignment = TREE_OPERAND (*tp, 0);
      tree assignment = TREE_OPERAND (*tp, 0);
 
 
      /* If we're returning something, just turn that into an
      /* If we're returning something, just turn that into an
         assignment into the equivalent of the original RESULT_DECL.
         assignment into the equivalent of the original RESULT_DECL.
         If the "assignment" is just the result decl, the result
         If the "assignment" is just the result decl, the result
         decl has already been set (e.g. a recent "foo (&result_decl,
         decl has already been set (e.g. a recent "foo (&result_decl,
         ...)"); just toss the entire RETURN_EXPR.  */
         ...)"); just toss the entire RETURN_EXPR.  */
      if (assignment && TREE_CODE (assignment) == MODIFY_EXPR)
      if (assignment && TREE_CODE (assignment) == MODIFY_EXPR)
        {
        {
          /* Replace the RETURN_EXPR with (a copy of) the
          /* Replace the RETURN_EXPR with (a copy of) the
             MODIFY_EXPR hanging underneath.  */
             MODIFY_EXPR hanging underneath.  */
          *tp = copy_node (assignment);
          *tp = copy_node (assignment);
        }
        }
      else /* Else the RETURN_EXPR returns no value.  */
      else /* Else the RETURN_EXPR returns no value.  */
        {
        {
          *tp = NULL;
          *tp = NULL;
          return (tree) (void *)1;
          return (tree) (void *)1;
        }
        }
    }
    }
  else if (TREE_CODE (*tp) == SSA_NAME)
  else if (TREE_CODE (*tp) == SSA_NAME)
    {
    {
      *tp = remap_ssa_name (*tp, id);
      *tp = remap_ssa_name (*tp, id);
      *walk_subtrees = 0;
      *walk_subtrees = 0;
      return NULL;
      return NULL;
    }
    }
 
 
  /* Local variables and labels need to be replaced by equivalent
  /* Local variables and labels need to be replaced by equivalent
     variables.  We don't want to copy static variables; there's only
     variables.  We don't want to copy static variables; there's only
     one of those, no matter how many times we inline the containing
     one of those, no matter how many times we inline the containing
     function.  Similarly for globals from an outer function.  */
     function.  Similarly for globals from an outer function.  */
  else if (auto_var_in_fn_p (*tp, fn))
  else if (auto_var_in_fn_p (*tp, fn))
    {
    {
      tree new_decl;
      tree new_decl;
 
 
      /* Remap the declaration.  */
      /* Remap the declaration.  */
      new_decl = remap_decl (*tp, id);
      new_decl = remap_decl (*tp, id);
      gcc_assert (new_decl);
      gcc_assert (new_decl);
      /* Replace this variable with the copy.  */
      /* Replace this variable with the copy.  */
      STRIP_TYPE_NOPS (new_decl);
      STRIP_TYPE_NOPS (new_decl);
      *tp = new_decl;
      *tp = new_decl;
      *walk_subtrees = 0;
      *walk_subtrees = 0;
    }
    }
  else if (TREE_CODE (*tp) == STATEMENT_LIST)
  else if (TREE_CODE (*tp) == STATEMENT_LIST)
    copy_statement_list (tp);
    copy_statement_list (tp);
  else if (TREE_CODE (*tp) == SAVE_EXPR
  else if (TREE_CODE (*tp) == SAVE_EXPR
           || TREE_CODE (*tp) == TARGET_EXPR)
           || TREE_CODE (*tp) == TARGET_EXPR)
    remap_save_expr (tp, id->decl_map, walk_subtrees);
    remap_save_expr (tp, id->decl_map, walk_subtrees);
  else if (TREE_CODE (*tp) == LABEL_DECL
  else if (TREE_CODE (*tp) == LABEL_DECL
           && (! DECL_CONTEXT (*tp)
           && (! DECL_CONTEXT (*tp)
               || decl_function_context (*tp) == id->src_fn))
               || decl_function_context (*tp) == id->src_fn))
    /* These may need to be remapped for EH handling.  */
    /* These may need to be remapped for EH handling.  */
    *tp = remap_decl (*tp, id);
    *tp = remap_decl (*tp, id);
  else if (TREE_CODE (*tp) == BIND_EXPR)
  else if (TREE_CODE (*tp) == BIND_EXPR)
    copy_bind_expr (tp, walk_subtrees, id);
    copy_bind_expr (tp, walk_subtrees, id);
  /* Types may need remapping as well.  */
  /* Types may need remapping as well.  */
  else if (TYPE_P (*tp))
  else if (TYPE_P (*tp))
    *tp = remap_type (*tp, id);
    *tp = remap_type (*tp, id);
 
 
  /* If this is a constant, we have to copy the node iff the type will be
  /* If this is a constant, we have to copy the node iff the type will be
     remapped.  copy_tree_r will not copy a constant.  */
     remapped.  copy_tree_r will not copy a constant.  */
  else if (CONSTANT_CLASS_P (*tp))
  else if (CONSTANT_CLASS_P (*tp))
    {
    {
      tree new_type = remap_type (TREE_TYPE (*tp), id);
      tree new_type = remap_type (TREE_TYPE (*tp), id);
 
 
      if (new_type == TREE_TYPE (*tp))
      if (new_type == TREE_TYPE (*tp))
        *walk_subtrees = 0;
        *walk_subtrees = 0;
 
 
      else if (TREE_CODE (*tp) == INTEGER_CST)
      else if (TREE_CODE (*tp) == INTEGER_CST)
        *tp = build_int_cst_wide (new_type, TREE_INT_CST_LOW (*tp),
        *tp = build_int_cst_wide (new_type, TREE_INT_CST_LOW (*tp),
                                  TREE_INT_CST_HIGH (*tp));
                                  TREE_INT_CST_HIGH (*tp));
      else
      else
        {
        {
          *tp = copy_node (*tp);
          *tp = copy_node (*tp);
          TREE_TYPE (*tp) = new_type;
          TREE_TYPE (*tp) = new_type;
        }
        }
    }
    }
 
 
  /* Otherwise, just copy the node.  Note that copy_tree_r already
  /* Otherwise, just copy the node.  Note that copy_tree_r already
     knows not to copy VAR_DECLs, etc., so this is safe.  */
     knows not to copy VAR_DECLs, etc., so this is safe.  */
  else
  else
    {
    {
      /* Here we handle trees that are not completely rewritten.
      /* Here we handle trees that are not completely rewritten.
         First we detect some inlining-induced bogosities for
         First we detect some inlining-induced bogosities for
         discarding.  */
         discarding.  */
      if (TREE_CODE (*tp) == MODIFY_EXPR
      if (TREE_CODE (*tp) == MODIFY_EXPR
          && TREE_OPERAND (*tp, 0) == TREE_OPERAND (*tp, 1)
          && TREE_OPERAND (*tp, 0) == TREE_OPERAND (*tp, 1)
          && (auto_var_in_fn_p (TREE_OPERAND (*tp, 0), fn)))
          && (auto_var_in_fn_p (TREE_OPERAND (*tp, 0), fn)))
        {
        {
          /* Some assignments VAR = VAR; don't generate any rtl code
          /* Some assignments VAR = VAR; don't generate any rtl code
             and thus don't count as variable modification.  Avoid
             and thus don't count as variable modification.  Avoid
             keeping bogosities like 0 = 0.  */
             keeping bogosities like 0 = 0.  */
          tree decl = TREE_OPERAND (*tp, 0), value;
          tree decl = TREE_OPERAND (*tp, 0), value;
          tree *n;
          tree *n;
 
 
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          if (n)
          if (n)
            {
            {
              value = *n;
              value = *n;
              STRIP_TYPE_NOPS (value);
              STRIP_TYPE_NOPS (value);
              if (TREE_CONSTANT (value) || TREE_READONLY (value))
              if (TREE_CONSTANT (value) || TREE_READONLY (value))
                {
                {
                  *tp = build_empty_stmt (EXPR_LOCATION (*tp));
                  *tp = build_empty_stmt (EXPR_LOCATION (*tp));
                  return copy_tree_body_r (tp, walk_subtrees, data);
                  return copy_tree_body_r (tp, walk_subtrees, data);
                }
                }
            }
            }
        }
        }
      else if (TREE_CODE (*tp) == INDIRECT_REF)
      else if (TREE_CODE (*tp) == INDIRECT_REF)
        {
        {
          /* Get rid of *& from inline substitutions that can happen when a
          /* Get rid of *& from inline substitutions that can happen when a
             pointer argument is an ADDR_EXPR.  */
             pointer argument is an ADDR_EXPR.  */
          tree decl = TREE_OPERAND (*tp, 0);
          tree decl = TREE_OPERAND (*tp, 0);
          tree *n;
          tree *n;
 
 
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          if (n)
          if (n)
            {
            {
              tree new_tree;
              tree new_tree;
              tree old;
              tree old;
              /* If we happen to get an ADDR_EXPR in n->value, strip
              /* If we happen to get an ADDR_EXPR in n->value, strip
                 it manually here as we'll eventually get ADDR_EXPRs
                 it manually here as we'll eventually get ADDR_EXPRs
                 which lie about their types pointed to.  In this case
                 which lie about their types pointed to.  In this case
                 build_fold_indirect_ref wouldn't strip the INDIRECT_REF,
                 build_fold_indirect_ref wouldn't strip the INDIRECT_REF,
                 but we absolutely rely on that.  As fold_indirect_ref
                 but we absolutely rely on that.  As fold_indirect_ref
                 does other useful transformations, try that first, though.  */
                 does other useful transformations, try that first, though.  */
              tree type = TREE_TYPE (TREE_TYPE (*n));
              tree type = TREE_TYPE (TREE_TYPE (*n));
              if (id->do_not_unshare)
              if (id->do_not_unshare)
                new_tree = *n;
                new_tree = *n;
              else
              else
                new_tree = unshare_expr (*n);
                new_tree = unshare_expr (*n);
              old = *tp;
              old = *tp;
              *tp = gimple_fold_indirect_ref (new_tree);
              *tp = gimple_fold_indirect_ref (new_tree);
              if (! *tp)
              if (! *tp)
                {
                {
                  if (TREE_CODE (new_tree) == ADDR_EXPR)
                  if (TREE_CODE (new_tree) == ADDR_EXPR)
                    {
                    {
                      *tp = fold_indirect_ref_1 (EXPR_LOCATION (new_tree),
                      *tp = fold_indirect_ref_1 (EXPR_LOCATION (new_tree),
                                                 type, new_tree);
                                                 type, new_tree);
                      /* ???  We should either assert here or build
                      /* ???  We should either assert here or build
                         a VIEW_CONVERT_EXPR instead of blindly leaking
                         a VIEW_CONVERT_EXPR instead of blindly leaking
                         incompatible types to our IL.  */
                         incompatible types to our IL.  */
                      if (! *tp)
                      if (! *tp)
                        *tp = TREE_OPERAND (new_tree, 0);
                        *tp = TREE_OPERAND (new_tree, 0);
                    }
                    }
                  else
                  else
                    {
                    {
                      *tp = build1 (INDIRECT_REF, type, new_tree);
                      *tp = build1 (INDIRECT_REF, type, new_tree);
                      TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old);
                      TREE_THIS_VOLATILE (*tp) = TREE_THIS_VOLATILE (old);
                      TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old);
                      TREE_SIDE_EFFECTS (*tp) = TREE_SIDE_EFFECTS (old);
                    }
                    }
                }
                }
              *walk_subtrees = 0;
              *walk_subtrees = 0;
              return NULL;
              return NULL;
            }
            }
        }
        }
 
 
      /* Here is the "usual case".  Copy this tree node, and then
      /* Here is the "usual case".  Copy this tree node, and then
         tweak some special cases.  */
         tweak some special cases.  */
      copy_tree_r (tp, walk_subtrees, NULL);
      copy_tree_r (tp, walk_subtrees, NULL);
 
 
      /* Global variables we haven't seen yet needs to go into referenced
      /* Global variables we haven't seen yet needs to go into referenced
         vars.  If not referenced from types or debug stmts only.  */
         vars.  If not referenced from types or debug stmts only.  */
      if (gimple_in_ssa_p (cfun)
      if (gimple_in_ssa_p (cfun)
          && TREE_CODE (*tp) == VAR_DECL
          && TREE_CODE (*tp) == VAR_DECL
          && id->remapping_type_depth == 0
          && id->remapping_type_depth == 0
          && !processing_debug_stmt)
          && !processing_debug_stmt)
        add_referenced_var (*tp);
        add_referenced_var (*tp);
 
 
      /* If EXPR has block defined, map it to newly constructed block.
      /* If EXPR has block defined, map it to newly constructed block.
         When inlining we want EXPRs without block appear in the block
         When inlining we want EXPRs without block appear in the block
         of function call if we are not remapping a type.  */
         of function call if we are not remapping a type.  */
      if (EXPR_P (*tp))
      if (EXPR_P (*tp))
        {
        {
          new_block = id->remapping_type_depth == 0 ? id->block : NULL;
          new_block = id->remapping_type_depth == 0 ? id->block : NULL;
          if (TREE_BLOCK (*tp))
          if (TREE_BLOCK (*tp))
            {
            {
              tree *n;
              tree *n;
              n = (tree *) pointer_map_contains (id->decl_map,
              n = (tree *) pointer_map_contains (id->decl_map,
                                                 TREE_BLOCK (*tp));
                                                 TREE_BLOCK (*tp));
              gcc_assert (n);
              gcc_assert (n);
              new_block = *n;
              new_block = *n;
            }
            }
          TREE_BLOCK (*tp) = new_block;
          TREE_BLOCK (*tp) = new_block;
        }
        }
 
 
      if (TREE_CODE (*tp) != OMP_CLAUSE)
      if (TREE_CODE (*tp) != OMP_CLAUSE)
        TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id);
        TREE_TYPE (*tp) = remap_type (TREE_TYPE (*tp), id);
 
 
      /* The copied TARGET_EXPR has never been expanded, even if the
      /* The copied TARGET_EXPR has never been expanded, even if the
         original node was expanded already.  */
         original node was expanded already.  */
      if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3))
      if (TREE_CODE (*tp) == TARGET_EXPR && TREE_OPERAND (*tp, 3))
        {
        {
          TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3);
          TREE_OPERAND (*tp, 1) = TREE_OPERAND (*tp, 3);
          TREE_OPERAND (*tp, 3) = NULL_TREE;
          TREE_OPERAND (*tp, 3) = NULL_TREE;
        }
        }
 
 
      /* Variable substitution need not be simple.  In particular, the
      /* Variable substitution need not be simple.  In particular, the
         INDIRECT_REF substitution above.  Make sure that TREE_CONSTANT
         INDIRECT_REF substitution above.  Make sure that TREE_CONSTANT
         and friends are up-to-date.  */
         and friends are up-to-date.  */
      else if (TREE_CODE (*tp) == ADDR_EXPR)
      else if (TREE_CODE (*tp) == ADDR_EXPR)
        {
        {
          int invariant = is_gimple_min_invariant (*tp);
          int invariant = is_gimple_min_invariant (*tp);
          walk_tree (&TREE_OPERAND (*tp, 0), copy_tree_body_r, id, NULL);
          walk_tree (&TREE_OPERAND (*tp, 0), copy_tree_body_r, id, NULL);
 
 
          /* Handle the case where we substituted an INDIRECT_REF
          /* Handle the case where we substituted an INDIRECT_REF
             into the operand of the ADDR_EXPR.  */
             into the operand of the ADDR_EXPR.  */
          if (TREE_CODE (TREE_OPERAND (*tp, 0)) == INDIRECT_REF)
          if (TREE_CODE (TREE_OPERAND (*tp, 0)) == INDIRECT_REF)
            *tp = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0);
            *tp = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0);
          else
          else
            recompute_tree_invariant_for_addr_expr (*tp);
            recompute_tree_invariant_for_addr_expr (*tp);
 
 
          /* If this used to be invariant, but is not any longer,
          /* If this used to be invariant, but is not any longer,
             then regimplification is probably needed.  */
             then regimplification is probably needed.  */
          if (invariant && !is_gimple_min_invariant (*tp))
          if (invariant && !is_gimple_min_invariant (*tp))
            id->regimplify = true;
            id->regimplify = true;
 
 
          *walk_subtrees = 0;
          *walk_subtrees = 0;
        }
        }
    }
    }
 
 
  /* Keep iterating.  */
  /* Keep iterating.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Helper for remap_gimple_stmt.  Given an EH region number for the
/* Helper for remap_gimple_stmt.  Given an EH region number for the
   source function, map that to the duplicate EH region number in
   source function, map that to the duplicate EH region number in
   the destination function.  */
   the destination function.  */
 
 
static int
static int
remap_eh_region_nr (int old_nr, copy_body_data *id)
remap_eh_region_nr (int old_nr, copy_body_data *id)
{
{
  eh_region old_r, new_r;
  eh_region old_r, new_r;
  void **slot;
  void **slot;
 
 
  old_r = get_eh_region_from_number_fn (id->src_cfun, old_nr);
  old_r = get_eh_region_from_number_fn (id->src_cfun, old_nr);
  slot = pointer_map_contains (id->eh_map, old_r);
  slot = pointer_map_contains (id->eh_map, old_r);
  new_r = (eh_region) *slot;
  new_r = (eh_region) *slot;
 
 
  return new_r->index;
  return new_r->index;
}
}
 
 
/* Similar, but operate on INTEGER_CSTs.  */
/* Similar, but operate on INTEGER_CSTs.  */
 
 
static tree
static tree
remap_eh_region_tree_nr (tree old_t_nr, copy_body_data *id)
remap_eh_region_tree_nr (tree old_t_nr, copy_body_data *id)
{
{
  int old_nr, new_nr;
  int old_nr, new_nr;
 
 
  old_nr = tree_low_cst (old_t_nr, 0);
  old_nr = tree_low_cst (old_t_nr, 0);
  new_nr = remap_eh_region_nr (old_nr, id);
  new_nr = remap_eh_region_nr (old_nr, id);
 
 
  return build_int_cst (NULL, new_nr);
  return build_int_cst (NULL, new_nr);
}
}
 
 
/* Helper for copy_bb.  Remap statement STMT using the inlining
/* Helper for copy_bb.  Remap statement STMT using the inlining
   information in ID.  Return the new statement copy.  */
   information in ID.  Return the new statement copy.  */
 
 
static gimple
static gimple
remap_gimple_stmt (gimple stmt, copy_body_data *id)
remap_gimple_stmt (gimple stmt, copy_body_data *id)
{
{
  gimple copy = NULL;
  gimple copy = NULL;
  struct walk_stmt_info wi;
  struct walk_stmt_info wi;
  tree new_block;
  tree new_block;
  bool skip_first = false;
  bool skip_first = false;
 
 
  /* Begin by recognizing trees that we'll completely rewrite for the
  /* Begin by recognizing trees that we'll completely rewrite for the
     inlining context.  Our output for these trees is completely
     inlining context.  Our output for these trees is completely
     different from out input (e.g. RETURN_EXPR is deleted, and morphs
     different from out input (e.g. RETURN_EXPR is deleted, and morphs
     into an edge).  Further down, we'll handle trees that get
     into an edge).  Further down, we'll handle trees that get
     duplicated and/or tweaked.  */
     duplicated and/or tweaked.  */
 
 
  /* When requested, GIMPLE_RETURNs should be transformed to just the
  /* When requested, GIMPLE_RETURNs should be transformed to just the
     contained GIMPLE_ASSIGN.  The branch semantics of the return will
     contained GIMPLE_ASSIGN.  The branch semantics of the return will
     be handled elsewhere by manipulating the CFG rather than the
     be handled elsewhere by manipulating the CFG rather than the
     statement.  */
     statement.  */
  if (gimple_code (stmt) == GIMPLE_RETURN && id->transform_return_to_modify)
  if (gimple_code (stmt) == GIMPLE_RETURN && id->transform_return_to_modify)
    {
    {
      tree retval = gimple_return_retval (stmt);
      tree retval = gimple_return_retval (stmt);
 
 
      /* If we're returning something, just turn that into an
      /* If we're returning something, just turn that into an
         assignment into the equivalent of the original RESULT_DECL.
         assignment into the equivalent of the original RESULT_DECL.
         If RETVAL is just the result decl, the result decl has
         If RETVAL is just the result decl, the result decl has
         already been set (e.g. a recent "foo (&result_decl, ...)");
         already been set (e.g. a recent "foo (&result_decl, ...)");
         just toss the entire GIMPLE_RETURN.  */
         just toss the entire GIMPLE_RETURN.  */
      if (retval && TREE_CODE (retval) != RESULT_DECL)
      if (retval && TREE_CODE (retval) != RESULT_DECL)
        {
        {
          copy = gimple_build_assign (id->retvar, retval);
          copy = gimple_build_assign (id->retvar, retval);
          /* id->retvar is already substituted.  Skip it on later remapping.  */
          /* id->retvar is already substituted.  Skip it on later remapping.  */
          skip_first = true;
          skip_first = true;
        }
        }
      else
      else
        return gimple_build_nop ();
        return gimple_build_nop ();
    }
    }
  else if (gimple_has_substatements (stmt))
  else if (gimple_has_substatements (stmt))
    {
    {
      gimple_seq s1, s2;
      gimple_seq s1, s2;
 
 
      /* When cloning bodies from the C++ front end, we will be handed bodies
      /* When cloning bodies from the C++ front end, we will be handed bodies
         in High GIMPLE form.  Handle here all the High GIMPLE statements that
         in High GIMPLE form.  Handle here all the High GIMPLE statements that
         have embedded statements.  */
         have embedded statements.  */
      switch (gimple_code (stmt))
      switch (gimple_code (stmt))
        {
        {
        case GIMPLE_BIND:
        case GIMPLE_BIND:
          copy = copy_gimple_bind (stmt, id);
          copy = copy_gimple_bind (stmt, id);
          break;
          break;
 
 
        case GIMPLE_CATCH:
        case GIMPLE_CATCH:
          s1 = remap_gimple_seq (gimple_catch_handler (stmt), id);
          s1 = remap_gimple_seq (gimple_catch_handler (stmt), id);
          copy = gimple_build_catch (gimple_catch_types (stmt), s1);
          copy = gimple_build_catch (gimple_catch_types (stmt), s1);
          break;
          break;
 
 
        case GIMPLE_EH_FILTER:
        case GIMPLE_EH_FILTER:
          s1 = remap_gimple_seq (gimple_eh_filter_failure (stmt), id);
          s1 = remap_gimple_seq (gimple_eh_filter_failure (stmt), id);
          copy = gimple_build_eh_filter (gimple_eh_filter_types (stmt), s1);
          copy = gimple_build_eh_filter (gimple_eh_filter_types (stmt), s1);
          break;
          break;
 
 
        case GIMPLE_TRY:
        case GIMPLE_TRY:
          s1 = remap_gimple_seq (gimple_try_eval (stmt), id);
          s1 = remap_gimple_seq (gimple_try_eval (stmt), id);
          s2 = remap_gimple_seq (gimple_try_cleanup (stmt), id);
          s2 = remap_gimple_seq (gimple_try_cleanup (stmt), id);
          copy = gimple_build_try (s1, s2, gimple_try_kind (stmt));
          copy = gimple_build_try (s1, s2, gimple_try_kind (stmt));
          break;
          break;
 
 
        case GIMPLE_WITH_CLEANUP_EXPR:
        case GIMPLE_WITH_CLEANUP_EXPR:
          s1 = remap_gimple_seq (gimple_wce_cleanup (stmt), id);
          s1 = remap_gimple_seq (gimple_wce_cleanup (stmt), id);
          copy = gimple_build_wce (s1);
          copy = gimple_build_wce (s1);
          break;
          break;
 
 
        case GIMPLE_OMP_PARALLEL:
        case GIMPLE_OMP_PARALLEL:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_parallel
          copy = gimple_build_omp_parallel
                   (s1,
                   (s1,
                    gimple_omp_parallel_clauses (stmt),
                    gimple_omp_parallel_clauses (stmt),
                    gimple_omp_parallel_child_fn (stmt),
                    gimple_omp_parallel_child_fn (stmt),
                    gimple_omp_parallel_data_arg (stmt));
                    gimple_omp_parallel_data_arg (stmt));
          break;
          break;
 
 
        case GIMPLE_OMP_TASK:
        case GIMPLE_OMP_TASK:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_task
          copy = gimple_build_omp_task
                   (s1,
                   (s1,
                    gimple_omp_task_clauses (stmt),
                    gimple_omp_task_clauses (stmt),
                    gimple_omp_task_child_fn (stmt),
                    gimple_omp_task_child_fn (stmt),
                    gimple_omp_task_data_arg (stmt),
                    gimple_omp_task_data_arg (stmt),
                    gimple_omp_task_copy_fn (stmt),
                    gimple_omp_task_copy_fn (stmt),
                    gimple_omp_task_arg_size (stmt),
                    gimple_omp_task_arg_size (stmt),
                    gimple_omp_task_arg_align (stmt));
                    gimple_omp_task_arg_align (stmt));
          break;
          break;
 
 
        case GIMPLE_OMP_FOR:
        case GIMPLE_OMP_FOR:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s2 = remap_gimple_seq (gimple_omp_for_pre_body (stmt), id);
          s2 = remap_gimple_seq (gimple_omp_for_pre_body (stmt), id);
          copy = gimple_build_omp_for (s1, gimple_omp_for_clauses (stmt),
          copy = gimple_build_omp_for (s1, gimple_omp_for_clauses (stmt),
                                       gimple_omp_for_collapse (stmt), s2);
                                       gimple_omp_for_collapse (stmt), s2);
          {
          {
            size_t i;
            size_t i;
            for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
            for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
              {
              {
                gimple_omp_for_set_index (copy, i,
                gimple_omp_for_set_index (copy, i,
                                          gimple_omp_for_index (stmt, i));
                                          gimple_omp_for_index (stmt, i));
                gimple_omp_for_set_initial (copy, i,
                gimple_omp_for_set_initial (copy, i,
                                            gimple_omp_for_initial (stmt, i));
                                            gimple_omp_for_initial (stmt, i));
                gimple_omp_for_set_final (copy, i,
                gimple_omp_for_set_final (copy, i,
                                          gimple_omp_for_final (stmt, i));
                                          gimple_omp_for_final (stmt, i));
                gimple_omp_for_set_incr (copy, i,
                gimple_omp_for_set_incr (copy, i,
                                         gimple_omp_for_incr (stmt, i));
                                         gimple_omp_for_incr (stmt, i));
                gimple_omp_for_set_cond (copy, i,
                gimple_omp_for_set_cond (copy, i,
                                         gimple_omp_for_cond (stmt, i));
                                         gimple_omp_for_cond (stmt, i));
              }
              }
          }
          }
          break;
          break;
 
 
        case GIMPLE_OMP_MASTER:
        case GIMPLE_OMP_MASTER:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_master (s1);
          copy = gimple_build_omp_master (s1);
          break;
          break;
 
 
        case GIMPLE_OMP_ORDERED:
        case GIMPLE_OMP_ORDERED:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_ordered (s1);
          copy = gimple_build_omp_ordered (s1);
          break;
          break;
 
 
        case GIMPLE_OMP_SECTION:
        case GIMPLE_OMP_SECTION:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_section (s1);
          copy = gimple_build_omp_section (s1);
          break;
          break;
 
 
        case GIMPLE_OMP_SECTIONS:
        case GIMPLE_OMP_SECTIONS:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_sections
          copy = gimple_build_omp_sections
                   (s1, gimple_omp_sections_clauses (stmt));
                   (s1, gimple_omp_sections_clauses (stmt));
          break;
          break;
 
 
        case GIMPLE_OMP_SINGLE:
        case GIMPLE_OMP_SINGLE:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy = gimple_build_omp_single
          copy = gimple_build_omp_single
                   (s1, gimple_omp_single_clauses (stmt));
                   (s1, gimple_omp_single_clauses (stmt));
          break;
          break;
 
 
        case GIMPLE_OMP_CRITICAL:
        case GIMPLE_OMP_CRITICAL:
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          s1 = remap_gimple_seq (gimple_omp_body (stmt), id);
          copy
          copy
            = gimple_build_omp_critical (s1, gimple_omp_critical_name (stmt));
            = gimple_build_omp_critical (s1, gimple_omp_critical_name (stmt));
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  else
  else
    {
    {
      if (gimple_assign_copy_p (stmt)
      if (gimple_assign_copy_p (stmt)
          && gimple_assign_lhs (stmt) == gimple_assign_rhs1 (stmt)
          && gimple_assign_lhs (stmt) == gimple_assign_rhs1 (stmt)
          && auto_var_in_fn_p (gimple_assign_lhs (stmt), id->src_fn))
          && auto_var_in_fn_p (gimple_assign_lhs (stmt), id->src_fn))
        {
        {
          /* Here we handle statements that are not completely rewritten.
          /* Here we handle statements that are not completely rewritten.
             First we detect some inlining-induced bogosities for
             First we detect some inlining-induced bogosities for
             discarding.  */
             discarding.  */
 
 
          /* Some assignments VAR = VAR; don't generate any rtl code
          /* Some assignments VAR = VAR; don't generate any rtl code
             and thus don't count as variable modification.  Avoid
             and thus don't count as variable modification.  Avoid
             keeping bogosities like 0 = 0.  */
             keeping bogosities like 0 = 0.  */
          tree decl = gimple_assign_lhs (stmt), value;
          tree decl = gimple_assign_lhs (stmt), value;
          tree *n;
          tree *n;
 
 
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          n = (tree *) pointer_map_contains (id->decl_map, decl);
          if (n)
          if (n)
            {
            {
              value = *n;
              value = *n;
              STRIP_TYPE_NOPS (value);
              STRIP_TYPE_NOPS (value);
              if (TREE_CONSTANT (value) || TREE_READONLY (value))
              if (TREE_CONSTANT (value) || TREE_READONLY (value))
                return gimple_build_nop ();
                return gimple_build_nop ();
            }
            }
        }
        }
 
 
      if (gimple_debug_bind_p (stmt))
      if (gimple_debug_bind_p (stmt))
        {
        {
          copy = gimple_build_debug_bind (gimple_debug_bind_get_var (stmt),
          copy = gimple_build_debug_bind (gimple_debug_bind_get_var (stmt),
                                          gimple_debug_bind_get_value (stmt),
                                          gimple_debug_bind_get_value (stmt),
                                          stmt);
                                          stmt);
          VEC_safe_push (gimple, heap, id->debug_stmts, copy);
          VEC_safe_push (gimple, heap, id->debug_stmts, copy);
          return copy;
          return copy;
        }
        }
 
 
      /* Create a new deep copy of the statement.  */
      /* Create a new deep copy of the statement.  */
      copy = gimple_copy (stmt);
      copy = gimple_copy (stmt);
 
 
      /* Remap the region numbers for __builtin_eh_{pointer,filter},
      /* Remap the region numbers for __builtin_eh_{pointer,filter},
         RESX and EH_DISPATCH.  */
         RESX and EH_DISPATCH.  */
      if (id->eh_map)
      if (id->eh_map)
        switch (gimple_code (copy))
        switch (gimple_code (copy))
          {
          {
          case GIMPLE_CALL:
          case GIMPLE_CALL:
            {
            {
              tree r, fndecl = gimple_call_fndecl (copy);
              tree r, fndecl = gimple_call_fndecl (copy);
              if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
              if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
                switch (DECL_FUNCTION_CODE (fndecl))
                switch (DECL_FUNCTION_CODE (fndecl))
                  {
                  {
                  case BUILT_IN_EH_COPY_VALUES:
                  case BUILT_IN_EH_COPY_VALUES:
                    r = gimple_call_arg (copy, 1);
                    r = gimple_call_arg (copy, 1);
                    r = remap_eh_region_tree_nr (r, id);
                    r = remap_eh_region_tree_nr (r, id);
                    gimple_call_set_arg (copy, 1, r);
                    gimple_call_set_arg (copy, 1, r);
                    /* FALLTHRU */
                    /* FALLTHRU */
 
 
                  case BUILT_IN_EH_POINTER:
                  case BUILT_IN_EH_POINTER:
                  case BUILT_IN_EH_FILTER:
                  case BUILT_IN_EH_FILTER:
                    r = gimple_call_arg (copy, 0);
                    r = gimple_call_arg (copy, 0);
                    r = remap_eh_region_tree_nr (r, id);
                    r = remap_eh_region_tree_nr (r, id);
                    gimple_call_set_arg (copy, 0, r);
                    gimple_call_set_arg (copy, 0, r);
                    break;
                    break;
 
 
                  default:
                  default:
                    break;
                    break;
                  }
                  }
            }
            }
            break;
            break;
 
 
          case GIMPLE_RESX:
          case GIMPLE_RESX:
            {
            {
              int r = gimple_resx_region (copy);
              int r = gimple_resx_region (copy);
              r = remap_eh_region_nr (r, id);
              r = remap_eh_region_nr (r, id);
              gimple_resx_set_region (copy, r);
              gimple_resx_set_region (copy, r);
            }
            }
            break;
            break;
 
 
          case GIMPLE_EH_DISPATCH:
          case GIMPLE_EH_DISPATCH:
            {
            {
              int r = gimple_eh_dispatch_region (copy);
              int r = gimple_eh_dispatch_region (copy);
              r = remap_eh_region_nr (r, id);
              r = remap_eh_region_nr (r, id);
              gimple_eh_dispatch_set_region (copy, r);
              gimple_eh_dispatch_set_region (copy, r);
            }
            }
            break;
            break;
 
 
          default:
          default:
            break;
            break;
          }
          }
    }
    }
 
 
  /* If STMT has a block defined, map it to the newly constructed
  /* If STMT has a block defined, map it to the newly constructed
     block.  When inlining we want statements without a block to
     block.  When inlining we want statements without a block to
     appear in the block of the function call.  */
     appear in the block of the function call.  */
  new_block = id->block;
  new_block = id->block;
  if (gimple_block (copy))
  if (gimple_block (copy))
    {
    {
      tree *n;
      tree *n;
      n = (tree *) pointer_map_contains (id->decl_map, gimple_block (copy));
      n = (tree *) pointer_map_contains (id->decl_map, gimple_block (copy));
      gcc_assert (n);
      gcc_assert (n);
      new_block = *n;
      new_block = *n;
    }
    }
 
 
  gimple_set_block (copy, new_block);
  gimple_set_block (copy, new_block);
 
 
  if (gimple_debug_bind_p (copy))
  if (gimple_debug_bind_p (copy))
    return copy;
    return copy;
 
 
  /* Remap all the operands in COPY.  */
  /* Remap all the operands in COPY.  */
  memset (&wi, 0, sizeof (wi));
  memset (&wi, 0, sizeof (wi));
  wi.info = id;
  wi.info = id;
  if (skip_first)
  if (skip_first)
    walk_tree (gimple_op_ptr (copy, 1), remap_gimple_op_r, &wi, NULL);
    walk_tree (gimple_op_ptr (copy, 1), remap_gimple_op_r, &wi, NULL);
  else
  else
    walk_gimple_op (copy, remap_gimple_op_r, &wi);
    walk_gimple_op (copy, remap_gimple_op_r, &wi);
 
 
  /* Clear the copied virtual operands.  We are not remapping them here
  /* Clear the copied virtual operands.  We are not remapping them here
     but are going to recreate them from scratch.  */
     but are going to recreate them from scratch.  */
  if (gimple_has_mem_ops (copy))
  if (gimple_has_mem_ops (copy))
    {
    {
      gimple_set_vdef (copy, NULL_TREE);
      gimple_set_vdef (copy, NULL_TREE);
      gimple_set_vuse (copy, NULL_TREE);
      gimple_set_vuse (copy, NULL_TREE);
    }
    }
 
 
  return copy;
  return copy;
}
}
 
 
 
 
/* Copy basic block, scale profile accordingly.  Edges will be taken care of
/* Copy basic block, scale profile accordingly.  Edges will be taken care of
   later  */
   later  */
 
 
static basic_block
static basic_block
copy_bb (copy_body_data *id, basic_block bb, int frequency_scale,
copy_bb (copy_body_data *id, basic_block bb, int frequency_scale,
         gcov_type count_scale)
         gcov_type count_scale)
{
{
  gimple_stmt_iterator gsi, copy_gsi, seq_gsi;
  gimple_stmt_iterator gsi, copy_gsi, seq_gsi;
  basic_block copy_basic_block;
  basic_block copy_basic_block;
  tree decl;
  tree decl;
  gcov_type freq;
  gcov_type freq;
 
 
  /* create_basic_block() will append every new block to
  /* create_basic_block() will append every new block to
     basic_block_info automatically.  */
     basic_block_info automatically.  */
  copy_basic_block = create_basic_block (NULL, (void *) 0,
  copy_basic_block = create_basic_block (NULL, (void *) 0,
                                         (basic_block) bb->prev_bb->aux);
                                         (basic_block) bb->prev_bb->aux);
  copy_basic_block->count = bb->count * count_scale / REG_BR_PROB_BASE;
  copy_basic_block->count = bb->count * count_scale / REG_BR_PROB_BASE;
 
 
  /* We are going to rebuild frequencies from scratch.  These values
  /* We are going to rebuild frequencies from scratch.  These values
     have just small importance to drive canonicalize_loop_headers.  */
     have just small importance to drive canonicalize_loop_headers.  */
  freq = ((gcov_type)bb->frequency * frequency_scale / REG_BR_PROB_BASE);
  freq = ((gcov_type)bb->frequency * frequency_scale / REG_BR_PROB_BASE);
 
 
  /* We recompute frequencies after inlining, so this is quite safe.  */
  /* We recompute frequencies after inlining, so this is quite safe.  */
  if (freq > BB_FREQ_MAX)
  if (freq > BB_FREQ_MAX)
    freq = BB_FREQ_MAX;
    freq = BB_FREQ_MAX;
  copy_basic_block->frequency = freq;
  copy_basic_block->frequency = freq;
 
 
  copy_gsi = gsi_start_bb (copy_basic_block);
  copy_gsi = gsi_start_bb (copy_basic_block);
 
 
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      gimple stmt = gsi_stmt (gsi);
      gimple stmt = gsi_stmt (gsi);
      gimple orig_stmt = stmt;
      gimple orig_stmt = stmt;
 
 
      id->regimplify = false;
      id->regimplify = false;
      stmt = remap_gimple_stmt (stmt, id);
      stmt = remap_gimple_stmt (stmt, id);
      if (gimple_nop_p (stmt))
      if (gimple_nop_p (stmt))
        continue;
        continue;
 
 
      gimple_duplicate_stmt_histograms (cfun, stmt, id->src_cfun, orig_stmt);
      gimple_duplicate_stmt_histograms (cfun, stmt, id->src_cfun, orig_stmt);
      seq_gsi = copy_gsi;
      seq_gsi = copy_gsi;
 
 
      /* With return slot optimization we can end up with
      /* With return slot optimization we can end up with
         non-gimple (foo *)&this->m, fix that here.  */
         non-gimple (foo *)&this->m, fix that here.  */
      if (is_gimple_assign (stmt)
      if (is_gimple_assign (stmt)
          && gimple_assign_rhs_code (stmt) == NOP_EXPR
          && gimple_assign_rhs_code (stmt) == NOP_EXPR
          && !is_gimple_val (gimple_assign_rhs1 (stmt)))
          && !is_gimple_val (gimple_assign_rhs1 (stmt)))
        {
        {
          tree new_rhs;
          tree new_rhs;
          new_rhs = force_gimple_operand_gsi (&seq_gsi,
          new_rhs = force_gimple_operand_gsi (&seq_gsi,
                                              gimple_assign_rhs1 (stmt),
                                              gimple_assign_rhs1 (stmt),
                                              true, NULL, false, GSI_NEW_STMT);
                                              true, NULL, false, GSI_NEW_STMT);
          gimple_assign_set_rhs1 (stmt, new_rhs);
          gimple_assign_set_rhs1 (stmt, new_rhs);
          id->regimplify = false;
          id->regimplify = false;
        }
        }
 
 
      gsi_insert_after (&seq_gsi, stmt, GSI_NEW_STMT);
      gsi_insert_after (&seq_gsi, stmt, GSI_NEW_STMT);
 
 
      if (id->regimplify)
      if (id->regimplify)
        gimple_regimplify_operands (stmt, &seq_gsi);
        gimple_regimplify_operands (stmt, &seq_gsi);
 
 
      /* If copy_basic_block has been empty at the start of this iteration,
      /* If copy_basic_block has been empty at the start of this iteration,
         call gsi_start_bb again to get at the newly added statements.  */
         call gsi_start_bb again to get at the newly added statements.  */
      if (gsi_end_p (copy_gsi))
      if (gsi_end_p (copy_gsi))
        copy_gsi = gsi_start_bb (copy_basic_block);
        copy_gsi = gsi_start_bb (copy_basic_block);
      else
      else
        gsi_next (&copy_gsi);
        gsi_next (&copy_gsi);
 
 
      /* Process the new statement.  The call to gimple_regimplify_operands
      /* Process the new statement.  The call to gimple_regimplify_operands
         possibly turned the statement into multiple statements, we
         possibly turned the statement into multiple statements, we
         need to process all of them.  */
         need to process all of them.  */
      do
      do
        {
        {
          tree fn;
          tree fn;
 
 
          stmt = gsi_stmt (copy_gsi);
          stmt = gsi_stmt (copy_gsi);
          if (is_gimple_call (stmt)
          if (is_gimple_call (stmt)
              && gimple_call_va_arg_pack_p (stmt)
              && gimple_call_va_arg_pack_p (stmt)
              && id->gimple_call)
              && id->gimple_call)
            {
            {
              /* __builtin_va_arg_pack () should be replaced by
              /* __builtin_va_arg_pack () should be replaced by
                 all arguments corresponding to ... in the caller.  */
                 all arguments corresponding to ... in the caller.  */
              tree p;
              tree p;
              gimple new_call;
              gimple new_call;
              VEC(tree, heap) *argarray;
              VEC(tree, heap) *argarray;
              size_t nargs = gimple_call_num_args (id->gimple_call);
              size_t nargs = gimple_call_num_args (id->gimple_call);
              size_t n;
              size_t n;
 
 
              for (p = DECL_ARGUMENTS (id->src_fn); p; p = TREE_CHAIN (p))
              for (p = DECL_ARGUMENTS (id->src_fn); p; p = TREE_CHAIN (p))
                nargs--;
                nargs--;
 
 
              /* Create the new array of arguments.  */
              /* Create the new array of arguments.  */
              n = nargs + gimple_call_num_args (stmt);
              n = nargs + gimple_call_num_args (stmt);
              argarray = VEC_alloc (tree, heap, n);
              argarray = VEC_alloc (tree, heap, n);
              VEC_safe_grow (tree, heap, argarray, n);
              VEC_safe_grow (tree, heap, argarray, n);
 
 
              /* Copy all the arguments before '...'  */
              /* Copy all the arguments before '...'  */
              memcpy (VEC_address (tree, argarray),
              memcpy (VEC_address (tree, argarray),
                      gimple_call_arg_ptr (stmt, 0),
                      gimple_call_arg_ptr (stmt, 0),
                      gimple_call_num_args (stmt) * sizeof (tree));
                      gimple_call_num_args (stmt) * sizeof (tree));
 
 
              /* Append the arguments passed in '...'  */
              /* Append the arguments passed in '...'  */
              memcpy (VEC_address(tree, argarray) + gimple_call_num_args (stmt),
              memcpy (VEC_address(tree, argarray) + gimple_call_num_args (stmt),
                      gimple_call_arg_ptr (id->gimple_call, 0)
                      gimple_call_arg_ptr (id->gimple_call, 0)
                        + (gimple_call_num_args (id->gimple_call) - nargs),
                        + (gimple_call_num_args (id->gimple_call) - nargs),
                      nargs * sizeof (tree));
                      nargs * sizeof (tree));
 
 
              new_call = gimple_build_call_vec (gimple_call_fn (stmt),
              new_call = gimple_build_call_vec (gimple_call_fn (stmt),
                                                argarray);
                                                argarray);
 
 
              VEC_free (tree, heap, argarray);
              VEC_free (tree, heap, argarray);
 
 
              /* Copy all GIMPLE_CALL flags, location and block, except
              /* Copy all GIMPLE_CALL flags, location and block, except
                 GF_CALL_VA_ARG_PACK.  */
                 GF_CALL_VA_ARG_PACK.  */
              gimple_call_copy_flags (new_call, stmt);
              gimple_call_copy_flags (new_call, stmt);
              gimple_call_set_va_arg_pack (new_call, false);
              gimple_call_set_va_arg_pack (new_call, false);
              gimple_set_location (new_call, gimple_location (stmt));
              gimple_set_location (new_call, gimple_location (stmt));
              gimple_set_block (new_call, gimple_block (stmt));
              gimple_set_block (new_call, gimple_block (stmt));
              gimple_call_set_lhs (new_call, gimple_call_lhs (stmt));
              gimple_call_set_lhs (new_call, gimple_call_lhs (stmt));
 
 
              gsi_replace (&copy_gsi, new_call, false);
              gsi_replace (&copy_gsi, new_call, false);
              stmt = new_call;
              stmt = new_call;
            }
            }
          else if (is_gimple_call (stmt)
          else if (is_gimple_call (stmt)
                   && id->gimple_call
                   && id->gimple_call
                   && (decl = gimple_call_fndecl (stmt))
                   && (decl = gimple_call_fndecl (stmt))
                   && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
                   && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
                   && DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_ARG_PACK_LEN)
                   && DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_ARG_PACK_LEN)
            {
            {
              /* __builtin_va_arg_pack_len () should be replaced by
              /* __builtin_va_arg_pack_len () should be replaced by
                 the number of anonymous arguments.  */
                 the number of anonymous arguments.  */
              size_t nargs = gimple_call_num_args (id->gimple_call);
              size_t nargs = gimple_call_num_args (id->gimple_call);
              tree count, p;
              tree count, p;
              gimple new_stmt;
              gimple new_stmt;
 
 
              for (p = DECL_ARGUMENTS (id->src_fn); p; p = TREE_CHAIN (p))
              for (p = DECL_ARGUMENTS (id->src_fn); p; p = TREE_CHAIN (p))
                nargs--;
                nargs--;
 
 
              count = build_int_cst (integer_type_node, nargs);
              count = build_int_cst (integer_type_node, nargs);
              new_stmt = gimple_build_assign (gimple_call_lhs (stmt), count);
              new_stmt = gimple_build_assign (gimple_call_lhs (stmt), count);
              gsi_replace (&copy_gsi, new_stmt, false);
              gsi_replace (&copy_gsi, new_stmt, false);
              stmt = new_stmt;
              stmt = new_stmt;
            }
            }
 
 
          /* Statements produced by inlining can be unfolded, especially
          /* Statements produced by inlining can be unfolded, especially
             when we constant propagated some operands.  We can't fold
             when we constant propagated some operands.  We can't fold
             them right now for two reasons:
             them right now for two reasons:
             1) folding require SSA_NAME_DEF_STMTs to be correct
             1) folding require SSA_NAME_DEF_STMTs to be correct
             2) we can't change function calls to builtins.
             2) we can't change function calls to builtins.
             So we just mark statement for later folding.  We mark
             So we just mark statement for later folding.  We mark
             all new statements, instead just statements that has changed
             all new statements, instead just statements that has changed
             by some nontrivial substitution so even statements made
             by some nontrivial substitution so even statements made
             foldable indirectly are updated.  If this turns out to be
             foldable indirectly are updated.  If this turns out to be
             expensive, copy_body can be told to watch for nontrivial
             expensive, copy_body can be told to watch for nontrivial
             changes.  */
             changes.  */
          if (id->statements_to_fold)
          if (id->statements_to_fold)
            pointer_set_insert (id->statements_to_fold, stmt);
            pointer_set_insert (id->statements_to_fold, stmt);
 
 
          /* We're duplicating a CALL_EXPR.  Find any corresponding
          /* We're duplicating a CALL_EXPR.  Find any corresponding
             callgraph edges and update or duplicate them.  */
             callgraph edges and update or duplicate them.  */
          if (is_gimple_call (stmt))
          if (is_gimple_call (stmt))
            {
            {
              struct cgraph_edge *edge;
              struct cgraph_edge *edge;
              int flags;
              int flags;
 
 
              switch (id->transform_call_graph_edges)
              switch (id->transform_call_graph_edges)
                {
                {
                case CB_CGE_DUPLICATE:
                case CB_CGE_DUPLICATE:
                  edge = cgraph_edge (id->src_node, orig_stmt);
                  edge = cgraph_edge (id->src_node, orig_stmt);
                  if (edge)
                  if (edge)
                    {
                    {
                      int edge_freq = edge->frequency;
                      int edge_freq = edge->frequency;
                      edge = cgraph_clone_edge (edge, id->dst_node, stmt,
                      edge = cgraph_clone_edge (edge, id->dst_node, stmt,
                                                gimple_uid (stmt),
                                                gimple_uid (stmt),
                                                REG_BR_PROB_BASE, CGRAPH_FREQ_BASE,
                                                REG_BR_PROB_BASE, CGRAPH_FREQ_BASE,
                                                edge->frequency, true);
                                                edge->frequency, true);
                      /* We could also just rescale the frequency, but
                      /* We could also just rescale the frequency, but
                         doing so would introduce roundoff errors and make
                         doing so would introduce roundoff errors and make
                         verifier unhappy.  */
                         verifier unhappy.  */
                      edge->frequency
                      edge->frequency
                        = compute_call_stmt_bb_frequency (id->dst_node->decl,
                        = compute_call_stmt_bb_frequency (id->dst_node->decl,
                                                          copy_basic_block);
                                                          copy_basic_block);
                      if (dump_file
                      if (dump_file
                          && profile_status_for_function (cfun) != PROFILE_ABSENT
                          && profile_status_for_function (cfun) != PROFILE_ABSENT
                          && (edge_freq > edge->frequency + 10
                          && (edge_freq > edge->frequency + 10
                              || edge_freq < edge->frequency - 10))
                              || edge_freq < edge->frequency - 10))
                        {
                        {
                          fprintf (dump_file, "Edge frequency estimated by "
                          fprintf (dump_file, "Edge frequency estimated by "
                                   "cgraph %i diverge from inliner's estimate %i\n",
                                   "cgraph %i diverge from inliner's estimate %i\n",
                                   edge_freq,
                                   edge_freq,
                                   edge->frequency);
                                   edge->frequency);
                          fprintf (dump_file,
                          fprintf (dump_file,
                                   "Orig bb: %i, orig bb freq %i, new bb freq %i\n",
                                   "Orig bb: %i, orig bb freq %i, new bb freq %i\n",
                                   bb->index,
                                   bb->index,
                                   bb->frequency,
                                   bb->frequency,
                                   copy_basic_block->frequency);
                                   copy_basic_block->frequency);
                        }
                        }
                      stmt = cgraph_redirect_edge_call_stmt_to_callee (edge);
                      stmt = cgraph_redirect_edge_call_stmt_to_callee (edge);
                    }
                    }
                  break;
                  break;
 
 
                case CB_CGE_MOVE_CLONES:
                case CB_CGE_MOVE_CLONES:
                  cgraph_set_call_stmt_including_clones (id->dst_node,
                  cgraph_set_call_stmt_including_clones (id->dst_node,
                                                         orig_stmt, stmt);
                                                         orig_stmt, stmt);
                  edge = cgraph_edge (id->dst_node, stmt);
                  edge = cgraph_edge (id->dst_node, stmt);
                  break;
                  break;
 
 
                case CB_CGE_MOVE:
                case CB_CGE_MOVE:
                  edge = cgraph_edge (id->dst_node, orig_stmt);
                  edge = cgraph_edge (id->dst_node, orig_stmt);
                  if (edge)
                  if (edge)
                    cgraph_set_call_stmt (edge, stmt);
                    cgraph_set_call_stmt (edge, stmt);
                  break;
                  break;
 
 
                default:
                default:
                  gcc_unreachable ();
                  gcc_unreachable ();
                }
                }
 
 
              /* Constant propagation on argument done during inlining
              /* Constant propagation on argument done during inlining
                 may create new direct call.  Produce an edge for it.  */
                 may create new direct call.  Produce an edge for it.  */
              if ((!edge
              if ((!edge
                   || (edge->indirect_call
                   || (edge->indirect_call
                       && id->transform_call_graph_edges == CB_CGE_MOVE_CLONES))
                       && id->transform_call_graph_edges == CB_CGE_MOVE_CLONES))
                  && is_gimple_call (stmt)
                  && is_gimple_call (stmt)
                  && (fn = gimple_call_fndecl (stmt)) != NULL)
                  && (fn = gimple_call_fndecl (stmt)) != NULL)
                {
                {
                  struct cgraph_node *dest = cgraph_node (fn);
                  struct cgraph_node *dest = cgraph_node (fn);
 
 
                  /* We have missing edge in the callgraph.  This can happen
                  /* We have missing edge in the callgraph.  This can happen
                     when previous inlining turned an indirect call into a
                     when previous inlining turned an indirect call into a
                     direct call by constant propagating arguments or we are
                     direct call by constant propagating arguments or we are
                     producing dead clone (for further clonning).  In all
                     producing dead clone (for further clonning).  In all
                     other cases we hit a bug (incorrect node sharing is the
                     other cases we hit a bug (incorrect node sharing is the
                     most common reason for missing edges).  */
                     most common reason for missing edges).  */
                  gcc_assert (dest->needed || !dest->analyzed
                  gcc_assert (dest->needed || !dest->analyzed
                              || !id->src_node->analyzed);
                              || !id->src_node->analyzed);
                  if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES)
                  if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES)
                    cgraph_create_edge_including_clones
                    cgraph_create_edge_including_clones
                      (id->dst_node, dest, orig_stmt, stmt, bb->count,
                      (id->dst_node, dest, orig_stmt, stmt, bb->count,
                       compute_call_stmt_bb_frequency (id->dst_node->decl,
                       compute_call_stmt_bb_frequency (id->dst_node->decl,
                                                       copy_basic_block),
                                                       copy_basic_block),
                       bb->loop_depth, CIF_ORIGINALLY_INDIRECT_CALL);
                       bb->loop_depth, CIF_ORIGINALLY_INDIRECT_CALL);
                  else
                  else
                    cgraph_create_edge (id->dst_node, dest, stmt,
                    cgraph_create_edge (id->dst_node, dest, stmt,
                                        bb->count,
                                        bb->count,
                                        compute_call_stmt_bb_frequency
                                        compute_call_stmt_bb_frequency
                                          (id->dst_node->decl, copy_basic_block),
                                          (id->dst_node->decl, copy_basic_block),
                                        bb->loop_depth)->inline_failed
                                        bb->loop_depth)->inline_failed
                      = CIF_ORIGINALLY_INDIRECT_CALL;
                      = CIF_ORIGINALLY_INDIRECT_CALL;
                  if (dump_file)
                  if (dump_file)
                    {
                    {
                      fprintf (dump_file, "Created new direct edge to %s",
                      fprintf (dump_file, "Created new direct edge to %s",
                               cgraph_node_name (dest));
                               cgraph_node_name (dest));
                    }
                    }
                }
                }
 
 
              flags = gimple_call_flags (stmt);
              flags = gimple_call_flags (stmt);
              if (flags & ECF_MAY_BE_ALLOCA)
              if (flags & ECF_MAY_BE_ALLOCA)
                cfun->calls_alloca = true;
                cfun->calls_alloca = true;
              if (flags & ECF_RETURNS_TWICE)
              if (flags & ECF_RETURNS_TWICE)
                cfun->calls_setjmp = true;
                cfun->calls_setjmp = true;
            }
            }
 
 
          maybe_duplicate_eh_stmt_fn (cfun, stmt, id->src_cfun, orig_stmt,
          maybe_duplicate_eh_stmt_fn (cfun, stmt, id->src_cfun, orig_stmt,
                                      id->eh_map, id->eh_lp_nr);
                                      id->eh_map, id->eh_lp_nr);
 
 
          if (gimple_in_ssa_p (cfun) && !is_gimple_debug (stmt))
          if (gimple_in_ssa_p (cfun) && !is_gimple_debug (stmt))
            {
            {
              ssa_op_iter i;
              ssa_op_iter i;
              tree def;
              tree def;
 
 
              find_new_referenced_vars (gsi_stmt (copy_gsi));
              find_new_referenced_vars (gsi_stmt (copy_gsi));
              FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
              FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
                if (TREE_CODE (def) == SSA_NAME)
                if (TREE_CODE (def) == SSA_NAME)
                  SSA_NAME_DEF_STMT (def) = stmt;
                  SSA_NAME_DEF_STMT (def) = stmt;
            }
            }
 
 
          gsi_next (&copy_gsi);
          gsi_next (&copy_gsi);
        }
        }
      while (!gsi_end_p (copy_gsi));
      while (!gsi_end_p (copy_gsi));
 
 
      copy_gsi = gsi_last_bb (copy_basic_block);
      copy_gsi = gsi_last_bb (copy_basic_block);
    }
    }
 
 
  return copy_basic_block;
  return copy_basic_block;
}
}
 
 
/* Inserting Single Entry Multiple Exit region in SSA form into code in SSA
/* Inserting Single Entry Multiple Exit region in SSA form into code in SSA
   form is quite easy, since dominator relationship for old basic blocks does
   form is quite easy, since dominator relationship for old basic blocks does
   not change.
   not change.
 
 
   There is however exception where inlining might change dominator relation
   There is however exception where inlining might change dominator relation
   across EH edges from basic block within inlined functions destinating
   across EH edges from basic block within inlined functions destinating
   to landing pads in function we inline into.
   to landing pads in function we inline into.
 
 
   The function fills in PHI_RESULTs of such PHI nodes if they refer
   The function fills in PHI_RESULTs of such PHI nodes if they refer
   to gimple regs.  Otherwise, the function mark PHI_RESULT of such
   to gimple regs.  Otherwise, the function mark PHI_RESULT of such
   PHI nodes for renaming.  For non-gimple regs, renaming is safe: the
   PHI nodes for renaming.  For non-gimple regs, renaming is safe: the
   EH edges are abnormal and SSA_NAME_OCCURS_IN_ABNORMAL_PHI must be
   EH edges are abnormal and SSA_NAME_OCCURS_IN_ABNORMAL_PHI must be
   set, and this means that there will be no overlapping live ranges
   set, and this means that there will be no overlapping live ranges
   for the underlying symbol.
   for the underlying symbol.
 
 
   This might change in future if we allow redirecting of EH edges and
   This might change in future if we allow redirecting of EH edges and
   we might want to change way build CFG pre-inlining to include
   we might want to change way build CFG pre-inlining to include
   all the possible edges then.  */
   all the possible edges then.  */
static void
static void
update_ssa_across_abnormal_edges (basic_block bb, basic_block ret_bb,
update_ssa_across_abnormal_edges (basic_block bb, basic_block ret_bb,
                                  bool can_throw, bool nonlocal_goto)
                                  bool can_throw, bool nonlocal_goto)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (!e->dest->aux
    if (!e->dest->aux
        || ((basic_block)e->dest->aux)->index == ENTRY_BLOCK)
        || ((basic_block)e->dest->aux)->index == ENTRY_BLOCK)
      {
      {
        gimple phi;
        gimple phi;
        gimple_stmt_iterator si;
        gimple_stmt_iterator si;
 
 
        if (!nonlocal_goto)
        if (!nonlocal_goto)
          gcc_assert (e->flags & EDGE_EH);
          gcc_assert (e->flags & EDGE_EH);
 
 
        if (!can_throw)
        if (!can_throw)
          gcc_assert (!(e->flags & EDGE_EH));
          gcc_assert (!(e->flags & EDGE_EH));
 
 
        for (si = gsi_start_phis (e->dest); !gsi_end_p (si); gsi_next (&si))
        for (si = gsi_start_phis (e->dest); !gsi_end_p (si); gsi_next (&si))
          {
          {
            edge re;
            edge re;
 
 
            phi = gsi_stmt (si);
            phi = gsi_stmt (si);
 
 
            /* There shouldn't be any PHI nodes in the ENTRY_BLOCK.  */
            /* There shouldn't be any PHI nodes in the ENTRY_BLOCK.  */
            gcc_assert (!e->dest->aux);
            gcc_assert (!e->dest->aux);
 
 
            gcc_assert ((e->flags & EDGE_EH)
            gcc_assert ((e->flags & EDGE_EH)
                        || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)));
                        || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)));
 
 
            if (!is_gimple_reg (PHI_RESULT (phi)))
            if (!is_gimple_reg (PHI_RESULT (phi)))
              {
              {
                mark_sym_for_renaming (SSA_NAME_VAR (PHI_RESULT (phi)));
                mark_sym_for_renaming (SSA_NAME_VAR (PHI_RESULT (phi)));
                continue;
                continue;
              }
              }
 
 
            re = find_edge (ret_bb, e->dest);
            re = find_edge (ret_bb, e->dest);
            gcc_assert (re);
            gcc_assert (re);
            gcc_assert ((re->flags & (EDGE_EH | EDGE_ABNORMAL))
            gcc_assert ((re->flags & (EDGE_EH | EDGE_ABNORMAL))
                        == (e->flags & (EDGE_EH | EDGE_ABNORMAL)));
                        == (e->flags & (EDGE_EH | EDGE_ABNORMAL)));
 
 
            SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e),
            SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e),
                     USE_FROM_PTR (PHI_ARG_DEF_PTR_FROM_EDGE (phi, re)));
                     USE_FROM_PTR (PHI_ARG_DEF_PTR_FROM_EDGE (phi, re)));
          }
          }
      }
      }
}
}
 
 
 
 
/* Copy edges from BB into its copy constructed earlier, scale profile
/* Copy edges from BB into its copy constructed earlier, scale profile
   accordingly.  Edges will be taken care of later.  Assume aux
   accordingly.  Edges will be taken care of later.  Assume aux
   pointers to point to the copies of each BB.  Return true if any
   pointers to point to the copies of each BB.  Return true if any
   debug stmts are left after a statement that must end the basic block.  */
   debug stmts are left after a statement that must end the basic block.  */
 
 
static bool
static bool
copy_edges_for_bb (basic_block bb, gcov_type count_scale, basic_block ret_bb)
copy_edges_for_bb (basic_block bb, gcov_type count_scale, basic_block ret_bb)
{
{
  basic_block new_bb = (basic_block) bb->aux;
  basic_block new_bb = (basic_block) bb->aux;
  edge_iterator ei;
  edge_iterator ei;
  edge old_edge;
  edge old_edge;
  gimple_stmt_iterator si;
  gimple_stmt_iterator si;
  int flags;
  int flags;
  bool need_debug_cleanup = false;
  bool need_debug_cleanup = false;
 
 
  /* Use the indices from the original blocks to create edges for the
  /* Use the indices from the original blocks to create edges for the
     new ones.  */
     new ones.  */
  FOR_EACH_EDGE (old_edge, ei, bb->succs)
  FOR_EACH_EDGE (old_edge, ei, bb->succs)
    if (!(old_edge->flags & EDGE_EH))
    if (!(old_edge->flags & EDGE_EH))
      {
      {
        edge new_edge;
        edge new_edge;
 
 
        flags = old_edge->flags;
        flags = old_edge->flags;
 
 
        /* Return edges do get a FALLTHRU flag when the get inlined.  */
        /* Return edges do get a FALLTHRU flag when the get inlined.  */
        if (old_edge->dest->index == EXIT_BLOCK && !old_edge->flags
        if (old_edge->dest->index == EXIT_BLOCK && !old_edge->flags
            && old_edge->dest->aux != EXIT_BLOCK_PTR)
            && old_edge->dest->aux != EXIT_BLOCK_PTR)
          flags |= EDGE_FALLTHRU;
          flags |= EDGE_FALLTHRU;
        new_edge = make_edge (new_bb, (basic_block) old_edge->dest->aux, flags);
        new_edge = make_edge (new_bb, (basic_block) old_edge->dest->aux, flags);
        new_edge->count = old_edge->count * count_scale / REG_BR_PROB_BASE;
        new_edge->count = old_edge->count * count_scale / REG_BR_PROB_BASE;
        new_edge->probability = old_edge->probability;
        new_edge->probability = old_edge->probability;
      }
      }
 
 
  if (bb->index == ENTRY_BLOCK || bb->index == EXIT_BLOCK)
  if (bb->index == ENTRY_BLOCK || bb->index == EXIT_BLOCK)
    return false;
    return false;
 
 
  for (si = gsi_start_bb (new_bb); !gsi_end_p (si);)
  for (si = gsi_start_bb (new_bb); !gsi_end_p (si);)
    {
    {
      gimple copy_stmt;
      gimple copy_stmt;
      bool can_throw, nonlocal_goto;
      bool can_throw, nonlocal_goto;
 
 
      copy_stmt = gsi_stmt (si);
      copy_stmt = gsi_stmt (si);
      if (!is_gimple_debug (copy_stmt))
      if (!is_gimple_debug (copy_stmt))
        {
        {
          update_stmt (copy_stmt);
          update_stmt (copy_stmt);
          if (gimple_in_ssa_p (cfun))
          if (gimple_in_ssa_p (cfun))
            mark_symbols_for_renaming (copy_stmt);
            mark_symbols_for_renaming (copy_stmt);
        }
        }
 
 
      /* Do this before the possible split_block.  */
      /* Do this before the possible split_block.  */
      gsi_next (&si);
      gsi_next (&si);
 
 
      /* If this tree could throw an exception, there are two
      /* If this tree could throw an exception, there are two
         cases where we need to add abnormal edge(s): the
         cases where we need to add abnormal edge(s): the
         tree wasn't in a region and there is a "current
         tree wasn't in a region and there is a "current
         region" in the caller; or the original tree had
         region" in the caller; or the original tree had
         EH edges.  In both cases split the block after the tree,
         EH edges.  In both cases split the block after the tree,
         and add abnormal edge(s) as needed; we need both
         and add abnormal edge(s) as needed; we need both
         those from the callee and the caller.
         those from the callee and the caller.
         We check whether the copy can throw, because the const
         We check whether the copy can throw, because the const
         propagation can change an INDIRECT_REF which throws
         propagation can change an INDIRECT_REF which throws
         into a COMPONENT_REF which doesn't.  If the copy
         into a COMPONENT_REF which doesn't.  If the copy
         can throw, the original could also throw.  */
         can throw, the original could also throw.  */
      can_throw = stmt_can_throw_internal (copy_stmt);
      can_throw = stmt_can_throw_internal (copy_stmt);
      nonlocal_goto = stmt_can_make_abnormal_goto (copy_stmt);
      nonlocal_goto = stmt_can_make_abnormal_goto (copy_stmt);
 
 
      if (can_throw || nonlocal_goto)
      if (can_throw || nonlocal_goto)
        {
        {
          if (!gsi_end_p (si))
          if (!gsi_end_p (si))
            {
            {
              while (!gsi_end_p (si) && is_gimple_debug (gsi_stmt (si)))
              while (!gsi_end_p (si) && is_gimple_debug (gsi_stmt (si)))
                gsi_next (&si);
                gsi_next (&si);
              if (gsi_end_p (si))
              if (gsi_end_p (si))
                need_debug_cleanup = true;
                need_debug_cleanup = true;
            }
            }
          if (!gsi_end_p (si))
          if (!gsi_end_p (si))
            /* Note that bb's predecessor edges aren't necessarily
            /* Note that bb's predecessor edges aren't necessarily
               right at this point; split_block doesn't care.  */
               right at this point; split_block doesn't care.  */
            {
            {
              edge e = split_block (new_bb, copy_stmt);
              edge e = split_block (new_bb, copy_stmt);
 
 
              new_bb = e->dest;
              new_bb = e->dest;
              new_bb->aux = e->src->aux;
              new_bb->aux = e->src->aux;
              si = gsi_start_bb (new_bb);
              si = gsi_start_bb (new_bb);
            }
            }
        }
        }
 
 
      if (gimple_code (copy_stmt) == GIMPLE_EH_DISPATCH)
      if (gimple_code (copy_stmt) == GIMPLE_EH_DISPATCH)
        make_eh_dispatch_edges (copy_stmt);
        make_eh_dispatch_edges (copy_stmt);
      else if (can_throw)
      else if (can_throw)
        make_eh_edges (copy_stmt);
        make_eh_edges (copy_stmt);
 
 
      if (nonlocal_goto)
      if (nonlocal_goto)
        make_abnormal_goto_edges (gimple_bb (copy_stmt), true);
        make_abnormal_goto_edges (gimple_bb (copy_stmt), true);
 
 
      if ((can_throw || nonlocal_goto)
      if ((can_throw || nonlocal_goto)
          && gimple_in_ssa_p (cfun))
          && gimple_in_ssa_p (cfun))
        update_ssa_across_abnormal_edges (gimple_bb (copy_stmt), ret_bb,
        update_ssa_across_abnormal_edges (gimple_bb (copy_stmt), ret_bb,
                                          can_throw, nonlocal_goto);
                                          can_throw, nonlocal_goto);
    }
    }
  return need_debug_cleanup;
  return need_debug_cleanup;
}
}
 
 
/* Copy the PHIs.  All blocks and edges are copied, some blocks
/* Copy the PHIs.  All blocks and edges are copied, some blocks
   was possibly split and new outgoing EH edges inserted.
   was possibly split and new outgoing EH edges inserted.
   BB points to the block of original function and AUX pointers links
   BB points to the block of original function and AUX pointers links
   the original and newly copied blocks.  */
   the original and newly copied blocks.  */
 
 
static void
static void
copy_phis_for_bb (basic_block bb, copy_body_data *id)
copy_phis_for_bb (basic_block bb, copy_body_data *id)
{
{
  basic_block const new_bb = (basic_block) bb->aux;
  basic_block const new_bb = (basic_block) bb->aux;
  edge_iterator ei;
  edge_iterator ei;
  gimple phi;
  gimple phi;
  gimple_stmt_iterator si;
  gimple_stmt_iterator si;
 
 
  for (si = gsi_start (phi_nodes (bb)); !gsi_end_p (si); gsi_next (&si))
  for (si = gsi_start (phi_nodes (bb)); !gsi_end_p (si); gsi_next (&si))
    {
    {
      tree res, new_res;
      tree res, new_res;
      gimple new_phi;
      gimple new_phi;
      edge new_edge;
      edge new_edge;
 
 
      phi = gsi_stmt (si);
      phi = gsi_stmt (si);
      res = PHI_RESULT (phi);
      res = PHI_RESULT (phi);
      new_res = res;
      new_res = res;
      if (is_gimple_reg (res))
      if (is_gimple_reg (res))
        {
        {
          walk_tree (&new_res, copy_tree_body_r, id, NULL);
          walk_tree (&new_res, copy_tree_body_r, id, NULL);
          SSA_NAME_DEF_STMT (new_res)
          SSA_NAME_DEF_STMT (new_res)
            = new_phi = create_phi_node (new_res, new_bb);
            = new_phi = create_phi_node (new_res, new_bb);
          FOR_EACH_EDGE (new_edge, ei, new_bb->preds)
          FOR_EACH_EDGE (new_edge, ei, new_bb->preds)
            {
            {
              edge const old_edge
              edge const old_edge
                = find_edge ((basic_block) new_edge->src->aux, bb);
                = find_edge ((basic_block) new_edge->src->aux, bb);
              tree arg = PHI_ARG_DEF_FROM_EDGE (phi, old_edge);
              tree arg = PHI_ARG_DEF_FROM_EDGE (phi, old_edge);
              tree new_arg = arg;
              tree new_arg = arg;
              tree block = id->block;
              tree block = id->block;
              id->block = NULL_TREE;
              id->block = NULL_TREE;
              walk_tree (&new_arg, copy_tree_body_r, id, NULL);
              walk_tree (&new_arg, copy_tree_body_r, id, NULL);
              id->block = block;
              id->block = block;
              gcc_assert (new_arg);
              gcc_assert (new_arg);
              /* With return slot optimization we can end up with
              /* With return slot optimization we can end up with
                 non-gimple (foo *)&this->m, fix that here.  */
                 non-gimple (foo *)&this->m, fix that here.  */
              if (TREE_CODE (new_arg) != SSA_NAME
              if (TREE_CODE (new_arg) != SSA_NAME
                  && TREE_CODE (new_arg) != FUNCTION_DECL
                  && TREE_CODE (new_arg) != FUNCTION_DECL
                  && !is_gimple_val (new_arg))
                  && !is_gimple_val (new_arg))
                {
                {
                  gimple_seq stmts = NULL;
                  gimple_seq stmts = NULL;
                  new_arg = force_gimple_operand (new_arg, &stmts, true, NULL);
                  new_arg = force_gimple_operand (new_arg, &stmts, true, NULL);
                  gsi_insert_seq_on_edge_immediate (new_edge, stmts);
                  gsi_insert_seq_on_edge_immediate (new_edge, stmts);
                }
                }
              add_phi_arg (new_phi, new_arg, new_edge,
              add_phi_arg (new_phi, new_arg, new_edge,
                           gimple_phi_arg_location_from_edge (phi, old_edge));
                           gimple_phi_arg_location_from_edge (phi, old_edge));
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
/* Wrapper for remap_decl so it can be used as a callback.  */
/* Wrapper for remap_decl so it can be used as a callback.  */
 
 
static tree
static tree
remap_decl_1 (tree decl, void *data)
remap_decl_1 (tree decl, void *data)
{
{
  return remap_decl (decl, (copy_body_data *) data);
  return remap_decl (decl, (copy_body_data *) data);
}
}
 
 
/* Build struct function and associated datastructures for the new clone
/* Build struct function and associated datastructures for the new clone
   NEW_FNDECL to be build.  CALLEE_FNDECL is the original */
   NEW_FNDECL to be build.  CALLEE_FNDECL is the original */
 
 
static void
static void
initialize_cfun (tree new_fndecl, tree callee_fndecl, gcov_type count)
initialize_cfun (tree new_fndecl, tree callee_fndecl, gcov_type count)
{
{
  struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl);
  struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl);
  gcov_type count_scale;
  gcov_type count_scale;
 
 
  if (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count)
  if (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count)
    count_scale = (REG_BR_PROB_BASE * count
    count_scale = (REG_BR_PROB_BASE * count
                   / ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count);
                   / ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count);
  else
  else
    count_scale = REG_BR_PROB_BASE;
    count_scale = REG_BR_PROB_BASE;
 
 
  /* Register specific tree functions.  */
  /* Register specific tree functions.  */
  gimple_register_cfg_hooks ();
  gimple_register_cfg_hooks ();
 
 
  /* Get clean struct function.  */
  /* Get clean struct function.  */
  push_struct_function (new_fndecl);
  push_struct_function (new_fndecl);
 
 
  /* We will rebuild these, so just sanity check that they are empty.  */
  /* We will rebuild these, so just sanity check that they are empty.  */
  gcc_assert (VALUE_HISTOGRAMS (cfun) == NULL);
  gcc_assert (VALUE_HISTOGRAMS (cfun) == NULL);
  gcc_assert (cfun->local_decls == NULL);
  gcc_assert (cfun->local_decls == NULL);
  gcc_assert (cfun->cfg == NULL);
  gcc_assert (cfun->cfg == NULL);
  gcc_assert (cfun->decl == new_fndecl);
  gcc_assert (cfun->decl == new_fndecl);
 
 
  /* Copy items we preserve during clonning.  */
  /* Copy items we preserve during clonning.  */
  cfun->static_chain_decl = src_cfun->static_chain_decl;
  cfun->static_chain_decl = src_cfun->static_chain_decl;
  cfun->nonlocal_goto_save_area = src_cfun->nonlocal_goto_save_area;
  cfun->nonlocal_goto_save_area = src_cfun->nonlocal_goto_save_area;
  cfun->function_end_locus = src_cfun->function_end_locus;
  cfun->function_end_locus = src_cfun->function_end_locus;
  cfun->curr_properties = src_cfun->curr_properties;
  cfun->curr_properties = src_cfun->curr_properties;
  cfun->last_verified = src_cfun->last_verified;
  cfun->last_verified = src_cfun->last_verified;
  cfun->va_list_gpr_size = src_cfun->va_list_gpr_size;
  cfun->va_list_gpr_size = src_cfun->va_list_gpr_size;
  cfun->va_list_fpr_size = src_cfun->va_list_fpr_size;
  cfun->va_list_fpr_size = src_cfun->va_list_fpr_size;
  cfun->function_frequency = src_cfun->function_frequency;
  cfun->function_frequency = src_cfun->function_frequency;
  cfun->has_nonlocal_label = src_cfun->has_nonlocal_label;
  cfun->has_nonlocal_label = src_cfun->has_nonlocal_label;
  cfun->stdarg = src_cfun->stdarg;
  cfun->stdarg = src_cfun->stdarg;
  cfun->dont_save_pending_sizes_p = src_cfun->dont_save_pending_sizes_p;
  cfun->dont_save_pending_sizes_p = src_cfun->dont_save_pending_sizes_p;
  cfun->after_inlining = src_cfun->after_inlining;
  cfun->after_inlining = src_cfun->after_inlining;
  cfun->returns_struct = src_cfun->returns_struct;
  cfun->returns_struct = src_cfun->returns_struct;
  cfun->returns_pcc_struct = src_cfun->returns_pcc_struct;
  cfun->returns_pcc_struct = src_cfun->returns_pcc_struct;
  cfun->after_tree_profile = src_cfun->after_tree_profile;
  cfun->after_tree_profile = src_cfun->after_tree_profile;
 
 
  init_empty_tree_cfg ();
  init_empty_tree_cfg ();
 
 
  profile_status_for_function (cfun) = profile_status_for_function (src_cfun);
  profile_status_for_function (cfun) = profile_status_for_function (src_cfun);
  ENTRY_BLOCK_PTR->count =
  ENTRY_BLOCK_PTR->count =
    (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count * count_scale /
    (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count * count_scale /
     REG_BR_PROB_BASE);
     REG_BR_PROB_BASE);
  ENTRY_BLOCK_PTR->frequency
  ENTRY_BLOCK_PTR->frequency
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->frequency;
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->frequency;
  EXIT_BLOCK_PTR->count =
  EXIT_BLOCK_PTR->count =
    (EXIT_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count * count_scale /
    (EXIT_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count * count_scale /
     REG_BR_PROB_BASE);
     REG_BR_PROB_BASE);
  EXIT_BLOCK_PTR->frequency =
  EXIT_BLOCK_PTR->frequency =
    EXIT_BLOCK_PTR_FOR_FUNCTION (src_cfun)->frequency;
    EXIT_BLOCK_PTR_FOR_FUNCTION (src_cfun)->frequency;
  if (src_cfun->eh)
  if (src_cfun->eh)
    init_eh_for_function ();
    init_eh_for_function ();
 
 
  if (src_cfun->gimple_df)
  if (src_cfun->gimple_df)
    {
    {
      init_tree_ssa (cfun);
      init_tree_ssa (cfun);
      cfun->gimple_df->in_ssa_p = true;
      cfun->gimple_df->in_ssa_p = true;
      init_ssa_operands ();
      init_ssa_operands ();
    }
    }
  pop_cfun ();
  pop_cfun ();
}
}
 
 
/* Helper function for copy_cfg_body.  Move debug stmts from the end
/* Helper function for copy_cfg_body.  Move debug stmts from the end
   of NEW_BB to the beginning of successor basic blocks when needed.  If the
   of NEW_BB to the beginning of successor basic blocks when needed.  If the
   successor has multiple predecessors, reset them, otherwise keep
   successor has multiple predecessors, reset them, otherwise keep
   their value.  */
   their value.  */
 
 
static void
static void
maybe_move_debug_stmts_to_successors (copy_body_data *id, basic_block new_bb)
maybe_move_debug_stmts_to_successors (copy_body_data *id, basic_block new_bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  gimple_stmt_iterator si = gsi_last_nondebug_bb (new_bb);
  gimple_stmt_iterator si = gsi_last_nondebug_bb (new_bb);
 
 
  if (gsi_end_p (si)
  if (gsi_end_p (si)
      || gsi_one_before_end_p (si)
      || gsi_one_before_end_p (si)
      || !(stmt_can_throw_internal (gsi_stmt (si))
      || !(stmt_can_throw_internal (gsi_stmt (si))
           || stmt_can_make_abnormal_goto (gsi_stmt (si))))
           || stmt_can_make_abnormal_goto (gsi_stmt (si))))
    return;
    return;
 
 
  FOR_EACH_EDGE (e, ei, new_bb->succs)
  FOR_EACH_EDGE (e, ei, new_bb->succs)
    {
    {
      gimple_stmt_iterator ssi = gsi_last_bb (new_bb);
      gimple_stmt_iterator ssi = gsi_last_bb (new_bb);
      gimple_stmt_iterator dsi = gsi_after_labels (e->dest);
      gimple_stmt_iterator dsi = gsi_after_labels (e->dest);
      while (is_gimple_debug (gsi_stmt (ssi)))
      while (is_gimple_debug (gsi_stmt (ssi)))
        {
        {
          gimple stmt = gsi_stmt (ssi), new_stmt;
          gimple stmt = gsi_stmt (ssi), new_stmt;
          tree var;
          tree var;
          tree value;
          tree value;
 
 
          /* For the last edge move the debug stmts instead of copying
          /* For the last edge move the debug stmts instead of copying
             them.  */
             them.  */
          if (ei_one_before_end_p (ei))
          if (ei_one_before_end_p (ei))
            {
            {
              si = ssi;
              si = ssi;
              gsi_prev (&ssi);
              gsi_prev (&ssi);
              if (!single_pred_p (e->dest))
              if (!single_pred_p (e->dest))
                gimple_debug_bind_reset_value (stmt);
                gimple_debug_bind_reset_value (stmt);
              gsi_remove (&si, false);
              gsi_remove (&si, false);
              gsi_insert_before (&dsi, stmt, GSI_SAME_STMT);
              gsi_insert_before (&dsi, stmt, GSI_SAME_STMT);
              continue;
              continue;
            }
            }
 
 
          var = gimple_debug_bind_get_var (stmt);
          var = gimple_debug_bind_get_var (stmt);
          if (single_pred_p (e->dest))
          if (single_pred_p (e->dest))
            {
            {
              value = gimple_debug_bind_get_value (stmt);
              value = gimple_debug_bind_get_value (stmt);
              value = unshare_expr (value);
              value = unshare_expr (value);
            }
            }
          else
          else
            value = NULL_TREE;
            value = NULL_TREE;
          new_stmt = gimple_build_debug_bind (var, value, stmt);
          new_stmt = gimple_build_debug_bind (var, value, stmt);
          gsi_insert_before (&dsi, new_stmt, GSI_SAME_STMT);
          gsi_insert_before (&dsi, new_stmt, GSI_SAME_STMT);
          VEC_safe_push (gimple, heap, id->debug_stmts, new_stmt);
          VEC_safe_push (gimple, heap, id->debug_stmts, new_stmt);
          gsi_prev (&ssi);
          gsi_prev (&ssi);
        }
        }
    }
    }
}
}
 
 
/* Make a copy of the body of FN so that it can be inserted inline in
/* Make a copy of the body of FN so that it can be inserted inline in
   another function.  Walks FN via CFG, returns new fndecl.  */
   another function.  Walks FN via CFG, returns new fndecl.  */
 
 
static tree
static tree
copy_cfg_body (copy_body_data * id, gcov_type count, int frequency_scale,
copy_cfg_body (copy_body_data * id, gcov_type count, int frequency_scale,
               basic_block entry_block_map, basic_block exit_block_map)
               basic_block entry_block_map, basic_block exit_block_map)
{
{
  tree callee_fndecl = id->src_fn;
  tree callee_fndecl = id->src_fn;
  /* Original cfun for the callee, doesn't change.  */
  /* Original cfun for the callee, doesn't change.  */
  struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl);
  struct function *src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl);
  struct function *cfun_to_copy;
  struct function *cfun_to_copy;
  basic_block bb;
  basic_block bb;
  tree new_fndecl = NULL;
  tree new_fndecl = NULL;
  bool need_debug_cleanup = false;
  bool need_debug_cleanup = false;
  gcov_type count_scale;
  gcov_type count_scale;
  int last;
  int last;
 
 
  if (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count)
  if (ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count)
    count_scale = (REG_BR_PROB_BASE * count
    count_scale = (REG_BR_PROB_BASE * count
                   / ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count);
                   / ENTRY_BLOCK_PTR_FOR_FUNCTION (src_cfun)->count);
  else
  else
    count_scale = REG_BR_PROB_BASE;
    count_scale = REG_BR_PROB_BASE;
 
 
  /* Register specific tree functions.  */
  /* Register specific tree functions.  */
  gimple_register_cfg_hooks ();
  gimple_register_cfg_hooks ();
 
 
  /* Must have a CFG here at this point.  */
  /* Must have a CFG here at this point.  */
  gcc_assert (ENTRY_BLOCK_PTR_FOR_FUNCTION
  gcc_assert (ENTRY_BLOCK_PTR_FOR_FUNCTION
              (DECL_STRUCT_FUNCTION (callee_fndecl)));
              (DECL_STRUCT_FUNCTION (callee_fndecl)));
 
 
  cfun_to_copy = id->src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl);
  cfun_to_copy = id->src_cfun = DECL_STRUCT_FUNCTION (callee_fndecl);
 
 
  ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy)->aux = entry_block_map;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy)->aux = entry_block_map;
  EXIT_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy)->aux = exit_block_map;
  EXIT_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy)->aux = exit_block_map;
  entry_block_map->aux = ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy);
  entry_block_map->aux = ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy);
  exit_block_map->aux = EXIT_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy);
  exit_block_map->aux = EXIT_BLOCK_PTR_FOR_FUNCTION (cfun_to_copy);
 
 
  /* Duplicate any exception-handling regions.  */
  /* Duplicate any exception-handling regions.  */
  if (cfun->eh)
  if (cfun->eh)
    id->eh_map = duplicate_eh_regions (cfun_to_copy, NULL, id->eh_lp_nr,
    id->eh_map = duplicate_eh_regions (cfun_to_copy, NULL, id->eh_lp_nr,
                                       remap_decl_1, id);
                                       remap_decl_1, id);
 
 
  /* Use aux pointers to map the original blocks to copy.  */
  /* Use aux pointers to map the original blocks to copy.  */
  FOR_EACH_BB_FN (bb, cfun_to_copy)
  FOR_EACH_BB_FN (bb, cfun_to_copy)
    {
    {
      basic_block new_bb = copy_bb (id, bb, frequency_scale, count_scale);
      basic_block new_bb = copy_bb (id, bb, frequency_scale, count_scale);
      bb->aux = new_bb;
      bb->aux = new_bb;
      new_bb->aux = bb;
      new_bb->aux = bb;
    }
    }
 
 
  last = last_basic_block;
  last = last_basic_block;
 
 
  /* Now that we've duplicated the blocks, duplicate their edges.  */
  /* Now that we've duplicated the blocks, duplicate their edges.  */
  FOR_ALL_BB_FN (bb, cfun_to_copy)
  FOR_ALL_BB_FN (bb, cfun_to_copy)
    need_debug_cleanup |= copy_edges_for_bb (bb, count_scale, exit_block_map);
    need_debug_cleanup |= copy_edges_for_bb (bb, count_scale, exit_block_map);
 
 
  if (gimple_in_ssa_p (cfun))
  if (gimple_in_ssa_p (cfun))
    FOR_ALL_BB_FN (bb, cfun_to_copy)
    FOR_ALL_BB_FN (bb, cfun_to_copy)
      copy_phis_for_bb (bb, id);
      copy_phis_for_bb (bb, id);
 
 
  FOR_ALL_BB_FN (bb, cfun_to_copy)
  FOR_ALL_BB_FN (bb, cfun_to_copy)
    {
    {
      if (need_debug_cleanup
      if (need_debug_cleanup
          && bb->index != ENTRY_BLOCK
          && bb->index != ENTRY_BLOCK
          && bb->index != EXIT_BLOCK)
          && bb->index != EXIT_BLOCK)
        maybe_move_debug_stmts_to_successors (id, (basic_block) bb->aux);
        maybe_move_debug_stmts_to_successors (id, (basic_block) bb->aux);
      ((basic_block)bb->aux)->aux = NULL;
      ((basic_block)bb->aux)->aux = NULL;
      bb->aux = NULL;
      bb->aux = NULL;
    }
    }
 
 
  /* Zero out AUX fields of newly created block during EH edge
  /* Zero out AUX fields of newly created block during EH edge
     insertion. */
     insertion. */
  for (; last < last_basic_block; last++)
  for (; last < last_basic_block; last++)
    {
    {
      if (need_debug_cleanup)
      if (need_debug_cleanup)
        maybe_move_debug_stmts_to_successors (id, BASIC_BLOCK (last));
        maybe_move_debug_stmts_to_successors (id, BASIC_BLOCK (last));
      BASIC_BLOCK (last)->aux = NULL;
      BASIC_BLOCK (last)->aux = NULL;
    }
    }
  entry_block_map->aux = NULL;
  entry_block_map->aux = NULL;
  exit_block_map->aux = NULL;
  exit_block_map->aux = NULL;
 
 
  if (id->eh_map)
  if (id->eh_map)
    {
    {
      pointer_map_destroy (id->eh_map);
      pointer_map_destroy (id->eh_map);
      id->eh_map = NULL;
      id->eh_map = NULL;
    }
    }
 
 
  return new_fndecl;
  return new_fndecl;
}
}
 
 
/* Copy the debug STMT using ID.  We deal with these statements in a
/* Copy the debug STMT using ID.  We deal with these statements in a
   special way: if any variable in their VALUE expression wasn't
   special way: if any variable in their VALUE expression wasn't
   remapped yet, we won't remap it, because that would get decl uids
   remapped yet, we won't remap it, because that would get decl uids
   out of sync, causing codegen differences between -g and -g0.  If
   out of sync, causing codegen differences between -g and -g0.  If
   this arises, we drop the VALUE expression altogether.  */
   this arises, we drop the VALUE expression altogether.  */
 
 
static void
static void
copy_debug_stmt (gimple stmt, copy_body_data *id)
copy_debug_stmt (gimple stmt, copy_body_data *id)
{
{
  tree t, *n;
  tree t, *n;
  struct walk_stmt_info wi;
  struct walk_stmt_info wi;
 
 
  t = id->block;
  t = id->block;
  if (gimple_block (stmt))
  if (gimple_block (stmt))
    {
    {
      tree *n;
      tree *n;
      n = (tree *) pointer_map_contains (id->decl_map, gimple_block (stmt));
      n = (tree *) pointer_map_contains (id->decl_map, gimple_block (stmt));
      if (n)
      if (n)
        t = *n;
        t = *n;
    }
    }
  gimple_set_block (stmt, t);
  gimple_set_block (stmt, t);
 
 
  /* Remap all the operands in COPY.  */
  /* Remap all the operands in COPY.  */
  memset (&wi, 0, sizeof (wi));
  memset (&wi, 0, sizeof (wi));
  wi.info = id;
  wi.info = id;
 
 
  processing_debug_stmt = 1;
  processing_debug_stmt = 1;
 
 
  t = gimple_debug_bind_get_var (stmt);
  t = gimple_debug_bind_get_var (stmt);
 
 
  if (TREE_CODE (t) == PARM_DECL && id->debug_map
  if (TREE_CODE (t) == PARM_DECL && id->debug_map
      && (n = (tree *) pointer_map_contains (id->debug_map, t)))
      && (n = (tree *) pointer_map_contains (id->debug_map, t)))
    {
    {
      gcc_assert (TREE_CODE (*n) == VAR_DECL);
      gcc_assert (TREE_CODE (*n) == VAR_DECL);
      t = *n;
      t = *n;
    }
    }
  else if (TREE_CODE (t) == VAR_DECL
  else if (TREE_CODE (t) == VAR_DECL
           && !TREE_STATIC (t)
           && !TREE_STATIC (t)
           && gimple_in_ssa_p (cfun)
           && gimple_in_ssa_p (cfun)
           && !pointer_map_contains (id->decl_map, t)
           && !pointer_map_contains (id->decl_map, t)
           && !var_ann (t))
           && !var_ann (t))
    /* T is a non-localized variable.  */;
    /* T is a non-localized variable.  */;
  else
  else
    walk_tree (&t, remap_gimple_op_r, &wi, NULL);
    walk_tree (&t, remap_gimple_op_r, &wi, NULL);
 
 
  gimple_debug_bind_set_var (stmt, t);
  gimple_debug_bind_set_var (stmt, t);
 
 
  if (gimple_debug_bind_has_value_p (stmt))
  if (gimple_debug_bind_has_value_p (stmt))
    walk_tree (gimple_debug_bind_get_value_ptr (stmt),
    walk_tree (gimple_debug_bind_get_value_ptr (stmt),
               remap_gimple_op_r, &wi, NULL);
               remap_gimple_op_r, &wi, NULL);
 
 
  /* Punt if any decl couldn't be remapped.  */
  /* Punt if any decl couldn't be remapped.  */
  if (processing_debug_stmt < 0)
  if (processing_debug_stmt < 0)
    gimple_debug_bind_reset_value (stmt);
    gimple_debug_bind_reset_value (stmt);
 
 
  processing_debug_stmt = 0;
  processing_debug_stmt = 0;
 
 
  update_stmt (stmt);
  update_stmt (stmt);
  if (gimple_in_ssa_p (cfun))
  if (gimple_in_ssa_p (cfun))
    mark_symbols_for_renaming (stmt);
    mark_symbols_for_renaming (stmt);
}
}
 
 
/* Process deferred debug stmts.  In order to give values better odds
/* Process deferred debug stmts.  In order to give values better odds
   of being successfully remapped, we delay the processing of debug
   of being successfully remapped, we delay the processing of debug
   stmts until all other stmts that might require remapping are
   stmts until all other stmts that might require remapping are
   processed.  */
   processed.  */
 
 
static void
static void
copy_debug_stmts (copy_body_data *id)
copy_debug_stmts (copy_body_data *id)
{
{
  size_t i;
  size_t i;
  gimple stmt;
  gimple stmt;
 
 
  if (!id->debug_stmts)
  if (!id->debug_stmts)
    return;
    return;
 
 
  for (i = 0; VEC_iterate (gimple, id->debug_stmts, i, stmt); i++)
  for (i = 0; VEC_iterate (gimple, id->debug_stmts, i, stmt); i++)
    copy_debug_stmt (stmt, id);
    copy_debug_stmt (stmt, id);
 
 
  VEC_free (gimple, heap, id->debug_stmts);
  VEC_free (gimple, heap, id->debug_stmts);
}
}
 
 
/* Make a copy of the body of SRC_FN so that it can be inserted inline in
/* Make a copy of the body of SRC_FN so that it can be inserted inline in
   another function.  */
   another function.  */
 
 
static tree
static tree
copy_tree_body (copy_body_data *id)
copy_tree_body (copy_body_data *id)
{
{
  tree fndecl = id->src_fn;
  tree fndecl = id->src_fn;
  tree body = DECL_SAVED_TREE (fndecl);
  tree body = DECL_SAVED_TREE (fndecl);
 
 
  walk_tree (&body, copy_tree_body_r, id, NULL);
  walk_tree (&body, copy_tree_body_r, id, NULL);
 
 
  return body;
  return body;
}
}
 
 
/* Make a copy of the body of FN so that it can be inserted inline in
/* Make a copy of the body of FN so that it can be inserted inline in
   another function.  */
   another function.  */
 
 
static tree
static tree
copy_body (copy_body_data *id, gcov_type count, int frequency_scale,
copy_body (copy_body_data *id, gcov_type count, int frequency_scale,
           basic_block entry_block_map, basic_block exit_block_map)
           basic_block entry_block_map, basic_block exit_block_map)
{
{
  tree fndecl = id->src_fn;
  tree fndecl = id->src_fn;
  tree body;
  tree body;
 
 
  /* If this body has a CFG, walk CFG and copy.  */
  /* If this body has a CFG, walk CFG and copy.  */
  gcc_assert (ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (fndecl)));
  gcc_assert (ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (fndecl)));
  body = copy_cfg_body (id, count, frequency_scale, entry_block_map, exit_block_map);
  body = copy_cfg_body (id, count, frequency_scale, entry_block_map, exit_block_map);
  copy_debug_stmts (id);
  copy_debug_stmts (id);
 
 
  return body;
  return body;
}
}
 
 
/* Return true if VALUE is an ADDR_EXPR of an automatic variable
/* Return true if VALUE is an ADDR_EXPR of an automatic variable
   defined in function FN, or of a data member thereof.  */
   defined in function FN, or of a data member thereof.  */
 
 
static bool
static bool
self_inlining_addr_expr (tree value, tree fn)
self_inlining_addr_expr (tree value, tree fn)
{
{
  tree var;
  tree var;
 
 
  if (TREE_CODE (value) != ADDR_EXPR)
  if (TREE_CODE (value) != ADDR_EXPR)
    return false;
    return false;
 
 
  var = get_base_address (TREE_OPERAND (value, 0));
  var = get_base_address (TREE_OPERAND (value, 0));
 
 
  return var && auto_var_in_fn_p (var, fn);
  return var && auto_var_in_fn_p (var, fn);
}
}
 
 
/* Append to BB a debug annotation that binds VAR to VALUE, inheriting
/* Append to BB a debug annotation that binds VAR to VALUE, inheriting
   lexical block and line number information from base_stmt, if given,
   lexical block and line number information from base_stmt, if given,
   or from the last stmt of the block otherwise.  */
   or from the last stmt of the block otherwise.  */
 
 
static gimple
static gimple
insert_init_debug_bind (copy_body_data *id,
insert_init_debug_bind (copy_body_data *id,
                        basic_block bb, tree var, tree value,
                        basic_block bb, tree var, tree value,
                        gimple base_stmt)
                        gimple base_stmt)
{
{
  gimple note;
  gimple note;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  tree tracked_var;
  tree tracked_var;
 
 
  if (!gimple_in_ssa_p (id->src_cfun))
  if (!gimple_in_ssa_p (id->src_cfun))
    return NULL;
    return NULL;
 
 
  if (!MAY_HAVE_DEBUG_STMTS)
  if (!MAY_HAVE_DEBUG_STMTS)
    return NULL;
    return NULL;
 
 
  tracked_var = target_for_debug_bind (var);
  tracked_var = target_for_debug_bind (var);
  if (!tracked_var)
  if (!tracked_var)
    return NULL;
    return NULL;
 
 
  if (bb)
  if (bb)
    {
    {
      gsi = gsi_last_bb (bb);
      gsi = gsi_last_bb (bb);
      if (!base_stmt && !gsi_end_p (gsi))
      if (!base_stmt && !gsi_end_p (gsi))
        base_stmt = gsi_stmt (gsi);
        base_stmt = gsi_stmt (gsi);
    }
    }
 
 
  note = gimple_build_debug_bind (tracked_var, value, base_stmt);
  note = gimple_build_debug_bind (tracked_var, value, base_stmt);
 
 
  if (bb)
  if (bb)
    {
    {
      if (!gsi_end_p (gsi))
      if (!gsi_end_p (gsi))
        gsi_insert_after (&gsi, note, GSI_SAME_STMT);
        gsi_insert_after (&gsi, note, GSI_SAME_STMT);
      else
      else
        gsi_insert_before (&gsi, note, GSI_SAME_STMT);
        gsi_insert_before (&gsi, note, GSI_SAME_STMT);
    }
    }
 
 
  return note;
  return note;
}
}
 
 
static void
static void
insert_init_stmt (copy_body_data *id, basic_block bb, gimple init_stmt)
insert_init_stmt (copy_body_data *id, basic_block bb, gimple init_stmt)
{
{
  /* If VAR represents a zero-sized variable, it's possible that the
  /* If VAR represents a zero-sized variable, it's possible that the
     assignment statement may result in no gimple statements.  */
     assignment statement may result in no gimple statements.  */
  if (init_stmt)
  if (init_stmt)
    {
    {
      gimple_stmt_iterator si = gsi_last_bb (bb);
      gimple_stmt_iterator si = gsi_last_bb (bb);
 
 
      /* We can end up with init statements that store to a non-register
      /* We can end up with init statements that store to a non-register
         from a rhs with a conversion.  Handle that here by forcing the
         from a rhs with a conversion.  Handle that here by forcing the
         rhs into a temporary.  gimple_regimplify_operands is not
         rhs into a temporary.  gimple_regimplify_operands is not
         prepared to do this for us.  */
         prepared to do this for us.  */
      if (!is_gimple_debug (init_stmt)
      if (!is_gimple_debug (init_stmt)
          && !is_gimple_reg (gimple_assign_lhs (init_stmt))
          && !is_gimple_reg (gimple_assign_lhs (init_stmt))
          && is_gimple_reg_type (TREE_TYPE (gimple_assign_lhs (init_stmt)))
          && is_gimple_reg_type (TREE_TYPE (gimple_assign_lhs (init_stmt)))
          && gimple_assign_rhs_class (init_stmt) == GIMPLE_UNARY_RHS)
          && gimple_assign_rhs_class (init_stmt) == GIMPLE_UNARY_RHS)
        {
        {
          tree rhs = build1 (gimple_assign_rhs_code (init_stmt),
          tree rhs = build1 (gimple_assign_rhs_code (init_stmt),
                             gimple_expr_type (init_stmt),
                             gimple_expr_type (init_stmt),
                             gimple_assign_rhs1 (init_stmt));
                             gimple_assign_rhs1 (init_stmt));
          rhs = force_gimple_operand_gsi (&si, rhs, true, NULL_TREE, false,
          rhs = force_gimple_operand_gsi (&si, rhs, true, NULL_TREE, false,
                                          GSI_NEW_STMT);
                                          GSI_NEW_STMT);
          gimple_assign_set_rhs_code (init_stmt, TREE_CODE (rhs));
          gimple_assign_set_rhs_code (init_stmt, TREE_CODE (rhs));
          gimple_assign_set_rhs1 (init_stmt, rhs);
          gimple_assign_set_rhs1 (init_stmt, rhs);
        }
        }
      gsi_insert_after (&si, init_stmt, GSI_NEW_STMT);
      gsi_insert_after (&si, init_stmt, GSI_NEW_STMT);
      gimple_regimplify_operands (init_stmt, &si);
      gimple_regimplify_operands (init_stmt, &si);
      mark_symbols_for_renaming (init_stmt);
      mark_symbols_for_renaming (init_stmt);
 
 
      if (!is_gimple_debug (init_stmt) && MAY_HAVE_DEBUG_STMTS)
      if (!is_gimple_debug (init_stmt) && MAY_HAVE_DEBUG_STMTS)
        {
        {
          tree var, def = gimple_assign_lhs (init_stmt);
          tree var, def = gimple_assign_lhs (init_stmt);
 
 
          if (TREE_CODE (def) == SSA_NAME)
          if (TREE_CODE (def) == SSA_NAME)
            var = SSA_NAME_VAR (def);
            var = SSA_NAME_VAR (def);
          else
          else
            var = def;
            var = def;
 
 
          insert_init_debug_bind (id, bb, var, def, init_stmt);
          insert_init_debug_bind (id, bb, var, def, init_stmt);
        }
        }
    }
    }
}
}
 
 
/* Initialize parameter P with VALUE.  If needed, produce init statement
/* Initialize parameter P with VALUE.  If needed, produce init statement
   at the end of BB.  When BB is NULL, we return init statement to be
   at the end of BB.  When BB is NULL, we return init statement to be
   output later.  */
   output later.  */
static gimple
static gimple
setup_one_parameter (copy_body_data *id, tree p, tree value, tree fn,
setup_one_parameter (copy_body_data *id, tree p, tree value, tree fn,
                     basic_block bb, tree *vars)
                     basic_block bb, tree *vars)
{
{
  gimple init_stmt = NULL;
  gimple init_stmt = NULL;
  tree var;
  tree var;
  tree rhs = value;
  tree rhs = value;
  tree def = (gimple_in_ssa_p (cfun)
  tree def = (gimple_in_ssa_p (cfun)
              ? gimple_default_def (id->src_cfun, p) : NULL);
              ? gimple_default_def (id->src_cfun, p) : NULL);
 
 
  if (value
  if (value
      && value != error_mark_node
      && value != error_mark_node
      && !useless_type_conversion_p (TREE_TYPE (p), TREE_TYPE (value)))
      && !useless_type_conversion_p (TREE_TYPE (p), TREE_TYPE (value)))
    {
    {
      if (fold_convertible_p (TREE_TYPE (p), value))
      if (fold_convertible_p (TREE_TYPE (p), value))
        rhs = fold_build1 (NOP_EXPR, TREE_TYPE (p), value);
        rhs = fold_build1 (NOP_EXPR, TREE_TYPE (p), value);
      else
      else
        /* ???  For valid (GIMPLE) programs we should not end up here.
        /* ???  For valid (GIMPLE) programs we should not end up here.
           Still if something has gone wrong and we end up with truly
           Still if something has gone wrong and we end up with truly
           mismatched types here, fall back to using a VIEW_CONVERT_EXPR
           mismatched types here, fall back to using a VIEW_CONVERT_EXPR
           to not leak invalid GIMPLE to the following passes.  */
           to not leak invalid GIMPLE to the following passes.  */
        rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (p), value);
        rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (p), value);
    }
    }
 
 
  /* Make an equivalent VAR_DECL.  Note that we must NOT remap the type
  /* Make an equivalent VAR_DECL.  Note that we must NOT remap the type
     here since the type of this decl must be visible to the calling
     here since the type of this decl must be visible to the calling
     function.  */
     function.  */
  var = copy_decl_to_var (p, id);
  var = copy_decl_to_var (p, id);
 
 
  /* We're actually using the newly-created var.  */
  /* We're actually using the newly-created var.  */
  if (gimple_in_ssa_p (cfun) && TREE_CODE (var) == VAR_DECL)
  if (gimple_in_ssa_p (cfun) && TREE_CODE (var) == VAR_DECL)
    {
    {
      get_var_ann (var);
      get_var_ann (var);
      add_referenced_var (var);
      add_referenced_var (var);
    }
    }
 
 
  /* Declare this new variable.  */
  /* Declare this new variable.  */
  TREE_CHAIN (var) = *vars;
  TREE_CHAIN (var) = *vars;
  *vars = var;
  *vars = var;
 
 
  /* Make gimplifier happy about this variable.  */
  /* Make gimplifier happy about this variable.  */
  DECL_SEEN_IN_BIND_EXPR_P (var) = 1;
  DECL_SEEN_IN_BIND_EXPR_P (var) = 1;
 
 
  /* If the parameter is never assigned to, has no SSA_NAMEs created,
  /* If the parameter is never assigned to, has no SSA_NAMEs created,
     we would not need to create a new variable here at all, if it
     we would not need to create a new variable here at all, if it
     weren't for debug info.  Still, we can just use the argument
     weren't for debug info.  Still, we can just use the argument
     value.  */
     value.  */
  if (TREE_READONLY (p)
  if (TREE_READONLY (p)
      && !TREE_ADDRESSABLE (p)
      && !TREE_ADDRESSABLE (p)
      && value && !TREE_SIDE_EFFECTS (value)
      && value && !TREE_SIDE_EFFECTS (value)
      && !def)
      && !def)
    {
    {
      /* We may produce non-gimple trees by adding NOPs or introduce
      /* We may produce non-gimple trees by adding NOPs or introduce
         invalid sharing when operand is not really constant.
         invalid sharing when operand is not really constant.
         It is not big deal to prohibit constant propagation here as
         It is not big deal to prohibit constant propagation here as
         we will constant propagate in DOM1 pass anyway.  */
         we will constant propagate in DOM1 pass anyway.  */
      if (is_gimple_min_invariant (value)
      if (is_gimple_min_invariant (value)
          && useless_type_conversion_p (TREE_TYPE (p),
          && useless_type_conversion_p (TREE_TYPE (p),
                                                 TREE_TYPE (value))
                                                 TREE_TYPE (value))
          /* We have to be very careful about ADDR_EXPR.  Make sure
          /* We have to be very careful about ADDR_EXPR.  Make sure
             the base variable isn't a local variable of the inlined
             the base variable isn't a local variable of the inlined
             function, e.g., when doing recursive inlining, direct or
             function, e.g., when doing recursive inlining, direct or
             mutually-recursive or whatever, which is why we don't
             mutually-recursive or whatever, which is why we don't
             just test whether fn == current_function_decl.  */
             just test whether fn == current_function_decl.  */
          && ! self_inlining_addr_expr (value, fn))
          && ! self_inlining_addr_expr (value, fn))
        {
        {
          insert_decl_map (id, p, value);
          insert_decl_map (id, p, value);
          insert_debug_decl_map (id, p, var);
          insert_debug_decl_map (id, p, var);
          return insert_init_debug_bind (id, bb, var, value, NULL);
          return insert_init_debug_bind (id, bb, var, value, NULL);
        }
        }
    }
    }
 
 
  /* Register the VAR_DECL as the equivalent for the PARM_DECL;
  /* Register the VAR_DECL as the equivalent for the PARM_DECL;
     that way, when the PARM_DECL is encountered, it will be
     that way, when the PARM_DECL is encountered, it will be
     automatically replaced by the VAR_DECL.  */
     automatically replaced by the VAR_DECL.  */
  insert_decl_map (id, p, var);
  insert_decl_map (id, p, var);
 
 
  /* Even if P was TREE_READONLY, the new VAR should not be.
  /* Even if P was TREE_READONLY, the new VAR should not be.
     In the original code, we would have constructed a
     In the original code, we would have constructed a
     temporary, and then the function body would have never
     temporary, and then the function body would have never
     changed the value of P.  However, now, we will be
     changed the value of P.  However, now, we will be
     constructing VAR directly.  The constructor body may
     constructing VAR directly.  The constructor body may
     change its value multiple times as it is being
     change its value multiple times as it is being
     constructed.  Therefore, it must not be TREE_READONLY;
     constructed.  Therefore, it must not be TREE_READONLY;
     the back-end assumes that TREE_READONLY variable is
     the back-end assumes that TREE_READONLY variable is
     assigned to only once.  */
     assigned to only once.  */
  if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (p)))
  if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (p)))
    TREE_READONLY (var) = 0;
    TREE_READONLY (var) = 0;
 
 
  /* If there is no setup required and we are in SSA, take the easy route
  /* If there is no setup required and we are in SSA, take the easy route
     replacing all SSA names representing the function parameter by the
     replacing all SSA names representing the function parameter by the
     SSA name passed to function.
     SSA name passed to function.
 
 
     We need to construct map for the variable anyway as it might be used
     We need to construct map for the variable anyway as it might be used
     in different SSA names when parameter is set in function.
     in different SSA names when parameter is set in function.
 
 
     Do replacement at -O0 for const arguments replaced by constant.
     Do replacement at -O0 for const arguments replaced by constant.
     This is important for builtin_constant_p and other construct requiring
     This is important for builtin_constant_p and other construct requiring
     constant argument to be visible in inlined function body.  */
     constant argument to be visible in inlined function body.  */
  if (gimple_in_ssa_p (cfun) && rhs && def && is_gimple_reg (p)
  if (gimple_in_ssa_p (cfun) && rhs && def && is_gimple_reg (p)
      && (optimize
      && (optimize
          || (TREE_READONLY (p)
          || (TREE_READONLY (p)
              && is_gimple_min_invariant (rhs)))
              && is_gimple_min_invariant (rhs)))
      && (TREE_CODE (rhs) == SSA_NAME
      && (TREE_CODE (rhs) == SSA_NAME
          || is_gimple_min_invariant (rhs))
          || is_gimple_min_invariant (rhs))
      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
    {
    {
      insert_decl_map (id, def, rhs);
      insert_decl_map (id, def, rhs);
      return insert_init_debug_bind (id, bb, var, rhs, NULL);
      return insert_init_debug_bind (id, bb, var, rhs, NULL);
    }
    }
 
 
  /* If the value of argument is never used, don't care about initializing
  /* If the value of argument is never used, don't care about initializing
     it.  */
     it.  */
  if (optimize && gimple_in_ssa_p (cfun) && !def && is_gimple_reg (p))
  if (optimize && gimple_in_ssa_p (cfun) && !def && is_gimple_reg (p))
    {
    {
      gcc_assert (!value || !TREE_SIDE_EFFECTS (value));
      gcc_assert (!value || !TREE_SIDE_EFFECTS (value));
      return insert_init_debug_bind (id, bb, var, rhs, NULL);
      return insert_init_debug_bind (id, bb, var, rhs, NULL);
    }
    }
 
 
  /* Initialize this VAR_DECL from the equivalent argument.  Convert
  /* Initialize this VAR_DECL from the equivalent argument.  Convert
     the argument to the proper type in case it was promoted.  */
     the argument to the proper type in case it was promoted.  */
  if (value)
  if (value)
    {
    {
      if (rhs == error_mark_node)
      if (rhs == error_mark_node)
        {
        {
          insert_decl_map (id, p, var);
          insert_decl_map (id, p, var);
          return insert_init_debug_bind (id, bb, var, rhs, NULL);
          return insert_init_debug_bind (id, bb, var, rhs, NULL);
        }
        }
 
 
      STRIP_USELESS_TYPE_CONVERSION (rhs);
      STRIP_USELESS_TYPE_CONVERSION (rhs);
 
 
      /* We want to use MODIFY_EXPR, not INIT_EXPR here so that we
      /* We want to use MODIFY_EXPR, not INIT_EXPR here so that we
         keep our trees in gimple form.  */
         keep our trees in gimple form.  */
      if (def && gimple_in_ssa_p (cfun) && is_gimple_reg (p))
      if (def && gimple_in_ssa_p (cfun) && is_gimple_reg (p))
        {
        {
          def = remap_ssa_name (def, id);
          def = remap_ssa_name (def, id);
          init_stmt = gimple_build_assign (def, rhs);
          init_stmt = gimple_build_assign (def, rhs);
          SSA_NAME_IS_DEFAULT_DEF (def) = 0;
          SSA_NAME_IS_DEFAULT_DEF (def) = 0;
          set_default_def (var, NULL);
          set_default_def (var, NULL);
        }
        }
      else
      else
        init_stmt = gimple_build_assign (var, rhs);
        init_stmt = gimple_build_assign (var, rhs);
 
 
      if (bb && init_stmt)
      if (bb && init_stmt)
        insert_init_stmt (id, bb, init_stmt);
        insert_init_stmt (id, bb, init_stmt);
    }
    }
  return init_stmt;
  return init_stmt;
}
}
 
 
/* Generate code to initialize the parameters of the function at the
/* Generate code to initialize the parameters of the function at the
   top of the stack in ID from the GIMPLE_CALL STMT.  */
   top of the stack in ID from the GIMPLE_CALL STMT.  */
 
 
static void
static void
initialize_inlined_parameters (copy_body_data *id, gimple stmt,
initialize_inlined_parameters (copy_body_data *id, gimple stmt,
                               tree fn, basic_block bb)
                               tree fn, basic_block bb)
{
{
  tree parms;
  tree parms;
  size_t i;
  size_t i;
  tree p;
  tree p;
  tree vars = NULL_TREE;
  tree vars = NULL_TREE;
  tree static_chain = gimple_call_chain (stmt);
  tree static_chain = gimple_call_chain (stmt);
 
 
  /* Figure out what the parameters are.  */
  /* Figure out what the parameters are.  */
  parms = DECL_ARGUMENTS (fn);
  parms = DECL_ARGUMENTS (fn);
 
 
  /* Loop through the parameter declarations, replacing each with an
  /* Loop through the parameter declarations, replacing each with an
     equivalent VAR_DECL, appropriately initialized.  */
     equivalent VAR_DECL, appropriately initialized.  */
  for (p = parms, i = 0; p; p = TREE_CHAIN (p), i++)
  for (p = parms, i = 0; p; p = TREE_CHAIN (p), i++)
    {
    {
      tree val;
      tree val;
      val = i < gimple_call_num_args (stmt) ? gimple_call_arg (stmt, i) : NULL;
      val = i < gimple_call_num_args (stmt) ? gimple_call_arg (stmt, i) : NULL;
      setup_one_parameter (id, p, val, fn, bb, &vars);
      setup_one_parameter (id, p, val, fn, bb, &vars);
    }
    }
 
 
  /* Initialize the static chain.  */
  /* Initialize the static chain.  */
  p = DECL_STRUCT_FUNCTION (fn)->static_chain_decl;
  p = DECL_STRUCT_FUNCTION (fn)->static_chain_decl;
  gcc_assert (fn != current_function_decl);
  gcc_assert (fn != current_function_decl);
  if (p)
  if (p)
    {
    {
      /* No static chain?  Seems like a bug in tree-nested.c.  */
      /* No static chain?  Seems like a bug in tree-nested.c.  */
      gcc_assert (static_chain);
      gcc_assert (static_chain);
 
 
      setup_one_parameter (id, p, static_chain, fn, bb, &vars);
      setup_one_parameter (id, p, static_chain, fn, bb, &vars);
    }
    }
 
 
  declare_inline_vars (id->block, vars);
  declare_inline_vars (id->block, vars);
}
}
 
 
 
 
/* Declare a return variable to replace the RESULT_DECL for the
/* Declare a return variable to replace the RESULT_DECL for the
   function we are calling.  An appropriate DECL_STMT is returned.
   function we are calling.  An appropriate DECL_STMT is returned.
   The USE_STMT is filled to contain a use of the declaration to
   The USE_STMT is filled to contain a use of the declaration to
   indicate the return value of the function.
   indicate the return value of the function.
 
 
   RETURN_SLOT, if non-null is place where to store the result.  It
   RETURN_SLOT, if non-null is place where to store the result.  It
   is set only for CALL_EXPR_RETURN_SLOT_OPT.  MODIFY_DEST, if non-null,
   is set only for CALL_EXPR_RETURN_SLOT_OPT.  MODIFY_DEST, if non-null,
   was the LHS of the MODIFY_EXPR to which this call is the RHS.
   was the LHS of the MODIFY_EXPR to which this call is the RHS.
 
 
   The return value is a (possibly null) value that holds the result
   The return value is a (possibly null) value that holds the result
   as seen by the caller.  */
   as seen by the caller.  */
 
 
static tree
static tree
declare_return_variable (copy_body_data *id, tree return_slot, tree modify_dest)
declare_return_variable (copy_body_data *id, tree return_slot, tree modify_dest)
{
{
  tree callee = id->src_fn;
  tree callee = id->src_fn;
  tree caller = id->dst_fn;
  tree caller = id->dst_fn;
  tree result = DECL_RESULT (callee);
  tree result = DECL_RESULT (callee);
  tree callee_type = TREE_TYPE (result);
  tree callee_type = TREE_TYPE (result);
  tree caller_type;
  tree caller_type;
  tree var, use;
  tree var, use;
 
 
  /* Handle type-mismatches in the function declaration return type
  /* Handle type-mismatches in the function declaration return type
     vs. the call expression.  */
     vs. the call expression.  */
  if (modify_dest)
  if (modify_dest)
    caller_type = TREE_TYPE (modify_dest);
    caller_type = TREE_TYPE (modify_dest);
  else
  else
    caller_type = TREE_TYPE (TREE_TYPE (callee));
    caller_type = TREE_TYPE (TREE_TYPE (callee));
 
 
  /* We don't need to do anything for functions that don't return
  /* We don't need to do anything for functions that don't return
     anything.  */
     anything.  */
  if (!result || VOID_TYPE_P (callee_type))
  if (!result || VOID_TYPE_P (callee_type))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* If there was a return slot, then the return value is the
  /* If there was a return slot, then the return value is the
     dereferenced address of that object.  */
     dereferenced address of that object.  */
  if (return_slot)
  if (return_slot)
    {
    {
      /* The front end shouldn't have used both return_slot and
      /* The front end shouldn't have used both return_slot and
         a modify expression.  */
         a modify expression.  */
      gcc_assert (!modify_dest);
      gcc_assert (!modify_dest);
      if (DECL_BY_REFERENCE (result))
      if (DECL_BY_REFERENCE (result))
        {
        {
          tree return_slot_addr = build_fold_addr_expr (return_slot);
          tree return_slot_addr = build_fold_addr_expr (return_slot);
          STRIP_USELESS_TYPE_CONVERSION (return_slot_addr);
          STRIP_USELESS_TYPE_CONVERSION (return_slot_addr);
 
 
          /* We are going to construct *&return_slot and we can't do that
          /* We are going to construct *&return_slot and we can't do that
             for variables believed to be not addressable.
             for variables believed to be not addressable.
 
 
             FIXME: This check possibly can match, because values returned
             FIXME: This check possibly can match, because values returned
             via return slot optimization are not believed to have address
             via return slot optimization are not believed to have address
             taken by alias analysis.  */
             taken by alias analysis.  */
          gcc_assert (TREE_CODE (return_slot) != SSA_NAME);
          gcc_assert (TREE_CODE (return_slot) != SSA_NAME);
          if (gimple_in_ssa_p (cfun))
          if (gimple_in_ssa_p (cfun))
            {
            {
              HOST_WIDE_INT bitsize;
              HOST_WIDE_INT bitsize;
              HOST_WIDE_INT bitpos;
              HOST_WIDE_INT bitpos;
              tree offset;
              tree offset;
              enum machine_mode mode;
              enum machine_mode mode;
              int unsignedp;
              int unsignedp;
              int volatilep;
              int volatilep;
              tree base;
              tree base;
              base = get_inner_reference (return_slot, &bitsize, &bitpos,
              base = get_inner_reference (return_slot, &bitsize, &bitpos,
                                          &offset,
                                          &offset,
                                          &mode, &unsignedp, &volatilep,
                                          &mode, &unsignedp, &volatilep,
                                          false);
                                          false);
              if (TREE_CODE (base) == INDIRECT_REF)
              if (TREE_CODE (base) == INDIRECT_REF)
                base = TREE_OPERAND (base, 0);
                base = TREE_OPERAND (base, 0);
              if (TREE_CODE (base) == SSA_NAME)
              if (TREE_CODE (base) == SSA_NAME)
                base = SSA_NAME_VAR (base);
                base = SSA_NAME_VAR (base);
              mark_sym_for_renaming (base);
              mark_sym_for_renaming (base);
            }
            }
          var = return_slot_addr;
          var = return_slot_addr;
        }
        }
      else
      else
        {
        {
          var = return_slot;
          var = return_slot;
          gcc_assert (TREE_CODE (var) != SSA_NAME);
          gcc_assert (TREE_CODE (var) != SSA_NAME);
          TREE_ADDRESSABLE (var) |= TREE_ADDRESSABLE (result);
          TREE_ADDRESSABLE (var) |= TREE_ADDRESSABLE (result);
        }
        }
      if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE
      if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE
           || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE)
           || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE)
          && !DECL_GIMPLE_REG_P (result)
          && !DECL_GIMPLE_REG_P (result)
          && DECL_P (var))
          && DECL_P (var))
        DECL_GIMPLE_REG_P (var) = 0;
        DECL_GIMPLE_REG_P (var) = 0;
      use = NULL;
      use = NULL;
      goto done;
      goto done;
    }
    }
 
 
  /* All types requiring non-trivial constructors should have been handled.  */
  /* All types requiring non-trivial constructors should have been handled.  */
  gcc_assert (!TREE_ADDRESSABLE (callee_type));
  gcc_assert (!TREE_ADDRESSABLE (callee_type));
 
 
  /* Attempt to avoid creating a new temporary variable.  */
  /* Attempt to avoid creating a new temporary variable.  */
  if (modify_dest
  if (modify_dest
      && TREE_CODE (modify_dest) != SSA_NAME)
      && TREE_CODE (modify_dest) != SSA_NAME)
    {
    {
      bool use_it = false;
      bool use_it = false;
 
 
      /* We can't use MODIFY_DEST if there's type promotion involved.  */
      /* We can't use MODIFY_DEST if there's type promotion involved.  */
      if (!useless_type_conversion_p (callee_type, caller_type))
      if (!useless_type_conversion_p (callee_type, caller_type))
        use_it = false;
        use_it = false;
 
 
      /* ??? If we're assigning to a variable sized type, then we must
      /* ??? If we're assigning to a variable sized type, then we must
         reuse the destination variable, because we've no good way to
         reuse the destination variable, because we've no good way to
         create variable sized temporaries at this point.  */
         create variable sized temporaries at this point.  */
      else if (TREE_CODE (TYPE_SIZE_UNIT (caller_type)) != INTEGER_CST)
      else if (TREE_CODE (TYPE_SIZE_UNIT (caller_type)) != INTEGER_CST)
        use_it = true;
        use_it = true;
 
 
      /* If the callee cannot possibly modify MODIFY_DEST, then we can
      /* If the callee cannot possibly modify MODIFY_DEST, then we can
         reuse it as the result of the call directly.  Don't do this if
         reuse it as the result of the call directly.  Don't do this if
         it would promote MODIFY_DEST to addressable.  */
         it would promote MODIFY_DEST to addressable.  */
      else if (TREE_ADDRESSABLE (result))
      else if (TREE_ADDRESSABLE (result))
        use_it = false;
        use_it = false;
      else
      else
        {
        {
          tree base_m = get_base_address (modify_dest);
          tree base_m = get_base_address (modify_dest);
 
 
          /* If the base isn't a decl, then it's a pointer, and we don't
          /* If the base isn't a decl, then it's a pointer, and we don't
             know where that's going to go.  */
             know where that's going to go.  */
          if (!DECL_P (base_m))
          if (!DECL_P (base_m))
            use_it = false;
            use_it = false;
          else if (is_global_var (base_m))
          else if (is_global_var (base_m))
            use_it = false;
            use_it = false;
          else if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE
          else if ((TREE_CODE (TREE_TYPE (result)) == COMPLEX_TYPE
                    || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE)
                    || TREE_CODE (TREE_TYPE (result)) == VECTOR_TYPE)
                   && !DECL_GIMPLE_REG_P (result)
                   && !DECL_GIMPLE_REG_P (result)
                   && DECL_GIMPLE_REG_P (base_m))
                   && DECL_GIMPLE_REG_P (base_m))
            use_it = false;
            use_it = false;
          else if (!TREE_ADDRESSABLE (base_m))
          else if (!TREE_ADDRESSABLE (base_m))
            use_it = true;
            use_it = true;
        }
        }
 
 
      if (use_it)
      if (use_it)
        {
        {
          var = modify_dest;
          var = modify_dest;
          use = NULL;
          use = NULL;
          goto done;
          goto done;
        }
        }
    }
    }
 
 
  gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (callee_type)) == INTEGER_CST);
  gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (callee_type)) == INTEGER_CST);
 
 
  var = copy_result_decl_to_var (result, id);
  var = copy_result_decl_to_var (result, id);
  if (gimple_in_ssa_p (cfun))
  if (gimple_in_ssa_p (cfun))
    {
    {
      get_var_ann (var);
      get_var_ann (var);
      add_referenced_var (var);
      add_referenced_var (var);
    }
    }
 
 
  DECL_SEEN_IN_BIND_EXPR_P (var) = 1;
  DECL_SEEN_IN_BIND_EXPR_P (var) = 1;
  DECL_STRUCT_FUNCTION (caller)->local_decls
  DECL_STRUCT_FUNCTION (caller)->local_decls
    = tree_cons (NULL_TREE, var,
    = tree_cons (NULL_TREE, var,
                 DECL_STRUCT_FUNCTION (caller)->local_decls);
                 DECL_STRUCT_FUNCTION (caller)->local_decls);
 
 
  /* Do not have the rest of GCC warn about this variable as it should
  /* Do not have the rest of GCC warn about this variable as it should
     not be visible to the user.  */
     not be visible to the user.  */
  TREE_NO_WARNING (var) = 1;
  TREE_NO_WARNING (var) = 1;
 
 
  declare_inline_vars (id->block, var);
  declare_inline_vars (id->block, var);
 
 
  /* Build the use expr.  If the return type of the function was
  /* Build the use expr.  If the return type of the function was
     promoted, convert it back to the expected type.  */
     promoted, convert it back to the expected type.  */
  use = var;
  use = var;
  if (!useless_type_conversion_p (caller_type, TREE_TYPE (var)))
  if (!useless_type_conversion_p (caller_type, TREE_TYPE (var)))
    use = fold_convert (caller_type, var);
    use = fold_convert (caller_type, var);
 
 
  STRIP_USELESS_TYPE_CONVERSION (use);
  STRIP_USELESS_TYPE_CONVERSION (use);
 
 
  if (DECL_BY_REFERENCE (result))
  if (DECL_BY_REFERENCE (result))
    {
    {
      TREE_ADDRESSABLE (var) = 1;
      TREE_ADDRESSABLE (var) = 1;
      var = build_fold_addr_expr (var);
      var = build_fold_addr_expr (var);
    }
    }
 
 
 done:
 done:
  /* Register the VAR_DECL as the equivalent for the RESULT_DECL; that
  /* Register the VAR_DECL as the equivalent for the RESULT_DECL; that
     way, when the RESULT_DECL is encountered, it will be
     way, when the RESULT_DECL is encountered, it will be
     automatically replaced by the VAR_DECL.  */
     automatically replaced by the VAR_DECL.  */
  insert_decl_map (id, result, var);
  insert_decl_map (id, result, var);
 
 
  /* Remember this so we can ignore it in remap_decls.  */
  /* Remember this so we can ignore it in remap_decls.  */
  id->retvar = var;
  id->retvar = var;
 
 
  return use;
  return use;
}
}
 
 
/* Callback through walk_tree.  Determine if a DECL_INITIAL makes reference
/* Callback through walk_tree.  Determine if a DECL_INITIAL makes reference
   to a local label.  */
   to a local label.  */
 
 
static tree
static tree
has_label_address_in_static_1 (tree *nodep, int *walk_subtrees, void *fnp)
has_label_address_in_static_1 (tree *nodep, int *walk_subtrees, void *fnp)
{
{
  tree node = *nodep;
  tree node = *nodep;
  tree fn = (tree) fnp;
  tree fn = (tree) fnp;
 
 
  if (TREE_CODE (node) == LABEL_DECL && DECL_CONTEXT (node) == fn)
  if (TREE_CODE (node) == LABEL_DECL && DECL_CONTEXT (node) == fn)
    return node;
    return node;
 
 
  if (TYPE_P (node))
  if (TYPE_P (node))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Determine if the function can be copied.  If so return NULL.  If
/* Determine if the function can be copied.  If so return NULL.  If
   not return a string describng the reason for failure.  */
   not return a string describng the reason for failure.  */
 
 
static const char *
static const char *
copy_forbidden (struct function *fun, tree fndecl)
copy_forbidden (struct function *fun, tree fndecl)
{
{
  const char *reason = fun->cannot_be_copied_reason;
  const char *reason = fun->cannot_be_copied_reason;
  tree step;
  tree step;
 
 
  /* Only examine the function once.  */
  /* Only examine the function once.  */
  if (fun->cannot_be_copied_set)
  if (fun->cannot_be_copied_set)
    return reason;
    return reason;
 
 
  /* We cannot copy a function that receives a non-local goto
  /* We cannot copy a function that receives a non-local goto
     because we cannot remap the destination label used in the
     because we cannot remap the destination label used in the
     function that is performing the non-local goto.  */
     function that is performing the non-local goto.  */
  /* ??? Actually, this should be possible, if we work at it.
  /* ??? Actually, this should be possible, if we work at it.
     No doubt there's just a handful of places that simply
     No doubt there's just a handful of places that simply
     assume it doesn't happen and don't substitute properly.  */
     assume it doesn't happen and don't substitute properly.  */
  if (fun->has_nonlocal_label)
  if (fun->has_nonlocal_label)
    {
    {
      reason = G_("function %q+F can never be copied "
      reason = G_("function %q+F can never be copied "
                  "because it receives a non-local goto");
                  "because it receives a non-local goto");
      goto fail;
      goto fail;
    }
    }
 
 
  for (step = fun->local_decls; step; step = TREE_CHAIN (step))
  for (step = fun->local_decls; step; step = TREE_CHAIN (step))
    {
    {
      tree decl = TREE_VALUE (step);
      tree decl = TREE_VALUE (step);
 
 
      if (TREE_CODE (decl) == VAR_DECL
      if (TREE_CODE (decl) == VAR_DECL
          && TREE_STATIC (decl)
          && TREE_STATIC (decl)
          && !DECL_EXTERNAL (decl)
          && !DECL_EXTERNAL (decl)
          && DECL_INITIAL (decl)
          && DECL_INITIAL (decl)
          && walk_tree_without_duplicates (&DECL_INITIAL (decl),
          && walk_tree_without_duplicates (&DECL_INITIAL (decl),
                                           has_label_address_in_static_1,
                                           has_label_address_in_static_1,
                                           fndecl))
                                           fndecl))
        {
        {
          reason = G_("function %q+F can never be copied because it saves "
          reason = G_("function %q+F can never be copied because it saves "
                      "address of local label in a static variable");
                      "address of local label in a static variable");
          goto fail;
          goto fail;
        }
        }
    }
    }
 
 
 fail:
 fail:
  fun->cannot_be_copied_reason = reason;
  fun->cannot_be_copied_reason = reason;
  fun->cannot_be_copied_set = true;
  fun->cannot_be_copied_set = true;
  return reason;
  return reason;
}
}
 
 
 
 
static const char *inline_forbidden_reason;
static const char *inline_forbidden_reason;
 
 
/* A callback for walk_gimple_seq to handle statements.  Returns non-null
/* A callback for walk_gimple_seq to handle statements.  Returns non-null
   iff a function can not be inlined.  Also sets the reason why. */
   iff a function can not be inlined.  Also sets the reason why. */
 
 
static tree
static tree
inline_forbidden_p_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
inline_forbidden_p_stmt (gimple_stmt_iterator *gsi, bool *handled_ops_p,
                         struct walk_stmt_info *wip)
                         struct walk_stmt_info *wip)
{
{
  tree fn = (tree) wip->info;
  tree fn = (tree) wip->info;
  tree t;
  tree t;
  gimple stmt = gsi_stmt (*gsi);
  gimple stmt = gsi_stmt (*gsi);
 
 
  switch (gimple_code (stmt))
  switch (gimple_code (stmt))
    {
    {
    case GIMPLE_CALL:
    case GIMPLE_CALL:
      /* Refuse to inline alloca call unless user explicitly forced so as
      /* Refuse to inline alloca call unless user explicitly forced so as
         this may change program's memory overhead drastically when the
         this may change program's memory overhead drastically when the
         function using alloca is called in loop.  In GCC present in
         function using alloca is called in loop.  In GCC present in
         SPEC2000 inlining into schedule_block cause it to require 2GB of
         SPEC2000 inlining into schedule_block cause it to require 2GB of
         RAM instead of 256MB.  */
         RAM instead of 256MB.  */
      if (gimple_alloca_call_p (stmt)
      if (gimple_alloca_call_p (stmt)
          && !lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)))
          && !lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)))
        {
        {
          inline_forbidden_reason
          inline_forbidden_reason
            = G_("function %q+F can never be inlined because it uses "
            = G_("function %q+F can never be inlined because it uses "
                 "alloca (override using the always_inline attribute)");
                 "alloca (override using the always_inline attribute)");
          *handled_ops_p = true;
          *handled_ops_p = true;
          return fn;
          return fn;
        }
        }
 
 
      t = gimple_call_fndecl (stmt);
      t = gimple_call_fndecl (stmt);
      if (t == NULL_TREE)
      if (t == NULL_TREE)
        break;
        break;
 
 
      /* We cannot inline functions that call setjmp.  */
      /* We cannot inline functions that call setjmp.  */
      if (setjmp_call_p (t))
      if (setjmp_call_p (t))
        {
        {
          inline_forbidden_reason
          inline_forbidden_reason
            = G_("function %q+F can never be inlined because it uses setjmp");
            = G_("function %q+F can never be inlined because it uses setjmp");
          *handled_ops_p = true;
          *handled_ops_p = true;
          return t;
          return t;
        }
        }
 
 
      if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
      if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
        switch (DECL_FUNCTION_CODE (t))
        switch (DECL_FUNCTION_CODE (t))
          {
          {
            /* We cannot inline functions that take a variable number of
            /* We cannot inline functions that take a variable number of
               arguments.  */
               arguments.  */
          case BUILT_IN_VA_START:
          case BUILT_IN_VA_START:
          case BUILT_IN_NEXT_ARG:
          case BUILT_IN_NEXT_ARG:
          case BUILT_IN_VA_END:
          case BUILT_IN_VA_END:
            inline_forbidden_reason
            inline_forbidden_reason
              = G_("function %q+F can never be inlined because it "
              = G_("function %q+F can never be inlined because it "
                   "uses variable argument lists");
                   "uses variable argument lists");
            *handled_ops_p = true;
            *handled_ops_p = true;
            return t;
            return t;
 
 
          case BUILT_IN_LONGJMP:
          case BUILT_IN_LONGJMP:
            /* We can't inline functions that call __builtin_longjmp at
            /* We can't inline functions that call __builtin_longjmp at
               all.  The non-local goto machinery really requires the
               all.  The non-local goto machinery really requires the
               destination be in a different function.  If we allow the
               destination be in a different function.  If we allow the
               function calling __builtin_longjmp to be inlined into the
               function calling __builtin_longjmp to be inlined into the
               function calling __builtin_setjmp, Things will Go Awry.  */
               function calling __builtin_setjmp, Things will Go Awry.  */
            inline_forbidden_reason
            inline_forbidden_reason
              = G_("function %q+F can never be inlined because "
              = G_("function %q+F can never be inlined because "
                   "it uses setjmp-longjmp exception handling");
                   "it uses setjmp-longjmp exception handling");
            *handled_ops_p = true;
            *handled_ops_p = true;
            return t;
            return t;
 
 
          case BUILT_IN_NONLOCAL_GOTO:
          case BUILT_IN_NONLOCAL_GOTO:
            /* Similarly.  */
            /* Similarly.  */
            inline_forbidden_reason
            inline_forbidden_reason
              = G_("function %q+F can never be inlined because "
              = G_("function %q+F can never be inlined because "
                   "it uses non-local goto");
                   "it uses non-local goto");
            *handled_ops_p = true;
            *handled_ops_p = true;
            return t;
            return t;
 
 
          case BUILT_IN_RETURN:
          case BUILT_IN_RETURN:
          case BUILT_IN_APPLY_ARGS:
          case BUILT_IN_APPLY_ARGS:
            /* If a __builtin_apply_args caller would be inlined,
            /* If a __builtin_apply_args caller would be inlined,
               it would be saving arguments of the function it has
               it would be saving arguments of the function it has
               been inlined into.  Similarly __builtin_return would
               been inlined into.  Similarly __builtin_return would
               return from the function the inline has been inlined into.  */
               return from the function the inline has been inlined into.  */
            inline_forbidden_reason
            inline_forbidden_reason
              = G_("function %q+F can never be inlined because "
              = G_("function %q+F can never be inlined because "
                   "it uses __builtin_return or __builtin_apply_args");
                   "it uses __builtin_return or __builtin_apply_args");
            *handled_ops_p = true;
            *handled_ops_p = true;
            return t;
            return t;
 
 
          default:
          default:
            break;
            break;
          }
          }
      break;
      break;
 
 
    case GIMPLE_GOTO:
    case GIMPLE_GOTO:
      t = gimple_goto_dest (stmt);
      t = gimple_goto_dest (stmt);
 
 
      /* We will not inline a function which uses computed goto.  The
      /* We will not inline a function which uses computed goto.  The
         addresses of its local labels, which may be tucked into
         addresses of its local labels, which may be tucked into
         global storage, are of course not constant across
         global storage, are of course not constant across
         instantiations, which causes unexpected behavior.  */
         instantiations, which causes unexpected behavior.  */
      if (TREE_CODE (t) != LABEL_DECL)
      if (TREE_CODE (t) != LABEL_DECL)
        {
        {
          inline_forbidden_reason
          inline_forbidden_reason
            = G_("function %q+F can never be inlined "
            = G_("function %q+F can never be inlined "
                 "because it contains a computed goto");
                 "because it contains a computed goto");
          *handled_ops_p = true;
          *handled_ops_p = true;
          return t;
          return t;
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  *handled_ops_p = false;
  *handled_ops_p = false;
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Return true if FNDECL is a function that cannot be inlined into
/* Return true if FNDECL is a function that cannot be inlined into
   another one.  */
   another one.  */
 
 
static bool
static bool
inline_forbidden_p (tree fndecl)
inline_forbidden_p (tree fndecl)
{
{
  struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
  struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
  struct walk_stmt_info wi;
  struct walk_stmt_info wi;
  struct pointer_set_t *visited_nodes;
  struct pointer_set_t *visited_nodes;
  basic_block bb;
  basic_block bb;
  bool forbidden_p = false;
  bool forbidden_p = false;
 
 
  /* First check for shared reasons not to copy the code.  */
  /* First check for shared reasons not to copy the code.  */
  inline_forbidden_reason = copy_forbidden (fun, fndecl);
  inline_forbidden_reason = copy_forbidden (fun, fndecl);
  if (inline_forbidden_reason != NULL)
  if (inline_forbidden_reason != NULL)
    return true;
    return true;
 
 
  /* Next, walk the statements of the function looking for
  /* Next, walk the statements of the function looking for
     constraucts we can't handle, or are non-optimal for inlining.  */
     constraucts we can't handle, or are non-optimal for inlining.  */
  visited_nodes = pointer_set_create ();
  visited_nodes = pointer_set_create ();
  memset (&wi, 0, sizeof (wi));
  memset (&wi, 0, sizeof (wi));
  wi.info = (void *) fndecl;
  wi.info = (void *) fndecl;
  wi.pset = visited_nodes;
  wi.pset = visited_nodes;
 
 
  FOR_EACH_BB_FN (bb, fun)
  FOR_EACH_BB_FN (bb, fun)
    {
    {
      gimple ret;
      gimple ret;
      gimple_seq seq = bb_seq (bb);
      gimple_seq seq = bb_seq (bb);
      ret = walk_gimple_seq (seq, inline_forbidden_p_stmt, NULL, &wi);
      ret = walk_gimple_seq (seq, inline_forbidden_p_stmt, NULL, &wi);
      forbidden_p = (ret != NULL);
      forbidden_p = (ret != NULL);
      if (forbidden_p)
      if (forbidden_p)
        break;
        break;
    }
    }
 
 
  pointer_set_destroy (visited_nodes);
  pointer_set_destroy (visited_nodes);
  return forbidden_p;
  return forbidden_p;
}
}
 
 
/* Returns nonzero if FN is a function that does not have any
/* Returns nonzero if FN is a function that does not have any
   fundamental inline blocking properties.  */
   fundamental inline blocking properties.  */
 
 
bool
bool
tree_inlinable_function_p (tree fn)
tree_inlinable_function_p (tree fn)
{
{
  bool inlinable = true;
  bool inlinable = true;
  bool do_warning;
  bool do_warning;
  tree always_inline;
  tree always_inline;
 
 
  /* If we've already decided this function shouldn't be inlined,
  /* If we've already decided this function shouldn't be inlined,
     there's no need to check again.  */
     there's no need to check again.  */
  if (DECL_UNINLINABLE (fn))
  if (DECL_UNINLINABLE (fn))
    return false;
    return false;
 
 
  /* We only warn for functions declared `inline' by the user.  */
  /* We only warn for functions declared `inline' by the user.  */
  do_warning = (warn_inline
  do_warning = (warn_inline
                && DECL_DECLARED_INLINE_P (fn)
                && DECL_DECLARED_INLINE_P (fn)
                && !DECL_NO_INLINE_WARNING_P (fn)
                && !DECL_NO_INLINE_WARNING_P (fn)
                && !DECL_IN_SYSTEM_HEADER (fn));
                && !DECL_IN_SYSTEM_HEADER (fn));
 
 
  always_inline = lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn));
  always_inline = lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn));
 
 
  if (flag_no_inline
  if (flag_no_inline
      && always_inline == NULL)
      && always_inline == NULL)
    {
    {
      if (do_warning)
      if (do_warning)
        warning (OPT_Winline, "function %q+F can never be inlined because it "
        warning (OPT_Winline, "function %q+F can never be inlined because it "
                 "is suppressed using -fno-inline", fn);
                 "is suppressed using -fno-inline", fn);
      inlinable = false;
      inlinable = false;
    }
    }
 
 
  /* Don't auto-inline anything that might not be bound within
  /* Don't auto-inline anything that might not be bound within
     this unit of translation.  */
     this unit of translation.  */
  else if (!DECL_DECLARED_INLINE_P (fn)
  else if (!DECL_DECLARED_INLINE_P (fn)
           && DECL_REPLACEABLE_P (fn))
           && DECL_REPLACEABLE_P (fn))
    inlinable = false;
    inlinable = false;
 
 
  else if (!function_attribute_inlinable_p (fn))
  else if (!function_attribute_inlinable_p (fn))
    {
    {
      if (do_warning)
      if (do_warning)
        warning (OPT_Winline, "function %q+F can never be inlined because it "
        warning (OPT_Winline, "function %q+F can never be inlined because it "
                 "uses attributes conflicting with inlining", fn);
                 "uses attributes conflicting with inlining", fn);
      inlinable = false;
      inlinable = false;
    }
    }
 
 
  else if (inline_forbidden_p (fn))
  else if (inline_forbidden_p (fn))
    {
    {
      /* See if we should warn about uninlinable functions.  Previously,
      /* See if we should warn about uninlinable functions.  Previously,
         some of these warnings would be issued while trying to expand
         some of these warnings would be issued while trying to expand
         the function inline, but that would cause multiple warnings
         the function inline, but that would cause multiple warnings
         about functions that would for example call alloca.  But since
         about functions that would for example call alloca.  But since
         this a property of the function, just one warning is enough.
         this a property of the function, just one warning is enough.
         As a bonus we can now give more details about the reason why a
         As a bonus we can now give more details about the reason why a
         function is not inlinable.  */
         function is not inlinable.  */
      if (always_inline)
      if (always_inline)
        sorry (inline_forbidden_reason, fn);
        sorry (inline_forbidden_reason, fn);
      else if (do_warning)
      else if (do_warning)
        warning (OPT_Winline, inline_forbidden_reason, fn);
        warning (OPT_Winline, inline_forbidden_reason, fn);
 
 
      inlinable = false;
      inlinable = false;
    }
    }
 
 
  /* Squirrel away the result so that we don't have to check again.  */
  /* Squirrel away the result so that we don't have to check again.  */
  DECL_UNINLINABLE (fn) = !inlinable;
  DECL_UNINLINABLE (fn) = !inlinable;
 
 
  return inlinable;
  return inlinable;
}
}
 
 
/* Estimate the cost of a memory move.  Use machine dependent
/* Estimate the cost of a memory move.  Use machine dependent
   word size and take possible memcpy call into account.  */
   word size and take possible memcpy call into account.  */
 
 
int
int
estimate_move_cost (tree type)
estimate_move_cost (tree type)
{
{
  HOST_WIDE_INT size;
  HOST_WIDE_INT size;
 
 
  gcc_assert (!VOID_TYPE_P (type));
  gcc_assert (!VOID_TYPE_P (type));
 
 
  size = int_size_in_bytes (type);
  size = int_size_in_bytes (type);
 
 
  if (size < 0 || size > MOVE_MAX_PIECES * MOVE_RATIO (!optimize_size))
  if (size < 0 || size > MOVE_MAX_PIECES * MOVE_RATIO (!optimize_size))
    /* Cost of a memcpy call, 3 arguments and the call.  */
    /* Cost of a memcpy call, 3 arguments and the call.  */
    return 4;
    return 4;
  else
  else
    return ((size + MOVE_MAX_PIECES - 1) / MOVE_MAX_PIECES);
    return ((size + MOVE_MAX_PIECES - 1) / MOVE_MAX_PIECES);
}
}
 
 
/* Returns cost of operation CODE, according to WEIGHTS  */
/* Returns cost of operation CODE, according to WEIGHTS  */
 
 
static int
static int
estimate_operator_cost (enum tree_code code, eni_weights *weights,
estimate_operator_cost (enum tree_code code, eni_weights *weights,
                        tree op1 ATTRIBUTE_UNUSED, tree op2)
                        tree op1 ATTRIBUTE_UNUSED, tree op2)
{
{
  switch (code)
  switch (code)
    {
    {
    /* These are "free" conversions, or their presumed cost
    /* These are "free" conversions, or their presumed cost
       is folded into other operations.  */
       is folded into other operations.  */
    case RANGE_EXPR:
    case RANGE_EXPR:
    CASE_CONVERT:
    CASE_CONVERT:
    case COMPLEX_EXPR:
    case COMPLEX_EXPR:
    case PAREN_EXPR:
    case PAREN_EXPR:
      return 0;
      return 0;
 
 
    /* Assign cost of 1 to usual operations.
    /* Assign cost of 1 to usual operations.
       ??? We may consider mapping RTL costs to this.  */
       ??? We may consider mapping RTL costs to this.  */
    case COND_EXPR:
    case COND_EXPR:
    case VEC_COND_EXPR:
    case VEC_COND_EXPR:
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case MULT_EXPR:
 
 
    case ADDR_SPACE_CONVERT_EXPR:
    case ADDR_SPACE_CONVERT_EXPR:
    case FIXED_CONVERT_EXPR:
    case FIXED_CONVERT_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_TRUNC_EXPR:
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
    case FLOAT_EXPR:
    case FLOAT_EXPR:
    case MIN_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case MAX_EXPR:
    case ABS_EXPR:
    case ABS_EXPR:
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case RROTATE_EXPR:
    case VEC_LSHIFT_EXPR:
    case VEC_LSHIFT_EXPR:
    case VEC_RSHIFT_EXPR:
    case VEC_RSHIFT_EXPR:
 
 
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
 
 
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case TRUTH_XOR_EXPR:
    case TRUTH_NOT_EXPR:
    case TRUTH_NOT_EXPR:
 
 
    case LT_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case NE_EXPR:
    case ORDERED_EXPR:
    case ORDERED_EXPR:
    case UNORDERED_EXPR:
    case UNORDERED_EXPR:
 
 
    case UNLT_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
    case LTGT_EXPR:
 
 
    case CONJ_EXPR:
    case CONJ_EXPR:
 
 
    case PREDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
 
 
    case REALIGN_LOAD_EXPR:
    case REALIGN_LOAD_EXPR:
 
 
    case REDUC_MAX_EXPR:
    case REDUC_MAX_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_PLUS_EXPR:
    case REDUC_PLUS_EXPR:
    case WIDEN_SUM_EXPR:
    case WIDEN_SUM_EXPR:
    case WIDEN_MULT_EXPR:
    case WIDEN_MULT_EXPR:
    case DOT_PROD_EXPR:
    case DOT_PROD_EXPR:
 
 
    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_UNPACK_HI_EXPR:
    case VEC_UNPACK_HI_EXPR:
    case VEC_UNPACK_LO_EXPR:
    case VEC_UNPACK_LO_EXPR:
    case VEC_UNPACK_FLOAT_HI_EXPR:
    case VEC_UNPACK_FLOAT_HI_EXPR:
    case VEC_UNPACK_FLOAT_LO_EXPR:
    case VEC_UNPACK_FLOAT_LO_EXPR:
    case VEC_PACK_TRUNC_EXPR:
    case VEC_PACK_TRUNC_EXPR:
    case VEC_PACK_SAT_EXPR:
    case VEC_PACK_SAT_EXPR:
    case VEC_PACK_FIX_TRUNC_EXPR:
    case VEC_PACK_FIX_TRUNC_EXPR:
    case VEC_EXTRACT_EVEN_EXPR:
    case VEC_EXTRACT_EVEN_EXPR:
    case VEC_EXTRACT_ODD_EXPR:
    case VEC_EXTRACT_ODD_EXPR:
    case VEC_INTERLEAVE_HIGH_EXPR:
    case VEC_INTERLEAVE_HIGH_EXPR:
    case VEC_INTERLEAVE_LOW_EXPR:
    case VEC_INTERLEAVE_LOW_EXPR:
 
 
      return 1;
      return 1;
 
 
    /* Few special cases of expensive operations.  This is useful
    /* Few special cases of expensive operations.  This is useful
       to avoid inlining on functions having too many of these.  */
       to avoid inlining on functions having too many of these.  */
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case RDIV_EXPR:
    case RDIV_EXPR:
      if (TREE_CODE (op2) != INTEGER_CST)
      if (TREE_CODE (op2) != INTEGER_CST)
        return weights->div_mod_cost;
        return weights->div_mod_cost;
      return 1;
      return 1;
 
 
    default:
    default:
      /* We expect a copy assignment with no operator.  */
      /* We expect a copy assignment with no operator.  */
      gcc_assert (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS);
      gcc_assert (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS);
      return 0;
      return 0;
    }
    }
}
}
 
 
 
 
/* Estimate number of instructions that will be created by expanding
/* Estimate number of instructions that will be created by expanding
   the statements in the statement sequence STMTS.
   the statements in the statement sequence STMTS.
   WEIGHTS contains weights attributed to various constructs.  */
   WEIGHTS contains weights attributed to various constructs.  */
 
 
static
static
int estimate_num_insns_seq (gimple_seq stmts, eni_weights *weights)
int estimate_num_insns_seq (gimple_seq stmts, eni_weights *weights)
{
{
  int cost;
  int cost;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  cost = 0;
  cost = 0;
  for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
    cost += estimate_num_insns (gsi_stmt (gsi), weights);
    cost += estimate_num_insns (gsi_stmt (gsi), weights);
 
 
  return cost;
  return cost;
}
}
 
 
 
 
/* Estimate number of instructions that will be created by expanding STMT.
/* Estimate number of instructions that will be created by expanding STMT.
   WEIGHTS contains weights attributed to various constructs.  */
   WEIGHTS contains weights attributed to various constructs.  */
 
 
int
int
estimate_num_insns (gimple stmt, eni_weights *weights)
estimate_num_insns (gimple stmt, eni_weights *weights)
{
{
  unsigned cost, i;
  unsigned cost, i;
  enum gimple_code code = gimple_code (stmt);
  enum gimple_code code = gimple_code (stmt);
  tree lhs;
  tree lhs;
  tree rhs;
  tree rhs;
 
 
  switch (code)
  switch (code)
    {
    {
    case GIMPLE_ASSIGN:
    case GIMPLE_ASSIGN:
      /* Try to estimate the cost of assignments.  We have three cases to
      /* Try to estimate the cost of assignments.  We have three cases to
         deal with:
         deal with:
         1) Simple assignments to registers;
         1) Simple assignments to registers;
         2) Stores to things that must live in memory.  This includes
         2) Stores to things that must live in memory.  This includes
            "normal" stores to scalars, but also assignments of large
            "normal" stores to scalars, but also assignments of large
            structures, or constructors of big arrays;
            structures, or constructors of big arrays;
 
 
         Let us look at the first two cases, assuming we have "a = b + C":
         Let us look at the first two cases, assuming we have "a = b + C":
         <GIMPLE_ASSIGN <var_decl "a">
         <GIMPLE_ASSIGN <var_decl "a">
                <plus_expr <var_decl "b"> <constant C>>
                <plus_expr <var_decl "b"> <constant C>>
         If "a" is a GIMPLE register, the assignment to it is free on almost
         If "a" is a GIMPLE register, the assignment to it is free on almost
         any target, because "a" usually ends up in a real register.  Hence
         any target, because "a" usually ends up in a real register.  Hence
         the only cost of this expression comes from the PLUS_EXPR, and we
         the only cost of this expression comes from the PLUS_EXPR, and we
         can ignore the GIMPLE_ASSIGN.
         can ignore the GIMPLE_ASSIGN.
         If "a" is not a GIMPLE register, the assignment to "a" will most
         If "a" is not a GIMPLE register, the assignment to "a" will most
         likely be a real store, so the cost of the GIMPLE_ASSIGN is the cost
         likely be a real store, so the cost of the GIMPLE_ASSIGN is the cost
         of moving something into "a", which we compute using the function
         of moving something into "a", which we compute using the function
         estimate_move_cost.  */
         estimate_move_cost.  */
      lhs = gimple_assign_lhs (stmt);
      lhs = gimple_assign_lhs (stmt);
      rhs = gimple_assign_rhs1 (stmt);
      rhs = gimple_assign_rhs1 (stmt);
 
 
      if (is_gimple_reg (lhs))
      if (is_gimple_reg (lhs))
        cost = 0;
        cost = 0;
      else
      else
        cost = estimate_move_cost (TREE_TYPE (lhs));
        cost = estimate_move_cost (TREE_TYPE (lhs));
 
 
      if (!is_gimple_reg (rhs) && !is_gimple_min_invariant (rhs))
      if (!is_gimple_reg (rhs) && !is_gimple_min_invariant (rhs))
        cost += estimate_move_cost (TREE_TYPE (rhs));
        cost += estimate_move_cost (TREE_TYPE (rhs));
 
 
      cost += estimate_operator_cost (gimple_assign_rhs_code (stmt), weights,
      cost += estimate_operator_cost (gimple_assign_rhs_code (stmt), weights,
                                      gimple_assign_rhs1 (stmt),
                                      gimple_assign_rhs1 (stmt),
                                      get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
                                      get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
                                      == GIMPLE_BINARY_RHS
                                      == GIMPLE_BINARY_RHS
                                      ? gimple_assign_rhs2 (stmt) : NULL);
                                      ? gimple_assign_rhs2 (stmt) : NULL);
      break;
      break;
 
 
    case GIMPLE_COND:
    case GIMPLE_COND:
      cost = 1 + estimate_operator_cost (gimple_cond_code (stmt), weights,
      cost = 1 + estimate_operator_cost (gimple_cond_code (stmt), weights,
                                         gimple_op (stmt, 0),
                                         gimple_op (stmt, 0),
                                         gimple_op (stmt, 1));
                                         gimple_op (stmt, 1));
      break;
      break;
 
 
    case GIMPLE_SWITCH:
    case GIMPLE_SWITCH:
      /* Take into account cost of the switch + guess 2 conditional jumps for
      /* Take into account cost of the switch + guess 2 conditional jumps for
         each case label.
         each case label.
 
 
         TODO: once the switch expansion logic is sufficiently separated, we can
         TODO: once the switch expansion logic is sufficiently separated, we can
         do better job on estimating cost of the switch.  */
         do better job on estimating cost of the switch.  */
      if (weights->time_based)
      if (weights->time_based)
        cost = floor_log2 (gimple_switch_num_labels (stmt)) * 2;
        cost = floor_log2 (gimple_switch_num_labels (stmt)) * 2;
      else
      else
        cost = gimple_switch_num_labels (stmt) * 2;
        cost = gimple_switch_num_labels (stmt) * 2;
      break;
      break;
 
 
    case GIMPLE_CALL:
    case GIMPLE_CALL:
      {
      {
        tree decl = gimple_call_fndecl (stmt);
        tree decl = gimple_call_fndecl (stmt);
        tree addr = gimple_call_fn (stmt);
        tree addr = gimple_call_fn (stmt);
        tree funtype = TREE_TYPE (addr);
        tree funtype = TREE_TYPE (addr);
 
 
        if (POINTER_TYPE_P (funtype))
        if (POINTER_TYPE_P (funtype))
          funtype = TREE_TYPE (funtype);
          funtype = TREE_TYPE (funtype);
 
 
        if (decl && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_MD)
        if (decl && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_MD)
          cost = weights->target_builtin_call_cost;
          cost = weights->target_builtin_call_cost;
        else
        else
          cost = weights->call_cost;
          cost = weights->call_cost;
 
 
        if (decl && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
        if (decl && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
          switch (DECL_FUNCTION_CODE (decl))
          switch (DECL_FUNCTION_CODE (decl))
            {
            {
            case BUILT_IN_CONSTANT_P:
            case BUILT_IN_CONSTANT_P:
              return 0;
              return 0;
            case BUILT_IN_EXPECT:
            case BUILT_IN_EXPECT:
              return 0;
              return 0;
 
 
            /* Prefetch instruction is not expensive.  */
            /* Prefetch instruction is not expensive.  */
            case BUILT_IN_PREFETCH:
            case BUILT_IN_PREFETCH:
              cost = weights->target_builtin_call_cost;
              cost = weights->target_builtin_call_cost;
              break;
              break;
 
 
            /* Exception state returns or moves registers around.  */
            /* Exception state returns or moves registers around.  */
            case BUILT_IN_EH_FILTER:
            case BUILT_IN_EH_FILTER:
            case BUILT_IN_EH_POINTER:
            case BUILT_IN_EH_POINTER:
            case BUILT_IN_EH_COPY_VALUES:
            case BUILT_IN_EH_COPY_VALUES:
              return 0;
              return 0;
 
 
            default:
            default:
              break;
              break;
            }
            }
 
 
        if (decl)
        if (decl)
          funtype = TREE_TYPE (decl);
          funtype = TREE_TYPE (decl);
 
 
        if (!VOID_TYPE_P (TREE_TYPE (funtype)))
        if (!VOID_TYPE_P (TREE_TYPE (funtype)))
          cost += estimate_move_cost (TREE_TYPE (funtype));
          cost += estimate_move_cost (TREE_TYPE (funtype));
        /* Our cost must be kept in sync with
        /* Our cost must be kept in sync with
           cgraph_estimate_size_after_inlining that does use function
           cgraph_estimate_size_after_inlining that does use function
           declaration to figure out the arguments.  */
           declaration to figure out the arguments.  */
        if (decl && DECL_ARGUMENTS (decl))
        if (decl && DECL_ARGUMENTS (decl))
          {
          {
            tree arg;
            tree arg;
            for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg))
            for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg))
              if (!VOID_TYPE_P (TREE_TYPE (arg)))
              if (!VOID_TYPE_P (TREE_TYPE (arg)))
                cost += estimate_move_cost (TREE_TYPE (arg));
                cost += estimate_move_cost (TREE_TYPE (arg));
          }
          }
        else if (funtype && prototype_p (funtype))
        else if (funtype && prototype_p (funtype))
          {
          {
            tree t;
            tree t;
            for (t = TYPE_ARG_TYPES (funtype); t && t != void_list_node;
            for (t = TYPE_ARG_TYPES (funtype); t && t != void_list_node;
                 t = TREE_CHAIN (t))
                 t = TREE_CHAIN (t))
              if (!VOID_TYPE_P (TREE_VALUE (t)))
              if (!VOID_TYPE_P (TREE_VALUE (t)))
                cost += estimate_move_cost (TREE_VALUE (t));
                cost += estimate_move_cost (TREE_VALUE (t));
          }
          }
        else
        else
          {
          {
            for (i = 0; i < gimple_call_num_args (stmt); i++)
            for (i = 0; i < gimple_call_num_args (stmt); i++)
              {
              {
                tree arg = gimple_call_arg (stmt, i);
                tree arg = gimple_call_arg (stmt, i);
                if (!VOID_TYPE_P (TREE_TYPE (arg)))
                if (!VOID_TYPE_P (TREE_TYPE (arg)))
                  cost += estimate_move_cost (TREE_TYPE (arg));
                  cost += estimate_move_cost (TREE_TYPE (arg));
              }
              }
          }
          }
 
 
        break;
        break;
      }
      }
 
 
    case GIMPLE_GOTO:
    case GIMPLE_GOTO:
    case GIMPLE_LABEL:
    case GIMPLE_LABEL:
    case GIMPLE_NOP:
    case GIMPLE_NOP:
    case GIMPLE_PHI:
    case GIMPLE_PHI:
    case GIMPLE_RETURN:
    case GIMPLE_RETURN:
    case GIMPLE_PREDICT:
    case GIMPLE_PREDICT:
    case GIMPLE_DEBUG:
    case GIMPLE_DEBUG:
      return 0;
      return 0;
 
 
    case GIMPLE_ASM:
    case GIMPLE_ASM:
      return asm_str_count (gimple_asm_string (stmt));
      return asm_str_count (gimple_asm_string (stmt));
 
 
    case GIMPLE_RESX:
    case GIMPLE_RESX:
      /* This is either going to be an external function call with one
      /* This is either going to be an external function call with one
         argument, or two register copy statements plus a goto.  */
         argument, or two register copy statements plus a goto.  */
      return 2;
      return 2;
 
 
    case GIMPLE_EH_DISPATCH:
    case GIMPLE_EH_DISPATCH:
      /* ??? This is going to turn into a switch statement.  Ideally
      /* ??? This is going to turn into a switch statement.  Ideally
         we'd have a look at the eh region and estimate the number of
         we'd have a look at the eh region and estimate the number of
         edges involved.  */
         edges involved.  */
      return 10;
      return 10;
 
 
    case GIMPLE_BIND:
    case GIMPLE_BIND:
      return estimate_num_insns_seq (gimple_bind_body (stmt), weights);
      return estimate_num_insns_seq (gimple_bind_body (stmt), weights);
 
 
    case GIMPLE_EH_FILTER:
    case GIMPLE_EH_FILTER:
      return estimate_num_insns_seq (gimple_eh_filter_failure (stmt), weights);
      return estimate_num_insns_seq (gimple_eh_filter_failure (stmt), weights);
 
 
    case GIMPLE_CATCH:
    case GIMPLE_CATCH:
      return estimate_num_insns_seq (gimple_catch_handler (stmt), weights);
      return estimate_num_insns_seq (gimple_catch_handler (stmt), weights);
 
 
    case GIMPLE_TRY:
    case GIMPLE_TRY:
      return (estimate_num_insns_seq (gimple_try_eval (stmt), weights)
      return (estimate_num_insns_seq (gimple_try_eval (stmt), weights)
              + estimate_num_insns_seq (gimple_try_cleanup (stmt), weights));
              + estimate_num_insns_seq (gimple_try_cleanup (stmt), weights));
 
 
    /* OpenMP directives are generally very expensive.  */
    /* OpenMP directives are generally very expensive.  */
 
 
    case GIMPLE_OMP_RETURN:
    case GIMPLE_OMP_RETURN:
    case GIMPLE_OMP_SECTIONS_SWITCH:
    case GIMPLE_OMP_SECTIONS_SWITCH:
    case GIMPLE_OMP_ATOMIC_STORE:
    case GIMPLE_OMP_ATOMIC_STORE:
    case GIMPLE_OMP_CONTINUE:
    case GIMPLE_OMP_CONTINUE:
      /* ...except these, which are cheap.  */
      /* ...except these, which are cheap.  */
      return 0;
      return 0;
 
 
    case GIMPLE_OMP_ATOMIC_LOAD:
    case GIMPLE_OMP_ATOMIC_LOAD:
      return weights->omp_cost;
      return weights->omp_cost;
 
 
    case GIMPLE_OMP_FOR:
    case GIMPLE_OMP_FOR:
      return (weights->omp_cost
      return (weights->omp_cost
              + estimate_num_insns_seq (gimple_omp_body (stmt), weights)
              + estimate_num_insns_seq (gimple_omp_body (stmt), weights)
              + estimate_num_insns_seq (gimple_omp_for_pre_body (stmt), weights));
              + estimate_num_insns_seq (gimple_omp_for_pre_body (stmt), weights));
 
 
    case GIMPLE_OMP_PARALLEL:
    case GIMPLE_OMP_PARALLEL:
    case GIMPLE_OMP_TASK:
    case GIMPLE_OMP_TASK:
    case GIMPLE_OMP_CRITICAL:
    case GIMPLE_OMP_CRITICAL:
    case GIMPLE_OMP_MASTER:
    case GIMPLE_OMP_MASTER:
    case GIMPLE_OMP_ORDERED:
    case GIMPLE_OMP_ORDERED:
    case GIMPLE_OMP_SECTION:
    case GIMPLE_OMP_SECTION:
    case GIMPLE_OMP_SECTIONS:
    case GIMPLE_OMP_SECTIONS:
    case GIMPLE_OMP_SINGLE:
    case GIMPLE_OMP_SINGLE:
      return (weights->omp_cost
      return (weights->omp_cost
              + estimate_num_insns_seq (gimple_omp_body (stmt), weights));
              + estimate_num_insns_seq (gimple_omp_body (stmt), weights));
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return cost;
  return cost;
}
}
 
 
/* Estimate number of instructions that will be created by expanding
/* Estimate number of instructions that will be created by expanding
   function FNDECL.  WEIGHTS contains weights attributed to various
   function FNDECL.  WEIGHTS contains weights attributed to various
   constructs.  */
   constructs.  */
 
 
int
int
estimate_num_insns_fn (tree fndecl, eni_weights *weights)
estimate_num_insns_fn (tree fndecl, eni_weights *weights)
{
{
  struct function *my_function = DECL_STRUCT_FUNCTION (fndecl);
  struct function *my_function = DECL_STRUCT_FUNCTION (fndecl);
  gimple_stmt_iterator bsi;
  gimple_stmt_iterator bsi;
  basic_block bb;
  basic_block bb;
  int n = 0;
  int n = 0;
 
 
  gcc_assert (my_function && my_function->cfg);
  gcc_assert (my_function && my_function->cfg);
  FOR_EACH_BB_FN (bb, my_function)
  FOR_EACH_BB_FN (bb, my_function)
    {
    {
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
        n += estimate_num_insns (gsi_stmt (bsi), weights);
        n += estimate_num_insns (gsi_stmt (bsi), weights);
    }
    }
 
 
  return n;
  return n;
}
}
 
 
 
 
/* Initializes weights used by estimate_num_insns.  */
/* Initializes weights used by estimate_num_insns.  */
 
 
void
void
init_inline_once (void)
init_inline_once (void)
{
{
  eni_size_weights.call_cost = 1;
  eni_size_weights.call_cost = 1;
  eni_size_weights.target_builtin_call_cost = 1;
  eni_size_weights.target_builtin_call_cost = 1;
  eni_size_weights.div_mod_cost = 1;
  eni_size_weights.div_mod_cost = 1;
  eni_size_weights.omp_cost = 40;
  eni_size_weights.omp_cost = 40;
  eni_size_weights.time_based = false;
  eni_size_weights.time_based = false;
 
 
  /* Estimating time for call is difficult, since we have no idea what the
  /* Estimating time for call is difficult, since we have no idea what the
     called function does.  In the current uses of eni_time_weights,
     called function does.  In the current uses of eni_time_weights,
     underestimating the cost does less harm than overestimating it, so
     underestimating the cost does less harm than overestimating it, so
     we choose a rather small value here.  */
     we choose a rather small value here.  */
  eni_time_weights.call_cost = 10;
  eni_time_weights.call_cost = 10;
  eni_time_weights.target_builtin_call_cost = 10;
  eni_time_weights.target_builtin_call_cost = 10;
  eni_time_weights.div_mod_cost = 10;
  eni_time_weights.div_mod_cost = 10;
  eni_time_weights.omp_cost = 40;
  eni_time_weights.omp_cost = 40;
  eni_time_weights.time_based = true;
  eni_time_weights.time_based = true;
}
}
 
 
/* Estimate the number of instructions in a gimple_seq. */
/* Estimate the number of instructions in a gimple_seq. */
 
 
int
int
count_insns_seq (gimple_seq seq, eni_weights *weights)
count_insns_seq (gimple_seq seq, eni_weights *weights)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  int n = 0;
  int n = 0;
  for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
    n += estimate_num_insns (gsi_stmt (gsi), weights);
    n += estimate_num_insns (gsi_stmt (gsi), weights);
 
 
  return n;
  return n;
}
}
 
 
 
 
/* Install new lexical TREE_BLOCK underneath 'current_block'.  */
/* Install new lexical TREE_BLOCK underneath 'current_block'.  */
 
 
static void
static void
prepend_lexical_block (tree current_block, tree new_block)
prepend_lexical_block (tree current_block, tree new_block)
{
{
  BLOCK_CHAIN (new_block) = BLOCK_SUBBLOCKS (current_block);
  BLOCK_CHAIN (new_block) = BLOCK_SUBBLOCKS (current_block);
  BLOCK_SUBBLOCKS (current_block) = new_block;
  BLOCK_SUBBLOCKS (current_block) = new_block;
  BLOCK_SUPERCONTEXT (new_block) = current_block;
  BLOCK_SUPERCONTEXT (new_block) = current_block;
}
}
 
 
/* Fetch callee declaration from the call graph edge going from NODE and
/* Fetch callee declaration from the call graph edge going from NODE and
   associated with STMR call statement.  Return NULL_TREE if not found.  */
   associated with STMR call statement.  Return NULL_TREE if not found.  */
static tree
static tree
get_indirect_callee_fndecl (struct cgraph_node *node, gimple stmt)
get_indirect_callee_fndecl (struct cgraph_node *node, gimple stmt)
{
{
  struct cgraph_edge *cs;
  struct cgraph_edge *cs;
 
 
  cs = cgraph_edge (node, stmt);
  cs = cgraph_edge (node, stmt);
  if (cs)
  if (cs)
    return cs->callee->decl;
    return cs->callee->decl;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* If STMT is a GIMPLE_CALL, replace it with its inline expansion.  */
/* If STMT is a GIMPLE_CALL, replace it with its inline expansion.  */
 
 
static bool
static bool
expand_call_inline (basic_block bb, gimple stmt, copy_body_data *id)
expand_call_inline (basic_block bb, gimple stmt, copy_body_data *id)
{
{
  tree use_retvar;
  tree use_retvar;
  tree fn;
  tree fn;
  struct pointer_map_t *st, *dst;
  struct pointer_map_t *st, *dst;
  tree return_slot;
  tree return_slot;
  tree modify_dest;
  tree modify_dest;
  location_t saved_location;
  location_t saved_location;
  struct cgraph_edge *cg_edge;
  struct cgraph_edge *cg_edge;
  cgraph_inline_failed_t reason;
  cgraph_inline_failed_t reason;
  basic_block return_block;
  basic_block return_block;
  edge e;
  edge e;
  gimple_stmt_iterator gsi, stmt_gsi;
  gimple_stmt_iterator gsi, stmt_gsi;
  bool successfully_inlined = FALSE;
  bool successfully_inlined = FALSE;
  bool purge_dead_abnormal_edges;
  bool purge_dead_abnormal_edges;
  tree t_step;
  tree t_step;
  tree var;
  tree var;
 
 
  /* Set input_location here so we get the right instantiation context
  /* Set input_location here so we get the right instantiation context
     if we call instantiate_decl from inlinable_function_p.  */
     if we call instantiate_decl from inlinable_function_p.  */
  saved_location = input_location;
  saved_location = input_location;
  if (gimple_has_location (stmt))
  if (gimple_has_location (stmt))
    input_location = gimple_location (stmt);
    input_location = gimple_location (stmt);
 
 
  /* From here on, we're only interested in CALL_EXPRs.  */
  /* From here on, we're only interested in CALL_EXPRs.  */
  if (gimple_code (stmt) != GIMPLE_CALL)
  if (gimple_code (stmt) != GIMPLE_CALL)
    goto egress;
    goto egress;
 
 
  /* First, see if we can figure out what function is being called.
  /* First, see if we can figure out what function is being called.
     If we cannot, then there is no hope of inlining the function.  */
     If we cannot, then there is no hope of inlining the function.  */
  fn = gimple_call_fndecl (stmt);
  fn = gimple_call_fndecl (stmt);
  if (!fn)
  if (!fn)
    {
    {
      fn = get_indirect_callee_fndecl (id->dst_node, stmt);
      fn = get_indirect_callee_fndecl (id->dst_node, stmt);
      if (!fn)
      if (!fn)
        goto egress;
        goto egress;
    }
    }
 
 
  /* Turn forward declarations into real ones.  */
  /* Turn forward declarations into real ones.  */
  fn = cgraph_node (fn)->decl;
  fn = cgraph_node (fn)->decl;
 
 
  /* If FN is a declaration of a function in a nested scope that was
  /* If FN is a declaration of a function in a nested scope that was
     globally declared inline, we don't set its DECL_INITIAL.
     globally declared inline, we don't set its DECL_INITIAL.
     However, we can't blindly follow DECL_ABSTRACT_ORIGIN because the
     However, we can't blindly follow DECL_ABSTRACT_ORIGIN because the
     C++ front-end uses it for cdtors to refer to their internal
     C++ front-end uses it for cdtors to refer to their internal
     declarations, that are not real functions.  Fortunately those
     declarations, that are not real functions.  Fortunately those
     don't have trees to be saved, so we can tell by checking their
     don't have trees to be saved, so we can tell by checking their
     gimple_body.  */
     gimple_body.  */
  if (!DECL_INITIAL (fn)
  if (!DECL_INITIAL (fn)
      && DECL_ABSTRACT_ORIGIN (fn)
      && DECL_ABSTRACT_ORIGIN (fn)
      && gimple_has_body_p (DECL_ABSTRACT_ORIGIN (fn)))
      && gimple_has_body_p (DECL_ABSTRACT_ORIGIN (fn)))
    fn = DECL_ABSTRACT_ORIGIN (fn);
    fn = DECL_ABSTRACT_ORIGIN (fn);
 
 
  /* Objective C and fortran still calls tree_rest_of_compilation directly.
  /* Objective C and fortran still calls tree_rest_of_compilation directly.
     Kill this check once this is fixed.  */
     Kill this check once this is fixed.  */
  if (!id->dst_node->analyzed)
  if (!id->dst_node->analyzed)
    goto egress;
    goto egress;
 
 
  cg_edge = cgraph_edge (id->dst_node, stmt);
  cg_edge = cgraph_edge (id->dst_node, stmt);
 
 
  /* Don't inline functions with different EH personalities.  */
  /* Don't inline functions with different EH personalities.  */
  if (DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl)
  if (DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl)
      && DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl)
      && DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl)
      && (DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl)
      && (DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl)
          != DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl)))
          != DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl)))
    goto egress;
    goto egress;
 
 
  /* Don't try to inline functions that are not well-suited to
  /* Don't try to inline functions that are not well-suited to
     inlining.  */
     inlining.  */
  if (!cgraph_inline_p (cg_edge, &reason))
  if (!cgraph_inline_p (cg_edge, &reason))
    {
    {
      /* If this call was originally indirect, we do not want to emit any
      /* If this call was originally indirect, we do not want to emit any
         inlining related warnings or sorry messages because there are no
         inlining related warnings or sorry messages because there are no
         guarantees regarding those.  */
         guarantees regarding those.  */
      if (cg_edge->indirect_call)
      if (cg_edge->indirect_call)
        goto egress;
        goto egress;
 
 
      if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn))
      if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn))
          /* Avoid warnings during early inline pass. */
          /* Avoid warnings during early inline pass. */
          && cgraph_global_info_ready)
          && cgraph_global_info_ready)
        {
        {
          sorry ("inlining failed in call to %q+F: %s", fn,
          sorry ("inlining failed in call to %q+F: %s", fn,
                 cgraph_inline_failed_string (reason));
                 cgraph_inline_failed_string (reason));
          sorry ("called from here");
          sorry ("called from here");
        }
        }
      else if (warn_inline && DECL_DECLARED_INLINE_P (fn)
      else if (warn_inline && DECL_DECLARED_INLINE_P (fn)
               && !DECL_IN_SYSTEM_HEADER (fn)
               && !DECL_IN_SYSTEM_HEADER (fn)
               && reason != CIF_UNSPECIFIED
               && reason != CIF_UNSPECIFIED
               && !lookup_attribute ("noinline", DECL_ATTRIBUTES (fn))
               && !lookup_attribute ("noinline", DECL_ATTRIBUTES (fn))
               /* Avoid warnings during early inline pass. */
               /* Avoid warnings during early inline pass. */
               && cgraph_global_info_ready)
               && cgraph_global_info_ready)
        {
        {
          warning (OPT_Winline, "inlining failed in call to %q+F: %s",
          warning (OPT_Winline, "inlining failed in call to %q+F: %s",
                   fn, cgraph_inline_failed_string (reason));
                   fn, cgraph_inline_failed_string (reason));
          warning (OPT_Winline, "called from here");
          warning (OPT_Winline, "called from here");
        }
        }
      goto egress;
      goto egress;
    }
    }
  fn = cg_edge->callee->decl;
  fn = cg_edge->callee->decl;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  if (cg_edge->callee->decl != id->dst_node->decl)
  if (cg_edge->callee->decl != id->dst_node->decl)
    verify_cgraph_node (cg_edge->callee);
    verify_cgraph_node (cg_edge->callee);
#endif
#endif
 
 
  /* We will be inlining this callee.  */
  /* We will be inlining this callee.  */
  id->eh_lp_nr = lookup_stmt_eh_lp (stmt);
  id->eh_lp_nr = lookup_stmt_eh_lp (stmt);
 
 
  /* Update the callers EH personality.  */
  /* Update the callers EH personality.  */
  if (DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl))
  if (DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl))
    DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl)
    DECL_FUNCTION_PERSONALITY (cg_edge->caller->decl)
      = DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl);
      = DECL_FUNCTION_PERSONALITY (cg_edge->callee->decl);
 
 
  /* Split the block holding the GIMPLE_CALL.  */
  /* Split the block holding the GIMPLE_CALL.  */
  e = split_block (bb, stmt);
  e = split_block (bb, stmt);
  bb = e->src;
  bb = e->src;
  return_block = e->dest;
  return_block = e->dest;
  remove_edge (e);
  remove_edge (e);
 
 
  /* split_block splits after the statement; work around this by
  /* split_block splits after the statement; work around this by
     moving the call into the second block manually.  Not pretty,
     moving the call into the second block manually.  Not pretty,
     but seems easier than doing the CFG manipulation by hand
     but seems easier than doing the CFG manipulation by hand
     when the GIMPLE_CALL is in the last statement of BB.  */
     when the GIMPLE_CALL is in the last statement of BB.  */
  stmt_gsi = gsi_last_bb (bb);
  stmt_gsi = gsi_last_bb (bb);
  gsi_remove (&stmt_gsi, false);
  gsi_remove (&stmt_gsi, false);
 
 
  /* If the GIMPLE_CALL was in the last statement of BB, it may have
  /* If the GIMPLE_CALL was in the last statement of BB, it may have
     been the source of abnormal edges.  In this case, schedule
     been the source of abnormal edges.  In this case, schedule
     the removal of dead abnormal edges.  */
     the removal of dead abnormal edges.  */
  gsi = gsi_start_bb (return_block);
  gsi = gsi_start_bb (return_block);
  if (gsi_end_p (gsi))
  if (gsi_end_p (gsi))
    {
    {
      gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
      gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
      purge_dead_abnormal_edges = true;
      purge_dead_abnormal_edges = true;
    }
    }
  else
  else
    {
    {
      gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
      gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
      purge_dead_abnormal_edges = false;
      purge_dead_abnormal_edges = false;
    }
    }
 
 
  stmt_gsi = gsi_start_bb (return_block);
  stmt_gsi = gsi_start_bb (return_block);
 
 
  /* Build a block containing code to initialize the arguments, the
  /* Build a block containing code to initialize the arguments, the
     actual inline expansion of the body, and a label for the return
     actual inline expansion of the body, and a label for the return
     statements within the function to jump to.  The type of the
     statements within the function to jump to.  The type of the
     statement expression is the return type of the function call.  */
     statement expression is the return type of the function call.  */
  id->block = make_node (BLOCK);
  id->block = make_node (BLOCK);
  BLOCK_ABSTRACT_ORIGIN (id->block) = fn;
  BLOCK_ABSTRACT_ORIGIN (id->block) = fn;
  BLOCK_SOURCE_LOCATION (id->block) = input_location;
  BLOCK_SOURCE_LOCATION (id->block) = input_location;
  prepend_lexical_block (gimple_block (stmt), id->block);
  prepend_lexical_block (gimple_block (stmt), id->block);
 
 
  /* Local declarations will be replaced by their equivalents in this
  /* Local declarations will be replaced by their equivalents in this
     map.  */
     map.  */
  st = id->decl_map;
  st = id->decl_map;
  id->decl_map = pointer_map_create ();
  id->decl_map = pointer_map_create ();
  dst = id->debug_map;
  dst = id->debug_map;
  id->debug_map = NULL;
  id->debug_map = NULL;
 
 
  /* Record the function we are about to inline.  */
  /* Record the function we are about to inline.  */
  id->src_fn = fn;
  id->src_fn = fn;
  id->src_node = cg_edge->callee;
  id->src_node = cg_edge->callee;
  id->src_cfun = DECL_STRUCT_FUNCTION (fn);
  id->src_cfun = DECL_STRUCT_FUNCTION (fn);
  id->gimple_call = stmt;
  id->gimple_call = stmt;
 
 
  gcc_assert (!id->src_cfun->after_inlining);
  gcc_assert (!id->src_cfun->after_inlining);
 
 
  id->entry_bb = bb;
  id->entry_bb = bb;
  if (lookup_attribute ("cold", DECL_ATTRIBUTES (fn)))
  if (lookup_attribute ("cold", DECL_ATTRIBUTES (fn)))
    {
    {
      gimple_stmt_iterator si = gsi_last_bb (bb);
      gimple_stmt_iterator si = gsi_last_bb (bb);
      gsi_insert_after (&si, gimple_build_predict (PRED_COLD_FUNCTION,
      gsi_insert_after (&si, gimple_build_predict (PRED_COLD_FUNCTION,
                                                   NOT_TAKEN),
                                                   NOT_TAKEN),
                        GSI_NEW_STMT);
                        GSI_NEW_STMT);
    }
    }
  initialize_inlined_parameters (id, stmt, fn, bb);
  initialize_inlined_parameters (id, stmt, fn, bb);
 
 
  if (DECL_INITIAL (fn))
  if (DECL_INITIAL (fn))
    prepend_lexical_block (id->block, remap_blocks (DECL_INITIAL (fn), id));
    prepend_lexical_block (id->block, remap_blocks (DECL_INITIAL (fn), id));
 
 
  /* Return statements in the function body will be replaced by jumps
  /* Return statements in the function body will be replaced by jumps
     to the RET_LABEL.  */
     to the RET_LABEL.  */
  gcc_assert (DECL_INITIAL (fn));
  gcc_assert (DECL_INITIAL (fn));
  gcc_assert (TREE_CODE (DECL_INITIAL (fn)) == BLOCK);
  gcc_assert (TREE_CODE (DECL_INITIAL (fn)) == BLOCK);
 
 
  /* Find the LHS to which the result of this call is assigned.  */
  /* Find the LHS to which the result of this call is assigned.  */
  return_slot = NULL;
  return_slot = NULL;
  if (gimple_call_lhs (stmt))
  if (gimple_call_lhs (stmt))
    {
    {
      modify_dest = gimple_call_lhs (stmt);
      modify_dest = gimple_call_lhs (stmt);
 
 
      /* The function which we are inlining might not return a value,
      /* The function which we are inlining might not return a value,
         in which case we should issue a warning that the function
         in which case we should issue a warning that the function
         does not return a value.  In that case the optimizers will
         does not return a value.  In that case the optimizers will
         see that the variable to which the value is assigned was not
         see that the variable to which the value is assigned was not
         initialized.  We do not want to issue a warning about that
         initialized.  We do not want to issue a warning about that
         uninitialized variable.  */
         uninitialized variable.  */
      if (DECL_P (modify_dest))
      if (DECL_P (modify_dest))
        TREE_NO_WARNING (modify_dest) = 1;
        TREE_NO_WARNING (modify_dest) = 1;
 
 
      if (gimple_call_return_slot_opt_p (stmt))
      if (gimple_call_return_slot_opt_p (stmt))
        {
        {
          return_slot = modify_dest;
          return_slot = modify_dest;
          modify_dest = NULL;
          modify_dest = NULL;
        }
        }
    }
    }
  else
  else
    modify_dest = NULL;
    modify_dest = NULL;
 
 
  /* If we are inlining a call to the C++ operator new, we don't want
  /* If we are inlining a call to the C++ operator new, we don't want
     to use type based alias analysis on the return value.  Otherwise
     to use type based alias analysis on the return value.  Otherwise
     we may get confused if the compiler sees that the inlined new
     we may get confused if the compiler sees that the inlined new
     function returns a pointer which was just deleted.  See bug
     function returns a pointer which was just deleted.  See bug
     33407.  */
     33407.  */
  if (DECL_IS_OPERATOR_NEW (fn))
  if (DECL_IS_OPERATOR_NEW (fn))
    {
    {
      return_slot = NULL;
      return_slot = NULL;
      modify_dest = NULL;
      modify_dest = NULL;
    }
    }
 
 
  /* Declare the return variable for the function.  */
  /* Declare the return variable for the function.  */
  use_retvar = declare_return_variable (id, return_slot, modify_dest);
  use_retvar = declare_return_variable (id, return_slot, modify_dest);
 
 
  /* Add local vars in this inlined callee to caller.  */
  /* Add local vars in this inlined callee to caller.  */
  t_step = id->src_cfun->local_decls;
  t_step = id->src_cfun->local_decls;
  for (; t_step; t_step = TREE_CHAIN (t_step))
  for (; t_step; t_step = TREE_CHAIN (t_step))
    {
    {
      var = TREE_VALUE (t_step);
      var = TREE_VALUE (t_step);
      if (TREE_STATIC (var) && !TREE_ASM_WRITTEN (var))
      if (TREE_STATIC (var) && !TREE_ASM_WRITTEN (var))
        {
        {
          if (var_ann (var) && add_referenced_var (var))
          if (var_ann (var) && add_referenced_var (var))
            cfun->local_decls = tree_cons (NULL_TREE, var,
            cfun->local_decls = tree_cons (NULL_TREE, var,
                                           cfun->local_decls);
                                           cfun->local_decls);
        }
        }
      else if (!can_be_nonlocal (var, id))
      else if (!can_be_nonlocal (var, id))
        cfun->local_decls = tree_cons (NULL_TREE, remap_decl (var, id),
        cfun->local_decls = tree_cons (NULL_TREE, remap_decl (var, id),
                                       cfun->local_decls);
                                       cfun->local_decls);
    }
    }
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Inlining ");
      fprintf (dump_file, "Inlining ");
      print_generic_expr (dump_file, id->src_fn, 0);
      print_generic_expr (dump_file, id->src_fn, 0);
      fprintf (dump_file, " to ");
      fprintf (dump_file, " to ");
      print_generic_expr (dump_file, id->dst_fn, 0);
      print_generic_expr (dump_file, id->dst_fn, 0);
      fprintf (dump_file, " with frequency %i\n", cg_edge->frequency);
      fprintf (dump_file, " with frequency %i\n", cg_edge->frequency);
    }
    }
 
 
  /* This is it.  Duplicate the callee body.  Assume callee is
  /* This is it.  Duplicate the callee body.  Assume callee is
     pre-gimplified.  Note that we must not alter the caller
     pre-gimplified.  Note that we must not alter the caller
     function in any way before this point, as this CALL_EXPR may be
     function in any way before this point, as this CALL_EXPR may be
     a self-referential call; if we're calling ourselves, we need to
     a self-referential call; if we're calling ourselves, we need to
     duplicate our body before altering anything.  */
     duplicate our body before altering anything.  */
  copy_body (id, bb->count,
  copy_body (id, bb->count,
             cg_edge->frequency * REG_BR_PROB_BASE / CGRAPH_FREQ_BASE,
             cg_edge->frequency * REG_BR_PROB_BASE / CGRAPH_FREQ_BASE,
             bb, return_block);
             bb, return_block);
 
 
  /* Reset the escaped and callused solutions.  */
  /* Reset the escaped and callused solutions.  */
  if (cfun->gimple_df)
  if (cfun->gimple_df)
    {
    {
      pt_solution_reset (&cfun->gimple_df->escaped);
      pt_solution_reset (&cfun->gimple_df->escaped);
      pt_solution_reset (&cfun->gimple_df->callused);
      pt_solution_reset (&cfun->gimple_df->callused);
    }
    }
 
 
  /* Clean up.  */
  /* Clean up.  */
  if (id->debug_map)
  if (id->debug_map)
    {
    {
      pointer_map_destroy (id->debug_map);
      pointer_map_destroy (id->debug_map);
      id->debug_map = dst;
      id->debug_map = dst;
    }
    }
  pointer_map_destroy (id->decl_map);
  pointer_map_destroy (id->decl_map);
  id->decl_map = st;
  id->decl_map = st;
 
 
  /* Unlink the calls virtual operands before replacing it.  */
  /* Unlink the calls virtual operands before replacing it.  */
  unlink_stmt_vdef (stmt);
  unlink_stmt_vdef (stmt);
 
 
  /* If the inlined function returns a result that we care about,
  /* If the inlined function returns a result that we care about,
     substitute the GIMPLE_CALL with an assignment of the return
     substitute the GIMPLE_CALL with an assignment of the return
     variable to the LHS of the call.  That is, if STMT was
     variable to the LHS of the call.  That is, if STMT was
     'a = foo (...)', substitute the call with 'a = USE_RETVAR'.  */
     'a = foo (...)', substitute the call with 'a = USE_RETVAR'.  */
  if (use_retvar && gimple_call_lhs (stmt))
  if (use_retvar && gimple_call_lhs (stmt))
    {
    {
      gimple old_stmt = stmt;
      gimple old_stmt = stmt;
      stmt = gimple_build_assign (gimple_call_lhs (stmt), use_retvar);
      stmt = gimple_build_assign (gimple_call_lhs (stmt), use_retvar);
      gsi_replace (&stmt_gsi, stmt, false);
      gsi_replace (&stmt_gsi, stmt, false);
      if (gimple_in_ssa_p (cfun))
      if (gimple_in_ssa_p (cfun))
        mark_symbols_for_renaming (stmt);
        mark_symbols_for_renaming (stmt);
      maybe_clean_or_replace_eh_stmt (old_stmt, stmt);
      maybe_clean_or_replace_eh_stmt (old_stmt, stmt);
    }
    }
  else
  else
    {
    {
      /* Handle the case of inlining a function with no return
      /* Handle the case of inlining a function with no return
         statement, which causes the return value to become undefined.  */
         statement, which causes the return value to become undefined.  */
      if (gimple_call_lhs (stmt)
      if (gimple_call_lhs (stmt)
          && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
          && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
        {
        {
          tree name = gimple_call_lhs (stmt);
          tree name = gimple_call_lhs (stmt);
          tree var = SSA_NAME_VAR (name);
          tree var = SSA_NAME_VAR (name);
          tree def = gimple_default_def (cfun, var);
          tree def = gimple_default_def (cfun, var);
 
 
          if (def)
          if (def)
            {
            {
              /* If the variable is used undefined, make this name
              /* If the variable is used undefined, make this name
                 undefined via a move.  */
                 undefined via a move.  */
              stmt = gimple_build_assign (gimple_call_lhs (stmt), def);
              stmt = gimple_build_assign (gimple_call_lhs (stmt), def);
              gsi_replace (&stmt_gsi, stmt, true);
              gsi_replace (&stmt_gsi, stmt, true);
            }
            }
          else
          else
            {
            {
              /* Otherwise make this variable undefined.  */
              /* Otherwise make this variable undefined.  */
              gsi_remove (&stmt_gsi, true);
              gsi_remove (&stmt_gsi, true);
              set_default_def (var, name);
              set_default_def (var, name);
              SSA_NAME_DEF_STMT (name) = gimple_build_nop ();
              SSA_NAME_DEF_STMT (name) = gimple_build_nop ();
            }
            }
        }
        }
      else
      else
        gsi_remove (&stmt_gsi, true);
        gsi_remove (&stmt_gsi, true);
    }
    }
 
 
  if (purge_dead_abnormal_edges)
  if (purge_dead_abnormal_edges)
    gimple_purge_dead_abnormal_call_edges (return_block);
    gimple_purge_dead_abnormal_call_edges (return_block);
 
 
  /* If the value of the new expression is ignored, that's OK.  We
  /* If the value of the new expression is ignored, that's OK.  We
     don't warn about this for CALL_EXPRs, so we shouldn't warn about
     don't warn about this for CALL_EXPRs, so we shouldn't warn about
     the equivalent inlined version either.  */
     the equivalent inlined version either.  */
  if (is_gimple_assign (stmt))
  if (is_gimple_assign (stmt))
    {
    {
      gcc_assert (gimple_assign_single_p (stmt)
      gcc_assert (gimple_assign_single_p (stmt)
                  || CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)));
                  || CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)));
      TREE_USED (gimple_assign_rhs1 (stmt)) = 1;
      TREE_USED (gimple_assign_rhs1 (stmt)) = 1;
    }
    }
 
 
  /* Output the inlining info for this abstract function, since it has been
  /* Output the inlining info for this abstract function, since it has been
     inlined.  If we don't do this now, we can lose the information about the
     inlined.  If we don't do this now, we can lose the information about the
     variables in the function when the blocks get blown away as soon as we
     variables in the function when the blocks get blown away as soon as we
     remove the cgraph node.  */
     remove the cgraph node.  */
  (*debug_hooks->outlining_inline_function) (cg_edge->callee->decl);
  (*debug_hooks->outlining_inline_function) (cg_edge->callee->decl);
 
 
  /* Update callgraph if needed.  */
  /* Update callgraph if needed.  */
  cgraph_remove_node (cg_edge->callee);
  cgraph_remove_node (cg_edge->callee);
 
 
  id->block = NULL_TREE;
  id->block = NULL_TREE;
  successfully_inlined = TRUE;
  successfully_inlined = TRUE;
 
 
 egress:
 egress:
  input_location = saved_location;
  input_location = saved_location;
  return successfully_inlined;
  return successfully_inlined;
}
}
 
 
/* Expand call statements reachable from STMT_P.
/* Expand call statements reachable from STMT_P.
   We can only have CALL_EXPRs as the "toplevel" tree code or nested
   We can only have CALL_EXPRs as the "toplevel" tree code or nested
   in a MODIFY_EXPR.  See tree-gimple.c:get_call_expr_in().  We can
   in a MODIFY_EXPR.  See tree-gimple.c:get_call_expr_in().  We can
   unfortunately not use that function here because we need a pointer
   unfortunately not use that function here because we need a pointer
   to the CALL_EXPR, not the tree itself.  */
   to the CALL_EXPR, not the tree itself.  */
 
 
static bool
static bool
gimple_expand_calls_inline (basic_block bb, copy_body_data *id)
gimple_expand_calls_inline (basic_block bb, copy_body_data *id)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      gimple stmt = gsi_stmt (gsi);
      gimple stmt = gsi_stmt (gsi);
 
 
      if (is_gimple_call (stmt)
      if (is_gimple_call (stmt)
          && expand_call_inline (bb, stmt, id))
          && expand_call_inline (bb, stmt, id))
        return true;
        return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Walk all basic blocks created after FIRST and try to fold every statement
/* Walk all basic blocks created after FIRST and try to fold every statement
   in the STATEMENTS pointer set.  */
   in the STATEMENTS pointer set.  */
 
 
static void
static void
fold_marked_statements (int first, struct pointer_set_t *statements)
fold_marked_statements (int first, struct pointer_set_t *statements)
{
{
  for (; first < n_basic_blocks; first++)
  for (; first < n_basic_blocks; first++)
    if (BASIC_BLOCK (first))
    if (BASIC_BLOCK (first))
      {
      {
        gimple_stmt_iterator gsi;
        gimple_stmt_iterator gsi;
 
 
        for (gsi = gsi_start_bb (BASIC_BLOCK (first));
        for (gsi = gsi_start_bb (BASIC_BLOCK (first));
             !gsi_end_p (gsi);
             !gsi_end_p (gsi);
             gsi_next (&gsi))
             gsi_next (&gsi))
          if (pointer_set_contains (statements, gsi_stmt (gsi)))
          if (pointer_set_contains (statements, gsi_stmt (gsi)))
            {
            {
              gimple old_stmt = gsi_stmt (gsi);
              gimple old_stmt = gsi_stmt (gsi);
              tree old_decl = is_gimple_call (old_stmt) ? gimple_call_fndecl (old_stmt) : 0;
              tree old_decl = is_gimple_call (old_stmt) ? gimple_call_fndecl (old_stmt) : 0;
 
 
              if (old_decl && DECL_BUILT_IN (old_decl))
              if (old_decl && DECL_BUILT_IN (old_decl))
                {
                {
                  /* Folding builtins can create multiple instructions,
                  /* Folding builtins can create multiple instructions,
                     we need to look at all of them.  */
                     we need to look at all of them.  */
                  gimple_stmt_iterator i2 = gsi;
                  gimple_stmt_iterator i2 = gsi;
                  gsi_prev (&i2);
                  gsi_prev (&i2);
                  if (fold_stmt (&gsi))
                  if (fold_stmt (&gsi))
                    {
                    {
                      gimple new_stmt;
                      gimple new_stmt;
                      if (gsi_end_p (i2))
                      if (gsi_end_p (i2))
                        i2 = gsi_start_bb (BASIC_BLOCK (first));
                        i2 = gsi_start_bb (BASIC_BLOCK (first));
                      else
                      else
                        gsi_next (&i2);
                        gsi_next (&i2);
                      while (1)
                      while (1)
                        {
                        {
                          new_stmt = gsi_stmt (i2);
                          new_stmt = gsi_stmt (i2);
                          update_stmt (new_stmt);
                          update_stmt (new_stmt);
                          cgraph_update_edges_for_call_stmt (old_stmt, old_decl,
                          cgraph_update_edges_for_call_stmt (old_stmt, old_decl,
                                                             new_stmt);
                                                             new_stmt);
 
 
                          if (new_stmt == gsi_stmt (gsi))
                          if (new_stmt == gsi_stmt (gsi))
                            {
                            {
                              /* It is okay to check only for the very last
                              /* It is okay to check only for the very last
                                 of these statements.  If it is a throwing
                                 of these statements.  If it is a throwing
                                 statement nothing will change.  If it isn't
                                 statement nothing will change.  If it isn't
                                 this can remove EH edges.  If that weren't
                                 this can remove EH edges.  If that weren't
                                 correct then because some intermediate stmts
                                 correct then because some intermediate stmts
                                 throw, but not the last one.  That would mean
                                 throw, but not the last one.  That would mean
                                 we'd have to split the block, which we can't
                                 we'd have to split the block, which we can't
                                 here and we'd loose anyway.  And as builtins
                                 here and we'd loose anyway.  And as builtins
                                 probably never throw, this all
                                 probably never throw, this all
                                 is mood anyway.  */
                                 is mood anyway.  */
                              if (maybe_clean_or_replace_eh_stmt (old_stmt,
                              if (maybe_clean_or_replace_eh_stmt (old_stmt,
                                                                  new_stmt))
                                                                  new_stmt))
                                gimple_purge_dead_eh_edges (BASIC_BLOCK (first));
                                gimple_purge_dead_eh_edges (BASIC_BLOCK (first));
                              break;
                              break;
                            }
                            }
                          gsi_next (&i2);
                          gsi_next (&i2);
                        }
                        }
                    }
                    }
                }
                }
              else if (fold_stmt (&gsi))
              else if (fold_stmt (&gsi))
                {
                {
                  /* Re-read the statement from GSI as fold_stmt() may
                  /* Re-read the statement from GSI as fold_stmt() may
                     have changed it.  */
                     have changed it.  */
                  gimple new_stmt = gsi_stmt (gsi);
                  gimple new_stmt = gsi_stmt (gsi);
                  update_stmt (new_stmt);
                  update_stmt (new_stmt);
 
 
                  if (is_gimple_call (old_stmt)
                  if (is_gimple_call (old_stmt)
                      || is_gimple_call (new_stmt))
                      || is_gimple_call (new_stmt))
                    cgraph_update_edges_for_call_stmt (old_stmt, old_decl,
                    cgraph_update_edges_for_call_stmt (old_stmt, old_decl,
                                                       new_stmt);
                                                       new_stmt);
 
 
                  if (maybe_clean_or_replace_eh_stmt (old_stmt, new_stmt))
                  if (maybe_clean_or_replace_eh_stmt (old_stmt, new_stmt))
                    gimple_purge_dead_eh_edges (BASIC_BLOCK (first));
                    gimple_purge_dead_eh_edges (BASIC_BLOCK (first));
                }
                }
            }
            }
      }
      }
}
}
 
 
/* Return true if BB has at least one abnormal outgoing edge.  */
/* Return true if BB has at least one abnormal outgoing edge.  */
 
 
static inline bool
static inline bool
has_abnormal_outgoing_edge_p (basic_block bb)
has_abnormal_outgoing_edge_p (basic_block bb)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->flags & EDGE_ABNORMAL)
    if (e->flags & EDGE_ABNORMAL)
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 
/* Expand calls to inline functions in the body of FN.  */
/* Expand calls to inline functions in the body of FN.  */
 
 
unsigned int
unsigned int
optimize_inline_calls (tree fn)
optimize_inline_calls (tree fn)
{
{
  copy_body_data id;
  copy_body_data id;
  basic_block bb;
  basic_block bb;
  int last = n_basic_blocks;
  int last = n_basic_blocks;
  struct gimplify_ctx gctx;
  struct gimplify_ctx gctx;
 
 
  /* There is no point in performing inlining if errors have already
  /* There is no point in performing inlining if errors have already
     occurred -- and we might crash if we try to inline invalid
     occurred -- and we might crash if we try to inline invalid
     code.  */
     code.  */
  if (errorcount || sorrycount)
  if (errorcount || sorrycount)
    return 0;
    return 0;
 
 
  /* Clear out ID.  */
  /* Clear out ID.  */
  memset (&id, 0, sizeof (id));
  memset (&id, 0, sizeof (id));
 
 
  id.src_node = id.dst_node = cgraph_node (fn);
  id.src_node = id.dst_node = cgraph_node (fn);
  id.dst_fn = fn;
  id.dst_fn = fn;
  /* Or any functions that aren't finished yet.  */
  /* Or any functions that aren't finished yet.  */
  if (current_function_decl)
  if (current_function_decl)
    id.dst_fn = current_function_decl;
    id.dst_fn = current_function_decl;
 
 
  id.copy_decl = copy_decl_maybe_to_var;
  id.copy_decl = copy_decl_maybe_to_var;
  id.transform_call_graph_edges = CB_CGE_DUPLICATE;
  id.transform_call_graph_edges = CB_CGE_DUPLICATE;
  id.transform_new_cfg = false;
  id.transform_new_cfg = false;
  id.transform_return_to_modify = true;
  id.transform_return_to_modify = true;
  id.transform_lang_insert_block = NULL;
  id.transform_lang_insert_block = NULL;
  id.statements_to_fold = pointer_set_create ();
  id.statements_to_fold = pointer_set_create ();
 
 
  push_gimplify_context (&gctx);
  push_gimplify_context (&gctx);
 
 
  /* We make no attempts to keep dominance info up-to-date.  */
  /* We make no attempts to keep dominance info up-to-date.  */
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
 
 
  /* Register specific gimple functions.  */
  /* Register specific gimple functions.  */
  gimple_register_cfg_hooks ();
  gimple_register_cfg_hooks ();
 
 
  /* Reach the trees by walking over the CFG, and note the
  /* Reach the trees by walking over the CFG, and note the
     enclosing basic-blocks in the call edges.  */
     enclosing basic-blocks in the call edges.  */
  /* We walk the blocks going forward, because inlined function bodies
  /* We walk the blocks going forward, because inlined function bodies
     will split id->current_basic_block, and the new blocks will
     will split id->current_basic_block, and the new blocks will
     follow it; we'll trudge through them, processing their CALL_EXPRs
     follow it; we'll trudge through them, processing their CALL_EXPRs
     along the way.  */
     along the way.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    gimple_expand_calls_inline (bb, &id);
    gimple_expand_calls_inline (bb, &id);
 
 
  pop_gimplify_context (NULL);
  pop_gimplify_context (NULL);
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
    {
    {
      struct cgraph_edge *e;
      struct cgraph_edge *e;
 
 
      verify_cgraph_node (id.dst_node);
      verify_cgraph_node (id.dst_node);
 
 
      /* Double check that we inlined everything we are supposed to inline.  */
      /* Double check that we inlined everything we are supposed to inline.  */
      for (e = id.dst_node->callees; e; e = e->next_callee)
      for (e = id.dst_node->callees; e; e = e->next_callee)
        gcc_assert (e->inline_failed);
        gcc_assert (e->inline_failed);
    }
    }
#endif
#endif
 
 
  /* Fold the statements before compacting/renumbering the basic blocks.  */
  /* Fold the statements before compacting/renumbering the basic blocks.  */
  fold_marked_statements (last, id.statements_to_fold);
  fold_marked_statements (last, id.statements_to_fold);
  pointer_set_destroy (id.statements_to_fold);
  pointer_set_destroy (id.statements_to_fold);
 
 
  gcc_assert (!id.debug_stmts);
  gcc_assert (!id.debug_stmts);
 
 
  /* Renumber the (code) basic_blocks consecutively.  */
  /* Renumber the (code) basic_blocks consecutively.  */
  compact_blocks ();
  compact_blocks ();
  /* Renumber the lexical scoping (non-code) blocks consecutively.  */
  /* Renumber the lexical scoping (non-code) blocks consecutively.  */
  number_blocks (fn);
  number_blocks (fn);
 
 
  fold_cond_expr_cond ();
  fold_cond_expr_cond ();
  delete_unreachable_blocks_update_callgraph (&id);
  delete_unreachable_blocks_update_callgraph (&id);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_cgraph_node (id.dst_node);
  verify_cgraph_node (id.dst_node);
#endif
#endif
 
 
  /* It would be nice to check SSA/CFG/statement consistency here, but it is
  /* It would be nice to check SSA/CFG/statement consistency here, but it is
     not possible yet - the IPA passes might make various functions to not
     not possible yet - the IPA passes might make various functions to not
     throw and they don't care to proactively update local EH info.  This is
     throw and they don't care to proactively update local EH info.  This is
     done later in fixup_cfg pass that also execute the verification.  */
     done later in fixup_cfg pass that also execute the verification.  */
  return (TODO_update_ssa
  return (TODO_update_ssa
          | TODO_cleanup_cfg
          | TODO_cleanup_cfg
          | (gimple_in_ssa_p (cfun) ? TODO_remove_unused_locals : 0)
          | (gimple_in_ssa_p (cfun) ? TODO_remove_unused_locals : 0)
          | (profile_status != PROFILE_ABSENT ? TODO_rebuild_frequencies : 0));
          | (profile_status != PROFILE_ABSENT ? TODO_rebuild_frequencies : 0));
}
}
 
 
/* Passed to walk_tree.  Copies the node pointed to, if appropriate.  */
/* Passed to walk_tree.  Copies the node pointed to, if appropriate.  */
 
 
tree
tree
copy_tree_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
copy_tree_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
{
  enum tree_code code = TREE_CODE (*tp);
  enum tree_code code = TREE_CODE (*tp);
  enum tree_code_class cl = TREE_CODE_CLASS (code);
  enum tree_code_class cl = TREE_CODE_CLASS (code);
 
 
  /* We make copies of most nodes.  */
  /* We make copies of most nodes.  */
  if (IS_EXPR_CODE_CLASS (cl)
  if (IS_EXPR_CODE_CLASS (cl)
      || code == TREE_LIST
      || code == TREE_LIST
      || code == TREE_VEC
      || code == TREE_VEC
      || code == TYPE_DECL
      || code == TYPE_DECL
      || code == OMP_CLAUSE)
      || code == OMP_CLAUSE)
    {
    {
      /* Because the chain gets clobbered when we make a copy, we save it
      /* Because the chain gets clobbered when we make a copy, we save it
         here.  */
         here.  */
      tree chain = NULL_TREE, new_tree;
      tree chain = NULL_TREE, new_tree;
 
 
      chain = TREE_CHAIN (*tp);
      chain = TREE_CHAIN (*tp);
 
 
      /* Copy the node.  */
      /* Copy the node.  */
      new_tree = copy_node (*tp);
      new_tree = copy_node (*tp);
 
 
      /* Propagate mudflap marked-ness.  */
      /* Propagate mudflap marked-ness.  */
      if (flag_mudflap && mf_marked_p (*tp))
      if (flag_mudflap && mf_marked_p (*tp))
        mf_mark (new_tree);
        mf_mark (new_tree);
 
 
      *tp = new_tree;
      *tp = new_tree;
 
 
      /* Now, restore the chain, if appropriate.  That will cause
      /* Now, restore the chain, if appropriate.  That will cause
         walk_tree to walk into the chain as well.  */
         walk_tree to walk into the chain as well.  */
      if (code == PARM_DECL
      if (code == PARM_DECL
          || code == TREE_LIST
          || code == TREE_LIST
          || code == OMP_CLAUSE)
          || code == OMP_CLAUSE)
        TREE_CHAIN (*tp) = chain;
        TREE_CHAIN (*tp) = chain;
 
 
      /* For now, we don't update BLOCKs when we make copies.  So, we
      /* For now, we don't update BLOCKs when we make copies.  So, we
         have to nullify all BIND_EXPRs.  */
         have to nullify all BIND_EXPRs.  */
      if (TREE_CODE (*tp) == BIND_EXPR)
      if (TREE_CODE (*tp) == BIND_EXPR)
        BIND_EXPR_BLOCK (*tp) = NULL_TREE;
        BIND_EXPR_BLOCK (*tp) = NULL_TREE;
    }
    }
  else if (code == CONSTRUCTOR)
  else if (code == CONSTRUCTOR)
    {
    {
      /* CONSTRUCTOR nodes need special handling because
      /* CONSTRUCTOR nodes need special handling because
         we need to duplicate the vector of elements.  */
         we need to duplicate the vector of elements.  */
      tree new_tree;
      tree new_tree;
 
 
      new_tree = copy_node (*tp);
      new_tree = copy_node (*tp);
 
 
      /* Propagate mudflap marked-ness.  */
      /* Propagate mudflap marked-ness.  */
      if (flag_mudflap && mf_marked_p (*tp))
      if (flag_mudflap && mf_marked_p (*tp))
        mf_mark (new_tree);
        mf_mark (new_tree);
 
 
      CONSTRUCTOR_ELTS (new_tree) = VEC_copy (constructor_elt, gc,
      CONSTRUCTOR_ELTS (new_tree) = VEC_copy (constructor_elt, gc,
                                         CONSTRUCTOR_ELTS (*tp));
                                         CONSTRUCTOR_ELTS (*tp));
      *tp = new_tree;
      *tp = new_tree;
    }
    }
  else if (TREE_CODE_CLASS (code) == tcc_type)
  else if (TREE_CODE_CLASS (code) == tcc_type)
    *walk_subtrees = 0;
    *walk_subtrees = 0;
  else if (TREE_CODE_CLASS (code) == tcc_declaration)
  else if (TREE_CODE_CLASS (code) == tcc_declaration)
    *walk_subtrees = 0;
    *walk_subtrees = 0;
  else if (TREE_CODE_CLASS (code) == tcc_constant)
  else if (TREE_CODE_CLASS (code) == tcc_constant)
    *walk_subtrees = 0;
    *walk_subtrees = 0;
  else
  else
    gcc_assert (code != STATEMENT_LIST);
    gcc_assert (code != STATEMENT_LIST);
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* The SAVE_EXPR pointed to by TP is being copied.  If ST contains
/* The SAVE_EXPR pointed to by TP is being copied.  If ST contains
   information indicating to what new SAVE_EXPR this one should be mapped,
   information indicating to what new SAVE_EXPR this one should be mapped,
   use that one.  Otherwise, create a new node and enter it in ST.  FN is
   use that one.  Otherwise, create a new node and enter it in ST.  FN is
   the function into which the copy will be placed.  */
   the function into which the copy will be placed.  */
 
 
static void
static void
remap_save_expr (tree *tp, void *st_, int *walk_subtrees)
remap_save_expr (tree *tp, void *st_, int *walk_subtrees)
{
{
  struct pointer_map_t *st = (struct pointer_map_t *) st_;
  struct pointer_map_t *st = (struct pointer_map_t *) st_;
  tree *n;
  tree *n;
  tree t;
  tree t;
 
 
  /* See if we already encountered this SAVE_EXPR.  */
  /* See if we already encountered this SAVE_EXPR.  */
  n = (tree *) pointer_map_contains (st, *tp);
  n = (tree *) pointer_map_contains (st, *tp);
 
 
  /* If we didn't already remap this SAVE_EXPR, do so now.  */
  /* If we didn't already remap this SAVE_EXPR, do so now.  */
  if (!n)
  if (!n)
    {
    {
      t = copy_node (*tp);
      t = copy_node (*tp);
 
 
      /* Remember this SAVE_EXPR.  */
      /* Remember this SAVE_EXPR.  */
      *pointer_map_insert (st, *tp) = t;
      *pointer_map_insert (st, *tp) = t;
      /* Make sure we don't remap an already-remapped SAVE_EXPR.  */
      /* Make sure we don't remap an already-remapped SAVE_EXPR.  */
      *pointer_map_insert (st, t) = t;
      *pointer_map_insert (st, t) = t;
    }
    }
  else
  else
    {
    {
      /* We've already walked into this SAVE_EXPR; don't do it again.  */
      /* We've already walked into this SAVE_EXPR; don't do it again.  */
      *walk_subtrees = 0;
      *walk_subtrees = 0;
      t = *n;
      t = *n;
    }
    }
 
 
  /* Replace this SAVE_EXPR with the copy.  */
  /* Replace this SAVE_EXPR with the copy.  */
  *tp = t;
  *tp = t;
}
}
 
 
/* Called via walk_tree.  If *TP points to a DECL_STMT for a local label,
/* Called via walk_tree.  If *TP points to a DECL_STMT for a local label,
   copies the declaration and enters it in the splay_tree in DATA (which is
   copies the declaration and enters it in the splay_tree in DATA (which is
   really an `copy_body_data *').  */
   really an `copy_body_data *').  */
 
 
static tree
static tree
mark_local_for_remap_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
mark_local_for_remap_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
                        void *data)
                        void *data)
{
{
  copy_body_data *id = (copy_body_data *) data;
  copy_body_data *id = (copy_body_data *) data;
 
 
  /* Don't walk into types.  */
  /* Don't walk into types.  */
  if (TYPE_P (*tp))
  if (TYPE_P (*tp))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
 
 
  else if (TREE_CODE (*tp) == LABEL_EXPR)
  else if (TREE_CODE (*tp) == LABEL_EXPR)
    {
    {
      tree decl = TREE_OPERAND (*tp, 0);
      tree decl = TREE_OPERAND (*tp, 0);
 
 
      /* Copy the decl and remember the copy.  */
      /* Copy the decl and remember the copy.  */
      insert_decl_map (id, decl, id->copy_decl (decl, id));
      insert_decl_map (id, decl, id->copy_decl (decl, id));
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Perform any modifications to EXPR required when it is unsaved.  Does
/* Perform any modifications to EXPR required when it is unsaved.  Does
   not recurse into EXPR's subtrees.  */
   not recurse into EXPR's subtrees.  */
 
 
static void
static void
unsave_expr_1 (tree expr)
unsave_expr_1 (tree expr)
{
{
  switch (TREE_CODE (expr))
  switch (TREE_CODE (expr))
    {
    {
    case TARGET_EXPR:
    case TARGET_EXPR:
      /* Don't mess with a TARGET_EXPR that hasn't been expanded.
      /* Don't mess with a TARGET_EXPR that hasn't been expanded.
         It's OK for this to happen if it was part of a subtree that
         It's OK for this to happen if it was part of a subtree that
         isn't immediately expanded, such as operand 2 of another
         isn't immediately expanded, such as operand 2 of another
         TARGET_EXPR.  */
         TARGET_EXPR.  */
      if (TREE_OPERAND (expr, 1))
      if (TREE_OPERAND (expr, 1))
        break;
        break;
 
 
      TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
      TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
      TREE_OPERAND (expr, 3) = NULL_TREE;
      TREE_OPERAND (expr, 3) = NULL_TREE;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
/* Called via walk_tree when an expression is unsaved.  Using the
/* Called via walk_tree when an expression is unsaved.  Using the
   splay_tree pointed to by ST (which is really a `splay_tree'),
   splay_tree pointed to by ST (which is really a `splay_tree'),
   remaps all local declarations to appropriate replacements.  */
   remaps all local declarations to appropriate replacements.  */
 
 
static tree
static tree
unsave_r (tree *tp, int *walk_subtrees, void *data)
unsave_r (tree *tp, int *walk_subtrees, void *data)
{
{
  copy_body_data *id = (copy_body_data *) data;
  copy_body_data *id = (copy_body_data *) data;
  struct pointer_map_t *st = id->decl_map;
  struct pointer_map_t *st = id->decl_map;
  tree *n;
  tree *n;
 
 
  /* Only a local declaration (variable or label).  */
  /* Only a local declaration (variable or label).  */
  if ((TREE_CODE (*tp) == VAR_DECL && !TREE_STATIC (*tp))
  if ((TREE_CODE (*tp) == VAR_DECL && !TREE_STATIC (*tp))
      || TREE_CODE (*tp) == LABEL_DECL)
      || TREE_CODE (*tp) == LABEL_DECL)
    {
    {
      /* Lookup the declaration.  */
      /* Lookup the declaration.  */
      n = (tree *) pointer_map_contains (st, *tp);
      n = (tree *) pointer_map_contains (st, *tp);
 
 
      /* If it's there, remap it.  */
      /* If it's there, remap it.  */
      if (n)
      if (n)
        *tp = *n;
        *tp = *n;
    }
    }
 
 
  else if (TREE_CODE (*tp) == STATEMENT_LIST)
  else if (TREE_CODE (*tp) == STATEMENT_LIST)
    gcc_unreachable ();
    gcc_unreachable ();
  else if (TREE_CODE (*tp) == BIND_EXPR)
  else if (TREE_CODE (*tp) == BIND_EXPR)
    copy_bind_expr (tp, walk_subtrees, id);
    copy_bind_expr (tp, walk_subtrees, id);
  else if (TREE_CODE (*tp) == SAVE_EXPR
  else if (TREE_CODE (*tp) == SAVE_EXPR
           || TREE_CODE (*tp) == TARGET_EXPR)
           || TREE_CODE (*tp) == TARGET_EXPR)
    remap_save_expr (tp, st, walk_subtrees);
    remap_save_expr (tp, st, walk_subtrees);
  else
  else
    {
    {
      copy_tree_r (tp, walk_subtrees, NULL);
      copy_tree_r (tp, walk_subtrees, NULL);
 
 
      /* Do whatever unsaving is required.  */
      /* Do whatever unsaving is required.  */
      unsave_expr_1 (*tp);
      unsave_expr_1 (*tp);
    }
    }
 
 
  /* Keep iterating.  */
  /* Keep iterating.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Copies everything in EXPR and replaces variables, labels
/* Copies everything in EXPR and replaces variables, labels
   and SAVE_EXPRs local to EXPR.  */
   and SAVE_EXPRs local to EXPR.  */
 
 
tree
tree
unsave_expr_now (tree expr)
unsave_expr_now (tree expr)
{
{
  copy_body_data id;
  copy_body_data id;
 
 
  /* There's nothing to do for NULL_TREE.  */
  /* There's nothing to do for NULL_TREE.  */
  if (expr == 0)
  if (expr == 0)
    return expr;
    return expr;
 
 
  /* Set up ID.  */
  /* Set up ID.  */
  memset (&id, 0, sizeof (id));
  memset (&id, 0, sizeof (id));
  id.src_fn = current_function_decl;
  id.src_fn = current_function_decl;
  id.dst_fn = current_function_decl;
  id.dst_fn = current_function_decl;
  id.decl_map = pointer_map_create ();
  id.decl_map = pointer_map_create ();
  id.debug_map = NULL;
  id.debug_map = NULL;
 
 
  id.copy_decl = copy_decl_no_change;
  id.copy_decl = copy_decl_no_change;
  id.transform_call_graph_edges = CB_CGE_DUPLICATE;
  id.transform_call_graph_edges = CB_CGE_DUPLICATE;
  id.transform_new_cfg = false;
  id.transform_new_cfg = false;
  id.transform_return_to_modify = false;
  id.transform_return_to_modify = false;
  id.transform_lang_insert_block = NULL;
  id.transform_lang_insert_block = NULL;
 
 
  /* Walk the tree once to find local labels.  */
  /* Walk the tree once to find local labels.  */
  walk_tree_without_duplicates (&expr, mark_local_for_remap_r, &id);
  walk_tree_without_duplicates (&expr, mark_local_for_remap_r, &id);
 
 
  /* Walk the tree again, copying, remapping, and unsaving.  */
  /* Walk the tree again, copying, remapping, and unsaving.  */
  walk_tree (&expr, unsave_r, &id, NULL);
  walk_tree (&expr, unsave_r, &id, NULL);
 
 
  /* Clean up.  */
  /* Clean up.  */
  pointer_map_destroy (id.decl_map);
  pointer_map_destroy (id.decl_map);
  if (id.debug_map)
  if (id.debug_map)
    pointer_map_destroy (id.debug_map);
    pointer_map_destroy (id.debug_map);
 
 
  return expr;
  return expr;
}
}
 
 
/* Called via walk_gimple_seq.  If *GSIP points to a GIMPLE_LABEL for a local
/* Called via walk_gimple_seq.  If *GSIP points to a GIMPLE_LABEL for a local
   label, copies the declaration and enters it in the splay_tree in DATA (which
   label, copies the declaration and enters it in the splay_tree in DATA (which
   is really a 'copy_body_data *'.  */
   is really a 'copy_body_data *'.  */
 
 
static tree
static tree
mark_local_labels_stmt (gimple_stmt_iterator *gsip,
mark_local_labels_stmt (gimple_stmt_iterator *gsip,
                        bool *handled_ops_p ATTRIBUTE_UNUSED,
                        bool *handled_ops_p ATTRIBUTE_UNUSED,
                        struct walk_stmt_info *wi)
                        struct walk_stmt_info *wi)
{
{
  copy_body_data *id = (copy_body_data *) wi->info;
  copy_body_data *id = (copy_body_data *) wi->info;
  gimple stmt = gsi_stmt (*gsip);
  gimple stmt = gsi_stmt (*gsip);
 
 
  if (gimple_code (stmt) == GIMPLE_LABEL)
  if (gimple_code (stmt) == GIMPLE_LABEL)
    {
    {
      tree decl = gimple_label_label (stmt);
      tree decl = gimple_label_label (stmt);
 
 
      /* Copy the decl and remember the copy.  */
      /* Copy the decl and remember the copy.  */
      insert_decl_map (id, decl, id->copy_decl (decl, id));
      insert_decl_map (id, decl, id->copy_decl (decl, id));
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Called via walk_gimple_seq by copy_gimple_seq_and_replace_local.
/* Called via walk_gimple_seq by copy_gimple_seq_and_replace_local.
   Using the splay_tree pointed to by ST (which is really a `splay_tree'),
   Using the splay_tree pointed to by ST (which is really a `splay_tree'),
   remaps all local declarations to appropriate replacements in gimple
   remaps all local declarations to appropriate replacements in gimple
   operands. */
   operands. */
 
 
static tree
static tree
replace_locals_op (tree *tp, int *walk_subtrees, void *data)
replace_locals_op (tree *tp, int *walk_subtrees, void *data)
{
{
  struct walk_stmt_info *wi = (struct walk_stmt_info*) data;
  struct walk_stmt_info *wi = (struct walk_stmt_info*) data;
  copy_body_data *id = (copy_body_data *) wi->info;
  copy_body_data *id = (copy_body_data *) wi->info;
  struct pointer_map_t *st = id->decl_map;
  struct pointer_map_t *st = id->decl_map;
  tree *n;
  tree *n;
  tree expr = *tp;
  tree expr = *tp;
 
 
  /* Only a local declaration (variable or label).  */
  /* Only a local declaration (variable or label).  */
  if ((TREE_CODE (expr) == VAR_DECL
  if ((TREE_CODE (expr) == VAR_DECL
       && !TREE_STATIC (expr))
       && !TREE_STATIC (expr))
      || TREE_CODE (expr) == LABEL_DECL)
      || TREE_CODE (expr) == LABEL_DECL)
    {
    {
      /* Lookup the declaration.  */
      /* Lookup the declaration.  */
      n = (tree *) pointer_map_contains (st, expr);
      n = (tree *) pointer_map_contains (st, expr);
 
 
      /* If it's there, remap it.  */
      /* If it's there, remap it.  */
      if (n)
      if (n)
        *tp = *n;
        *tp = *n;
      *walk_subtrees = 0;
      *walk_subtrees = 0;
    }
    }
  else if (TREE_CODE (expr) == STATEMENT_LIST
  else if (TREE_CODE (expr) == STATEMENT_LIST
           || TREE_CODE (expr) == BIND_EXPR
           || TREE_CODE (expr) == BIND_EXPR
           || TREE_CODE (expr) == SAVE_EXPR)
           || TREE_CODE (expr) == SAVE_EXPR)
    gcc_unreachable ();
    gcc_unreachable ();
  else if (TREE_CODE (expr) == TARGET_EXPR)
  else if (TREE_CODE (expr) == TARGET_EXPR)
    {
    {
      /* Don't mess with a TARGET_EXPR that hasn't been expanded.
      /* Don't mess with a TARGET_EXPR that hasn't been expanded.
         It's OK for this to happen if it was part of a subtree that
         It's OK for this to happen if it was part of a subtree that
         isn't immediately expanded, such as operand 2 of another
         isn't immediately expanded, such as operand 2 of another
         TARGET_EXPR.  */
         TARGET_EXPR.  */
      if (!TREE_OPERAND (expr, 1))
      if (!TREE_OPERAND (expr, 1))
        {
        {
          TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
          TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
          TREE_OPERAND (expr, 3) = NULL_TREE;
          TREE_OPERAND (expr, 3) = NULL_TREE;
        }
        }
    }
    }
 
 
  /* Keep iterating.  */
  /* Keep iterating.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Called via walk_gimple_seq by copy_gimple_seq_and_replace_local.
/* Called via walk_gimple_seq by copy_gimple_seq_and_replace_local.
   Using the splay_tree pointed to by ST (which is really a `splay_tree'),
   Using the splay_tree pointed to by ST (which is really a `splay_tree'),
   remaps all local declarations to appropriate replacements in gimple
   remaps all local declarations to appropriate replacements in gimple
   statements. */
   statements. */
 
 
static tree
static tree
replace_locals_stmt (gimple_stmt_iterator *gsip,
replace_locals_stmt (gimple_stmt_iterator *gsip,
                     bool *handled_ops_p ATTRIBUTE_UNUSED,
                     bool *handled_ops_p ATTRIBUTE_UNUSED,
                     struct walk_stmt_info *wi)
                     struct walk_stmt_info *wi)
{
{
  copy_body_data *id = (copy_body_data *) wi->info;
  copy_body_data *id = (copy_body_data *) wi->info;
  gimple stmt = gsi_stmt (*gsip);
  gimple stmt = gsi_stmt (*gsip);
 
 
  if (gimple_code (stmt) == GIMPLE_BIND)
  if (gimple_code (stmt) == GIMPLE_BIND)
    {
    {
      tree block = gimple_bind_block (stmt);
      tree block = gimple_bind_block (stmt);
 
 
      if (block)
      if (block)
        {
        {
          remap_block (&block, id);
          remap_block (&block, id);
          gimple_bind_set_block (stmt, block);
          gimple_bind_set_block (stmt, block);
        }
        }
 
 
      /* This will remap a lot of the same decls again, but this should be
      /* This will remap a lot of the same decls again, but this should be
         harmless.  */
         harmless.  */
      if (gimple_bind_vars (stmt))
      if (gimple_bind_vars (stmt))
        gimple_bind_set_vars (stmt, remap_decls (gimple_bind_vars (stmt), NULL, id));
        gimple_bind_set_vars (stmt, remap_decls (gimple_bind_vars (stmt), NULL, id));
    }
    }
 
 
  /* Keep iterating.  */
  /* Keep iterating.  */
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Copies everything in SEQ and replaces variables and labels local to
/* Copies everything in SEQ and replaces variables and labels local to
   current_function_decl.  */
   current_function_decl.  */
 
 
gimple_seq
gimple_seq
copy_gimple_seq_and_replace_locals (gimple_seq seq)
copy_gimple_seq_and_replace_locals (gimple_seq seq)
{
{
  copy_body_data id;
  copy_body_data id;
  struct walk_stmt_info wi;
  struct walk_stmt_info wi;
  struct pointer_set_t *visited;
  struct pointer_set_t *visited;
  gimple_seq copy;
  gimple_seq copy;
 
 
  /* There's nothing to do for NULL_TREE.  */
  /* There's nothing to do for NULL_TREE.  */
  if (seq == NULL)
  if (seq == NULL)
    return seq;
    return seq;
 
 
  /* Set up ID.  */
  /* Set up ID.  */
  memset (&id, 0, sizeof (id));
  memset (&id, 0, sizeof (id));
  id.src_fn = current_function_decl;
  id.src_fn = current_function_decl;
  id.dst_fn = current_function_decl;
  id.dst_fn = current_function_decl;
  id.decl_map = pointer_map_create ();
  id.decl_map = pointer_map_create ();
  id.debug_map = NULL;
  id.debug_map = NULL;
 
 
  id.copy_decl = copy_decl_no_change;
  id.copy_decl = copy_decl_no_change;
  id.transform_call_graph_edges = CB_CGE_DUPLICATE;
  id.transform_call_graph_edges = CB_CGE_DUPLICATE;
  id.transform_new_cfg = false;
  id.transform_new_cfg = false;
  id.transform_return_to_modify = false;
  id.transform_return_to_modify = false;
  id.transform_lang_insert_block = NULL;
  id.transform_lang_insert_block = NULL;
 
 
  /* Walk the tree once to find local labels.  */
  /* Walk the tree once to find local labels.  */
  memset (&wi, 0, sizeof (wi));
  memset (&wi, 0, sizeof (wi));
  visited = pointer_set_create ();
  visited = pointer_set_create ();
  wi.info = &id;
  wi.info = &id;
  wi.pset = visited;
  wi.pset = visited;
  walk_gimple_seq (seq, mark_local_labels_stmt, NULL, &wi);
  walk_gimple_seq (seq, mark_local_labels_stmt, NULL, &wi);
  pointer_set_destroy (visited);
  pointer_set_destroy (visited);
 
 
  copy = gimple_seq_copy (seq);
  copy = gimple_seq_copy (seq);
 
 
  /* Walk the copy, remapping decls.  */
  /* Walk the copy, remapping decls.  */
  memset (&wi, 0, sizeof (wi));
  memset (&wi, 0, sizeof (wi));
  wi.info = &id;
  wi.info = &id;
  walk_gimple_seq (copy, replace_locals_stmt, replace_locals_op, &wi);
  walk_gimple_seq (copy, replace_locals_stmt, replace_locals_op, &wi);
 
 
  /* Clean up.  */
  /* Clean up.  */
  pointer_map_destroy (id.decl_map);
  pointer_map_destroy (id.decl_map);
  if (id.debug_map)
  if (id.debug_map)
    pointer_map_destroy (id.debug_map);
    pointer_map_destroy (id.debug_map);
 
 
  return copy;
  return copy;
}
}
 
 
 
 
/* Allow someone to determine if SEARCH is a child of TOP from gdb.  */
/* Allow someone to determine if SEARCH is a child of TOP from gdb.  */
 
 
static tree
static tree
debug_find_tree_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
debug_find_tree_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
{
{
  if (*tp == data)
  if (*tp == data)
    return (tree) data;
    return (tree) data;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
bool
bool
debug_find_tree (tree top, tree search)
debug_find_tree (tree top, tree search)
{
{
  return walk_tree_without_duplicates (&top, debug_find_tree_1, search) != 0;
  return walk_tree_without_duplicates (&top, debug_find_tree_1, search) != 0;
}
}
 
 
 
 
/* Declare the variables created by the inliner.  Add all the variables in
/* Declare the variables created by the inliner.  Add all the variables in
   VARS to BIND_EXPR.  */
   VARS to BIND_EXPR.  */
 
 
static void
static void
declare_inline_vars (tree block, tree vars)
declare_inline_vars (tree block, tree vars)
{
{
  tree t;
  tree t;
  for (t = vars; t; t = TREE_CHAIN (t))
  for (t = vars; t; t = TREE_CHAIN (t))
    {
    {
      DECL_SEEN_IN_BIND_EXPR_P (t) = 1;
      DECL_SEEN_IN_BIND_EXPR_P (t) = 1;
      gcc_assert (!TREE_STATIC (t) && !TREE_ASM_WRITTEN (t));
      gcc_assert (!TREE_STATIC (t) && !TREE_ASM_WRITTEN (t));
      cfun->local_decls = tree_cons (NULL_TREE, t, cfun->local_decls);
      cfun->local_decls = tree_cons (NULL_TREE, t, cfun->local_decls);
    }
    }
 
 
  if (block)
  if (block)
    BLOCK_VARS (block) = chainon (BLOCK_VARS (block), vars);
    BLOCK_VARS (block) = chainon (BLOCK_VARS (block), vars);
}
}
 
 
/* Copy NODE (which must be a DECL).  The DECL originally was in the FROM_FN,
/* Copy NODE (which must be a DECL).  The DECL originally was in the FROM_FN,
   but now it will be in the TO_FN.  PARM_TO_VAR means enable PARM_DECL to
   but now it will be in the TO_FN.  PARM_TO_VAR means enable PARM_DECL to
   VAR_DECL translation.  */
   VAR_DECL translation.  */
 
 
static tree
static tree
copy_decl_for_dup_finish (copy_body_data *id, tree decl, tree copy)
copy_decl_for_dup_finish (copy_body_data *id, tree decl, tree copy)
{
{
  /* Don't generate debug information for the copy if we wouldn't have
  /* Don't generate debug information for the copy if we wouldn't have
     generated it for the copy either.  */
     generated it for the copy either.  */
  DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (decl);
  DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (decl);
  DECL_IGNORED_P (copy) = DECL_IGNORED_P (decl);
  DECL_IGNORED_P (copy) = DECL_IGNORED_P (decl);
 
 
  /* Set the DECL_ABSTRACT_ORIGIN so the debugging routines know what
  /* Set the DECL_ABSTRACT_ORIGIN so the debugging routines know what
     declaration inspired this copy.  */
     declaration inspired this copy.  */
  DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (decl);
  DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (decl);
 
 
  /* The new variable/label has no RTL, yet.  */
  /* The new variable/label has no RTL, yet.  */
  if (CODE_CONTAINS_STRUCT (TREE_CODE (copy), TS_DECL_WRTL)
  if (CODE_CONTAINS_STRUCT (TREE_CODE (copy), TS_DECL_WRTL)
      && !TREE_STATIC (copy) && !DECL_EXTERNAL (copy))
      && !TREE_STATIC (copy) && !DECL_EXTERNAL (copy))
    SET_DECL_RTL (copy, NULL_RTX);
    SET_DECL_RTL (copy, NULL_RTX);
 
 
  /* These args would always appear unused, if not for this.  */
  /* These args would always appear unused, if not for this.  */
  TREE_USED (copy) = 1;
  TREE_USED (copy) = 1;
 
 
  /* Set the context for the new declaration.  */
  /* Set the context for the new declaration.  */
  if (!DECL_CONTEXT (decl))
  if (!DECL_CONTEXT (decl))
    /* Globals stay global.  */
    /* Globals stay global.  */
    ;
    ;
  else if (DECL_CONTEXT (decl) != id->src_fn)
  else if (DECL_CONTEXT (decl) != id->src_fn)
    /* Things that weren't in the scope of the function we're inlining
    /* Things that weren't in the scope of the function we're inlining
       from aren't in the scope we're inlining to, either.  */
       from aren't in the scope we're inlining to, either.  */
    ;
    ;
  else if (TREE_STATIC (decl))
  else if (TREE_STATIC (decl))
    /* Function-scoped static variables should stay in the original
    /* Function-scoped static variables should stay in the original
       function.  */
       function.  */
    ;
    ;
  else
  else
    /* Ordinary automatic local variables are now in the scope of the
    /* Ordinary automatic local variables are now in the scope of the
       new function.  */
       new function.  */
    DECL_CONTEXT (copy) = id->dst_fn;
    DECL_CONTEXT (copy) = id->dst_fn;
 
 
  return copy;
  return copy;
}
}
 
 
static tree
static tree
copy_decl_to_var (tree decl, copy_body_data *id)
copy_decl_to_var (tree decl, copy_body_data *id)
{
{
  tree copy, type;
  tree copy, type;
 
 
  gcc_assert (TREE_CODE (decl) == PARM_DECL
  gcc_assert (TREE_CODE (decl) == PARM_DECL
              || TREE_CODE (decl) == RESULT_DECL);
              || TREE_CODE (decl) == RESULT_DECL);
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
 
 
  copy = build_decl (DECL_SOURCE_LOCATION (id->dst_fn),
  copy = build_decl (DECL_SOURCE_LOCATION (id->dst_fn),
                     VAR_DECL, DECL_NAME (decl), type);
                     VAR_DECL, DECL_NAME (decl), type);
  TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl);
  TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl);
  TREE_READONLY (copy) = TREE_READONLY (decl);
  TREE_READONLY (copy) = TREE_READONLY (decl);
  TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl);
  TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl);
  DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (decl);
  DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (decl);
 
 
  return copy_decl_for_dup_finish (id, decl, copy);
  return copy_decl_for_dup_finish (id, decl, copy);
}
}
 
 
/* Like copy_decl_to_var, but create a return slot object instead of a
/* Like copy_decl_to_var, but create a return slot object instead of a
   pointer variable for return by invisible reference.  */
   pointer variable for return by invisible reference.  */
 
 
static tree
static tree
copy_result_decl_to_var (tree decl, copy_body_data *id)
copy_result_decl_to_var (tree decl, copy_body_data *id)
{
{
  tree copy, type;
  tree copy, type;
 
 
  gcc_assert (TREE_CODE (decl) == PARM_DECL
  gcc_assert (TREE_CODE (decl) == PARM_DECL
              || TREE_CODE (decl) == RESULT_DECL);
              || TREE_CODE (decl) == RESULT_DECL);
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  if (DECL_BY_REFERENCE (decl))
  if (DECL_BY_REFERENCE (decl))
    type = TREE_TYPE (type);
    type = TREE_TYPE (type);
 
 
  copy = build_decl (DECL_SOURCE_LOCATION (id->dst_fn),
  copy = build_decl (DECL_SOURCE_LOCATION (id->dst_fn),
                     VAR_DECL, DECL_NAME (decl), type);
                     VAR_DECL, DECL_NAME (decl), type);
  TREE_READONLY (copy) = TREE_READONLY (decl);
  TREE_READONLY (copy) = TREE_READONLY (decl);
  TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl);
  TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl);
  if (!DECL_BY_REFERENCE (decl))
  if (!DECL_BY_REFERENCE (decl))
    {
    {
      TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl);
      TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl);
      DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (decl);
      DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (decl);
    }
    }
 
 
  return copy_decl_for_dup_finish (id, decl, copy);
  return copy_decl_for_dup_finish (id, decl, copy);
}
}
 
 
tree
tree
copy_decl_no_change (tree decl, copy_body_data *id)
copy_decl_no_change (tree decl, copy_body_data *id)
{
{
  tree copy;
  tree copy;
 
 
  copy = copy_node (decl);
  copy = copy_node (decl);
 
 
  /* The COPY is not abstract; it will be generated in DST_FN.  */
  /* The COPY is not abstract; it will be generated in DST_FN.  */
  DECL_ABSTRACT (copy) = 0;
  DECL_ABSTRACT (copy) = 0;
  lang_hooks.dup_lang_specific_decl (copy);
  lang_hooks.dup_lang_specific_decl (copy);
 
 
  /* TREE_ADDRESSABLE isn't used to indicate that a label's address has
  /* TREE_ADDRESSABLE isn't used to indicate that a label's address has
     been taken; it's for internal bookkeeping in expand_goto_internal.  */
     been taken; it's for internal bookkeeping in expand_goto_internal.  */
  if (TREE_CODE (copy) == LABEL_DECL)
  if (TREE_CODE (copy) == LABEL_DECL)
    {
    {
      TREE_ADDRESSABLE (copy) = 0;
      TREE_ADDRESSABLE (copy) = 0;
      LABEL_DECL_UID (copy) = -1;
      LABEL_DECL_UID (copy) = -1;
    }
    }
 
 
  return copy_decl_for_dup_finish (id, decl, copy);
  return copy_decl_for_dup_finish (id, decl, copy);
}
}
 
 
static tree
static tree
copy_decl_maybe_to_var (tree decl, copy_body_data *id)
copy_decl_maybe_to_var (tree decl, copy_body_data *id)
{
{
  if (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL)
  if (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL)
    return copy_decl_to_var (decl, id);
    return copy_decl_to_var (decl, id);
  else
  else
    return copy_decl_no_change (decl, id);
    return copy_decl_no_change (decl, id);
}
}
 
 
/* Return a copy of the function's argument tree.  */
/* Return a copy of the function's argument tree.  */
static tree
static tree
copy_arguments_for_versioning (tree orig_parm, copy_body_data * id,
copy_arguments_for_versioning (tree orig_parm, copy_body_data * id,
                               bitmap args_to_skip, tree *vars)
                               bitmap args_to_skip, tree *vars)
{
{
  tree arg, *parg;
  tree arg, *parg;
  tree new_parm = NULL;
  tree new_parm = NULL;
  int i = 0;
  int i = 0;
 
 
  parg = &new_parm;
  parg = &new_parm;
 
 
  for (arg = orig_parm; arg; arg = TREE_CHAIN (arg), i++)
  for (arg = orig_parm; arg; arg = TREE_CHAIN (arg), i++)
    if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
    if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
      {
      {
        tree new_tree = remap_decl (arg, id);
        tree new_tree = remap_decl (arg, id);
        lang_hooks.dup_lang_specific_decl (new_tree);
        lang_hooks.dup_lang_specific_decl (new_tree);
        *parg = new_tree;
        *parg = new_tree;
        parg = &TREE_CHAIN (new_tree);
        parg = &TREE_CHAIN (new_tree);
      }
      }
    else if (!pointer_map_contains (id->decl_map, arg))
    else if (!pointer_map_contains (id->decl_map, arg))
      {
      {
        /* Make an equivalent VAR_DECL.  If the argument was used
        /* Make an equivalent VAR_DECL.  If the argument was used
           as temporary variable later in function, the uses will be
           as temporary variable later in function, the uses will be
           replaced by local variable.  */
           replaced by local variable.  */
        tree var = copy_decl_to_var (arg, id);
        tree var = copy_decl_to_var (arg, id);
        get_var_ann (var);
        get_var_ann (var);
        add_referenced_var (var);
        add_referenced_var (var);
        insert_decl_map (id, arg, var);
        insert_decl_map (id, arg, var);
        /* Declare this new variable.  */
        /* Declare this new variable.  */
        TREE_CHAIN (var) = *vars;
        TREE_CHAIN (var) = *vars;
        *vars = var;
        *vars = var;
      }
      }
  return new_parm;
  return new_parm;
}
}
 
 
/* Return a copy of the function's static chain.  */
/* Return a copy of the function's static chain.  */
static tree
static tree
copy_static_chain (tree static_chain, copy_body_data * id)
copy_static_chain (tree static_chain, copy_body_data * id)
{
{
  tree *chain_copy, *pvar;
  tree *chain_copy, *pvar;
 
 
  chain_copy = &static_chain;
  chain_copy = &static_chain;
  for (pvar = chain_copy; *pvar; pvar = &TREE_CHAIN (*pvar))
  for (pvar = chain_copy; *pvar; pvar = &TREE_CHAIN (*pvar))
    {
    {
      tree new_tree = remap_decl (*pvar, id);
      tree new_tree = remap_decl (*pvar, id);
      lang_hooks.dup_lang_specific_decl (new_tree);
      lang_hooks.dup_lang_specific_decl (new_tree);
      TREE_CHAIN (new_tree) = TREE_CHAIN (*pvar);
      TREE_CHAIN (new_tree) = TREE_CHAIN (*pvar);
      *pvar = new_tree;
      *pvar = new_tree;
    }
    }
  return static_chain;
  return static_chain;
}
}
 
 
/* Return true if the function is allowed to be versioned.
/* Return true if the function is allowed to be versioned.
   This is a guard for the versioning functionality.  */
   This is a guard for the versioning functionality.  */
 
 
bool
bool
tree_versionable_function_p (tree fndecl)
tree_versionable_function_p (tree fndecl)
{
{
  return (!lookup_attribute ("noclone", DECL_ATTRIBUTES (fndecl))
  return (!lookup_attribute ("noclone", DECL_ATTRIBUTES (fndecl))
          && copy_forbidden (DECL_STRUCT_FUNCTION (fndecl), fndecl) == NULL);
          && copy_forbidden (DECL_STRUCT_FUNCTION (fndecl), fndecl) == NULL);
}
}
 
 
/* Delete all unreachable basic blocks and update callgraph.
/* Delete all unreachable basic blocks and update callgraph.
   Doing so is somewhat nontrivial because we need to update all clones and
   Doing so is somewhat nontrivial because we need to update all clones and
   remove inline function that become unreachable.  */
   remove inline function that become unreachable.  */
 
 
static bool
static bool
delete_unreachable_blocks_update_callgraph (copy_body_data *id)
delete_unreachable_blocks_update_callgraph (copy_body_data *id)
{
{
  bool changed = false;
  bool changed = false;
  basic_block b, next_bb;
  basic_block b, next_bb;
 
 
  find_unreachable_blocks ();
  find_unreachable_blocks ();
 
 
  /* Delete all unreachable basic blocks.  */
  /* Delete all unreachable basic blocks.  */
 
 
  for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
  for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
    {
    {
      next_bb = b->next_bb;
      next_bb = b->next_bb;
 
 
      if (!(b->flags & BB_REACHABLE))
      if (!(b->flags & BB_REACHABLE))
        {
        {
          gimple_stmt_iterator bsi;
          gimple_stmt_iterator bsi;
 
 
          for (bsi = gsi_start_bb (b); !gsi_end_p (bsi); gsi_next (&bsi))
          for (bsi = gsi_start_bb (b); !gsi_end_p (bsi); gsi_next (&bsi))
            if (gimple_code (gsi_stmt (bsi)) == GIMPLE_CALL)
            if (gimple_code (gsi_stmt (bsi)) == GIMPLE_CALL)
              {
              {
                struct cgraph_edge *e;
                struct cgraph_edge *e;
                struct cgraph_node *node;
                struct cgraph_node *node;
 
 
                if ((e = cgraph_edge (id->dst_node, gsi_stmt (bsi))) != NULL)
                if ((e = cgraph_edge (id->dst_node, gsi_stmt (bsi))) != NULL)
                  {
                  {
                    if (!e->inline_failed)
                    if (!e->inline_failed)
                      cgraph_remove_node_and_inline_clones (e->callee);
                      cgraph_remove_node_and_inline_clones (e->callee);
                    else
                    else
                      cgraph_remove_edge (e);
                      cgraph_remove_edge (e);
                  }
                  }
                if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES
                if (id->transform_call_graph_edges == CB_CGE_MOVE_CLONES
                    && id->dst_node->clones)
                    && id->dst_node->clones)
                  for (node = id->dst_node->clones; node != id->dst_node;)
                  for (node = id->dst_node->clones; node != id->dst_node;)
                    {
                    {
                      if ((e = cgraph_edge (node, gsi_stmt (bsi))) != NULL)
                      if ((e = cgraph_edge (node, gsi_stmt (bsi))) != NULL)
                        {
                        {
                          if (!e->inline_failed)
                          if (!e->inline_failed)
                            cgraph_remove_node_and_inline_clones (e->callee);
                            cgraph_remove_node_and_inline_clones (e->callee);
                          else
                          else
                            cgraph_remove_edge (e);
                            cgraph_remove_edge (e);
                        }
                        }
 
 
                      if (node->clones)
                      if (node->clones)
                        node = node->clones;
                        node = node->clones;
                      else if (node->next_sibling_clone)
                      else if (node->next_sibling_clone)
                        node = node->next_sibling_clone;
                        node = node->next_sibling_clone;
                      else
                      else
                        {
                        {
                          while (node != id->dst_node && !node->next_sibling_clone)
                          while (node != id->dst_node && !node->next_sibling_clone)
                            node = node->clone_of;
                            node = node->clone_of;
                          if (node != id->dst_node)
                          if (node != id->dst_node)
                            node = node->next_sibling_clone;
                            node = node->next_sibling_clone;
                        }
                        }
                    }
                    }
              }
              }
          delete_basic_block (b);
          delete_basic_block (b);
          changed = true;
          changed = true;
        }
        }
    }
    }
 
 
  if (changed)
  if (changed)
    tidy_fallthru_edges ();
    tidy_fallthru_edges ();
  return changed;
  return changed;
}
}
 
 
/* Update clone info after duplication.  */
/* Update clone info after duplication.  */
 
 
static void
static void
update_clone_info (copy_body_data * id)
update_clone_info (copy_body_data * id)
{
{
  struct cgraph_node *node;
  struct cgraph_node *node;
  if (!id->dst_node->clones)
  if (!id->dst_node->clones)
    return;
    return;
  for (node = id->dst_node->clones; node != id->dst_node;)
  for (node = id->dst_node->clones; node != id->dst_node;)
    {
    {
      /* First update replace maps to match the new body.  */
      /* First update replace maps to match the new body.  */
      if (node->clone.tree_map)
      if (node->clone.tree_map)
        {
        {
          unsigned int i;
          unsigned int i;
          for (i = 0; i < VEC_length (ipa_replace_map_p, node->clone.tree_map); i++)
          for (i = 0; i < VEC_length (ipa_replace_map_p, node->clone.tree_map); i++)
            {
            {
              struct ipa_replace_map *replace_info;
              struct ipa_replace_map *replace_info;
              replace_info = VEC_index (ipa_replace_map_p, node->clone.tree_map, i);
              replace_info = VEC_index (ipa_replace_map_p, node->clone.tree_map, i);
              walk_tree (&replace_info->old_tree, copy_tree_body_r, id, NULL);
              walk_tree (&replace_info->old_tree, copy_tree_body_r, id, NULL);
              walk_tree (&replace_info->new_tree, copy_tree_body_r, id, NULL);
              walk_tree (&replace_info->new_tree, copy_tree_body_r, id, NULL);
            }
            }
        }
        }
      if (node->clones)
      if (node->clones)
        node = node->clones;
        node = node->clones;
      else if (node->next_sibling_clone)
      else if (node->next_sibling_clone)
        node = node->next_sibling_clone;
        node = node->next_sibling_clone;
      else
      else
        {
        {
          while (node != id->dst_node && !node->next_sibling_clone)
          while (node != id->dst_node && !node->next_sibling_clone)
            node = node->clone_of;
            node = node->clone_of;
          if (node != id->dst_node)
          if (node != id->dst_node)
            node = node->next_sibling_clone;
            node = node->next_sibling_clone;
        }
        }
    }
    }
}
}
 
 
/* Create a copy of a function's tree.
/* Create a copy of a function's tree.
   OLD_DECL and NEW_DECL are FUNCTION_DECL tree nodes
   OLD_DECL and NEW_DECL are FUNCTION_DECL tree nodes
   of the original function and the new copied function
   of the original function and the new copied function
   respectively.  In case we want to replace a DECL
   respectively.  In case we want to replace a DECL
   tree with another tree while duplicating the function's
   tree with another tree while duplicating the function's
   body, TREE_MAP represents the mapping between these
   body, TREE_MAP represents the mapping between these
   trees. If UPDATE_CLONES is set, the call_stmt fields
   trees. If UPDATE_CLONES is set, the call_stmt fields
   of edges of clones of the function will be updated.  */
   of edges of clones of the function will be updated.  */
void
void
tree_function_versioning (tree old_decl, tree new_decl,
tree_function_versioning (tree old_decl, tree new_decl,
                          VEC(ipa_replace_map_p,gc)* tree_map,
                          VEC(ipa_replace_map_p,gc)* tree_map,
                          bool update_clones, bitmap args_to_skip)
                          bool update_clones, bitmap args_to_skip)
{
{
  struct cgraph_node *old_version_node;
  struct cgraph_node *old_version_node;
  struct cgraph_node *new_version_node;
  struct cgraph_node *new_version_node;
  copy_body_data id;
  copy_body_data id;
  tree p;
  tree p;
  unsigned i;
  unsigned i;
  struct ipa_replace_map *replace_info;
  struct ipa_replace_map *replace_info;
  basic_block old_entry_block, bb;
  basic_block old_entry_block, bb;
  VEC (gimple, heap) *init_stmts = VEC_alloc (gimple, heap, 10);
  VEC (gimple, heap) *init_stmts = VEC_alloc (gimple, heap, 10);
 
 
  tree t_step;
  tree t_step;
  tree old_current_function_decl = current_function_decl;
  tree old_current_function_decl = current_function_decl;
  tree vars = NULL_TREE;
  tree vars = NULL_TREE;
 
 
  gcc_assert (TREE_CODE (old_decl) == FUNCTION_DECL
  gcc_assert (TREE_CODE (old_decl) == FUNCTION_DECL
              && TREE_CODE (new_decl) == FUNCTION_DECL);
              && TREE_CODE (new_decl) == FUNCTION_DECL);
  DECL_POSSIBLY_INLINED (old_decl) = 1;
  DECL_POSSIBLY_INLINED (old_decl) = 1;
 
 
  old_version_node = cgraph_node (old_decl);
  old_version_node = cgraph_node (old_decl);
  new_version_node = cgraph_node (new_decl);
  new_version_node = cgraph_node (new_decl);
 
 
  /* Output the inlining info for this abstract function, since it has been
  /* Output the inlining info for this abstract function, since it has been
     inlined.  If we don't do this now, we can lose the information about the
     inlined.  If we don't do this now, we can lose the information about the
     variables in the function when the blocks get blown away as soon as we
     variables in the function when the blocks get blown away as soon as we
     remove the cgraph node.  */
     remove the cgraph node.  */
  (*debug_hooks->outlining_inline_function) (old_decl);
  (*debug_hooks->outlining_inline_function) (old_decl);
 
 
  DECL_ARTIFICIAL (new_decl) = 1;
  DECL_ARTIFICIAL (new_decl) = 1;
  DECL_ABSTRACT_ORIGIN (new_decl) = DECL_ORIGIN (old_decl);
  DECL_ABSTRACT_ORIGIN (new_decl) = DECL_ORIGIN (old_decl);
  DECL_FUNCTION_PERSONALITY (new_decl) = DECL_FUNCTION_PERSONALITY (old_decl);
  DECL_FUNCTION_PERSONALITY (new_decl) = DECL_FUNCTION_PERSONALITY (old_decl);
 
 
  /* Prepare the data structures for the tree copy.  */
  /* Prepare the data structures for the tree copy.  */
  memset (&id, 0, sizeof (id));
  memset (&id, 0, sizeof (id));
 
 
  /* Generate a new name for the new version. */
  /* Generate a new name for the new version. */
  id.statements_to_fold = pointer_set_create ();
  id.statements_to_fold = pointer_set_create ();
 
 
  id.decl_map = pointer_map_create ();
  id.decl_map = pointer_map_create ();
  id.debug_map = NULL;
  id.debug_map = NULL;
  id.src_fn = old_decl;
  id.src_fn = old_decl;
  id.dst_fn = new_decl;
  id.dst_fn = new_decl;
  id.src_node = old_version_node;
  id.src_node = old_version_node;
  id.dst_node = new_version_node;
  id.dst_node = new_version_node;
  id.src_cfun = DECL_STRUCT_FUNCTION (old_decl);
  id.src_cfun = DECL_STRUCT_FUNCTION (old_decl);
  if (id.src_node->ipa_transforms_to_apply)
  if (id.src_node->ipa_transforms_to_apply)
    {
    {
      VEC(ipa_opt_pass,heap) * old_transforms_to_apply = id.dst_node->ipa_transforms_to_apply;
      VEC(ipa_opt_pass,heap) * old_transforms_to_apply = id.dst_node->ipa_transforms_to_apply;
      unsigned int i;
      unsigned int i;
 
 
      id.dst_node->ipa_transforms_to_apply = VEC_copy (ipa_opt_pass, heap,
      id.dst_node->ipa_transforms_to_apply = VEC_copy (ipa_opt_pass, heap,
                                                       id.src_node->ipa_transforms_to_apply);
                                                       id.src_node->ipa_transforms_to_apply);
      for (i = 0; i < VEC_length (ipa_opt_pass, old_transforms_to_apply); i++)
      for (i = 0; i < VEC_length (ipa_opt_pass, old_transforms_to_apply); i++)
        VEC_safe_push (ipa_opt_pass, heap, id.dst_node->ipa_transforms_to_apply,
        VEC_safe_push (ipa_opt_pass, heap, id.dst_node->ipa_transforms_to_apply,
                       VEC_index (ipa_opt_pass,
                       VEC_index (ipa_opt_pass,
                                  old_transforms_to_apply,
                                  old_transforms_to_apply,
                                  i));
                                  i));
    }
    }
 
 
  id.copy_decl = copy_decl_no_change;
  id.copy_decl = copy_decl_no_change;
  id.transform_call_graph_edges
  id.transform_call_graph_edges
    = update_clones ? CB_CGE_MOVE_CLONES : CB_CGE_MOVE;
    = update_clones ? CB_CGE_MOVE_CLONES : CB_CGE_MOVE;
  id.transform_new_cfg = true;
  id.transform_new_cfg = true;
  id.transform_return_to_modify = false;
  id.transform_return_to_modify = false;
  id.transform_lang_insert_block = NULL;
  id.transform_lang_insert_block = NULL;
 
 
  current_function_decl = new_decl;
  current_function_decl = new_decl;
  old_entry_block = ENTRY_BLOCK_PTR_FOR_FUNCTION
  old_entry_block = ENTRY_BLOCK_PTR_FOR_FUNCTION
    (DECL_STRUCT_FUNCTION (old_decl));
    (DECL_STRUCT_FUNCTION (old_decl));
  initialize_cfun (new_decl, old_decl,
  initialize_cfun (new_decl, old_decl,
                   old_entry_block->count);
                   old_entry_block->count);
  push_cfun (DECL_STRUCT_FUNCTION (new_decl));
  push_cfun (DECL_STRUCT_FUNCTION (new_decl));
 
 
  /* Copy the function's static chain.  */
  /* Copy the function's static chain.  */
  p = DECL_STRUCT_FUNCTION (old_decl)->static_chain_decl;
  p = DECL_STRUCT_FUNCTION (old_decl)->static_chain_decl;
  if (p)
  if (p)
    DECL_STRUCT_FUNCTION (new_decl)->static_chain_decl =
    DECL_STRUCT_FUNCTION (new_decl)->static_chain_decl =
      copy_static_chain (DECL_STRUCT_FUNCTION (old_decl)->static_chain_decl,
      copy_static_chain (DECL_STRUCT_FUNCTION (old_decl)->static_chain_decl,
                         &id);
                         &id);
 
 
  /* If there's a tree_map, prepare for substitution.  */
  /* If there's a tree_map, prepare for substitution.  */
  if (tree_map)
  if (tree_map)
    for (i = 0; i < VEC_length (ipa_replace_map_p, tree_map); i++)
    for (i = 0; i < VEC_length (ipa_replace_map_p, tree_map); i++)
      {
      {
        gimple init;
        gimple init;
        replace_info = VEC_index (ipa_replace_map_p, tree_map, i);
        replace_info = VEC_index (ipa_replace_map_p, tree_map, i);
        if (replace_info->replace_p)
        if (replace_info->replace_p)
          {
          {
            tree op = replace_info->new_tree;
            tree op = replace_info->new_tree;
 
 
            STRIP_NOPS (op);
            STRIP_NOPS (op);
 
 
            if (TREE_CODE (op) == VIEW_CONVERT_EXPR)
            if (TREE_CODE (op) == VIEW_CONVERT_EXPR)
              op = TREE_OPERAND (op, 0);
              op = TREE_OPERAND (op, 0);
 
 
            if (TREE_CODE (op) == ADDR_EXPR)
            if (TREE_CODE (op) == ADDR_EXPR)
              {
              {
                op = TREE_OPERAND (op, 0);
                op = TREE_OPERAND (op, 0);
                while (handled_component_p (op))
                while (handled_component_p (op))
                  op = TREE_OPERAND (op, 0);
                  op = TREE_OPERAND (op, 0);
                if (TREE_CODE (op) == VAR_DECL)
                if (TREE_CODE (op) == VAR_DECL)
                  add_referenced_var (op);
                  add_referenced_var (op);
              }
              }
            gcc_assert (TREE_CODE (replace_info->old_tree) == PARM_DECL);
            gcc_assert (TREE_CODE (replace_info->old_tree) == PARM_DECL);
            init = setup_one_parameter (&id, replace_info->old_tree,
            init = setup_one_parameter (&id, replace_info->old_tree,
                                        replace_info->new_tree, id.src_fn,
                                        replace_info->new_tree, id.src_fn,
                                        NULL,
                                        NULL,
                                        &vars);
                                        &vars);
            if (init)
            if (init)
              VEC_safe_push (gimple, heap, init_stmts, init);
              VEC_safe_push (gimple, heap, init_stmts, init);
          }
          }
      }
      }
  /* Copy the function's arguments.  */
  /* Copy the function's arguments.  */
  if (DECL_ARGUMENTS (old_decl) != NULL_TREE)
  if (DECL_ARGUMENTS (old_decl) != NULL_TREE)
    DECL_ARGUMENTS (new_decl) =
    DECL_ARGUMENTS (new_decl) =
      copy_arguments_for_versioning (DECL_ARGUMENTS (old_decl), &id,
      copy_arguments_for_versioning (DECL_ARGUMENTS (old_decl), &id,
                                     args_to_skip, &vars);
                                     args_to_skip, &vars);
 
 
  DECL_INITIAL (new_decl) = remap_blocks (DECL_INITIAL (id.src_fn), &id);
  DECL_INITIAL (new_decl) = remap_blocks (DECL_INITIAL (id.src_fn), &id);
 
 
  /* Renumber the lexical scoping (non-code) blocks consecutively.  */
  /* Renumber the lexical scoping (non-code) blocks consecutively.  */
  number_blocks (id.dst_fn);
  number_blocks (id.dst_fn);
 
 
  declare_inline_vars (DECL_INITIAL (new_decl), vars);
  declare_inline_vars (DECL_INITIAL (new_decl), vars);
 
 
  if (DECL_STRUCT_FUNCTION (old_decl)->local_decls != NULL_TREE)
  if (DECL_STRUCT_FUNCTION (old_decl)->local_decls != NULL_TREE)
    /* Add local vars.  */
    /* Add local vars.  */
    for (t_step = DECL_STRUCT_FUNCTION (old_decl)->local_decls;
    for (t_step = DECL_STRUCT_FUNCTION (old_decl)->local_decls;
         t_step; t_step = TREE_CHAIN (t_step))
         t_step; t_step = TREE_CHAIN (t_step))
      {
      {
        tree var = TREE_VALUE (t_step);
        tree var = TREE_VALUE (t_step);
        if (TREE_STATIC (var) && !TREE_ASM_WRITTEN (var))
        if (TREE_STATIC (var) && !TREE_ASM_WRITTEN (var))
          cfun->local_decls = tree_cons (NULL_TREE, var, cfun->local_decls);
          cfun->local_decls = tree_cons (NULL_TREE, var, cfun->local_decls);
        else if (!can_be_nonlocal (var, &id))
        else if (!can_be_nonlocal (var, &id))
          cfun->local_decls =
          cfun->local_decls =
            tree_cons (NULL_TREE, remap_decl (var, &id),
            tree_cons (NULL_TREE, remap_decl (var, &id),
                       cfun->local_decls);
                       cfun->local_decls);
      }
      }
 
 
  /* Copy the Function's body.  */
  /* Copy the Function's body.  */
  copy_body (&id, old_entry_block->count, REG_BR_PROB_BASE,
  copy_body (&id, old_entry_block->count, REG_BR_PROB_BASE,
             ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR);
             ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR);
 
 
  if (DECL_RESULT (old_decl) != NULL_TREE)
  if (DECL_RESULT (old_decl) != NULL_TREE)
    {
    {
      tree *res_decl = &DECL_RESULT (old_decl);
      tree *res_decl = &DECL_RESULT (old_decl);
      DECL_RESULT (new_decl) = remap_decl (*res_decl, &id);
      DECL_RESULT (new_decl) = remap_decl (*res_decl, &id);
      lang_hooks.dup_lang_specific_decl (DECL_RESULT (new_decl));
      lang_hooks.dup_lang_specific_decl (DECL_RESULT (new_decl));
    }
    }
 
 
  /* Renumber the lexical scoping (non-code) blocks consecutively.  */
  /* Renumber the lexical scoping (non-code) blocks consecutively.  */
  number_blocks (new_decl);
  number_blocks (new_decl);
 
 
  /* We want to create the BB unconditionally, so that the addition of
  /* We want to create the BB unconditionally, so that the addition of
     debug stmts doesn't affect BB count, which may in the end cause
     debug stmts doesn't affect BB count, which may in the end cause
     codegen differences.  */
     codegen differences.  */
  bb = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
  bb = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
  while (VEC_length (gimple, init_stmts))
  while (VEC_length (gimple, init_stmts))
    insert_init_stmt (&id, bb, VEC_pop (gimple, init_stmts));
    insert_init_stmt (&id, bb, VEC_pop (gimple, init_stmts));
  update_clone_info (&id);
  update_clone_info (&id);
 
 
  /* Remap the nonlocal_goto_save_area, if any.  */
  /* Remap the nonlocal_goto_save_area, if any.  */
  if (cfun->nonlocal_goto_save_area)
  if (cfun->nonlocal_goto_save_area)
    {
    {
      struct walk_stmt_info wi;
      struct walk_stmt_info wi;
 
 
      memset (&wi, 0, sizeof (wi));
      memset (&wi, 0, sizeof (wi));
      wi.info = &id;
      wi.info = &id;
      walk_tree (&cfun->nonlocal_goto_save_area, remap_gimple_op_r, &wi, NULL);
      walk_tree (&cfun->nonlocal_goto_save_area, remap_gimple_op_r, &wi, NULL);
    }
    }
 
 
  /* Clean up.  */
  /* Clean up.  */
  pointer_map_destroy (id.decl_map);
  pointer_map_destroy (id.decl_map);
  if (id.debug_map)
  if (id.debug_map)
    pointer_map_destroy (id.debug_map);
    pointer_map_destroy (id.debug_map);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
 
 
  fold_marked_statements (0, id.statements_to_fold);
  fold_marked_statements (0, id.statements_to_fold);
  pointer_set_destroy (id.statements_to_fold);
  pointer_set_destroy (id.statements_to_fold);
  fold_cond_expr_cond ();
  fold_cond_expr_cond ();
  delete_unreachable_blocks_update_callgraph (&id);
  delete_unreachable_blocks_update_callgraph (&id);
  update_ssa (TODO_update_ssa);
  update_ssa (TODO_update_ssa);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
 
 
  gcc_assert (!id.debug_stmts);
  gcc_assert (!id.debug_stmts);
  VEC_free (gimple, heap, init_stmts);
  VEC_free (gimple, heap, init_stmts);
  pop_cfun ();
  pop_cfun ();
  current_function_decl = old_current_function_decl;
  current_function_decl = old_current_function_decl;
  gcc_assert (!current_function_decl
  gcc_assert (!current_function_decl
              || DECL_STRUCT_FUNCTION (current_function_decl) == cfun);
              || DECL_STRUCT_FUNCTION (current_function_decl) == cfun);
  return;
  return;
}
}
 
 
/* EXP is CALL_EXPR present in a GENERIC expression tree.  Try to integrate
/* EXP is CALL_EXPR present in a GENERIC expression tree.  Try to integrate
   the callee and return the inlined body on success.  */
   the callee and return the inlined body on success.  */
 
 
tree
tree
maybe_inline_call_in_expr (tree exp)
maybe_inline_call_in_expr (tree exp)
{
{
  tree fn = get_callee_fndecl (exp);
  tree fn = get_callee_fndecl (exp);
 
 
  /* We can only try to inline "const" functions.  */
  /* We can only try to inline "const" functions.  */
  if (fn && TREE_READONLY (fn) && DECL_SAVED_TREE (fn))
  if (fn && TREE_READONLY (fn) && DECL_SAVED_TREE (fn))
    {
    {
      struct pointer_map_t *decl_map = pointer_map_create ();
      struct pointer_map_t *decl_map = pointer_map_create ();
      call_expr_arg_iterator iter;
      call_expr_arg_iterator iter;
      copy_body_data id;
      copy_body_data id;
      tree param, arg, t;
      tree param, arg, t;
 
 
      /* Remap the parameters.  */
      /* Remap the parameters.  */
      for (param = DECL_ARGUMENTS (fn), arg = first_call_expr_arg (exp, &iter);
      for (param = DECL_ARGUMENTS (fn), arg = first_call_expr_arg (exp, &iter);
           param;
           param;
           param = TREE_CHAIN (param), arg = next_call_expr_arg (&iter))
           param = TREE_CHAIN (param), arg = next_call_expr_arg (&iter))
        *pointer_map_insert (decl_map, param) = arg;
        *pointer_map_insert (decl_map, param) = arg;
 
 
      memset (&id, 0, sizeof (id));
      memset (&id, 0, sizeof (id));
      id.src_fn = fn;
      id.src_fn = fn;
      id.dst_fn = current_function_decl;
      id.dst_fn = current_function_decl;
      id.src_cfun = DECL_STRUCT_FUNCTION (fn);
      id.src_cfun = DECL_STRUCT_FUNCTION (fn);
      id.decl_map = decl_map;
      id.decl_map = decl_map;
 
 
      id.copy_decl = copy_decl_no_change;
      id.copy_decl = copy_decl_no_change;
      id.transform_call_graph_edges = CB_CGE_DUPLICATE;
      id.transform_call_graph_edges = CB_CGE_DUPLICATE;
      id.transform_new_cfg = false;
      id.transform_new_cfg = false;
      id.transform_return_to_modify = true;
      id.transform_return_to_modify = true;
      id.transform_lang_insert_block = false;
      id.transform_lang_insert_block = false;
 
 
      /* Make sure not to unshare trees behind the front-end's back
      /* Make sure not to unshare trees behind the front-end's back
         since front-end specific mechanisms may rely on sharing.  */
         since front-end specific mechanisms may rely on sharing.  */
      id.regimplify = false;
      id.regimplify = false;
      id.do_not_unshare = true;
      id.do_not_unshare = true;
 
 
      /* We're not inside any EH region.  */
      /* We're not inside any EH region.  */
      id.eh_lp_nr = 0;
      id.eh_lp_nr = 0;
 
 
      t = copy_tree_body (&id);
      t = copy_tree_body (&id);
      pointer_map_destroy (decl_map);
      pointer_map_destroy (decl_map);
 
 
      /* We can only return something suitable for use in a GENERIC
      /* We can only return something suitable for use in a GENERIC
         expression tree.  */
         expression tree.  */
      if (TREE_CODE (t) == MODIFY_EXPR)
      if (TREE_CODE (t) == MODIFY_EXPR)
        return TREE_OPERAND (t, 1);
        return TREE_OPERAND (t, 1);
    }
    }
 
 
   return NULL_TREE;
   return NULL_TREE;
}
}
 
 
/* Duplicate a type, fields and all.  */
/* Duplicate a type, fields and all.  */
 
 
tree
tree
build_duplicate_type (tree type)
build_duplicate_type (tree type)
{
{
  struct copy_body_data id;
  struct copy_body_data id;
 
 
  memset (&id, 0, sizeof (id));
  memset (&id, 0, sizeof (id));
  id.src_fn = current_function_decl;
  id.src_fn = current_function_decl;
  id.dst_fn = current_function_decl;
  id.dst_fn = current_function_decl;
  id.src_cfun = cfun;
  id.src_cfun = cfun;
  id.decl_map = pointer_map_create ();
  id.decl_map = pointer_map_create ();
  id.debug_map = NULL;
  id.debug_map = NULL;
  id.copy_decl = copy_decl_no_change;
  id.copy_decl = copy_decl_no_change;
 
 
  type = remap_type_1 (type, &id);
  type = remap_type_1 (type, &id);
 
 
  pointer_map_destroy (id.decl_map);
  pointer_map_destroy (id.decl_map);
  if (id.debug_map)
  if (id.debug_map)
    pointer_map_destroy (id.debug_map);
    pointer_map_destroy (id.debug_map);
 
 
  TYPE_CANONICAL (type) = type;
  TYPE_CANONICAL (type) = type;
 
 
  return type;
  return type;
}
}
 
 
/* Return whether it is safe to inline a function because it used different
/* Return whether it is safe to inline a function because it used different
   target specific options or call site actual types mismatch parameter types.
   target specific options or call site actual types mismatch parameter types.
   E is the call edge to be checked.  */
   E is the call edge to be checked.  */
bool
bool
tree_can_inline_p (struct cgraph_edge *e)
tree_can_inline_p (struct cgraph_edge *e)
{
{
#if 0
#if 0
  /* This causes a regression in SPEC in that it prevents a cold function from
  /* This causes a regression in SPEC in that it prevents a cold function from
     inlining a hot function.  Perhaps this should only apply to functions
     inlining a hot function.  Perhaps this should only apply to functions
     that the user declares hot/cold/optimize explicitly.  */
     that the user declares hot/cold/optimize explicitly.  */
 
 
  /* Don't inline a function with a higher optimization level than the
  /* Don't inline a function with a higher optimization level than the
     caller, or with different space constraints (hot/cold functions).  */
     caller, or with different space constraints (hot/cold functions).  */
  tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller);
  tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee);
 
 
  if (caller_tree != callee_tree)
  if (caller_tree != callee_tree)
    {
    {
      struct cl_optimization *caller_opt
      struct cl_optimization *caller_opt
        = TREE_OPTIMIZATION ((caller_tree)
        = TREE_OPTIMIZATION ((caller_tree)
                             ? caller_tree
                             ? caller_tree
                             : optimization_default_node);
                             : optimization_default_node);
 
 
      struct cl_optimization *callee_opt
      struct cl_optimization *callee_opt
        = TREE_OPTIMIZATION ((callee_tree)
        = TREE_OPTIMIZATION ((callee_tree)
                             ? callee_tree
                             ? callee_tree
                             : optimization_default_node);
                             : optimization_default_node);
 
 
      if ((caller_opt->optimize > callee_opt->optimize)
      if ((caller_opt->optimize > callee_opt->optimize)
          || (caller_opt->optimize_size != callee_opt->optimize_size))
          || (caller_opt->optimize_size != callee_opt->optimize_size))
        return false;
        return false;
    }
    }
#endif
#endif
  tree caller, callee, lhs;
  tree caller, callee, lhs;
 
 
  caller = e->caller->decl;
  caller = e->caller->decl;
  callee = e->callee->decl;
  callee = e->callee->decl;
 
 
  /* We cannot inline a function that uses a different EH personality
  /* We cannot inline a function that uses a different EH personality
     than the caller.  */
     than the caller.  */
  if (DECL_FUNCTION_PERSONALITY (caller)
  if (DECL_FUNCTION_PERSONALITY (caller)
      && DECL_FUNCTION_PERSONALITY (callee)
      && DECL_FUNCTION_PERSONALITY (callee)
      && (DECL_FUNCTION_PERSONALITY (caller)
      && (DECL_FUNCTION_PERSONALITY (caller)
          != DECL_FUNCTION_PERSONALITY (callee)))
          != DECL_FUNCTION_PERSONALITY (callee)))
    {
    {
      e->inline_failed = CIF_UNSPECIFIED;
      e->inline_failed = CIF_UNSPECIFIED;
      gimple_call_set_cannot_inline (e->call_stmt, true);
      gimple_call_set_cannot_inline (e->call_stmt, true);
      return false;
      return false;
    }
    }
 
 
  /* Allow the backend to decide if inlining is ok.  */
  /* Allow the backend to decide if inlining is ok.  */
  if (!targetm.target_option.can_inline_p (caller, callee))
  if (!targetm.target_option.can_inline_p (caller, callee))
    {
    {
      e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
      e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
      gimple_call_set_cannot_inline (e->call_stmt, true);
      gimple_call_set_cannot_inline (e->call_stmt, true);
      e->call_stmt_cannot_inline_p = true;
      e->call_stmt_cannot_inline_p = true;
      return false;
      return false;
    }
    }
 
 
  /* Do not inline calls where we cannot triviall work around mismatches
  /* Do not inline calls where we cannot triviall work around mismatches
     in argument or return types.  */
     in argument or return types.  */
  if (e->call_stmt
  if (e->call_stmt
      && ((DECL_RESULT (callee)
      && ((DECL_RESULT (callee)
           && !DECL_BY_REFERENCE (DECL_RESULT (callee))
           && !DECL_BY_REFERENCE (DECL_RESULT (callee))
           && (lhs = gimple_call_lhs (e->call_stmt)) != NULL_TREE
           && (lhs = gimple_call_lhs (e->call_stmt)) != NULL_TREE
           && !useless_type_conversion_p (TREE_TYPE (DECL_RESULT (callee)),
           && !useless_type_conversion_p (TREE_TYPE (DECL_RESULT (callee)),
                                          TREE_TYPE (lhs))
                                          TREE_TYPE (lhs))
           && !fold_convertible_p (TREE_TYPE (DECL_RESULT (callee)), lhs))
           && !fold_convertible_p (TREE_TYPE (DECL_RESULT (callee)), lhs))
          || !gimple_check_call_args (e->call_stmt)))
          || !gimple_check_call_args (e->call_stmt)))
    {
    {
      e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
      e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
      gimple_call_set_cannot_inline (e->call_stmt, true);
      gimple_call_set_cannot_inline (e->call_stmt, true);
      e->call_stmt_cannot_inline_p = true;
      e->call_stmt_cannot_inline_p = true;
      return false;
      return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.