OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gdb-7.2/] [sim/] [mcore/] [interp.c] - Diff between revs 835 and 841

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 835 Rev 841
/* Simulator for Motorola's MCore processor
/* Simulator for Motorola's MCore processor
   Copyright (C) 1999, 2000, 2002, 2003, 2007, 2008, 2009, 2010
   Copyright (C) 1999, 2000, 2002, 2003, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Cygnus Solutions.
   Contributed by Cygnus Solutions.
 
 
This file is part of GDB, the GNU debugger.
This file is part of GDB, the GNU debugger.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include <signal.h>
#include <signal.h>
#include "sysdep.h"
#include "sysdep.h"
#include <sys/times.h>
#include <sys/times.h>
#include <sys/param.h>
#include <sys/param.h>
#include <netinet/in.h> /* for byte ordering macros */
#include <netinet/in.h> /* for byte ordering macros */
#include "bfd.h"
#include "bfd.h"
#include "gdb/callback.h"
#include "gdb/callback.h"
#include "libiberty.h"
#include "libiberty.h"
#include "gdb/remote-sim.h"
#include "gdb/remote-sim.h"
 
 
#ifndef NUM_ELEM
#ifndef NUM_ELEM
#define NUM_ELEM(A) (sizeof (A) / sizeof (A)[0])
#define NUM_ELEM(A) (sizeof (A) / sizeof (A)[0])
#endif
#endif
 
 
 
 
typedef long int           word;
typedef long int           word;
typedef unsigned long int  uword;
typedef unsigned long int  uword;
 
 
static int            target_big_endian = 0;
static int            target_big_endian = 0;
static unsigned long  heap_ptr = 0;
static unsigned long  heap_ptr = 0;
host_callback *       callback;
host_callback *       callback;
 
 
 
 
unsigned long
unsigned long
mcore_extract_unsigned_integer (addr, len)
mcore_extract_unsigned_integer (addr, len)
     unsigned char * addr;
     unsigned char * addr;
     int len;
     int len;
{
{
  unsigned long retval;
  unsigned long retval;
  unsigned char * p;
  unsigned char * p;
  unsigned char * startaddr = (unsigned char *)addr;
  unsigned char * startaddr = (unsigned char *)addr;
  unsigned char * endaddr = startaddr + len;
  unsigned char * endaddr = startaddr + len;
 
 
  if (len > (int) sizeof (unsigned long))
  if (len > (int) sizeof (unsigned long))
    printf ("That operation is not available on integers of more than %d bytes.",
    printf ("That operation is not available on integers of more than %d bytes.",
            sizeof (unsigned long));
            sizeof (unsigned long));
 
 
  /* Start at the most significant end of the integer, and work towards
  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
     the least significant.  */
  retval = 0;
  retval = 0;
 
 
  if (! target_big_endian)
  if (! target_big_endian)
    {
    {
      for (p = endaddr; p > startaddr;)
      for (p = endaddr; p > startaddr;)
        retval = (retval << 8) | * -- p;
        retval = (retval << 8) | * -- p;
    }
    }
  else
  else
    {
    {
      for (p = startaddr; p < endaddr;)
      for (p = startaddr; p < endaddr;)
        retval = (retval << 8) | * p ++;
        retval = (retval << 8) | * p ++;
    }
    }
 
 
  return retval;
  return retval;
}
}
 
 
void
void
mcore_store_unsigned_integer (addr, len, val)
mcore_store_unsigned_integer (addr, len, val)
     unsigned char * addr;
     unsigned char * addr;
     int len;
     int len;
     unsigned long val;
     unsigned long val;
{
{
  unsigned char * p;
  unsigned char * p;
  unsigned char * startaddr = (unsigned char *)addr;
  unsigned char * startaddr = (unsigned char *)addr;
  unsigned char * endaddr = startaddr + len;
  unsigned char * endaddr = startaddr + len;
 
 
  if (! target_big_endian)
  if (! target_big_endian)
    {
    {
      for (p = startaddr; p < endaddr;)
      for (p = startaddr; p < endaddr;)
        {
        {
          * p ++ = val & 0xff;
          * p ++ = val & 0xff;
          val >>= 8;
          val >>= 8;
        }
        }
    }
    }
  else
  else
    {
    {
      for (p = endaddr; p > startaddr;)
      for (p = endaddr; p > startaddr;)
        {
        {
          * -- p = val & 0xff;
          * -- p = val & 0xff;
          val >>= 8;
          val >>= 8;
        }
        }
    }
    }
}
}
 
 
/* The machine state.
/* The machine state.
   This state is maintained in host byte order.  The
   This state is maintained in host byte order.  The
   fetch/store register functions must translate between host
   fetch/store register functions must translate between host
   byte order and the target processor byte order.
   byte order and the target processor byte order.
   Keeping this data in target byte order simplifies the register
   Keeping this data in target byte order simplifies the register
   read/write functions.  Keeping this data in native order improves
   read/write functions.  Keeping this data in native order improves
   the performance of the simulator.  Simulation speed is deemed more
   the performance of the simulator.  Simulation speed is deemed more
   important.  */
   important.  */
 
 
/* The ordering of the mcore_regset structure is matched in the
/* The ordering of the mcore_regset structure is matched in the
   gdb/config/mcore/tm-mcore.h file in the REGISTER_NAMES macro.  */
   gdb/config/mcore/tm-mcore.h file in the REGISTER_NAMES macro.  */
struct mcore_regset
struct mcore_regset
{
{
  word            gregs [16];           /* primary registers */
  word            gregs [16];           /* primary registers */
  word            alt_gregs [16];       /* alt register file */
  word            alt_gregs [16];       /* alt register file */
  word            cregs [32];           /* control registers */
  word            cregs [32];           /* control registers */
  word            pc;                   /* the pc */
  word            pc;                   /* the pc */
  int             ticks;
  int             ticks;
  int             stalls;
  int             stalls;
  int             cycles;
  int             cycles;
  int             insts;
  int             insts;
  int             exception;
  int             exception;
  unsigned long   msize;
  unsigned long   msize;
  unsigned char * memory;
  unsigned char * memory;
  word *          active_gregs;
  word *          active_gregs;
};
};
 
 
union
union
{
{
  struct mcore_regset asregs;
  struct mcore_regset asregs;
  word asints [1];              /* but accessed larger... */
  word asints [1];              /* but accessed larger... */
} cpu;
} cpu;
 
 
#define LAST_VALID_CREG 32              /* only 0..12 implemented */
#define LAST_VALID_CREG 32              /* only 0..12 implemented */
#define NUM_MCORE_REGS  (16 + 16 + LAST_VALID_CREG + 1)
#define NUM_MCORE_REGS  (16 + 16 + LAST_VALID_CREG + 1)
 
 
int memcycles = 1;
int memcycles = 1;
 
 
static SIM_OPEN_KIND sim_kind;
static SIM_OPEN_KIND sim_kind;
static char * myname;
static char * myname;
 
 
static int issue_messages = 0;
static int issue_messages = 0;
 
 
#define gr      asregs.active_gregs
#define gr      asregs.active_gregs
#define cr      asregs.cregs
#define cr      asregs.cregs
#define sr      asregs.cregs[0]
#define sr      asregs.cregs[0]
#define vbr     asregs.cregs[1]
#define vbr     asregs.cregs[1]
#define esr     asregs.cregs[2]
#define esr     asregs.cregs[2]
#define fsr     asregs.cregs[3]
#define fsr     asregs.cregs[3]
#define epc     asregs.cregs[4]
#define epc     asregs.cregs[4]
#define fpc     asregs.cregs[5]
#define fpc     asregs.cregs[5]
#define ss0     asregs.cregs[6]
#define ss0     asregs.cregs[6]
#define ss1     asregs.cregs[7]
#define ss1     asregs.cregs[7]
#define ss2     asregs.cregs[8]
#define ss2     asregs.cregs[8]
#define ss3     asregs.cregs[9]
#define ss3     asregs.cregs[9]
#define ss4     asregs.cregs[10]
#define ss4     asregs.cregs[10]
#define gcr     asregs.cregs[11]
#define gcr     asregs.cregs[11]
#define gsr     asregs.cregs[12]
#define gsr     asregs.cregs[12]
#define mem     asregs.memory
#define mem     asregs.memory
 
 
/* maniuplate the carry bit */
/* maniuplate the carry bit */
#define C_ON()   (cpu.sr & 1)
#define C_ON()   (cpu.sr & 1)
#define C_VALUE() (cpu.sr & 1)
#define C_VALUE() (cpu.sr & 1)
#define C_OFF()  ((cpu.sr & 1) == 0)
#define C_OFF()  ((cpu.sr & 1) == 0)
#define SET_C()  {cpu.sr |= 1;}
#define SET_C()  {cpu.sr |= 1;}
#define CLR_C()  {cpu.sr &= 0xfffffffe;}
#define CLR_C()  {cpu.sr &= 0xfffffffe;}
#define NEW_C(v) {CLR_C(); cpu.sr |= ((v) & 1);}
#define NEW_C(v) {CLR_C(); cpu.sr |= ((v) & 1);}
 
 
#define SR_AF() ((cpu.sr >> 1) & 1)
#define SR_AF() ((cpu.sr >> 1) & 1)
 
 
#define TRAPCODE        1       /* r1 holds which function we want */
#define TRAPCODE        1       /* r1 holds which function we want */
#define PARM1   2               /* first parameter  */
#define PARM1   2               /* first parameter  */
#define PARM2   3
#define PARM2   3
#define PARM3   4
#define PARM3   4
#define PARM4   5
#define PARM4   5
#define RET1    2               /* register for return values. */
#define RET1    2               /* register for return values. */
 
 
long
long
int_sbrk (inc_bytes)
int_sbrk (inc_bytes)
     int inc_bytes;
     int inc_bytes;
{
{
  long addr;
  long addr;
 
 
  addr = heap_ptr;
  addr = heap_ptr;
 
 
  heap_ptr += inc_bytes;
  heap_ptr += inc_bytes;
 
 
  if (issue_messages && heap_ptr>cpu.gr[0])
  if (issue_messages && heap_ptr>cpu.gr[0])
    fprintf (stderr, "Warning: heap_ptr overlaps stack!\n");
    fprintf (stderr, "Warning: heap_ptr overlaps stack!\n");
 
 
  return addr;
  return addr;
}
}
 
 
static void INLINE
static void INLINE
wbat (x, v)
wbat (x, v)
     word x, v;
     word x, v;
{
{
  if (((uword)x) >= cpu.asregs.msize)
  if (((uword)x) >= cpu.asregs.msize)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "byte write to 0x%x outside memory range\n", x);
        fprintf (stderr, "byte write to 0x%x outside memory range\n", x);
 
 
      cpu.asregs.exception = SIGSEGV;
      cpu.asregs.exception = SIGSEGV;
    }
    }
  else
  else
    {
    {
      unsigned char *p = cpu.mem + x;
      unsigned char *p = cpu.mem + x;
      p[0] = v;
      p[0] = v;
    }
    }
}
}
 
 
static void INLINE
static void INLINE
wlat (x, v)
wlat (x, v)
     word x, v;
     word x, v;
{
{
  if (((uword)x) >= cpu.asregs.msize)
  if (((uword)x) >= cpu.asregs.msize)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "word write to 0x%x outside memory range\n", x);
        fprintf (stderr, "word write to 0x%x outside memory range\n", x);
 
 
      cpu.asregs.exception = SIGSEGV;
      cpu.asregs.exception = SIGSEGV;
    }
    }
  else
  else
    {
    {
      if ((x & 3) != 0)
      if ((x & 3) != 0)
        {
        {
          if (issue_messages)
          if (issue_messages)
            fprintf (stderr, "word write to unaligned memory address: 0x%x\n", x);
            fprintf (stderr, "word write to unaligned memory address: 0x%x\n", x);
 
 
          cpu.asregs.exception = SIGBUS;
          cpu.asregs.exception = SIGBUS;
        }
        }
      else if (! target_big_endian)
      else if (! target_big_endian)
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          p[3] = v >> 24;
          p[3] = v >> 24;
          p[2] = v >> 16;
          p[2] = v >> 16;
          p[1] = v >> 8;
          p[1] = v >> 8;
          p[0] = v;
          p[0] = v;
        }
        }
      else
      else
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          p[0] = v >> 24;
          p[0] = v >> 24;
          p[1] = v >> 16;
          p[1] = v >> 16;
          p[2] = v >> 8;
          p[2] = v >> 8;
          p[3] = v;
          p[3] = v;
        }
        }
    }
    }
}
}
 
 
static void INLINE
static void INLINE
what (x, v)
what (x, v)
     word x, v;
     word x, v;
{
{
  if (((uword)x) >= cpu.asregs.msize)
  if (((uword)x) >= cpu.asregs.msize)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "short write to 0x%x outside memory range\n", x);
        fprintf (stderr, "short write to 0x%x outside memory range\n", x);
 
 
      cpu.asregs.exception = SIGSEGV;
      cpu.asregs.exception = SIGSEGV;
    }
    }
  else
  else
    {
    {
      if ((x & 1) != 0)
      if ((x & 1) != 0)
        {
        {
          if (issue_messages)
          if (issue_messages)
            fprintf (stderr, "short write to unaligned memory address: 0x%x\n",
            fprintf (stderr, "short write to unaligned memory address: 0x%x\n",
                     x);
                     x);
 
 
          cpu.asregs.exception = SIGBUS;
          cpu.asregs.exception = SIGBUS;
        }
        }
      else if (! target_big_endian)
      else if (! target_big_endian)
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          p[1] = v >> 8;
          p[1] = v >> 8;
          p[0] = v;
          p[0] = v;
        }
        }
      else
      else
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          p[0] = v >> 8;
          p[0] = v >> 8;
          p[1] = v;
          p[1] = v;
        }
        }
    }
    }
}
}
 
 
/* Read functions.  */
/* Read functions.  */
static int INLINE
static int INLINE
rbat (x)
rbat (x)
     word x;
     word x;
{
{
  if (((uword)x) >= cpu.asregs.msize)
  if (((uword)x) >= cpu.asregs.msize)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "byte read from 0x%x outside memory range\n", x);
        fprintf (stderr, "byte read from 0x%x outside memory range\n", x);
 
 
      cpu.asregs.exception = SIGSEGV;
      cpu.asregs.exception = SIGSEGV;
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      unsigned char * p = cpu.mem + x;
      unsigned char * p = cpu.mem + x;
      return p[0];
      return p[0];
    }
    }
}
}
 
 
static int INLINE
static int INLINE
rlat (x)
rlat (x)
     word x;
     word x;
{
{
  if (((uword) x) >= cpu.asregs.msize)
  if (((uword) x) >= cpu.asregs.msize)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "word read from 0x%x outside memory range\n", x);
        fprintf (stderr, "word read from 0x%x outside memory range\n", x);
 
 
      cpu.asregs.exception = SIGSEGV;
      cpu.asregs.exception = SIGSEGV;
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      if ((x & 3) != 0)
      if ((x & 3) != 0)
        {
        {
          if (issue_messages)
          if (issue_messages)
            fprintf (stderr, "word read from unaligned address: 0x%x\n", x);
            fprintf (stderr, "word read from unaligned address: 0x%x\n", x);
 
 
          cpu.asregs.exception = SIGBUS;
          cpu.asregs.exception = SIGBUS;
          return 0;
          return 0;
        }
        }
      else if (! target_big_endian)
      else if (! target_big_endian)
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
          return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
        }
        }
      else
      else
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
          return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
        }
        }
    }
    }
}
}
 
 
static int INLINE
static int INLINE
rhat (x)
rhat (x)
     word x;
     word x;
{
{
  if (((uword)x) >= cpu.asregs.msize)
  if (((uword)x) >= cpu.asregs.msize)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "short read from 0x%x outside memory range\n", x);
        fprintf (stderr, "short read from 0x%x outside memory range\n", x);
 
 
      cpu.asregs.exception = SIGSEGV;
      cpu.asregs.exception = SIGSEGV;
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      if ((x & 1) != 0)
      if ((x & 1) != 0)
        {
        {
          if (issue_messages)
          if (issue_messages)
            fprintf (stderr, "short read from unaligned address: 0x%x\n", x);
            fprintf (stderr, "short read from unaligned address: 0x%x\n", x);
 
 
          cpu.asregs.exception = SIGBUS;
          cpu.asregs.exception = SIGBUS;
          return 0;
          return 0;
        }
        }
      else if (! target_big_endian)
      else if (! target_big_endian)
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          return (p[1] << 8) | p[0];
          return (p[1] << 8) | p[0];
        }
        }
      else
      else
        {
        {
          unsigned char * p = cpu.mem + x;
          unsigned char * p = cpu.mem + x;
          return (p[0] << 8) | p[1];
          return (p[0] << 8) | p[1];
        }
        }
    }
    }
}
}
 
 
 
 
#define SEXTB(x)        (((x & 0xff) ^ (~ 0x7f)) + 0x80)
#define SEXTB(x)        (((x & 0xff) ^ (~ 0x7f)) + 0x80)
#define SEXTW(y)        ((int)((short)y))
#define SEXTW(y)        ((int)((short)y))
 
 
static int
static int
IOMEM (addr, write, value)
IOMEM (addr, write, value)
     int addr;
     int addr;
     int write;
     int write;
     int value;
     int value;
{
{
}
}
 
 
/* Default to a 8 Mbyte (== 2^23) memory space.  */
/* Default to a 8 Mbyte (== 2^23) memory space.  */
static int sim_memory_size = 23;
static int sim_memory_size = 23;
 
 
#define MEM_SIZE_FLOOR  64
#define MEM_SIZE_FLOOR  64
void
void
sim_size (power)
sim_size (power)
     int power;
     int power;
{
{
  sim_memory_size = power;
  sim_memory_size = power;
  cpu.asregs.msize = 1 << sim_memory_size;
  cpu.asregs.msize = 1 << sim_memory_size;
 
 
  if (cpu.mem)
  if (cpu.mem)
    free (cpu.mem);
    free (cpu.mem);
 
 
  /* Watch out for the '0 count' problem. There's probably a better
  /* Watch out for the '0 count' problem. There's probably a better
     way.. e.g., why do we use 64 here?  */
     way.. e.g., why do we use 64 here?  */
  if (cpu.asregs.msize < 64)    /* Ensure a boundary.  */
  if (cpu.asregs.msize < 64)    /* Ensure a boundary.  */
    cpu.mem = (unsigned char *) calloc (64, (64 + cpu.asregs.msize) / 64);
    cpu.mem = (unsigned char *) calloc (64, (64 + cpu.asregs.msize) / 64);
  else
  else
    cpu.mem = (unsigned char *) calloc (64, cpu.asregs.msize / 64);
    cpu.mem = (unsigned char *) calloc (64, cpu.asregs.msize / 64);
 
 
  if (!cpu.mem)
  if (!cpu.mem)
    {
    {
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr,
        fprintf (stderr,
                 "Not enough VM for simulation of %d bytes of RAM\n",
                 "Not enough VM for simulation of %d bytes of RAM\n",
                 cpu.asregs.msize);
                 cpu.asregs.msize);
 
 
      cpu.asregs.msize = 1;
      cpu.asregs.msize = 1;
      cpu.mem = (unsigned char *) calloc (1, 1);
      cpu.mem = (unsigned char *) calloc (1, 1);
    }
    }
}
}
 
 
static void
static void
init_pointers ()
init_pointers ()
{
{
  if (cpu.asregs.msize != (1 << sim_memory_size))
  if (cpu.asregs.msize != (1 << sim_memory_size))
    sim_size (sim_memory_size);
    sim_size (sim_memory_size);
}
}
 
 
static void
static void
set_initial_gprs ()
set_initial_gprs ()
{
{
  int i;
  int i;
  long space;
  long space;
  unsigned long memsize;
  unsigned long memsize;
 
 
  init_pointers ();
  init_pointers ();
 
 
  /* Set up machine just out of reset.  */
  /* Set up machine just out of reset.  */
  cpu.asregs.pc = 0;
  cpu.asregs.pc = 0;
  cpu.sr = 0;
  cpu.sr = 0;
 
 
  memsize = cpu.asregs.msize / (1024 * 1024);
  memsize = cpu.asregs.msize / (1024 * 1024);
 
 
  if (issue_messages > 1)
  if (issue_messages > 1)
    fprintf (stderr, "Simulated memory of %d Mbytes (0x0 .. 0x%08x)\n",
    fprintf (stderr, "Simulated memory of %d Mbytes (0x0 .. 0x%08x)\n",
             memsize, cpu.asregs.msize - 1);
             memsize, cpu.asregs.msize - 1);
 
 
  /* Clean out the GPRs and alternate GPRs.  */
  /* Clean out the GPRs and alternate GPRs.  */
  for (i = 0; i < 16; i++)
  for (i = 0; i < 16; i++)
    {
    {
      cpu.asregs.gregs[i] = 0;
      cpu.asregs.gregs[i] = 0;
      cpu.asregs.alt_gregs[i] = 0;
      cpu.asregs.alt_gregs[i] = 0;
    }
    }
 
 
  /* Make our register set point to the right place.  */
  /* Make our register set point to the right place.  */
  if (SR_AF())
  if (SR_AF())
    cpu.asregs.active_gregs = &cpu.asregs.alt_gregs[0];
    cpu.asregs.active_gregs = &cpu.asregs.alt_gregs[0];
  else
  else
    cpu.asregs.active_gregs = &cpu.asregs.gregs[0];
    cpu.asregs.active_gregs = &cpu.asregs.gregs[0];
 
 
  /* ABI specifies initial values for these registers.  */
  /* ABI specifies initial values for these registers.  */
  cpu.gr[0] = cpu.asregs.msize - 4;
  cpu.gr[0] = cpu.asregs.msize - 4;
 
 
  /* dac fix, the stack address must be 8-byte aligned! */
  /* dac fix, the stack address must be 8-byte aligned! */
  cpu.gr[0] = cpu.gr[0] - cpu.gr[0] % 8;
  cpu.gr[0] = cpu.gr[0] - cpu.gr[0] % 8;
  cpu.gr[PARM1] = 0;
  cpu.gr[PARM1] = 0;
  cpu.gr[PARM2] = 0;
  cpu.gr[PARM2] = 0;
  cpu.gr[PARM3] = 0;
  cpu.gr[PARM3] = 0;
  cpu.gr[PARM4] = cpu.gr[0];
  cpu.gr[PARM4] = cpu.gr[0];
}
}
 
 
static void
static void
interrupt ()
interrupt ()
{
{
  cpu.asregs.exception = SIGINT;
  cpu.asregs.exception = SIGINT;
}
}
 
 
/* Functions so that trapped open/close don't interfere with the
/* Functions so that trapped open/close don't interfere with the
   parent's functions.  We say that we can't close the descriptors
   parent's functions.  We say that we can't close the descriptors
   that we didn't open.  exit() and cleanup() get in trouble here,
   that we didn't open.  exit() and cleanup() get in trouble here,
   to some extent.  That's the price of emulation.  */
   to some extent.  That's the price of emulation.  */
 
 
unsigned char opened[100];
unsigned char opened[100];
 
 
static void
static void
log_open (fd)
log_open (fd)
    int fd;
    int fd;
{
{
  if (fd < 0 || fd > NUM_ELEM (opened))
  if (fd < 0 || fd > NUM_ELEM (opened))
    return;
    return;
 
 
  opened[fd] = 1;
  opened[fd] = 1;
}
}
 
 
static void
static void
log_close (fd)
log_close (fd)
     int fd;
     int fd;
{
{
  if (fd < 0 || fd > NUM_ELEM (opened))
  if (fd < 0 || fd > NUM_ELEM (opened))
    return;
    return;
 
 
  opened[fd] = 0;
  opened[fd] = 0;
}
}
 
 
static int
static int
is_opened (fd)
is_opened (fd)
    int fd;
    int fd;
{
{
  if (fd < 0 || fd > NUM_ELEM (opened))
  if (fd < 0 || fd > NUM_ELEM (opened))
    return 0;
    return 0;
 
 
  return opened[fd];
  return opened[fd];
}
}
 
 
static void
static void
handle_trap1 ()
handle_trap1 ()
{
{
  unsigned long a[3];
  unsigned long a[3];
 
 
  switch ((unsigned long) (cpu.gr [TRAPCODE]))
  switch ((unsigned long) (cpu.gr [TRAPCODE]))
    {
    {
    case 3:
    case 3:
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[1] = (unsigned long) (cpu.mem + cpu.gr[PARM2]);
      a[1] = (unsigned long) (cpu.mem + cpu.gr[PARM2]);
      a[2] = (unsigned long) (cpu.gr[PARM3]);
      a[2] = (unsigned long) (cpu.gr[PARM3]);
      cpu.gr[RET1] = callback->read (callback, a[0], (char *) a[1], a[2]);
      cpu.gr[RET1] = callback->read (callback, a[0], (char *) a[1], a[2]);
      break;
      break;
 
 
    case 4:
    case 4:
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[1] = (unsigned long) (cpu.mem + cpu.gr[PARM2]);
      a[1] = (unsigned long) (cpu.mem + cpu.gr[PARM2]);
      a[2] = (unsigned long) (cpu.gr[PARM3]);
      a[2] = (unsigned long) (cpu.gr[PARM3]);
      cpu.gr[RET1] = (int)callback->write (callback, a[0], (char *) a[1], a[2]);
      cpu.gr[RET1] = (int)callback->write (callback, a[0], (char *) a[1], a[2]);
      break;
      break;
 
 
    case 5:
    case 5:
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[1] = (unsigned long) (cpu.gr[PARM2]);
      a[1] = (unsigned long) (cpu.gr[PARM2]);
      /* a[2] = (unsigned long) (cpu.gr[PARM3]); */
      /* a[2] = (unsigned long) (cpu.gr[PARM3]); */
      cpu.gr[RET1] = callback->open (callback, (char *) a[0], a[1]);
      cpu.gr[RET1] = callback->open (callback, (char *) a[0], a[1]);
      log_open (cpu.gr[RET1]);
      log_open (cpu.gr[RET1]);
      break;
      break;
 
 
    case 6:
    case 6:
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      /* Watch out for debugger's files. */
      /* Watch out for debugger's files. */
      if (is_opened (a[0]))
      if (is_opened (a[0]))
        {
        {
          log_close (a[0]);
          log_close (a[0]);
          cpu.gr[RET1] = callback->close (callback, a[0]);
          cpu.gr[RET1] = callback->close (callback, a[0]);
        }
        }
      else
      else
        {
        {
          /* Don't let him close it.  */
          /* Don't let him close it.  */
          cpu.gr[RET1] = (-1);
          cpu.gr[RET1] = (-1);
        }
        }
      break;
      break;
 
 
    case 9:
    case 9:
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[1] = (unsigned long) (cpu.mem + cpu.gr[PARM2]);
      a[1] = (unsigned long) (cpu.mem + cpu.gr[PARM2]);
      cpu.gr[RET1] = link ((char *) a[0], (char *) a[1]);
      cpu.gr[RET1] = link ((char *) a[0], (char *) a[1]);
      break;
      break;
 
 
    case 10:
    case 10:
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      cpu.gr[RET1] = callback->unlink (callback, (char *) a[0]);
      cpu.gr[RET1] = callback->unlink (callback, (char *) a[0]);
      break;
      break;
 
 
    case 13:
    case 13:
      /* handle time(0) vs time(&var) */
      /* handle time(0) vs time(&var) */
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      if (a[0])
      if (a[0])
        a[0] += (unsigned long) cpu.mem;
        a[0] += (unsigned long) cpu.mem;
      cpu.gr[RET1] = callback->time (callback, (time_t *) a[0]);
      cpu.gr[RET1] = callback->time (callback, (time_t *) a[0]);
      break;
      break;
 
 
    case 19:
    case 19:
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[1] = (unsigned long) (cpu.gr[PARM2]);
      a[1] = (unsigned long) (cpu.gr[PARM2]);
      a[2] = (unsigned long) (cpu.gr[PARM3]);
      a[2] = (unsigned long) (cpu.gr[PARM3]);
      cpu.gr[RET1] = callback->lseek (callback, a[0], a[1], a[2]);
      cpu.gr[RET1] = callback->lseek (callback, a[0], a[1], a[2]);
      break;
      break;
 
 
    case 33:
    case 33:
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[1] = (unsigned long) (cpu.gr[PARM2]);
      a[1] = (unsigned long) (cpu.gr[PARM2]);
      cpu.gr[RET1] = access ((char *) a[0], a[1]);
      cpu.gr[RET1] = access ((char *) a[0], a[1]);
      break;
      break;
 
 
    case 43:
    case 43:
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.mem + cpu.gr[PARM1]);
#if 0
#if 0
      cpu.gr[RET1] = times ((char *)a[0]);
      cpu.gr[RET1] = times ((char *)a[0]);
#else
#else
      {
      {
        /* Give him simulated cycles for utime
        /* Give him simulated cycles for utime
           and an instruction count for stime. */
           and an instruction count for stime. */
        struct tms
        struct tms
        {
        {
          time_t tms_utime;
          time_t tms_utime;
          time_t tms_stime;
          time_t tms_stime;
          time_t tms_cutime;
          time_t tms_cutime;
          time_t tms_cstime;
          time_t tms_cstime;
        } t;
        } t;
 
 
        t.tms_utime = cpu.asregs.cycles;
        t.tms_utime = cpu.asregs.cycles;
        t.tms_stime = cpu.asregs.insts;
        t.tms_stime = cpu.asregs.insts;
        t.tms_cutime = t.tms_utime;
        t.tms_cutime = t.tms_utime;
        t.tms_cstime = t.tms_stime;
        t.tms_cstime = t.tms_stime;
 
 
        memcpy ((struct tms *)(a[0]), &t, sizeof (t));
        memcpy ((struct tms *)(a[0]), &t, sizeof (t));
 
 
        cpu.gr[RET1] = cpu.asregs.cycles;
        cpu.gr[RET1] = cpu.asregs.cycles;
      }
      }
#endif
#endif
      break;
      break;
 
 
    case 69:
    case 69:
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      a[0] = (unsigned long) (cpu.gr[PARM1]);
      cpu.gr[RET1] = int_sbrk (a[0]);
      cpu.gr[RET1] = int_sbrk (a[0]);
      break;
      break;
 
 
    default:
    default:
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "WARNING: sys call %d unimplemented\n",
        fprintf (stderr, "WARNING: sys call %d unimplemented\n",
                 cpu.gr[TRAPCODE]);
                 cpu.gr[TRAPCODE]);
      break;
      break;
    }
    }
}
}
 
 
static void
static void
process_stub (what)
process_stub (what)
     int what;
     int what;
{
{
  /* These values should match those in libgloss/mcore/syscalls.s.  */
  /* These values should match those in libgloss/mcore/syscalls.s.  */
  switch (what)
  switch (what)
    {
    {
    case 3:  /* _read */
    case 3:  /* _read */
    case 4:  /* _write */
    case 4:  /* _write */
    case 5:  /* _open */
    case 5:  /* _open */
    case 6:  /* _close */
    case 6:  /* _close */
    case 10: /* _unlink */
    case 10: /* _unlink */
    case 19: /* _lseek */
    case 19: /* _lseek */
    case 43: /* _times */
    case 43: /* _times */
      cpu.gr [TRAPCODE] = what;
      cpu.gr [TRAPCODE] = what;
      handle_trap1 ();
      handle_trap1 ();
      break;
      break;
 
 
    default:
    default:
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "Unhandled stub opcode: %d\n", what);
        fprintf (stderr, "Unhandled stub opcode: %d\n", what);
      break;
      break;
    }
    }
}
}
 
 
static void
static void
util (what)
util (what)
     unsigned what;
     unsigned what;
{
{
  switch (what)
  switch (what)
    {
    {
    case 0:      /* exit */
    case 0:      /* exit */
      cpu.asregs.exception = SIGQUIT;
      cpu.asregs.exception = SIGQUIT;
      break;
      break;
 
 
    case 1:     /* printf */
    case 1:     /* printf */
      {
      {
        unsigned long a[6];
        unsigned long a[6];
        unsigned char *s;
        unsigned char *s;
        int i;
        int i;
 
 
        a[0] = (unsigned long)(cpu.mem + cpu.gr[PARM1]);
        a[0] = (unsigned long)(cpu.mem + cpu.gr[PARM1]);
 
 
        for (s = (unsigned char *)a[0], i = 1 ; *s && i < 6 ; s++)
        for (s = (unsigned char *)a[0], i = 1 ; *s && i < 6 ; s++)
          {
          {
            if (*s == '%')
            if (*s == '%')
              {
              {
                if (*++s == 's')
                if (*++s == 's')
                  a[i] = (unsigned long)(cpu.mem + cpu.gr[PARM1+i]);
                  a[i] = (unsigned long)(cpu.mem + cpu.gr[PARM1+i]);
                else
                else
                  a[i] = cpu.gr[i+PARM1];
                  a[i] = cpu.gr[i+PARM1];
                i++;
                i++;
              }
              }
          }
          }
 
 
        cpu.gr[RET1] = printf ((char *)a[0], a[1], a[2], a[3], a[4], a[5]);
        cpu.gr[RET1] = printf ((char *)a[0], a[1], a[2], a[3], a[4], a[5]);
      }
      }
      break;
      break;
 
 
    case 2:     /* scanf */
    case 2:     /* scanf */
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "WARNING: scanf unimplemented\n");
        fprintf (stderr, "WARNING: scanf unimplemented\n");
      break;
      break;
 
 
    case 3:     /* utime */
    case 3:     /* utime */
      cpu.gr[RET1] = cpu.asregs.insts;
      cpu.gr[RET1] = cpu.asregs.insts;
      break;
      break;
 
 
    case 0xFF:
    case 0xFF:
      process_stub (cpu.gr[1]);
      process_stub (cpu.gr[1]);
      break;
      break;
 
 
    default:
    default:
      if (issue_messages)
      if (issue_messages)
        fprintf (stderr, "Unhandled util code: %x\n", what);
        fprintf (stderr, "Unhandled util code: %x\n", what);
      break;
      break;
    }
    }
}
}
 
 
/* For figuring out whether we carried; addc/subc use this. */
/* For figuring out whether we carried; addc/subc use this. */
static int
static int
iu_carry (a, b, cin)
iu_carry (a, b, cin)
     unsigned long a;
     unsigned long a;
     unsigned long b;
     unsigned long b;
     int cin;
     int cin;
{
{
  unsigned long x;
  unsigned long x;
 
 
  x = (a & 0xffff) + (b & 0xffff) + cin;
  x = (a & 0xffff) + (b & 0xffff) + cin;
  x = (x >> 16) + (a >> 16) + (b >> 16);
  x = (x >> 16) + (a >> 16) + (b >> 16);
  x >>= 16;
  x >>= 16;
 
 
  return (x != 0);
  return (x != 0);
}
}
 
 
#define WATCHFUNCTIONS 1
#define WATCHFUNCTIONS 1
#ifdef WATCHFUNCTIONS
#ifdef WATCHFUNCTIONS
 
 
#define MAXWL 80
#define MAXWL 80
word WL[MAXWL];
word WL[MAXWL];
char * WLstr[MAXWL];
char * WLstr[MAXWL];
 
 
int ENDWL=0;
int ENDWL=0;
int WLincyc;
int WLincyc;
int WLcyc[MAXWL];
int WLcyc[MAXWL];
int WLcnts[MAXWL];
int WLcnts[MAXWL];
int WLmax[MAXWL];
int WLmax[MAXWL];
int WLmin[MAXWL];
int WLmin[MAXWL];
word WLendpc;
word WLendpc;
int WLbcyc;
int WLbcyc;
int WLW;
int WLW;
#endif
#endif
 
 
#define RD      (inst        & 0xF)
#define RD      (inst        & 0xF)
#define RS      ((inst >> 4) & 0xF)
#define RS      ((inst >> 4) & 0xF)
#define RX      ((inst >> 8) & 0xF)
#define RX      ((inst >> 8) & 0xF)
#define IMM5    ((inst >> 4) & 0x1F)
#define IMM5    ((inst >> 4) & 0x1F)
#define IMM4    ((inst) & 0xF)
#define IMM4    ((inst) & 0xF)
 
 
static int tracing = 0;
static int tracing = 0;
 
 
void
void
sim_resume (sd, step, siggnal)
sim_resume (sd, step, siggnal)
     SIM_DESC sd;
     SIM_DESC sd;
     int step, siggnal;
     int step, siggnal;
{
{
  int needfetch;
  int needfetch;
  word ibuf;
  word ibuf;
  word pc;
  word pc;
  unsigned short inst;
  unsigned short inst;
  void (* sigsave)();
  void (* sigsave)();
  int memops;
  int memops;
  int bonus_cycles;
  int bonus_cycles;
  int insts;
  int insts;
  int w;
  int w;
  int cycs;
  int cycs;
  word WLhash;
  word WLhash;
 
 
  sigsave = signal (SIGINT, interrupt);
  sigsave = signal (SIGINT, interrupt);
  cpu.asregs.exception = step ? SIGTRAP: 0;
  cpu.asregs.exception = step ? SIGTRAP: 0;
  pc = cpu.asregs.pc;
  pc = cpu.asregs.pc;
 
 
  /* Fetch the initial instructions that we'll decode. */
  /* Fetch the initial instructions that we'll decode. */
  ibuf = rlat (pc & 0xFFFFFFFC);
  ibuf = rlat (pc & 0xFFFFFFFC);
  needfetch = 0;
  needfetch = 0;
 
 
  memops = 0;
  memops = 0;
  bonus_cycles = 0;
  bonus_cycles = 0;
  insts = 0;
  insts = 0;
 
 
  /* make our register set point to the right place */
  /* make our register set point to the right place */
  if (SR_AF ())
  if (SR_AF ())
    cpu.asregs.active_gregs = & cpu.asregs.alt_gregs[0];
    cpu.asregs.active_gregs = & cpu.asregs.alt_gregs[0];
  else
  else
    cpu.asregs.active_gregs = & cpu.asregs.gregs[0];
    cpu.asregs.active_gregs = & cpu.asregs.gregs[0];
 
 
  /* make a hash to speed exec loop, hope it's nonzero */
  /* make a hash to speed exec loop, hope it's nonzero */
  WLhash = 0xFFFFFFFF;
  WLhash = 0xFFFFFFFF;
 
 
  for (w = 1; w <= ENDWL; w++)
  for (w = 1; w <= ENDWL; w++)
    WLhash = WLhash & WL[w];
    WLhash = WLhash & WL[w];
 
 
  do
  do
    {
    {
      word oldpc;
      word oldpc;
 
 
      insts ++;
      insts ++;
 
 
      if (pc & 02)
      if (pc & 02)
        {
        {
          if (! target_big_endian)
          if (! target_big_endian)
            inst = ibuf >> 16;
            inst = ibuf >> 16;
          else
          else
            inst = ibuf & 0xFFFF;
            inst = ibuf & 0xFFFF;
          needfetch = 1;
          needfetch = 1;
        }
        }
      else
      else
        {
        {
          if (! target_big_endian)
          if (! target_big_endian)
            inst = ibuf & 0xFFFF;
            inst = ibuf & 0xFFFF;
          else
          else
            inst = ibuf >> 16;
            inst = ibuf >> 16;
        }
        }
 
 
#ifdef WATCHFUNCTIONS
#ifdef WATCHFUNCTIONS
      /* now scan list of watch addresses, if match, count it and
      /* now scan list of watch addresses, if match, count it and
         note return address and count cycles until pc=return address */
         note return address and count cycles until pc=return address */
 
 
      if ((WLincyc == 1) && (pc == WLendpc))
      if ((WLincyc == 1) && (pc == WLendpc))
        {
        {
          cycs = (cpu.asregs.cycles + (insts + bonus_cycles +
          cycs = (cpu.asregs.cycles + (insts + bonus_cycles +
                                       (memops * memcycles)) - WLbcyc);
                                       (memops * memcycles)) - WLbcyc);
 
 
          if (WLcnts[WLW] == 1)
          if (WLcnts[WLW] == 1)
            {
            {
              WLmax[WLW] = cycs;
              WLmax[WLW] = cycs;
              WLmin[WLW] = cycs;
              WLmin[WLW] = cycs;
              WLcyc[WLW] = 0;
              WLcyc[WLW] = 0;
            }
            }
 
 
          if (cycs > WLmax[WLW])
          if (cycs > WLmax[WLW])
            {
            {
              WLmax[WLW] = cycs;
              WLmax[WLW] = cycs;
            }
            }
 
 
          if (cycs < WLmin[WLW])
          if (cycs < WLmin[WLW])
            {
            {
              WLmin[WLW] = cycs;
              WLmin[WLW] = cycs;
            }
            }
 
 
          WLcyc[WLW] += cycs;
          WLcyc[WLW] += cycs;
          WLincyc = 0;
          WLincyc = 0;
          WLendpc = 0;
          WLendpc = 0;
        }
        }
 
 
      /* Optimize with a hash to speed loop.  */
      /* Optimize with a hash to speed loop.  */
      if (WLincyc == 0)
      if (WLincyc == 0)
        {
        {
          if ((WLhash == 0) || ((WLhash & pc) != 0))
          if ((WLhash == 0) || ((WLhash & pc) != 0))
            {
            {
              for (w=1; w <= ENDWL; w++)
              for (w=1; w <= ENDWL; w++)
                {
                {
                  if (pc == WL[w])
                  if (pc == WL[w])
                    {
                    {
                      WLcnts[w]++;
                      WLcnts[w]++;
                      WLbcyc = cpu.asregs.cycles + insts
                      WLbcyc = cpu.asregs.cycles + insts
                        + bonus_cycles + (memops * memcycles);
                        + bonus_cycles + (memops * memcycles);
                      WLendpc = cpu.gr[15];
                      WLendpc = cpu.gr[15];
                      WLincyc = 1;
                      WLincyc = 1;
                      WLW = w;
                      WLW = w;
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
        }
        }
#endif
#endif
 
 
      if (tracing)
      if (tracing)
        fprintf (stderr, "%.4x: inst = %.4x ", pc, inst);
        fprintf (stderr, "%.4x: inst = %.4x ", pc, inst);
 
 
      oldpc = pc;
      oldpc = pc;
 
 
      pc += 2;
      pc += 2;
 
 
      switch (inst >> 8)
      switch (inst >> 8)
        {
        {
        case 0x00:
        case 0x00:
          switch RS
          switch RS
            {
            {
            case 0x0:
            case 0x0:
              switch RD
              switch RD
                {
                {
                case 0x0:                               /* bkpt */
                case 0x0:                               /* bkpt */
                  cpu.asregs.exception = SIGTRAP;
                  cpu.asregs.exception = SIGTRAP;
                  pc -= 2;
                  pc -= 2;
                  break;
                  break;
 
 
                case 0x1:                               /* sync */
                case 0x1:                               /* sync */
                  break;
                  break;
 
 
                case 0x2:                               /* rte */
                case 0x2:                               /* rte */
                  pc = cpu.epc;
                  pc = cpu.epc;
                  cpu.sr = cpu.esr;
                  cpu.sr = cpu.esr;
                  needfetch = 1;
                  needfetch = 1;
 
 
                  if (SR_AF ())
                  if (SR_AF ())
                    cpu.asregs.active_gregs = & cpu.asregs.alt_gregs[0];
                    cpu.asregs.active_gregs = & cpu.asregs.alt_gregs[0];
                  else
                  else
                    cpu.asregs.active_gregs = & cpu.asregs.gregs[0];
                    cpu.asregs.active_gregs = & cpu.asregs.gregs[0];
                  break;
                  break;
 
 
                case 0x3:                               /* rfi */
                case 0x3:                               /* rfi */
                  pc = cpu.fpc;
                  pc = cpu.fpc;
                  cpu.sr = cpu.fsr;
                  cpu.sr = cpu.fsr;
                  needfetch = 1;
                  needfetch = 1;
 
 
                  if (SR_AF ())
                  if (SR_AF ())
                    cpu.asregs.active_gregs = &cpu.asregs.alt_gregs[0];
                    cpu.asregs.active_gregs = &cpu.asregs.alt_gregs[0];
                  else
                  else
                    cpu.asregs.active_gregs = &cpu.asregs.gregs[0];
                    cpu.asregs.active_gregs = &cpu.asregs.gregs[0];
                  break;
                  break;
 
 
                case 0x4:                               /* stop */
                case 0x4:                               /* stop */
                  if (issue_messages)
                  if (issue_messages)
                    fprintf (stderr, "WARNING: stop unimplemented\n");
                    fprintf (stderr, "WARNING: stop unimplemented\n");
                  break;
                  break;
 
 
                case 0x5:                               /* wait */
                case 0x5:                               /* wait */
                  if (issue_messages)
                  if (issue_messages)
                    fprintf (stderr, "WARNING: wait unimplemented\n");
                    fprintf (stderr, "WARNING: wait unimplemented\n");
                  break;
                  break;
 
 
                case 0x6:                               /* doze */
                case 0x6:                               /* doze */
                  if (issue_messages)
                  if (issue_messages)
                    fprintf (stderr, "WARNING: doze unimplemented\n");
                    fprintf (stderr, "WARNING: doze unimplemented\n");
                  break;
                  break;
 
 
                case 0x7:
                case 0x7:
                  cpu.asregs.exception = SIGILL;        /* illegal */
                  cpu.asregs.exception = SIGILL;        /* illegal */
                  break;
                  break;
 
 
                case 0x8:                               /* trap 0 */
                case 0x8:                               /* trap 0 */
                case 0xA:                               /* trap 2 */
                case 0xA:                               /* trap 2 */
                case 0xB:                               /* trap 3 */
                case 0xB:                               /* trap 3 */
                  cpu.asregs.exception = SIGTRAP;
                  cpu.asregs.exception = SIGTRAP;
                  break;
                  break;
 
 
                case 0xC:                               /* trap 4 */
                case 0xC:                               /* trap 4 */
                case 0xD:                               /* trap 5 */
                case 0xD:                               /* trap 5 */
                case 0xE:                               /* trap 6 */
                case 0xE:                               /* trap 6 */
                  cpu.asregs.exception = SIGILL;        /* illegal */
                  cpu.asregs.exception = SIGILL;        /* illegal */
                  break;
                  break;
 
 
                case 0xF:                               /* trap 7 */
                case 0xF:                               /* trap 7 */
                  cpu.asregs.exception = SIGTRAP;       /* integer div-by-0 */
                  cpu.asregs.exception = SIGTRAP;       /* integer div-by-0 */
                  break;
                  break;
 
 
                case 0x9:                               /* trap 1 */
                case 0x9:                               /* trap 1 */
                  handle_trap1 ();
                  handle_trap1 ();
                  break;
                  break;
                }
                }
              break;
              break;
 
 
            case 0x1:
            case 0x1:
              cpu.asregs.exception = SIGILL;            /* illegal */
              cpu.asregs.exception = SIGILL;            /* illegal */
              break;
              break;
 
 
            case 0x2:                                   /* mvc */
            case 0x2:                                   /* mvc */
              cpu.gr[RD] = C_VALUE();
              cpu.gr[RD] = C_VALUE();
              break;
              break;
            case 0x3:                                   /* mvcv */
            case 0x3:                                   /* mvcv */
              cpu.gr[RD] = C_OFF();
              cpu.gr[RD] = C_OFF();
              break;
              break;
            case 0x4:                                   /* ldq */
            case 0x4:                                   /* ldq */
              {
              {
                char *addr = (char *)cpu.gr[RD];
                char *addr = (char *)cpu.gr[RD];
                int regno = 4;                  /* always r4-r7 */
                int regno = 4;                  /* always r4-r7 */
 
 
                bonus_cycles++;
                bonus_cycles++;
                memops += 4;
                memops += 4;
                do
                do
                  {
                  {
                    cpu.gr[regno] = rlat(addr);
                    cpu.gr[regno] = rlat(addr);
                    addr += 4;
                    addr += 4;
                    regno++;
                    regno++;
                  }
                  }
                while ((regno&0x3) != 0);
                while ((regno&0x3) != 0);
              }
              }
              break;
              break;
            case 0x5:                                   /* stq */
            case 0x5:                                   /* stq */
              {
              {
                char *addr = (char *)cpu.gr[RD];
                char *addr = (char *)cpu.gr[RD];
                int regno = 4;                  /* always r4-r7 */
                int regno = 4;                  /* always r4-r7 */
 
 
                memops += 4;
                memops += 4;
                bonus_cycles++;
                bonus_cycles++;
                do
                do
                  {
                  {
                    wlat(addr, cpu.gr[regno]);
                    wlat(addr, cpu.gr[regno]);
                    addr += 4;
                    addr += 4;
                    regno++;
                    regno++;
                  }
                  }
                while ((regno & 0x3) != 0);
                while ((regno & 0x3) != 0);
              }
              }
              break;
              break;
            case 0x6:                                   /* ldm */
            case 0x6:                                   /* ldm */
              {
              {
                char *addr = (char *)cpu.gr[0];
                char *addr = (char *)cpu.gr[0];
                int regno = RD;
                int regno = RD;
 
 
                /* bonus cycle is really only needed if
                /* bonus cycle is really only needed if
                   the next insn shifts the last reg loaded.
                   the next insn shifts the last reg loaded.
 
 
                   bonus_cycles++;
                   bonus_cycles++;
                */
                */
                memops += 16-regno;
                memops += 16-regno;
                while (regno <= 0xF)
                while (regno <= 0xF)
                  {
                  {
                    cpu.gr[regno] = rlat(addr);
                    cpu.gr[regno] = rlat(addr);
                    addr += 4;
                    addr += 4;
                    regno++;
                    regno++;
                  }
                  }
              }
              }
              break;
              break;
            case 0x7:                                   /* stm */
            case 0x7:                                   /* stm */
              {
              {
                char *addr = (char *)cpu.gr[0];
                char *addr = (char *)cpu.gr[0];
                int regno = RD;
                int regno = RD;
 
 
                /* this should be removed! */
                /* this should be removed! */
                /*  bonus_cycles ++; */
                /*  bonus_cycles ++; */
 
 
                memops += 16 - regno;
                memops += 16 - regno;
                while (regno <= 0xF)
                while (regno <= 0xF)
                  {
                  {
                    wlat(addr, cpu.gr[regno]);
                    wlat(addr, cpu.gr[regno]);
                    addr += 4;
                    addr += 4;
                    regno++;
                    regno++;
                  }
                  }
              }
              }
              break;
              break;
 
 
            case 0x8:                                   /* dect */
            case 0x8:                                   /* dect */
              cpu.gr[RD] -= C_VALUE();
              cpu.gr[RD] -= C_VALUE();
              break;
              break;
            case 0x9:                                   /* decf */
            case 0x9:                                   /* decf */
              cpu.gr[RD] -= C_OFF();
              cpu.gr[RD] -= C_OFF();
              break;
              break;
            case 0xA:                                   /* inct */
            case 0xA:                                   /* inct */
              cpu.gr[RD] += C_VALUE();
              cpu.gr[RD] += C_VALUE();
              break;
              break;
            case 0xB:                                   /* incf */
            case 0xB:                                   /* incf */
              cpu.gr[RD] += C_OFF();
              cpu.gr[RD] += C_OFF();
              break;
              break;
            case 0xC:                                   /* jmp */
            case 0xC:                                   /* jmp */
              pc = cpu.gr[RD];
              pc = cpu.gr[RD];
              if (tracing && RD == 15)
              if (tracing && RD == 15)
                fprintf (stderr, "Func return, r2 = %x, r3 = %x\n",
                fprintf (stderr, "Func return, r2 = %x, r3 = %x\n",
                         cpu.gr[2], cpu.gr[3]);
                         cpu.gr[2], cpu.gr[3]);
              bonus_cycles++;
              bonus_cycles++;
              needfetch = 1;
              needfetch = 1;
              break;
              break;
            case 0xD:                                   /* jsr */
            case 0xD:                                   /* jsr */
              cpu.gr[15] = pc;
              cpu.gr[15] = pc;
              pc = cpu.gr[RD];
              pc = cpu.gr[RD];
              bonus_cycles++;
              bonus_cycles++;
              needfetch = 1;
              needfetch = 1;
              break;
              break;
            case 0xE:                                   /* ff1 */
            case 0xE:                                   /* ff1 */
              {
              {
                word tmp, i;
                word tmp, i;
                tmp = cpu.gr[RD];
                tmp = cpu.gr[RD];
                for (i = 0; !(tmp & 0x80000000) && i < 32; i++)
                for (i = 0; !(tmp & 0x80000000) && i < 32; i++)
                  tmp <<= 1;
                  tmp <<= 1;
                cpu.gr[RD] = i;
                cpu.gr[RD] = i;
              }
              }
              break;
              break;
            case 0xF:                                   /* brev */
            case 0xF:                                   /* brev */
              {
              {
                word tmp;
                word tmp;
                tmp = cpu.gr[RD];
                tmp = cpu.gr[RD];
                tmp = ((tmp & 0xaaaaaaaa) >>  1) | ((tmp & 0x55555555) <<  1);
                tmp = ((tmp & 0xaaaaaaaa) >>  1) | ((tmp & 0x55555555) <<  1);
                tmp = ((tmp & 0xcccccccc) >>  2) | ((tmp & 0x33333333) <<  2);
                tmp = ((tmp & 0xcccccccc) >>  2) | ((tmp & 0x33333333) <<  2);
                tmp = ((tmp & 0xf0f0f0f0) >>  4) | ((tmp & 0x0f0f0f0f) <<  4);
                tmp = ((tmp & 0xf0f0f0f0) >>  4) | ((tmp & 0x0f0f0f0f) <<  4);
                tmp = ((tmp & 0xff00ff00) >>  8) | ((tmp & 0x00ff00ff) <<  8);
                tmp = ((tmp & 0xff00ff00) >>  8) | ((tmp & 0x00ff00ff) <<  8);
                cpu.gr[RD] = ((tmp & 0xffff0000) >> 16) | ((tmp & 0x0000ffff) << 16);
                cpu.gr[RD] = ((tmp & 0xffff0000) >> 16) | ((tmp & 0x0000ffff) << 16);
              }
              }
              break;
              break;
            }
            }
          break;
          break;
        case 0x01:
        case 0x01:
          switch RS
          switch RS
            {
            {
            case 0x0:                                   /* xtrb3 */
            case 0x0:                                   /* xtrb3 */
              cpu.gr[1] = (cpu.gr[RD]) & 0xFF;
              cpu.gr[1] = (cpu.gr[RD]) & 0xFF;
              NEW_C (cpu.gr[RD] != 0);
              NEW_C (cpu.gr[RD] != 0);
              break;
              break;
            case 0x1:                                   /* xtrb2 */
            case 0x1:                                   /* xtrb2 */
              cpu.gr[1] = (cpu.gr[RD]>>8) & 0xFF;
              cpu.gr[1] = (cpu.gr[RD]>>8) & 0xFF;
              NEW_C (cpu.gr[RD] != 0);
              NEW_C (cpu.gr[RD] != 0);
              break;
              break;
            case 0x2:                                   /* xtrb1 */
            case 0x2:                                   /* xtrb1 */
              cpu.gr[1] = (cpu.gr[RD]>>16) & 0xFF;
              cpu.gr[1] = (cpu.gr[RD]>>16) & 0xFF;
              NEW_C (cpu.gr[RD] != 0);
              NEW_C (cpu.gr[RD] != 0);
              break;
              break;
            case 0x3:                                   /* xtrb0 */
            case 0x3:                                   /* xtrb0 */
              cpu.gr[1] = (cpu.gr[RD]>>24) & 0xFF;
              cpu.gr[1] = (cpu.gr[RD]>>24) & 0xFF;
              NEW_C (cpu.gr[RD] != 0);
              NEW_C (cpu.gr[RD] != 0);
              break;
              break;
            case 0x4:                                   /* zextb */
            case 0x4:                                   /* zextb */
              cpu.gr[RD] &= 0x000000FF;
              cpu.gr[RD] &= 0x000000FF;
              break;
              break;
            case 0x5:                                   /* sextb */
            case 0x5:                                   /* sextb */
              {
              {
                long tmp;
                long tmp;
                tmp = cpu.gr[RD];
                tmp = cpu.gr[RD];
                tmp <<= 24;
                tmp <<= 24;
                tmp >>= 24;
                tmp >>= 24;
                cpu.gr[RD] = tmp;
                cpu.gr[RD] = tmp;
              }
              }
              break;
              break;
            case 0x6:                                   /* zexth */
            case 0x6:                                   /* zexth */
              cpu.gr[RD] &= 0x0000FFFF;
              cpu.gr[RD] &= 0x0000FFFF;
              break;
              break;
            case 0x7:                                   /* sexth */
            case 0x7:                                   /* sexth */
              {
              {
                long tmp;
                long tmp;
                tmp = cpu.gr[RD];
                tmp = cpu.gr[RD];
                tmp <<= 16;
                tmp <<= 16;
                tmp >>= 16;
                tmp >>= 16;
                cpu.gr[RD] = tmp;
                cpu.gr[RD] = tmp;
              }
              }
              break;
              break;
            case 0x8:                                   /* declt */
            case 0x8:                                   /* declt */
              --cpu.gr[RD];
              --cpu.gr[RD];
              NEW_C ((long)cpu.gr[RD] < 0);
              NEW_C ((long)cpu.gr[RD] < 0);
              break;
              break;
            case 0x9:                                   /* tstnbz */
            case 0x9:                                   /* tstnbz */
              {
              {
                word tmp = cpu.gr[RD];
                word tmp = cpu.gr[RD];
                NEW_C ((tmp & 0xFF000000) != 0 &&
                NEW_C ((tmp & 0xFF000000) != 0 &&
                       (tmp & 0x00FF0000) != 0 && (tmp & 0x0000FF00) != 0 &&
                       (tmp & 0x00FF0000) != 0 && (tmp & 0x0000FF00) != 0 &&
                       (tmp & 0x000000FF) != 0);
                       (tmp & 0x000000FF) != 0);
              }
              }
              break;
              break;
            case 0xA:                                   /* decgt */
            case 0xA:                                   /* decgt */
              --cpu.gr[RD];
              --cpu.gr[RD];
              NEW_C ((long)cpu.gr[RD] > 0);
              NEW_C ((long)cpu.gr[RD] > 0);
              break;
              break;
            case 0xB:                                   /* decne */
            case 0xB:                                   /* decne */
              --cpu.gr[RD];
              --cpu.gr[RD];
              NEW_C ((long)cpu.gr[RD] != 0);
              NEW_C ((long)cpu.gr[RD] != 0);
              break;
              break;
            case 0xC:                                   /* clrt */
            case 0xC:                                   /* clrt */
              if (C_ON())
              if (C_ON())
                cpu.gr[RD] = 0;
                cpu.gr[RD] = 0;
              break;
              break;
            case 0xD:                                   /* clrf */
            case 0xD:                                   /* clrf */
              if (C_OFF())
              if (C_OFF())
                cpu.gr[RD] = 0;
                cpu.gr[RD] = 0;
              break;
              break;
            case 0xE:                                   /* abs */
            case 0xE:                                   /* abs */
              if (cpu.gr[RD] & 0x80000000)
              if (cpu.gr[RD] & 0x80000000)
                cpu.gr[RD] = ~cpu.gr[RD] + 1;
                cpu.gr[RD] = ~cpu.gr[RD] + 1;
              break;
              break;
            case 0xF:                                   /* not */
            case 0xF:                                   /* not */
              cpu.gr[RD] = ~cpu.gr[RD];
              cpu.gr[RD] = ~cpu.gr[RD];
              break;
              break;
            }
            }
          break;
          break;
        case 0x02:                                      /* movt */
        case 0x02:                                      /* movt */
          if (C_ON())
          if (C_ON())
            cpu.gr[RD] = cpu.gr[RS];
            cpu.gr[RD] = cpu.gr[RS];
          break;
          break;
        case 0x03:                                      /* mult */
        case 0x03:                                      /* mult */
          /* consume 2 bits per cycle from rs, until rs is 0 */
          /* consume 2 bits per cycle from rs, until rs is 0 */
          {
          {
            unsigned int t = cpu.gr[RS];
            unsigned int t = cpu.gr[RS];
            int ticks;
            int ticks;
            for (ticks = 0; t != 0 ; t >>= 2)
            for (ticks = 0; t != 0 ; t >>= 2)
              ticks++;
              ticks++;
            bonus_cycles += ticks;
            bonus_cycles += ticks;
          }
          }
          bonus_cycles += 2;  /* min. is 3, so add 2, plus ticks above */
          bonus_cycles += 2;  /* min. is 3, so add 2, plus ticks above */
          if (tracing)
          if (tracing)
            fprintf (stderr, "  mult %x by %x to give %x",
            fprintf (stderr, "  mult %x by %x to give %x",
                     cpu.gr[RD], cpu.gr[RS], cpu.gr[RD] * cpu.gr[RS]);
                     cpu.gr[RD], cpu.gr[RS], cpu.gr[RD] * cpu.gr[RS]);
          cpu.gr[RD] = cpu.gr[RD] * cpu.gr[RS];
          cpu.gr[RD] = cpu.gr[RD] * cpu.gr[RS];
          break;
          break;
        case 0x04:                                      /* loopt */
        case 0x04:                                      /* loopt */
          if (C_ON())
          if (C_ON())
            {
            {
              pc += (IMM4 << 1) - 32;
              pc += (IMM4 << 1) - 32;
              bonus_cycles ++;
              bonus_cycles ++;
              needfetch = 1;
              needfetch = 1;
            }
            }
          --cpu.gr[RS];                         /* not RD! */
          --cpu.gr[RS];                         /* not RD! */
          NEW_C (((long)cpu.gr[RS]) > 0);
          NEW_C (((long)cpu.gr[RS]) > 0);
          break;
          break;
        case 0x05:                                      /* subu */
        case 0x05:                                      /* subu */
          cpu.gr[RD] -= cpu.gr[RS];
          cpu.gr[RD] -= cpu.gr[RS];
          break;
          break;
        case 0x06:                                      /* addc */
        case 0x06:                                      /* addc */
          {
          {
            unsigned long tmp, a, b;
            unsigned long tmp, a, b;
            a = cpu.gr[RD];
            a = cpu.gr[RD];
            b = cpu.gr[RS];
            b = cpu.gr[RS];
            cpu.gr[RD] = a + b + C_VALUE ();
            cpu.gr[RD] = a + b + C_VALUE ();
            tmp = iu_carry (a, b, C_VALUE ());
            tmp = iu_carry (a, b, C_VALUE ());
            NEW_C (tmp);
            NEW_C (tmp);
          }
          }
          break;
          break;
        case 0x07:                                      /* subc */
        case 0x07:                                      /* subc */
          {
          {
            unsigned long tmp, a, b;
            unsigned long tmp, a, b;
            a = cpu.gr[RD];
            a = cpu.gr[RD];
            b = cpu.gr[RS];
            b = cpu.gr[RS];
            cpu.gr[RD] = a - b + C_VALUE () - 1;
            cpu.gr[RD] = a - b + C_VALUE () - 1;
            tmp = iu_carry (a,~b, C_VALUE ());
            tmp = iu_carry (a,~b, C_VALUE ());
            NEW_C (tmp);
            NEW_C (tmp);
          }
          }
          break;
          break;
        case 0x08:                                      /* illegal */
        case 0x08:                                      /* illegal */
        case 0x09:                                      /* illegal*/
        case 0x09:                                      /* illegal*/
          cpu.asregs.exception = SIGILL;
          cpu.asregs.exception = SIGILL;
          break;
          break;
        case 0x0A:                                      /* movf */
        case 0x0A:                                      /* movf */
          if (C_OFF())
          if (C_OFF())
            cpu.gr[RD] = cpu.gr[RS];
            cpu.gr[RD] = cpu.gr[RS];
          break;
          break;
        case 0x0B:                                      /* lsr */
        case 0x0B:                                      /* lsr */
          {
          {
            unsigned long dst, src;
            unsigned long dst, src;
            dst = cpu.gr[RD];
            dst = cpu.gr[RD];
            src = cpu.gr[RS];
            src = cpu.gr[RS];
            /* We must not rely solely upon the native shift operations, since they
            /* We must not rely solely upon the native shift operations, since they
               may not match the M*Core's behaviour on boundary conditions.  */
               may not match the M*Core's behaviour on boundary conditions.  */
            dst = src > 31 ? 0 : dst >> src;
            dst = src > 31 ? 0 : dst >> src;
            cpu.gr[RD] = dst;
            cpu.gr[RD] = dst;
          }
          }
          break;
          break;
        case 0x0C:                                      /* cmphs */
        case 0x0C:                                      /* cmphs */
          NEW_C ((unsigned long )cpu.gr[RD] >=
          NEW_C ((unsigned long )cpu.gr[RD] >=
                 (unsigned long)cpu.gr[RS]);
                 (unsigned long)cpu.gr[RS]);
          break;
          break;
        case 0x0D:                                      /* cmplt */
        case 0x0D:                                      /* cmplt */
          NEW_C ((long)cpu.gr[RD] < (long)cpu.gr[RS]);
          NEW_C ((long)cpu.gr[RD] < (long)cpu.gr[RS]);
          break;
          break;
        case 0x0E:                                      /* tst */
        case 0x0E:                                      /* tst */
          NEW_C ((cpu.gr[RD] & cpu.gr[RS]) != 0);
          NEW_C ((cpu.gr[RD] & cpu.gr[RS]) != 0);
          break;
          break;
        case 0x0F:                                      /* cmpne */
        case 0x0F:                                      /* cmpne */
          NEW_C (cpu.gr[RD] != cpu.gr[RS]);
          NEW_C (cpu.gr[RD] != cpu.gr[RS]);
          break;
          break;
        case 0x10: case 0x11:                           /* mfcr */
        case 0x10: case 0x11:                           /* mfcr */
          {
          {
            unsigned r;
            unsigned r;
            r = IMM5;
            r = IMM5;
            if (r <= LAST_VALID_CREG)
            if (r <= LAST_VALID_CREG)
              cpu.gr[RD] = cpu.cr[r];
              cpu.gr[RD] = cpu.cr[r];
            else
            else
              cpu.asregs.exception = SIGILL;
              cpu.asregs.exception = SIGILL;
          }
          }
          break;
          break;
 
 
        case 0x12:                                      /* mov */
        case 0x12:                                      /* mov */
          cpu.gr[RD] = cpu.gr[RS];
          cpu.gr[RD] = cpu.gr[RS];
          if (tracing)
          if (tracing)
            fprintf (stderr, "MOV %x into reg %d", cpu.gr[RD], RD);
            fprintf (stderr, "MOV %x into reg %d", cpu.gr[RD], RD);
          break;
          break;
 
 
        case 0x13:                                      /* bgenr */
        case 0x13:                                      /* bgenr */
          if (cpu.gr[RS] & 0x20)
          if (cpu.gr[RS] & 0x20)
            cpu.gr[RD] = 0;
            cpu.gr[RD] = 0;
          else
          else
            cpu.gr[RD] = 1 << (cpu.gr[RS] & 0x1F);
            cpu.gr[RD] = 1 << (cpu.gr[RS] & 0x1F);
          break;
          break;
 
 
        case 0x14:                                      /* rsub */
        case 0x14:                                      /* rsub */
          cpu.gr[RD] = cpu.gr[RS] - cpu.gr[RD];
          cpu.gr[RD] = cpu.gr[RS] - cpu.gr[RD];
          break;
          break;
 
 
        case 0x15:                                      /* ixw */
        case 0x15:                                      /* ixw */
          cpu.gr[RD] += cpu.gr[RS]<<2;
          cpu.gr[RD] += cpu.gr[RS]<<2;
          break;
          break;
 
 
        case 0x16:                                      /* and */
        case 0x16:                                      /* and */
          cpu.gr[RD] &= cpu.gr[RS];
          cpu.gr[RD] &= cpu.gr[RS];
          break;
          break;
 
 
        case 0x17:                                      /* xor */
        case 0x17:                                      /* xor */
          cpu.gr[RD] ^= cpu.gr[RS];
          cpu.gr[RD] ^= cpu.gr[RS];
          break;
          break;
 
 
        case 0x18: case 0x19:                           /* mtcr */
        case 0x18: case 0x19:                           /* mtcr */
          {
          {
            unsigned r;
            unsigned r;
            r = IMM5;
            r = IMM5;
            if (r <= LAST_VALID_CREG)
            if (r <= LAST_VALID_CREG)
              cpu.cr[r] = cpu.gr[RD];
              cpu.cr[r] = cpu.gr[RD];
            else
            else
              cpu.asregs.exception = SIGILL;
              cpu.asregs.exception = SIGILL;
 
 
            /* we might have changed register sets... */
            /* we might have changed register sets... */
            if (SR_AF ())
            if (SR_AF ())
              cpu.asregs.active_gregs = & cpu.asregs.alt_gregs[0];
              cpu.asregs.active_gregs = & cpu.asregs.alt_gregs[0];
            else
            else
              cpu.asregs.active_gregs = & cpu.asregs.gregs[0];
              cpu.asregs.active_gregs = & cpu.asregs.gregs[0];
          }
          }
          break;
          break;
 
 
        case 0x1A:                                      /* asr */
        case 0x1A:                                      /* asr */
          /* We must not rely solely upon the native shift operations, since they
          /* We must not rely solely upon the native shift operations, since they
             may not match the M*Core's behaviour on boundary conditions.  */
             may not match the M*Core's behaviour on boundary conditions.  */
          if (cpu.gr[RS] > 30)
          if (cpu.gr[RS] > 30)
            cpu.gr[RD] = ((long) cpu.gr[RD]) < 0 ? -1 : 0;
            cpu.gr[RD] = ((long) cpu.gr[RD]) < 0 ? -1 : 0;
          else
          else
            cpu.gr[RD] = (long) cpu.gr[RD] >> cpu.gr[RS];
            cpu.gr[RD] = (long) cpu.gr[RD] >> cpu.gr[RS];
          break;
          break;
 
 
        case 0x1B:                                      /* lsl */
        case 0x1B:                                      /* lsl */
          /* We must not rely solely upon the native shift operations, since they
          /* We must not rely solely upon the native shift operations, since they
             may not match the M*Core's behaviour on boundary conditions.  */
             may not match the M*Core's behaviour on boundary conditions.  */
          cpu.gr[RD] = cpu.gr[RS] > 31 ? 0 : cpu.gr[RD] << cpu.gr[RS];
          cpu.gr[RD] = cpu.gr[RS] > 31 ? 0 : cpu.gr[RD] << cpu.gr[RS];
          break;
          break;
 
 
        case 0x1C:                                      /* addu */
        case 0x1C:                                      /* addu */
          cpu.gr[RD] += cpu.gr[RS];
          cpu.gr[RD] += cpu.gr[RS];
          break;
          break;
 
 
        case 0x1D:                                      /* ixh */
        case 0x1D:                                      /* ixh */
          cpu.gr[RD] += cpu.gr[RS] << 1;
          cpu.gr[RD] += cpu.gr[RS] << 1;
          break;
          break;
 
 
        case 0x1E:                                      /* or */
        case 0x1E:                                      /* or */
          cpu.gr[RD] |= cpu.gr[RS];
          cpu.gr[RD] |= cpu.gr[RS];
          break;
          break;
 
 
        case 0x1F:                                      /* andn */
        case 0x1F:                                      /* andn */
          cpu.gr[RD] &= ~cpu.gr[RS];
          cpu.gr[RD] &= ~cpu.gr[RS];
          break;
          break;
        case 0x20: case 0x21:                           /* addi */
        case 0x20: case 0x21:                           /* addi */
          cpu.gr[RD] =
          cpu.gr[RD] =
            cpu.gr[RD] + (IMM5 + 1);
            cpu.gr[RD] + (IMM5 + 1);
          break;
          break;
        case 0x22: case 0x23:                           /* cmplti */
        case 0x22: case 0x23:                           /* cmplti */
          {
          {
            int tmp = (IMM5 + 1);
            int tmp = (IMM5 + 1);
            if (cpu.gr[RD] < tmp)
            if (cpu.gr[RD] < tmp)
              {
              {
                SET_C();
                SET_C();
              }
              }
            else
            else
              {
              {
                CLR_C();
                CLR_C();
              }
              }
          }
          }
          break;
          break;
        case 0x24: case 0x25:                           /* subi */
        case 0x24: case 0x25:                           /* subi */
          cpu.gr[RD] =
          cpu.gr[RD] =
            cpu.gr[RD] - (IMM5 + 1);
            cpu.gr[RD] - (IMM5 + 1);
          break;
          break;
        case 0x26: case 0x27:                           /* illegal */
        case 0x26: case 0x27:                           /* illegal */
          cpu.asregs.exception = SIGILL;
          cpu.asregs.exception = SIGILL;
          break;
          break;
        case 0x28: case 0x29:                           /* rsubi */
        case 0x28: case 0x29:                           /* rsubi */
          cpu.gr[RD] =
          cpu.gr[RD] =
            IMM5 - cpu.gr[RD];
            IMM5 - cpu.gr[RD];
          break;
          break;
        case 0x2A: case 0x2B:                           /* cmpnei */
        case 0x2A: case 0x2B:                           /* cmpnei */
          if (cpu.gr[RD] != IMM5)
          if (cpu.gr[RD] != IMM5)
            {
            {
              SET_C();
              SET_C();
            }
            }
          else
          else
            {
            {
              CLR_C();
              CLR_C();
            }
            }
          break;
          break;
 
 
        case 0x2C: case 0x2D:                           /* bmaski, divu */
        case 0x2C: case 0x2D:                           /* bmaski, divu */
          {
          {
            unsigned imm = IMM5;
            unsigned imm = IMM5;
 
 
            if (imm == 1)
            if (imm == 1)
              {
              {
                int exe;
                int exe;
                int rxnlz, r1nlz;
                int rxnlz, r1nlz;
                unsigned int rx, r1;
                unsigned int rx, r1;
 
 
                rx = cpu.gr[RD];
                rx = cpu.gr[RD];
                r1 = cpu.gr[1];
                r1 = cpu.gr[1];
                exe = 0;
                exe = 0;
 
 
                /* unsigned divide */
                /* unsigned divide */
                cpu.gr[RD] = (word) ((unsigned int) cpu.gr[RD] / (unsigned int)cpu.gr[1] );
                cpu.gr[RD] = (word) ((unsigned int) cpu.gr[RD] / (unsigned int)cpu.gr[1] );
 
 
                /* compute bonus_cycles for divu */
                /* compute bonus_cycles for divu */
                for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32); r1nlz ++)
                for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32); r1nlz ++)
                  r1 = r1 << 1;
                  r1 = r1 << 1;
 
 
                for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32); rxnlz ++)
                for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32); rxnlz ++)
                  rx = rx << 1;
                  rx = rx << 1;
 
 
                if (r1nlz < rxnlz)
                if (r1nlz < rxnlz)
                  exe += 4;
                  exe += 4;
                else
                else
                  exe += 5 + r1nlz - rxnlz;
                  exe += 5 + r1nlz - rxnlz;
 
 
                if (exe >= (2 * memcycles - 1))
                if (exe >= (2 * memcycles - 1))
                  {
                  {
                    bonus_cycles += exe - (2 * memcycles) + 1;
                    bonus_cycles += exe - (2 * memcycles) + 1;
                  }
                  }
              }
              }
            else if (imm == 0 || imm >= 8)
            else if (imm == 0 || imm >= 8)
              {
              {
                /* bmaski */
                /* bmaski */
                if (imm == 0)
                if (imm == 0)
                  cpu.gr[RD] = -1;
                  cpu.gr[RD] = -1;
                else
                else
                  cpu.gr[RD] = (1 << imm) - 1;
                  cpu.gr[RD] = (1 << imm) - 1;
              }
              }
            else
            else
              {
              {
                /* illegal */
                /* illegal */
                cpu.asregs.exception = SIGILL;
                cpu.asregs.exception = SIGILL;
              }
              }
          }
          }
          break;
          break;
        case 0x2E: case 0x2F:                           /* andi */
        case 0x2E: case 0x2F:                           /* andi */
          cpu.gr[RD] = cpu.gr[RD] & IMM5;
          cpu.gr[RD] = cpu.gr[RD] & IMM5;
          break;
          break;
        case 0x30: case 0x31:                           /* bclri */
        case 0x30: case 0x31:                           /* bclri */
          cpu.gr[RD] = cpu.gr[RD] & ~(1<<IMM5);
          cpu.gr[RD] = cpu.gr[RD] & ~(1<<IMM5);
          break;
          break;
        case 0x32: case 0x33:                           /* bgeni, divs */
        case 0x32: case 0x33:                           /* bgeni, divs */
          {
          {
            unsigned imm = IMM5;
            unsigned imm = IMM5;
            if (imm == 1)
            if (imm == 1)
              {
              {
                int exe,sc;
                int exe,sc;
                int rxnlz, r1nlz;
                int rxnlz, r1nlz;
                signed int rx, r1;
                signed int rx, r1;
 
 
                /* compute bonus_cycles for divu */
                /* compute bonus_cycles for divu */
                rx = cpu.gr[RD];
                rx = cpu.gr[RD];
                r1 = cpu.gr[1];
                r1 = cpu.gr[1];
                exe = 0;
                exe = 0;
 
 
                if (((rx < 0) && (r1 > 0)) || ((rx >= 0) && (r1 < 0)))
                if (((rx < 0) && (r1 > 0)) || ((rx >= 0) && (r1 < 0)))
                  sc = 1;
                  sc = 1;
                else
                else
                  sc = 0;
                  sc = 0;
 
 
                rx = abs (rx);
                rx = abs (rx);
                r1 = abs (r1);
                r1 = abs (r1);
 
 
                /* signed divide, general registers are of type int, so / op is OK */
                /* signed divide, general registers are of type int, so / op is OK */
                cpu.gr[RD] = cpu.gr[RD] / cpu.gr[1];
                cpu.gr[RD] = cpu.gr[RD] / cpu.gr[1];
 
 
                for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32) ; r1nlz ++ )
                for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32) ; r1nlz ++ )
                  r1 = r1 << 1;
                  r1 = r1 << 1;
 
 
                for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32) ; rxnlz ++ )
                for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32) ; rxnlz ++ )
                  rx = rx << 1;
                  rx = rx << 1;
 
 
                if (r1nlz < rxnlz)
                if (r1nlz < rxnlz)
                  exe += 5;
                  exe += 5;
                else
                else
                  exe += 6 + r1nlz - rxnlz + sc;
                  exe += 6 + r1nlz - rxnlz + sc;
 
 
                if (exe >= (2 * memcycles - 1))
                if (exe >= (2 * memcycles - 1))
                  {
                  {
                    bonus_cycles += exe - (2 * memcycles) + 1;
                    bonus_cycles += exe - (2 * memcycles) + 1;
                  }
                  }
              }
              }
            else if (imm >= 7)
            else if (imm >= 7)
              {
              {
                /* bgeni */
                /* bgeni */
                cpu.gr[RD] = (1 << IMM5);
                cpu.gr[RD] = (1 << IMM5);
              }
              }
            else
            else
              {
              {
                /* illegal */
                /* illegal */
                cpu.asregs.exception = SIGILL;
                cpu.asregs.exception = SIGILL;
              }
              }
            break;
            break;
          }
          }
        case 0x34: case 0x35:                           /* bseti */
        case 0x34: case 0x35:                           /* bseti */
          cpu.gr[RD] = cpu.gr[RD] | (1 << IMM5);
          cpu.gr[RD] = cpu.gr[RD] | (1 << IMM5);
          break;
          break;
        case 0x36: case 0x37:                           /* btsti */
        case 0x36: case 0x37:                           /* btsti */
          NEW_C (cpu.gr[RD] >> IMM5);
          NEW_C (cpu.gr[RD] >> IMM5);
          break;
          break;
        case 0x38: case 0x39:                           /* xsr, rotli */
        case 0x38: case 0x39:                           /* xsr, rotli */
          {
          {
            unsigned imm = IMM5;
            unsigned imm = IMM5;
            unsigned long tmp = cpu.gr[RD];
            unsigned long tmp = cpu.gr[RD];
            if (imm == 0)
            if (imm == 0)
              {
              {
                word cbit;
                word cbit;
                cbit = C_VALUE();
                cbit = C_VALUE();
                NEW_C (tmp);
                NEW_C (tmp);
                cpu.gr[RD] = (cbit << 31) | (tmp >> 1);
                cpu.gr[RD] = (cbit << 31) | (tmp >> 1);
              }
              }
            else
            else
              cpu.gr[RD] = (tmp << imm) | (tmp >> (32 - imm));
              cpu.gr[RD] = (tmp << imm) | (tmp >> (32 - imm));
          }
          }
          break;
          break;
        case 0x3A: case 0x3B:                           /* asrc, asri */
        case 0x3A: case 0x3B:                           /* asrc, asri */
          {
          {
            unsigned imm = IMM5;
            unsigned imm = IMM5;
            long tmp = cpu.gr[RD];
            long tmp = cpu.gr[RD];
            if (imm == 0)
            if (imm == 0)
              {
              {
                NEW_C (tmp);
                NEW_C (tmp);
                cpu.gr[RD] = tmp >> 1;
                cpu.gr[RD] = tmp >> 1;
              }
              }
            else
            else
              cpu.gr[RD] = tmp >> imm;
              cpu.gr[RD] = tmp >> imm;
          }
          }
          break;
          break;
        case 0x3C: case 0x3D:                           /* lslc, lsli */
        case 0x3C: case 0x3D:                           /* lslc, lsli */
          {
          {
            unsigned imm = IMM5;
            unsigned imm = IMM5;
            unsigned long tmp = cpu.gr[RD];
            unsigned long tmp = cpu.gr[RD];
            if (imm == 0)
            if (imm == 0)
              {
              {
                NEW_C (tmp >> 31);
                NEW_C (tmp >> 31);
                cpu.gr[RD] = tmp << 1;
                cpu.gr[RD] = tmp << 1;
              }
              }
            else
            else
              cpu.gr[RD] = tmp << imm;
              cpu.gr[RD] = tmp << imm;
          }
          }
          break;
          break;
        case 0x3E: case 0x3F:                           /* lsrc, lsri */
        case 0x3E: case 0x3F:                           /* lsrc, lsri */
          {
          {
            unsigned imm = IMM5;
            unsigned imm = IMM5;
            unsigned long tmp = cpu.gr[RD];
            unsigned long tmp = cpu.gr[RD];
            if (imm == 0)
            if (imm == 0)
              {
              {
                NEW_C (tmp);
                NEW_C (tmp);
                cpu.gr[RD] = tmp >> 1;
                cpu.gr[RD] = tmp >> 1;
              }
              }
            else
            else
              cpu.gr[RD] = tmp >> imm;
              cpu.gr[RD] = tmp >> imm;
          }
          }
          break;
          break;
        case 0x40: case 0x41: case 0x42: case 0x43:
        case 0x40: case 0x41: case 0x42: case 0x43:
        case 0x44: case 0x45: case 0x46: case 0x47:
        case 0x44: case 0x45: case 0x46: case 0x47:
        case 0x48: case 0x49: case 0x4A: case 0x4B:
        case 0x48: case 0x49: case 0x4A: case 0x4B:
        case 0x4C: case 0x4D: case 0x4E: case 0x4F:
        case 0x4C: case 0x4D: case 0x4E: case 0x4F:
          cpu.asregs.exception = SIGILL;
          cpu.asregs.exception = SIGILL;
          break;
          break;
        case 0x50:
        case 0x50:
          util (inst & 0xFF);
          util (inst & 0xFF);
          break;
          break;
        case 0x51: case 0x52: case 0x53:
        case 0x51: case 0x52: case 0x53:
        case 0x54: case 0x55: case 0x56: case 0x57:
        case 0x54: case 0x55: case 0x56: case 0x57:
        case 0x58: case 0x59: case 0x5A: case 0x5B:
        case 0x58: case 0x59: case 0x5A: case 0x5B:
        case 0x5C: case 0x5D: case 0x5E: case 0x5F:
        case 0x5C: case 0x5D: case 0x5E: case 0x5F:
          cpu.asregs.exception = SIGILL;
          cpu.asregs.exception = SIGILL;
          break;
          break;
        case 0x60: case 0x61: case 0x62: case 0x63:     /* movi  */
        case 0x60: case 0x61: case 0x62: case 0x63:     /* movi  */
        case 0x64: case 0x65: case 0x66: case 0x67:
        case 0x64: case 0x65: case 0x66: case 0x67:
          cpu.gr[RD] = (inst >> 4) & 0x7F;
          cpu.gr[RD] = (inst >> 4) & 0x7F;
          break;
          break;
        case 0x68: case 0x69: case 0x6A: case 0x6B:
        case 0x68: case 0x69: case 0x6A: case 0x6B:
        case 0x6C: case 0x6D: case 0x6E: case 0x6F:     /* illegal */
        case 0x6C: case 0x6D: case 0x6E: case 0x6F:     /* illegal */
          cpu.asregs.exception = SIGILL;
          cpu.asregs.exception = SIGILL;
          break;
          break;
        case 0x71: case 0x72: case 0x73:
        case 0x71: case 0x72: case 0x73:
        case 0x74: case 0x75: case 0x76: case 0x77:
        case 0x74: case 0x75: case 0x76: case 0x77:
        case 0x78: case 0x79: case 0x7A: case 0x7B:
        case 0x78: case 0x79: case 0x7A: case 0x7B:
        case 0x7C: case 0x7D: case 0x7E:                /* lrw */
        case 0x7C: case 0x7D: case 0x7E:                /* lrw */
          cpu.gr[RX] =  rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC);
          cpu.gr[RX] =  rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC);
          if (tracing)
          if (tracing)
            fprintf (stderr, "LRW of 0x%x from 0x%x to reg %d",
            fprintf (stderr, "LRW of 0x%x from 0x%x to reg %d",
                     rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC),
                     rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC),
                     (pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC, RX);
                     (pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC, RX);
          memops++;
          memops++;
          break;
          break;
        case 0x7F:                                      /* jsri */
        case 0x7F:                                      /* jsri */
          cpu.gr[15] = pc;
          cpu.gr[15] = pc;
          if (tracing)
          if (tracing)
            fprintf (stderr, "func call: r2 = %x r3 = %x r4 = %x r5 = %x r6 = %x r7 = %x\n",
            fprintf (stderr, "func call: r2 = %x r3 = %x r4 = %x r5 = %x r6 = %x r7 = %x\n",
                     cpu.gr[2], cpu.gr[3], cpu.gr[4], cpu.gr[5], cpu.gr[6], cpu.gr[7]);
                     cpu.gr[2], cpu.gr[3], cpu.gr[4], cpu.gr[5], cpu.gr[6], cpu.gr[7]);
        case 0x70:                                      /* jmpi */
        case 0x70:                                      /* jmpi */
          pc = rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC);
          pc = rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC);
          memops++;
          memops++;
          bonus_cycles++;
          bonus_cycles++;
          needfetch = 1;
          needfetch = 1;
          break;
          break;
 
 
        case 0x80: case 0x81: case 0x82: case 0x83:
        case 0x80: case 0x81: case 0x82: case 0x83:
        case 0x84: case 0x85: case 0x86: case 0x87:
        case 0x84: case 0x85: case 0x86: case 0x87:
        case 0x88: case 0x89: case 0x8A: case 0x8B:
        case 0x88: case 0x89: case 0x8A: case 0x8B:
        case 0x8C: case 0x8D: case 0x8E: case 0x8F:     /* ld */
        case 0x8C: case 0x8D: case 0x8E: case 0x8F:     /* ld */
          cpu.gr[RX] = rlat (cpu.gr[RD] + ((inst >> 2) & 0x003C));
          cpu.gr[RX] = rlat (cpu.gr[RD] + ((inst >> 2) & 0x003C));
          if (tracing)
          if (tracing)
            fprintf (stderr, "load reg %d from 0x%x with 0x%x",
            fprintf (stderr, "load reg %d from 0x%x with 0x%x",
                     RX,
                     RX,
                     cpu.gr[RD] + ((inst >> 2) & 0x003C), cpu.gr[RX]);
                     cpu.gr[RD] + ((inst >> 2) & 0x003C), cpu.gr[RX]);
          memops++;
          memops++;
          break;
          break;
        case 0x90: case 0x91: case 0x92: case 0x93:
        case 0x90: case 0x91: case 0x92: case 0x93:
        case 0x94: case 0x95: case 0x96: case 0x97:
        case 0x94: case 0x95: case 0x96: case 0x97:
        case 0x98: case 0x99: case 0x9A: case 0x9B:
        case 0x98: case 0x99: case 0x9A: case 0x9B:
        case 0x9C: case 0x9D: case 0x9E: case 0x9F:     /* st */
        case 0x9C: case 0x9D: case 0x9E: case 0x9F:     /* st */
          wlat (cpu.gr[RD] + ((inst >> 2) & 0x003C), cpu.gr[RX]);
          wlat (cpu.gr[RD] + ((inst >> 2) & 0x003C), cpu.gr[RX]);
          if (tracing)
          if (tracing)
            fprintf (stderr, "store reg %d (containing 0x%x) to 0x%x",
            fprintf (stderr, "store reg %d (containing 0x%x) to 0x%x",
                     RX, cpu.gr[RX],
                     RX, cpu.gr[RX],
                     cpu.gr[RD] + ((inst >> 2) & 0x003C));
                     cpu.gr[RD] + ((inst >> 2) & 0x003C));
          memops++;
          memops++;
          break;
          break;
        case 0xA0: case 0xA1: case 0xA2: case 0xA3:
        case 0xA0: case 0xA1: case 0xA2: case 0xA3:
        case 0xA4: case 0xA5: case 0xA6: case 0xA7:
        case 0xA4: case 0xA5: case 0xA6: case 0xA7:
        case 0xA8: case 0xA9: case 0xAA: case 0xAB:
        case 0xA8: case 0xA9: case 0xAA: case 0xAB:
        case 0xAC: case 0xAD: case 0xAE: case 0xAF:     /* ld.b */
        case 0xAC: case 0xAD: case 0xAE: case 0xAF:     /* ld.b */
          cpu.gr[RX] = rbat (cpu.gr[RD] + RS);
          cpu.gr[RX] = rbat (cpu.gr[RD] + RS);
          memops++;
          memops++;
          break;
          break;
        case 0xB0: case 0xB1: case 0xB2: case 0xB3:
        case 0xB0: case 0xB1: case 0xB2: case 0xB3:
        case 0xB4: case 0xB5: case 0xB6: case 0xB7:
        case 0xB4: case 0xB5: case 0xB6: case 0xB7:
        case 0xB8: case 0xB9: case 0xBA: case 0xBB:
        case 0xB8: case 0xB9: case 0xBA: case 0xBB:
        case 0xBC: case 0xBD: case 0xBE: case 0xBF:     /* st.b */
        case 0xBC: case 0xBD: case 0xBE: case 0xBF:     /* st.b */
          wbat (cpu.gr[RD] + RS, cpu.gr[RX]);
          wbat (cpu.gr[RD] + RS, cpu.gr[RX]);
          memops++;
          memops++;
          break;
          break;
        case 0xC0: case 0xC1: case 0xC2: case 0xC3:
        case 0xC0: case 0xC1: case 0xC2: case 0xC3:
        case 0xC4: case 0xC5: case 0xC6: case 0xC7:
        case 0xC4: case 0xC5: case 0xC6: case 0xC7:
        case 0xC8: case 0xC9: case 0xCA: case 0xCB:
        case 0xC8: case 0xC9: case 0xCA: case 0xCB:
        case 0xCC: case 0xCD: case 0xCE: case 0xCF:     /* ld.h */
        case 0xCC: case 0xCD: case 0xCE: case 0xCF:     /* ld.h */
          cpu.gr[RX] = rhat (cpu.gr[RD] + ((inst >> 3) & 0x001E));
          cpu.gr[RX] = rhat (cpu.gr[RD] + ((inst >> 3) & 0x001E));
          memops++;
          memops++;
          break;
          break;
        case 0xD0: case 0xD1: case 0xD2: case 0xD3:
        case 0xD0: case 0xD1: case 0xD2: case 0xD3:
        case 0xD4: case 0xD5: case 0xD6: case 0xD7:
        case 0xD4: case 0xD5: case 0xD6: case 0xD7:
        case 0xD8: case 0xD9: case 0xDA: case 0xDB:
        case 0xD8: case 0xD9: case 0xDA: case 0xDB:
        case 0xDC: case 0xDD: case 0xDE: case 0xDF:     /* st.h */
        case 0xDC: case 0xDD: case 0xDE: case 0xDF:     /* st.h */
          what (cpu.gr[RD] + ((inst >> 3) & 0x001E), cpu.gr[RX]);
          what (cpu.gr[RD] + ((inst >> 3) & 0x001E), cpu.gr[RX]);
          memops++;
          memops++;
          break;
          break;
        case 0xE8: case 0xE9: case 0xEA: case 0xEB:
        case 0xE8: case 0xE9: case 0xEA: case 0xEB:
        case 0xEC: case 0xED: case 0xEE: case 0xEF:     /* bf */
        case 0xEC: case 0xED: case 0xEE: case 0xEF:     /* bf */
          if (C_OFF())
          if (C_OFF())
            {
            {
              int disp;
              int disp;
              disp = inst & 0x03FF;
              disp = inst & 0x03FF;
              if (inst & 0x0400)
              if (inst & 0x0400)
                disp |= 0xFFFFFC00;
                disp |= 0xFFFFFC00;
              pc += disp<<1;
              pc += disp<<1;
              bonus_cycles++;
              bonus_cycles++;
              needfetch = 1;
              needfetch = 1;
            }
            }
          break;
          break;
        case 0xE0: case 0xE1: case 0xE2: case 0xE3:
        case 0xE0: case 0xE1: case 0xE2: case 0xE3:
        case 0xE4: case 0xE5: case 0xE6: case 0xE7:     /* bt */
        case 0xE4: case 0xE5: case 0xE6: case 0xE7:     /* bt */
          if (C_ON())
          if (C_ON())
            {
            {
              int disp;
              int disp;
              disp = inst & 0x03FF;
              disp = inst & 0x03FF;
              if (inst & 0x0400)
              if (inst & 0x0400)
                disp |= 0xFFFFFC00;
                disp |= 0xFFFFFC00;
              pc += disp<<1;
              pc += disp<<1;
              bonus_cycles++;
              bonus_cycles++;
              needfetch = 1;
              needfetch = 1;
            }
            }
          break;
          break;
 
 
        case 0xF8: case 0xF9: case 0xFA: case 0xFB:
        case 0xF8: case 0xF9: case 0xFA: case 0xFB:
        case 0xFC: case 0xFD: case 0xFE: case 0xFF:     /* bsr */
        case 0xFC: case 0xFD: case 0xFE: case 0xFF:     /* bsr */
          cpu.gr[15] = pc;
          cpu.gr[15] = pc;
        case 0xF0: case 0xF1: case 0xF2: case 0xF3:
        case 0xF0: case 0xF1: case 0xF2: case 0xF3:
        case 0xF4: case 0xF5: case 0xF6: case 0xF7:     /* br */
        case 0xF4: case 0xF5: case 0xF6: case 0xF7:     /* br */
          {
          {
            int disp;
            int disp;
            disp = inst & 0x03FF;
            disp = inst & 0x03FF;
            if (inst & 0x0400)
            if (inst & 0x0400)
              disp |= 0xFFFFFC00;
              disp |= 0xFFFFFC00;
            pc += disp<<1;
            pc += disp<<1;
            bonus_cycles++;
            bonus_cycles++;
            needfetch = 1;
            needfetch = 1;
          }
          }
          break;
          break;
 
 
        }
        }
 
 
      if (tracing)
      if (tracing)
        fprintf (stderr, "\n");
        fprintf (stderr, "\n");
 
 
      if (needfetch)
      if (needfetch)
        {
        {
          /* Do not let him fetch from a bad address! */
          /* Do not let him fetch from a bad address! */
          if (((uword)pc) >= cpu.asregs.msize)
          if (((uword)pc) >= cpu.asregs.msize)
            {
            {
              if (issue_messages)
              if (issue_messages)
                fprintf (stderr, "PC loaded at 0x%x is outside of available memory! (0x%x)\n", oldpc, pc);
                fprintf (stderr, "PC loaded at 0x%x is outside of available memory! (0x%x)\n", oldpc, pc);
 
 
              cpu.asregs.exception = SIGSEGV;
              cpu.asregs.exception = SIGSEGV;
            }
            }
          else
          else
            {
            {
              ibuf = rlat (pc & 0xFFFFFFFC);
              ibuf = rlat (pc & 0xFFFFFFFC);
              needfetch = 0;
              needfetch = 0;
            }
            }
        }
        }
    }
    }
  while (!cpu.asregs.exception);
  while (!cpu.asregs.exception);
 
 
  /* Hide away the things we've cached while executing.  */
  /* Hide away the things we've cached while executing.  */
  cpu.asregs.pc = pc;
  cpu.asregs.pc = pc;
  cpu.asregs.insts += insts;            /* instructions done ... */
  cpu.asregs.insts += insts;            /* instructions done ... */
  cpu.asregs.cycles += insts;           /* and each takes a cycle */
  cpu.asregs.cycles += insts;           /* and each takes a cycle */
  cpu.asregs.cycles += bonus_cycles;    /* and extra cycles for branches */
  cpu.asregs.cycles += bonus_cycles;    /* and extra cycles for branches */
  cpu.asregs.cycles += memops * memcycles;      /* and memop cycle delays */
  cpu.asregs.cycles += memops * memcycles;      /* and memop cycle delays */
 
 
  signal (SIGINT, sigsave);
  signal (SIGINT, sigsave);
}
}
 
 
 
 
int
int
sim_write (sd, addr, buffer, size)
sim_write (sd, addr, buffer, size)
     SIM_DESC sd;
     SIM_DESC sd;
     SIM_ADDR addr;
     SIM_ADDR addr;
     const unsigned char * buffer;
     const unsigned char * buffer;
     int size;
     int size;
{
{
  int i;
  int i;
  init_pointers ();
  init_pointers ();
 
 
  memcpy (& cpu.mem[addr], buffer, size);
  memcpy (& cpu.mem[addr], buffer, size);
 
 
  return size;
  return size;
}
}
 
 
int
int
sim_read (sd, addr, buffer, size)
sim_read (sd, addr, buffer, size)
     SIM_DESC sd;
     SIM_DESC sd;
     SIM_ADDR addr;
     SIM_ADDR addr;
     unsigned char * buffer;
     unsigned char * buffer;
     int size;
     int size;
{
{
  int i;
  int i;
  init_pointers ();
  init_pointers ();
 
 
  memcpy (buffer, & cpu.mem[addr], size);
  memcpy (buffer, & cpu.mem[addr], size);
 
 
  return size;
  return size;
}
}
 
 
 
 
int
int
sim_store_register (sd, rn, memory, length)
sim_store_register (sd, rn, memory, length)
     SIM_DESC sd;
     SIM_DESC sd;
     int rn;
     int rn;
     unsigned char * memory;
     unsigned char * memory;
     int length;
     int length;
{
{
  init_pointers ();
  init_pointers ();
 
 
  if (rn < NUM_MCORE_REGS && rn >= 0)
  if (rn < NUM_MCORE_REGS && rn >= 0)
    {
    {
      if (length == 4)
      if (length == 4)
        {
        {
          long ival;
          long ival;
 
 
          /* misalignment safe */
          /* misalignment safe */
          ival = mcore_extract_unsigned_integer (memory, 4);
          ival = mcore_extract_unsigned_integer (memory, 4);
          cpu.asints[rn] = ival;
          cpu.asints[rn] = ival;
        }
        }
 
 
      return 4;
      return 4;
    }
    }
  else
  else
    return 0;
    return 0;
}
}
 
 
int
int
sim_fetch_register (sd, rn, memory, length)
sim_fetch_register (sd, rn, memory, length)
     SIM_DESC sd;
     SIM_DESC sd;
     int rn;
     int rn;
     unsigned char * memory;
     unsigned char * memory;
     int length;
     int length;
{
{
  init_pointers ();
  init_pointers ();
 
 
  if (rn < NUM_MCORE_REGS && rn >= 0)
  if (rn < NUM_MCORE_REGS && rn >= 0)
    {
    {
      if (length == 4)
      if (length == 4)
        {
        {
          long ival = cpu.asints[rn];
          long ival = cpu.asints[rn];
 
 
          /* misalignment-safe */
          /* misalignment-safe */
          mcore_store_unsigned_integer (memory, 4, ival);
          mcore_store_unsigned_integer (memory, 4, ival);
        }
        }
 
 
      return 4;
      return 4;
    }
    }
  else
  else
    return 0;
    return 0;
}
}
 
 
 
 
int
int
sim_trace (sd)
sim_trace (sd)
     SIM_DESC sd;
     SIM_DESC sd;
{
{
  tracing = 1;
  tracing = 1;
 
 
  sim_resume (sd, 0, 0);
  sim_resume (sd, 0, 0);
 
 
  tracing = 0;
  tracing = 0;
 
 
  return 1;
  return 1;
}
}
 
 
void
void
sim_stop_reason (sd, reason, sigrc)
sim_stop_reason (sd, reason, sigrc)
     SIM_DESC sd;
     SIM_DESC sd;
     enum sim_stop * reason;
     enum sim_stop * reason;
     int * sigrc;
     int * sigrc;
{
{
  if (cpu.asregs.exception == SIGQUIT)
  if (cpu.asregs.exception == SIGQUIT)
    {
    {
      * reason = sim_exited;
      * reason = sim_exited;
      * sigrc = cpu.gr[PARM1];
      * sigrc = cpu.gr[PARM1];
    }
    }
  else
  else
    {
    {
      * reason = sim_stopped;
      * reason = sim_stopped;
      * sigrc = cpu.asregs.exception;
      * sigrc = cpu.asregs.exception;
    }
    }
}
}
 
 
 
 
int
int
sim_stop (sd)
sim_stop (sd)
     SIM_DESC sd;
     SIM_DESC sd;
{
{
  cpu.asregs.exception = SIGINT;
  cpu.asregs.exception = SIGINT;
  return 1;
  return 1;
}
}
 
 
 
 
void
void
sim_info (sd, verbose)
sim_info (sd, verbose)
     SIM_DESC sd;
     SIM_DESC sd;
     int verbose;
     int verbose;
{
{
#ifdef WATCHFUNCTIONS
#ifdef WATCHFUNCTIONS
  int w, wcyc;
  int w, wcyc;
#endif
#endif
  double virttime = cpu.asregs.cycles / 36.0e6;
  double virttime = cpu.asregs.cycles / 36.0e6;
 
 
  callback->printf_filtered (callback, "\n\n# instructions executed  %10d\n",
  callback->printf_filtered (callback, "\n\n# instructions executed  %10d\n",
                             cpu.asregs.insts);
                             cpu.asregs.insts);
  callback->printf_filtered (callback, "# cycles                 %10d\n",
  callback->printf_filtered (callback, "# cycles                 %10d\n",
                             cpu.asregs.cycles);
                             cpu.asregs.cycles);
  callback->printf_filtered (callback, "# pipeline stalls        %10d\n",
  callback->printf_filtered (callback, "# pipeline stalls        %10d\n",
                             cpu.asregs.stalls);
                             cpu.asregs.stalls);
  callback->printf_filtered (callback, "# virtual time taken     %10.4f\n",
  callback->printf_filtered (callback, "# virtual time taken     %10.4f\n",
                             virttime);
                             virttime);
 
 
#ifdef WATCHFUNCTIONS
#ifdef WATCHFUNCTIONS
  callback->printf_filtered (callback, "\nNumber of watched functions: %d\n",
  callback->printf_filtered (callback, "\nNumber of watched functions: %d\n",
                             ENDWL);
                             ENDWL);
 
 
  wcyc = 0;
  wcyc = 0;
 
 
  for (w = 1; w <= ENDWL; w++)
  for (w = 1; w <= ENDWL; w++)
    {
    {
      callback->printf_filtered (callback, "WL = %s %8x\n",WLstr[w],WL[w]);
      callback->printf_filtered (callback, "WL = %s %8x\n",WLstr[w],WL[w]);
      callback->printf_filtered (callback, "  calls = %d, cycles = %d\n",
      callback->printf_filtered (callback, "  calls = %d, cycles = %d\n",
                                 WLcnts[w],WLcyc[w]);
                                 WLcnts[w],WLcyc[w]);
 
 
      if (WLcnts[w] != 0)
      if (WLcnts[w] != 0)
        callback->printf_filtered (callback,
        callback->printf_filtered (callback,
                                   "  maxcpc = %d, mincpc = %d, avecpc = %d\n",
                                   "  maxcpc = %d, mincpc = %d, avecpc = %d\n",
                                   WLmax[w],WLmin[w],WLcyc[w]/WLcnts[w]);
                                   WLmax[w],WLmin[w],WLcyc[w]/WLcnts[w]);
      wcyc += WLcyc[w];
      wcyc += WLcyc[w];
    }
    }
 
 
  callback->printf_filtered (callback,
  callback->printf_filtered (callback,
                             "Total cycles for watched functions: %d\n",wcyc);
                             "Total cycles for watched functions: %d\n",wcyc);
#endif
#endif
}
}
 
 
struct  aout
struct  aout
{
{
  unsigned char  sa_machtype[2];
  unsigned char  sa_machtype[2];
  unsigned char  sa_magic[2];
  unsigned char  sa_magic[2];
  unsigned char  sa_tsize[4];
  unsigned char  sa_tsize[4];
  unsigned char  sa_dsize[4];
  unsigned char  sa_dsize[4];
  unsigned char  sa_bsize[4];
  unsigned char  sa_bsize[4];
  unsigned char  sa_syms[4];
  unsigned char  sa_syms[4];
  unsigned char  sa_entry[4];
  unsigned char  sa_entry[4];
  unsigned char  sa_trelo[4];
  unsigned char  sa_trelo[4];
  unsigned char  sa_drelo[4];
  unsigned char  sa_drelo[4];
} aout;
} aout;
 
 
#define LONG(x)         (((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
#define LONG(x)         (((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
#define SHORT(x)        (((x)[0]<<8)|(x)[1])
#define SHORT(x)        (((x)[0]<<8)|(x)[1])
 
 
SIM_DESC
SIM_DESC
sim_open (kind, cb, abfd, argv)
sim_open (kind, cb, abfd, argv)
     SIM_OPEN_KIND kind;
     SIM_OPEN_KIND kind;
     host_callback * cb;
     host_callback * cb;
     struct bfd * abfd;
     struct bfd * abfd;
     char ** argv;
     char ** argv;
{
{
  int osize = sim_memory_size;
  int osize = sim_memory_size;
  myname = argv[0];
  myname = argv[0];
  callback = cb;
  callback = cb;
 
 
  if (kind == SIM_OPEN_STANDALONE)
  if (kind == SIM_OPEN_STANDALONE)
    issue_messages = 1;
    issue_messages = 1;
 
 
  /* Discard and reacquire memory -- start with a clean slate.  */
  /* Discard and reacquire memory -- start with a clean slate.  */
  sim_size (1);         /* small */
  sim_size (1);         /* small */
  sim_size (osize);     /* and back again */
  sim_size (osize);     /* and back again */
 
 
  set_initial_gprs ();  /* Reset the GPR registers.  */
  set_initial_gprs ();  /* Reset the GPR registers.  */
 
 
  /* Fudge our descriptor for now.  */
  /* Fudge our descriptor for now.  */
  return (SIM_DESC) 1;
  return (SIM_DESC) 1;
}
}
 
 
void
void
sim_close (sd, quitting)
sim_close (sd, quitting)
     SIM_DESC sd;
     SIM_DESC sd;
     int quitting;
     int quitting;
{
{
  /* nothing to do */
  /* nothing to do */
}
}
 
 
SIM_RC
SIM_RC
sim_load (sd, prog, abfd, from_tty)
sim_load (sd, prog, abfd, from_tty)
     SIM_DESC sd;
     SIM_DESC sd;
     char * prog;
     char * prog;
     bfd * abfd;
     bfd * abfd;
     int from_tty;
     int from_tty;
{
{
  /* Do the right thing for ELF executables; this turns out to be
  /* Do the right thing for ELF executables; this turns out to be
     just about the right thing for any object format that:
     just about the right thing for any object format that:
       - we crack using BFD routines
       - we crack using BFD routines
       - follows the traditional UNIX text/data/bss layout
       - follows the traditional UNIX text/data/bss layout
       - calls the bss section ".bss".   */
       - calls the bss section ".bss".   */
 
 
  extern bfd * sim_load_file (); /* ??? Don't know where this should live.  */
  extern bfd * sim_load_file (); /* ??? Don't know where this should live.  */
  bfd * prog_bfd;
  bfd * prog_bfd;
 
 
  {
  {
    bfd * handle;
    bfd * handle;
    asection * s_bss;
    asection * s_bss;
    handle = bfd_openr (prog, 0);        /* could be "mcore" */
    handle = bfd_openr (prog, 0);        /* could be "mcore" */
 
 
    if (!handle)
    if (!handle)
      {
      {
        printf("``%s'' could not be opened.\n", prog);
        printf("``%s'' could not be opened.\n", prog);
        return SIM_RC_FAIL;
        return SIM_RC_FAIL;
      }
      }
 
 
    /* Makes sure that we have an object file, also cleans gets the
    /* Makes sure that we have an object file, also cleans gets the
       section headers in place.  */
       section headers in place.  */
    if (!bfd_check_format (handle, bfd_object))
    if (!bfd_check_format (handle, bfd_object))
      {
      {
        /* wasn't an object file */
        /* wasn't an object file */
        bfd_close (handle);
        bfd_close (handle);
        printf ("``%s'' is not appropriate object file.\n", prog);
        printf ("``%s'' is not appropriate object file.\n", prog);
        return SIM_RC_FAIL;
        return SIM_RC_FAIL;
      }
      }
 
 
    /* Look for that bss section.  */
    /* Look for that bss section.  */
    s_bss = bfd_get_section_by_name (handle, ".bss");
    s_bss = bfd_get_section_by_name (handle, ".bss");
 
 
    if (!s_bss)
    if (!s_bss)
      {
      {
        printf("``%s'' has no bss section.\n", prog);
        printf("``%s'' has no bss section.\n", prog);
        return SIM_RC_FAIL;
        return SIM_RC_FAIL;
      }
      }
 
 
    /* Appropriately paranoid would check that we have
    /* Appropriately paranoid would check that we have
       a traditional text/data/bss ordering within memory.  */
       a traditional text/data/bss ordering within memory.  */
 
 
    /* figure the end of the bss section */
    /* figure the end of the bss section */
#if 0
#if 0
    printf ("bss section at 0x%08x for 0x%08x bytes\n",
    printf ("bss section at 0x%08x for 0x%08x bytes\n",
            (unsigned long) bfd_get_section_vma (handle, s_bss),
            (unsigned long) bfd_get_section_vma (handle, s_bss),
            (unsigned long) bfd_section_size (handle, s_bss));
            (unsigned long) bfd_section_size (handle, s_bss));
#endif
#endif
    heap_ptr = ((unsigned long) bfd_get_section_vma (handle, s_bss)
    heap_ptr = ((unsigned long) bfd_get_section_vma (handle, s_bss)
                + (unsigned long) bfd_section_size (handle, s_bss));
                + (unsigned long) bfd_section_size (handle, s_bss));
 
 
    /* Clean up after ourselves.  */
    /* Clean up after ourselves.  */
    bfd_close (handle);
    bfd_close (handle);
 
 
    /* XXX: do we need to free the s_bss and handle structures? */
    /* XXX: do we need to free the s_bss and handle structures? */
  }
  }
 
 
  /* from sh -- dac */
  /* from sh -- dac */
  prog_bfd = sim_load_file (sd, myname, callback, prog, abfd,
  prog_bfd = sim_load_file (sd, myname, callback, prog, abfd,
                            sim_kind == SIM_OPEN_DEBUG,
                            sim_kind == SIM_OPEN_DEBUG,
                            0, sim_write);
                            0, sim_write);
  if (prog_bfd == NULL)
  if (prog_bfd == NULL)
    return SIM_RC_FAIL;
    return SIM_RC_FAIL;
 
 
  target_big_endian = bfd_big_endian (prog_bfd);
  target_big_endian = bfd_big_endian (prog_bfd);
 
 
  if (abfd == NULL)
  if (abfd == NULL)
    bfd_close (prog_bfd);
    bfd_close (prog_bfd);
 
 
  return SIM_RC_OK;
  return SIM_RC_OK;
}
}
 
 
SIM_RC
SIM_RC
sim_create_inferior (sd, prog_bfd, argv, env)
sim_create_inferior (sd, prog_bfd, argv, env)
     SIM_DESC sd;
     SIM_DESC sd;
     struct bfd * prog_bfd;
     struct bfd * prog_bfd;
     char ** argv;
     char ** argv;
     char ** env;
     char ** env;
{
{
  char ** avp;
  char ** avp;
  int nargs = 0;
  int nargs = 0;
  int nenv = 0;
  int nenv = 0;
  int s_length;
  int s_length;
  int l;
  int l;
  unsigned long strings;
  unsigned long strings;
  unsigned long pointers;
  unsigned long pointers;
  unsigned long hi_stack;
  unsigned long hi_stack;
 
 
 
 
  /* Set the initial register set.  */
  /* Set the initial register set.  */
  l = issue_messages;
  l = issue_messages;
  issue_messages = 0;
  issue_messages = 0;
  set_initial_gprs ();
  set_initial_gprs ();
  issue_messages = l;
  issue_messages = l;
 
 
  hi_stack = cpu.asregs.msize - 4;
  hi_stack = cpu.asregs.msize - 4;
  cpu.asregs.pc = bfd_get_start_address (prog_bfd);
  cpu.asregs.pc = bfd_get_start_address (prog_bfd);
 
 
  /* Calculate the argument and environment strings.  */
  /* Calculate the argument and environment strings.  */
  s_length = 0;
  s_length = 0;
  nargs = 0;
  nargs = 0;
  avp = argv;
  avp = argv;
  while (avp && *avp)
  while (avp && *avp)
    {
    {
      l = strlen (*avp) + 1;    /* include the null */
      l = strlen (*avp) + 1;    /* include the null */
      s_length += (l + 3) & ~3; /* make it a 4 byte boundary */
      s_length += (l + 3) & ~3; /* make it a 4 byte boundary */
      nargs++; avp++;
      nargs++; avp++;
    }
    }
 
 
  nenv = 0;
  nenv = 0;
  avp = env;
  avp = env;
  while (avp && *avp)
  while (avp && *avp)
    {
    {
      l = strlen (*avp) + 1;    /* include the null */
      l = strlen (*avp) + 1;    /* include the null */
      s_length += (l + 3) & ~ 3;/* make it a 4 byte boundary */
      s_length += (l + 3) & ~ 3;/* make it a 4 byte boundary */
      nenv++; avp++;
      nenv++; avp++;
    }
    }
 
 
  /* Claim some memory for the pointers and strings. */
  /* Claim some memory for the pointers and strings. */
  pointers = hi_stack - sizeof(word) * (nenv+1+nargs+1);
  pointers = hi_stack - sizeof(word) * (nenv+1+nargs+1);
  pointers &= ~3;               /* must be 4-byte aligned */
  pointers &= ~3;               /* must be 4-byte aligned */
  cpu.gr[0] = pointers;
  cpu.gr[0] = pointers;
 
 
  strings = cpu.gr[0] - s_length;
  strings = cpu.gr[0] - s_length;
  strings &= ~3;                /* want to make it 4-byte aligned */
  strings &= ~3;                /* want to make it 4-byte aligned */
  cpu.gr[0] = strings;
  cpu.gr[0] = strings;
  /* dac fix, the stack address must be 8-byte aligned! */
  /* dac fix, the stack address must be 8-byte aligned! */
  cpu.gr[0] = cpu.gr[0] - cpu.gr[0] % 8;
  cpu.gr[0] = cpu.gr[0] - cpu.gr[0] % 8;
 
 
  /* Loop through the arguments and fill them in.  */
  /* Loop through the arguments and fill them in.  */
  cpu.gr[PARM1] = nargs;
  cpu.gr[PARM1] = nargs;
  if (nargs == 0)
  if (nargs == 0)
    {
    {
      /* No strings to fill in.  */
      /* No strings to fill in.  */
      cpu.gr[PARM2] = 0;
      cpu.gr[PARM2] = 0;
    }
    }
  else
  else
    {
    {
      cpu.gr[PARM2] = pointers;
      cpu.gr[PARM2] = pointers;
      avp = argv;
      avp = argv;
      while (avp && *avp)
      while (avp && *avp)
        {
        {
          /* Save where we're putting it.  */
          /* Save where we're putting it.  */
          wlat (pointers, strings);
          wlat (pointers, strings);
 
 
          /* Copy the string.  */
          /* Copy the string.  */
          l = strlen (* avp) + 1;
          l = strlen (* avp) + 1;
          strcpy ((char *)(cpu.mem + strings), *avp);
          strcpy ((char *)(cpu.mem + strings), *avp);
 
 
          /* Bump the pointers.  */
          /* Bump the pointers.  */
          avp++;
          avp++;
          pointers += 4;
          pointers += 4;
          strings += l+1;
          strings += l+1;
        }
        }
 
 
      /* A null to finish the list.  */
      /* A null to finish the list.  */
      wlat (pointers, 0);
      wlat (pointers, 0);
      pointers += 4;
      pointers += 4;
    }
    }
 
 
  /* Now do the environment pointers.  */
  /* Now do the environment pointers.  */
  if (nenv == 0)
  if (nenv == 0)
    {
    {
      /* No strings to fill in.  */
      /* No strings to fill in.  */
      cpu.gr[PARM3] = 0;
      cpu.gr[PARM3] = 0;
    }
    }
  else
  else
    {
    {
      cpu.gr[PARM3] = pointers;
      cpu.gr[PARM3] = pointers;
      avp = env;
      avp = env;
 
 
      while (avp && *avp)
      while (avp && *avp)
        {
        {
          /* Save where we're putting it.  */
          /* Save where we're putting it.  */
          wlat (pointers, strings);
          wlat (pointers, strings);
 
 
          /* Copy the string.  */
          /* Copy the string.  */
          l = strlen (* avp) + 1;
          l = strlen (* avp) + 1;
          strcpy ((char *)(cpu.mem + strings), *avp);
          strcpy ((char *)(cpu.mem + strings), *avp);
 
 
          /* Bump the pointers.  */
          /* Bump the pointers.  */
          avp++;
          avp++;
          pointers += 4;
          pointers += 4;
          strings += l+1;
          strings += l+1;
        }
        }
 
 
      /* A null to finish the list.  */
      /* A null to finish the list.  */
      wlat (pointers, 0);
      wlat (pointers, 0);
      pointers += 4;
      pointers += 4;
    }
    }
 
 
  return SIM_RC_OK;
  return SIM_RC_OK;
}
}
 
 
void
void
sim_kill (sd)
sim_kill (sd)
     SIM_DESC sd;
     SIM_DESC sd;
{
{
  /* nothing to do */
  /* nothing to do */
}
}
 
 
void
void
sim_do_command (sd, cmd)
sim_do_command (sd, cmd)
     SIM_DESC sd;
     SIM_DESC sd;
     char * cmd;
     char * cmd;
{
{
  /* Nothing there yet; it's all an error.  */
  /* Nothing there yet; it's all an error.  */
 
 
  if (cmd != NULL)
  if (cmd != NULL)
    {
    {
      char ** simargv = buildargv (cmd);
      char ** simargv = buildargv (cmd);
 
 
      if (strcmp (simargv[0], "watch") == 0)
      if (strcmp (simargv[0], "watch") == 0)
        {
        {
          if ((simargv[1] == NULL) || (simargv[2] == NULL))
          if ((simargv[1] == NULL) || (simargv[2] == NULL))
            {
            {
              fprintf (stderr, "Error: missing argument to watch cmd.\n");
              fprintf (stderr, "Error: missing argument to watch cmd.\n");
              return;
              return;
            }
            }
 
 
          ENDWL++;
          ENDWL++;
 
 
          WL[ENDWL] = strtol (simargv[2], NULL, 0);
          WL[ENDWL] = strtol (simargv[2], NULL, 0);
          WLstr[ENDWL] = strdup (simargv[1]);
          WLstr[ENDWL] = strdup (simargv[1]);
          fprintf (stderr, "Added %s (%x) to watchlist, #%d\n",WLstr[ENDWL],
          fprintf (stderr, "Added %s (%x) to watchlist, #%d\n",WLstr[ENDWL],
                   WL[ENDWL], ENDWL);
                   WL[ENDWL], ENDWL);
 
 
        }
        }
      else if (strcmp (simargv[0], "dumpmem") == 0)
      else if (strcmp (simargv[0], "dumpmem") == 0)
        {
        {
          unsigned char * p;
          unsigned char * p;
          FILE * dumpfile;
          FILE * dumpfile;
 
 
          if (simargv[1] == NULL)
          if (simargv[1] == NULL)
            fprintf (stderr, "Error: missing argument to dumpmem cmd.\n");
            fprintf (stderr, "Error: missing argument to dumpmem cmd.\n");
 
 
          fprintf (stderr, "Writing dumpfile %s...",simargv[1]);
          fprintf (stderr, "Writing dumpfile %s...",simargv[1]);
 
 
          dumpfile = fopen (simargv[1], "w");
          dumpfile = fopen (simargv[1], "w");
          p = cpu.mem;
          p = cpu.mem;
          fwrite (p, cpu.asregs.msize-1, 1, dumpfile);
          fwrite (p, cpu.asregs.msize-1, 1, dumpfile);
          fclose (dumpfile);
          fclose (dumpfile);
 
 
          fprintf (stderr, "done.\n");
          fprintf (stderr, "done.\n");
        }
        }
      else if (strcmp (simargv[0], "clearstats") == 0)
      else if (strcmp (simargv[0], "clearstats") == 0)
        {
        {
          cpu.asregs.cycles = 0;
          cpu.asregs.cycles = 0;
          cpu.asregs.insts = 0;
          cpu.asregs.insts = 0;
          cpu.asregs.stalls = 0;
          cpu.asregs.stalls = 0;
          ENDWL = 0;
          ENDWL = 0;
        }
        }
      else if (strcmp (simargv[0], "verbose") == 0)
      else if (strcmp (simargv[0], "verbose") == 0)
        {
        {
          issue_messages = 2;
          issue_messages = 2;
        }
        }
      else
      else
        {
        {
          fprintf (stderr,"Error: \"%s\" is not a valid M.CORE simulator command.\n",
          fprintf (stderr,"Error: \"%s\" is not a valid M.CORE simulator command.\n",
                   cmd);
                   cmd);
        }
        }
    }
    }
  else
  else
    {
    {
      fprintf (stderr, "M.CORE sim commands: \n");
      fprintf (stderr, "M.CORE sim commands: \n");
      fprintf (stderr, "  watch <funcname> <addr>\n");
      fprintf (stderr, "  watch <funcname> <addr>\n");
      fprintf (stderr, "  dumpmem <filename>\n");
      fprintf (stderr, "  dumpmem <filename>\n");
      fprintf (stderr, "  clearstats\n");
      fprintf (stderr, "  clearstats\n");
      fprintf (stderr, "  verbose\n");
      fprintf (stderr, "  verbose\n");
    }
    }
}
}
 
 
void
void
sim_set_callbacks (ptr)
sim_set_callbacks (ptr)
     host_callback * ptr;
     host_callback * ptr;
{
{
  callback = ptr;
  callback = ptr;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.