/* Forward propagation of expressions for single use variables.
|
/* Forward propagation of expressions for single use variables.
|
Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
|
Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
|
|
|
This file is part of GCC.
|
This file is part of GCC.
|
|
|
GCC is free software; you can redistribute it and/or modify
|
GCC is free software; you can redistribute it and/or modify
|
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
the Free Software Foundation; either version 3, or (at your option)
|
the Free Software Foundation; either version 3, or (at your option)
|
any later version.
|
any later version.
|
|
|
GCC is distributed in the hope that it will be useful,
|
GCC is distributed in the hope that it will be useful,
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
GNU General Public License for more details.
|
GNU General Public License for more details.
|
|
|
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
along with GCC; see the file COPYING3. If not see
|
along with GCC; see the file COPYING3. If not see
|
<http://www.gnu.org/licenses/>. */
|
<http://www.gnu.org/licenses/>. */
|
|
|
#include "config.h"
|
#include "config.h"
|
#include "system.h"
|
#include "system.h"
|
#include "coretypes.h"
|
#include "coretypes.h"
|
#include "tm.h"
|
#include "tm.h"
|
#include "ggc.h"
|
#include "ggc.h"
|
#include "tree.h"
|
#include "tree.h"
|
#include "rtl.h"
|
#include "rtl.h"
|
#include "tm_p.h"
|
#include "tm_p.h"
|
#include "basic-block.h"
|
#include "basic-block.h"
|
#include "timevar.h"
|
#include "timevar.h"
|
#include "diagnostic.h"
|
#include "diagnostic.h"
|
#include "tree-flow.h"
|
#include "tree-flow.h"
|
#include "tree-pass.h"
|
#include "tree-pass.h"
|
#include "tree-dump.h"
|
#include "tree-dump.h"
|
#include "langhooks.h"
|
#include "langhooks.h"
|
#include "flags.h"
|
#include "flags.h"
|
#include "gimple.h"
|
#include "gimple.h"
|
|
|
/* This pass propagates the RHS of assignment statements into use
|
/* This pass propagates the RHS of assignment statements into use
|
sites of the LHS of the assignment. It's basically a specialized
|
sites of the LHS of the assignment. It's basically a specialized
|
form of tree combination. It is hoped all of this can disappear
|
form of tree combination. It is hoped all of this can disappear
|
when we have a generalized tree combiner.
|
when we have a generalized tree combiner.
|
|
|
One class of common cases we handle is forward propagating a single use
|
One class of common cases we handle is forward propagating a single use
|
variable into a COND_EXPR.
|
variable into a COND_EXPR.
|
|
|
bb0:
|
bb0:
|
x = a COND b;
|
x = a COND b;
|
if (x) goto ... else goto ...
|
if (x) goto ... else goto ...
|
|
|
Will be transformed into:
|
Will be transformed into:
|
|
|
bb0:
|
bb0:
|
if (a COND b) goto ... else goto ...
|
if (a COND b) goto ... else goto ...
|
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
|
|
Or (assuming c1 and c2 are constants):
|
Or (assuming c1 and c2 are constants):
|
|
|
bb0:
|
bb0:
|
x = a + c1;
|
x = a + c1;
|
if (x EQ/NEQ c2) goto ... else goto ...
|
if (x EQ/NEQ c2) goto ... else goto ...
|
|
|
Will be transformed into:
|
Will be transformed into:
|
|
|
bb0:
|
bb0:
|
if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
|
if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
|
|
|
Similarly for x = a - c1.
|
Similarly for x = a - c1.
|
|
|
Or
|
Or
|
|
|
bb0:
|
bb0:
|
x = !a
|
x = !a
|
if (x) goto ... else goto ...
|
if (x) goto ... else goto ...
|
|
|
Will be transformed into:
|
Will be transformed into:
|
|
|
bb0:
|
bb0:
|
if (a == 0) goto ... else goto ...
|
if (a == 0) goto ... else goto ...
|
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
For these cases, we propagate A into all, possibly more than one,
|
For these cases, we propagate A into all, possibly more than one,
|
COND_EXPRs that use X.
|
COND_EXPRs that use X.
|
|
|
Or
|
Or
|
|
|
bb0:
|
bb0:
|
x = (typecast) a
|
x = (typecast) a
|
if (x) goto ... else goto ...
|
if (x) goto ... else goto ...
|
|
|
Will be transformed into:
|
Will be transformed into:
|
|
|
bb0:
|
bb0:
|
if (a != 0) goto ... else goto ...
|
if (a != 0) goto ... else goto ...
|
|
|
(Assuming a is an integral type and x is a boolean or x is an
|
(Assuming a is an integral type and x is a boolean or x is an
|
integral and a is a boolean.)
|
integral and a is a boolean.)
|
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
For these cases, we propagate A into all, possibly more than one,
|
For these cases, we propagate A into all, possibly more than one,
|
COND_EXPRs that use X.
|
COND_EXPRs that use X.
|
|
|
In addition to eliminating the variable and the statement which assigns
|
In addition to eliminating the variable and the statement which assigns
|
a value to the variable, we may be able to later thread the jump without
|
a value to the variable, we may be able to later thread the jump without
|
adding insane complexity in the dominator optimizer.
|
adding insane complexity in the dominator optimizer.
|
|
|
Also note these transformations can cascade. We handle this by having
|
Also note these transformations can cascade. We handle this by having
|
a worklist of COND_EXPR statements to examine. As we make a change to
|
a worklist of COND_EXPR statements to examine. As we make a change to
|
a statement, we put it back on the worklist to examine on the next
|
a statement, we put it back on the worklist to examine on the next
|
iteration of the main loop.
|
iteration of the main loop.
|
|
|
A second class of propagation opportunities arises for ADDR_EXPR
|
A second class of propagation opportunities arises for ADDR_EXPR
|
nodes.
|
nodes.
|
|
|
ptr = &x->y->z;
|
ptr = &x->y->z;
|
res = *ptr;
|
res = *ptr;
|
|
|
Will get turned into
|
Will get turned into
|
|
|
res = x->y->z;
|
res = x->y->z;
|
|
|
Or
|
Or
|
ptr = (type1*)&type2var;
|
ptr = (type1*)&type2var;
|
res = *ptr
|
res = *ptr
|
|
|
Will get turned into (if type1 and type2 are the same size
|
Will get turned into (if type1 and type2 are the same size
|
and neither have volatile on them):
|
and neither have volatile on them):
|
res = VIEW_CONVERT_EXPR<type1>(type2var)
|
res = VIEW_CONVERT_EXPR<type1>(type2var)
|
|
|
Or
|
Or
|
|
|
ptr = &x[0];
|
ptr = &x[0];
|
ptr2 = ptr + <constant>;
|
ptr2 = ptr + <constant>;
|
|
|
Will get turned into
|
Will get turned into
|
|
|
ptr2 = &x[constant/elementsize];
|
ptr2 = &x[constant/elementsize];
|
|
|
Or
|
Or
|
|
|
ptr = &x[0];
|
ptr = &x[0];
|
offset = index * element_size;
|
offset = index * element_size;
|
offset_p = (pointer) offset;
|
offset_p = (pointer) offset;
|
ptr2 = ptr + offset_p
|
ptr2 = ptr + offset_p
|
|
|
Will get turned into:
|
Will get turned into:
|
|
|
ptr2 = &x[index];
|
ptr2 = &x[index];
|
|
|
Or
|
Or
|
ssa = (int) decl
|
ssa = (int) decl
|
res = ssa & 1
|
res = ssa & 1
|
|
|
Provided that decl has known alignment >= 2, will get turned into
|
Provided that decl has known alignment >= 2, will get turned into
|
|
|
res = 0
|
res = 0
|
|
|
We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
|
We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
|
allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
|
allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
|
{NOT_EXPR,NEG_EXPR}.
|
{NOT_EXPR,NEG_EXPR}.
|
|
|
This will (of course) be extended as other needs arise. */
|
This will (of course) be extended as other needs arise. */
|
|
|
static bool forward_propagate_addr_expr (tree name, tree rhs);
|
static bool forward_propagate_addr_expr (tree name, tree rhs);
|
|
|
/* Set to true if we delete EH edges during the optimization. */
|
/* Set to true if we delete EH edges during the optimization. */
|
static bool cfg_changed;
|
static bool cfg_changed;
|
|
|
static tree rhs_to_tree (tree type, gimple stmt);
|
static tree rhs_to_tree (tree type, gimple stmt);
|
|
|
/* Get the next statement we can propagate NAME's value into skipping
|
/* Get the next statement we can propagate NAME's value into skipping
|
trivial copies. Returns the statement that is suitable as a
|
trivial copies. Returns the statement that is suitable as a
|
propagation destination or NULL_TREE if there is no such one.
|
propagation destination or NULL_TREE if there is no such one.
|
This only returns destinations in a single-use chain. FINAL_NAME_P
|
This only returns destinations in a single-use chain. FINAL_NAME_P
|
if non-NULL is written to the ssa name that represents the use. */
|
if non-NULL is written to the ssa name that represents the use. */
|
|
|
static gimple
|
static gimple
|
get_prop_dest_stmt (tree name, tree *final_name_p)
|
get_prop_dest_stmt (tree name, tree *final_name_p)
|
{
|
{
|
use_operand_p use;
|
use_operand_p use;
|
gimple use_stmt;
|
gimple use_stmt;
|
|
|
do {
|
do {
|
/* If name has multiple uses, bail out. */
|
/* If name has multiple uses, bail out. */
|
if (!single_imm_use (name, &use, &use_stmt))
|
if (!single_imm_use (name, &use, &use_stmt))
|
return NULL;
|
return NULL;
|
|
|
/* If this is not a trivial copy, we found it. */
|
/* If this is not a trivial copy, we found it. */
|
if (!gimple_assign_ssa_name_copy_p (use_stmt)
|
if (!gimple_assign_ssa_name_copy_p (use_stmt)
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
break;
|
break;
|
|
|
/* Continue searching uses of the copy destination. */
|
/* Continue searching uses of the copy destination. */
|
name = gimple_assign_lhs (use_stmt);
|
name = gimple_assign_lhs (use_stmt);
|
} while (1);
|
} while (1);
|
|
|
if (final_name_p)
|
if (final_name_p)
|
*final_name_p = name;
|
*final_name_p = name;
|
|
|
return use_stmt;
|
return use_stmt;
|
}
|
}
|
|
|
/* Get the statement we can propagate from into NAME skipping
|
/* Get the statement we can propagate from into NAME skipping
|
trivial copies. Returns the statement which defines the
|
trivial copies. Returns the statement which defines the
|
propagation source or NULL_TREE if there is no such one.
|
propagation source or NULL_TREE if there is no such one.
|
If SINGLE_USE_ONLY is set considers only sources which have
|
If SINGLE_USE_ONLY is set considers only sources which have
|
a single use chain up to NAME. If SINGLE_USE_P is non-null,
|
a single use chain up to NAME. If SINGLE_USE_P is non-null,
|
it is set to whether the chain to NAME is a single use chain
|
it is set to whether the chain to NAME is a single use chain
|
or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */
|
or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */
|
|
|
static gimple
|
static gimple
|
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
|
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
|
{
|
{
|
bool single_use = true;
|
bool single_use = true;
|
|
|
do {
|
do {
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
|
|
if (!has_single_use (name))
|
if (!has_single_use (name))
|
{
|
{
|
single_use = false;
|
single_use = false;
|
if (single_use_only)
|
if (single_use_only)
|
return NULL;
|
return NULL;
|
}
|
}
|
|
|
/* If name is defined by a PHI node or is the default def, bail out. */
|
/* If name is defined by a PHI node or is the default def, bail out. */
|
if (!is_gimple_assign (def_stmt))
|
if (!is_gimple_assign (def_stmt))
|
return NULL;
|
return NULL;
|
|
|
/* If def_stmt is not a simple copy, we possibly found it. */
|
/* If def_stmt is not a simple copy, we possibly found it. */
|
if (!gimple_assign_ssa_name_copy_p (def_stmt))
|
if (!gimple_assign_ssa_name_copy_p (def_stmt))
|
{
|
{
|
tree rhs;
|
tree rhs;
|
|
|
if (!single_use_only && single_use_p)
|
if (!single_use_only && single_use_p)
|
*single_use_p = single_use;
|
*single_use_p = single_use;
|
|
|
/* We can look through pointer conversions in the search
|
/* We can look through pointer conversions in the search
|
for a useful stmt for the comparison folding. */
|
for a useful stmt for the comparison folding. */
|
rhs = gimple_assign_rhs1 (def_stmt);
|
rhs = gimple_assign_rhs1 (def_stmt);
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
|
&& TREE_CODE (rhs) == SSA_NAME
|
&& TREE_CODE (rhs) == SSA_NAME
|
&& POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt)))
|
&& POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt)))
|
&& POINTER_TYPE_P (TREE_TYPE (rhs)))
|
&& POINTER_TYPE_P (TREE_TYPE (rhs)))
|
name = rhs;
|
name = rhs;
|
else
|
else
|
return def_stmt;
|
return def_stmt;
|
}
|
}
|
else
|
else
|
{
|
{
|
/* Continue searching the def of the copy source name. */
|
/* Continue searching the def of the copy source name. */
|
name = gimple_assign_rhs1 (def_stmt);
|
name = gimple_assign_rhs1 (def_stmt);
|
}
|
}
|
} while (1);
|
} while (1);
|
}
|
}
|
|
|
/* Checks if the destination ssa name in DEF_STMT can be used as
|
/* Checks if the destination ssa name in DEF_STMT can be used as
|
propagation source. Returns true if so, otherwise false. */
|
propagation source. Returns true if so, otherwise false. */
|
|
|
static bool
|
static bool
|
can_propagate_from (gimple def_stmt)
|
can_propagate_from (gimple def_stmt)
|
{
|
{
|
use_operand_p use_p;
|
use_operand_p use_p;
|
ssa_op_iter iter;
|
ssa_op_iter iter;
|
|
|
gcc_assert (is_gimple_assign (def_stmt));
|
gcc_assert (is_gimple_assign (def_stmt));
|
|
|
/* If the rhs has side-effects we cannot propagate from it. */
|
/* If the rhs has side-effects we cannot propagate from it. */
|
if (gimple_has_volatile_ops (def_stmt))
|
if (gimple_has_volatile_ops (def_stmt))
|
return false;
|
return false;
|
|
|
/* If the rhs is a load we cannot propagate from it. */
|
/* If the rhs is a load we cannot propagate from it. */
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
|
return false;
|
return false;
|
|
|
/* Constants can be always propagated. */
|
/* Constants can be always propagated. */
|
if (gimple_assign_single_p (def_stmt)
|
if (gimple_assign_single_p (def_stmt)
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
|
return true;
|
return true;
|
|
|
/* We cannot propagate ssa names that occur in abnormal phi nodes. */
|
/* We cannot propagate ssa names that occur in abnormal phi nodes. */
|
FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE)
|
FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE)
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
|
return false;
|
return false;
|
|
|
/* If the definition is a conversion of a pointer to a function type,
|
/* If the definition is a conversion of a pointer to a function type,
|
then we can not apply optimizations as some targets require
|
then we can not apply optimizations as some targets require
|
function pointers to be canonicalized and in this case this
|
function pointers to be canonicalized and in this case this
|
optimization could eliminate a necessary canonicalization. */
|
optimization could eliminate a necessary canonicalization. */
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
{
|
{
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
if (POINTER_TYPE_P (TREE_TYPE (rhs))
|
if (POINTER_TYPE_P (TREE_TYPE (rhs))
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
|
return false;
|
return false;
|
}
|
}
|
|
|
return true;
|
return true;
|
}
|
}
|
|
|
/* Remove a copy chain ending in NAME along the defs but not
|
/* Remove a copy chain ending in NAME along the defs but not
|
further or including UP_TO_STMT. If NAME was replaced in
|
further or including UP_TO_STMT. If NAME was replaced in
|
its only use then this function can be used to clean up
|
its only use then this function can be used to clean up
|
dead stmts. Returns true if UP_TO_STMT can be removed
|
dead stmts. Returns true if UP_TO_STMT can be removed
|
as well, otherwise false. */
|
as well, otherwise false. */
|
|
|
static bool
|
static bool
|
remove_prop_source_from_use (tree name, gimple up_to_stmt)
|
remove_prop_source_from_use (tree name, gimple up_to_stmt)
|
{
|
{
|
gimple_stmt_iterator gsi;
|
gimple_stmt_iterator gsi;
|
gimple stmt;
|
gimple stmt;
|
|
|
do {
|
do {
|
if (!has_zero_uses (name))
|
if (!has_zero_uses (name))
|
return false;
|
return false;
|
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
stmt = SSA_NAME_DEF_STMT (name);
|
if (stmt == up_to_stmt)
|
if (stmt == up_to_stmt)
|
return true;
|
return true;
|
|
|
gsi = gsi_for_stmt (stmt);
|
gsi = gsi_for_stmt (stmt);
|
release_defs (stmt);
|
release_defs (stmt);
|
gsi_remove (&gsi, true);
|
gsi_remove (&gsi, true);
|
|
|
name = (gimple_assign_copy_p (stmt)) ? gimple_assign_rhs1 (stmt) : NULL;
|
name = (gimple_assign_copy_p (stmt)) ? gimple_assign_rhs1 (stmt) : NULL;
|
} while (name && TREE_CODE (name) == SSA_NAME);
|
} while (name && TREE_CODE (name) == SSA_NAME);
|
|
|
return false;
|
return false;
|
}
|
}
|
|
|
/* Return the rhs of a gimple_assign STMT in a form of a single tree,
|
/* Return the rhs of a gimple_assign STMT in a form of a single tree,
|
converted to type TYPE.
|
converted to type TYPE.
|
|
|
This should disappear, but is needed so we can combine expressions and use
|
This should disappear, but is needed so we can combine expressions and use
|
the fold() interfaces. Long term, we need to develop folding and combine
|
the fold() interfaces. Long term, we need to develop folding and combine
|
routines that deal with gimple exclusively . */
|
routines that deal with gimple exclusively . */
|
|
|
static tree
|
static tree
|
rhs_to_tree (tree type, gimple stmt)
|
rhs_to_tree (tree type, gimple stmt)
|
{
|
{
|
location_t loc = gimple_location (stmt);
|
location_t loc = gimple_location (stmt);
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
|
return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
|
gimple_assign_rhs2 (stmt));
|
gimple_assign_rhs2 (stmt));
|
else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
|
else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
|
return build1 (code, type, gimple_assign_rhs1 (stmt));
|
return build1 (code, type, gimple_assign_rhs1 (stmt));
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
return gimple_assign_rhs1 (stmt);
|
return gimple_assign_rhs1 (stmt);
|
else
|
else
|
gcc_unreachable ();
|
gcc_unreachable ();
|
}
|
}
|
|
|
/* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns
|
/* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns
|
the folded result in a form suitable for COND_EXPR_COND or
|
the folded result in a form suitable for COND_EXPR_COND or
|
NULL_TREE, if there is no suitable simplified form. If
|
NULL_TREE, if there is no suitable simplified form. If
|
INVARIANT_ONLY is true only gimple_min_invariant results are
|
INVARIANT_ONLY is true only gimple_min_invariant results are
|
considered simplified. */
|
considered simplified. */
|
|
|
static tree
|
static tree
|
combine_cond_expr_cond (location_t loc, enum tree_code code, tree type,
|
combine_cond_expr_cond (location_t loc, enum tree_code code, tree type,
|
tree op0, tree op1, bool invariant_only)
|
tree op0, tree op1, bool invariant_only)
|
{
|
{
|
tree t;
|
tree t;
|
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
|
|
t = fold_binary_loc (loc, code, type, op0, op1);
|
t = fold_binary_loc (loc, code, type, op0, op1);
|
if (!t)
|
if (!t)
|
return NULL_TREE;
|
return NULL_TREE;
|
|
|
/* Require that we got a boolean type out if we put one in. */
|
/* Require that we got a boolean type out if we put one in. */
|
gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
|
gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
|
|
|
/* Canonicalize the combined condition for use in a COND_EXPR. */
|
/* Canonicalize the combined condition for use in a COND_EXPR. */
|
t = canonicalize_cond_expr_cond (t);
|
t = canonicalize_cond_expr_cond (t);
|
|
|
/* Bail out if we required an invariant but didn't get one. */
|
/* Bail out if we required an invariant but didn't get one. */
|
if (!t || (invariant_only && !is_gimple_min_invariant (t)))
|
if (!t || (invariant_only && !is_gimple_min_invariant (t)))
|
return NULL_TREE;
|
return NULL_TREE;
|
|
|
return t;
|
return t;
|
}
|
}
|
|
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
in GIMPLE_COND statement STMT into the conditional if that simplifies it.
|
in GIMPLE_COND statement STMT into the conditional if that simplifies it.
|
Returns zero if no statement was changed, one if there were
|
Returns zero if no statement was changed, one if there were
|
changes and two if cfg_cleanup needs to run.
|
changes and two if cfg_cleanup needs to run.
|
|
|
This must be kept in sync with forward_propagate_into_cond. */
|
This must be kept in sync with forward_propagate_into_cond. */
|
|
|
static int
|
static int
|
forward_propagate_into_gimple_cond (gimple stmt)
|
forward_propagate_into_gimple_cond (gimple stmt)
|
{
|
{
|
int did_something = 0;
|
int did_something = 0;
|
location_t loc = gimple_location (stmt);
|
location_t loc = gimple_location (stmt);
|
|
|
do {
|
do {
|
tree tmp = NULL_TREE;
|
tree tmp = NULL_TREE;
|
tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
|
tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
|
gimple def_stmt;
|
gimple def_stmt;
|
bool single_use0_p = false, single_use1_p = false;
|
bool single_use0_p = false, single_use1_p = false;
|
enum tree_code code = gimple_cond_code (stmt);
|
enum tree_code code = gimple_cond_code (stmt);
|
|
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) == tcc_comparison
|
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) == tcc_comparison
|
&& TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME)
|
&& TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME)
|
{
|
{
|
/* For comparisons use the first operand, that is likely to
|
/* For comparisons use the first operand, that is likely to
|
simplify comparisons against constants. */
|
simplify comparisons against constants. */
|
name = gimple_cond_lhs (stmt);
|
name = gimple_cond_lhs (stmt);
|
def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
|
def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
|
if (def_stmt && can_propagate_from (def_stmt))
|
if (def_stmt && can_propagate_from (def_stmt))
|
{
|
{
|
tree op1 = gimple_cond_rhs (stmt);
|
tree op1 = gimple_cond_rhs (stmt);
|
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
|
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
|
tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
|
tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
|
op1, !single_use0_p);
|
op1, !single_use0_p);
|
}
|
}
|
/* If that wasn't successful, try the second operand. */
|
/* If that wasn't successful, try the second operand. */
|
if (tmp == NULL_TREE
|
if (tmp == NULL_TREE
|
&& TREE_CODE (gimple_cond_rhs (stmt)) == SSA_NAME)
|
&& TREE_CODE (gimple_cond_rhs (stmt)) == SSA_NAME)
|
{
|
{
|
tree op0 = gimple_cond_lhs (stmt);
|
tree op0 = gimple_cond_lhs (stmt);
|
name = gimple_cond_rhs (stmt);
|
name = gimple_cond_rhs (stmt);
|
def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
|
def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
|
if (!def_stmt || !can_propagate_from (def_stmt))
|
if (!def_stmt || !can_propagate_from (def_stmt))
|
return did_something;
|
return did_something;
|
|
|
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
|
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
|
tmp = combine_cond_expr_cond (loc, code, boolean_type_node, op0,
|
tmp = combine_cond_expr_cond (loc, code, boolean_type_node, op0,
|
rhs1, !single_use1_p);
|
rhs1, !single_use1_p);
|
}
|
}
|
/* If that wasn't successful either, try both operands. */
|
/* If that wasn't successful either, try both operands. */
|
if (tmp == NULL_TREE
|
if (tmp == NULL_TREE
|
&& rhs0 != NULL_TREE
|
&& rhs0 != NULL_TREE
|
&& rhs1 != NULL_TREE)
|
&& rhs1 != NULL_TREE)
|
tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
|
tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
|
fold_convert_loc (loc,
|
fold_convert_loc (loc,
|
TREE_TYPE (rhs0),
|
TREE_TYPE (rhs0),
|
rhs1),
|
rhs1),
|
!(single_use0_p && single_use1_p));
|
!(single_use0_p && single_use1_p));
|
}
|
}
|
|
|
if (tmp)
|
if (tmp)
|
{
|
{
|
if (dump_file && tmp)
|
if (dump_file && tmp)
|
{
|
{
|
tree cond = build2 (gimple_cond_code (stmt),
|
tree cond = build2 (gimple_cond_code (stmt),
|
boolean_type_node,
|
boolean_type_node,
|
gimple_cond_lhs (stmt),
|
gimple_cond_lhs (stmt),
|
gimple_cond_rhs (stmt));
|
gimple_cond_rhs (stmt));
|
fprintf (dump_file, " Replaced '");
|
fprintf (dump_file, " Replaced '");
|
print_generic_expr (dump_file, cond, 0);
|
print_generic_expr (dump_file, cond, 0);
|
fprintf (dump_file, "' with '");
|
fprintf (dump_file, "' with '");
|
print_generic_expr (dump_file, tmp, 0);
|
print_generic_expr (dump_file, tmp, 0);
|
fprintf (dump_file, "'\n");
|
fprintf (dump_file, "'\n");
|
}
|
}
|
|
|
gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
|
gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
|
update_stmt (stmt);
|
update_stmt (stmt);
|
|
|
/* Remove defining statements. */
|
/* Remove defining statements. */
|
remove_prop_source_from_use (name, NULL);
|
remove_prop_source_from_use (name, NULL);
|
|
|
if (is_gimple_min_invariant (tmp))
|
if (is_gimple_min_invariant (tmp))
|
did_something = 2;
|
did_something = 2;
|
else if (did_something == 0)
|
else if (did_something == 0)
|
did_something = 1;
|
did_something = 1;
|
|
|
/* Continue combining. */
|
/* Continue combining. */
|
continue;
|
continue;
|
}
|
}
|
|
|
break;
|
break;
|
} while (1);
|
} while (1);
|
|
|
return did_something;
|
return did_something;
|
}
|
}
|
|
|
|
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
in the rhs of statement STMT into the conditional if that simplifies it.
|
in the rhs of statement STMT into the conditional if that simplifies it.
|
Returns zero if no statement was changed, one if there were
|
Returns zero if no statement was changed, one if there were
|
changes and two if cfg_cleanup needs to run.
|
changes and two if cfg_cleanup needs to run.
|
|
|
This must be kept in sync with forward_propagate_into_gimple_cond. */
|
This must be kept in sync with forward_propagate_into_gimple_cond. */
|
|
|
static int
|
static int
|
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
|
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
|
{
|
{
|
gimple stmt = gsi_stmt (*gsi_p);
|
gimple stmt = gsi_stmt (*gsi_p);
|
location_t loc = gimple_location (stmt);
|
location_t loc = gimple_location (stmt);
|
int did_something = 0;
|
int did_something = 0;
|
|
|
do {
|
do {
|
tree tmp = NULL_TREE;
|
tree tmp = NULL_TREE;
|
tree cond = gimple_assign_rhs1 (stmt);
|
tree cond = gimple_assign_rhs1 (stmt);
|
tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
|
tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
|
gimple def_stmt;
|
gimple def_stmt;
|
bool single_use0_p = false, single_use1_p = false;
|
bool single_use0_p = false, single_use1_p = false;
|
|
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
if (COMPARISON_CLASS_P (cond)
|
if (COMPARISON_CLASS_P (cond)
|
&& TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME)
|
&& TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME)
|
{
|
{
|
/* For comparisons use the first operand, that is likely to
|
/* For comparisons use the first operand, that is likely to
|
simplify comparisons against constants. */
|
simplify comparisons against constants. */
|
name = TREE_OPERAND (cond, 0);
|
name = TREE_OPERAND (cond, 0);
|
def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
|
def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
|
if (def_stmt && can_propagate_from (def_stmt))
|
if (def_stmt && can_propagate_from (def_stmt))
|
{
|
{
|
tree op1 = TREE_OPERAND (cond, 1);
|
tree op1 = TREE_OPERAND (cond, 1);
|
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
|
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
|
tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
|
tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
|
boolean_type_node,
|
boolean_type_node,
|
rhs0, op1, !single_use0_p);
|
rhs0, op1, !single_use0_p);
|
}
|
}
|
/* If that wasn't successful, try the second operand. */
|
/* If that wasn't successful, try the second operand. */
|
if (tmp == NULL_TREE
|
if (tmp == NULL_TREE
|
&& TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
|
&& TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
|
{
|
{
|
tree op0 = TREE_OPERAND (cond, 0);
|
tree op0 = TREE_OPERAND (cond, 0);
|
name = TREE_OPERAND (cond, 1);
|
name = TREE_OPERAND (cond, 1);
|
def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
|
def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
|
if (!def_stmt || !can_propagate_from (def_stmt))
|
if (!def_stmt || !can_propagate_from (def_stmt))
|
return did_something;
|
return did_something;
|
|
|
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
|
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
|
tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
|
tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
|
boolean_type_node,
|
boolean_type_node,
|
op0, rhs1, !single_use1_p);
|
op0, rhs1, !single_use1_p);
|
}
|
}
|
/* If that wasn't successful either, try both operands. */
|
/* If that wasn't successful either, try both operands. */
|
if (tmp == NULL_TREE
|
if (tmp == NULL_TREE
|
&& rhs0 != NULL_TREE
|
&& rhs0 != NULL_TREE
|
&& rhs1 != NULL_TREE)
|
&& rhs1 != NULL_TREE)
|
tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
|
tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
|
boolean_type_node,
|
boolean_type_node,
|
rhs0,
|
rhs0,
|
fold_convert_loc (loc,
|
fold_convert_loc (loc,
|
TREE_TYPE (rhs0),
|
TREE_TYPE (rhs0),
|
rhs1),
|
rhs1),
|
!(single_use0_p && single_use1_p));
|
!(single_use0_p && single_use1_p));
|
}
|
}
|
else if (TREE_CODE (cond) == SSA_NAME)
|
else if (TREE_CODE (cond) == SSA_NAME)
|
{
|
{
|
name = cond;
|
name = cond;
|
def_stmt = get_prop_source_stmt (name, true, NULL);
|
def_stmt = get_prop_source_stmt (name, true, NULL);
|
if (def_stmt || !can_propagate_from (def_stmt))
|
if (def_stmt || !can_propagate_from (def_stmt))
|
return did_something;
|
return did_something;
|
|
|
rhs0 = gimple_assign_rhs1 (def_stmt);
|
rhs0 = gimple_assign_rhs1 (def_stmt);
|
tmp = combine_cond_expr_cond (loc, NE_EXPR, boolean_type_node, rhs0,
|
tmp = combine_cond_expr_cond (loc, NE_EXPR, boolean_type_node, rhs0,
|
build_int_cst (TREE_TYPE (rhs0), 0),
|
build_int_cst (TREE_TYPE (rhs0), 0),
|
false);
|
false);
|
}
|
}
|
|
|
if (tmp)
|
if (tmp)
|
{
|
{
|
if (dump_file && tmp)
|
if (dump_file && tmp)
|
{
|
{
|
fprintf (dump_file, " Replaced '");
|
fprintf (dump_file, " Replaced '");
|
print_generic_expr (dump_file, cond, 0);
|
print_generic_expr (dump_file, cond, 0);
|
fprintf (dump_file, "' with '");
|
fprintf (dump_file, "' with '");
|
print_generic_expr (dump_file, tmp, 0);
|
print_generic_expr (dump_file, tmp, 0);
|
fprintf (dump_file, "'\n");
|
fprintf (dump_file, "'\n");
|
}
|
}
|
|
|
gimple_assign_set_rhs_from_tree (gsi_p, unshare_expr (tmp));
|
gimple_assign_set_rhs_from_tree (gsi_p, unshare_expr (tmp));
|
stmt = gsi_stmt (*gsi_p);
|
stmt = gsi_stmt (*gsi_p);
|
update_stmt (stmt);
|
update_stmt (stmt);
|
|
|
/* Remove defining statements. */
|
/* Remove defining statements. */
|
remove_prop_source_from_use (name, NULL);
|
remove_prop_source_from_use (name, NULL);
|
|
|
if (is_gimple_min_invariant (tmp))
|
if (is_gimple_min_invariant (tmp))
|
did_something = 2;
|
did_something = 2;
|
else if (did_something == 0)
|
else if (did_something == 0)
|
did_something = 1;
|
did_something = 1;
|
|
|
/* Continue combining. */
|
/* Continue combining. */
|
continue;
|
continue;
|
}
|
}
|
|
|
break;
|
break;
|
} while (1);
|
} while (1);
|
|
|
return did_something;
|
return did_something;
|
}
|
}
|
|
|
/* We've just substituted an ADDR_EXPR into stmt. Update all the
|
/* We've just substituted an ADDR_EXPR into stmt. Update all the
|
relevant data structures to match. */
|
relevant data structures to match. */
|
|
|
static void
|
static void
|
tidy_after_forward_propagate_addr (gimple stmt)
|
tidy_after_forward_propagate_addr (gimple stmt)
|
{
|
{
|
/* We may have turned a trapping insn into a non-trapping insn. */
|
/* We may have turned a trapping insn into a non-trapping insn. */
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
cfg_changed = true;
|
cfg_changed = true;
|
|
|
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
|
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
|
recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
|
recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
|
}
|
}
|
|
|
/* DEF_RHS contains the address of the 0th element in an array.
|
/* DEF_RHS contains the address of the 0th element in an array.
|
USE_STMT uses type of DEF_RHS to compute the address of an
|
USE_STMT uses type of DEF_RHS to compute the address of an
|
arbitrary element within the array. The (variable) byte offset
|
arbitrary element within the array. The (variable) byte offset
|
of the element is contained in OFFSET.
|
of the element is contained in OFFSET.
|
|
|
We walk back through the use-def chains of OFFSET to verify that
|
We walk back through the use-def chains of OFFSET to verify that
|
it is indeed computing the offset of an element within the array
|
it is indeed computing the offset of an element within the array
|
and extract the index corresponding to the given byte offset.
|
and extract the index corresponding to the given byte offset.
|
|
|
We then try to fold the entire address expression into a form
|
We then try to fold the entire address expression into a form
|
&array[index].
|
&array[index].
|
|
|
If we are successful, we replace the right hand side of USE_STMT
|
If we are successful, we replace the right hand side of USE_STMT
|
with the new address computation. */
|
with the new address computation. */
|
|
|
static bool
|
static bool
|
forward_propagate_addr_into_variable_array_index (tree offset,
|
forward_propagate_addr_into_variable_array_index (tree offset,
|
tree def_rhs,
|
tree def_rhs,
|
gimple_stmt_iterator *use_stmt_gsi)
|
gimple_stmt_iterator *use_stmt_gsi)
|
{
|
{
|
tree index, tunit;
|
tree index, tunit;
|
gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi);
|
gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi);
|
tree tmp;
|
tree tmp;
|
|
|
tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs)));
|
tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs)));
|
if (!host_integerp (tunit, 1))
|
if (!host_integerp (tunit, 1))
|
return false;
|
return false;
|
|
|
/* Get the offset's defining statement. */
|
/* Get the offset's defining statement. */
|
offset_def = SSA_NAME_DEF_STMT (offset);
|
offset_def = SSA_NAME_DEF_STMT (offset);
|
|
|
/* Try to find an expression for a proper index. This is either a
|
/* Try to find an expression for a proper index. This is either a
|
multiplication expression by the element size or just the ssa name we came
|
multiplication expression by the element size or just the ssa name we came
|
along in case the element size is one. In that case, however, we do not
|
along in case the element size is one. In that case, however, we do not
|
allow multiplications because they can be computing index to a higher
|
allow multiplications because they can be computing index to a higher
|
level dimension (PR 37861). */
|
level dimension (PR 37861). */
|
if (integer_onep (tunit))
|
if (integer_onep (tunit))
|
{
|
{
|
if (is_gimple_assign (offset_def)
|
if (is_gimple_assign (offset_def)
|
&& gimple_assign_rhs_code (offset_def) == MULT_EXPR)
|
&& gimple_assign_rhs_code (offset_def) == MULT_EXPR)
|
return false;
|
return false;
|
|
|
index = offset;
|
index = offset;
|
}
|
}
|
else
|
else
|
{
|
{
|
/* The statement which defines OFFSET before type conversion
|
/* The statement which defines OFFSET before type conversion
|
must be a simple GIMPLE_ASSIGN. */
|
must be a simple GIMPLE_ASSIGN. */
|
if (!is_gimple_assign (offset_def))
|
if (!is_gimple_assign (offset_def))
|
return false;
|
return false;
|
|
|
/* The RHS of the statement which defines OFFSET must be a
|
/* The RHS of the statement which defines OFFSET must be a
|
multiplication of an object by the size of the array elements.
|
multiplication of an object by the size of the array elements.
|
This implicitly verifies that the size of the array elements
|
This implicitly verifies that the size of the array elements
|
is constant. */
|
is constant. */
|
if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
|
if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def), tunit))
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def), tunit))
|
{
|
{
|
/* The first operand to the MULT_EXPR is the desired index. */
|
/* The first operand to the MULT_EXPR is the desired index. */
|
index = gimple_assign_rhs1 (offset_def);
|
index = gimple_assign_rhs1 (offset_def);
|
}
|
}
|
/* If we have idx * tunit + CST * tunit re-associate that. */
|
/* If we have idx * tunit + CST * tunit re-associate that. */
|
else if ((gimple_assign_rhs_code (offset_def) == PLUS_EXPR
|
else if ((gimple_assign_rhs_code (offset_def) == PLUS_EXPR
|
|| gimple_assign_rhs_code (offset_def) == MINUS_EXPR)
|
|| gimple_assign_rhs_code (offset_def) == MINUS_EXPR)
|
&& TREE_CODE (gimple_assign_rhs1 (offset_def)) == SSA_NAME
|
&& TREE_CODE (gimple_assign_rhs1 (offset_def)) == SSA_NAME
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
&& (tmp = div_if_zero_remainder (EXACT_DIV_EXPR,
|
&& (tmp = div_if_zero_remainder (EXACT_DIV_EXPR,
|
gimple_assign_rhs2 (offset_def),
|
gimple_assign_rhs2 (offset_def),
|
tunit)) != NULL_TREE)
|
tunit)) != NULL_TREE)
|
{
|
{
|
gimple offset_def2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (offset_def));
|
gimple offset_def2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (offset_def));
|
if (is_gimple_assign (offset_def2)
|
if (is_gimple_assign (offset_def2)
|
&& gimple_assign_rhs_code (offset_def2) == MULT_EXPR
|
&& gimple_assign_rhs_code (offset_def2) == MULT_EXPR
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def2)) == INTEGER_CST
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def2)) == INTEGER_CST
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def2), tunit))
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def2), tunit))
|
{
|
{
|
index = fold_build2 (gimple_assign_rhs_code (offset_def),
|
index = fold_build2 (gimple_assign_rhs_code (offset_def),
|
TREE_TYPE (offset),
|
TREE_TYPE (offset),
|
gimple_assign_rhs1 (offset_def2), tmp);
|
gimple_assign_rhs1 (offset_def2), tmp);
|
}
|
}
|
else
|
else
|
return false;
|
return false;
|
}
|
}
|
else
|
else
|
return false;
|
return false;
|
}
|
}
|
|
|
/* Replace the pointer addition with array indexing. */
|
/* Replace the pointer addition with array indexing. */
|
index = force_gimple_operand_gsi (use_stmt_gsi, index, true, NULL_TREE,
|
index = force_gimple_operand_gsi (use_stmt_gsi, index, true, NULL_TREE,
|
true, GSI_SAME_STMT);
|
true, GSI_SAME_STMT);
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, unshare_expr (def_rhs));
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, unshare_expr (def_rhs));
|
use_stmt = gsi_stmt (*use_stmt_gsi);
|
use_stmt = gsi_stmt (*use_stmt_gsi);
|
TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0), 1)
|
TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0), 1)
|
= index;
|
= index;
|
|
|
/* That should have created gimple, so there is no need to
|
/* That should have created gimple, so there is no need to
|
record information to undo the propagation. */
|
record information to undo the propagation. */
|
fold_stmt_inplace (use_stmt);
|
fold_stmt_inplace (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
return true;
|
return true;
|
}
|
}
|
|
|
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
|
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
|
ADDR_EXPR <whatever>.
|
ADDR_EXPR <whatever>.
|
|
|
Try to forward propagate the ADDR_EXPR into the use USE_STMT.
|
Try to forward propagate the ADDR_EXPR into the use USE_STMT.
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
node or for recovery of array indexing from pointer arithmetic.
|
node or for recovery of array indexing from pointer arithmetic.
|
|
|
Return true if the propagation was successful (the propagation can
|
Return true if the propagation was successful (the propagation can
|
be not totally successful, yet things may have been changed). */
|
be not totally successful, yet things may have been changed). */
|
|
|
static bool
|
static bool
|
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
|
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
|
gimple_stmt_iterator *use_stmt_gsi,
|
gimple_stmt_iterator *use_stmt_gsi,
|
bool single_use_p)
|
bool single_use_p)
|
{
|
{
|
tree lhs, rhs, rhs2, array_ref;
|
tree lhs, rhs, rhs2, array_ref;
|
tree *rhsp, *lhsp;
|
tree *rhsp, *lhsp;
|
gimple use_stmt = gsi_stmt (*use_stmt_gsi);
|
gimple use_stmt = gsi_stmt (*use_stmt_gsi);
|
enum tree_code rhs_code;
|
enum tree_code rhs_code;
|
bool res = true;
|
bool res = true;
|
bool addr_p = false;
|
bool addr_p = false;
|
|
|
gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
|
gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
|
|
|
lhs = gimple_assign_lhs (use_stmt);
|
lhs = gimple_assign_lhs (use_stmt);
|
rhs_code = gimple_assign_rhs_code (use_stmt);
|
rhs_code = gimple_assign_rhs_code (use_stmt);
|
rhs = gimple_assign_rhs1 (use_stmt);
|
rhs = gimple_assign_rhs1 (use_stmt);
|
|
|
/* Trivial cases. The use statement could be a trivial copy or a
|
/* Trivial cases. The use statement could be a trivial copy or a
|
useless conversion. Recurse to the uses of the lhs as copyprop does
|
useless conversion. Recurse to the uses of the lhs as copyprop does
|
not copy through different variant pointers and FRE does not catch
|
not copy through different variant pointers and FRE does not catch
|
all useless conversions. Treat the case of a single-use name and
|
all useless conversions. Treat the case of a single-use name and
|
a conversion to def_rhs type separate, though. */
|
a conversion to def_rhs type separate, though. */
|
if (TREE_CODE (lhs) == SSA_NAME
|
if (TREE_CODE (lhs) == SSA_NAME
|
&& ((rhs_code == SSA_NAME && rhs == name)
|
&& ((rhs_code == SSA_NAME && rhs == name)
|
|| CONVERT_EXPR_CODE_P (rhs_code)))
|
|| CONVERT_EXPR_CODE_P (rhs_code)))
|
{
|
{
|
/* Only recurse if we don't deal with a single use or we cannot
|
/* Only recurse if we don't deal with a single use or we cannot
|
do the propagation to the current statement. In particular
|
do the propagation to the current statement. In particular
|
we can end up with a conversion needed for a non-invariant
|
we can end up with a conversion needed for a non-invariant
|
address which we cannot do in a single statement. */
|
address which we cannot do in a single statement. */
|
if (!single_use_p
|
if (!single_use_p
|
|| (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))
|
|| (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))
|
&& (!is_gimple_min_invariant (def_rhs)
|
&& (!is_gimple_min_invariant (def_rhs)
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
&& POINTER_TYPE_P (TREE_TYPE (def_rhs))
|
&& POINTER_TYPE_P (TREE_TYPE (def_rhs))
|
&& (TYPE_PRECISION (TREE_TYPE (lhs))
|
&& (TYPE_PRECISION (TREE_TYPE (lhs))
|
> TYPE_PRECISION (TREE_TYPE (def_rhs)))))))
|
> TYPE_PRECISION (TREE_TYPE (def_rhs)))))))
|
return forward_propagate_addr_expr (lhs, def_rhs);
|
return forward_propagate_addr_expr (lhs, def_rhs);
|
|
|
gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
|
gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
|
gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
|
else
|
else
|
gimple_assign_set_rhs_code (use_stmt, NOP_EXPR);
|
gimple_assign_set_rhs_code (use_stmt, NOP_EXPR);
|
return true;
|
return true;
|
}
|
}
|
|
|
/* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
|
/* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
|
ADDR_EXPR will not appear on the LHS. */
|
ADDR_EXPR will not appear on the LHS. */
|
lhsp = gimple_assign_lhs_ptr (use_stmt);
|
lhsp = gimple_assign_lhs_ptr (use_stmt);
|
while (handled_component_p (*lhsp))
|
while (handled_component_p (*lhsp))
|
lhsp = &TREE_OPERAND (*lhsp, 0);
|
lhsp = &TREE_OPERAND (*lhsp, 0);
|
lhs = *lhsp;
|
lhs = *lhsp;
|
|
|
/* Now see if the LHS node is an INDIRECT_REF using NAME. If so,
|
/* Now see if the LHS node is an INDIRECT_REF using NAME. If so,
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
if (TREE_CODE (lhs) == INDIRECT_REF
|
if (TREE_CODE (lhs) == INDIRECT_REF
|
&& TREE_OPERAND (lhs, 0) == name)
|
&& TREE_OPERAND (lhs, 0) == name)
|
{
|
{
|
if (may_propagate_address_into_dereference (def_rhs, lhs)
|
if (may_propagate_address_into_dereference (def_rhs, lhs)
|
&& (lhsp != gimple_assign_lhs_ptr (use_stmt)
|
&& (lhsp != gimple_assign_lhs_ptr (use_stmt)
|
|| useless_type_conversion_p
|
|| useless_type_conversion_p
|
(TREE_TYPE (TREE_OPERAND (def_rhs, 0)), TREE_TYPE (rhs))))
|
(TREE_TYPE (TREE_OPERAND (def_rhs, 0)), TREE_TYPE (rhs))))
|
{
|
{
|
*lhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
*lhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
fold_stmt_inplace (use_stmt);
|
fold_stmt_inplace (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
|
|
/* Continue propagating into the RHS if this was not the only use. */
|
/* Continue propagating into the RHS if this was not the only use. */
|
if (single_use_p)
|
if (single_use_p)
|
return true;
|
return true;
|
}
|
}
|
else
|
else
|
/* We can have a struct assignment dereferencing our name twice.
|
/* We can have a struct assignment dereferencing our name twice.
|
Note that we didn't propagate into the lhs to not falsely
|
Note that we didn't propagate into the lhs to not falsely
|
claim we did when propagating into the rhs. */
|
claim we did when propagating into the rhs. */
|
res = false;
|
res = false;
|
}
|
}
|
|
|
/* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
|
/* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
|
nodes from the RHS. */
|
nodes from the RHS. */
|
rhsp = gimple_assign_rhs1_ptr (use_stmt);
|
rhsp = gimple_assign_rhs1_ptr (use_stmt);
|
if (TREE_CODE (*rhsp) == ADDR_EXPR)
|
if (TREE_CODE (*rhsp) == ADDR_EXPR)
|
{
|
{
|
rhsp = &TREE_OPERAND (*rhsp, 0);
|
rhsp = &TREE_OPERAND (*rhsp, 0);
|
addr_p = true;
|
addr_p = true;
|
}
|
}
|
while (handled_component_p (*rhsp))
|
while (handled_component_p (*rhsp))
|
rhsp = &TREE_OPERAND (*rhsp, 0);
|
rhsp = &TREE_OPERAND (*rhsp, 0);
|
rhs = *rhsp;
|
rhs = *rhsp;
|
|
|
/* Now see if the RHS node is an INDIRECT_REF using NAME. If so,
|
/* Now see if the RHS node is an INDIRECT_REF using NAME. If so,
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
if (TREE_CODE (rhs) == INDIRECT_REF
|
if (TREE_CODE (rhs) == INDIRECT_REF
|
&& TREE_OPERAND (rhs, 0) == name
|
&& TREE_OPERAND (rhs, 0) == name
|
&& may_propagate_address_into_dereference (def_rhs, rhs))
|
&& may_propagate_address_into_dereference (def_rhs, rhs))
|
{
|
{
|
*rhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
*rhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
fold_stmt_inplace (use_stmt);
|
fold_stmt_inplace (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
return res;
|
return res;
|
}
|
}
|
|
|
/* Now see if the RHS node is an INDIRECT_REF using NAME. If so,
|
/* Now see if the RHS node is an INDIRECT_REF using NAME. If so,
|
propagate the ADDR_EXPR into the use of NAME and try to
|
propagate the ADDR_EXPR into the use of NAME and try to
|
create a VCE and fold the result. */
|
create a VCE and fold the result. */
|
if (TREE_CODE (rhs) == INDIRECT_REF
|
if (TREE_CODE (rhs) == INDIRECT_REF
|
&& TREE_OPERAND (rhs, 0) == name
|
&& TREE_OPERAND (rhs, 0) == name
|
&& TYPE_SIZE (TREE_TYPE (rhs))
|
&& TYPE_SIZE (TREE_TYPE (rhs))
|
&& TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
|
&& TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
|
/* Function decls should not be used for VCE either as it could be a
|
/* Function decls should not be used for VCE either as it could be a
|
function descriptor that we want and not the actual function code. */
|
function descriptor that we want and not the actual function code. */
|
&& TREE_CODE (TREE_OPERAND (def_rhs, 0)) != FUNCTION_DECL
|
&& TREE_CODE (TREE_OPERAND (def_rhs, 0)) != FUNCTION_DECL
|
/* We should not convert volatile loads to non volatile loads. */
|
/* We should not convert volatile loads to non volatile loads. */
|
&& !TYPE_VOLATILE (TREE_TYPE (rhs))
|
&& !TYPE_VOLATILE (TREE_TYPE (rhs))
|
&& !TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
|
&& !TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
|
&& operand_equal_p (TYPE_SIZE (TREE_TYPE (rhs)),
|
&& operand_equal_p (TYPE_SIZE (TREE_TYPE (rhs)),
|
TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))), 0)
|
TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))), 0)
|
/* Make sure we only do TBAA compatible replacements. */
|
/* Make sure we only do TBAA compatible replacements. */
|
&& get_alias_set (TREE_OPERAND (def_rhs, 0)) == get_alias_set (rhs))
|
&& get_alias_set (TREE_OPERAND (def_rhs, 0)) == get_alias_set (rhs))
|
{
|
{
|
tree def_rhs_base, new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
tree def_rhs_base, new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
new_rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), new_rhs);
|
new_rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), new_rhs);
|
if (TREE_CODE (new_rhs) != VIEW_CONVERT_EXPR)
|
if (TREE_CODE (new_rhs) != VIEW_CONVERT_EXPR)
|
{
|
{
|
/* If we have folded the VIEW_CONVERT_EXPR then the result is only
|
/* If we have folded the VIEW_CONVERT_EXPR then the result is only
|
valid if we can replace the whole rhs of the use statement. */
|
valid if we can replace the whole rhs of the use statement. */
|
if (rhs != gimple_assign_rhs1 (use_stmt))
|
if (rhs != gimple_assign_rhs1 (use_stmt))
|
return false;
|
return false;
|
new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true, NULL,
|
new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true, NULL,
|
true, GSI_NEW_STMT);
|
true, GSI_NEW_STMT);
|
gimple_assign_set_rhs1 (use_stmt, new_rhs);
|
gimple_assign_set_rhs1 (use_stmt, new_rhs);
|
tidy_after_forward_propagate_addr (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
return res;
|
return res;
|
}
|
}
|
/* If the defining rhs comes from an indirect reference, then do not
|
/* If the defining rhs comes from an indirect reference, then do not
|
convert into a VIEW_CONVERT_EXPR. Likewise if we'll end up taking
|
convert into a VIEW_CONVERT_EXPR. Likewise if we'll end up taking
|
the address of a V_C_E of a constant. */
|
the address of a V_C_E of a constant. */
|
def_rhs_base = TREE_OPERAND (def_rhs, 0);
|
def_rhs_base = TREE_OPERAND (def_rhs, 0);
|
while (handled_component_p (def_rhs_base))
|
while (handled_component_p (def_rhs_base))
|
def_rhs_base = TREE_OPERAND (def_rhs_base, 0);
|
def_rhs_base = TREE_OPERAND (def_rhs_base, 0);
|
if (!INDIRECT_REF_P (def_rhs_base)
|
if (!INDIRECT_REF_P (def_rhs_base)
|
&& (!addr_p
|
&& (!addr_p
|
|| !is_gimple_min_invariant (def_rhs)))
|
|| !is_gimple_min_invariant (def_rhs)))
|
{
|
{
|
/* We may have arbitrary VIEW_CONVERT_EXPRs in a nested component
|
/* We may have arbitrary VIEW_CONVERT_EXPRs in a nested component
|
reference. Place it there and fold the thing. */
|
reference. Place it there and fold the thing. */
|
*rhsp = new_rhs;
|
*rhsp = new_rhs;
|
fold_stmt_inplace (use_stmt);
|
fold_stmt_inplace (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
return res;
|
return res;
|
}
|
}
|
}
|
}
|
|
|
/* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
|
/* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
|
is nothing to do. */
|
is nothing to do. */
|
if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
|
if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
return false;
|
return false;
|
|
|
/* The remaining cases are all for turning pointer arithmetic into
|
/* The remaining cases are all for turning pointer arithmetic into
|
array indexing. They only apply when we have the address of
|
array indexing. They only apply when we have the address of
|
element zero in an array. If that is not the case then there
|
element zero in an array. If that is not the case then there
|
is nothing to do. */
|
is nothing to do. */
|
array_ref = TREE_OPERAND (def_rhs, 0);
|
array_ref = TREE_OPERAND (def_rhs, 0);
|
if (TREE_CODE (array_ref) != ARRAY_REF
|
if (TREE_CODE (array_ref) != ARRAY_REF
|
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
|
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
|
|| TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
|
|| TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
|
return false;
|
return false;
|
|
|
rhs2 = gimple_assign_rhs2 (use_stmt);
|
rhs2 = gimple_assign_rhs2 (use_stmt);
|
/* Try to optimize &x[C1] p+ C2 where C2 is a multiple of the size
|
/* Try to optimize &x[C1] p+ C2 where C2 is a multiple of the size
|
of the elements in X into &x[C1 + C2/element size]. */
|
of the elements in X into &x[C1 + C2/element size]. */
|
if (TREE_CODE (rhs2) == INTEGER_CST)
|
if (TREE_CODE (rhs2) == INTEGER_CST)
|
{
|
{
|
tree new_rhs = maybe_fold_stmt_addition (gimple_location (use_stmt),
|
tree new_rhs = maybe_fold_stmt_addition (gimple_location (use_stmt),
|
TREE_TYPE (def_rhs),
|
TREE_TYPE (def_rhs),
|
def_rhs, rhs2);
|
def_rhs, rhs2);
|
if (new_rhs)
|
if (new_rhs)
|
{
|
{
|
tree type = TREE_TYPE (gimple_assign_lhs (use_stmt));
|
tree type = TREE_TYPE (gimple_assign_lhs (use_stmt));
|
new_rhs = unshare_expr (new_rhs);
|
new_rhs = unshare_expr (new_rhs);
|
if (!useless_type_conversion_p (type, TREE_TYPE (new_rhs)))
|
if (!useless_type_conversion_p (type, TREE_TYPE (new_rhs)))
|
{
|
{
|
if (!is_gimple_min_invariant (new_rhs))
|
if (!is_gimple_min_invariant (new_rhs))
|
new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs,
|
new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs,
|
true, NULL_TREE,
|
true, NULL_TREE,
|
true, GSI_SAME_STMT);
|
true, GSI_SAME_STMT);
|
new_rhs = fold_convert (type, new_rhs);
|
new_rhs = fold_convert (type, new_rhs);
|
}
|
}
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
|
use_stmt = gsi_stmt (*use_stmt_gsi);
|
use_stmt = gsi_stmt (*use_stmt_gsi);
|
update_stmt (use_stmt);
|
update_stmt (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
tidy_after_forward_propagate_addr (use_stmt);
|
return true;
|
return true;
|
}
|
}
|
}
|
}
|
|
|
/* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by
|
/* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by
|
converting a multiplication of an index by the size of the
|
converting a multiplication of an index by the size of the
|
array elements, then the result is converted into the proper
|
array elements, then the result is converted into the proper
|
type for the arithmetic. */
|
type for the arithmetic. */
|
if (TREE_CODE (rhs2) == SSA_NAME
|
if (TREE_CODE (rhs2) == SSA_NAME
|
&& integer_zerop (TREE_OPERAND (array_ref, 1))
|
&& integer_zerop (TREE_OPERAND (array_ref, 1))
|
&& useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs))
|
&& useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs))
|
/* Avoid problems with IVopts creating PLUS_EXPRs with a
|
/* Avoid problems with IVopts creating PLUS_EXPRs with a
|
different type than their operands. */
|
different type than their operands. */
|
&& useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
&& useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs,
|
return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs,
|
use_stmt_gsi);
|
use_stmt_gsi);
|
return false;
|
return false;
|
}
|
}
|
|
|
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
|
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
|
|
|
Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
|
Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
node or for recovery of array indexing from pointer arithmetic.
|
node or for recovery of array indexing from pointer arithmetic.
|
Returns true, if all uses have been propagated into. */
|
Returns true, if all uses have been propagated into. */
|
|
|
static bool
|
static bool
|
forward_propagate_addr_expr (tree name, tree rhs)
|
forward_propagate_addr_expr (tree name, tree rhs)
|
{
|
{
|
int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth;
|
int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth;
|
imm_use_iterator iter;
|
imm_use_iterator iter;
|
gimple use_stmt;
|
gimple use_stmt;
|
bool all = true;
|
bool all = true;
|
bool single_use_p = has_single_use (name);
|
bool single_use_p = has_single_use (name);
|
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
|
{
|
{
|
bool result;
|
bool result;
|
tree use_rhs;
|
tree use_rhs;
|
|
|
/* If the use is not in a simple assignment statement, then
|
/* If the use is not in a simple assignment statement, then
|
there is nothing we can do. */
|
there is nothing we can do. */
|
if (gimple_code (use_stmt) != GIMPLE_ASSIGN)
|
if (gimple_code (use_stmt) != GIMPLE_ASSIGN)
|
{
|
{
|
if (!is_gimple_debug (use_stmt))
|
if (!is_gimple_debug (use_stmt))
|
all = false;
|
all = false;
|
continue;
|
continue;
|
}
|
}
|
|
|
/* If the use is in a deeper loop nest, then we do not want
|
/* If the use is in a deeper loop nest, then we do not want
|
to propagate the ADDR_EXPR into the loop as that is likely
|
to propagate the ADDR_EXPR into the loop as that is likely
|
adding expression evaluations into the loop. */
|
adding expression evaluations into the loop. */
|
if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth)
|
if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth)
|
{
|
{
|
all = false;
|
all = false;
|
continue;
|
continue;
|
}
|
}
|
|
|
{
|
{
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
|
result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
|
single_use_p);
|
single_use_p);
|
/* If the use has moved to a different statement adjust
|
/* If the use has moved to a different statement adjust
|
the update machinery for the old statement too. */
|
the update machinery for the old statement too. */
|
if (use_stmt != gsi_stmt (gsi))
|
if (use_stmt != gsi_stmt (gsi))
|
{
|
{
|
update_stmt (use_stmt);
|
update_stmt (use_stmt);
|
use_stmt = gsi_stmt (gsi);
|
use_stmt = gsi_stmt (gsi);
|
}
|
}
|
|
|
update_stmt (use_stmt);
|
update_stmt (use_stmt);
|
}
|
}
|
all &= result;
|
all &= result;
|
|
|
/* Remove intermediate now unused copy and conversion chains. */
|
/* Remove intermediate now unused copy and conversion chains. */
|
use_rhs = gimple_assign_rhs1 (use_stmt);
|
use_rhs = gimple_assign_rhs1 (use_stmt);
|
if (result
|
if (result
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
&& TREE_CODE (use_rhs) == SSA_NAME
|
&& TREE_CODE (use_rhs) == SSA_NAME
|
&& has_zero_uses (gimple_assign_lhs (use_stmt)))
|
&& has_zero_uses (gimple_assign_lhs (use_stmt)))
|
{
|
{
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
release_defs (use_stmt);
|
release_defs (use_stmt);
|
gsi_remove (&gsi, true);
|
gsi_remove (&gsi, true);
|
}
|
}
|
}
|
}
|
|
|
return all;
|
return all;
|
}
|
}
|
|
|
/* Forward propagate the comparison defined in STMT like
|
/* Forward propagate the comparison defined in STMT like
|
cond_1 = x CMP y to uses of the form
|
cond_1 = x CMP y to uses of the form
|
a_1 = (T')cond_1
|
a_1 = (T')cond_1
|
a_1 = !cond_1
|
a_1 = !cond_1
|
a_1 = cond_1 != 0
|
a_1 = cond_1 != 0
|
Returns true if stmt is now unused. */
|
Returns true if stmt is now unused. */
|
|
|
static bool
|
static bool
|
forward_propagate_comparison (gimple stmt)
|
forward_propagate_comparison (gimple stmt)
|
{
|
{
|
tree name = gimple_assign_lhs (stmt);
|
tree name = gimple_assign_lhs (stmt);
|
gimple use_stmt;
|
gimple use_stmt;
|
tree tmp = NULL_TREE;
|
tree tmp = NULL_TREE;
|
|
|
/* Don't propagate ssa names that occur in abnormal phis. */
|
/* Don't propagate ssa names that occur in abnormal phis. */
|
if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
|
|| (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
|
|| (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
|
return false;
|
return false;
|
|
|
/* Do not un-cse comparisons. But propagate through copies. */
|
/* Do not un-cse comparisons. But propagate through copies. */
|
use_stmt = get_prop_dest_stmt (name, &name);
|
use_stmt = get_prop_dest_stmt (name, &name);
|
if (!use_stmt)
|
if (!use_stmt)
|
return false;
|
return false;
|
|
|
/* Conversion of the condition result to another integral type. */
|
/* Conversion of the condition result to another integral type. */
|
if (is_gimple_assign (use_stmt)
|
if (is_gimple_assign (use_stmt)
|
&& (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
|
&& (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
|
== tcc_comparison
|
== tcc_comparison
|
|| gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
|
|| gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (use_stmt))))
|
&& INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (use_stmt))))
|
{
|
{
|
tree lhs = gimple_assign_lhs (use_stmt);
|
tree lhs = gimple_assign_lhs (use_stmt);
|
|
|
/* We can propagate the condition into a conversion. */
|
/* We can propagate the condition into a conversion. */
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
|
{
|
{
|
/* Avoid using fold here as that may create a COND_EXPR with
|
/* Avoid using fold here as that may create a COND_EXPR with
|
non-boolean condition as canonical form. */
|
non-boolean condition as canonical form. */
|
tmp = build2 (gimple_assign_rhs_code (stmt), TREE_TYPE (lhs),
|
tmp = build2 (gimple_assign_rhs_code (stmt), TREE_TYPE (lhs),
|
gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt));
|
gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt));
|
}
|
}
|
/* We can propagate the condition into X op CST where op
|
/* We can propagate the condition into X op CST where op
|
is EQ_EXPR or NE_EXPR and CST is either one or zero. */
|
is EQ_EXPR or NE_EXPR and CST is either one or zero. */
|
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
|
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
|
== tcc_comparison
|
== tcc_comparison
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
|
&& TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
|
&& TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
|
{
|
{
|
enum tree_code code = gimple_assign_rhs_code (use_stmt);
|
enum tree_code code = gimple_assign_rhs_code (use_stmt);
|
tree cst = gimple_assign_rhs2 (use_stmt);
|
tree cst = gimple_assign_rhs2 (use_stmt);
|
tree cond;
|
tree cond;
|
|
|
cond = build2 (gimple_assign_rhs_code (stmt),
|
cond = build2 (gimple_assign_rhs_code (stmt),
|
TREE_TYPE (cst),
|
TREE_TYPE (cst),
|
gimple_assign_rhs1 (stmt),
|
gimple_assign_rhs1 (stmt),
|
gimple_assign_rhs2 (stmt));
|
gimple_assign_rhs2 (stmt));
|
|
|
tmp = combine_cond_expr_cond (gimple_location (use_stmt),
|
tmp = combine_cond_expr_cond (gimple_location (use_stmt),
|
code, TREE_TYPE (lhs),
|
code, TREE_TYPE (lhs),
|
cond, cst, false);
|
cond, cst, false);
|
if (tmp == NULL_TREE)
|
if (tmp == NULL_TREE)
|
return false;
|
return false;
|
}
|
}
|
/* We can propagate the condition into a statement that
|
/* We can propagate the condition into a statement that
|
computes the logical negation of the comparison result. */
|
computes the logical negation of the comparison result. */
|
else if (gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
|
else if (gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
|
{
|
{
|
tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
bool nans = HONOR_NANS (TYPE_MODE (type));
|
bool nans = HONOR_NANS (TYPE_MODE (type));
|
enum tree_code code;
|
enum tree_code code;
|
code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
|
code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
|
if (code == ERROR_MARK)
|
if (code == ERROR_MARK)
|
return false;
|
return false;
|
|
|
tmp = build2 (code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
|
tmp = build2 (code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
|
gimple_assign_rhs2 (stmt));
|
gimple_assign_rhs2 (stmt));
|
}
|
}
|
else
|
else
|
return false;
|
return false;
|
|
|
{
|
{
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
|
gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
|
use_stmt = gsi_stmt (gsi);
|
use_stmt = gsi_stmt (gsi);
|
update_stmt (use_stmt);
|
update_stmt (use_stmt);
|
}
|
}
|
|
|
/* Remove defining statements. */
|
/* Remove defining statements. */
|
remove_prop_source_from_use (name, stmt);
|
remove_prop_source_from_use (name, stmt);
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
{
|
{
|
tree old_rhs = rhs_to_tree (TREE_TYPE (gimple_assign_lhs (stmt)),
|
tree old_rhs = rhs_to_tree (TREE_TYPE (gimple_assign_lhs (stmt)),
|
stmt);
|
stmt);
|
fprintf (dump_file, " Replaced '");
|
fprintf (dump_file, " Replaced '");
|
print_generic_expr (dump_file, old_rhs, dump_flags);
|
print_generic_expr (dump_file, old_rhs, dump_flags);
|
fprintf (dump_file, "' with '");
|
fprintf (dump_file, "' with '");
|
print_generic_expr (dump_file, tmp, dump_flags);
|
print_generic_expr (dump_file, tmp, dump_flags);
|
fprintf (dump_file, "'\n");
|
fprintf (dump_file, "'\n");
|
}
|
}
|
|
|
return true;
|
return true;
|
}
|
}
|
|
|
return false;
|
return false;
|
}
|
}
|
|
|
/* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
|
/* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
|
If so, we can change STMT into lhs = y which can later be copy
|
If so, we can change STMT into lhs = y which can later be copy
|
propagated. Similarly for negation.
|
propagated. Similarly for negation.
|
|
|
This could trivially be formulated as a forward propagation
|
This could trivially be formulated as a forward propagation
|
to immediate uses. However, we already had an implementation
|
to immediate uses. However, we already had an implementation
|
from DOM which used backward propagation via the use-def links.
|
from DOM which used backward propagation via the use-def links.
|
|
|
It turns out that backward propagation is actually faster as
|
It turns out that backward propagation is actually faster as
|
there's less work to do for each NOT/NEG expression we find.
|
there's less work to do for each NOT/NEG expression we find.
|
Backwards propagation needs to look at the statement in a single
|
Backwards propagation needs to look at the statement in a single
|
backlink. Forward propagation needs to look at potentially more
|
backlink. Forward propagation needs to look at potentially more
|
than one forward link. */
|
than one forward link. */
|
|
|
static void
|
static void
|
simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
|
simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
|
{
|
{
|
gimple stmt = gsi_stmt (*gsi_p);
|
gimple stmt = gsi_stmt (*gsi_p);
|
tree rhs = gimple_assign_rhs1 (stmt);
|
tree rhs = gimple_assign_rhs1 (stmt);
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
|
|
/* See if the RHS_DEF_STMT has the same form as our statement. */
|
/* See if the RHS_DEF_STMT has the same form as our statement. */
|
if (is_gimple_assign (rhs_def_stmt)
|
if (is_gimple_assign (rhs_def_stmt)
|
&& gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
|
&& gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
|
{
|
{
|
tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
|
tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
|
|
|
/* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME. */
|
/* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME. */
|
if (TREE_CODE (rhs_def_operand) == SSA_NAME
|
if (TREE_CODE (rhs_def_operand) == SSA_NAME
|
&& ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
|
&& ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
|
{
|
{
|
gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
|
gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
|
stmt = gsi_stmt (*gsi_p);
|
stmt = gsi_stmt (*gsi_p);
|
update_stmt (stmt);
|
update_stmt (stmt);
|
}
|
}
|
}
|
}
|
}
|
}
|
|
|
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
|
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
|
the condition which we may be able to optimize better. */
|
the condition which we may be able to optimize better. */
|
|
|
static void
|
static void
|
simplify_gimple_switch (gimple stmt)
|
simplify_gimple_switch (gimple stmt)
|
{
|
{
|
tree cond = gimple_switch_index (stmt);
|
tree cond = gimple_switch_index (stmt);
|
tree def, to, ti;
|
tree def, to, ti;
|
gimple def_stmt;
|
gimple def_stmt;
|
|
|
/* The optimization that we really care about is removing unnecessary
|
/* The optimization that we really care about is removing unnecessary
|
casts. That will let us do much better in propagating the inferred
|
casts. That will let us do much better in propagating the inferred
|
constant at the switch target. */
|
constant at the switch target. */
|
if (TREE_CODE (cond) == SSA_NAME)
|
if (TREE_CODE (cond) == SSA_NAME)
|
{
|
{
|
def_stmt = SSA_NAME_DEF_STMT (cond);
|
def_stmt = SSA_NAME_DEF_STMT (cond);
|
if (is_gimple_assign (def_stmt))
|
if (is_gimple_assign (def_stmt))
|
{
|
{
|
if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
|
if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
|
{
|
{
|
int need_precision;
|
int need_precision;
|
bool fail;
|
bool fail;
|
|
|
def = gimple_assign_rhs1 (def_stmt);
|
def = gimple_assign_rhs1 (def_stmt);
|
|
|
#ifdef ENABLE_CHECKING
|
#ifdef ENABLE_CHECKING
|
/* ??? Why was Jeff testing this? We are gimple... */
|
/* ??? Why was Jeff testing this? We are gimple... */
|
gcc_assert (is_gimple_val (def));
|
gcc_assert (is_gimple_val (def));
|
#endif
|
#endif
|
|
|
to = TREE_TYPE (cond);
|
to = TREE_TYPE (cond);
|
ti = TREE_TYPE (def);
|
ti = TREE_TYPE (def);
|
|
|
/* If we have an extension that preserves value, then we
|
/* If we have an extension that preserves value, then we
|
can copy the source value into the switch. */
|
can copy the source value into the switch. */
|
|
|
need_precision = TYPE_PRECISION (ti);
|
need_precision = TYPE_PRECISION (ti);
|
fail = false;
|
fail = false;
|
if (! INTEGRAL_TYPE_P (ti))
|
if (! INTEGRAL_TYPE_P (ti))
|
fail = true;
|
fail = true;
|
else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
|
else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
|
fail = true;
|
fail = true;
|
else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
|
else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
|
need_precision += 1;
|
need_precision += 1;
|
if (TYPE_PRECISION (to) < need_precision)
|
if (TYPE_PRECISION (to) < need_precision)
|
fail = true;
|
fail = true;
|
|
|
if (!fail)
|
if (!fail)
|
{
|
{
|
gimple_switch_set_index (stmt, def);
|
gimple_switch_set_index (stmt, def);
|
update_stmt (stmt);
|
update_stmt (stmt);
|
}
|
}
|
}
|
}
|
}
|
}
|
}
|
}
|
}
|
}
|
|
|
/* Run bitwise and assignments throug the folder. If the first argument is an
|
/* Run bitwise and assignments throug the folder. If the first argument is an
|
ssa name that is itself a result of a typecast of an ADDR_EXPR to an
|
ssa name that is itself a result of a typecast of an ADDR_EXPR to an
|
integer, feed the ADDR_EXPR to the folder rather than the ssa name.
|
integer, feed the ADDR_EXPR to the folder rather than the ssa name.
|
*/
|
*/
|
|
|
static void
|
static void
|
simplify_bitwise_and (gimple_stmt_iterator *gsi, gimple stmt)
|
simplify_bitwise_and (gimple_stmt_iterator *gsi, gimple stmt)
|
{
|
{
|
tree res;
|
tree res;
|
tree arg1 = gimple_assign_rhs1 (stmt);
|
tree arg1 = gimple_assign_rhs1 (stmt);
|
tree arg2 = gimple_assign_rhs2 (stmt);
|
tree arg2 = gimple_assign_rhs2 (stmt);
|
|
|
if (TREE_CODE (arg2) != INTEGER_CST)
|
if (TREE_CODE (arg2) != INTEGER_CST)
|
return;
|
return;
|
|
|
if (TREE_CODE (arg1) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg1))
|
if (TREE_CODE (arg1) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg1))
|
{
|
{
|
gimple def = SSA_NAME_DEF_STMT (arg1);
|
gimple def = SSA_NAME_DEF_STMT (arg1);
|
|
|
if (gimple_assign_cast_p (def)
|
if (gimple_assign_cast_p (def)
|
&& INTEGRAL_TYPE_P (gimple_expr_type (def)))
|
&& INTEGRAL_TYPE_P (gimple_expr_type (def)))
|
{
|
{
|
tree op = gimple_assign_rhs1 (def);
|
tree op = gimple_assign_rhs1 (def);
|
|
|
if (TREE_CODE (op) == ADDR_EXPR)
|
if (TREE_CODE (op) == ADDR_EXPR)
|
arg1 = op;
|
arg1 = op;
|
}
|
}
|
}
|
}
|
|
|
res = fold_binary_loc (gimple_location (stmt),
|
res = fold_binary_loc (gimple_location (stmt),
|
BIT_AND_EXPR, TREE_TYPE (gimple_assign_lhs (stmt)),
|
BIT_AND_EXPR, TREE_TYPE (gimple_assign_lhs (stmt)),
|
arg1, arg2);
|
arg1, arg2);
|
if (res && is_gimple_min_invariant (res))
|
if (res && is_gimple_min_invariant (res))
|
{
|
{
|
gimple_assign_set_rhs_from_tree (gsi, res);
|
gimple_assign_set_rhs_from_tree (gsi, res);
|
update_stmt (stmt);
|
update_stmt (stmt);
|
}
|
}
|
return;
|
return;
|
}
|
}
|
|
|
/* Main entry point for the forward propagation optimizer. */
|
/* Main entry point for the forward propagation optimizer. */
|
|
|
static unsigned int
|
static unsigned int
|
tree_ssa_forward_propagate_single_use_vars (void)
|
tree_ssa_forward_propagate_single_use_vars (void)
|
{
|
{
|
basic_block bb;
|
basic_block bb;
|
unsigned int todoflags = 0;
|
unsigned int todoflags = 0;
|
|
|
cfg_changed = false;
|
cfg_changed = false;
|
|
|
FOR_EACH_BB (bb)
|
FOR_EACH_BB (bb)
|
{
|
{
|
gimple_stmt_iterator gsi;
|
gimple_stmt_iterator gsi;
|
|
|
/* Note we update GSI within the loop as necessary. */
|
/* Note we update GSI within the loop as necessary. */
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
{
|
{
|
gimple stmt = gsi_stmt (gsi);
|
gimple stmt = gsi_stmt (gsi);
|
|
|
/* If this statement sets an SSA_NAME to an address,
|
/* If this statement sets an SSA_NAME to an address,
|
try to propagate the address into the uses of the SSA_NAME. */
|
try to propagate the address into the uses of the SSA_NAME. */
|
if (is_gimple_assign (stmt))
|
if (is_gimple_assign (stmt))
|
{
|
{
|
tree lhs = gimple_assign_lhs (stmt);
|
tree lhs = gimple_assign_lhs (stmt);
|
tree rhs = gimple_assign_rhs1 (stmt);
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
if (TREE_CODE (lhs) != SSA_NAME)
|
{
|
{
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
continue;
|
continue;
|
}
|
}
|
|
|
if (gimple_assign_rhs_code (stmt) == ADDR_EXPR
|
if (gimple_assign_rhs_code (stmt) == ADDR_EXPR
|
/* Handle pointer conversions on invariant addresses
|
/* Handle pointer conversions on invariant addresses
|
as well, as this is valid gimple. */
|
as well, as this is valid gimple. */
|
|| (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
|
|| (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
|
&& TREE_CODE (rhs) == ADDR_EXPR
|
&& TREE_CODE (rhs) == ADDR_EXPR
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))))
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))))
|
{
|
{
|
STRIP_NOPS (rhs);
|
STRIP_NOPS (rhs);
|
if (!stmt_references_abnormal_ssa_name (stmt)
|
if (!stmt_references_abnormal_ssa_name (stmt)
|
&& forward_propagate_addr_expr (lhs, rhs))
|
&& forward_propagate_addr_expr (lhs, rhs))
|
{
|
{
|
release_defs (stmt);
|
release_defs (stmt);
|
todoflags |= TODO_remove_unused_locals;
|
todoflags |= TODO_remove_unused_locals;
|
gsi_remove (&gsi, true);
|
gsi_remove (&gsi, true);
|
}
|
}
|
else
|
else
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
&& is_gimple_min_invariant (rhs))
|
&& is_gimple_min_invariant (rhs))
|
{
|
{
|
/* Make sure to fold &a[0] + off_1 here. */
|
/* Make sure to fold &a[0] + off_1 here. */
|
fold_stmt_inplace (stmt);
|
fold_stmt_inplace (stmt);
|
update_stmt (stmt);
|
update_stmt (stmt);
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if ((gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR
|
else if ((gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR
|
|| gimple_assign_rhs_code (stmt) == NEGATE_EXPR)
|
|| gimple_assign_rhs_code (stmt) == NEGATE_EXPR)
|
&& TREE_CODE (rhs) == SSA_NAME)
|
&& TREE_CODE (rhs) == SSA_NAME)
|
{
|
{
|
simplify_not_neg_expr (&gsi);
|
simplify_not_neg_expr (&gsi);
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if (gimple_assign_rhs_code (stmt) == COND_EXPR)
|
else if (gimple_assign_rhs_code (stmt) == COND_EXPR)
|
{
|
{
|
/* In this case the entire COND_EXPR is in rhs1. */
|
/* In this case the entire COND_EXPR is in rhs1. */
|
int did_something;
|
int did_something;
|
fold_defer_overflow_warnings ();
|
fold_defer_overflow_warnings ();
|
did_something = forward_propagate_into_cond (&gsi);
|
did_something = forward_propagate_into_cond (&gsi);
|
stmt = gsi_stmt (gsi);
|
stmt = gsi_stmt (gsi);
|
if (did_something == 2)
|
if (did_something == 2)
|
cfg_changed = true;
|
cfg_changed = true;
|
fold_undefer_overflow_warnings (!TREE_NO_WARNING (rhs)
|
fold_undefer_overflow_warnings (!TREE_NO_WARNING (rhs)
|
&& did_something, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
|
&& did_something, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
|
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
|
== tcc_comparison)
|
== tcc_comparison)
|
{
|
{
|
if (forward_propagate_comparison (stmt))
|
if (forward_propagate_comparison (stmt))
|
{
|
{
|
release_defs (stmt);
|
release_defs (stmt);
|
todoflags |= TODO_remove_unused_locals;
|
todoflags |= TODO_remove_unused_locals;
|
gsi_remove (&gsi, true);
|
gsi_remove (&gsi, true);
|
}
|
}
|
else
|
else
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR)
|
else if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR)
|
{
|
{
|
simplify_bitwise_and (&gsi, stmt);
|
simplify_bitwise_and (&gsi, stmt);
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else
|
else
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
{
|
{
|
simplify_gimple_switch (stmt);
|
simplify_gimple_switch (stmt);
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
{
|
{
|
int did_something;
|
int did_something;
|
fold_defer_overflow_warnings ();
|
fold_defer_overflow_warnings ();
|
did_something = forward_propagate_into_gimple_cond (stmt);
|
did_something = forward_propagate_into_gimple_cond (stmt);
|
if (did_something == 2)
|
if (did_something == 2)
|
cfg_changed = true;
|
cfg_changed = true;
|
fold_undefer_overflow_warnings (did_something, stmt,
|
fold_undefer_overflow_warnings (did_something, stmt,
|
WARN_STRICT_OVERFLOW_CONDITIONAL);
|
WARN_STRICT_OVERFLOW_CONDITIONAL);
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
else
|
else
|
gsi_next (&gsi);
|
gsi_next (&gsi);
|
}
|
}
|
}
|
}
|
|
|
if (cfg_changed)
|
if (cfg_changed)
|
todoflags |= TODO_cleanup_cfg;
|
todoflags |= TODO_cleanup_cfg;
|
return todoflags;
|
return todoflags;
|
}
|
}
|
|
|
|
|
static bool
|
static bool
|
gate_forwprop (void)
|
gate_forwprop (void)
|
{
|
{
|
return flag_tree_forwprop;
|
return flag_tree_forwprop;
|
}
|
}
|
|
|
struct gimple_opt_pass pass_forwprop =
|
struct gimple_opt_pass pass_forwprop =
|
{
|
{
|
{
|
{
|
GIMPLE_PASS,
|
GIMPLE_PASS,
|
"forwprop", /* name */
|
"forwprop", /* name */
|
gate_forwprop, /* gate */
|
gate_forwprop, /* gate */
|
tree_ssa_forward_propagate_single_use_vars, /* execute */
|
tree_ssa_forward_propagate_single_use_vars, /* execute */
|
NULL, /* sub */
|
NULL, /* sub */
|
NULL, /* next */
|
NULL, /* next */
|
0, /* static_pass_number */
|
0, /* static_pass_number */
|
TV_TREE_FORWPROP, /* tv_id */
|
TV_TREE_FORWPROP, /* tv_id */
|
PROP_cfg | PROP_ssa, /* properties_required */
|
PROP_cfg | PROP_ssa, /* properties_required */
|
0, /* properties_provided */
|
0, /* properties_provided */
|
0, /* properties_destroyed */
|
0, /* properties_destroyed */
|
0, /* todo_flags_start */
|
0, /* todo_flags_start */
|
TODO_dump_func
|
TODO_dump_func
|
| TODO_ggc_collect
|
| TODO_ggc_collect
|
| TODO_update_ssa
|
| TODO_update_ssa
|
| TODO_verify_ssa /* todo_flags_finish */
|
| TODO_verify_ssa /* todo_flags_finish */
|
}
|
}
|
};
|
};
|
|
|
|
|