OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [value-prof.c] - Diff between revs 816 and 826

Only display areas with differences | Details | Blame | View Log

Rev 816 Rev 826
/* Transformations based on profile information for values.
/* Transformations based on profile information for values.
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009  Free Software
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009  Free Software
   Foundation, Inc.
   Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "expr.h"
#include "expr.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "value-prof.h"
#include "value-prof.h"
#include "output.h"
#include "output.h"
#include "flags.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-config.h"
#include "recog.h"
#include "recog.h"
#include "optabs.h"
#include "optabs.h"
#include "regs.h"
#include "regs.h"
#include "ggc.h"
#include "ggc.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-flow-inline.h"
#include "tree-flow-inline.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "coverage.h"
#include "coverage.h"
#include "tree.h"
#include "tree.h"
#include "gcov-io.h"
#include "gcov-io.h"
#include "cgraph.h"
#include "cgraph.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "toplev.h"
#include "toplev.h"
#include "pointer-set.h"
#include "pointer-set.h"
 
 
static struct value_prof_hooks *value_prof_hooks;
static struct value_prof_hooks *value_prof_hooks;
 
 
/* In this file value profile based optimizations are placed.  Currently the
/* In this file value profile based optimizations are placed.  Currently the
   following optimizations are implemented (for more detailed descriptions
   following optimizations are implemented (for more detailed descriptions
   see comments at value_profile_transformations):
   see comments at value_profile_transformations):
 
 
   1) Division/modulo specialization.  Provided that we can determine that the
   1) Division/modulo specialization.  Provided that we can determine that the
      operands of the division have some special properties, we may use it to
      operands of the division have some special properties, we may use it to
      produce more effective code.
      produce more effective code.
   2) Speculative prefetching.  If we are able to determine that the difference
   2) Speculative prefetching.  If we are able to determine that the difference
      between addresses accessed by a memory reference is usually constant, we
      between addresses accessed by a memory reference is usually constant, we
      may add the prefetch instructions.
      may add the prefetch instructions.
      FIXME: This transformation was removed together with RTL based value
      FIXME: This transformation was removed together with RTL based value
      profiling.
      profiling.
 
 
   3) Indirect/virtual call specialization. If we can determine most
   3) Indirect/virtual call specialization. If we can determine most
      common function callee in indirect/virtual call. We can use this
      common function callee in indirect/virtual call. We can use this
      information to improve code effectiveness (especially info for
      information to improve code effectiveness (especially info for
      inliner).
      inliner).
 
 
   Every such optimization should add its requirements for profiled values to
   Every such optimization should add its requirements for profiled values to
   insn_values_to_profile function.  This function is called from branch_prob
   insn_values_to_profile function.  This function is called from branch_prob
   in profile.c and the requested values are instrumented by it in the first
   in profile.c and the requested values are instrumented by it in the first
   compilation with -fprofile-arcs.  The optimization may then read the
   compilation with -fprofile-arcs.  The optimization may then read the
   gathered data in the second compilation with -fbranch-probabilities.
   gathered data in the second compilation with -fbranch-probabilities.
 
 
   The measured data is pointed to from the histograms
   The measured data is pointed to from the histograms
   field of the statement annotation of the instrumented insns.  It is
   field of the statement annotation of the instrumented insns.  It is
   kept as a linked list of struct histogram_value_t's, which contain the
   kept as a linked list of struct histogram_value_t's, which contain the
   same information as above.  */
   same information as above.  */
 
 
 
 
static tree gimple_divmod_fixed_value (gimple, tree, int, gcov_type, gcov_type);
static tree gimple_divmod_fixed_value (gimple, tree, int, gcov_type, gcov_type);
static tree gimple_mod_pow2 (gimple, int, gcov_type, gcov_type);
static tree gimple_mod_pow2 (gimple, int, gcov_type, gcov_type);
static tree gimple_mod_subtract (gimple, int, int, int, gcov_type, gcov_type,
static tree gimple_mod_subtract (gimple, int, int, int, gcov_type, gcov_type,
                                 gcov_type);
                                 gcov_type);
static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
static bool gimple_stringops_transform (gimple_stmt_iterator *);
static bool gimple_stringops_transform (gimple_stmt_iterator *);
static bool gimple_ic_transform (gimple);
static bool gimple_ic_transform (gimple);
 
 
/* Allocate histogram value.  */
/* Allocate histogram value.  */
 
 
static histogram_value
static histogram_value
gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
                              enum hist_type type, gimple stmt, tree value)
                              enum hist_type type, gimple stmt, tree value)
{
{
   histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist));
   histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist));
   hist->hvalue.value = value;
   hist->hvalue.value = value;
   hist->hvalue.stmt = stmt;
   hist->hvalue.stmt = stmt;
   hist->type = type;
   hist->type = type;
   return hist;
   return hist;
}
}
 
 
/* Hash value for histogram.  */
/* Hash value for histogram.  */
 
 
static hashval_t
static hashval_t
histogram_hash (const void *x)
histogram_hash (const void *x)
{
{
  return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt);
  return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt);
}
}
 
 
/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */
/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */
 
 
static int
static int
histogram_eq (const void *x, const void *y)
histogram_eq (const void *x, const void *y)
{
{
  return ((const_histogram_value) x)->hvalue.stmt == (const_gimple) y;
  return ((const_histogram_value) x)->hvalue.stmt == (const_gimple) y;
}
}
 
 
/* Set histogram for STMT.  */
/* Set histogram for STMT.  */
 
 
static void
static void
set_histogram_value (struct function *fun, gimple stmt, histogram_value hist)
set_histogram_value (struct function *fun, gimple stmt, histogram_value hist)
{
{
  void **loc;
  void **loc;
  if (!hist && !VALUE_HISTOGRAMS (fun))
  if (!hist && !VALUE_HISTOGRAMS (fun))
    return;
    return;
  if (!VALUE_HISTOGRAMS (fun))
  if (!VALUE_HISTOGRAMS (fun))
    VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash,
    VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash,
                                           histogram_eq, NULL);
                                           histogram_eq, NULL);
  loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt,
  loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt,
                                  htab_hash_pointer (stmt),
                                  htab_hash_pointer (stmt),
                                  hist ? INSERT : NO_INSERT);
                                  hist ? INSERT : NO_INSERT);
  if (!hist)
  if (!hist)
    {
    {
      if (loc)
      if (loc)
        htab_clear_slot (VALUE_HISTOGRAMS (fun), loc);
        htab_clear_slot (VALUE_HISTOGRAMS (fun), loc);
      return;
      return;
    }
    }
  *loc = hist;
  *loc = hist;
}
}
 
 
/* Get histogram list for STMT.  */
/* Get histogram list for STMT.  */
 
 
histogram_value
histogram_value
gimple_histogram_value (struct function *fun, gimple stmt)
gimple_histogram_value (struct function *fun, gimple stmt)
{
{
  if (!VALUE_HISTOGRAMS (fun))
  if (!VALUE_HISTOGRAMS (fun))
    return NULL;
    return NULL;
  return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt,
  return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt,
                                                htab_hash_pointer (stmt));
                                                htab_hash_pointer (stmt));
}
}
 
 
/* Add histogram for STMT.  */
/* Add histogram for STMT.  */
 
 
void
void
gimple_add_histogram_value (struct function *fun, gimple stmt,
gimple_add_histogram_value (struct function *fun, gimple stmt,
                            histogram_value hist)
                            histogram_value hist)
{
{
  hist->hvalue.next = gimple_histogram_value (fun, stmt);
  hist->hvalue.next = gimple_histogram_value (fun, stmt);
  set_histogram_value (fun, stmt, hist);
  set_histogram_value (fun, stmt, hist);
}
}
 
 
 
 
/* Remove histogram HIST from STMT's histogram list.  */
/* Remove histogram HIST from STMT's histogram list.  */
 
 
void
void
gimple_remove_histogram_value (struct function *fun, gimple stmt,
gimple_remove_histogram_value (struct function *fun, gimple stmt,
                               histogram_value hist)
                               histogram_value hist)
{
{
  histogram_value hist2 = gimple_histogram_value (fun, stmt);
  histogram_value hist2 = gimple_histogram_value (fun, stmt);
  if (hist == hist2)
  if (hist == hist2)
    {
    {
      set_histogram_value (fun, stmt, hist->hvalue.next);
      set_histogram_value (fun, stmt, hist->hvalue.next);
    }
    }
  else
  else
    {
    {
      while (hist2->hvalue.next != hist)
      while (hist2->hvalue.next != hist)
        hist2 = hist2->hvalue.next;
        hist2 = hist2->hvalue.next;
      hist2->hvalue.next = hist->hvalue.next;
      hist2->hvalue.next = hist->hvalue.next;
    }
    }
  free (hist->hvalue.counters);
  free (hist->hvalue.counters);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  memset (hist, 0xab, sizeof (*hist));
  memset (hist, 0xab, sizeof (*hist));
#endif
#endif
  free (hist);
  free (hist);
}
}
 
 
 
 
/* Lookup histogram of type TYPE in the STMT.  */
/* Lookup histogram of type TYPE in the STMT.  */
 
 
histogram_value
histogram_value
gimple_histogram_value_of_type (struct function *fun, gimple stmt,
gimple_histogram_value_of_type (struct function *fun, gimple stmt,
                                enum hist_type type)
                                enum hist_type type)
{
{
  histogram_value hist;
  histogram_value hist;
  for (hist = gimple_histogram_value (fun, stmt); hist;
  for (hist = gimple_histogram_value (fun, stmt); hist;
       hist = hist->hvalue.next)
       hist = hist->hvalue.next)
    if (hist->type == type)
    if (hist->type == type)
      return hist;
      return hist;
  return NULL;
  return NULL;
}
}
 
 
/* Dump information about HIST to DUMP_FILE.  */
/* Dump information about HIST to DUMP_FILE.  */
 
 
static void
static void
dump_histogram_value (FILE *dump_file, histogram_value hist)
dump_histogram_value (FILE *dump_file, histogram_value hist)
{
{
  switch (hist->type)
  switch (hist->type)
    {
    {
    case HIST_TYPE_INTERVAL:
    case HIST_TYPE_INTERVAL:
      fprintf (dump_file, "Interval counter range %d -- %d",
      fprintf (dump_file, "Interval counter range %d -- %d",
               hist->hdata.intvl.int_start,
               hist->hdata.intvl.int_start,
               (hist->hdata.intvl.int_start
               (hist->hdata.intvl.int_start
                + hist->hdata.intvl.steps - 1));
                + hist->hdata.intvl.steps - 1));
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           unsigned int i;
           unsigned int i;
           fprintf(dump_file, " [");
           fprintf(dump_file, " [");
           for (i = 0; i < hist->hdata.intvl.steps; i++)
           for (i = 0; i < hist->hdata.intvl.steps; i++)
             fprintf (dump_file, " %d:"HOST_WIDEST_INT_PRINT_DEC,
             fprintf (dump_file, " %d:"HOST_WIDEST_INT_PRINT_DEC,
                      hist->hdata.intvl.int_start + i,
                      hist->hdata.intvl.int_start + i,
                      (HOST_WIDEST_INT) hist->hvalue.counters[i]);
                      (HOST_WIDEST_INT) hist->hvalue.counters[i]);
           fprintf (dump_file, " ] outside range:"HOST_WIDEST_INT_PRINT_DEC,
           fprintf (dump_file, " ] outside range:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[i]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[i]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
 
 
    case HIST_TYPE_POW2:
    case HIST_TYPE_POW2:
      fprintf (dump_file, "Pow2 counter ");
      fprintf (dump_file, "Pow2 counter ");
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           fprintf (dump_file, "pow2:"HOST_WIDEST_INT_PRINT_DEC
           fprintf (dump_file, "pow2:"HOST_WIDEST_INT_PRINT_DEC
                    " nonpow2:"HOST_WIDEST_INT_PRINT_DEC,
                    " nonpow2:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[1]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
 
 
    case HIST_TYPE_SINGLE_VALUE:
    case HIST_TYPE_SINGLE_VALUE:
      fprintf (dump_file, "Single value ");
      fprintf (dump_file, "Single value ");
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
           fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
                    " match:"HOST_WIDEST_INT_PRINT_DEC
                    " match:"HOST_WIDEST_INT_PRINT_DEC
                    " wrong:"HOST_WIDEST_INT_PRINT_DEC,
                    " wrong:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1],
                    (HOST_WIDEST_INT) hist->hvalue.counters[2]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[2]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
 
 
    case HIST_TYPE_AVERAGE:
    case HIST_TYPE_AVERAGE:
      fprintf (dump_file, "Average value ");
      fprintf (dump_file, "Average value ");
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           fprintf (dump_file, "sum:"HOST_WIDEST_INT_PRINT_DEC
           fprintf (dump_file, "sum:"HOST_WIDEST_INT_PRINT_DEC
                    " times:"HOST_WIDEST_INT_PRINT_DEC,
                    " times:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[1]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
 
 
    case HIST_TYPE_IOR:
    case HIST_TYPE_IOR:
      fprintf (dump_file, "IOR value ");
      fprintf (dump_file, "IOR value ");
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           fprintf (dump_file, "ior:"HOST_WIDEST_INT_PRINT_DEC,
           fprintf (dump_file, "ior:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[0]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[0]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
 
 
    case HIST_TYPE_CONST_DELTA:
    case HIST_TYPE_CONST_DELTA:
      fprintf (dump_file, "Constant delta ");
      fprintf (dump_file, "Constant delta ");
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
           fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
                    " match:"HOST_WIDEST_INT_PRINT_DEC
                    " match:"HOST_WIDEST_INT_PRINT_DEC
                    " wrong:"HOST_WIDEST_INT_PRINT_DEC,
                    " wrong:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1],
                    (HOST_WIDEST_INT) hist->hvalue.counters[2]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[2]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
    case HIST_TYPE_INDIR_CALL:
    case HIST_TYPE_INDIR_CALL:
      fprintf (dump_file, "Indirect call ");
      fprintf (dump_file, "Indirect call ");
      if (hist->hvalue.counters)
      if (hist->hvalue.counters)
        {
        {
           fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
           fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC
                    " match:"HOST_WIDEST_INT_PRINT_DEC
                    " match:"HOST_WIDEST_INT_PRINT_DEC
                    " all:"HOST_WIDEST_INT_PRINT_DEC,
                    " all:"HOST_WIDEST_INT_PRINT_DEC,
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[0],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1],
                    (HOST_WIDEST_INT) hist->hvalue.counters[1],
                    (HOST_WIDEST_INT) hist->hvalue.counters[2]);
                    (HOST_WIDEST_INT) hist->hvalue.counters[2]);
        }
        }
      fprintf (dump_file, ".\n");
      fprintf (dump_file, ".\n");
      break;
      break;
   }
   }
}
}
 
 
/* Dump all histograms attached to STMT to DUMP_FILE.  */
/* Dump all histograms attached to STMT to DUMP_FILE.  */
 
 
void
void
dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple stmt)
dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple stmt)
{
{
  histogram_value hist;
  histogram_value hist;
  for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next)
  for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next)
   dump_histogram_value (dump_file, hist);
   dump_histogram_value (dump_file, hist);
}
}
 
 
/* Remove all histograms associated with STMT.  */
/* Remove all histograms associated with STMT.  */
 
 
void
void
gimple_remove_stmt_histograms (struct function *fun, gimple stmt)
gimple_remove_stmt_histograms (struct function *fun, gimple stmt)
{
{
  histogram_value val;
  histogram_value val;
  while ((val = gimple_histogram_value (fun, stmt)) != NULL)
  while ((val = gimple_histogram_value (fun, stmt)) != NULL)
    gimple_remove_histogram_value (fun, stmt, val);
    gimple_remove_histogram_value (fun, stmt, val);
}
}
 
 
/* Duplicate all histograms associates with OSTMT to STMT.  */
/* Duplicate all histograms associates with OSTMT to STMT.  */
 
 
void
void
gimple_duplicate_stmt_histograms (struct function *fun, gimple stmt,
gimple_duplicate_stmt_histograms (struct function *fun, gimple stmt,
                                  struct function *ofun, gimple ostmt)
                                  struct function *ofun, gimple ostmt)
{
{
  histogram_value val;
  histogram_value val;
  for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next)
  for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next)
    {
    {
      histogram_value new_val = gimple_alloc_histogram_value (fun, val->type, NULL, NULL);
      histogram_value new_val = gimple_alloc_histogram_value (fun, val->type, NULL, NULL);
      memcpy (new_val, val, sizeof (*val));
      memcpy (new_val, val, sizeof (*val));
      new_val->hvalue.stmt = stmt;
      new_val->hvalue.stmt = stmt;
      new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
      new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
      memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
      memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
      gimple_add_histogram_value (fun, stmt, new_val);
      gimple_add_histogram_value (fun, stmt, new_val);
    }
    }
}
}
 
 
 
 
/* Move all histograms associated with OSTMT to STMT.  */
/* Move all histograms associated with OSTMT to STMT.  */
 
 
void
void
gimple_move_stmt_histograms (struct function *fun, gimple stmt, gimple ostmt)
gimple_move_stmt_histograms (struct function *fun, gimple stmt, gimple ostmt)
{
{
  histogram_value val = gimple_histogram_value (fun, ostmt);
  histogram_value val = gimple_histogram_value (fun, ostmt);
  if (val)
  if (val)
    {
    {
      /* The following three statements can't be reordered,
      /* The following three statements can't be reordered,
         because histogram hashtab relies on stmt field value
         because histogram hashtab relies on stmt field value
         for finding the exact slot. */
         for finding the exact slot. */
      set_histogram_value (fun, ostmt, NULL);
      set_histogram_value (fun, ostmt, NULL);
      for (; val != NULL; val = val->hvalue.next)
      for (; val != NULL; val = val->hvalue.next)
        val->hvalue.stmt = stmt;
        val->hvalue.stmt = stmt;
      set_histogram_value (fun, stmt, val);
      set_histogram_value (fun, stmt, val);
    }
    }
}
}
 
 
static bool error_found = false;
static bool error_found = false;
 
 
/* Helper function for verify_histograms.  For each histogram reachable via htab
/* Helper function for verify_histograms.  For each histogram reachable via htab
   walk verify that it was reached via statement walk.  */
   walk verify that it was reached via statement walk.  */
 
 
static int
static int
visit_hist (void **slot, void *data)
visit_hist (void **slot, void *data)
{
{
  struct pointer_set_t *visited = (struct pointer_set_t *) data;
  struct pointer_set_t *visited = (struct pointer_set_t *) data;
  histogram_value hist = *(histogram_value *) slot;
  histogram_value hist = *(histogram_value *) slot;
  if (!pointer_set_contains (visited, hist))
  if (!pointer_set_contains (visited, hist))
    {
    {
      error ("Dead histogram");
      error ("Dead histogram");
      dump_histogram_value (stderr, hist);
      dump_histogram_value (stderr, hist);
      debug_gimple_stmt (hist->hvalue.stmt);
      debug_gimple_stmt (hist->hvalue.stmt);
      error_found = true;
      error_found = true;
    }
    }
  return 1;
  return 1;
}
}
 
 
 
 
/* Verify sanity of the histograms.  */
/* Verify sanity of the histograms.  */
 
 
void
void
verify_histograms (void)
verify_histograms (void)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  histogram_value hist;
  histogram_value hist;
  struct pointer_set_t *visited_hists;
  struct pointer_set_t *visited_hists;
 
 
  error_found = false;
  error_found = false;
  visited_hists = pointer_set_create ();
  visited_hists = pointer_set_create ();
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      {
      {
        gimple stmt = gsi_stmt (gsi);
        gimple stmt = gsi_stmt (gsi);
 
 
        for (hist = gimple_histogram_value (cfun, stmt); hist;
        for (hist = gimple_histogram_value (cfun, stmt); hist;
             hist = hist->hvalue.next)
             hist = hist->hvalue.next)
          {
          {
            if (hist->hvalue.stmt != stmt)
            if (hist->hvalue.stmt != stmt)
              {
              {
                error ("Histogram value statement does not correspond to "
                error ("Histogram value statement does not correspond to "
                       "the statement it is associated with");
                       "the statement it is associated with");
                debug_gimple_stmt (stmt);
                debug_gimple_stmt (stmt);
                dump_histogram_value (stderr, hist);
                dump_histogram_value (stderr, hist);
                error_found = true;
                error_found = true;
              }
              }
            pointer_set_insert (visited_hists, hist);
            pointer_set_insert (visited_hists, hist);
          }
          }
      }
      }
  if (VALUE_HISTOGRAMS (cfun))
  if (VALUE_HISTOGRAMS (cfun))
    htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, visited_hists);
    htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, visited_hists);
  pointer_set_destroy (visited_hists);
  pointer_set_destroy (visited_hists);
  if (error_found)
  if (error_found)
    internal_error ("verify_histograms failed");
    internal_error ("verify_histograms failed");
}
}
 
 
/* Helper function for verify_histograms.  For each histogram reachable via htab
/* Helper function for verify_histograms.  For each histogram reachable via htab
   walk verify that it was reached via statement walk.  */
   walk verify that it was reached via statement walk.  */
 
 
static int
static int
free_hist (void **slot, void *data ATTRIBUTE_UNUSED)
free_hist (void **slot, void *data ATTRIBUTE_UNUSED)
{
{
  histogram_value hist = *(histogram_value *) slot;
  histogram_value hist = *(histogram_value *) slot;
  free (hist->hvalue.counters);
  free (hist->hvalue.counters);
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  memset (hist, 0xab, sizeof (*hist));
  memset (hist, 0xab, sizeof (*hist));
#endif
#endif
  free (hist);
  free (hist);
  return 1;
  return 1;
}
}
 
 
void
void
free_histograms (void)
free_histograms (void)
{
{
  if (VALUE_HISTOGRAMS (cfun))
  if (VALUE_HISTOGRAMS (cfun))
    {
    {
      htab_traverse (VALUE_HISTOGRAMS (cfun), free_hist, NULL);
      htab_traverse (VALUE_HISTOGRAMS (cfun), free_hist, NULL);
      htab_delete (VALUE_HISTOGRAMS (cfun));
      htab_delete (VALUE_HISTOGRAMS (cfun));
      VALUE_HISTOGRAMS (cfun) = NULL;
      VALUE_HISTOGRAMS (cfun) = NULL;
    }
    }
}
}
 
 
 
 
/* The overall number of invocations of the counter should match
/* The overall number of invocations of the counter should match
   execution count of basic block.  Report it as error rather than
   execution count of basic block.  Report it as error rather than
   internal error as it might mean that user has misused the profile
   internal error as it might mean that user has misused the profile
   somehow.  */
   somehow.  */
 
 
static bool
static bool
check_counter (gimple stmt, const char * name,
check_counter (gimple stmt, const char * name,
               gcov_type *count, gcov_type *all, gcov_type bb_count)
               gcov_type *count, gcov_type *all, gcov_type bb_count)
{
{
  if (*all != bb_count || *count > *all)
  if (*all != bb_count || *count > *all)
    {
    {
      location_t locus;
      location_t locus;
      locus = (stmt != NULL)
      locus = (stmt != NULL)
              ? gimple_location (stmt)
              ? gimple_location (stmt)
              : DECL_SOURCE_LOCATION (current_function_decl);
              : DECL_SOURCE_LOCATION (current_function_decl);
      if (flag_profile_correction)
      if (flag_profile_correction)
        {
        {
          inform (locus, "Correcting inconsistent value profile: "
          inform (locus, "Correcting inconsistent value profile: "
                  "%s profiler overall count (%d) does not match BB count "
                  "%s profiler overall count (%d) does not match BB count "
                  "(%d)", name, (int)*all, (int)bb_count);
                  "(%d)", name, (int)*all, (int)bb_count);
          *all = bb_count;
          *all = bb_count;
          if (*count > *all)
          if (*count > *all)
            *count = *all;
            *count = *all;
          return false;
          return false;
        }
        }
      else
      else
        {
        {
          error_at (locus, "Corrupted value profile: %s "
          error_at (locus, "Corrupted value profile: %s "
                    "profiler overall count (%d) does not match BB count (%d)",
                    "profiler overall count (%d) does not match BB count (%d)",
                    name, (int)*all, (int)bb_count);
                    name, (int)*all, (int)bb_count);
          return true;
          return true;
        }
        }
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* GIMPLE based transformations. */
/* GIMPLE based transformations. */
 
 
static bool
static bool
gimple_value_profile_transformations (void)
gimple_value_profile_transformations (void)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  bool changed = false;
  bool changed = false;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          gimple stmt = gsi_stmt (gsi);
          gimple stmt = gsi_stmt (gsi);
          histogram_value th = gimple_histogram_value (cfun, stmt);
          histogram_value th = gimple_histogram_value (cfun, stmt);
          if (!th)
          if (!th)
            continue;
            continue;
 
 
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file, "Trying transformations on stmt ");
              fprintf (dump_file, "Trying transformations on stmt ");
              print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
              print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
              dump_histograms_for_stmt (cfun, dump_file, stmt);
              dump_histograms_for_stmt (cfun, dump_file, stmt);
            }
            }
 
 
          /* Transformations:  */
          /* Transformations:  */
          /* The order of things in this conditional controls which
          /* The order of things in this conditional controls which
             transformation is used when more than one is applicable.  */
             transformation is used when more than one is applicable.  */
          /* It is expected that any code added by the transformations
          /* It is expected that any code added by the transformations
             will be added before the current statement, and that the
             will be added before the current statement, and that the
             current statement remain valid (although possibly
             current statement remain valid (although possibly
             modified) upon return.  */
             modified) upon return.  */
          if (flag_value_profile_transformations
          if (flag_value_profile_transformations
              && (gimple_mod_subtract_transform (&gsi)
              && (gimple_mod_subtract_transform (&gsi)
                  || gimple_divmod_fixed_value_transform (&gsi)
                  || gimple_divmod_fixed_value_transform (&gsi)
                  || gimple_mod_pow2_value_transform (&gsi)
                  || gimple_mod_pow2_value_transform (&gsi)
                  || gimple_stringops_transform (&gsi)
                  || gimple_stringops_transform (&gsi)
                  || gimple_ic_transform (stmt)))
                  || gimple_ic_transform (stmt)))
            {
            {
              stmt = gsi_stmt (gsi);
              stmt = gsi_stmt (gsi);
              changed = true;
              changed = true;
              /* Original statement may no longer be in the same block. */
              /* Original statement may no longer be in the same block. */
              if (bb != gimple_bb (stmt))
              if (bb != gimple_bb (stmt))
                {
                {
                  bb = gimple_bb (stmt);
                  bb = gimple_bb (stmt);
                  gsi = gsi_for_stmt (stmt);
                  gsi = gsi_for_stmt (stmt);
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (changed)
  if (changed)
    {
    {
      counts_to_freqs ();
      counts_to_freqs ();
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
 
 
/* Generate code for transformation 1 (with parent gimple assignment
/* Generate code for transformation 1 (with parent gimple assignment
   STMT and probability of taking the optimal path PROB, which is
   STMT and probability of taking the optimal path PROB, which is
   equivalent to COUNT/ALL within roundoff error).  This generates the
   equivalent to COUNT/ALL within roundoff error).  This generates the
   result into a temp and returns the temp; it does not replace or
   result into a temp and returns the temp; it does not replace or
   alter the original STMT.  */
   alter the original STMT.  */
 
 
static tree
static tree
gimple_divmod_fixed_value (gimple stmt, tree value, int prob, gcov_type count,
gimple_divmod_fixed_value (gimple stmt, tree value, int prob, gcov_type count,
                           gcov_type all)
                           gcov_type all)
{
{
  gimple stmt1, stmt2, stmt3;
  gimple stmt1, stmt2, stmt3;
  tree tmp1, tmp2, tmpv;
  tree tmp1, tmp2, tmpv;
  gimple bb1end, bb2end, bb3end;
  gimple bb1end, bb2end, bb3end;
  basic_block bb, bb2, bb3, bb4;
  basic_block bb, bb2, bb3, bb4;
  tree optype, op1, op2;
  tree optype, op1, op2;
  edge e12, e13, e23, e24, e34;
  edge e12, e13, e23, e24, e34;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  gcc_assert (is_gimple_assign (stmt)
  gcc_assert (is_gimple_assign (stmt)
              && (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR
              && (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR
                  || gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR));
                  || gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR));
 
 
  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  op1 = gimple_assign_rhs1 (stmt);
  op1 = gimple_assign_rhs1 (stmt);
  op2 = gimple_assign_rhs2 (stmt);
  op2 = gimple_assign_rhs2 (stmt);
 
 
  bb = gimple_bb (stmt);
  bb = gimple_bb (stmt);
  gsi = gsi_for_stmt (stmt);
  gsi = gsi_for_stmt (stmt);
 
 
  tmpv = create_tmp_var (optype, "PROF");
  tmpv = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  stmt1 = gimple_build_assign (tmpv, fold_convert (optype, value));
  stmt1 = gimple_build_assign (tmpv, fold_convert (optype, value));
  stmt2 = gimple_build_assign (tmp1, op2);
  stmt2 = gimple_build_assign (tmp1, op2);
  stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
  stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  bb1end = stmt3;
  bb1end = stmt3;
 
 
  tmp2 = create_tmp_var (optype, "PROF");
  tmp2 = create_tmp_var (optype, "PROF");
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2,
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2,
                                        op1, tmpv);
                                        op1, tmpv);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb2end = stmt1;
  bb2end = stmt1;
 
 
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2,
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2,
                                        op1, op2);
                                        op1, op2);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb3end = stmt1;
  bb3end = stmt1;
 
 
  /* Fix CFG. */
  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  /* Edge e23 connects bb2 to bb3, etc. */
  e12 = split_block (bb, bb1end);
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2 = e12->dest;
  bb2->count = count;
  bb2->count = count;
  e23 = split_block (bb2, bb2end);
  e23 = split_block (bb2, bb2end);
  bb3 = e23->dest;
  bb3 = e23->dest;
  bb3->count = all - count;
  bb3->count = all - count;
  e34 = split_block (bb3, bb3end);
  e34 = split_block (bb3, bb3end);
  bb4 = e34->dest;
  bb4 = e34->dest;
  bb4->count = all;
  bb4->count = all;
 
 
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob;
  e12->probability = prob;
  e12->count = count;
  e12->count = count;
 
 
  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13->probability = REG_BR_PROB_BASE - prob;
  e13->probability = REG_BR_PROB_BASE - prob;
  e13->count = all - count;
  e13->count = all - count;
 
 
  remove_edge (e23);
  remove_edge (e23);
 
 
  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24->probability = REG_BR_PROB_BASE;
  e24->probability = REG_BR_PROB_BASE;
  e24->count = count;
  e24->count = count;
 
 
  e34->probability = REG_BR_PROB_BASE;
  e34->probability = REG_BR_PROB_BASE;
  e34->count = all - count;
  e34->count = all - count;
 
 
  return tmp2;
  return tmp2;
}
}
 
 
 
 
/* Do transform 1) on INSN if applicable.  */
/* Do transform 1) on INSN if applicable.  */
 
 
static bool
static bool
gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si)
gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si)
{
{
  histogram_value histogram;
  histogram_value histogram;
  enum tree_code code;
  enum tree_code code;
  gcov_type val, count, all;
  gcov_type val, count, all;
  tree result, value, tree_val;
  tree result, value, tree_val;
  gcov_type prob;
  gcov_type prob;
  gimple stmt;
  gimple stmt;
 
 
  stmt = gsi_stmt (*si);
  stmt = gsi_stmt (*si);
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;
    return false;
 
 
  if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
  if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
    return false;
    return false;
 
 
  code = gimple_assign_rhs_code (stmt);
  code = gimple_assign_rhs_code (stmt);
 
 
  if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
  if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
    return false;
    return false;
 
 
  histogram = gimple_histogram_value_of_type (cfun, stmt,
  histogram = gimple_histogram_value_of_type (cfun, stmt,
                                              HIST_TYPE_SINGLE_VALUE);
                                              HIST_TYPE_SINGLE_VALUE);
  if (!histogram)
  if (!histogram)
    return false;
    return false;
 
 
  value = histogram->hvalue.value;
  value = histogram->hvalue.value;
  val = histogram->hvalue.counters[0];
  val = histogram->hvalue.counters[0];
  count = histogram->hvalue.counters[1];
  count = histogram->hvalue.counters[1];
  all = histogram->hvalue.counters[2];
  all = histogram->hvalue.counters[2];
  gimple_remove_histogram_value (cfun, stmt, histogram);
  gimple_remove_histogram_value (cfun, stmt, histogram);
 
 
  /* We require that count is at least half of all; this means
  /* We require that count is at least half of all; this means
     that for the transformation to fire the value must be constant
     that for the transformation to fire the value must be constant
     at least 50% of time (and 75% gives the guarantee of usage).  */
     at least 50% of time (and 75% gives the guarantee of usage).  */
  if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
  if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
      || 2 * count < all
      || 2 * count < all
      || optimize_bb_for_size_p (gimple_bb (stmt)))
      || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;
    return false;
 
 
  if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
  if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
    return false;
    return false;
 
 
  /* Compute probability of taking the optimal path.  */
  /* Compute probability of taking the optimal path.  */
  if (all > 0)
  if (all > 0)
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
  else
  else
    prob = 0;
    prob = 0;
 
 
  tree_val = build_int_cst_wide (get_gcov_type (),
  tree_val = build_int_cst_wide (get_gcov_type (),
                                 (unsigned HOST_WIDE_INT) val,
                                 (unsigned HOST_WIDE_INT) val,
                                 val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
                                 val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
  result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all);
  result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Div/mod by constant ");
      fprintf (dump_file, "Div/mod by constant ");
      print_generic_expr (dump_file, value, TDF_SLIM);
      print_generic_expr (dump_file, value, TDF_SLIM);
      fprintf (dump_file, "=");
      fprintf (dump_file, "=");
      print_generic_expr (dump_file, tree_val, TDF_SLIM);
      print_generic_expr (dump_file, tree_val, TDF_SLIM);
      fprintf (dump_file, " transformation on insn ");
      fprintf (dump_file, " transformation on insn ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }
    }
 
 
  gimple_assign_set_rhs_from_tree (si, result);
  gimple_assign_set_rhs_from_tree (si, result);
 
 
  return true;
  return true;
}
}
 
 
/* Generate code for transformation 2 (with parent gimple assign STMT and
/* Generate code for transformation 2 (with parent gimple assign STMT and
   probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
   probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
   within roundoff error).  This generates the result into a temp and returns
   within roundoff error).  This generates the result into a temp and returns
   the temp; it does not replace or alter the original STMT.  */
   the temp; it does not replace or alter the original STMT.  */
static tree
static tree
gimple_mod_pow2 (gimple stmt, int prob, gcov_type count, gcov_type all)
gimple_mod_pow2 (gimple stmt, int prob, gcov_type count, gcov_type all)
{
{
  gimple stmt1, stmt2, stmt3, stmt4;
  gimple stmt1, stmt2, stmt3, stmt4;
  tree tmp2, tmp3;
  tree tmp2, tmp3;
  gimple bb1end, bb2end, bb3end;
  gimple bb1end, bb2end, bb3end;
  basic_block bb, bb2, bb3, bb4;
  basic_block bb, bb2, bb3, bb4;
  tree optype, op1, op2;
  tree optype, op1, op2;
  edge e12, e13, e23, e24, e34;
  edge e12, e13, e23, e24, e34;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  tree result;
  tree result;
 
 
  gcc_assert (is_gimple_assign (stmt)
  gcc_assert (is_gimple_assign (stmt)
              && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
              && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
 
 
  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  op1 = gimple_assign_rhs1 (stmt);
  op1 = gimple_assign_rhs1 (stmt);
  op2 = gimple_assign_rhs2 (stmt);
  op2 = gimple_assign_rhs2 (stmt);
 
 
  bb = gimple_bb (stmt);
  bb = gimple_bb (stmt);
  gsi = gsi_for_stmt (stmt);
  gsi = gsi_for_stmt (stmt);
 
 
  result = create_tmp_var (optype, "PROF");
  result = create_tmp_var (optype, "PROF");
  tmp2 = create_tmp_var (optype, "PROF");
  tmp2 = create_tmp_var (optype, "PROF");
  tmp3 = create_tmp_var (optype, "PROF");
  tmp3 = create_tmp_var (optype, "PROF");
  stmt2 = gimple_build_assign_with_ops (PLUS_EXPR, tmp2, op2,
  stmt2 = gimple_build_assign_with_ops (PLUS_EXPR, tmp2, op2,
                                        build_int_cst (optype, -1));
                                        build_int_cst (optype, -1));
  stmt3 = gimple_build_assign_with_ops (BIT_AND_EXPR, tmp3, tmp2, op2);
  stmt3 = gimple_build_assign_with_ops (BIT_AND_EXPR, tmp3, tmp2, op2);
  stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0),
  stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0),
                             NULL_TREE, NULL_TREE);
                             NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT);
  bb1end = stmt4;
  bb1end = stmt4;
 
 
  /* tmp2 == op2-1 inherited from previous block.  */
  /* tmp2 == op2-1 inherited from previous block.  */
  stmt1 = gimple_build_assign_with_ops (BIT_AND_EXPR, result, op1, tmp2);
  stmt1 = gimple_build_assign_with_ops (BIT_AND_EXPR, result, op1, tmp2);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb2end = stmt1;
  bb2end = stmt1;
 
 
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result,
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result,
                                        op1, op2);
                                        op1, op2);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb3end = stmt1;
  bb3end = stmt1;
 
 
  /* Fix CFG. */
  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  /* Edge e23 connects bb2 to bb3, etc. */
  e12 = split_block (bb, bb1end);
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2 = e12->dest;
  bb2->count = count;
  bb2->count = count;
  e23 = split_block (bb2, bb2end);
  e23 = split_block (bb2, bb2end);
  bb3 = e23->dest;
  bb3 = e23->dest;
  bb3->count = all - count;
  bb3->count = all - count;
  e34 = split_block (bb3, bb3end);
  e34 = split_block (bb3, bb3end);
  bb4 = e34->dest;
  bb4 = e34->dest;
  bb4->count = all;
  bb4->count = all;
 
 
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob;
  e12->probability = prob;
  e12->count = count;
  e12->count = count;
 
 
  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13->probability = REG_BR_PROB_BASE - prob;
  e13->probability = REG_BR_PROB_BASE - prob;
  e13->count = all - count;
  e13->count = all - count;
 
 
  remove_edge (e23);
  remove_edge (e23);
 
 
  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24->probability = REG_BR_PROB_BASE;
  e24->probability = REG_BR_PROB_BASE;
  e24->count = count;
  e24->count = count;
 
 
  e34->probability = REG_BR_PROB_BASE;
  e34->probability = REG_BR_PROB_BASE;
  e34->count = all - count;
  e34->count = all - count;
 
 
  return result;
  return result;
}
}
 
 
/* Do transform 2) on INSN if applicable.  */
/* Do transform 2) on INSN if applicable.  */
static bool
static bool
gimple_mod_pow2_value_transform (gimple_stmt_iterator *si)
gimple_mod_pow2_value_transform (gimple_stmt_iterator *si)
{
{
  histogram_value histogram;
  histogram_value histogram;
  enum tree_code code;
  enum tree_code code;
  gcov_type count, wrong_values, all;
  gcov_type count, wrong_values, all;
  tree lhs_type, result, value;
  tree lhs_type, result, value;
  gcov_type prob;
  gcov_type prob;
  gimple stmt;
  gimple stmt;
 
 
  stmt = gsi_stmt (*si);
  stmt = gsi_stmt (*si);
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;
    return false;
 
 
  lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
  lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
  if (!INTEGRAL_TYPE_P (lhs_type))
  if (!INTEGRAL_TYPE_P (lhs_type))
    return false;
    return false;
 
 
  code = gimple_assign_rhs_code (stmt);
  code = gimple_assign_rhs_code (stmt);
 
 
  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
    return false;
    return false;
 
 
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2);
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2);
  if (!histogram)
  if (!histogram)
    return false;
    return false;
 
 
  value = histogram->hvalue.value;
  value = histogram->hvalue.value;
  wrong_values = histogram->hvalue.counters[0];
  wrong_values = histogram->hvalue.counters[0];
  count = histogram->hvalue.counters[1];
  count = histogram->hvalue.counters[1];
 
 
  gimple_remove_histogram_value (cfun, stmt, histogram);
  gimple_remove_histogram_value (cfun, stmt, histogram);
 
 
  /* We require that we hit a power of 2 at least half of all evaluations.  */
  /* We require that we hit a power of 2 at least half of all evaluations.  */
  if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
  if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
      || count < wrong_values
      || count < wrong_values
      || optimize_bb_for_size_p (gimple_bb (stmt)))
      || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;
    return false;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Mod power of 2 transformation on insn ");
      fprintf (dump_file, "Mod power of 2 transformation on insn ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }
    }
 
 
  /* Compute probability of taking the optimal path.  */
  /* Compute probability of taking the optimal path.  */
  all = count + wrong_values;
  all = count + wrong_values;
 
 
  if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count))
  if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count))
    return false;
    return false;
 
 
  if (all > 0)
  if (all > 0)
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
  else
  else
    prob = 0;
    prob = 0;
 
 
  result = gimple_mod_pow2 (stmt, prob, count, all);
  result = gimple_mod_pow2 (stmt, prob, count, all);
 
 
  gimple_assign_set_rhs_from_tree (si, result);
  gimple_assign_set_rhs_from_tree (si, result);
 
 
  return true;
  return true;
}
}
 
 
/* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
/* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
   NCOUNTS the number of cases to support.  Currently only NCOUNTS==0 or 1 is
   NCOUNTS the number of cases to support.  Currently only NCOUNTS==0 or 1 is
   supported and this is built into this interface.  The probabilities of taking
   supported and this is built into this interface.  The probabilities of taking
   the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
   the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
   COUNT2/ALL respectively within roundoff error).  This generates the
   COUNT2/ALL respectively within roundoff error).  This generates the
   result into a temp and returns the temp; it does not replace or alter
   result into a temp and returns the temp; it does not replace or alter
   the original STMT.  */
   the original STMT.  */
/* FIXME: Generalize the interface to handle NCOUNTS > 1.  */
/* FIXME: Generalize the interface to handle NCOUNTS > 1.  */
 
 
static tree
static tree
gimple_mod_subtract (gimple stmt, int prob1, int prob2, int ncounts,
gimple_mod_subtract (gimple stmt, int prob1, int prob2, int ncounts,
                     gcov_type count1, gcov_type count2, gcov_type all)
                     gcov_type count1, gcov_type count2, gcov_type all)
{
{
  gimple stmt1, stmt2, stmt3;
  gimple stmt1, stmt2, stmt3;
  tree tmp1;
  tree tmp1;
  gimple bb1end, bb2end = NULL, bb3end;
  gimple bb1end, bb2end = NULL, bb3end;
  basic_block bb, bb2, bb3, bb4;
  basic_block bb, bb2, bb3, bb4;
  tree optype, op1, op2;
  tree optype, op1, op2;
  edge e12, e23 = 0, e24, e34, e14;
  edge e12, e23 = 0, e24, e34, e14;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  tree result;
  tree result;
 
 
  gcc_assert (is_gimple_assign (stmt)
  gcc_assert (is_gimple_assign (stmt)
              && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
              && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
 
 
  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  op1 = gimple_assign_rhs1 (stmt);
  op1 = gimple_assign_rhs1 (stmt);
  op2 = gimple_assign_rhs2 (stmt);
  op2 = gimple_assign_rhs2 (stmt);
 
 
  bb = gimple_bb (stmt);
  bb = gimple_bb (stmt);
  gsi = gsi_for_stmt (stmt);
  gsi = gsi_for_stmt (stmt);
 
 
  result = create_tmp_var (optype, "PROF");
  result = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  stmt1 = gimple_build_assign (result, op1);
  stmt1 = gimple_build_assign (result, op1);
  stmt2 = gimple_build_assign (tmp1, op2);
  stmt2 = gimple_build_assign (tmp1, op2);
  stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
  stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  bb1end = stmt3;
  bb1end = stmt3;
 
 
  if (ncounts)  /* Assumed to be 0 or 1 */
  if (ncounts)  /* Assumed to be 0 or 1 */
    {
    {
      stmt1 = gimple_build_assign_with_ops (MINUS_EXPR, result, result, tmp1);
      stmt1 = gimple_build_assign_with_ops (MINUS_EXPR, result, result, tmp1);
      stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
      stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
      gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
      gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
      gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
      gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
      bb2end = stmt2;
      bb2end = stmt2;
    }
    }
 
 
  /* Fallback case. */
  /* Fallback case. */
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result,
  stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result,
                                        result, tmp1);
                                        result, tmp1);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb3end = stmt1;
  bb3end = stmt1;
 
 
  /* Fix CFG. */
  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  /* Edge e23 connects bb2 to bb3, etc. */
  /* However block 3 is optional; if it is not there, references
  /* However block 3 is optional; if it is not there, references
     to 3 really refer to block 2. */
     to 3 really refer to block 2. */
  e12 = split_block (bb, bb1end);
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2 = e12->dest;
  bb2->count = all - count1;
  bb2->count = all - count1;
 
 
  if (ncounts)  /* Assumed to be 0 or 1.  */
  if (ncounts)  /* Assumed to be 0 or 1.  */
    {
    {
      e23 = split_block (bb2, bb2end);
      e23 = split_block (bb2, bb2end);
      bb3 = e23->dest;
      bb3 = e23->dest;
      bb3->count = all - count1 - count2;
      bb3->count = all - count1 - count2;
    }
    }
 
 
  e34 = split_block (ncounts ? bb3 : bb2, bb3end);
  e34 = split_block (ncounts ? bb3 : bb2, bb3end);
  bb4 = e34->dest;
  bb4 = e34->dest;
  bb4->count = all;
  bb4->count = all;
 
 
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = REG_BR_PROB_BASE - prob1;
  e12->probability = REG_BR_PROB_BASE - prob1;
  e12->count = all - count1;
  e12->count = all - count1;
 
 
  e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
  e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
  e14->probability = prob1;
  e14->probability = prob1;
  e14->count = count1;
  e14->count = count1;
 
 
  if (ncounts)  /* Assumed to be 0 or 1.  */
  if (ncounts)  /* Assumed to be 0 or 1.  */
    {
    {
      e23->flags &= ~EDGE_FALLTHRU;
      e23->flags &= ~EDGE_FALLTHRU;
      e23->flags |= EDGE_FALSE_VALUE;
      e23->flags |= EDGE_FALSE_VALUE;
      e23->count = all - count1 - count2;
      e23->count = all - count1 - count2;
      e23->probability = REG_BR_PROB_BASE - prob2;
      e23->probability = REG_BR_PROB_BASE - prob2;
 
 
      e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
      e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
      e24->probability = prob2;
      e24->probability = prob2;
      e24->count = count2;
      e24->count = count2;
    }
    }
 
 
  e34->probability = REG_BR_PROB_BASE;
  e34->probability = REG_BR_PROB_BASE;
  e34->count = all - count1 - count2;
  e34->count = all - count1 - count2;
 
 
  return result;
  return result;
}
}
 
 
 
 
/* Do transforms 3) and 4) on the statement pointed-to by SI if applicable.  */
/* Do transforms 3) and 4) on the statement pointed-to by SI if applicable.  */
 
 
static bool
static bool
gimple_mod_subtract_transform (gimple_stmt_iterator *si)
gimple_mod_subtract_transform (gimple_stmt_iterator *si)
{
{
  histogram_value histogram;
  histogram_value histogram;
  enum tree_code code;
  enum tree_code code;
  gcov_type count, wrong_values, all;
  gcov_type count, wrong_values, all;
  tree lhs_type, result;
  tree lhs_type, result;
  gcov_type prob1, prob2;
  gcov_type prob1, prob2;
  unsigned int i, steps;
  unsigned int i, steps;
  gcov_type count1, count2;
  gcov_type count1, count2;
  gimple stmt;
  gimple stmt;
 
 
  stmt = gsi_stmt (*si);
  stmt = gsi_stmt (*si);
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;
    return false;
 
 
  lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
  lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
  if (!INTEGRAL_TYPE_P (lhs_type))
  if (!INTEGRAL_TYPE_P (lhs_type))
    return false;
    return false;
 
 
  code = gimple_assign_rhs_code (stmt);
  code = gimple_assign_rhs_code (stmt);
 
 
  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
    return false;
    return false;
 
 
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL);
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL);
  if (!histogram)
  if (!histogram)
    return false;
    return false;
 
 
  all = 0;
  all = 0;
  wrong_values = 0;
  wrong_values = 0;
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
    all += histogram->hvalue.counters[i];
    all += histogram->hvalue.counters[i];
 
 
  wrong_values += histogram->hvalue.counters[i];
  wrong_values += histogram->hvalue.counters[i];
  wrong_values += histogram->hvalue.counters[i+1];
  wrong_values += histogram->hvalue.counters[i+1];
  steps = histogram->hdata.intvl.steps;
  steps = histogram->hdata.intvl.steps;
  all += wrong_values;
  all += wrong_values;
  count1 = histogram->hvalue.counters[0];
  count1 = histogram->hvalue.counters[0];
  count2 = histogram->hvalue.counters[1];
  count2 = histogram->hvalue.counters[1];
 
 
  /* Compute probability of taking the optimal path.  */
  /* Compute probability of taking the optimal path.  */
  if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count))
  if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count))
    {
    {
      gimple_remove_histogram_value (cfun, stmt, histogram);
      gimple_remove_histogram_value (cfun, stmt, histogram);
      return false;
      return false;
    }
    }
 
 
  if (flag_profile_correction && count1 + count2 > all)
  if (flag_profile_correction && count1 + count2 > all)
      all = count1 + count2;
      all = count1 + count2;
 
 
  gcc_assert (count1 + count2 <= all);
  gcc_assert (count1 + count2 <= all);
 
 
  /* We require that we use just subtractions in at least 50% of all
  /* We require that we use just subtractions in at least 50% of all
     evaluations.  */
     evaluations.  */
  count = 0;
  count = 0;
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
    {
    {
      count += histogram->hvalue.counters[i];
      count += histogram->hvalue.counters[i];
      if (count * 2 >= all)
      if (count * 2 >= all)
        break;
        break;
    }
    }
  if (i == steps
  if (i == steps
      || optimize_bb_for_size_p (gimple_bb (stmt)))
      || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;
    return false;
 
 
  gimple_remove_histogram_value (cfun, stmt, histogram);
  gimple_remove_histogram_value (cfun, stmt, histogram);
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Mod subtract transformation on insn ");
      fprintf (dump_file, "Mod subtract transformation on insn ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }
    }
 
 
  /* Compute probability of taking the optimal path(s).  */
  /* Compute probability of taking the optimal path(s).  */
  if (all > 0)
  if (all > 0)
    {
    {
      prob1 = (count1 * REG_BR_PROB_BASE + all / 2) / all;
      prob1 = (count1 * REG_BR_PROB_BASE + all / 2) / all;
      prob2 = (count2 * REG_BR_PROB_BASE + all / 2) / all;
      prob2 = (count2 * REG_BR_PROB_BASE + all / 2) / all;
    }
    }
  else
  else
    {
    {
      prob1 = prob2 = 0;
      prob1 = prob2 = 0;
    }
    }
 
 
  /* In practice, "steps" is always 2.  This interface reflects this,
  /* In practice, "steps" is always 2.  This interface reflects this,
     and will need to be changed if "steps" can change.  */
     and will need to be changed if "steps" can change.  */
  result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all);
  result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all);
 
 
  gimple_assign_set_rhs_from_tree (si, result);
  gimple_assign_set_rhs_from_tree (si, result);
 
 
  return true;
  return true;
}
}
 
 
static struct cgraph_node** pid_map = NULL;
static struct cgraph_node** pid_map = NULL;
 
 
/* Initialize map of pids (pid -> cgraph node) */
/* Initialize map of pids (pid -> cgraph node) */
 
 
static void
static void
init_pid_map (void)
init_pid_map (void)
{
{
  struct cgraph_node *n;
  struct cgraph_node *n;
 
 
  if (pid_map != NULL)
  if (pid_map != NULL)
    return;
    return;
 
 
  pid_map = XCNEWVEC (struct cgraph_node*, cgraph_max_pid);
  pid_map = XCNEWVEC (struct cgraph_node*, cgraph_max_pid);
 
 
  for (n = cgraph_nodes; n; n = n->next)
  for (n = cgraph_nodes; n; n = n->next)
    {
    {
      if (n->pid != -1)
      if (n->pid != -1)
        pid_map [n->pid] = n;
        pid_map [n->pid] = n;
    }
    }
}
}
 
 
/* Return cgraph node for function with pid */
/* Return cgraph node for function with pid */
 
 
static inline struct cgraph_node*
static inline struct cgraph_node*
find_func_by_pid (int   pid)
find_func_by_pid (int   pid)
{
{
  init_pid_map ();
  init_pid_map ();
 
 
  return pid_map [pid];
  return pid_map [pid];
}
}
 
 
/* Do transformation
/* Do transformation
 
 
  if (actual_callee_address == address_of_most_common_function/method)
  if (actual_callee_address == address_of_most_common_function/method)
    do direct call
    do direct call
  else
  else
    old call
    old call
 */
 */
 
 
static gimple
static gimple
gimple_ic (gimple icall_stmt, struct cgraph_node *direct_call,
gimple_ic (gimple icall_stmt, struct cgraph_node *direct_call,
           int prob, gcov_type count, gcov_type all)
           int prob, gcov_type count, gcov_type all)
{
{
  gimple dcall_stmt, load_stmt, cond_stmt;
  gimple dcall_stmt, load_stmt, cond_stmt;
  tree tmp1, tmpv, tmp;
  tree tmp1, tmpv, tmp;
  basic_block cond_bb, dcall_bb, icall_bb, join_bb;
  basic_block cond_bb, dcall_bb, icall_bb, join_bb;
  tree optype = build_pointer_type (void_type_node);
  tree optype = build_pointer_type (void_type_node);
  edge e_cd, e_ci, e_di, e_dj, e_ij;
  edge e_cd, e_ci, e_di, e_dj, e_ij;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  int lp_nr;
  int lp_nr;
 
 
  cond_bb = gimple_bb (icall_stmt);
  cond_bb = gimple_bb (icall_stmt);
  gsi = gsi_for_stmt (icall_stmt);
  gsi = gsi_for_stmt (icall_stmt);
 
 
  tmpv = create_tmp_var (optype, "PROF");
  tmpv = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  tmp = unshare_expr (gimple_call_fn (icall_stmt));
  tmp = unshare_expr (gimple_call_fn (icall_stmt));
  load_stmt = gimple_build_assign (tmpv, tmp);
  load_stmt = gimple_build_assign (tmpv, tmp);
  gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
 
 
  tmp = fold_convert (optype, build_addr (direct_call->decl,
  tmp = fold_convert (optype, build_addr (direct_call->decl,
                                          current_function_decl));
                                          current_function_decl));
  load_stmt = gimple_build_assign (tmp1, tmp);
  load_stmt = gimple_build_assign (tmp1, tmp);
  gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
 
 
  cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
  cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
 
 
  dcall_stmt = gimple_copy (icall_stmt);
  dcall_stmt = gimple_copy (icall_stmt);
  gimple_call_set_fndecl (dcall_stmt, direct_call->decl);
  gimple_call_set_fndecl (dcall_stmt, direct_call->decl);
  gsi_insert_before (&gsi, dcall_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, dcall_stmt, GSI_SAME_STMT);
 
 
  /* Fix CFG. */
  /* Fix CFG. */
  /* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
  /* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
  e_cd = split_block (cond_bb, cond_stmt);
  e_cd = split_block (cond_bb, cond_stmt);
  dcall_bb = e_cd->dest;
  dcall_bb = e_cd->dest;
  dcall_bb->count = count;
  dcall_bb->count = count;
 
 
  e_di = split_block (dcall_bb, dcall_stmt);
  e_di = split_block (dcall_bb, dcall_stmt);
  icall_bb = e_di->dest;
  icall_bb = e_di->dest;
  icall_bb->count = all - count;
  icall_bb->count = all - count;
 
 
  e_ij = split_block (icall_bb, icall_stmt);
  e_ij = split_block (icall_bb, icall_stmt);
  join_bb = e_ij->dest;
  join_bb = e_ij->dest;
  join_bb->count = all;
  join_bb->count = all;
 
 
  e_cd->flags = (e_cd->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
  e_cd->flags = (e_cd->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
  e_cd->probability = prob;
  e_cd->probability = prob;
  e_cd->count = count;
  e_cd->count = count;
 
 
  e_ci = make_edge (cond_bb, icall_bb, EDGE_FALSE_VALUE);
  e_ci = make_edge (cond_bb, icall_bb, EDGE_FALSE_VALUE);
  e_ci->probability = REG_BR_PROB_BASE - prob;
  e_ci->probability = REG_BR_PROB_BASE - prob;
  e_ci->count = all - count;
  e_ci->count = all - count;
 
 
  remove_edge (e_di);
  remove_edge (e_di);
 
 
  e_dj = make_edge (dcall_bb, join_bb, EDGE_FALLTHRU);
  e_dj = make_edge (dcall_bb, join_bb, EDGE_FALLTHRU);
  e_dj->probability = REG_BR_PROB_BASE;
  e_dj->probability = REG_BR_PROB_BASE;
  e_dj->count = count;
  e_dj->count = count;
 
 
  e_ij->probability = REG_BR_PROB_BASE;
  e_ij->probability = REG_BR_PROB_BASE;
  e_ij->count = all - count;
  e_ij->count = all - count;
 
 
  /* Fix eh edges */
  /* Fix eh edges */
  lp_nr = lookup_stmt_eh_lp (icall_stmt);
  lp_nr = lookup_stmt_eh_lp (icall_stmt);
  if (lp_nr != 0)
  if (lp_nr != 0)
    {
    {
      if (stmt_could_throw_p (dcall_stmt))
      if (stmt_could_throw_p (dcall_stmt))
        {
        {
          add_stmt_to_eh_lp (dcall_stmt, lp_nr);
          add_stmt_to_eh_lp (dcall_stmt, lp_nr);
          make_eh_edges (dcall_stmt);
          make_eh_edges (dcall_stmt);
        }
        }
 
 
      gcc_assert (stmt_could_throw_p (icall_stmt));
      gcc_assert (stmt_could_throw_p (icall_stmt));
      make_eh_edges (icall_stmt);
      make_eh_edges (icall_stmt);
 
 
      /* The old EH edges are sill on the join BB, purge them.  */
      /* The old EH edges are sill on the join BB, purge them.  */
      gimple_purge_dead_eh_edges (join_bb);
      gimple_purge_dead_eh_edges (join_bb);
    }
    }
 
 
  return dcall_stmt;
  return dcall_stmt;
}
}
 
 
/*
/*
  For every checked indirect/virtual call determine if most common pid of
  For every checked indirect/virtual call determine if most common pid of
  function/class method has probability more than 50%. If yes modify code of
  function/class method has probability more than 50%. If yes modify code of
  this call to:
  this call to:
 */
 */
 
 
static bool
static bool
gimple_ic_transform (gimple stmt)
gimple_ic_transform (gimple stmt)
{
{
  histogram_value histogram;
  histogram_value histogram;
  gcov_type val, count, all, bb_all;
  gcov_type val, count, all, bb_all;
  gcov_type prob;
  gcov_type prob;
  tree callee;
  tree callee;
  gimple modify;
  gimple modify;
  struct cgraph_node *direct_call;
  struct cgraph_node *direct_call;
 
 
  if (gimple_code (stmt) != GIMPLE_CALL)
  if (gimple_code (stmt) != GIMPLE_CALL)
    return false;
    return false;
 
 
  callee = gimple_call_fn (stmt);
  callee = gimple_call_fn (stmt);
 
 
  if (TREE_CODE (callee) == FUNCTION_DECL)
  if (TREE_CODE (callee) == FUNCTION_DECL)
    return false;
    return false;
 
 
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
  if (!histogram)
  if (!histogram)
    return false;
    return false;
 
 
  val = histogram->hvalue.counters [0];
  val = histogram->hvalue.counters [0];
  count = histogram->hvalue.counters [1];
  count = histogram->hvalue.counters [1];
  all = histogram->hvalue.counters [2];
  all = histogram->hvalue.counters [2];
  gimple_remove_histogram_value (cfun, stmt, histogram);
  gimple_remove_histogram_value (cfun, stmt, histogram);
 
 
  if (4 * count <= 3 * all)
  if (4 * count <= 3 * all)
    return false;
    return false;
 
 
  bb_all = gimple_bb (stmt)->count;
  bb_all = gimple_bb (stmt)->count;
  /* The order of CHECK_COUNTER calls is important -
  /* The order of CHECK_COUNTER calls is important -
     since check_counter can correct the third parameter
     since check_counter can correct the third parameter
     and we want to make count <= all <= bb_all. */
     and we want to make count <= all <= bb_all. */
  if ( check_counter (stmt, "ic", &all, &bb_all, bb_all)
  if ( check_counter (stmt, "ic", &all, &bb_all, bb_all)
      || check_counter (stmt, "ic", &count, &all, all))
      || check_counter (stmt, "ic", &count, &all, all))
    return false;
    return false;
 
 
  if (all > 0)
  if (all > 0)
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
  else
  else
    prob = 0;
    prob = 0;
  direct_call = find_func_by_pid ((int)val);
  direct_call = find_func_by_pid ((int)val);
 
 
  if (direct_call == NULL)
  if (direct_call == NULL)
    return false;
    return false;
 
 
  modify = gimple_ic (stmt, direct_call, prob, count, all);
  modify = gimple_ic (stmt, direct_call, prob, count, all);
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Indirect call -> direct call ");
      fprintf (dump_file, "Indirect call -> direct call ");
      print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
      print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM);
      fprintf (dump_file, "=> ");
      fprintf (dump_file, "=> ");
      print_generic_expr (dump_file, direct_call->decl, TDF_SLIM);
      print_generic_expr (dump_file, direct_call->decl, TDF_SLIM);
      fprintf (dump_file, " transformation on insn ");
      fprintf (dump_file, " transformation on insn ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, " to ");
      fprintf (dump_file, " to ");
      print_gimple_stmt (dump_file, modify, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, modify, 0, TDF_SLIM);
      fprintf (dump_file, "hist->count "HOST_WIDEST_INT_PRINT_DEC
      fprintf (dump_file, "hist->count "HOST_WIDEST_INT_PRINT_DEC
               " hist->all "HOST_WIDEST_INT_PRINT_DEC"\n", count, all);
               " hist->all "HOST_WIDEST_INT_PRINT_DEC"\n", count, all);
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Return true if the stringop CALL with FNDECL shall be profiled.
/* Return true if the stringop CALL with FNDECL shall be profiled.
   SIZE_ARG be set to the argument index for the size of the string
   SIZE_ARG be set to the argument index for the size of the string
   operation.
   operation.
*/
*/
static bool
static bool
interesting_stringop_to_profile_p (tree fndecl, gimple call, int *size_arg)
interesting_stringop_to_profile_p (tree fndecl, gimple call, int *size_arg)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
 
 
  if (fcode != BUILT_IN_MEMCPY && fcode != BUILT_IN_MEMPCPY
  if (fcode != BUILT_IN_MEMCPY && fcode != BUILT_IN_MEMPCPY
      && fcode != BUILT_IN_MEMSET && fcode != BUILT_IN_BZERO)
      && fcode != BUILT_IN_MEMSET && fcode != BUILT_IN_BZERO)
    return false;
    return false;
 
 
  switch (fcode)
  switch (fcode)
    {
    {
     case BUILT_IN_MEMCPY:
     case BUILT_IN_MEMCPY:
     case BUILT_IN_MEMPCPY:
     case BUILT_IN_MEMPCPY:
       *size_arg = 2;
       *size_arg = 2;
       return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE,
       return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE,
                                       INTEGER_TYPE, VOID_TYPE);
                                       INTEGER_TYPE, VOID_TYPE);
     case BUILT_IN_MEMSET:
     case BUILT_IN_MEMSET:
       *size_arg = 2;
       *size_arg = 2;
       return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
       return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
                                      INTEGER_TYPE, VOID_TYPE);
                                      INTEGER_TYPE, VOID_TYPE);
     case BUILT_IN_BZERO:
     case BUILT_IN_BZERO:
       *size_arg = 1;
       *size_arg = 1;
       return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
       return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
                                       VOID_TYPE);
                                       VOID_TYPE);
     default:
     default:
       gcc_unreachable ();
       gcc_unreachable ();
    }
    }
}
}
 
 
/* Convert   stringop (..., vcall_size)
/* Convert   stringop (..., vcall_size)
   into
   into
   if (vcall_size == icall_size)
   if (vcall_size == icall_size)
     stringop (..., icall_size);
     stringop (..., icall_size);
   else
   else
     stringop (..., vcall_size);
     stringop (..., vcall_size);
   assuming we'll propagate a true constant into ICALL_SIZE later.  */
   assuming we'll propagate a true constant into ICALL_SIZE later.  */
 
 
static void
static void
gimple_stringop_fixed_value (gimple vcall_stmt, tree icall_size, int prob,
gimple_stringop_fixed_value (gimple vcall_stmt, tree icall_size, int prob,
                             gcov_type count, gcov_type all)
                             gcov_type count, gcov_type all)
{
{
  gimple tmp_stmt, cond_stmt, icall_stmt;
  gimple tmp_stmt, cond_stmt, icall_stmt;
  tree tmp1, tmpv, vcall_size, optype;
  tree tmp1, tmpv, vcall_size, optype;
  basic_block cond_bb, icall_bb, vcall_bb, join_bb;
  basic_block cond_bb, icall_bb, vcall_bb, join_bb;
  edge e_ci, e_cv, e_iv, e_ij, e_vj;
  edge e_ci, e_cv, e_iv, e_ij, e_vj;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  tree fndecl;
  tree fndecl;
  int size_arg;
  int size_arg;
 
 
  fndecl = gimple_call_fndecl (vcall_stmt);
  fndecl = gimple_call_fndecl (vcall_stmt);
  if (!interesting_stringop_to_profile_p (fndecl, vcall_stmt, &size_arg))
  if (!interesting_stringop_to_profile_p (fndecl, vcall_stmt, &size_arg))
    gcc_unreachable();
    gcc_unreachable();
 
 
  cond_bb = gimple_bb (vcall_stmt);
  cond_bb = gimple_bb (vcall_stmt);
  gsi = gsi_for_stmt (vcall_stmt);
  gsi = gsi_for_stmt (vcall_stmt);
 
 
  vcall_size = gimple_call_arg (vcall_stmt, size_arg);
  vcall_size = gimple_call_arg (vcall_stmt, size_arg);
  optype = TREE_TYPE (vcall_size);
  optype = TREE_TYPE (vcall_size);
 
 
  tmpv = create_tmp_var (optype, "PROF");
  tmpv = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  tmp1 = create_tmp_var (optype, "PROF");
  tmp_stmt = gimple_build_assign (tmpv, fold_convert (optype, icall_size));
  tmp_stmt = gimple_build_assign (tmpv, fold_convert (optype, icall_size));
  gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
 
 
  tmp_stmt = gimple_build_assign (tmp1, vcall_size);
  tmp_stmt = gimple_build_assign (tmp1, vcall_size);
  gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
 
 
  cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
  cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
 
 
  icall_stmt = gimple_copy (vcall_stmt);
  icall_stmt = gimple_copy (vcall_stmt);
  gimple_call_set_arg (icall_stmt, size_arg, icall_size);
  gimple_call_set_arg (icall_stmt, size_arg, icall_size);
  gsi_insert_before (&gsi, icall_stmt, GSI_SAME_STMT);
  gsi_insert_before (&gsi, icall_stmt, GSI_SAME_STMT);
 
 
  /* Fix CFG. */
  /* Fix CFG. */
  /* Edge e_ci connects cond_bb to icall_bb, etc. */
  /* Edge e_ci connects cond_bb to icall_bb, etc. */
  e_ci = split_block (cond_bb, cond_stmt);
  e_ci = split_block (cond_bb, cond_stmt);
  icall_bb = e_ci->dest;
  icall_bb = e_ci->dest;
  icall_bb->count = count;
  icall_bb->count = count;
 
 
  e_iv = split_block (icall_bb, icall_stmt);
  e_iv = split_block (icall_bb, icall_stmt);
  vcall_bb = e_iv->dest;
  vcall_bb = e_iv->dest;
  vcall_bb->count = all - count;
  vcall_bb->count = all - count;
 
 
  e_vj = split_block (vcall_bb, vcall_stmt);
  e_vj = split_block (vcall_bb, vcall_stmt);
  join_bb = e_vj->dest;
  join_bb = e_vj->dest;
  join_bb->count = all;
  join_bb->count = all;
 
 
  e_ci->flags = (e_ci->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
  e_ci->flags = (e_ci->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
  e_ci->probability = prob;
  e_ci->probability = prob;
  e_ci->count = count;
  e_ci->count = count;
 
 
  e_cv = make_edge (cond_bb, vcall_bb, EDGE_FALSE_VALUE);
  e_cv = make_edge (cond_bb, vcall_bb, EDGE_FALSE_VALUE);
  e_cv->probability = REG_BR_PROB_BASE - prob;
  e_cv->probability = REG_BR_PROB_BASE - prob;
  e_cv->count = all - count;
  e_cv->count = all - count;
 
 
  remove_edge (e_iv);
  remove_edge (e_iv);
 
 
  e_ij = make_edge (icall_bb, join_bb, EDGE_FALLTHRU);
  e_ij = make_edge (icall_bb, join_bb, EDGE_FALLTHRU);
  e_ij->probability = REG_BR_PROB_BASE;
  e_ij->probability = REG_BR_PROB_BASE;
  e_ij->count = count;
  e_ij->count = count;
 
 
  e_vj->probability = REG_BR_PROB_BASE;
  e_vj->probability = REG_BR_PROB_BASE;
  e_vj->count = all - count;
  e_vj->count = all - count;
 
 
  /* Because these are all string op builtins, they're all nothrow.  */
  /* Because these are all string op builtins, they're all nothrow.  */
  gcc_assert (!stmt_could_throw_p (vcall_stmt));
  gcc_assert (!stmt_could_throw_p (vcall_stmt));
  gcc_assert (!stmt_could_throw_p (icall_stmt));
  gcc_assert (!stmt_could_throw_p (icall_stmt));
}
}
 
 
/* Find values inside STMT for that we want to measure histograms for
/* Find values inside STMT for that we want to measure histograms for
   division/modulo optimization.  */
   division/modulo optimization.  */
static bool
static bool
gimple_stringops_transform (gimple_stmt_iterator *gsi)
gimple_stringops_transform (gimple_stmt_iterator *gsi)
{
{
  gimple stmt = gsi_stmt (*gsi);
  gimple stmt = gsi_stmt (*gsi);
  tree fndecl;
  tree fndecl;
  tree blck_size;
  tree blck_size;
  enum built_in_function fcode;
  enum built_in_function fcode;
  histogram_value histogram;
  histogram_value histogram;
  gcov_type count, all, val;
  gcov_type count, all, val;
  tree dest, src;
  tree dest, src;
  unsigned int dest_align, src_align;
  unsigned int dest_align, src_align;
  gcov_type prob;
  gcov_type prob;
  tree tree_val;
  tree tree_val;
  int size_arg;
  int size_arg;
 
 
  if (gimple_code (stmt) != GIMPLE_CALL)
  if (gimple_code (stmt) != GIMPLE_CALL)
    return false;
    return false;
  fndecl = gimple_call_fndecl (stmt);
  fndecl = gimple_call_fndecl (stmt);
  if (!fndecl)
  if (!fndecl)
    return false;
    return false;
  fcode = DECL_FUNCTION_CODE (fndecl);
  fcode = DECL_FUNCTION_CODE (fndecl);
  if (!interesting_stringop_to_profile_p (fndecl, stmt, &size_arg))
  if (!interesting_stringop_to_profile_p (fndecl, stmt, &size_arg))
    return false;
    return false;
 
 
  blck_size = gimple_call_arg (stmt, size_arg);
  blck_size = gimple_call_arg (stmt, size_arg);
  if (TREE_CODE (blck_size) == INTEGER_CST)
  if (TREE_CODE (blck_size) == INTEGER_CST)
    return false;
    return false;
 
 
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_SINGLE_VALUE);
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_SINGLE_VALUE);
  if (!histogram)
  if (!histogram)
    return false;
    return false;
  val = histogram->hvalue.counters[0];
  val = histogram->hvalue.counters[0];
  count = histogram->hvalue.counters[1];
  count = histogram->hvalue.counters[1];
  all = histogram->hvalue.counters[2];
  all = histogram->hvalue.counters[2];
  gimple_remove_histogram_value (cfun, stmt, histogram);
  gimple_remove_histogram_value (cfun, stmt, histogram);
  /* We require that count is at least half of all; this means
  /* We require that count is at least half of all; this means
     that for the transformation to fire the value must be constant
     that for the transformation to fire the value must be constant
     at least 80% of time.  */
     at least 80% of time.  */
  if ((6 * count / 5) < all || optimize_bb_for_size_p (gimple_bb (stmt)))
  if ((6 * count / 5) < all || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;
    return false;
  if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
  if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
    return false;
    return false;
  if (all > 0)
  if (all > 0)
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
    prob = (count * REG_BR_PROB_BASE + all / 2) / all;
  else
  else
    prob = 0;
    prob = 0;
  dest = gimple_call_arg (stmt, 0);
  dest = gimple_call_arg (stmt, 0);
  dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
  dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMPCPY:
      src = gimple_call_arg (stmt, 1);
      src = gimple_call_arg (stmt, 1);
      src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      if (!can_move_by_pieces (val, MIN (dest_align, src_align)))
      if (!can_move_by_pieces (val, MIN (dest_align, src_align)))
        return false;
        return false;
      break;
      break;
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET:
      if (!can_store_by_pieces (val, builtin_memset_read_str,
      if (!can_store_by_pieces (val, builtin_memset_read_str,
                                gimple_call_arg (stmt, 1),
                                gimple_call_arg (stmt, 1),
                                dest_align, true))
                                dest_align, true))
        return false;
        return false;
      break;
      break;
    case BUILT_IN_BZERO:
    case BUILT_IN_BZERO:
      if (!can_store_by_pieces (val, builtin_memset_read_str,
      if (!can_store_by_pieces (val, builtin_memset_read_str,
                                integer_zero_node,
                                integer_zero_node,
                                dest_align, true))
                                dest_align, true))
        return false;
        return false;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  tree_val = build_int_cst_wide (get_gcov_type (),
  tree_val = build_int_cst_wide (get_gcov_type (),
                                 (unsigned HOST_WIDE_INT) val,
                                 (unsigned HOST_WIDE_INT) val,
                                 val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
                                 val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1);
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Single value %i stringop transformation on ",
      fprintf (dump_file, "Single value %i stringop transformation on ",
               (int)val);
               (int)val);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }
    }
  gimple_stringop_fixed_value (stmt, tree_val, prob, count, all);
  gimple_stringop_fixed_value (stmt, tree_val, prob, count, all);
 
 
  return true;
  return true;
}
}
 
 
void
void
stringop_block_profile (gimple stmt, unsigned int *expected_align,
stringop_block_profile (gimple stmt, unsigned int *expected_align,
                        HOST_WIDE_INT *expected_size)
                        HOST_WIDE_INT *expected_size)
{
{
  histogram_value histogram;
  histogram_value histogram;
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE);
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE);
  if (!histogram)
  if (!histogram)
    *expected_size = -1;
    *expected_size = -1;
  else if (!histogram->hvalue.counters[1])
  else if (!histogram->hvalue.counters[1])
    {
    {
      *expected_size = -1;
      *expected_size = -1;
      gimple_remove_histogram_value (cfun, stmt, histogram);
      gimple_remove_histogram_value (cfun, stmt, histogram);
    }
    }
  else
  else
    {
    {
      gcov_type size;
      gcov_type size;
      size = ((histogram->hvalue.counters[0]
      size = ((histogram->hvalue.counters[0]
              + histogram->hvalue.counters[1] / 2)
              + histogram->hvalue.counters[1] / 2)
               / histogram->hvalue.counters[1]);
               / histogram->hvalue.counters[1]);
      /* Even if we can hold bigger value in SIZE, INT_MAX
      /* Even if we can hold bigger value in SIZE, INT_MAX
         is safe "infinity" for code generation strategies.  */
         is safe "infinity" for code generation strategies.  */
      if (size > INT_MAX)
      if (size > INT_MAX)
        size = INT_MAX;
        size = INT_MAX;
      *expected_size = size;
      *expected_size = size;
      gimple_remove_histogram_value (cfun, stmt, histogram);
      gimple_remove_histogram_value (cfun, stmt, histogram);
    }
    }
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR);
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR);
  if (!histogram)
  if (!histogram)
    *expected_align = 0;
    *expected_align = 0;
  else if (!histogram->hvalue.counters[0])
  else if (!histogram->hvalue.counters[0])
    {
    {
      gimple_remove_histogram_value (cfun, stmt, histogram);
      gimple_remove_histogram_value (cfun, stmt, histogram);
      *expected_align = 0;
      *expected_align = 0;
    }
    }
  else
  else
    {
    {
      gcov_type count;
      gcov_type count;
      int alignment;
      int alignment;
 
 
      count = histogram->hvalue.counters[0];
      count = histogram->hvalue.counters[0];
      alignment = 1;
      alignment = 1;
      while (!(count & alignment)
      while (!(count & alignment)
             && (alignment * 2 * BITS_PER_UNIT))
             && (alignment * 2 * BITS_PER_UNIT))
        alignment <<= 1;
        alignment <<= 1;
      *expected_align = alignment * BITS_PER_UNIT;
      *expected_align = alignment * BITS_PER_UNIT;
      gimple_remove_histogram_value (cfun, stmt, histogram);
      gimple_remove_histogram_value (cfun, stmt, histogram);
    }
    }
}
}
 
 
struct value_prof_hooks {
struct value_prof_hooks {
  /* Find list of values for which we want to measure histograms.  */
  /* Find list of values for which we want to measure histograms.  */
  void (*find_values_to_profile) (histogram_values *);
  void (*find_values_to_profile) (histogram_values *);
 
 
  /* Identify and exploit properties of values that are hard to analyze
  /* Identify and exploit properties of values that are hard to analyze
     statically.  See value-prof.c for more detail.  */
     statically.  See value-prof.c for more detail.  */
  bool (*value_profile_transformations) (void);
  bool (*value_profile_transformations) (void);
};
};


/* Find values inside STMT for that we want to measure histograms for
/* Find values inside STMT for that we want to measure histograms for
   division/modulo optimization.  */
   division/modulo optimization.  */
static void
static void
gimple_divmod_values_to_profile (gimple stmt, histogram_values *values)
gimple_divmod_values_to_profile (gimple stmt, histogram_values *values)
{
{
  tree lhs, divisor, op0, type;
  tree lhs, divisor, op0, type;
  histogram_value hist;
  histogram_value hist;
 
 
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return;
    return;
 
 
  lhs = gimple_assign_lhs (stmt);
  lhs = gimple_assign_lhs (stmt);
  type = TREE_TYPE (lhs);
  type = TREE_TYPE (lhs);
  if (!INTEGRAL_TYPE_P (type))
  if (!INTEGRAL_TYPE_P (type))
    return;
    return;
 
 
  switch (gimple_assign_rhs_code (stmt))
  switch (gimple_assign_rhs_code (stmt))
    {
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      divisor = gimple_assign_rhs2 (stmt);
      divisor = gimple_assign_rhs2 (stmt);
      op0 = gimple_assign_rhs1 (stmt);
      op0 = gimple_assign_rhs1 (stmt);
 
 
      VEC_reserve (histogram_value, heap, *values, 3);
      VEC_reserve (histogram_value, heap, *values, 3);
 
 
      if (is_gimple_reg (divisor))
      if (is_gimple_reg (divisor))
        /* Check for the case where the divisor is the same value most
        /* Check for the case where the divisor is the same value most
           of the time.  */
           of the time.  */
        VEC_quick_push (histogram_value, *values,
        VEC_quick_push (histogram_value, *values,
                        gimple_alloc_histogram_value (cfun,
                        gimple_alloc_histogram_value (cfun,
                                                      HIST_TYPE_SINGLE_VALUE,
                                                      HIST_TYPE_SINGLE_VALUE,
                                                      stmt, divisor));
                                                      stmt, divisor));
 
 
      /* For mod, check whether it is not often a noop (or replaceable by
      /* For mod, check whether it is not often a noop (or replaceable by
         a few subtractions).  */
         a few subtractions).  */
      if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR
      if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR
          && TYPE_UNSIGNED (type))
          && TYPE_UNSIGNED (type))
        {
        {
          tree val;
          tree val;
          /* Check for a special case where the divisor is power of 2.  */
          /* Check for a special case where the divisor is power of 2.  */
          VEC_quick_push (histogram_value, *values,
          VEC_quick_push (histogram_value, *values,
                          gimple_alloc_histogram_value (cfun, HIST_TYPE_POW2,
                          gimple_alloc_histogram_value (cfun, HIST_TYPE_POW2,
                                                        stmt, divisor));
                                                        stmt, divisor));
 
 
          val = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
          val = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
          hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL,
          hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL,
                                               stmt, val);
                                               stmt, val);
          hist->hdata.intvl.int_start = 0;
          hist->hdata.intvl.int_start = 0;
          hist->hdata.intvl.steps = 2;
          hist->hdata.intvl.steps = 2;
          VEC_quick_push (histogram_value, *values, hist);
          VEC_quick_push (histogram_value, *values, hist);
        }
        }
      return;
      return;
 
 
    default:
    default:
      return;
      return;
    }
    }
}
}
 
 
/* Find calls inside STMT for that we want to measure histograms for
/* Find calls inside STMT for that we want to measure histograms for
   indirect/virtual call optimization. */
   indirect/virtual call optimization. */
 
 
static void
static void
gimple_indirect_call_to_profile (gimple stmt, histogram_values *values)
gimple_indirect_call_to_profile (gimple stmt, histogram_values *values)
{
{
  tree callee;
  tree callee;
 
 
  if (gimple_code (stmt) != GIMPLE_CALL
  if (gimple_code (stmt) != GIMPLE_CALL
      || gimple_call_fndecl (stmt) != NULL_TREE)
      || gimple_call_fndecl (stmt) != NULL_TREE)
    return;
    return;
 
 
  callee = gimple_call_fn (stmt);
  callee = gimple_call_fn (stmt);
 
 
  VEC_reserve (histogram_value, heap, *values, 3);
  VEC_reserve (histogram_value, heap, *values, 3);
 
 
  VEC_quick_push (histogram_value, *values,
  VEC_quick_push (histogram_value, *values,
                  gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
                  gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
                                                stmt, callee));
                                                stmt, callee));
 
 
  return;
  return;
}
}
 
 
/* Find values inside STMT for that we want to measure histograms for
/* Find values inside STMT for that we want to measure histograms for
   string operations.  */
   string operations.  */
static void
static void
gimple_stringops_values_to_profile (gimple stmt, histogram_values *values)
gimple_stringops_values_to_profile (gimple stmt, histogram_values *values)
{
{
  tree fndecl;
  tree fndecl;
  tree blck_size;
  tree blck_size;
  tree dest;
  tree dest;
  int size_arg;
  int size_arg;
 
 
  if (gimple_code (stmt) != GIMPLE_CALL)
  if (gimple_code (stmt) != GIMPLE_CALL)
    return;
    return;
  fndecl = gimple_call_fndecl (stmt);
  fndecl = gimple_call_fndecl (stmt);
  if (!fndecl)
  if (!fndecl)
    return;
    return;
 
 
  if (!interesting_stringop_to_profile_p (fndecl, stmt, &size_arg))
  if (!interesting_stringop_to_profile_p (fndecl, stmt, &size_arg))
    return;
    return;
 
 
  dest = gimple_call_arg (stmt, 0);
  dest = gimple_call_arg (stmt, 0);
  blck_size = gimple_call_arg (stmt, size_arg);
  blck_size = gimple_call_arg (stmt, size_arg);
 
 
  if (TREE_CODE (blck_size) != INTEGER_CST)
  if (TREE_CODE (blck_size) != INTEGER_CST)
    {
    {
      VEC_safe_push (histogram_value, heap, *values,
      VEC_safe_push (histogram_value, heap, *values,
                     gimple_alloc_histogram_value (cfun, HIST_TYPE_SINGLE_VALUE,
                     gimple_alloc_histogram_value (cfun, HIST_TYPE_SINGLE_VALUE,
                                                   stmt, blck_size));
                                                   stmt, blck_size));
      VEC_safe_push (histogram_value, heap, *values,
      VEC_safe_push (histogram_value, heap, *values,
                     gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE,
                     gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE,
                                                   stmt, blck_size));
                                                   stmt, blck_size));
    }
    }
  if (TREE_CODE (blck_size) != INTEGER_CST)
  if (TREE_CODE (blck_size) != INTEGER_CST)
    VEC_safe_push (histogram_value, heap, *values,
    VEC_safe_push (histogram_value, heap, *values,
                   gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR,
                   gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR,
                                                 stmt, dest));
                                                 stmt, dest));
}
}
 
 
/* Find values inside STMT for that we want to measure histograms and adds
/* Find values inside STMT for that we want to measure histograms and adds
   them to list VALUES.  */
   them to list VALUES.  */
 
 
static void
static void
gimple_values_to_profile (gimple stmt, histogram_values *values)
gimple_values_to_profile (gimple stmt, histogram_values *values)
{
{
  if (flag_value_profile_transformations)
  if (flag_value_profile_transformations)
    {
    {
      gimple_divmod_values_to_profile (stmt, values);
      gimple_divmod_values_to_profile (stmt, values);
      gimple_stringops_values_to_profile (stmt, values);
      gimple_stringops_values_to_profile (stmt, values);
      gimple_indirect_call_to_profile (stmt, values);
      gimple_indirect_call_to_profile (stmt, values);
    }
    }
}
}
 
 
static void
static void
gimple_find_values_to_profile (histogram_values *values)
gimple_find_values_to_profile (histogram_values *values)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  unsigned i;
  unsigned i;
  histogram_value hist = NULL;
  histogram_value hist = NULL;
 
 
  *values = NULL;
  *values = NULL;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      gimple_values_to_profile (gsi_stmt (gsi), values);
      gimple_values_to_profile (gsi_stmt (gsi), values);
 
 
  for (i = 0; VEC_iterate (histogram_value, *values, i, hist); i++)
  for (i = 0; VEC_iterate (histogram_value, *values, i, hist); i++)
    {
    {
      switch (hist->type)
      switch (hist->type)
        {
        {
        case HIST_TYPE_INTERVAL:
        case HIST_TYPE_INTERVAL:
          hist->n_counters = hist->hdata.intvl.steps + 2;
          hist->n_counters = hist->hdata.intvl.steps + 2;
          break;
          break;
 
 
        case HIST_TYPE_POW2:
        case HIST_TYPE_POW2:
          hist->n_counters = 2;
          hist->n_counters = 2;
          break;
          break;
 
 
        case HIST_TYPE_SINGLE_VALUE:
        case HIST_TYPE_SINGLE_VALUE:
          hist->n_counters = 3;
          hist->n_counters = 3;
          break;
          break;
 
 
        case HIST_TYPE_CONST_DELTA:
        case HIST_TYPE_CONST_DELTA:
          hist->n_counters = 4;
          hist->n_counters = 4;
          break;
          break;
 
 
        case HIST_TYPE_INDIR_CALL:
        case HIST_TYPE_INDIR_CALL:
          hist->n_counters = 3;
          hist->n_counters = 3;
          break;
          break;
 
 
        case HIST_TYPE_AVERAGE:
        case HIST_TYPE_AVERAGE:
          hist->n_counters = 2;
          hist->n_counters = 2;
          break;
          break;
 
 
        case HIST_TYPE_IOR:
        case HIST_TYPE_IOR:
          hist->n_counters = 1;
          hist->n_counters = 1;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file, "Stmt ");
          fprintf (dump_file, "Stmt ");
          print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM);
          print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM);
          dump_histogram_value (dump_file, hist);
          dump_histogram_value (dump_file, hist);
        }
        }
    }
    }
}
}
 
 
static struct value_prof_hooks gimple_value_prof_hooks = {
static struct value_prof_hooks gimple_value_prof_hooks = {
  gimple_find_values_to_profile,
  gimple_find_values_to_profile,
  gimple_value_profile_transformations
  gimple_value_profile_transformations
};
};
 
 
void
void
gimple_register_value_prof_hooks (void)
gimple_register_value_prof_hooks (void)
{
{
  gcc_assert (current_ir_type () == IR_GIMPLE);
  gcc_assert (current_ir_type () == IR_GIMPLE);
  value_prof_hooks = &gimple_value_prof_hooks;
  value_prof_hooks = &gimple_value_prof_hooks;
}
}


/* IR-independent entry points.  */
/* IR-independent entry points.  */
void
void
find_values_to_profile (histogram_values *values)
find_values_to_profile (histogram_values *values)
{
{
  (value_prof_hooks->find_values_to_profile) (values);
  (value_prof_hooks->find_values_to_profile) (values);
}
}
 
 
bool
bool
value_profile_transformations (void)
value_profile_transformations (void)
{
{
  return (value_prof_hooks->value_profile_transformations) ();
  return (value_prof_hooks->value_profile_transformations) ();
}
}


 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.