OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [tree-ssa-forwprop.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Forward propagation of expressions for single use variables.
/* Forward propagation of expressions for single use variables.
   Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
   Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "basic-block.h"
#include "basic-block.h"
#include "timevar.h"
#include "timevar.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "langhooks.h"
#include "langhooks.h"
#include "flags.h"
#include "flags.h"
#include "gimple.h"
#include "gimple.h"
 
 
/* This pass propagates the RHS of assignment statements into use
/* This pass propagates the RHS of assignment statements into use
   sites of the LHS of the assignment.  It's basically a specialized
   sites of the LHS of the assignment.  It's basically a specialized
   form of tree combination.   It is hoped all of this can disappear
   form of tree combination.   It is hoped all of this can disappear
   when we have a generalized tree combiner.
   when we have a generalized tree combiner.
 
 
   One class of common cases we handle is forward propagating a single use
   One class of common cases we handle is forward propagating a single use
   variable into a COND_EXPR.
   variable into a COND_EXPR.
 
 
     bb0:
     bb0:
       x = a COND b;
       x = a COND b;
       if (x) goto ... else goto ...
       if (x) goto ... else goto ...
 
 
   Will be transformed into:
   Will be transformed into:
 
 
     bb0:
     bb0:
       if (a COND b) goto ... else goto ...
       if (a COND b) goto ... else goto ...
 
 
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
 
 
   Or (assuming c1 and c2 are constants):
   Or (assuming c1 and c2 are constants):
 
 
     bb0:
     bb0:
       x = a + c1;
       x = a + c1;
       if (x EQ/NEQ c2) goto ... else goto ...
       if (x EQ/NEQ c2) goto ... else goto ...
 
 
   Will be transformed into:
   Will be transformed into:
 
 
     bb0:
     bb0:
        if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
        if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
 
 
   Similarly for x = a - c1.
   Similarly for x = a - c1.
 
 
   Or
   Or
 
 
     bb0:
     bb0:
       x = !a
       x = !a
       if (x) goto ... else goto ...
       if (x) goto ... else goto ...
 
 
   Will be transformed into:
   Will be transformed into:
 
 
     bb0:
     bb0:
        if (a == 0) goto ... else goto ...
        if (a == 0) goto ... else goto ...
 
 
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   For these cases, we propagate A into all, possibly more than one,
   For these cases, we propagate A into all, possibly more than one,
   COND_EXPRs that use X.
   COND_EXPRs that use X.
 
 
   Or
   Or
 
 
     bb0:
     bb0:
       x = (typecast) a
       x = (typecast) a
       if (x) goto ... else goto ...
       if (x) goto ... else goto ...
 
 
   Will be transformed into:
   Will be transformed into:
 
 
     bb0:
     bb0:
        if (a != 0) goto ... else goto ...
        if (a != 0) goto ... else goto ...
 
 
   (Assuming a is an integral type and x is a boolean or x is an
   (Assuming a is an integral type and x is a boolean or x is an
    integral and a is a boolean.)
    integral and a is a boolean.)
 
 
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
   For these cases, we propagate A into all, possibly more than one,
   For these cases, we propagate A into all, possibly more than one,
   COND_EXPRs that use X.
   COND_EXPRs that use X.
 
 
   In addition to eliminating the variable and the statement which assigns
   In addition to eliminating the variable and the statement which assigns
   a value to the variable, we may be able to later thread the jump without
   a value to the variable, we may be able to later thread the jump without
   adding insane complexity in the dominator optimizer.
   adding insane complexity in the dominator optimizer.
 
 
   Also note these transformations can cascade.  We handle this by having
   Also note these transformations can cascade.  We handle this by having
   a worklist of COND_EXPR statements to examine.  As we make a change to
   a worklist of COND_EXPR statements to examine.  As we make a change to
   a statement, we put it back on the worklist to examine on the next
   a statement, we put it back on the worklist to examine on the next
   iteration of the main loop.
   iteration of the main loop.
 
 
   A second class of propagation opportunities arises for ADDR_EXPR
   A second class of propagation opportunities arises for ADDR_EXPR
   nodes.
   nodes.
 
 
     ptr = &x->y->z;
     ptr = &x->y->z;
     res = *ptr;
     res = *ptr;
 
 
   Will get turned into
   Will get turned into
 
 
     res = x->y->z;
     res = x->y->z;
 
 
   Or
   Or
     ptr = (type1*)&type2var;
     ptr = (type1*)&type2var;
     res = *ptr
     res = *ptr
 
 
   Will get turned into (if type1 and type2 are the same size
   Will get turned into (if type1 and type2 are the same size
   and neither have volatile on them):
   and neither have volatile on them):
     res = VIEW_CONVERT_EXPR<type1>(type2var)
     res = VIEW_CONVERT_EXPR<type1>(type2var)
 
 
   Or
   Or
 
 
     ptr = &x[0];
     ptr = &x[0];
     ptr2 = ptr + <constant>;
     ptr2 = ptr + <constant>;
 
 
   Will get turned into
   Will get turned into
 
 
     ptr2 = &x[constant/elementsize];
     ptr2 = &x[constant/elementsize];
 
 
  Or
  Or
 
 
     ptr = &x[0];
     ptr = &x[0];
     offset = index * element_size;
     offset = index * element_size;
     offset_p = (pointer) offset;
     offset_p = (pointer) offset;
     ptr2 = ptr + offset_p
     ptr2 = ptr + offset_p
 
 
  Will get turned into:
  Will get turned into:
 
 
     ptr2 = &x[index];
     ptr2 = &x[index];
 
 
  Or
  Or
    ssa = (int) decl
    ssa = (int) decl
    res = ssa & 1
    res = ssa & 1
 
 
  Provided that decl has known alignment >= 2, will get turned into
  Provided that decl has known alignment >= 2, will get turned into
 
 
    res = 0
    res = 0
 
 
  We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
  We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
  allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
  allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
  {NOT_EXPR,NEG_EXPR}.
  {NOT_EXPR,NEG_EXPR}.
 
 
   This will (of course) be extended as other needs arise.  */
   This will (of course) be extended as other needs arise.  */
 
 
static bool forward_propagate_addr_expr (tree name, tree rhs);
static bool forward_propagate_addr_expr (tree name, tree rhs);
 
 
/* Set to true if we delete EH edges during the optimization.  */
/* Set to true if we delete EH edges during the optimization.  */
static bool cfg_changed;
static bool cfg_changed;
 
 
static tree rhs_to_tree (tree type, gimple stmt);
static tree rhs_to_tree (tree type, gimple stmt);
 
 
/* Get the next statement we can propagate NAME's value into skipping
/* Get the next statement we can propagate NAME's value into skipping
   trivial copies.  Returns the statement that is suitable as a
   trivial copies.  Returns the statement that is suitable as a
   propagation destination or NULL_TREE if there is no such one.
   propagation destination or NULL_TREE if there is no such one.
   This only returns destinations in a single-use chain.  FINAL_NAME_P
   This only returns destinations in a single-use chain.  FINAL_NAME_P
   if non-NULL is written to the ssa name that represents the use.  */
   if non-NULL is written to the ssa name that represents the use.  */
 
 
static gimple
static gimple
get_prop_dest_stmt (tree name, tree *final_name_p)
get_prop_dest_stmt (tree name, tree *final_name_p)
{
{
  use_operand_p use;
  use_operand_p use;
  gimple use_stmt;
  gimple use_stmt;
 
 
  do {
  do {
    /* If name has multiple uses, bail out.  */
    /* If name has multiple uses, bail out.  */
    if (!single_imm_use (name, &use, &use_stmt))
    if (!single_imm_use (name, &use, &use_stmt))
      return NULL;
      return NULL;
 
 
    /* If this is not a trivial copy, we found it.  */
    /* If this is not a trivial copy, we found it.  */
    if (!gimple_assign_ssa_name_copy_p (use_stmt)
    if (!gimple_assign_ssa_name_copy_p (use_stmt)
        || gimple_assign_rhs1 (use_stmt) != name)
        || gimple_assign_rhs1 (use_stmt) != name)
      break;
      break;
 
 
    /* Continue searching uses of the copy destination.  */
    /* Continue searching uses of the copy destination.  */
    name = gimple_assign_lhs (use_stmt);
    name = gimple_assign_lhs (use_stmt);
  } while (1);
  } while (1);
 
 
  if (final_name_p)
  if (final_name_p)
    *final_name_p = name;
    *final_name_p = name;
 
 
  return use_stmt;
  return use_stmt;
}
}
 
 
/* Get the statement we can propagate from into NAME skipping
/* Get the statement we can propagate from into NAME skipping
   trivial copies.  Returns the statement which defines the
   trivial copies.  Returns the statement which defines the
   propagation source or NULL_TREE if there is no such one.
   propagation source or NULL_TREE if there is no such one.
   If SINGLE_USE_ONLY is set considers only sources which have
   If SINGLE_USE_ONLY is set considers only sources which have
   a single use chain up to NAME.  If SINGLE_USE_P is non-null,
   a single use chain up to NAME.  If SINGLE_USE_P is non-null,
   it is set to whether the chain to NAME is a single use chain
   it is set to whether the chain to NAME is a single use chain
   or not.  SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set.  */
   or not.  SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set.  */
 
 
static gimple
static gimple
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
{
{
  bool single_use = true;
  bool single_use = true;
 
 
  do {
  do {
    gimple def_stmt = SSA_NAME_DEF_STMT (name);
    gimple def_stmt = SSA_NAME_DEF_STMT (name);
 
 
    if (!has_single_use (name))
    if (!has_single_use (name))
      {
      {
        single_use = false;
        single_use = false;
        if (single_use_only)
        if (single_use_only)
          return NULL;
          return NULL;
      }
      }
 
 
    /* If name is defined by a PHI node or is the default def, bail out.  */
    /* If name is defined by a PHI node or is the default def, bail out.  */
    if (!is_gimple_assign (def_stmt))
    if (!is_gimple_assign (def_stmt))
      return NULL;
      return NULL;
 
 
    /* If def_stmt is not a simple copy, we possibly found it.  */
    /* If def_stmt is not a simple copy, we possibly found it.  */
    if (!gimple_assign_ssa_name_copy_p (def_stmt))
    if (!gimple_assign_ssa_name_copy_p (def_stmt))
      {
      {
        tree rhs;
        tree rhs;
 
 
        if (!single_use_only && single_use_p)
        if (!single_use_only && single_use_p)
          *single_use_p = single_use;
          *single_use_p = single_use;
 
 
        /* We can look through pointer conversions in the search
        /* We can look through pointer conversions in the search
           for a useful stmt for the comparison folding.  */
           for a useful stmt for the comparison folding.  */
        rhs = gimple_assign_rhs1 (def_stmt);
        rhs = gimple_assign_rhs1 (def_stmt);
        if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
        if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
            && TREE_CODE (rhs) == SSA_NAME
            && TREE_CODE (rhs) == SSA_NAME
            && POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt)))
            && POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt)))
            && POINTER_TYPE_P (TREE_TYPE (rhs)))
            && POINTER_TYPE_P (TREE_TYPE (rhs)))
          name = rhs;
          name = rhs;
        else
        else
          return def_stmt;
          return def_stmt;
      }
      }
    else
    else
      {
      {
        /* Continue searching the def of the copy source name.  */
        /* Continue searching the def of the copy source name.  */
        name = gimple_assign_rhs1 (def_stmt);
        name = gimple_assign_rhs1 (def_stmt);
      }
      }
  } while (1);
  } while (1);
}
}
 
 
/* Checks if the destination ssa name in DEF_STMT can be used as
/* Checks if the destination ssa name in DEF_STMT can be used as
   propagation source.  Returns true if so, otherwise false.  */
   propagation source.  Returns true if so, otherwise false.  */
 
 
static bool
static bool
can_propagate_from (gimple def_stmt)
can_propagate_from (gimple def_stmt)
{
{
  use_operand_p use_p;
  use_operand_p use_p;
  ssa_op_iter iter;
  ssa_op_iter iter;
 
 
  gcc_assert (is_gimple_assign (def_stmt));
  gcc_assert (is_gimple_assign (def_stmt));
 
 
  /* If the rhs has side-effects we cannot propagate from it.  */
  /* If the rhs has side-effects we cannot propagate from it.  */
  if (gimple_has_volatile_ops (def_stmt))
  if (gimple_has_volatile_ops (def_stmt))
    return false;
    return false;
 
 
  /* If the rhs is a load we cannot propagate from it.  */
  /* If the rhs is a load we cannot propagate from it.  */
  if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
  if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
      || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
      || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
    return false;
    return false;
 
 
  /* Constants can be always propagated.  */
  /* Constants can be always propagated.  */
  if (gimple_assign_single_p (def_stmt)
  if (gimple_assign_single_p (def_stmt)
      && is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
      && is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
    return true;
    return true;
 
 
  /* We cannot propagate ssa names that occur in abnormal phi nodes.  */
  /* We cannot propagate ssa names that occur in abnormal phi nodes.  */
  FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE)
  FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE)
    if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
    if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
      return false;
      return false;
 
 
  /* If the definition is a conversion of a pointer to a function type,
  /* If the definition is a conversion of a pointer to a function type,
     then we can not apply optimizations as some targets require
     then we can not apply optimizations as some targets require
     function pointers to be canonicalized and in this case this
     function pointers to be canonicalized and in this case this
     optimization could eliminate a necessary canonicalization.  */
     optimization could eliminate a necessary canonicalization.  */
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
    {
    {
      tree rhs = gimple_assign_rhs1 (def_stmt);
      tree rhs = gimple_assign_rhs1 (def_stmt);
      if (POINTER_TYPE_P (TREE_TYPE (rhs))
      if (POINTER_TYPE_P (TREE_TYPE (rhs))
          && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
          && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
        return false;
        return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Remove a copy chain ending in NAME along the defs but not
/* Remove a copy chain ending in NAME along the defs but not
   further or including UP_TO_STMT.  If NAME was replaced in
   further or including UP_TO_STMT.  If NAME was replaced in
   its only use then this function can be used to clean up
   its only use then this function can be used to clean up
   dead stmts.  Returns true if UP_TO_STMT can be removed
   dead stmts.  Returns true if UP_TO_STMT can be removed
   as well, otherwise false.  */
   as well, otherwise false.  */
 
 
static bool
static bool
remove_prop_source_from_use (tree name, gimple up_to_stmt)
remove_prop_source_from_use (tree name, gimple up_to_stmt)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  gimple stmt;
  gimple stmt;
 
 
  do {
  do {
    if (!has_zero_uses (name))
    if (!has_zero_uses (name))
      return false;
      return false;
 
 
    stmt = SSA_NAME_DEF_STMT (name);
    stmt = SSA_NAME_DEF_STMT (name);
    if (stmt == up_to_stmt)
    if (stmt == up_to_stmt)
      return true;
      return true;
 
 
    gsi = gsi_for_stmt (stmt);
    gsi = gsi_for_stmt (stmt);
    release_defs (stmt);
    release_defs (stmt);
    gsi_remove (&gsi, true);
    gsi_remove (&gsi, true);
 
 
    name = (gimple_assign_copy_p (stmt)) ? gimple_assign_rhs1 (stmt) : NULL;
    name = (gimple_assign_copy_p (stmt)) ? gimple_assign_rhs1 (stmt) : NULL;
  } while (name && TREE_CODE (name) == SSA_NAME);
  } while (name && TREE_CODE (name) == SSA_NAME);
 
 
  return false;
  return false;
}
}
 
 
/* Return the rhs of a gimple_assign STMT in a form of a single tree,
/* Return the rhs of a gimple_assign STMT in a form of a single tree,
   converted to type TYPE.
   converted to type TYPE.
 
 
   This should disappear, but is needed so we can combine expressions and use
   This should disappear, but is needed so we can combine expressions and use
   the fold() interfaces. Long term, we need to develop folding and combine
   the fold() interfaces. Long term, we need to develop folding and combine
   routines that deal with gimple exclusively . */
   routines that deal with gimple exclusively . */
 
 
static tree
static tree
rhs_to_tree (tree type, gimple stmt)
rhs_to_tree (tree type, gimple stmt)
{
{
  location_t loc = gimple_location (stmt);
  location_t loc = gimple_location (stmt);
  enum tree_code code = gimple_assign_rhs_code (stmt);
  enum tree_code code = gimple_assign_rhs_code (stmt);
  if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
  if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
    return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
    return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
                        gimple_assign_rhs2 (stmt));
                        gimple_assign_rhs2 (stmt));
  else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
  else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
    return build1 (code, type, gimple_assign_rhs1 (stmt));
    return build1 (code, type, gimple_assign_rhs1 (stmt));
  else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
  else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
    return gimple_assign_rhs1 (stmt);
    return gimple_assign_rhs1 (stmt);
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
}
}
 
 
/* Combine OP0 CODE OP1 in the context of a COND_EXPR.  Returns
/* Combine OP0 CODE OP1 in the context of a COND_EXPR.  Returns
   the folded result in a form suitable for COND_EXPR_COND or
   the folded result in a form suitable for COND_EXPR_COND or
   NULL_TREE, if there is no suitable simplified form.  If
   NULL_TREE, if there is no suitable simplified form.  If
   INVARIANT_ONLY is true only gimple_min_invariant results are
   INVARIANT_ONLY is true only gimple_min_invariant results are
   considered simplified.  */
   considered simplified.  */
 
 
static tree
static tree
combine_cond_expr_cond (location_t loc, enum tree_code code, tree type,
combine_cond_expr_cond (location_t loc, enum tree_code code, tree type,
                        tree op0, tree op1, bool invariant_only)
                        tree op0, tree op1, bool invariant_only)
{
{
  tree t;
  tree t;
 
 
  gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
  gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
 
 
  t = fold_binary_loc (loc, code, type, op0, op1);
  t = fold_binary_loc (loc, code, type, op0, op1);
  if (!t)
  if (!t)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Require that we got a boolean type out if we put one in.  */
  /* Require that we got a boolean type out if we put one in.  */
  gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
  gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
 
 
  /* Canonicalize the combined condition for use in a COND_EXPR.  */
  /* Canonicalize the combined condition for use in a COND_EXPR.  */
  t = canonicalize_cond_expr_cond (t);
  t = canonicalize_cond_expr_cond (t);
 
 
  /* Bail out if we required an invariant but didn't get one.  */
  /* Bail out if we required an invariant but didn't get one.  */
  if (!t || (invariant_only && !is_gimple_min_invariant (t)))
  if (!t || (invariant_only && !is_gimple_min_invariant (t)))
    return NULL_TREE;
    return NULL_TREE;
 
 
  return t;
  return t;
}
}
 
 
/* Propagate from the ssa name definition statements of COND_EXPR
/* Propagate from the ssa name definition statements of COND_EXPR
   in GIMPLE_COND statement STMT into the conditional if that simplifies it.
   in GIMPLE_COND statement STMT into the conditional if that simplifies it.
   Returns zero if no statement was changed, one if there were
   Returns zero if no statement was changed, one if there were
   changes and two if cfg_cleanup needs to run.
   changes and two if cfg_cleanup needs to run.
 
 
   This must be kept in sync with forward_propagate_into_cond.  */
   This must be kept in sync with forward_propagate_into_cond.  */
 
 
static int
static int
forward_propagate_into_gimple_cond (gimple stmt)
forward_propagate_into_gimple_cond (gimple stmt)
{
{
  int did_something = 0;
  int did_something = 0;
  location_t loc = gimple_location (stmt);
  location_t loc = gimple_location (stmt);
 
 
  do {
  do {
    tree tmp = NULL_TREE;
    tree tmp = NULL_TREE;
    tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
    tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
    gimple def_stmt;
    gimple def_stmt;
    bool single_use0_p = false, single_use1_p = false;
    bool single_use0_p = false, single_use1_p = false;
    enum tree_code code = gimple_cond_code (stmt);
    enum tree_code code = gimple_cond_code (stmt);
 
 
    /* We can do tree combining on SSA_NAME and comparison expressions.  */
    /* We can do tree combining on SSA_NAME and comparison expressions.  */
    if (TREE_CODE_CLASS (gimple_cond_code (stmt)) == tcc_comparison
    if (TREE_CODE_CLASS (gimple_cond_code (stmt)) == tcc_comparison
        && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME)
        && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME)
      {
      {
        /* For comparisons use the first operand, that is likely to
        /* For comparisons use the first operand, that is likely to
           simplify comparisons against constants.  */
           simplify comparisons against constants.  */
        name = gimple_cond_lhs (stmt);
        name = gimple_cond_lhs (stmt);
        def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
        def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
        if (def_stmt && can_propagate_from (def_stmt))
        if (def_stmt && can_propagate_from (def_stmt))
          {
          {
            tree op1 = gimple_cond_rhs (stmt);
            tree op1 = gimple_cond_rhs (stmt);
            rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
            rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
            tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
            tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
                                          op1, !single_use0_p);
                                          op1, !single_use0_p);
          }
          }
        /* If that wasn't successful, try the second operand.  */
        /* If that wasn't successful, try the second operand.  */
        if (tmp == NULL_TREE
        if (tmp == NULL_TREE
            && TREE_CODE (gimple_cond_rhs (stmt)) == SSA_NAME)
            && TREE_CODE (gimple_cond_rhs (stmt)) == SSA_NAME)
          {
          {
            tree op0 = gimple_cond_lhs (stmt);
            tree op0 = gimple_cond_lhs (stmt);
            name = gimple_cond_rhs (stmt);
            name = gimple_cond_rhs (stmt);
            def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
            def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
            if (!def_stmt || !can_propagate_from (def_stmt))
            if (!def_stmt || !can_propagate_from (def_stmt))
              return did_something;
              return did_something;
 
 
            rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
            rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
            tmp = combine_cond_expr_cond (loc, code, boolean_type_node, op0,
            tmp = combine_cond_expr_cond (loc, code, boolean_type_node, op0,
                                          rhs1, !single_use1_p);
                                          rhs1, !single_use1_p);
          }
          }
        /* If that wasn't successful either, try both operands.  */
        /* If that wasn't successful either, try both operands.  */
        if (tmp == NULL_TREE
        if (tmp == NULL_TREE
            && rhs0 != NULL_TREE
            && rhs0 != NULL_TREE
            && rhs1 != NULL_TREE)
            && rhs1 != NULL_TREE)
          tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
          tmp = combine_cond_expr_cond (loc, code, boolean_type_node, rhs0,
                                        fold_convert_loc (loc,
                                        fold_convert_loc (loc,
                                                          TREE_TYPE (rhs0),
                                                          TREE_TYPE (rhs0),
                                                          rhs1),
                                                          rhs1),
                                        !(single_use0_p && single_use1_p));
                                        !(single_use0_p && single_use1_p));
      }
      }
 
 
    if (tmp)
    if (tmp)
      {
      {
        if (dump_file && tmp)
        if (dump_file && tmp)
          {
          {
            tree cond = build2 (gimple_cond_code (stmt),
            tree cond = build2 (gimple_cond_code (stmt),
                                boolean_type_node,
                                boolean_type_node,
                                gimple_cond_lhs (stmt),
                                gimple_cond_lhs (stmt),
                                gimple_cond_rhs (stmt));
                                gimple_cond_rhs (stmt));
            fprintf (dump_file, "  Replaced '");
            fprintf (dump_file, "  Replaced '");
            print_generic_expr (dump_file, cond, 0);
            print_generic_expr (dump_file, cond, 0);
            fprintf (dump_file, "' with '");
            fprintf (dump_file, "' with '");
            print_generic_expr (dump_file, tmp, 0);
            print_generic_expr (dump_file, tmp, 0);
            fprintf (dump_file, "'\n");
            fprintf (dump_file, "'\n");
          }
          }
 
 
        gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
        gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
        update_stmt (stmt);
        update_stmt (stmt);
 
 
        /* Remove defining statements.  */
        /* Remove defining statements.  */
        remove_prop_source_from_use (name, NULL);
        remove_prop_source_from_use (name, NULL);
 
 
        if (is_gimple_min_invariant (tmp))
        if (is_gimple_min_invariant (tmp))
          did_something = 2;
          did_something = 2;
        else if (did_something == 0)
        else if (did_something == 0)
          did_something = 1;
          did_something = 1;
 
 
        /* Continue combining.  */
        /* Continue combining.  */
        continue;
        continue;
      }
      }
 
 
    break;
    break;
  } while (1);
  } while (1);
 
 
  return did_something;
  return did_something;
}
}
 
 
 
 
/* Propagate from the ssa name definition statements of COND_EXPR
/* Propagate from the ssa name definition statements of COND_EXPR
   in the rhs of statement STMT into the conditional if that simplifies it.
   in the rhs of statement STMT into the conditional if that simplifies it.
   Returns zero if no statement was changed, one if there were
   Returns zero if no statement was changed, one if there were
   changes and two if cfg_cleanup needs to run.
   changes and two if cfg_cleanup needs to run.
 
 
   This must be kept in sync with forward_propagate_into_gimple_cond.  */
   This must be kept in sync with forward_propagate_into_gimple_cond.  */
 
 
static int
static int
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
{
{
  gimple stmt = gsi_stmt (*gsi_p);
  gimple stmt = gsi_stmt (*gsi_p);
  location_t loc = gimple_location (stmt);
  location_t loc = gimple_location (stmt);
  int did_something = 0;
  int did_something = 0;
 
 
  do {
  do {
    tree tmp = NULL_TREE;
    tree tmp = NULL_TREE;
    tree cond = gimple_assign_rhs1 (stmt);
    tree cond = gimple_assign_rhs1 (stmt);
    tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
    tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE;
    gimple def_stmt;
    gimple def_stmt;
    bool single_use0_p = false, single_use1_p = false;
    bool single_use0_p = false, single_use1_p = false;
 
 
    /* We can do tree combining on SSA_NAME and comparison expressions.  */
    /* We can do tree combining on SSA_NAME and comparison expressions.  */
    if (COMPARISON_CLASS_P (cond)
    if (COMPARISON_CLASS_P (cond)
        && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME)
        && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME)
      {
      {
        /* For comparisons use the first operand, that is likely to
        /* For comparisons use the first operand, that is likely to
           simplify comparisons against constants.  */
           simplify comparisons against constants.  */
        name = TREE_OPERAND (cond, 0);
        name = TREE_OPERAND (cond, 0);
        def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
        def_stmt = get_prop_source_stmt (name, false, &single_use0_p);
        if (def_stmt && can_propagate_from (def_stmt))
        if (def_stmt && can_propagate_from (def_stmt))
          {
          {
            tree op1 = TREE_OPERAND (cond, 1);
            tree op1 = TREE_OPERAND (cond, 1);
            rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
            rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
            tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
            tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
                                          boolean_type_node,
                                          boolean_type_node,
                                          rhs0, op1, !single_use0_p);
                                          rhs0, op1, !single_use0_p);
          }
          }
        /* If that wasn't successful, try the second operand.  */
        /* If that wasn't successful, try the second operand.  */
        if (tmp == NULL_TREE
        if (tmp == NULL_TREE
            && TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
            && TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME)
          {
          {
            tree op0 = TREE_OPERAND (cond, 0);
            tree op0 = TREE_OPERAND (cond, 0);
            name = TREE_OPERAND (cond, 1);
            name = TREE_OPERAND (cond, 1);
            def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
            def_stmt = get_prop_source_stmt (name, false, &single_use1_p);
            if (!def_stmt || !can_propagate_from (def_stmt))
            if (!def_stmt || !can_propagate_from (def_stmt))
              return did_something;
              return did_something;
 
 
            rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
            rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
            tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
            tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
                                          boolean_type_node,
                                          boolean_type_node,
                                          op0, rhs1, !single_use1_p);
                                          op0, rhs1, !single_use1_p);
          }
          }
        /* If that wasn't successful either, try both operands.  */
        /* If that wasn't successful either, try both operands.  */
        if (tmp == NULL_TREE
        if (tmp == NULL_TREE
            && rhs0 != NULL_TREE
            && rhs0 != NULL_TREE
            && rhs1 != NULL_TREE)
            && rhs1 != NULL_TREE)
          tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
          tmp = combine_cond_expr_cond (loc, TREE_CODE (cond),
                                        boolean_type_node,
                                        boolean_type_node,
                                        rhs0,
                                        rhs0,
                                        fold_convert_loc (loc,
                                        fold_convert_loc (loc,
                                                          TREE_TYPE (rhs0),
                                                          TREE_TYPE (rhs0),
                                                          rhs1),
                                                          rhs1),
                                        !(single_use0_p && single_use1_p));
                                        !(single_use0_p && single_use1_p));
      }
      }
    else if (TREE_CODE (cond) == SSA_NAME)
    else if (TREE_CODE (cond) == SSA_NAME)
      {
      {
        name = cond;
        name = cond;
        def_stmt = get_prop_source_stmt (name, true, NULL);
        def_stmt = get_prop_source_stmt (name, true, NULL);
        if (def_stmt || !can_propagate_from (def_stmt))
        if (def_stmt || !can_propagate_from (def_stmt))
          return did_something;
          return did_something;
 
 
        rhs0 = gimple_assign_rhs1 (def_stmt);
        rhs0 = gimple_assign_rhs1 (def_stmt);
        tmp = combine_cond_expr_cond (loc, NE_EXPR, boolean_type_node, rhs0,
        tmp = combine_cond_expr_cond (loc, NE_EXPR, boolean_type_node, rhs0,
                                      build_int_cst (TREE_TYPE (rhs0), 0),
                                      build_int_cst (TREE_TYPE (rhs0), 0),
                                      false);
                                      false);
      }
      }
 
 
    if (tmp)
    if (tmp)
      {
      {
        if (dump_file && tmp)
        if (dump_file && tmp)
          {
          {
            fprintf (dump_file, "  Replaced '");
            fprintf (dump_file, "  Replaced '");
            print_generic_expr (dump_file, cond, 0);
            print_generic_expr (dump_file, cond, 0);
            fprintf (dump_file, "' with '");
            fprintf (dump_file, "' with '");
            print_generic_expr (dump_file, tmp, 0);
            print_generic_expr (dump_file, tmp, 0);
            fprintf (dump_file, "'\n");
            fprintf (dump_file, "'\n");
          }
          }
 
 
        gimple_assign_set_rhs_from_tree (gsi_p, unshare_expr (tmp));
        gimple_assign_set_rhs_from_tree (gsi_p, unshare_expr (tmp));
        stmt = gsi_stmt (*gsi_p);
        stmt = gsi_stmt (*gsi_p);
        update_stmt (stmt);
        update_stmt (stmt);
 
 
        /* Remove defining statements.  */
        /* Remove defining statements.  */
        remove_prop_source_from_use (name, NULL);
        remove_prop_source_from_use (name, NULL);
 
 
        if (is_gimple_min_invariant (tmp))
        if (is_gimple_min_invariant (tmp))
          did_something = 2;
          did_something = 2;
        else if (did_something == 0)
        else if (did_something == 0)
          did_something = 1;
          did_something = 1;
 
 
        /* Continue combining.  */
        /* Continue combining.  */
        continue;
        continue;
      }
      }
 
 
    break;
    break;
  } while (1);
  } while (1);
 
 
  return did_something;
  return did_something;
}
}
 
 
/* We've just substituted an ADDR_EXPR into stmt.  Update all the
/* We've just substituted an ADDR_EXPR into stmt.  Update all the
   relevant data structures to match.  */
   relevant data structures to match.  */
 
 
static void
static void
tidy_after_forward_propagate_addr (gimple stmt)
tidy_after_forward_propagate_addr (gimple stmt)
{
{
  /* We may have turned a trapping insn into a non-trapping insn.  */
  /* We may have turned a trapping insn into a non-trapping insn.  */
  if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
  if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
      && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
      && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
    cfg_changed = true;
    cfg_changed = true;
 
 
  if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
  if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
     recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
     recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
}
}
 
 
/* DEF_RHS contains the address of the 0th element in an array.
/* DEF_RHS contains the address of the 0th element in an array.
   USE_STMT uses type of DEF_RHS to compute the address of an
   USE_STMT uses type of DEF_RHS to compute the address of an
   arbitrary element within the array.  The (variable) byte offset
   arbitrary element within the array.  The (variable) byte offset
   of the element is contained in OFFSET.
   of the element is contained in OFFSET.
 
 
   We walk back through the use-def chains of OFFSET to verify that
   We walk back through the use-def chains of OFFSET to verify that
   it is indeed computing the offset of an element within the array
   it is indeed computing the offset of an element within the array
   and extract the index corresponding to the given byte offset.
   and extract the index corresponding to the given byte offset.
 
 
   We then try to fold the entire address expression into a form
   We then try to fold the entire address expression into a form
   &array[index].
   &array[index].
 
 
   If we are successful, we replace the right hand side of USE_STMT
   If we are successful, we replace the right hand side of USE_STMT
   with the new address computation.  */
   with the new address computation.  */
 
 
static bool
static bool
forward_propagate_addr_into_variable_array_index (tree offset,
forward_propagate_addr_into_variable_array_index (tree offset,
                                                  tree def_rhs,
                                                  tree def_rhs,
                                                  gimple_stmt_iterator *use_stmt_gsi)
                                                  gimple_stmt_iterator *use_stmt_gsi)
{
{
  tree index, tunit;
  tree index, tunit;
  gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi);
  gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi);
  tree tmp;
  tree tmp;
 
 
  tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs)));
  tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs)));
  if (!host_integerp (tunit, 1))
  if (!host_integerp (tunit, 1))
    return false;
    return false;
 
 
  /* Get the offset's defining statement.  */
  /* Get the offset's defining statement.  */
  offset_def = SSA_NAME_DEF_STMT (offset);
  offset_def = SSA_NAME_DEF_STMT (offset);
 
 
  /* Try to find an expression for a proper index.  This is either a
  /* Try to find an expression for a proper index.  This is either a
     multiplication expression by the element size or just the ssa name we came
     multiplication expression by the element size or just the ssa name we came
     along in case the element size is one. In that case, however, we do not
     along in case the element size is one. In that case, however, we do not
     allow multiplications because they can be computing index to a higher
     allow multiplications because they can be computing index to a higher
     level dimension (PR 37861). */
     level dimension (PR 37861). */
  if (integer_onep (tunit))
  if (integer_onep (tunit))
    {
    {
      if (is_gimple_assign (offset_def)
      if (is_gimple_assign (offset_def)
          && gimple_assign_rhs_code (offset_def) == MULT_EXPR)
          && gimple_assign_rhs_code (offset_def) == MULT_EXPR)
        return false;
        return false;
 
 
      index = offset;
      index = offset;
    }
    }
  else
  else
    {
    {
      /* The statement which defines OFFSET before type conversion
      /* The statement which defines OFFSET before type conversion
         must be a simple GIMPLE_ASSIGN.  */
         must be a simple GIMPLE_ASSIGN.  */
      if (!is_gimple_assign (offset_def))
      if (!is_gimple_assign (offset_def))
        return false;
        return false;
 
 
      /* The RHS of the statement which defines OFFSET must be a
      /* The RHS of the statement which defines OFFSET must be a
         multiplication of an object by the size of the array elements.
         multiplication of an object by the size of the array elements.
         This implicitly verifies that the size of the array elements
         This implicitly verifies that the size of the array elements
         is constant.  */
         is constant.  */
     if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
     if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
         && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
         && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
         && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), tunit))
         && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), tunit))
       {
       {
         /* The first operand to the MULT_EXPR is the desired index.  */
         /* The first operand to the MULT_EXPR is the desired index.  */
         index = gimple_assign_rhs1 (offset_def);
         index = gimple_assign_rhs1 (offset_def);
       }
       }
     /* If we have idx * tunit + CST * tunit re-associate that.  */
     /* If we have idx * tunit + CST * tunit re-associate that.  */
     else if ((gimple_assign_rhs_code (offset_def) == PLUS_EXPR
     else if ((gimple_assign_rhs_code (offset_def) == PLUS_EXPR
               || gimple_assign_rhs_code (offset_def) == MINUS_EXPR)
               || gimple_assign_rhs_code (offset_def) == MINUS_EXPR)
              && TREE_CODE (gimple_assign_rhs1 (offset_def)) == SSA_NAME
              && TREE_CODE (gimple_assign_rhs1 (offset_def)) == SSA_NAME
              && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
              && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
              && (tmp = div_if_zero_remainder (EXACT_DIV_EXPR,
              && (tmp = div_if_zero_remainder (EXACT_DIV_EXPR,
                                               gimple_assign_rhs2 (offset_def),
                                               gimple_assign_rhs2 (offset_def),
                                               tunit)) != NULL_TREE)
                                               tunit)) != NULL_TREE)
       {
       {
         gimple offset_def2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (offset_def));
         gimple offset_def2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (offset_def));
         if (is_gimple_assign (offset_def2)
         if (is_gimple_assign (offset_def2)
             && gimple_assign_rhs_code (offset_def2) == MULT_EXPR
             && gimple_assign_rhs_code (offset_def2) == MULT_EXPR
             && TREE_CODE (gimple_assign_rhs2 (offset_def2)) == INTEGER_CST
             && TREE_CODE (gimple_assign_rhs2 (offset_def2)) == INTEGER_CST
             && tree_int_cst_equal (gimple_assign_rhs2 (offset_def2), tunit))
             && tree_int_cst_equal (gimple_assign_rhs2 (offset_def2), tunit))
           {
           {
             index = fold_build2 (gimple_assign_rhs_code (offset_def),
             index = fold_build2 (gimple_assign_rhs_code (offset_def),
                                  TREE_TYPE (offset),
                                  TREE_TYPE (offset),
                                  gimple_assign_rhs1 (offset_def2), tmp);
                                  gimple_assign_rhs1 (offset_def2), tmp);
           }
           }
         else
         else
           return false;
           return false;
       }
       }
     else
     else
        return false;
        return false;
    }
    }
 
 
  /* Replace the pointer addition with array indexing.  */
  /* Replace the pointer addition with array indexing.  */
  index = force_gimple_operand_gsi (use_stmt_gsi, index, true, NULL_TREE,
  index = force_gimple_operand_gsi (use_stmt_gsi, index, true, NULL_TREE,
                                    true, GSI_SAME_STMT);
                                    true, GSI_SAME_STMT);
  gimple_assign_set_rhs_from_tree (use_stmt_gsi, unshare_expr (def_rhs));
  gimple_assign_set_rhs_from_tree (use_stmt_gsi, unshare_expr (def_rhs));
  use_stmt = gsi_stmt (*use_stmt_gsi);
  use_stmt = gsi_stmt (*use_stmt_gsi);
  TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0), 1)
  TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0), 1)
    = index;
    = index;
 
 
  /* That should have created gimple, so there is no need to
  /* That should have created gimple, so there is no need to
     record information to undo the propagation.  */
     record information to undo the propagation.  */
  fold_stmt_inplace (use_stmt);
  fold_stmt_inplace (use_stmt);
  tidy_after_forward_propagate_addr (use_stmt);
  tidy_after_forward_propagate_addr (use_stmt);
  return true;
  return true;
}
}
 
 
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
   ADDR_EXPR <whatever>.
   ADDR_EXPR <whatever>.
 
 
   Try to forward propagate the ADDR_EXPR into the use USE_STMT.
   Try to forward propagate the ADDR_EXPR into the use USE_STMT.
   Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
   Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
   node or for recovery of array indexing from pointer arithmetic.
   node or for recovery of array indexing from pointer arithmetic.
 
 
   Return true if the propagation was successful (the propagation can
   Return true if the propagation was successful (the propagation can
   be not totally successful, yet things may have been changed).  */
   be not totally successful, yet things may have been changed).  */
 
 
static bool
static bool
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
                               gimple_stmt_iterator *use_stmt_gsi,
                               gimple_stmt_iterator *use_stmt_gsi,
                               bool single_use_p)
                               bool single_use_p)
{
{
  tree lhs, rhs, rhs2, array_ref;
  tree lhs, rhs, rhs2, array_ref;
  tree *rhsp, *lhsp;
  tree *rhsp, *lhsp;
  gimple use_stmt = gsi_stmt (*use_stmt_gsi);
  gimple use_stmt = gsi_stmt (*use_stmt_gsi);
  enum tree_code rhs_code;
  enum tree_code rhs_code;
  bool res = true;
  bool res = true;
  bool addr_p = false;
  bool addr_p = false;
 
 
  gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
  gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
 
 
  lhs = gimple_assign_lhs (use_stmt);
  lhs = gimple_assign_lhs (use_stmt);
  rhs_code = gimple_assign_rhs_code (use_stmt);
  rhs_code = gimple_assign_rhs_code (use_stmt);
  rhs = gimple_assign_rhs1 (use_stmt);
  rhs = gimple_assign_rhs1 (use_stmt);
 
 
  /* Trivial cases.  The use statement could be a trivial copy or a
  /* Trivial cases.  The use statement could be a trivial copy or a
     useless conversion.  Recurse to the uses of the lhs as copyprop does
     useless conversion.  Recurse to the uses of the lhs as copyprop does
     not copy through different variant pointers and FRE does not catch
     not copy through different variant pointers and FRE does not catch
     all useless conversions.  Treat the case of a single-use name and
     all useless conversions.  Treat the case of a single-use name and
     a conversion to def_rhs type separate, though.  */
     a conversion to def_rhs type separate, though.  */
  if (TREE_CODE (lhs) == SSA_NAME
  if (TREE_CODE (lhs) == SSA_NAME
      && ((rhs_code == SSA_NAME && rhs == name)
      && ((rhs_code == SSA_NAME && rhs == name)
          || CONVERT_EXPR_CODE_P (rhs_code)))
          || CONVERT_EXPR_CODE_P (rhs_code)))
    {
    {
      /* Only recurse if we don't deal with a single use or we cannot
      /* Only recurse if we don't deal with a single use or we cannot
         do the propagation to the current statement.  In particular
         do the propagation to the current statement.  In particular
         we can end up with a conversion needed for a non-invariant
         we can end up with a conversion needed for a non-invariant
         address which we cannot do in a single statement.  */
         address which we cannot do in a single statement.  */
      if (!single_use_p
      if (!single_use_p
          || (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))
          || (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))
              && (!is_gimple_min_invariant (def_rhs)
              && (!is_gimple_min_invariant (def_rhs)
                  || (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
                  || (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
                      && POINTER_TYPE_P (TREE_TYPE (def_rhs))
                      && POINTER_TYPE_P (TREE_TYPE (def_rhs))
                      && (TYPE_PRECISION (TREE_TYPE (lhs))
                      && (TYPE_PRECISION (TREE_TYPE (lhs))
                          > TYPE_PRECISION (TREE_TYPE (def_rhs)))))))
                          > TYPE_PRECISION (TREE_TYPE (def_rhs)))))))
        return forward_propagate_addr_expr (lhs, def_rhs);
        return forward_propagate_addr_expr (lhs, def_rhs);
 
 
      gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
      gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
      if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
      if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
        gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
        gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
      else
      else
        gimple_assign_set_rhs_code (use_stmt, NOP_EXPR);
        gimple_assign_set_rhs_code (use_stmt, NOP_EXPR);
      return true;
      return true;
    }
    }
 
 
  /* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
  /* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
     ADDR_EXPR will not appear on the LHS.  */
     ADDR_EXPR will not appear on the LHS.  */
  lhsp = gimple_assign_lhs_ptr (use_stmt);
  lhsp = gimple_assign_lhs_ptr (use_stmt);
  while (handled_component_p (*lhsp))
  while (handled_component_p (*lhsp))
    lhsp = &TREE_OPERAND (*lhsp, 0);
    lhsp = &TREE_OPERAND (*lhsp, 0);
  lhs = *lhsp;
  lhs = *lhsp;
 
 
  /* Now see if the LHS node is an INDIRECT_REF using NAME.  If so,
  /* Now see if the LHS node is an INDIRECT_REF using NAME.  If so,
     propagate the ADDR_EXPR into the use of NAME and fold the result.  */
     propagate the ADDR_EXPR into the use of NAME and fold the result.  */
  if (TREE_CODE (lhs) == INDIRECT_REF
  if (TREE_CODE (lhs) == INDIRECT_REF
      && TREE_OPERAND (lhs, 0) == name)
      && TREE_OPERAND (lhs, 0) == name)
    {
    {
      if (may_propagate_address_into_dereference (def_rhs, lhs)
      if (may_propagate_address_into_dereference (def_rhs, lhs)
          && (lhsp != gimple_assign_lhs_ptr (use_stmt)
          && (lhsp != gimple_assign_lhs_ptr (use_stmt)
              || useless_type_conversion_p
              || useless_type_conversion_p
                   (TREE_TYPE (TREE_OPERAND (def_rhs, 0)), TREE_TYPE (rhs))))
                   (TREE_TYPE (TREE_OPERAND (def_rhs, 0)), TREE_TYPE (rhs))))
        {
        {
          *lhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
          *lhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
          fold_stmt_inplace (use_stmt);
          fold_stmt_inplace (use_stmt);
          tidy_after_forward_propagate_addr (use_stmt);
          tidy_after_forward_propagate_addr (use_stmt);
 
 
          /* Continue propagating into the RHS if this was not the only use.  */
          /* Continue propagating into the RHS if this was not the only use.  */
          if (single_use_p)
          if (single_use_p)
            return true;
            return true;
        }
        }
      else
      else
        /* We can have a struct assignment dereferencing our name twice.
        /* We can have a struct assignment dereferencing our name twice.
           Note that we didn't propagate into the lhs to not falsely
           Note that we didn't propagate into the lhs to not falsely
           claim we did when propagating into the rhs.  */
           claim we did when propagating into the rhs.  */
        res = false;
        res = false;
    }
    }
 
 
  /* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
  /* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
     nodes from the RHS.  */
     nodes from the RHS.  */
  rhsp = gimple_assign_rhs1_ptr (use_stmt);
  rhsp = gimple_assign_rhs1_ptr (use_stmt);
  if (TREE_CODE (*rhsp) == ADDR_EXPR)
  if (TREE_CODE (*rhsp) == ADDR_EXPR)
    {
    {
      rhsp = &TREE_OPERAND (*rhsp, 0);
      rhsp = &TREE_OPERAND (*rhsp, 0);
      addr_p = true;
      addr_p = true;
    }
    }
  while (handled_component_p (*rhsp))
  while (handled_component_p (*rhsp))
    rhsp = &TREE_OPERAND (*rhsp, 0);
    rhsp = &TREE_OPERAND (*rhsp, 0);
  rhs = *rhsp;
  rhs = *rhsp;
 
 
  /* Now see if the RHS node is an INDIRECT_REF using NAME.  If so,
  /* Now see if the RHS node is an INDIRECT_REF using NAME.  If so,
     propagate the ADDR_EXPR into the use of NAME and fold the result.  */
     propagate the ADDR_EXPR into the use of NAME and fold the result.  */
  if (TREE_CODE (rhs) == INDIRECT_REF
  if (TREE_CODE (rhs) == INDIRECT_REF
      && TREE_OPERAND (rhs, 0) == name
      && TREE_OPERAND (rhs, 0) == name
      && may_propagate_address_into_dereference (def_rhs, rhs))
      && may_propagate_address_into_dereference (def_rhs, rhs))
    {
    {
      *rhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
      *rhsp = unshare_expr (TREE_OPERAND (def_rhs, 0));
      fold_stmt_inplace (use_stmt);
      fold_stmt_inplace (use_stmt);
      tidy_after_forward_propagate_addr (use_stmt);
      tidy_after_forward_propagate_addr (use_stmt);
      return res;
      return res;
    }
    }
 
 
  /* Now see if the RHS node is an INDIRECT_REF using NAME.  If so,
  /* Now see if the RHS node is an INDIRECT_REF using NAME.  If so,
     propagate the ADDR_EXPR into the use of NAME and try to
     propagate the ADDR_EXPR into the use of NAME and try to
     create a VCE and fold the result.  */
     create a VCE and fold the result.  */
  if (TREE_CODE (rhs) == INDIRECT_REF
  if (TREE_CODE (rhs) == INDIRECT_REF
      && TREE_OPERAND (rhs, 0) == name
      && TREE_OPERAND (rhs, 0) == name
      && TYPE_SIZE (TREE_TYPE (rhs))
      && TYPE_SIZE (TREE_TYPE (rhs))
      && TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
      && TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
      /* Function decls should not be used for VCE either as it could be a
      /* Function decls should not be used for VCE either as it could be a
         function descriptor that we want and not the actual function code.  */
         function descriptor that we want and not the actual function code.  */
      && TREE_CODE (TREE_OPERAND (def_rhs, 0)) != FUNCTION_DECL
      && TREE_CODE (TREE_OPERAND (def_rhs, 0)) != FUNCTION_DECL
      /* We should not convert volatile loads to non volatile loads. */
      /* We should not convert volatile loads to non volatile loads. */
      && !TYPE_VOLATILE (TREE_TYPE (rhs))
      && !TYPE_VOLATILE (TREE_TYPE (rhs))
      && !TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
      && !TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (def_rhs, 0)))
      && operand_equal_p (TYPE_SIZE (TREE_TYPE (rhs)),
      && operand_equal_p (TYPE_SIZE (TREE_TYPE (rhs)),
                          TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))), 0)
                          TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))), 0)
      /* Make sure we only do TBAA compatible replacements.  */
      /* Make sure we only do TBAA compatible replacements.  */
      && get_alias_set (TREE_OPERAND (def_rhs, 0)) == get_alias_set (rhs))
      && get_alias_set (TREE_OPERAND (def_rhs, 0)) == get_alias_set (rhs))
   {
   {
     tree def_rhs_base, new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
     tree def_rhs_base, new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
     new_rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), new_rhs);
     new_rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), new_rhs);
     if (TREE_CODE (new_rhs) != VIEW_CONVERT_EXPR)
     if (TREE_CODE (new_rhs) != VIEW_CONVERT_EXPR)
       {
       {
         /* If we have folded the VIEW_CONVERT_EXPR then the result is only
         /* If we have folded the VIEW_CONVERT_EXPR then the result is only
            valid if we can replace the whole rhs of the use statement.  */
            valid if we can replace the whole rhs of the use statement.  */
         if (rhs != gimple_assign_rhs1 (use_stmt))
         if (rhs != gimple_assign_rhs1 (use_stmt))
           return false;
           return false;
         new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true, NULL,
         new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true, NULL,
                                             true, GSI_NEW_STMT);
                                             true, GSI_NEW_STMT);
         gimple_assign_set_rhs1 (use_stmt, new_rhs);
         gimple_assign_set_rhs1 (use_stmt, new_rhs);
         tidy_after_forward_propagate_addr (use_stmt);
         tidy_after_forward_propagate_addr (use_stmt);
         return res;
         return res;
       }
       }
     /* If the defining rhs comes from an indirect reference, then do not
     /* If the defining rhs comes from an indirect reference, then do not
        convert into a VIEW_CONVERT_EXPR.  Likewise if we'll end up taking
        convert into a VIEW_CONVERT_EXPR.  Likewise if we'll end up taking
        the address of a V_C_E of a constant.  */
        the address of a V_C_E of a constant.  */
     def_rhs_base = TREE_OPERAND (def_rhs, 0);
     def_rhs_base = TREE_OPERAND (def_rhs, 0);
     while (handled_component_p (def_rhs_base))
     while (handled_component_p (def_rhs_base))
       def_rhs_base = TREE_OPERAND (def_rhs_base, 0);
       def_rhs_base = TREE_OPERAND (def_rhs_base, 0);
     if (!INDIRECT_REF_P (def_rhs_base)
     if (!INDIRECT_REF_P (def_rhs_base)
         && (!addr_p
         && (!addr_p
             || !is_gimple_min_invariant (def_rhs)))
             || !is_gimple_min_invariant (def_rhs)))
       {
       {
         /* We may have arbitrary VIEW_CONVERT_EXPRs in a nested component
         /* We may have arbitrary VIEW_CONVERT_EXPRs in a nested component
            reference.  Place it there and fold the thing.  */
            reference.  Place it there and fold the thing.  */
         *rhsp = new_rhs;
         *rhsp = new_rhs;
         fold_stmt_inplace (use_stmt);
         fold_stmt_inplace (use_stmt);
         tidy_after_forward_propagate_addr (use_stmt);
         tidy_after_forward_propagate_addr (use_stmt);
         return res;
         return res;
       }
       }
   }
   }
 
 
  /* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
  /* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
     is nothing to do. */
     is nothing to do. */
  if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
  if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
      || gimple_assign_rhs1 (use_stmt) != name)
      || gimple_assign_rhs1 (use_stmt) != name)
    return false;
    return false;
 
 
  /* The remaining cases are all for turning pointer arithmetic into
  /* The remaining cases are all for turning pointer arithmetic into
     array indexing.  They only apply when we have the address of
     array indexing.  They only apply when we have the address of
     element zero in an array.  If that is not the case then there
     element zero in an array.  If that is not the case then there
     is nothing to do.  */
     is nothing to do.  */
  array_ref = TREE_OPERAND (def_rhs, 0);
  array_ref = TREE_OPERAND (def_rhs, 0);
  if (TREE_CODE (array_ref) != ARRAY_REF
  if (TREE_CODE (array_ref) != ARRAY_REF
      || TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
      || TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
      || TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
      || TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
    return false;
    return false;
 
 
  rhs2 = gimple_assign_rhs2 (use_stmt);
  rhs2 = gimple_assign_rhs2 (use_stmt);
  /* Try to optimize &x[C1] p+ C2 where C2 is a multiple of the size
  /* Try to optimize &x[C1] p+ C2 where C2 is a multiple of the size
     of the elements in X into &x[C1 + C2/element size].  */
     of the elements in X into &x[C1 + C2/element size].  */
  if (TREE_CODE (rhs2) == INTEGER_CST)
  if (TREE_CODE (rhs2) == INTEGER_CST)
    {
    {
      tree new_rhs = maybe_fold_stmt_addition (gimple_location (use_stmt),
      tree new_rhs = maybe_fold_stmt_addition (gimple_location (use_stmt),
                                               TREE_TYPE (def_rhs),
                                               TREE_TYPE (def_rhs),
                                               def_rhs, rhs2);
                                               def_rhs, rhs2);
      if (new_rhs)
      if (new_rhs)
        {
        {
          tree type = TREE_TYPE (gimple_assign_lhs (use_stmt));
          tree type = TREE_TYPE (gimple_assign_lhs (use_stmt));
          new_rhs = unshare_expr (new_rhs);
          new_rhs = unshare_expr (new_rhs);
          if (!useless_type_conversion_p (type, TREE_TYPE (new_rhs)))
          if (!useless_type_conversion_p (type, TREE_TYPE (new_rhs)))
            {
            {
              if (!is_gimple_min_invariant (new_rhs))
              if (!is_gimple_min_invariant (new_rhs))
                new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs,
                new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs,
                                                    true, NULL_TREE,
                                                    true, NULL_TREE,
                                                    true, GSI_SAME_STMT);
                                                    true, GSI_SAME_STMT);
              new_rhs = fold_convert (type, new_rhs);
              new_rhs = fold_convert (type, new_rhs);
            }
            }
          gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
          gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
          use_stmt = gsi_stmt (*use_stmt_gsi);
          use_stmt = gsi_stmt (*use_stmt_gsi);
          update_stmt (use_stmt);
          update_stmt (use_stmt);
          tidy_after_forward_propagate_addr (use_stmt);
          tidy_after_forward_propagate_addr (use_stmt);
          return true;
          return true;
        }
        }
    }
    }
 
 
  /* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by
  /* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by
     converting a multiplication of an index by the size of the
     converting a multiplication of an index by the size of the
     array elements, then the result is converted into the proper
     array elements, then the result is converted into the proper
     type for the arithmetic.  */
     type for the arithmetic.  */
  if (TREE_CODE (rhs2) == SSA_NAME
  if (TREE_CODE (rhs2) == SSA_NAME
      && integer_zerop (TREE_OPERAND (array_ref, 1))
      && integer_zerop (TREE_OPERAND (array_ref, 1))
      && useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs))
      && useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs))
      /* Avoid problems with IVopts creating PLUS_EXPRs with a
      /* Avoid problems with IVopts creating PLUS_EXPRs with a
         different type than their operands.  */
         different type than their operands.  */
      && useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
      && useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
    return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs,
    return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs,
                                                             use_stmt_gsi);
                                                             use_stmt_gsi);
  return false;
  return false;
}
}
 
 
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
 
 
   Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
   Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
   Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
   Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
   node or for recovery of array indexing from pointer arithmetic.
   node or for recovery of array indexing from pointer arithmetic.
   Returns true, if all uses have been propagated into.  */
   Returns true, if all uses have been propagated into.  */
 
 
static bool
static bool
forward_propagate_addr_expr (tree name, tree rhs)
forward_propagate_addr_expr (tree name, tree rhs)
{
{
  int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth;
  int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth;
  imm_use_iterator iter;
  imm_use_iterator iter;
  gimple use_stmt;
  gimple use_stmt;
  bool all = true;
  bool all = true;
  bool single_use_p = has_single_use (name);
  bool single_use_p = has_single_use (name);
 
 
  FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
  FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
    {
    {
      bool result;
      bool result;
      tree use_rhs;
      tree use_rhs;
 
 
      /* If the use is not in a simple assignment statement, then
      /* If the use is not in a simple assignment statement, then
         there is nothing we can do.  */
         there is nothing we can do.  */
      if (gimple_code (use_stmt) != GIMPLE_ASSIGN)
      if (gimple_code (use_stmt) != GIMPLE_ASSIGN)
        {
        {
          if (!is_gimple_debug (use_stmt))
          if (!is_gimple_debug (use_stmt))
            all = false;
            all = false;
          continue;
          continue;
        }
        }
 
 
      /* If the use is in a deeper loop nest, then we do not want
      /* If the use is in a deeper loop nest, then we do not want
         to propagate the ADDR_EXPR into the loop as that is likely
         to propagate the ADDR_EXPR into the loop as that is likely
         adding expression evaluations into the loop.  */
         adding expression evaluations into the loop.  */
      if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth)
      if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth)
        {
        {
          all = false;
          all = false;
          continue;
          continue;
        }
        }
 
 
      {
      {
        gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
        gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
        result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
        result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
                                                single_use_p);
                                                single_use_p);
        /* If the use has moved to a different statement adjust
        /* If the use has moved to a different statement adjust
           the update machinery for the old statement too.  */
           the update machinery for the old statement too.  */
        if (use_stmt != gsi_stmt (gsi))
        if (use_stmt != gsi_stmt (gsi))
          {
          {
            update_stmt (use_stmt);
            update_stmt (use_stmt);
            use_stmt = gsi_stmt (gsi);
            use_stmt = gsi_stmt (gsi);
          }
          }
 
 
        update_stmt (use_stmt);
        update_stmt (use_stmt);
      }
      }
      all &= result;
      all &= result;
 
 
      /* Remove intermediate now unused copy and conversion chains.  */
      /* Remove intermediate now unused copy and conversion chains.  */
      use_rhs = gimple_assign_rhs1 (use_stmt);
      use_rhs = gimple_assign_rhs1 (use_stmt);
      if (result
      if (result
          && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
          && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
          && TREE_CODE (use_rhs) == SSA_NAME
          && TREE_CODE (use_rhs) == SSA_NAME
          && has_zero_uses (gimple_assign_lhs (use_stmt)))
          && has_zero_uses (gimple_assign_lhs (use_stmt)))
        {
        {
          gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
          gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
          release_defs (use_stmt);
          release_defs (use_stmt);
          gsi_remove (&gsi, true);
          gsi_remove (&gsi, true);
        }
        }
    }
    }
 
 
  return all;
  return all;
}
}
 
 
/* Forward propagate the comparison defined in STMT like
/* Forward propagate the comparison defined in STMT like
   cond_1 = x CMP y to uses of the form
   cond_1 = x CMP y to uses of the form
     a_1 = (T')cond_1
     a_1 = (T')cond_1
     a_1 = !cond_1
     a_1 = !cond_1
     a_1 = cond_1 != 0
     a_1 = cond_1 != 0
   Returns true if stmt is now unused.  */
   Returns true if stmt is now unused.  */
 
 
static bool
static bool
forward_propagate_comparison (gimple stmt)
forward_propagate_comparison (gimple stmt)
{
{
  tree name = gimple_assign_lhs (stmt);
  tree name = gimple_assign_lhs (stmt);
  gimple use_stmt;
  gimple use_stmt;
  tree tmp = NULL_TREE;
  tree tmp = NULL_TREE;
 
 
  /* Don't propagate ssa names that occur in abnormal phis.  */
  /* Don't propagate ssa names that occur in abnormal phis.  */
  if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
  if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
       && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
       && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
      || (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
      || (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
        && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
        && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
    return false;
    return false;
 
 
  /* Do not un-cse comparisons.  But propagate through copies.  */
  /* Do not un-cse comparisons.  But propagate through copies.  */
  use_stmt = get_prop_dest_stmt (name, &name);
  use_stmt = get_prop_dest_stmt (name, &name);
  if (!use_stmt)
  if (!use_stmt)
    return false;
    return false;
 
 
  /* Conversion of the condition result to another integral type.  */
  /* Conversion of the condition result to another integral type.  */
  if (is_gimple_assign (use_stmt)
  if (is_gimple_assign (use_stmt)
      && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
      && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
          || TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
          || TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
             == tcc_comparison
             == tcc_comparison
          || gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
          || gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
      && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (use_stmt))))
      && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (use_stmt))))
    {
    {
      tree lhs = gimple_assign_lhs (use_stmt);
      tree lhs = gimple_assign_lhs (use_stmt);
 
 
      /* We can propagate the condition into a conversion.  */
      /* We can propagate the condition into a conversion.  */
      if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
      if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
        {
        {
          /* Avoid using fold here as that may create a COND_EXPR with
          /* Avoid using fold here as that may create a COND_EXPR with
             non-boolean condition as canonical form.  */
             non-boolean condition as canonical form.  */
          tmp = build2 (gimple_assign_rhs_code (stmt), TREE_TYPE (lhs),
          tmp = build2 (gimple_assign_rhs_code (stmt), TREE_TYPE (lhs),
                        gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt));
                        gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt));
        }
        }
      /* We can propagate the condition into X op CST where op
      /* We can propagate the condition into X op CST where op
         is EQ_EXPR or NE_EXPR and CST is either one or zero.  */
         is EQ_EXPR or NE_EXPR and CST is either one or zero.  */
      else if (TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
      else if (TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt))
              == tcc_comparison
              == tcc_comparison
             && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
             && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
             && TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
             && TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
      {
      {
        enum tree_code code = gimple_assign_rhs_code (use_stmt);
        enum tree_code code = gimple_assign_rhs_code (use_stmt);
        tree cst = gimple_assign_rhs2 (use_stmt);
        tree cst = gimple_assign_rhs2 (use_stmt);
        tree cond;
        tree cond;
 
 
        cond = build2 (gimple_assign_rhs_code (stmt),
        cond = build2 (gimple_assign_rhs_code (stmt),
                       TREE_TYPE (cst),
                       TREE_TYPE (cst),
                       gimple_assign_rhs1 (stmt),
                       gimple_assign_rhs1 (stmt),
                       gimple_assign_rhs2 (stmt));
                       gimple_assign_rhs2 (stmt));
 
 
        tmp = combine_cond_expr_cond (gimple_location (use_stmt),
        tmp = combine_cond_expr_cond (gimple_location (use_stmt),
                                      code, TREE_TYPE (lhs),
                                      code, TREE_TYPE (lhs),
                                      cond, cst, false);
                                      cond, cst, false);
        if (tmp == NULL_TREE)
        if (tmp == NULL_TREE)
          return false;
          return false;
      }
      }
      /* We can propagate the condition into a statement that
      /* We can propagate the condition into a statement that
         computes the logical negation of the comparison result.  */
         computes the logical negation of the comparison result.  */
      else if (gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
      else if (gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR)
        {
        {
          tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
          tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
          bool nans = HONOR_NANS (TYPE_MODE (type));
          bool nans = HONOR_NANS (TYPE_MODE (type));
          enum tree_code code;
          enum tree_code code;
          code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
          code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
          if (code == ERROR_MARK)
          if (code == ERROR_MARK)
            return false;
            return false;
 
 
          tmp = build2 (code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
          tmp = build2 (code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
                        gimple_assign_rhs2 (stmt));
                        gimple_assign_rhs2 (stmt));
        }
        }
      else
      else
        return false;
        return false;
 
 
      {
      {
        gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
        gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
        gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
        gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
        use_stmt = gsi_stmt (gsi);
        use_stmt = gsi_stmt (gsi);
        update_stmt (use_stmt);
        update_stmt (use_stmt);
      }
      }
 
 
      /* Remove defining statements.  */
      /* Remove defining statements.  */
      remove_prop_source_from_use (name, stmt);
      remove_prop_source_from_use (name, stmt);
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          tree old_rhs = rhs_to_tree (TREE_TYPE (gimple_assign_lhs (stmt)),
          tree old_rhs = rhs_to_tree (TREE_TYPE (gimple_assign_lhs (stmt)),
                                      stmt);
                                      stmt);
          fprintf (dump_file, "  Replaced '");
          fprintf (dump_file, "  Replaced '");
          print_generic_expr (dump_file, old_rhs, dump_flags);
          print_generic_expr (dump_file, old_rhs, dump_flags);
          fprintf (dump_file, "' with '");
          fprintf (dump_file, "' with '");
          print_generic_expr (dump_file, tmp, dump_flags);
          print_generic_expr (dump_file, tmp, dump_flags);
          fprintf (dump_file, "'\n");
          fprintf (dump_file, "'\n");
        }
        }
 
 
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
/* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
   If so, we can change STMT into lhs = y which can later be copy
   If so, we can change STMT into lhs = y which can later be copy
   propagated.  Similarly for negation.
   propagated.  Similarly for negation.
 
 
   This could trivially be formulated as a forward propagation
   This could trivially be formulated as a forward propagation
   to immediate uses.  However, we already had an implementation
   to immediate uses.  However, we already had an implementation
   from DOM which used backward propagation via the use-def links.
   from DOM which used backward propagation via the use-def links.
 
 
   It turns out that backward propagation is actually faster as
   It turns out that backward propagation is actually faster as
   there's less work to do for each NOT/NEG expression we find.
   there's less work to do for each NOT/NEG expression we find.
   Backwards propagation needs to look at the statement in a single
   Backwards propagation needs to look at the statement in a single
   backlink.  Forward propagation needs to look at potentially more
   backlink.  Forward propagation needs to look at potentially more
   than one forward link.  */
   than one forward link.  */
 
 
static void
static void
simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
{
{
  gimple stmt = gsi_stmt (*gsi_p);
  gimple stmt = gsi_stmt (*gsi_p);
  tree rhs = gimple_assign_rhs1 (stmt);
  tree rhs = gimple_assign_rhs1 (stmt);
  gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
  gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
 
 
  /* See if the RHS_DEF_STMT has the same form as our statement.  */
  /* See if the RHS_DEF_STMT has the same form as our statement.  */
  if (is_gimple_assign (rhs_def_stmt)
  if (is_gimple_assign (rhs_def_stmt)
      && gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
      && gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
    {
    {
      tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
      tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
 
 
      /* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME.  */
      /* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME.  */
      if (TREE_CODE (rhs_def_operand) == SSA_NAME
      if (TREE_CODE (rhs_def_operand) == SSA_NAME
          && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
          && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
        {
        {
          gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
          gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
          stmt = gsi_stmt (*gsi_p);
          stmt = gsi_stmt (*gsi_p);
          update_stmt (stmt);
          update_stmt (stmt);
        }
        }
    }
    }
}
}
 
 
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
   the condition which we may be able to optimize better.  */
   the condition which we may be able to optimize better.  */
 
 
static void
static void
simplify_gimple_switch (gimple stmt)
simplify_gimple_switch (gimple stmt)
{
{
  tree cond = gimple_switch_index (stmt);
  tree cond = gimple_switch_index (stmt);
  tree def, to, ti;
  tree def, to, ti;
  gimple def_stmt;
  gimple def_stmt;
 
 
  /* The optimization that we really care about is removing unnecessary
  /* The optimization that we really care about is removing unnecessary
     casts.  That will let us do much better in propagating the inferred
     casts.  That will let us do much better in propagating the inferred
     constant at the switch target.  */
     constant at the switch target.  */
  if (TREE_CODE (cond) == SSA_NAME)
  if (TREE_CODE (cond) == SSA_NAME)
    {
    {
      def_stmt = SSA_NAME_DEF_STMT (cond);
      def_stmt = SSA_NAME_DEF_STMT (cond);
      if (is_gimple_assign (def_stmt))
      if (is_gimple_assign (def_stmt))
        {
        {
          if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
          if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
            {
            {
              int need_precision;
              int need_precision;
              bool fail;
              bool fail;
 
 
              def = gimple_assign_rhs1 (def_stmt);
              def = gimple_assign_rhs1 (def_stmt);
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
              /* ??? Why was Jeff testing this?  We are gimple...  */
              /* ??? Why was Jeff testing this?  We are gimple...  */
              gcc_assert (is_gimple_val (def));
              gcc_assert (is_gimple_val (def));
#endif
#endif
 
 
              to = TREE_TYPE (cond);
              to = TREE_TYPE (cond);
              ti = TREE_TYPE (def);
              ti = TREE_TYPE (def);
 
 
              /* If we have an extension that preserves value, then we
              /* If we have an extension that preserves value, then we
                 can copy the source value into the switch.  */
                 can copy the source value into the switch.  */
 
 
              need_precision = TYPE_PRECISION (ti);
              need_precision = TYPE_PRECISION (ti);
              fail = false;
              fail = false;
              if (! INTEGRAL_TYPE_P (ti))
              if (! INTEGRAL_TYPE_P (ti))
                fail = true;
                fail = true;
              else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
              else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
                fail = true;
                fail = true;
              else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
              else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
                need_precision += 1;
                need_precision += 1;
              if (TYPE_PRECISION (to) < need_precision)
              if (TYPE_PRECISION (to) < need_precision)
                fail = true;
                fail = true;
 
 
              if (!fail)
              if (!fail)
                {
                {
                  gimple_switch_set_index (stmt, def);
                  gimple_switch_set_index (stmt, def);
                  update_stmt (stmt);
                  update_stmt (stmt);
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Run bitwise and assignments throug the folder.  If the first argument is an
/* Run bitwise and assignments throug the folder.  If the first argument is an
   ssa name that is itself a result of a typecast of an ADDR_EXPR to an
   ssa name that is itself a result of a typecast of an ADDR_EXPR to an
   integer, feed the ADDR_EXPR to the folder rather than the ssa name.
   integer, feed the ADDR_EXPR to the folder rather than the ssa name.
*/
*/
 
 
static void
static void
simplify_bitwise_and (gimple_stmt_iterator *gsi, gimple stmt)
simplify_bitwise_and (gimple_stmt_iterator *gsi, gimple stmt)
{
{
  tree res;
  tree res;
  tree arg1 = gimple_assign_rhs1 (stmt);
  tree arg1 = gimple_assign_rhs1 (stmt);
  tree arg2 = gimple_assign_rhs2 (stmt);
  tree arg2 = gimple_assign_rhs2 (stmt);
 
 
  if (TREE_CODE (arg2) != INTEGER_CST)
  if (TREE_CODE (arg2) != INTEGER_CST)
    return;
    return;
 
 
  if (TREE_CODE (arg1) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg1))
  if (TREE_CODE (arg1) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg1))
    {
    {
      gimple def = SSA_NAME_DEF_STMT (arg1);
      gimple def = SSA_NAME_DEF_STMT (arg1);
 
 
      if (gimple_assign_cast_p (def)
      if (gimple_assign_cast_p (def)
          && INTEGRAL_TYPE_P (gimple_expr_type (def)))
          && INTEGRAL_TYPE_P (gimple_expr_type (def)))
        {
        {
          tree op = gimple_assign_rhs1 (def);
          tree op = gimple_assign_rhs1 (def);
 
 
          if (TREE_CODE (op) == ADDR_EXPR)
          if (TREE_CODE (op) == ADDR_EXPR)
            arg1 = op;
            arg1 = op;
        }
        }
    }
    }
 
 
  res = fold_binary_loc (gimple_location (stmt),
  res = fold_binary_loc (gimple_location (stmt),
                     BIT_AND_EXPR, TREE_TYPE (gimple_assign_lhs (stmt)),
                     BIT_AND_EXPR, TREE_TYPE (gimple_assign_lhs (stmt)),
                     arg1, arg2);
                     arg1, arg2);
  if (res && is_gimple_min_invariant (res))
  if (res && is_gimple_min_invariant (res))
    {
    {
      gimple_assign_set_rhs_from_tree (gsi, res);
      gimple_assign_set_rhs_from_tree (gsi, res);
      update_stmt (stmt);
      update_stmt (stmt);
    }
    }
  return;
  return;
}
}
 
 
/* Main entry point for the forward propagation optimizer.  */
/* Main entry point for the forward propagation optimizer.  */
 
 
static unsigned int
static unsigned int
tree_ssa_forward_propagate_single_use_vars (void)
tree_ssa_forward_propagate_single_use_vars (void)
{
{
  basic_block bb;
  basic_block bb;
  unsigned int todoflags = 0;
  unsigned int todoflags = 0;
 
 
  cfg_changed = false;
  cfg_changed = false;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator gsi;
 
 
      /* Note we update GSI within the loop as necessary.  */
      /* Note we update GSI within the loop as necessary.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
        {
        {
          gimple stmt = gsi_stmt (gsi);
          gimple stmt = gsi_stmt (gsi);
 
 
          /* If this statement sets an SSA_NAME to an address,
          /* If this statement sets an SSA_NAME to an address,
             try to propagate the address into the uses of the SSA_NAME.  */
             try to propagate the address into the uses of the SSA_NAME.  */
          if (is_gimple_assign (stmt))
          if (is_gimple_assign (stmt))
            {
            {
              tree lhs = gimple_assign_lhs (stmt);
              tree lhs = gimple_assign_lhs (stmt);
              tree rhs = gimple_assign_rhs1 (stmt);
              tree rhs = gimple_assign_rhs1 (stmt);
 
 
              if (TREE_CODE (lhs) != SSA_NAME)
              if (TREE_CODE (lhs) != SSA_NAME)
                {
                {
                  gsi_next (&gsi);
                  gsi_next (&gsi);
                  continue;
                  continue;
                }
                }
 
 
              if (gimple_assign_rhs_code (stmt) == ADDR_EXPR
              if (gimple_assign_rhs_code (stmt) == ADDR_EXPR
                  /* Handle pointer conversions on invariant addresses
                  /* Handle pointer conversions on invariant addresses
                     as well, as this is valid gimple.  */
                     as well, as this is valid gimple.  */
                  || (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
                  || (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
                      && TREE_CODE (rhs) == ADDR_EXPR
                      && TREE_CODE (rhs) == ADDR_EXPR
                      && POINTER_TYPE_P (TREE_TYPE (lhs))))
                      && POINTER_TYPE_P (TREE_TYPE (lhs))))
                {
                {
                  STRIP_NOPS (rhs);
                  STRIP_NOPS (rhs);
                  if (!stmt_references_abnormal_ssa_name (stmt)
                  if (!stmt_references_abnormal_ssa_name (stmt)
                      && forward_propagate_addr_expr (lhs, rhs))
                      && forward_propagate_addr_expr (lhs, rhs))
                    {
                    {
                      release_defs (stmt);
                      release_defs (stmt);
                      todoflags |= TODO_remove_unused_locals;
                      todoflags |= TODO_remove_unused_locals;
                      gsi_remove (&gsi, true);
                      gsi_remove (&gsi, true);
                    }
                    }
                  else
                  else
                    gsi_next (&gsi);
                    gsi_next (&gsi);
                }
                }
              else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
              else if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
                       && is_gimple_min_invariant (rhs))
                       && is_gimple_min_invariant (rhs))
                {
                {
                  /* Make sure to fold &a[0] + off_1 here.  */
                  /* Make sure to fold &a[0] + off_1 here.  */
                  fold_stmt_inplace (stmt);
                  fold_stmt_inplace (stmt);
                  update_stmt (stmt);
                  update_stmt (stmt);
                  if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
                  if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
                    gsi_next (&gsi);
                    gsi_next (&gsi);
                }
                }
              else if ((gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR
              else if ((gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR
                        || gimple_assign_rhs_code (stmt) == NEGATE_EXPR)
                        || gimple_assign_rhs_code (stmt) == NEGATE_EXPR)
                       && TREE_CODE (rhs) == SSA_NAME)
                       && TREE_CODE (rhs) == SSA_NAME)
                {
                {
                  simplify_not_neg_expr (&gsi);
                  simplify_not_neg_expr (&gsi);
                  gsi_next (&gsi);
                  gsi_next (&gsi);
                }
                }
              else if (gimple_assign_rhs_code (stmt) == COND_EXPR)
              else if (gimple_assign_rhs_code (stmt) == COND_EXPR)
                {
                {
                  /* In this case the entire COND_EXPR is in rhs1. */
                  /* In this case the entire COND_EXPR is in rhs1. */
                  int did_something;
                  int did_something;
                  fold_defer_overflow_warnings ();
                  fold_defer_overflow_warnings ();
                  did_something = forward_propagate_into_cond (&gsi);
                  did_something = forward_propagate_into_cond (&gsi);
                  stmt = gsi_stmt (gsi);
                  stmt = gsi_stmt (gsi);
                  if (did_something == 2)
                  if (did_something == 2)
                    cfg_changed = true;
                    cfg_changed = true;
                  fold_undefer_overflow_warnings (!TREE_NO_WARNING (rhs)
                  fold_undefer_overflow_warnings (!TREE_NO_WARNING (rhs)
                    && did_something, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
                    && did_something, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
                  gsi_next (&gsi);
                  gsi_next (&gsi);
                }
                }
              else if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
              else if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
                                        == tcc_comparison)
                                        == tcc_comparison)
                {
                {
                  if (forward_propagate_comparison (stmt))
                  if (forward_propagate_comparison (stmt))
                    {
                    {
                      release_defs (stmt);
                      release_defs (stmt);
                      todoflags |= TODO_remove_unused_locals;
                      todoflags |= TODO_remove_unused_locals;
                      gsi_remove (&gsi, true);
                      gsi_remove (&gsi, true);
                    }
                    }
                  else
                  else
                    gsi_next (&gsi);
                    gsi_next (&gsi);
                }
                }
              else if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR)
              else if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR)
                {
                {
                  simplify_bitwise_and (&gsi, stmt);
                  simplify_bitwise_and (&gsi, stmt);
                  gsi_next (&gsi);
                  gsi_next (&gsi);
                }
                }
              else
              else
                gsi_next (&gsi);
                gsi_next (&gsi);
            }
            }
          else if (gimple_code (stmt) == GIMPLE_SWITCH)
          else if (gimple_code (stmt) == GIMPLE_SWITCH)
            {
            {
              simplify_gimple_switch (stmt);
              simplify_gimple_switch (stmt);
              gsi_next (&gsi);
              gsi_next (&gsi);
            }
            }
          else if (gimple_code (stmt) == GIMPLE_COND)
          else if (gimple_code (stmt) == GIMPLE_COND)
            {
            {
              int did_something;
              int did_something;
              fold_defer_overflow_warnings ();
              fold_defer_overflow_warnings ();
              did_something = forward_propagate_into_gimple_cond (stmt);
              did_something = forward_propagate_into_gimple_cond (stmt);
              if (did_something == 2)
              if (did_something == 2)
                cfg_changed = true;
                cfg_changed = true;
              fold_undefer_overflow_warnings (did_something, stmt,
              fold_undefer_overflow_warnings (did_something, stmt,
                                              WARN_STRICT_OVERFLOW_CONDITIONAL);
                                              WARN_STRICT_OVERFLOW_CONDITIONAL);
              gsi_next (&gsi);
              gsi_next (&gsi);
            }
            }
          else
          else
            gsi_next (&gsi);
            gsi_next (&gsi);
        }
        }
    }
    }
 
 
  if (cfg_changed)
  if (cfg_changed)
    todoflags |= TODO_cleanup_cfg;
    todoflags |= TODO_cleanup_cfg;
  return todoflags;
  return todoflags;
}
}
 
 
 
 
static bool
static bool
gate_forwprop (void)
gate_forwprop (void)
{
{
  return flag_tree_forwprop;
  return flag_tree_forwprop;
}
}
 
 
struct gimple_opt_pass pass_forwprop =
struct gimple_opt_pass pass_forwprop =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "forwprop",                   /* name */
  "forwprop",                   /* name */
  gate_forwprop,                /* gate */
  gate_forwprop,                /* gate */
  tree_ssa_forward_propagate_single_use_vars,   /* execute */
  tree_ssa_forward_propagate_single_use_vars,   /* execute */
  NULL,                         /* sub */
  NULL,                         /* sub */
  NULL,                         /* next */
  NULL,                         /* next */
  0,                             /* static_pass_number */
  0,                             /* static_pass_number */
  TV_TREE_FORWPROP,             /* tv_id */
  TV_TREE_FORWPROP,             /* tv_id */
  PROP_cfg | PROP_ssa,          /* properties_required */
  PROP_cfg | PROP_ssa,          /* properties_required */
  0,                             /* properties_provided */
  0,                             /* properties_provided */
  0,                             /* properties_destroyed */
  0,                             /* properties_destroyed */
  0,                             /* todo_flags_start */
  0,                             /* todo_flags_start */
  TODO_dump_func
  TODO_dump_func
  | TODO_ggc_collect
  | TODO_ggc_collect
  | TODO_update_ssa
  | TODO_update_ssa
  | TODO_verify_ssa             /* todo_flags_finish */
  | TODO_verify_ssa             /* todo_flags_finish */
 }
 }
};
};
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.