OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [tree-ssa-live.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Liveness for SSA trees.
/* Liveness for SSA trees.
   Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation,
   Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation,
   Inc.
   Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>
   Contributed by Andrew MacLeod <amacleod@redhat.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-ssa-live.h"
#include "tree-ssa-live.h"
#include "toplev.h"
#include "toplev.h"
#include "debug.h"
#include "debug.h"
#include "flags.h"
#include "flags.h"
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
static void  verify_live_on_entry (tree_live_info_p);
static void  verify_live_on_entry (tree_live_info_p);
#endif
#endif
 
 
 
 
/* VARMAP maintains a mapping from SSA version number to real variables.
/* VARMAP maintains a mapping from SSA version number to real variables.
 
 
   All SSA_NAMES are divided into partitions.  Initially each ssa_name is the
   All SSA_NAMES are divided into partitions.  Initially each ssa_name is the
   only member of it's own partition.  Coalescing will attempt to group any
   only member of it's own partition.  Coalescing will attempt to group any
   ssa_names which occur in a copy or in a PHI node into the same partition.
   ssa_names which occur in a copy or in a PHI node into the same partition.
 
 
   At the end of out-of-ssa, each partition becomes a "real" variable and is
   At the end of out-of-ssa, each partition becomes a "real" variable and is
   rewritten as a compiler variable.
   rewritten as a compiler variable.
 
 
   The var_map data structure is used to manage these partitions.  It allows
   The var_map data structure is used to manage these partitions.  It allows
   partitions to be combined, and determines which partition belongs to what
   partitions to be combined, and determines which partition belongs to what
   ssa_name or variable, and vice versa.  */
   ssa_name or variable, and vice versa.  */
 
 
 
 
/* This routine will initialize the basevar fields of MAP.  */
/* This routine will initialize the basevar fields of MAP.  */
 
 
static void
static void
var_map_base_init (var_map map)
var_map_base_init (var_map map)
{
{
  int x, num_part, num;
  int x, num_part, num;
  tree var;
  tree var;
  var_ann_t ann;
  var_ann_t ann;
 
 
  num = 0;
  num = 0;
  num_part = num_var_partitions (map);
  num_part = num_var_partitions (map);
 
 
  /* If a base table already exists, clear it, otherwise create it.  */
  /* If a base table already exists, clear it, otherwise create it.  */
  if (map->partition_to_base_index != NULL)
  if (map->partition_to_base_index != NULL)
    {
    {
      free (map->partition_to_base_index);
      free (map->partition_to_base_index);
      VEC_truncate (tree, map->basevars, 0);
      VEC_truncate (tree, map->basevars, 0);
    }
    }
  else
  else
    map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
    map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
 
 
  map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
  map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
 
 
  /* Build the base variable list, and point partitions at their bases.  */
  /* Build the base variable list, and point partitions at their bases.  */
  for (x = 0; x < num_part; x++)
  for (x = 0; x < num_part; x++)
    {
    {
      var = partition_to_var (map, x);
      var = partition_to_var (map, x);
      if (TREE_CODE (var) == SSA_NAME)
      if (TREE_CODE (var) == SSA_NAME)
         var = SSA_NAME_VAR (var);
         var = SSA_NAME_VAR (var);
      ann = var_ann (var);
      ann = var_ann (var);
      /* If base variable hasn't been seen, set it up.  */
      /* If base variable hasn't been seen, set it up.  */
      if (!ann->base_var_processed)
      if (!ann->base_var_processed)
        {
        {
          ann->base_var_processed = 1;
          ann->base_var_processed = 1;
          VAR_ANN_BASE_INDEX (ann) = num++;
          VAR_ANN_BASE_INDEX (ann) = num++;
          VEC_safe_push (tree, heap, map->basevars, var);
          VEC_safe_push (tree, heap, map->basevars, var);
        }
        }
      map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
      map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
    }
    }
 
 
  map->num_basevars = num;
  map->num_basevars = num;
 
 
  /* Now clear the processed bit.  */
  /* Now clear the processed bit.  */
  for (x = 0; x < num; x++)
  for (x = 0; x < num; x++)
    {
    {
       var = VEC_index (tree, map->basevars, x);
       var = VEC_index (tree, map->basevars, x);
       var_ann (var)->base_var_processed = 0;
       var_ann (var)->base_var_processed = 0;
    }
    }
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  for (x = 0; x < num_part; x++)
  for (x = 0; x < num_part; x++)
    {
    {
      tree var2;
      tree var2;
      var = SSA_NAME_VAR (partition_to_var (map, x));
      var = SSA_NAME_VAR (partition_to_var (map, x));
      var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
      var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
      gcc_assert (var == var2);
      gcc_assert (var == var2);
    }
    }
#endif
#endif
}
}
 
 
 
 
/* Remove the base table in MAP.  */
/* Remove the base table in MAP.  */
 
 
static void
static void
var_map_base_fini (var_map map)
var_map_base_fini (var_map map)
{
{
  /* Free the basevar info if it is present.  */
  /* Free the basevar info if it is present.  */
  if (map->partition_to_base_index != NULL)
  if (map->partition_to_base_index != NULL)
    {
    {
      VEC_free (tree, heap, map->basevars);
      VEC_free (tree, heap, map->basevars);
      free (map->partition_to_base_index);
      free (map->partition_to_base_index);
      map->partition_to_base_index = NULL;
      map->partition_to_base_index = NULL;
      map->num_basevars = 0;
      map->num_basevars = 0;
    }
    }
}
}
/* Create a variable partition map of SIZE, initialize and return it.  */
/* Create a variable partition map of SIZE, initialize and return it.  */
 
 
var_map
var_map
init_var_map (int size)
init_var_map (int size)
{
{
  var_map map;
  var_map map;
 
 
  map = (var_map) xmalloc (sizeof (struct _var_map));
  map = (var_map) xmalloc (sizeof (struct _var_map));
  map->var_partition = partition_new (size);
  map->var_partition = partition_new (size);
 
 
  map->partition_to_view = NULL;
  map->partition_to_view = NULL;
  map->view_to_partition = NULL;
  map->view_to_partition = NULL;
  map->num_partitions = size;
  map->num_partitions = size;
  map->partition_size = size;
  map->partition_size = size;
  map->num_basevars = 0;
  map->num_basevars = 0;
  map->partition_to_base_index = NULL;
  map->partition_to_base_index = NULL;
  map->basevars = NULL;
  map->basevars = NULL;
  return map;
  return map;
}
}
 
 
 
 
/* Free memory associated with MAP.  */
/* Free memory associated with MAP.  */
 
 
void
void
delete_var_map (var_map map)
delete_var_map (var_map map)
{
{
  var_map_base_fini (map);
  var_map_base_fini (map);
  partition_delete (map->var_partition);
  partition_delete (map->var_partition);
  if (map->partition_to_view)
  if (map->partition_to_view)
    free (map->partition_to_view);
    free (map->partition_to_view);
  if (map->view_to_partition)
  if (map->view_to_partition)
    free (map->view_to_partition);
    free (map->view_to_partition);
  free (map);
  free (map);
}
}
 
 
 
 
/* This function will combine the partitions in MAP for VAR1 and VAR2.  It
/* This function will combine the partitions in MAP for VAR1 and VAR2.  It
   Returns the partition which represents the new partition.  If the two
   Returns the partition which represents the new partition.  If the two
   partitions cannot be combined, NO_PARTITION is returned.  */
   partitions cannot be combined, NO_PARTITION is returned.  */
 
 
int
int
var_union (var_map map, tree var1, tree var2)
var_union (var_map map, tree var1, tree var2)
{
{
  int p1, p2, p3;
  int p1, p2, p3;
 
 
  gcc_assert (TREE_CODE (var1) == SSA_NAME);
  gcc_assert (TREE_CODE (var1) == SSA_NAME);
  gcc_assert (TREE_CODE (var2) == SSA_NAME);
  gcc_assert (TREE_CODE (var2) == SSA_NAME);
 
 
  /* This is independent of partition_to_view. If partition_to_view is
  /* This is independent of partition_to_view. If partition_to_view is
     on, then whichever one of these partitions is absorbed will never have a
     on, then whichever one of these partitions is absorbed will never have a
     dereference into the partition_to_view array any more.  */
     dereference into the partition_to_view array any more.  */
 
 
  p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
  p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
  p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
  p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
 
 
  gcc_assert (p1 != NO_PARTITION);
  gcc_assert (p1 != NO_PARTITION);
  gcc_assert (p2 != NO_PARTITION);
  gcc_assert (p2 != NO_PARTITION);
 
 
  if (p1 == p2)
  if (p1 == p2)
    p3 = p1;
    p3 = p1;
  else
  else
    p3 = partition_union (map->var_partition, p1, p2);
    p3 = partition_union (map->var_partition, p1, p2);
 
 
  if (map->partition_to_view)
  if (map->partition_to_view)
    p3 = map->partition_to_view[p3];
    p3 = map->partition_to_view[p3];
 
 
  return p3;
  return p3;
}
}
 
 
 
 
/* Compress the partition numbers in MAP such that they fall in the range
/* Compress the partition numbers in MAP such that they fall in the range
   0..(num_partitions-1) instead of wherever they turned out during
   0..(num_partitions-1) instead of wherever they turned out during
   the partitioning exercise.  This removes any references to unused
   the partitioning exercise.  This removes any references to unused
   partitions, thereby allowing bitmaps and other vectors to be much
   partitions, thereby allowing bitmaps and other vectors to be much
   denser.
   denser.
 
 
   This is implemented such that compaction doesn't affect partitioning.
   This is implemented such that compaction doesn't affect partitioning.
   Ie., once partitions are created and possibly merged, running one
   Ie., once partitions are created and possibly merged, running one
   or more different kind of compaction will not affect the partitions
   or more different kind of compaction will not affect the partitions
   themselves.  Their index might change, but all the same variables will
   themselves.  Their index might change, but all the same variables will
   still be members of the same partition group.  This allows work on reduced
   still be members of the same partition group.  This allows work on reduced
   sets, and no loss of information when a larger set is later desired.
   sets, and no loss of information when a larger set is later desired.
 
 
   In particular, coalescing can work on partitions which have 2 or more
   In particular, coalescing can work on partitions which have 2 or more
   definitions, and then 'recompact' later to include all the single
   definitions, and then 'recompact' later to include all the single
   definitions for assignment to program variables.  */
   definitions for assignment to program variables.  */
 
 
 
 
/* Set MAP back to the initial state of having no partition view.  Return a
/* Set MAP back to the initial state of having no partition view.  Return a
   bitmap which has a bit set for each partition number which is in use in the
   bitmap which has a bit set for each partition number which is in use in the
   varmap.  */
   varmap.  */
 
 
static bitmap
static bitmap
partition_view_init (var_map map)
partition_view_init (var_map map)
{
{
  bitmap used;
  bitmap used;
  int tmp;
  int tmp;
  unsigned int x;
  unsigned int x;
 
 
  used = BITMAP_ALLOC (NULL);
  used = BITMAP_ALLOC (NULL);
 
 
  /* Already in a view? Abandon the old one.  */
  /* Already in a view? Abandon the old one.  */
  if (map->partition_to_view)
  if (map->partition_to_view)
    {
    {
      free (map->partition_to_view);
      free (map->partition_to_view);
      map->partition_to_view = NULL;
      map->partition_to_view = NULL;
    }
    }
  if (map->view_to_partition)
  if (map->view_to_partition)
    {
    {
      free (map->view_to_partition);
      free (map->view_to_partition);
      map->view_to_partition = NULL;
      map->view_to_partition = NULL;
    }
    }
 
 
  /* Find out which partitions are actually referenced.  */
  /* Find out which partitions are actually referenced.  */
  for (x = 0; x < map->partition_size; x++)
  for (x = 0; x < map->partition_size; x++)
    {
    {
      tmp = partition_find (map->var_partition, x);
      tmp = partition_find (map->var_partition, x);
      if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
      if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
          && (!has_zero_uses (ssa_name (tmp))
          && (!has_zero_uses (ssa_name (tmp))
              || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
              || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
        bitmap_set_bit (used, tmp);
        bitmap_set_bit (used, tmp);
    }
    }
 
 
  map->num_partitions = map->partition_size;
  map->num_partitions = map->partition_size;
  return used;
  return used;
}
}
 
 
 
 
/* This routine will finalize the view data for MAP based on the partitions
/* This routine will finalize the view data for MAP based on the partitions
   set in SELECTED.  This is either the same bitmap returned from
   set in SELECTED.  This is either the same bitmap returned from
   partition_view_init, or a trimmed down version if some of those partitions
   partition_view_init, or a trimmed down version if some of those partitions
   were not desired in this view.  SELECTED is freed before returning.  */
   were not desired in this view.  SELECTED is freed before returning.  */
 
 
static void
static void
partition_view_fini (var_map map, bitmap selected)
partition_view_fini (var_map map, bitmap selected)
{
{
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned count, i, x, limit;
  unsigned count, i, x, limit;
 
 
  gcc_assert (selected);
  gcc_assert (selected);
 
 
  count = bitmap_count_bits (selected);
  count = bitmap_count_bits (selected);
  limit = map->partition_size;
  limit = map->partition_size;
 
 
  /* If its a one-to-one ratio, we don't need any view compaction.  */
  /* If its a one-to-one ratio, we don't need any view compaction.  */
  if (count < limit)
  if (count < limit)
    {
    {
      map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
      map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
      memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
      memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
      map->view_to_partition = (int *)xmalloc (count * sizeof (int));
      map->view_to_partition = (int *)xmalloc (count * sizeof (int));
 
 
      i = 0;
      i = 0;
      /* Give each selected partition an index.  */
      /* Give each selected partition an index.  */
      EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
      EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
        {
        {
          map->partition_to_view[x] = i;
          map->partition_to_view[x] = i;
          map->view_to_partition[i] = x;
          map->view_to_partition[i] = x;
          i++;
          i++;
        }
        }
      gcc_assert (i == count);
      gcc_assert (i == count);
      map->num_partitions = i;
      map->num_partitions = i;
    }
    }
 
 
  BITMAP_FREE (selected);
  BITMAP_FREE (selected);
}
}
 
 
 
 
/* Create a partition view which includes all the used partitions in MAP.  If
/* Create a partition view which includes all the used partitions in MAP.  If
   WANT_BASES is true, create the base variable map as well.  */
   WANT_BASES is true, create the base variable map as well.  */
 
 
extern void
extern void
partition_view_normal (var_map map, bool want_bases)
partition_view_normal (var_map map, bool want_bases)
{
{
  bitmap used;
  bitmap used;
 
 
  used = partition_view_init (map);
  used = partition_view_init (map);
  partition_view_fini (map, used);
  partition_view_fini (map, used);
 
 
  if (want_bases)
  if (want_bases)
    var_map_base_init (map);
    var_map_base_init (map);
  else
  else
    var_map_base_fini (map);
    var_map_base_fini (map);
}
}
 
 
 
 
/* Create a partition view in MAP which includes just partitions which occur in
/* Create a partition view in MAP which includes just partitions which occur in
   the bitmap ONLY. If WANT_BASES is true, create the base variable map
   the bitmap ONLY. If WANT_BASES is true, create the base variable map
   as well.  */
   as well.  */
 
 
extern void
extern void
partition_view_bitmap (var_map map, bitmap only, bool want_bases)
partition_view_bitmap (var_map map, bitmap only, bool want_bases)
{
{
  bitmap used;
  bitmap used;
  bitmap new_partitions = BITMAP_ALLOC (NULL);
  bitmap new_partitions = BITMAP_ALLOC (NULL);
  unsigned x, p;
  unsigned x, p;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  used = partition_view_init (map);
  used = partition_view_init (map);
  EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
  EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
    {
    {
      p = partition_find (map->var_partition, x);
      p = partition_find (map->var_partition, x);
      gcc_assert (bitmap_bit_p (used, p));
      gcc_assert (bitmap_bit_p (used, p));
      bitmap_set_bit (new_partitions, p);
      bitmap_set_bit (new_partitions, p);
    }
    }
  partition_view_fini (map, new_partitions);
  partition_view_fini (map, new_partitions);
 
 
  BITMAP_FREE (used);
  BITMAP_FREE (used);
  if (want_bases)
  if (want_bases)
    var_map_base_init (map);
    var_map_base_init (map);
  else
  else
    var_map_base_fini (map);
    var_map_base_fini (map);
}
}
 
 
 
 
static inline void mark_all_vars_used (tree *, void *data);
static inline void mark_all_vars_used (tree *, void *data);
 
 
/* Helper function for mark_all_vars_used, called via walk_tree.  */
/* Helper function for mark_all_vars_used, called via walk_tree.  */
 
 
static tree
static tree
mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
{
{
  tree t = *tp;
  tree t = *tp;
  enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
  enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
  tree b;
  tree b;
 
 
  if (TREE_CODE (t) == SSA_NAME)
  if (TREE_CODE (t) == SSA_NAME)
    t = SSA_NAME_VAR (t);
    t = SSA_NAME_VAR (t);
 
 
  if (IS_EXPR_CODE_CLASS (c)
  if (IS_EXPR_CODE_CLASS (c)
      && (b = TREE_BLOCK (t)) != NULL)
      && (b = TREE_BLOCK (t)) != NULL)
    TREE_USED (b) = true;
    TREE_USED (b) = true;
 
 
  /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
  /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
     fields that do not contain vars.  */
     fields that do not contain vars.  */
  if (TREE_CODE (t) == TARGET_MEM_REF)
  if (TREE_CODE (t) == TARGET_MEM_REF)
    {
    {
      mark_all_vars_used (&TMR_SYMBOL (t), data);
      mark_all_vars_used (&TMR_SYMBOL (t), data);
      mark_all_vars_used (&TMR_BASE (t), data);
      mark_all_vars_used (&TMR_BASE (t), data);
      mark_all_vars_used (&TMR_INDEX (t), data);
      mark_all_vars_used (&TMR_INDEX (t), data);
      *walk_subtrees = 0;
      *walk_subtrees = 0;
      return NULL;
      return NULL;
    }
    }
 
 
  /* Only need to mark VAR_DECLS; parameters and return results are not
  /* Only need to mark VAR_DECLS; parameters and return results are not
     eliminated as unused.  */
     eliminated as unused.  */
  if (TREE_CODE (t) == VAR_DECL)
  if (TREE_CODE (t) == VAR_DECL)
    {
    {
      if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
      if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
        {
        {
          bitmap_clear_bit ((bitmap) data, DECL_UID (t));
          bitmap_clear_bit ((bitmap) data, DECL_UID (t));
          mark_all_vars_used (&DECL_INITIAL (t), data);
          mark_all_vars_used (&DECL_INITIAL (t), data);
        }
        }
      set_is_used (t);
      set_is_used (t);
    }
    }
 
 
  if (IS_TYPE_OR_DECL_P (t))
  if (IS_TYPE_OR_DECL_P (t))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Mark the scope block SCOPE and its subblocks unused when they can be
/* Mark the scope block SCOPE and its subblocks unused when they can be
   possibly eliminated if dead.  */
   possibly eliminated if dead.  */
 
 
static void
static void
mark_scope_block_unused (tree scope)
mark_scope_block_unused (tree scope)
{
{
  tree t;
  tree t;
  TREE_USED (scope) = false;
  TREE_USED (scope) = false;
  if (!(*debug_hooks->ignore_block) (scope))
  if (!(*debug_hooks->ignore_block) (scope))
    TREE_USED (scope) = true;
    TREE_USED (scope) = true;
  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
    mark_scope_block_unused (t);
    mark_scope_block_unused (t);
}
}
 
 
/* Look if the block is dead (by possibly eliminating its dead subblocks)
/* Look if the block is dead (by possibly eliminating its dead subblocks)
   and return true if so.
   and return true if so.
   Block is declared dead if:
   Block is declared dead if:
     1) No statements are associated with it.
     1) No statements are associated with it.
     2) Declares no live variables
     2) Declares no live variables
     3) All subblocks are dead
     3) All subblocks are dead
        or there is precisely one subblocks and the block
        or there is precisely one subblocks and the block
        has same abstract origin as outer block and declares
        has same abstract origin as outer block and declares
        no variables, so it is pure wrapper.
        no variables, so it is pure wrapper.
   When we are not outputting full debug info, we also eliminate dead variables
   When we are not outputting full debug info, we also eliminate dead variables
   out of scope blocks to let them to be recycled by GGC and to save copying work
   out of scope blocks to let them to be recycled by GGC and to save copying work
   done by the inliner.  */
   done by the inliner.  */
 
 
static bool
static bool
remove_unused_scope_block_p (tree scope)
remove_unused_scope_block_p (tree scope)
{
{
  tree *t, *next;
  tree *t, *next;
  bool unused = !TREE_USED (scope);
  bool unused = !TREE_USED (scope);
  var_ann_t ann;
  var_ann_t ann;
  int nsubblocks = 0;
  int nsubblocks = 0;
 
 
  for (t = &BLOCK_VARS (scope); *t; t = next)
  for (t = &BLOCK_VARS (scope); *t; t = next)
    {
    {
      next = &TREE_CHAIN (*t);
      next = &TREE_CHAIN (*t);
 
 
      /* Debug info of nested function refers to the block of the
      /* Debug info of nested function refers to the block of the
         function.  We might stil call it even if all statements
         function.  We might stil call it even if all statements
         of function it was nested into was elliminated.
         of function it was nested into was elliminated.
 
 
         TODO: We can actually look into cgraph to see if function
         TODO: We can actually look into cgraph to see if function
         will be output to file.  */
         will be output to file.  */
      if (TREE_CODE (*t) == FUNCTION_DECL)
      if (TREE_CODE (*t) == FUNCTION_DECL)
        unused = false;
        unused = false;
 
 
      /* If a decl has a value expr, we need to instantiate it
      /* If a decl has a value expr, we need to instantiate it
         regardless of debug info generation, to avoid codegen
         regardless of debug info generation, to avoid codegen
         differences in memory overlap tests.  update_equiv_regs() may
         differences in memory overlap tests.  update_equiv_regs() may
         indirectly call validate_equiv_mem() to test whether a
         indirectly call validate_equiv_mem() to test whether a
         SET_DEST overlaps with others, and if the value expr changes
         SET_DEST overlaps with others, and if the value expr changes
         by virtual register instantiation, we may get end up with
         by virtual register instantiation, we may get end up with
         different results.  */
         different results.  */
      else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
      else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
        unused = false;
        unused = false;
 
 
      /* Remove everything we don't generate debug info for.  */
      /* Remove everything we don't generate debug info for.  */
      else if (DECL_IGNORED_P (*t))
      else if (DECL_IGNORED_P (*t))
        {
        {
          *t = TREE_CHAIN (*t);
          *t = TREE_CHAIN (*t);
          next = t;
          next = t;
        }
        }
 
 
      /* When we are outputting debug info, we usually want to output
      /* When we are outputting debug info, we usually want to output
         info about optimized-out variables in the scope blocks.
         info about optimized-out variables in the scope blocks.
         Exception are the scope blocks not containing any instructions
         Exception are the scope blocks not containing any instructions
         at all so user can't get into the scopes at first place.  */
         at all so user can't get into the scopes at first place.  */
      else if ((ann = var_ann (*t)) != NULL
      else if ((ann = var_ann (*t)) != NULL
                && ann->used)
                && ann->used)
        unused = false;
        unused = false;
 
 
      /* When we are not doing full debug info, we however can keep around
      /* When we are not doing full debug info, we however can keep around
         only the used variables for cfgexpand's memory packing saving quite
         only the used variables for cfgexpand's memory packing saving quite
         a lot of memory.
         a lot of memory.
 
 
         For sake of -g3, we keep around those vars but we don't count this as
         For sake of -g3, we keep around those vars but we don't count this as
         use of block, so innermost block with no used vars and no instructions
         use of block, so innermost block with no used vars and no instructions
         can be considered dead.  We only want to keep around blocks user can
         can be considered dead.  We only want to keep around blocks user can
         breakpoint into and ask about value of optimized out variables.
         breakpoint into and ask about value of optimized out variables.
 
 
         Similarly we need to keep around types at least until all variables of
         Similarly we need to keep around types at least until all variables of
         all nested blocks are gone.  We track no information on whether given
         all nested blocks are gone.  We track no information on whether given
         type is used or not.  */
         type is used or not.  */
 
 
      else if (debug_info_level == DINFO_LEVEL_NORMAL
      else if (debug_info_level == DINFO_LEVEL_NORMAL
               || debug_info_level == DINFO_LEVEL_VERBOSE)
               || debug_info_level == DINFO_LEVEL_VERBOSE)
        ;
        ;
      else
      else
        {
        {
          *t = TREE_CHAIN (*t);
          *t = TREE_CHAIN (*t);
          next = t;
          next = t;
        }
        }
    }
    }
 
 
  for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
  for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
    if (remove_unused_scope_block_p (*t))
    if (remove_unused_scope_block_p (*t))
      {
      {
        if (BLOCK_SUBBLOCKS (*t))
        if (BLOCK_SUBBLOCKS (*t))
          {
          {
            tree next = BLOCK_CHAIN (*t);
            tree next = BLOCK_CHAIN (*t);
            tree supercontext = BLOCK_SUPERCONTEXT (*t);
            tree supercontext = BLOCK_SUPERCONTEXT (*t);
 
 
            *t = BLOCK_SUBBLOCKS (*t);
            *t = BLOCK_SUBBLOCKS (*t);
            while (BLOCK_CHAIN (*t))
            while (BLOCK_CHAIN (*t))
              {
              {
                BLOCK_SUPERCONTEXT (*t) = supercontext;
                BLOCK_SUPERCONTEXT (*t) = supercontext;
                t = &BLOCK_CHAIN (*t);
                t = &BLOCK_CHAIN (*t);
              }
              }
            BLOCK_CHAIN (*t) = next;
            BLOCK_CHAIN (*t) = next;
            BLOCK_SUPERCONTEXT (*t) = supercontext;
            BLOCK_SUPERCONTEXT (*t) = supercontext;
            t = &BLOCK_CHAIN (*t);
            t = &BLOCK_CHAIN (*t);
            nsubblocks ++;
            nsubblocks ++;
          }
          }
        else
        else
          *t = BLOCK_CHAIN (*t);
          *t = BLOCK_CHAIN (*t);
      }
      }
    else
    else
      {
      {
        t = &BLOCK_CHAIN (*t);
        t = &BLOCK_CHAIN (*t);
        nsubblocks ++;
        nsubblocks ++;
      }
      }
 
 
 
 
   if (!unused)
   if (!unused)
     ;
     ;
   /* Outer scope is always used.  */
   /* Outer scope is always used.  */
   else if (!BLOCK_SUPERCONTEXT (scope)
   else if (!BLOCK_SUPERCONTEXT (scope)
            || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
            || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
     unused = false;
     unused = false;
   /* Innermost blocks with no live variables nor statements can be always
   /* Innermost blocks with no live variables nor statements can be always
      eliminated.  */
      eliminated.  */
   else if (!nsubblocks)
   else if (!nsubblocks)
     ;
     ;
   /* For terse debug info we can eliminate info on unused variables.  */
   /* For terse debug info we can eliminate info on unused variables.  */
   else if (debug_info_level == DINFO_LEVEL_NONE
   else if (debug_info_level == DINFO_LEVEL_NONE
            || debug_info_level == DINFO_LEVEL_TERSE)
            || debug_info_level == DINFO_LEVEL_TERSE)
     {
     {
       /* Even for -g0/-g1 don't prune outer scopes from artificial
       /* Even for -g0/-g1 don't prune outer scopes from artificial
          functions, otherwise diagnostics using tree_nonartificial_location
          functions, otherwise diagnostics using tree_nonartificial_location
          will not be emitted properly.  */
          will not be emitted properly.  */
       if (inlined_function_outer_scope_p (scope))
       if (inlined_function_outer_scope_p (scope))
         {
         {
           tree ao = scope;
           tree ao = scope;
 
 
           while (ao
           while (ao
                  && TREE_CODE (ao) == BLOCK
                  && TREE_CODE (ao) == BLOCK
                  && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
                  && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
             ao = BLOCK_ABSTRACT_ORIGIN (ao);
             ao = BLOCK_ABSTRACT_ORIGIN (ao);
           if (ao
           if (ao
               && TREE_CODE (ao) == FUNCTION_DECL
               && TREE_CODE (ao) == FUNCTION_DECL
               && DECL_DECLARED_INLINE_P (ao)
               && DECL_DECLARED_INLINE_P (ao)
               && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
               && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
             unused = false;
             unused = false;
         }
         }
     }
     }
   else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
   else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
     unused = false;
     unused = false;
   /* See if this block is important for representation of inlined function.
   /* See if this block is important for representation of inlined function.
      Inlined functions are always represented by block with
      Inlined functions are always represented by block with
      block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
      block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
      set...  */
      set...  */
   else if (inlined_function_outer_scope_p (scope))
   else if (inlined_function_outer_scope_p (scope))
     unused = false;
     unused = false;
   else
   else
   /* Verfify that only blocks with source location set
   /* Verfify that only blocks with source location set
      are entry points to the inlined functions.  */
      are entry points to the inlined functions.  */
     gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
     gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
 
 
   TREE_USED (scope) = !unused;
   TREE_USED (scope) = !unused;
   return unused;
   return unused;
}
}
 
 
/* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
/* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
   eliminated during the tree->rtl conversion process.  */
   eliminated during the tree->rtl conversion process.  */
 
 
static inline void
static inline void
mark_all_vars_used (tree *expr_p, void *data)
mark_all_vars_used (tree *expr_p, void *data)
{
{
  walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
  walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
}
}
 
 
 
 
/* Dump scope blocks starting at SCOPE to FILE.  INDENT is the
/* Dump scope blocks starting at SCOPE to FILE.  INDENT is the
   indentation level and FLAGS is as in print_generic_expr.  */
   indentation level and FLAGS is as in print_generic_expr.  */
 
 
static void
static void
dump_scope_block (FILE *file, int indent, tree scope, int flags)
dump_scope_block (FILE *file, int indent, tree scope, int flags)
{
{
  tree var, t;
  tree var, t;
  unsigned int i;
  unsigned int i;
 
 
  fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
  fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
           TREE_USED (scope) ? "" : " (unused)",
           TREE_USED (scope) ? "" : " (unused)",
           BLOCK_ABSTRACT (scope) ? " (abstract)": "");
           BLOCK_ABSTRACT (scope) ? " (abstract)": "");
  if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
  if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
    {
    {
      expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
      expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
      fprintf (file, " %s:%i", s.file, s.line);
      fprintf (file, " %s:%i", s.file, s.line);
    }
    }
  if (BLOCK_ABSTRACT_ORIGIN (scope))
  if (BLOCK_ABSTRACT_ORIGIN (scope))
    {
    {
      tree origin = block_ultimate_origin (scope);
      tree origin = block_ultimate_origin (scope);
      if (origin)
      if (origin)
        {
        {
          fprintf (file, " Originating from :");
          fprintf (file, " Originating from :");
          if (DECL_P (origin))
          if (DECL_P (origin))
            print_generic_decl (file, origin, flags);
            print_generic_decl (file, origin, flags);
          else
          else
            fprintf (file, "#%i", BLOCK_NUMBER (origin));
            fprintf (file, "#%i", BLOCK_NUMBER (origin));
        }
        }
    }
    }
  fprintf (file, " \n");
  fprintf (file, " \n");
  for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
  for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
    {
    {
      bool used = false;
      bool used = false;
      var_ann_t ann;
      var_ann_t ann;
 
 
      if ((ann = var_ann (var))
      if ((ann = var_ann (var))
          && ann->used)
          && ann->used)
        used = true;
        used = true;
 
 
      fprintf (file, "%*s",indent, "");
      fprintf (file, "%*s",indent, "");
      print_generic_decl (file, var, flags);
      print_generic_decl (file, var, flags);
      fprintf (file, "%s\n", used ? "" : " (unused)");
      fprintf (file, "%s\n", used ? "" : " (unused)");
    }
    }
  for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
  for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
    {
    {
      fprintf (file, "%*s",indent, "");
      fprintf (file, "%*s",indent, "");
      print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
      print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
                          flags);
                          flags);
      fprintf (file, " (nonlocalized)\n");
      fprintf (file, " (nonlocalized)\n");
    }
    }
  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
  for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
    dump_scope_block (file, indent + 2, t, flags);
    dump_scope_block (file, indent + 2, t, flags);
  fprintf (file, "\n%*s}\n",indent, "");
  fprintf (file, "\n%*s}\n",indent, "");
}
}
 
 
/* Dump the tree of lexical scopes starting at SCOPE to stderr.  FLAGS
/* Dump the tree of lexical scopes starting at SCOPE to stderr.  FLAGS
   is as in print_generic_expr.  */
   is as in print_generic_expr.  */
 
 
void
void
debug_scope_block (tree scope, int flags)
debug_scope_block (tree scope, int flags)
{
{
  dump_scope_block (stderr, 0, scope, flags);
  dump_scope_block (stderr, 0, scope, flags);
}
}
 
 
 
 
/* Dump the tree of lexical scopes of current_function_decl to FILE.
/* Dump the tree of lexical scopes of current_function_decl to FILE.
   FLAGS is as in print_generic_expr.  */
   FLAGS is as in print_generic_expr.  */
 
 
void
void
dump_scope_blocks (FILE *file, int flags)
dump_scope_blocks (FILE *file, int flags)
{
{
  dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
  dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
}
}
 
 
 
 
/* Dump the tree of lexical scopes of current_function_decl to stderr.
/* Dump the tree of lexical scopes of current_function_decl to stderr.
   FLAGS is as in print_generic_expr.  */
   FLAGS is as in print_generic_expr.  */
 
 
void
void
debug_scope_blocks (int flags)
debug_scope_blocks (int flags)
{
{
  dump_scope_blocks (stderr, flags);
  dump_scope_blocks (stderr, flags);
}
}
 
 
/* Remove local variables that are not referenced in the IL.  */
/* Remove local variables that are not referenced in the IL.  */
 
 
void
void
remove_unused_locals (void)
remove_unused_locals (void)
{
{
  basic_block bb;
  basic_block bb;
  tree t, *cell;
  tree t, *cell;
  referenced_var_iterator rvi;
  referenced_var_iterator rvi;
  var_ann_t ann;
  var_ann_t ann;
  bitmap global_unused_vars = NULL;
  bitmap global_unused_vars = NULL;
 
 
  /* Removing declarations from lexical blocks when not optimizing is
  /* Removing declarations from lexical blocks when not optimizing is
     not only a waste of time, it actually causes differences in stack
     not only a waste of time, it actually causes differences in stack
     layout.  */
     layout.  */
  if (!optimize)
  if (!optimize)
    return;
    return;
 
 
  mark_scope_block_unused (DECL_INITIAL (current_function_decl));
  mark_scope_block_unused (DECL_INITIAL (current_function_decl));
 
 
  /* Assume all locals are unused.  */
  /* Assume all locals are unused.  */
  FOR_EACH_REFERENCED_VAR (t, rvi)
  FOR_EACH_REFERENCED_VAR (t, rvi)
    var_ann (t)->used = false;
    var_ann (t)->used = false;
 
 
  /* Walk the CFG marking all referenced symbols.  */
  /* Walk the CFG marking all referenced symbols.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator gsi;
      size_t i;
      size_t i;
      edge_iterator ei;
      edge_iterator ei;
      edge e;
      edge e;
 
 
      /* Walk the statements.  */
      /* Walk the statements.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          gimple stmt = gsi_stmt (gsi);
          gimple stmt = gsi_stmt (gsi);
          tree b = gimple_block (stmt);
          tree b = gimple_block (stmt);
 
 
          if (is_gimple_debug (stmt))
          if (is_gimple_debug (stmt))
            continue;
            continue;
 
 
          if (b)
          if (b)
            TREE_USED (b) = true;
            TREE_USED (b) = true;
 
 
          for (i = 0; i < gimple_num_ops (stmt); i++)
          for (i = 0; i < gimple_num_ops (stmt); i++)
            mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
            mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
        }
        }
 
 
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          use_operand_p arg_p;
          use_operand_p arg_p;
          ssa_op_iter i;
          ssa_op_iter i;
          tree def;
          tree def;
          gimple phi = gsi_stmt (gsi);
          gimple phi = gsi_stmt (gsi);
 
 
          /* No point processing globals.  */
          /* No point processing globals.  */
          if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
          if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
            continue;
            continue;
 
 
          def = gimple_phi_result (phi);
          def = gimple_phi_result (phi);
          mark_all_vars_used (&def, NULL);
          mark_all_vars_used (&def, NULL);
 
 
          FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
          FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
            {
            {
              tree arg = USE_FROM_PTR (arg_p);
              tree arg = USE_FROM_PTR (arg_p);
              mark_all_vars_used (&arg, NULL);
              mark_all_vars_used (&arg, NULL);
            }
            }
        }
        }
 
 
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        if (e->goto_locus)
        if (e->goto_locus)
          TREE_USED (e->goto_block) = true;
          TREE_USED (e->goto_block) = true;
    }
    }
 
 
  cfun->has_local_explicit_reg_vars = false;
  cfun->has_local_explicit_reg_vars = false;
 
 
  /* Remove unmarked local vars from local_decls.  */
  /* Remove unmarked local vars from local_decls.  */
  for (cell = &cfun->local_decls; *cell; )
  for (cell = &cfun->local_decls; *cell; )
    {
    {
      tree var = TREE_VALUE (*cell);
      tree var = TREE_VALUE (*cell);
 
 
      if (TREE_CODE (var) != FUNCTION_DECL
      if (TREE_CODE (var) != FUNCTION_DECL
          && (!(ann = var_ann (var))
          && (!(ann = var_ann (var))
              || !ann->used))
              || !ann->used))
        {
        {
          if (is_global_var (var))
          if (is_global_var (var))
            {
            {
              if (global_unused_vars == NULL)
              if (global_unused_vars == NULL)
                global_unused_vars = BITMAP_ALLOC (NULL);
                global_unused_vars = BITMAP_ALLOC (NULL);
              bitmap_set_bit (global_unused_vars, DECL_UID (var));
              bitmap_set_bit (global_unused_vars, DECL_UID (var));
            }
            }
          else
          else
            {
            {
              *cell = TREE_CHAIN (*cell);
              *cell = TREE_CHAIN (*cell);
              continue;
              continue;
            }
            }
        }
        }
      else if (TREE_CODE (var) == VAR_DECL
      else if (TREE_CODE (var) == VAR_DECL
               && DECL_HARD_REGISTER (var)
               && DECL_HARD_REGISTER (var)
               && !is_global_var (var))
               && !is_global_var (var))
        cfun->has_local_explicit_reg_vars = true;
        cfun->has_local_explicit_reg_vars = true;
      cell = &TREE_CHAIN (*cell);
      cell = &TREE_CHAIN (*cell);
    }
    }
 
 
  /* Remove unmarked global vars from local_decls.  */
  /* Remove unmarked global vars from local_decls.  */
  if (global_unused_vars != NULL)
  if (global_unused_vars != NULL)
    {
    {
      for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
      for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
        {
        {
          tree var = TREE_VALUE (t);
          tree var = TREE_VALUE (t);
 
 
          if (TREE_CODE (var) == VAR_DECL
          if (TREE_CODE (var) == VAR_DECL
              && is_global_var (var)
              && is_global_var (var)
              && (ann = var_ann (var)) != NULL
              && (ann = var_ann (var)) != NULL
              && ann->used)
              && ann->used)
            mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
            mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
        }
        }
 
 
      for (cell = &cfun->local_decls; *cell; )
      for (cell = &cfun->local_decls; *cell; )
        {
        {
          tree var = TREE_VALUE (*cell);
          tree var = TREE_VALUE (*cell);
 
 
          if (TREE_CODE (var) == VAR_DECL
          if (TREE_CODE (var) == VAR_DECL
              && is_global_var (var)
              && is_global_var (var)
              && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
              && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
            *cell = TREE_CHAIN (*cell);
            *cell = TREE_CHAIN (*cell);
          else
          else
            cell = &TREE_CHAIN (*cell);
            cell = &TREE_CHAIN (*cell);
        }
        }
      BITMAP_FREE (global_unused_vars);
      BITMAP_FREE (global_unused_vars);
    }
    }
 
 
  /* Remove unused variables from REFERENCED_VARs.  As a special
  /* Remove unused variables from REFERENCED_VARs.  As a special
     exception keep the variables that are believed to be aliased.
     exception keep the variables that are believed to be aliased.
     Those can't be easily removed from the alias sets and operand
     Those can't be easily removed from the alias sets and operand
     caches.  They will be removed shortly after the next may_alias
     caches.  They will be removed shortly after the next may_alias
     pass is performed.  */
     pass is performed.  */
  FOR_EACH_REFERENCED_VAR (t, rvi)
  FOR_EACH_REFERENCED_VAR (t, rvi)
    if (!is_global_var (t)
    if (!is_global_var (t)
        && TREE_CODE (t) != PARM_DECL
        && TREE_CODE (t) != PARM_DECL
        && TREE_CODE (t) != RESULT_DECL
        && TREE_CODE (t) != RESULT_DECL
        && !(ann = var_ann (t))->used
        && !(ann = var_ann (t))->used
        && !ann->is_heapvar
        && !ann->is_heapvar
        && !TREE_ADDRESSABLE (t))
        && !TREE_ADDRESSABLE (t))
      remove_referenced_var (t);
      remove_referenced_var (t);
  remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
  remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Scope blocks after cleanups:\n");
      fprintf (dump_file, "Scope blocks after cleanups:\n");
      dump_scope_blocks (dump_file, dump_flags);
      dump_scope_blocks (dump_file, dump_flags);
    }
    }
}
}
 
 
 
 
/* Allocate and return a new live range information object base on MAP.  */
/* Allocate and return a new live range information object base on MAP.  */
 
 
static tree_live_info_p
static tree_live_info_p
new_tree_live_info (var_map map)
new_tree_live_info (var_map map)
{
{
  tree_live_info_p live;
  tree_live_info_p live;
  unsigned x;
  unsigned x;
 
 
  live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
  live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
  live->map = map;
  live->map = map;
  live->num_blocks = last_basic_block;
  live->num_blocks = last_basic_block;
 
 
  live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
  live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
  for (x = 0; x < (unsigned)last_basic_block; x++)
  for (x = 0; x < (unsigned)last_basic_block; x++)
    live->livein[x] = BITMAP_ALLOC (NULL);
    live->livein[x] = BITMAP_ALLOC (NULL);
 
 
  live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
  live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
  for (x = 0; x < (unsigned)last_basic_block; x++)
  for (x = 0; x < (unsigned)last_basic_block; x++)
    live->liveout[x] = BITMAP_ALLOC (NULL);
    live->liveout[x] = BITMAP_ALLOC (NULL);
 
 
  live->work_stack = XNEWVEC (int, last_basic_block);
  live->work_stack = XNEWVEC (int, last_basic_block);
  live->stack_top = live->work_stack;
  live->stack_top = live->work_stack;
 
 
  live->global = BITMAP_ALLOC (NULL);
  live->global = BITMAP_ALLOC (NULL);
  return live;
  return live;
}
}
 
 
 
 
/* Free storage for live range info object LIVE.  */
/* Free storage for live range info object LIVE.  */
 
 
void
void
delete_tree_live_info (tree_live_info_p live)
delete_tree_live_info (tree_live_info_p live)
{
{
  int x;
  int x;
 
 
  BITMAP_FREE (live->global);
  BITMAP_FREE (live->global);
  free (live->work_stack);
  free (live->work_stack);
 
 
  for (x = live->num_blocks - 1; x >= 0; x--)
  for (x = live->num_blocks - 1; x >= 0; x--)
    BITMAP_FREE (live->liveout[x]);
    BITMAP_FREE (live->liveout[x]);
  free (live->liveout);
  free (live->liveout);
 
 
  for (x = live->num_blocks - 1; x >= 0; x--)
  for (x = live->num_blocks - 1; x >= 0; x--)
    BITMAP_FREE (live->livein[x]);
    BITMAP_FREE (live->livein[x]);
  free (live->livein);
  free (live->livein);
 
 
  free (live);
  free (live);
}
}
 
 
 
 
/* Visit basic block BB and propagate any required live on entry bits from
/* Visit basic block BB and propagate any required live on entry bits from
   LIVE into the predecessors.  VISITED is the bitmap of visited blocks.
   LIVE into the predecessors.  VISITED is the bitmap of visited blocks.
   TMP is a temporary work bitmap which is passed in to avoid reallocating
   TMP is a temporary work bitmap which is passed in to avoid reallocating
   it each time.  */
   it each time.  */
 
 
static void
static void
loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
                 bitmap tmp)
                 bitmap tmp)
{
{
  edge e;
  edge e;
  bool change;
  bool change;
  edge_iterator ei;
  edge_iterator ei;
  basic_block pred_bb;
  basic_block pred_bb;
  bitmap loe;
  bitmap loe;
  gcc_assert (!TEST_BIT (visited, bb->index));
  gcc_assert (!TEST_BIT (visited, bb->index));
 
 
  SET_BIT (visited, bb->index);
  SET_BIT (visited, bb->index);
  loe = live_on_entry (live, bb);
  loe = live_on_entry (live, bb);
 
 
  FOR_EACH_EDGE (e, ei, bb->preds)
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
    {
      pred_bb = e->src;
      pred_bb = e->src;
      if (pred_bb == ENTRY_BLOCK_PTR)
      if (pred_bb == ENTRY_BLOCK_PTR)
        continue;
        continue;
      /* TMP is variables live-on-entry from BB that aren't defined in the
      /* TMP is variables live-on-entry from BB that aren't defined in the
         predecessor block.  This should be the live on entry vars to pred.
         predecessor block.  This should be the live on entry vars to pred.
         Note that liveout is the DEFs in a block while live on entry is
         Note that liveout is the DEFs in a block while live on entry is
         being calculated.  */
         being calculated.  */
      bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
      bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
 
 
      /* Add these bits to live-on-entry for the pred. if there are any
      /* Add these bits to live-on-entry for the pred. if there are any
         changes, and pred_bb has been visited already, add it to the
         changes, and pred_bb has been visited already, add it to the
         revisit stack.  */
         revisit stack.  */
      change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
      change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
      if (TEST_BIT (visited, pred_bb->index) && change)
      if (TEST_BIT (visited, pred_bb->index) && change)
        {
        {
          RESET_BIT (visited, pred_bb->index);
          RESET_BIT (visited, pred_bb->index);
          *(live->stack_top)++ = pred_bb->index;
          *(live->stack_top)++ = pred_bb->index;
        }
        }
    }
    }
}
}
 
 
 
 
/* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
/* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
   of all the variables.  */
   of all the variables.  */
 
 
static void
static void
live_worklist (tree_live_info_p live)
live_worklist (tree_live_info_p live)
{
{
  unsigned b;
  unsigned b;
  basic_block bb;
  basic_block bb;
  sbitmap visited = sbitmap_alloc (last_basic_block + 1);
  sbitmap visited = sbitmap_alloc (last_basic_block + 1);
  bitmap tmp = BITMAP_ALLOC (NULL);
  bitmap tmp = BITMAP_ALLOC (NULL);
 
 
  sbitmap_zero (visited);
  sbitmap_zero (visited);
 
 
  /* Visit all the blocks in reverse order and propagate live on entry values
  /* Visit all the blocks in reverse order and propagate live on entry values
     into the predecessors blocks.  */
     into the predecessors blocks.  */
  FOR_EACH_BB_REVERSE (bb)
  FOR_EACH_BB_REVERSE (bb)
    loe_visit_block (live, bb, visited, tmp);
    loe_visit_block (live, bb, visited, tmp);
 
 
  /* Process any blocks which require further iteration.  */
  /* Process any blocks which require further iteration.  */
  while (live->stack_top != live->work_stack)
  while (live->stack_top != live->work_stack)
    {
    {
      b = *--(live->stack_top);
      b = *--(live->stack_top);
      loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
      loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
    }
    }
 
 
  BITMAP_FREE (tmp);
  BITMAP_FREE (tmp);
  sbitmap_free (visited);
  sbitmap_free (visited);
}
}
 
 
 
 
/* Calculate the initial live on entry vector for SSA_NAME using immediate_use
/* Calculate the initial live on entry vector for SSA_NAME using immediate_use
   links.  Set the live on entry fields in LIVE.  Def's are marked temporarily
   links.  Set the live on entry fields in LIVE.  Def's are marked temporarily
   in the liveout vector.  */
   in the liveout vector.  */
 
 
static void
static void
set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
{
{
  int p;
  int p;
  gimple stmt;
  gimple stmt;
  use_operand_p use;
  use_operand_p use;
  basic_block def_bb = NULL;
  basic_block def_bb = NULL;
  imm_use_iterator imm_iter;
  imm_use_iterator imm_iter;
  bool global = false;
  bool global = false;
 
 
  p = var_to_partition (live->map, ssa_name);
  p = var_to_partition (live->map, ssa_name);
  if (p == NO_PARTITION)
  if (p == NO_PARTITION)
    return;
    return;
 
 
  stmt = SSA_NAME_DEF_STMT (ssa_name);
  stmt = SSA_NAME_DEF_STMT (ssa_name);
  if (stmt)
  if (stmt)
    {
    {
      def_bb = gimple_bb (stmt);
      def_bb = gimple_bb (stmt);
      /* Mark defs in liveout bitmap temporarily.  */
      /* Mark defs in liveout bitmap temporarily.  */
      if (def_bb)
      if (def_bb)
        bitmap_set_bit (live->liveout[def_bb->index], p);
        bitmap_set_bit (live->liveout[def_bb->index], p);
    }
    }
  else
  else
    def_bb = ENTRY_BLOCK_PTR;
    def_bb = ENTRY_BLOCK_PTR;
 
 
  /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
  /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
     add it to the list of live on entry blocks.  */
     add it to the list of live on entry blocks.  */
  FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
  FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
    {
    {
      gimple use_stmt = USE_STMT (use);
      gimple use_stmt = USE_STMT (use);
      basic_block add_block = NULL;
      basic_block add_block = NULL;
 
 
      if (gimple_code (use_stmt) == GIMPLE_PHI)
      if (gimple_code (use_stmt) == GIMPLE_PHI)
        {
        {
          /* Uses in PHI's are considered to be live at exit of the SRC block
          /* Uses in PHI's are considered to be live at exit of the SRC block
             as this is where a copy would be inserted.  Check to see if it is
             as this is where a copy would be inserted.  Check to see if it is
             defined in that block, or whether its live on entry.  */
             defined in that block, or whether its live on entry.  */
          int index = PHI_ARG_INDEX_FROM_USE (use);
          int index = PHI_ARG_INDEX_FROM_USE (use);
          edge e = gimple_phi_arg_edge (use_stmt, index);
          edge e = gimple_phi_arg_edge (use_stmt, index);
          if (e->src != ENTRY_BLOCK_PTR)
          if (e->src != ENTRY_BLOCK_PTR)
            {
            {
              if (e->src != def_bb)
              if (e->src != def_bb)
                add_block = e->src;
                add_block = e->src;
            }
            }
        }
        }
      else if (is_gimple_debug (use_stmt))
      else if (is_gimple_debug (use_stmt))
        continue;
        continue;
      else
      else
        {
        {
          /* If its not defined in this block, its live on entry.  */
          /* If its not defined in this block, its live on entry.  */
          basic_block use_bb = gimple_bb (use_stmt);
          basic_block use_bb = gimple_bb (use_stmt);
          if (use_bb != def_bb)
          if (use_bb != def_bb)
            add_block = use_bb;
            add_block = use_bb;
        }
        }
 
 
      /* If there was a live on entry use, set the bit.  */
      /* If there was a live on entry use, set the bit.  */
      if (add_block)
      if (add_block)
        {
        {
          global = true;
          global = true;
          bitmap_set_bit (live->livein[add_block->index], p);
          bitmap_set_bit (live->livein[add_block->index], p);
        }
        }
    }
    }
 
 
  /* If SSA_NAME is live on entry to at least one block, fill in all the live
  /* If SSA_NAME is live on entry to at least one block, fill in all the live
     on entry blocks between the def and all the uses.  */
     on entry blocks between the def and all the uses.  */
  if (global)
  if (global)
    bitmap_set_bit (live->global, p);
    bitmap_set_bit (live->global, p);
}
}
 
 
 
 
/* Calculate the live on exit vectors based on the entry info in LIVEINFO.  */
/* Calculate the live on exit vectors based on the entry info in LIVEINFO.  */
 
 
void
void
calculate_live_on_exit (tree_live_info_p liveinfo)
calculate_live_on_exit (tree_live_info_p liveinfo)
{
{
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* live on entry calculations used liveout vectors for defs, clear them.  */
  /* live on entry calculations used liveout vectors for defs, clear them.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    bitmap_clear (liveinfo->liveout[bb->index]);
    bitmap_clear (liveinfo->liveout[bb->index]);
 
 
  /* Set all the live-on-exit bits for uses in PHIs.  */
  /* Set all the live-on-exit bits for uses in PHIs.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator gsi;
      size_t i;
      size_t i;
 
 
      /* Mark the PHI arguments which are live on exit to the pred block.  */
      /* Mark the PHI arguments which are live on exit to the pred block.  */
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          gimple phi = gsi_stmt (gsi);
          gimple phi = gsi_stmt (gsi);
          for (i = 0; i < gimple_phi_num_args (phi); i++)
          for (i = 0; i < gimple_phi_num_args (phi); i++)
            {
            {
              tree t = PHI_ARG_DEF (phi, i);
              tree t = PHI_ARG_DEF (phi, i);
              int p;
              int p;
 
 
              if (TREE_CODE (t) != SSA_NAME)
              if (TREE_CODE (t) != SSA_NAME)
                continue;
                continue;
 
 
              p = var_to_partition (liveinfo->map, t);
              p = var_to_partition (liveinfo->map, t);
              if (p == NO_PARTITION)
              if (p == NO_PARTITION)
                continue;
                continue;
              e = gimple_phi_arg_edge (phi, i);
              e = gimple_phi_arg_edge (phi, i);
              if (e->src != ENTRY_BLOCK_PTR)
              if (e->src != ENTRY_BLOCK_PTR)
                bitmap_set_bit (liveinfo->liveout[e->src->index], p);
                bitmap_set_bit (liveinfo->liveout[e->src->index], p);
            }
            }
        }
        }
 
 
      /* Add each successors live on entry to this bock live on exit.  */
      /* Add each successors live on entry to this bock live on exit.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        if (e->dest != EXIT_BLOCK_PTR)
        if (e->dest != EXIT_BLOCK_PTR)
          bitmap_ior_into (liveinfo->liveout[bb->index],
          bitmap_ior_into (liveinfo->liveout[bb->index],
                           live_on_entry (liveinfo, e->dest));
                           live_on_entry (liveinfo, e->dest));
    }
    }
}
}
 
 
 
 
/* Given partition map MAP, calculate all the live on entry bitmaps for
/* Given partition map MAP, calculate all the live on entry bitmaps for
   each partition.  Return a new live info object.  */
   each partition.  Return a new live info object.  */
 
 
tree_live_info_p
tree_live_info_p
calculate_live_ranges (var_map map)
calculate_live_ranges (var_map map)
{
{
  tree var;
  tree var;
  unsigned i;
  unsigned i;
  tree_live_info_p live;
  tree_live_info_p live;
 
 
  live = new_tree_live_info (map);
  live = new_tree_live_info (map);
  for (i = 0; i < num_var_partitions (map); i++)
  for (i = 0; i < num_var_partitions (map); i++)
    {
    {
      var = partition_to_var (map, i);
      var = partition_to_var (map, i);
      if (var != NULL_TREE)
      if (var != NULL_TREE)
        set_var_live_on_entry (var, live);
        set_var_live_on_entry (var, live);
    }
    }
 
 
  live_worklist (live);
  live_worklist (live);
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_live_on_entry (live);
  verify_live_on_entry (live);
#endif
#endif
 
 
  calculate_live_on_exit (live);
  calculate_live_on_exit (live);
  return live;
  return live;
}
}
 
 
 
 
/* Output partition map MAP to file F.  */
/* Output partition map MAP to file F.  */
 
 
void
void
dump_var_map (FILE *f, var_map map)
dump_var_map (FILE *f, var_map map)
{
{
  int t;
  int t;
  unsigned x, y;
  unsigned x, y;
  int p;
  int p;
 
 
  fprintf (f, "\nPartition map \n\n");
  fprintf (f, "\nPartition map \n\n");
 
 
  for (x = 0; x < map->num_partitions; x++)
  for (x = 0; x < map->num_partitions; x++)
    {
    {
      if (map->view_to_partition != NULL)
      if (map->view_to_partition != NULL)
        p = map->view_to_partition[x];
        p = map->view_to_partition[x];
      else
      else
        p = x;
        p = x;
 
 
      if (ssa_name (p) == NULL_TREE)
      if (ssa_name (p) == NULL_TREE)
        continue;
        continue;
 
 
      t = 0;
      t = 0;
      for (y = 1; y < num_ssa_names; y++)
      for (y = 1; y < num_ssa_names; y++)
        {
        {
          p = partition_find (map->var_partition, y);
          p = partition_find (map->var_partition, y);
          if (map->partition_to_view)
          if (map->partition_to_view)
            p = map->partition_to_view[p];
            p = map->partition_to_view[p];
          if (p == (int)x)
          if (p == (int)x)
            {
            {
              if (t++ == 0)
              if (t++ == 0)
                {
                {
                  fprintf(f, "Partition %d (", x);
                  fprintf(f, "Partition %d (", x);
                  print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
                  print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
                  fprintf (f, " - ");
                  fprintf (f, " - ");
                }
                }
              fprintf (f, "%d ", y);
              fprintf (f, "%d ", y);
            }
            }
        }
        }
      if (t != 0)
      if (t != 0)
        fprintf (f, ")\n");
        fprintf (f, ")\n");
    }
    }
  fprintf (f, "\n");
  fprintf (f, "\n");
}
}
 
 
 
 
/* Output live range info LIVE to file F, controlled by FLAG.  */
/* Output live range info LIVE to file F, controlled by FLAG.  */
 
 
void
void
dump_live_info (FILE *f, tree_live_info_p live, int flag)
dump_live_info (FILE *f, tree_live_info_p live, int flag)
{
{
  basic_block bb;
  basic_block bb;
  unsigned i;
  unsigned i;
  var_map map = live->map;
  var_map map = live->map;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  if ((flag & LIVEDUMP_ENTRY) && live->livein)
  if ((flag & LIVEDUMP_ENTRY) && live->livein)
    {
    {
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          fprintf (f, "\nLive on entry to BB%d : ", bb->index);
          fprintf (f, "\nLive on entry to BB%d : ", bb->index);
          EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
          EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
            {
            {
              print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
              print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
              fprintf (f, "  ");
              fprintf (f, "  ");
            }
            }
          fprintf (f, "\n");
          fprintf (f, "\n");
        }
        }
    }
    }
 
 
  if ((flag & LIVEDUMP_EXIT) && live->liveout)
  if ((flag & LIVEDUMP_EXIT) && live->liveout)
    {
    {
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        {
        {
          fprintf (f, "\nLive on exit from BB%d : ", bb->index);
          fprintf (f, "\nLive on exit from BB%d : ", bb->index);
          EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
          EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
            {
            {
              print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
              print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
              fprintf (f, "  ");
              fprintf (f, "  ");
            }
            }
          fprintf (f, "\n");
          fprintf (f, "\n");
        }
        }
    }
    }
}
}
 
 
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
/* Verify that SSA_VAR is a non-virtual SSA_NAME.  */
/* Verify that SSA_VAR is a non-virtual SSA_NAME.  */
 
 
void
void
register_ssa_partition_check (tree ssa_var)
register_ssa_partition_check (tree ssa_var)
{
{
  gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
  gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
  if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
  if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
    {
    {
      fprintf (stderr, "Illegally registering a virtual SSA name :");
      fprintf (stderr, "Illegally registering a virtual SSA name :");
      print_generic_expr (stderr, ssa_var, TDF_SLIM);
      print_generic_expr (stderr, ssa_var, TDF_SLIM);
      fprintf (stderr, " in the SSA->Normal phase.\n");
      fprintf (stderr, " in the SSA->Normal phase.\n");
      internal_error ("SSA corruption");
      internal_error ("SSA corruption");
    }
    }
}
}
 
 
 
 
/* Verify that the info in LIVE matches the current cfg.  */
/* Verify that the info in LIVE matches the current cfg.  */
 
 
static void
static void
verify_live_on_entry (tree_live_info_p live)
verify_live_on_entry (tree_live_info_p live)
{
{
  unsigned i;
  unsigned i;
  tree var;
  tree var;
  gimple stmt;
  gimple stmt;
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
  int num;
  int num;
  edge_iterator ei;
  edge_iterator ei;
  var_map map = live->map;
  var_map map = live->map;
 
 
   /* Check for live on entry partitions and report those with a DEF in
   /* Check for live on entry partitions and report those with a DEF in
      the program. This will typically mean an optimization has done
      the program. This will typically mean an optimization has done
      something wrong.  */
      something wrong.  */
  bb = ENTRY_BLOCK_PTR;
  bb = ENTRY_BLOCK_PTR;
  num = 0;
  num = 0;
  FOR_EACH_EDGE (e, ei, bb->succs)
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
    {
      int entry_block = e->dest->index;
      int entry_block = e->dest->index;
      if (e->dest == EXIT_BLOCK_PTR)
      if (e->dest == EXIT_BLOCK_PTR)
        continue;
        continue;
      for (i = 0; i < (unsigned)num_var_partitions (map); i++)
      for (i = 0; i < (unsigned)num_var_partitions (map); i++)
        {
        {
          basic_block tmp;
          basic_block tmp;
          tree d;
          tree d;
          bitmap loe;
          bitmap loe;
          var = partition_to_var (map, i);
          var = partition_to_var (map, i);
          stmt = SSA_NAME_DEF_STMT (var);
          stmt = SSA_NAME_DEF_STMT (var);
          tmp = gimple_bb (stmt);
          tmp = gimple_bb (stmt);
          d = gimple_default_def (cfun, SSA_NAME_VAR (var));
          d = gimple_default_def (cfun, SSA_NAME_VAR (var));
 
 
          loe = live_on_entry (live, e->dest);
          loe = live_on_entry (live, e->dest);
          if (loe && bitmap_bit_p (loe, i))
          if (loe && bitmap_bit_p (loe, i))
            {
            {
              if (!gimple_nop_p (stmt))
              if (!gimple_nop_p (stmt))
                {
                {
                  num++;
                  num++;
                  print_generic_expr (stderr, var, TDF_SLIM);
                  print_generic_expr (stderr, var, TDF_SLIM);
                  fprintf (stderr, " is defined ");
                  fprintf (stderr, " is defined ");
                  if (tmp)
                  if (tmp)
                    fprintf (stderr, " in BB%d, ", tmp->index);
                    fprintf (stderr, " in BB%d, ", tmp->index);
                  fprintf (stderr, "by:\n");
                  fprintf (stderr, "by:\n");
                  print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
                  print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
                  fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
                  fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
                           entry_block);
                           entry_block);
                  fprintf (stderr, " So it appears to have multiple defs.\n");
                  fprintf (stderr, " So it appears to have multiple defs.\n");
                }
                }
              else
              else
                {
                {
                  if (d != var)
                  if (d != var)
                    {
                    {
                      num++;
                      num++;
                      print_generic_expr (stderr, var, TDF_SLIM);
                      print_generic_expr (stderr, var, TDF_SLIM);
                      fprintf (stderr, " is live-on-entry to BB%d ",
                      fprintf (stderr, " is live-on-entry to BB%d ",
                               entry_block);
                               entry_block);
                      if (d)
                      if (d)
                        {
                        {
                          fprintf (stderr, " but is not the default def of ");
                          fprintf (stderr, " but is not the default def of ");
                          print_generic_expr (stderr, d, TDF_SLIM);
                          print_generic_expr (stderr, d, TDF_SLIM);
                          fprintf (stderr, "\n");
                          fprintf (stderr, "\n");
                        }
                        }
                      else
                      else
                        fprintf (stderr, " and there is no default def.\n");
                        fprintf (stderr, " and there is no default def.\n");
                    }
                    }
                }
                }
            }
            }
          else
          else
            if (d == var)
            if (d == var)
              {
              {
                /* The only way this var shouldn't be marked live on entry is
                /* The only way this var shouldn't be marked live on entry is
                   if it occurs in a PHI argument of the block.  */
                   if it occurs in a PHI argument of the block.  */
                size_t z;
                size_t z;
                bool ok = false;
                bool ok = false;
                gimple_stmt_iterator gsi;
                gimple_stmt_iterator gsi;
                for (gsi = gsi_start_phis (e->dest);
                for (gsi = gsi_start_phis (e->dest);
                     !gsi_end_p (gsi) && !ok;
                     !gsi_end_p (gsi) && !ok;
                     gsi_next (&gsi))
                     gsi_next (&gsi))
                  {
                  {
                    gimple phi = gsi_stmt (gsi);
                    gimple phi = gsi_stmt (gsi);
                    for (z = 0; z < gimple_phi_num_args (phi); z++)
                    for (z = 0; z < gimple_phi_num_args (phi); z++)
                      if (var == gimple_phi_arg_def (phi, z))
                      if (var == gimple_phi_arg_def (phi, z))
                        {
                        {
                          ok = true;
                          ok = true;
                          break;
                          break;
                        }
                        }
                  }
                  }
                if (ok)
                if (ok)
                  continue;
                  continue;
                num++;
                num++;
                print_generic_expr (stderr, var, TDF_SLIM);
                print_generic_expr (stderr, var, TDF_SLIM);
                fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
                fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
                         entry_block);
                         entry_block);
                fprintf (stderr, "but it is a default def so it should be.\n");
                fprintf (stderr, "but it is a default def so it should be.\n");
              }
              }
        }
        }
    }
    }
  gcc_assert (num <= 0);
  gcc_assert (num <= 0);
}
}
#endif
#endif
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.