OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [or1ksim/] [peripheral/] [dma.c] - Diff between revs 19 and 224

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 19 Rev 224
/* dma.c -- Simulation of DMA
/* dma.c -- Simulation of DMA
 
 
   Copyright (C) 2001 by Erez Volk, erez@opencores.org
   Copyright (C) 2001 by Erez Volk, erez@opencores.org
   Copyright (C) 2008 Embecosm Limited
   Copyright (C) 2008 Embecosm Limited
 
 
   Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
   Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
 
 
   This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator.
   This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator.
 
 
   This program is free software; you can redistribute it and/or modify it
   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the Free
   under the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3 of the License, or (at your option)
   Software Foundation; either version 3 of the License, or (at your option)
   any later version.
   any later version.
 
 
   This program is distributed in the hope that it will be useful, but WITHOUT
   This program is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.
   more details.
 
 
   You should have received a copy of the GNU General Public License along
   You should have received a copy of the GNU General Public License along
   with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
/* This program is commented throughout in a fashion suitable for processing
/* This program is commented throughout in a fashion suitable for processing
   with Doxygen. */
   with Doxygen. */
 
 
/* This simulation of the DMA core is not meant to be full.  It is written
/* This simulation of the DMA core is not meant to be full.  It is written
   only to allow simulating the Ethernet core.  Of course, if anyone feels
   only to allow simulating the Ethernet core.  Of course, if anyone feels
   like perfecting it, feel free...  */
   like perfecting it, feel free...  */
 
 
 
 
/* Autoconf and/or portability configuration */
/* Autoconf and/or portability configuration */
#include "config.h"
#include "config.h"
#include "port.h"
#include "port.h"
 
 
/* System includes */
/* System includes */
#include <stdlib.h>
#include <stdlib.h>
 
 
/* Package includes */
/* Package includes */
#include "dma.h"
#include "dma.h"
#include "fields.h"
#include "fields.h"
#include "abstract.h"
#include "abstract.h"
#include "sched.h"
#include "sched.h"
#include "pic.h"
#include "pic.h"
#include "toplevel-support.h"
#include "toplevel-support.h"
#include "sim-cmd.h"
#include "sim-cmd.h"
 
 
 
 
/* We keep a copy of all our controllers because we have to export an interface
/* We keep a copy of all our controllers because we have to export an interface
 * to other peripherals eg. ethernet */
 * to other peripherals eg. ethernet */
static struct dma_controller *dmas = NULL;
static struct dma_controller *dmas = NULL;
 
 
static unsigned long dma_read_ch_csr (struct dma_channel *channel);
static unsigned long dma_read_ch_csr (struct dma_channel *channel);
static void dma_write_ch_csr (struct dma_channel *channel,
static void dma_write_ch_csr (struct dma_channel *channel,
                              unsigned long value);
                              unsigned long value);
static void dma_load_descriptor (struct dma_channel *channel);
static void dma_load_descriptor (struct dma_channel *channel);
static void dma_init_transfer (struct dma_channel *channel);
static void dma_init_transfer (struct dma_channel *channel);
static void dma_channel_terminate_transfer (struct dma_channel *channel,
static void dma_channel_terminate_transfer (struct dma_channel *channel,
                                            int generate_interrupt);
                                            int generate_interrupt);
 
 
static void dma_channel_clock (void *dat);
static void dma_channel_clock (void *dat);
 
 
static void masked_increase (oraddr_t * value, unsigned long mask);
static void masked_increase (oraddr_t * value, unsigned long mask);
 
 
#define CHANNEL_ND_I(ch) (TEST_FLAG(ch->regs.csr,DMA_CH_CSR,MODE) && TEST_FLAG(ch->regs.csr,DMA_CH_CSR,USE_ED) && ch->dma_nd_i)
#define CHANNEL_ND_I(ch) (TEST_FLAG(ch->regs.csr,DMA_CH_CSR,MODE) && TEST_FLAG(ch->regs.csr,DMA_CH_CSR,USE_ED) && ch->dma_nd_i)
 
 
 
 
/* Reset. Initializes all registers to default and places devices in memory address space. */
/* Reset. Initializes all registers to default and places devices in memory address space. */
static void
static void
dma_reset (void *dat)
dma_reset (void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  unsigned channel_number;
  unsigned channel_number;
 
 
  memset (dma->ch, 0, sizeof (dma->ch));
  memset (dma->ch, 0, sizeof (dma->ch));
 
 
  dma->regs.csr = 0;
  dma->regs.csr = 0;
  dma->regs.int_msk_a = 0;
  dma->regs.int_msk_a = 0;
  dma->regs.int_msk_b = 0;
  dma->regs.int_msk_b = 0;
  dma->regs.int_src_a = 0;
  dma->regs.int_src_a = 0;
  dma->regs.int_src_b = 0;
  dma->regs.int_src_b = 0;
 
 
  for (channel_number = 0; channel_number < DMA_NUM_CHANNELS;
  for (channel_number = 0; channel_number < DMA_NUM_CHANNELS;
       ++channel_number)
       ++channel_number)
    {
    {
      dma->ch[channel_number].controller = dma;
      dma->ch[channel_number].controller = dma;
      dma->ch[channel_number].channel_number = channel_number;
      dma->ch[channel_number].channel_number = channel_number;
      dma->ch[channel_number].channel_mask = 1LU << channel_number;
      dma->ch[channel_number].channel_mask = 1LU << channel_number;
      dma->ch[channel_number].regs.am0 = dma->ch[channel_number].regs.am1 =
      dma->ch[channel_number].regs.am0 = dma->ch[channel_number].regs.am1 =
        0xFFFFFFFC;
        0xFFFFFFFC;
    }
    }
}
}
 
 
/* Print register values on stdout */
/* Print register values on stdout */
static void
static void
dma_status (void *dat)
dma_status (void *dat)
{
{
  unsigned j;
  unsigned j;
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
 
 
  if (dma->baseaddr == 0)
  if (dma->baseaddr == 0)
    return;
    return;
 
 
  PRINTF ("\nDMA controller at 0x%" PRIxADDR ":\n", dma->baseaddr);
  PRINTF ("\nDMA controller at 0x%" PRIxADDR ":\n", dma->baseaddr);
  PRINTF ("CSR       : 0x%08lX\n", dma->regs.csr);
  PRINTF ("CSR       : 0x%08lX\n", dma->regs.csr);
  PRINTF ("INT_MSK_A : 0x%08lX\n", dma->regs.int_msk_a);
  PRINTF ("INT_MSK_A : 0x%08lX\n", dma->regs.int_msk_a);
  PRINTF ("INT_MSK_B : 0x%08lX\n", dma->regs.int_msk_b);
  PRINTF ("INT_MSK_B : 0x%08lX\n", dma->regs.int_msk_b);
  PRINTF ("INT_SRC_A : 0x%08lX\n", dma->regs.int_src_a);
  PRINTF ("INT_SRC_A : 0x%08lX\n", dma->regs.int_src_a);
  PRINTF ("INT_SRC_B : 0x%08lX\n", dma->regs.int_src_b);
  PRINTF ("INT_SRC_B : 0x%08lX\n", dma->regs.int_src_b);
 
 
  for (j = 0; j < DMA_NUM_CHANNELS; ++j)
  for (j = 0; j < DMA_NUM_CHANNELS; ++j)
    {
    {
      struct dma_channel *channel = &(dma->ch[j]);
      struct dma_channel *channel = &(dma->ch[j]);
      if (!channel->referenced)
      if (!channel->referenced)
        continue;
        continue;
      PRINTF ("CH%u_CSR   : 0x%08lX\n", j, channel->regs.csr);
      PRINTF ("CH%u_CSR   : 0x%08lX\n", j, channel->regs.csr);
      PRINTF ("CH%u_SZ    : 0x%08lX\n", j, channel->regs.sz);
      PRINTF ("CH%u_SZ    : 0x%08lX\n", j, channel->regs.sz);
      PRINTF ("CH%u_A0    : 0x%08lX\n", j, channel->regs.a0);
      PRINTF ("CH%u_A0    : 0x%08lX\n", j, channel->regs.a0);
      PRINTF ("CH%u_AM0   : 0x%08lX\n", j, channel->regs.am0);
      PRINTF ("CH%u_AM0   : 0x%08lX\n", j, channel->regs.am0);
      PRINTF ("CH%u_A1    : 0x%08lX\n", j, channel->regs.a1);
      PRINTF ("CH%u_A1    : 0x%08lX\n", j, channel->regs.a1);
      PRINTF ("CH%u_AM1   : 0x%08lX\n", j, channel->regs.am1);
      PRINTF ("CH%u_AM1   : 0x%08lX\n", j, channel->regs.am1);
      PRINTF ("CH%u_DESC  : 0x%08lX\n", j, channel->regs.desc);
      PRINTF ("CH%u_DESC  : 0x%08lX\n", j, channel->regs.desc);
      PRINTF ("CH%u_SWPTR : 0x%08lX\n", j, channel->regs.swptr);
      PRINTF ("CH%u_SWPTR : 0x%08lX\n", j, channel->regs.swptr);
    }
    }
}
}
 
 
 
 
/* Read a register */
/* Read a register */
static uint32_t
static uint32_t
dma_read32 (oraddr_t addr, void *dat)
dma_read32 (oraddr_t addr, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  uint32_t ret;
  uint32_t ret;
 
 
  if (addr < DMA_CH_BASE)
  if (addr < DMA_CH_BASE)
    {
    {
      /* case of global (not per-channel) registers */
      /* case of global (not per-channel) registers */
      switch (addr)
      switch (addr)
        {
        {
        case DMA_CSR:
        case DMA_CSR:
          return dma->regs.csr;
          return dma->regs.csr;
        case DMA_INT_MSK_A:
        case DMA_INT_MSK_A:
          return dma->regs.int_msk_a;
          return dma->regs.int_msk_a;
        case DMA_INT_MSK_B:
        case DMA_INT_MSK_B:
          return dma->regs.int_msk_b;
          return dma->regs.int_msk_b;
        case DMA_INT_SRC_A:
        case DMA_INT_SRC_A:
          if (dma->regs.int_src_a)
          if (dma->regs.int_src_a)
            clear_interrupt (dma->irq);
            clear_interrupt (dma->irq);
          ret = dma->regs.int_src_a;
          ret = dma->regs.int_src_a;
          dma->regs.int_src_a = 0;
          dma->regs.int_src_a = 0;
          return ret;
          return ret;
        case DMA_INT_SRC_B:
        case DMA_INT_SRC_B:
          return dma->regs.int_src_b;
          return dma->regs.int_src_b;
        default:
        default:
          fprintf (stderr,
          fprintf (stderr,
                   "dma_read32( 0x%" PRIxADDR " ): Illegal register\n",
                   "dma_read32( 0x%" PRIxADDR " ): Illegal register\n",
                   addr + dma->baseaddr);
                   addr + dma->baseaddr);
          return 0;
          return 0;
        }
        }
    }
    }
  else
  else
    {
    {
      /* case of per-channel registers */
      /* case of per-channel registers */
      unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
      unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
      addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
      addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
      switch (addr)
      switch (addr)
        {
        {
        case DMA_CH_CSR:
        case DMA_CH_CSR:
          return dma_read_ch_csr (&(dma->ch[chno]));
          return dma_read_ch_csr (&(dma->ch[chno]));
        case DMA_CH_SZ:
        case DMA_CH_SZ:
          return dma->ch[chno].regs.sz;
          return dma->ch[chno].regs.sz;
        case DMA_CH_A0:
        case DMA_CH_A0:
          return dma->ch[chno].regs.a0;
          return dma->ch[chno].regs.a0;
        case DMA_CH_AM0:
        case DMA_CH_AM0:
          return dma->ch[chno].regs.am0;
          return dma->ch[chno].regs.am0;
        case DMA_CH_A1:
        case DMA_CH_A1:
          return dma->ch[chno].regs.a1;
          return dma->ch[chno].regs.a1;
        case DMA_CH_AM1:
        case DMA_CH_AM1:
          return dma->ch[chno].regs.am1;
          return dma->ch[chno].regs.am1;
        case DMA_CH_DESC:
        case DMA_CH_DESC:
          return dma->ch[chno].regs.desc;
          return dma->ch[chno].regs.desc;
        case DMA_CH_SWPTR:
        case DMA_CH_SWPTR:
          return dma->ch[chno].regs.swptr;
          return dma->ch[chno].regs.swptr;
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* Handle read from a channel CSR */
/* Handle read from a channel CSR */
static unsigned long
static unsigned long
dma_read_ch_csr (struct dma_channel *channel)
dma_read_ch_csr (struct dma_channel *channel)
{
{
  unsigned long result = channel->regs.csr;
  unsigned long result = channel->regs.csr;
 
 
  /* before returning, clear all relevant bits */
  /* before returning, clear all relevant bits */
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, INT_CHUNK_DONE);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, INT_CHUNK_DONE);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, INT_DONE);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, INT_DONE);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, INT_ERR);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, INT_ERR);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
 
 
  return result;
  return result;
}
}
 
 
 
 
 
 
/* Write a register */
/* Write a register */
static void
static void
dma_write32 (oraddr_t addr, uint32_t value, void *dat)
dma_write32 (oraddr_t addr, uint32_t value, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
 
 
  /* case of global (not per-channel) registers */
  /* case of global (not per-channel) registers */
  if (addr < DMA_CH_BASE)
  if (addr < DMA_CH_BASE)
    {
    {
      switch (addr)
      switch (addr)
        {
        {
        case DMA_CSR:
        case DMA_CSR:
          if (TEST_FLAG (value, DMA_CSR, PAUSE))
          if (TEST_FLAG (value, DMA_CSR, PAUSE))
            fprintf (stderr, "dma: PAUSE not implemented\n");
            fprintf (stderr, "dma: PAUSE not implemented\n");
          break;
          break;
 
 
        case DMA_INT_MSK_A:
        case DMA_INT_MSK_A:
          dma->regs.int_msk_a = value;
          dma->regs.int_msk_a = value;
          break;
          break;
        case DMA_INT_MSK_B:
        case DMA_INT_MSK_B:
          dma->regs.int_msk_b = value;
          dma->regs.int_msk_b = value;
          break;
          break;
        case DMA_INT_SRC_A:
        case DMA_INT_SRC_A:
          dma->regs.int_src_a = value;
          dma->regs.int_src_a = value;
          break;
          break;
        case DMA_INT_SRC_B:
        case DMA_INT_SRC_B:
          dma->regs.int_src_b = value;
          dma->regs.int_src_b = value;
          break;
          break;
        default:
        default:
          fprintf (stderr,
          fprintf (stderr,
                   "dma_write32( 0x%" PRIxADDR " ): Illegal register\n",
                   "dma_write32( 0x%" PRIxADDR " ): Illegal register\n",
                   addr + dma->baseaddr);
                   addr + dma->baseaddr);
          return;
          return;
        }
        }
    }
    }
  else
  else
    {
    {
      /* case of per-channel registers */
      /* case of per-channel registers */
      unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
      unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
      struct dma_channel *channel = &(dma->ch[chno]);
      struct dma_channel *channel = &(dma->ch[chno]);
      channel->referenced = 1;
      channel->referenced = 1;
      addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
      addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
      switch (addr)
      switch (addr)
        {
        {
        case DMA_CSR:
        case DMA_CSR:
          dma_write_ch_csr (&(dma->ch[chno]), value);
          dma_write_ch_csr (&(dma->ch[chno]), value);
          break;
          break;
        case DMA_CH_SZ:
        case DMA_CH_SZ:
          channel->regs.sz = value;
          channel->regs.sz = value;
          break;
          break;
        case DMA_CH_A0:
        case DMA_CH_A0:
          channel->regs.a0 = value;
          channel->regs.a0 = value;
          break;
          break;
        case DMA_CH_AM0:
        case DMA_CH_AM0:
          channel->regs.am0 = value;
          channel->regs.am0 = value;
          break;
          break;
        case DMA_CH_A1:
        case DMA_CH_A1:
          channel->regs.a1 = value;
          channel->regs.a1 = value;
          break;
          break;
        case DMA_CH_AM1:
        case DMA_CH_AM1:
          channel->regs.am1 = value;
          channel->regs.am1 = value;
          break;
          break;
        case DMA_CH_DESC:
        case DMA_CH_DESC:
          channel->regs.desc = value;
          channel->regs.desc = value;
          break;
          break;
        case DMA_CH_SWPTR:
        case DMA_CH_SWPTR:
          channel->regs.swptr = value;
          channel->regs.swptr = value;
          break;
          break;
        }
        }
    }
    }
}
}
 
 
 
 
/* Write a channel CSR
/* Write a channel CSR
 * This ensures only the writable bits are modified.
 * This ensures only the writable bits are modified.
 */
 */
static void
static void
dma_write_ch_csr (struct dma_channel *channel, unsigned long value)
dma_write_ch_csr (struct dma_channel *channel, unsigned long value)
{
{
  /* Check if we should *start* a transfer */
  /* Check if we should *start* a transfer */
  if (!TEST_FLAG (channel->regs.csr, DMA_CH_CSR, CH_EN) &&
  if (!TEST_FLAG (channel->regs.csr, DMA_CH_CSR, CH_EN) &&
      TEST_FLAG (value, DMA_CH_CSR, CH_EN))
      TEST_FLAG (value, DMA_CH_CSR, CH_EN))
    SCHED_ADD (dma_channel_clock, channel, 1);
    SCHED_ADD (dma_channel_clock, channel, 1);
  else if (!TEST_FLAG (value, DMA_CH_CSR, CH_EN))
  else if (!TEST_FLAG (value, DMA_CH_CSR, CH_EN))
    /* The CH_EN flag is clear, check if we have a transfer in progress and
    /* The CH_EN flag is clear, check if we have a transfer in progress and
     * clear it */
     * clear it */
    SCHED_FIND_REMOVE (dma_channel_clock, channel);
    SCHED_FIND_REMOVE (dma_channel_clock, channel);
 
 
  /* Copy the writable bits to the channel CSR */
  /* Copy the writable bits to the channel CSR */
  channel->regs.csr &= ~DMA_CH_CSR_WRITE_MASK;
  channel->regs.csr &= ~DMA_CH_CSR_WRITE_MASK;
  channel->regs.csr |= value & DMA_CH_CSR_WRITE_MASK;
  channel->regs.csr |= value & DMA_CH_CSR_WRITE_MASK;
}
}
 
 
 
 
 
 
/* Clock tick for one channel on one DMA controller.
/* Clock tick for one channel on one DMA controller.
 * This does the actual "DMA" operation.
 * This does the actual "DMA" operation.
 * One chunk is transferred per clock.
 * One chunk is transferred per clock.
 */
 */
static void
static void
dma_channel_clock (void *dat)
dma_channel_clock (void *dat)
{
{
  struct dma_channel *channel = dat;
  struct dma_channel *channel = dat;
 
 
  /* Do we need to abort? */
  /* Do we need to abort? */
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, STOP))
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, STOP))
    {
    {
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, CH_EN);
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, CH_EN);
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY);
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY);
      SET_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
      SET_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
 
 
      if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, INE_ERR) &&
      if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, INE_ERR) &&
          (channel->controller->regs.int_msk_a & channel->channel_mask))
          (channel->controller->regs.int_msk_a & channel->channel_mask))
        {
        {
          SET_FLAG (channel->regs.csr, DMA_CH_CSR, INT_ERR);
          SET_FLAG (channel->regs.csr, DMA_CH_CSR, INT_ERR);
          channel->controller->regs.int_src_a = channel->channel_mask;
          channel->controller->regs.int_src_a = channel->channel_mask;
          report_interrupt (channel->controller->irq);
          report_interrupt (channel->controller->irq);
        }
        }
 
 
      return;
      return;
    }
    }
 
 
  /* In HW Handshake mode, only work when dma_req_i asserted */
  /* In HW Handshake mode, only work when dma_req_i asserted */
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, MODE) && !channel->dma_req_i)
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, MODE) && !channel->dma_req_i)
    {
    {
      /* Reschedule */
      /* Reschedule */
      SCHED_ADD (dma_channel_clock, dat, 1);
      SCHED_ADD (dma_channel_clock, dat, 1);
      return;
      return;
    }
    }
 
 
  /* If this is the first cycle of the transfer, initialize our state */
  /* If this is the first cycle of the transfer, initialize our state */
  if (!TEST_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY))
  if (!TEST_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY))
    {
    {
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, DONE);
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, DONE);
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
      CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
      SET_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY);
      SET_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY);
 
 
      /* If using linked lists, copy the appropriate fields to our registers */
      /* If using linked lists, copy the appropriate fields to our registers */
      if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, USE_ED))
      if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, USE_ED))
        dma_load_descriptor (channel);
        dma_load_descriptor (channel);
      else
      else
        channel->load_next_descriptor_when_done = 0;
        channel->load_next_descriptor_when_done = 0;
 
 
      /* Set our internal status */
      /* Set our internal status */
      dma_init_transfer (channel);
      dma_init_transfer (channel);
 
 
      /* Might need to skip descriptor */
      /* Might need to skip descriptor */
      if (CHANNEL_ND_I (channel))
      if (CHANNEL_ND_I (channel))
        {
        {
          dma_channel_terminate_transfer (channel, 0);
          dma_channel_terminate_transfer (channel, 0);
          return;
          return;
        }
        }
    }
    }
 
 
  /* Transfer one word */
  /* Transfer one word */
  set_direct32 (channel->destination, eval_direct32 (channel->source, 0, 0),
  set_direct32 (channel->destination, eval_direct32 (channel->source, 0, 0),
                0, 0);
                0, 0);
 
 
  /* Advance the source and destionation pointers */
  /* Advance the source and destionation pointers */
  masked_increase (&(channel->source), channel->source_mask);
  masked_increase (&(channel->source), channel->source_mask);
  masked_increase (&(channel->destination), channel->destination_mask);
  masked_increase (&(channel->destination), channel->destination_mask);
  ++channel->words_transferred;
  ++channel->words_transferred;
 
 
  /* Have we finished a whole chunk? */
  /* Have we finished a whole chunk? */
  channel->dma_ack_o =
  channel->dma_ack_o =
    (channel->words_transferred % channel->chunk_size == 0);
    (channel->words_transferred % channel->chunk_size == 0);
 
 
  /* When done with a chunk, check for dma_nd_i */
  /* When done with a chunk, check for dma_nd_i */
  if (CHANNEL_ND_I (channel))
  if (CHANNEL_ND_I (channel))
    {
    {
      dma_channel_terminate_transfer (channel, 0);
      dma_channel_terminate_transfer (channel, 0);
      return;
      return;
    }
    }
 
 
  /* Are we done? */
  /* Are we done? */
  if (channel->words_transferred >= channel->total_size)
  if (channel->words_transferred >= channel->total_size)
    {
    {
      dma_channel_terminate_transfer (channel, 1);
      dma_channel_terminate_transfer (channel, 1);
      return;
      return;
    }
    }
 
 
  /* Reschedule to transfer the next chunk */
  /* Reschedule to transfer the next chunk */
  SCHED_ADD (dma_channel_clock, dat, 1);
  SCHED_ADD (dma_channel_clock, dat, 1);
}
}
 
 
 
 
/* Copy relevant valued from linked list descriptor to channel registers */
/* Copy relevant valued from linked list descriptor to channel registers */
static void
static void
dma_load_descriptor (struct dma_channel *channel)
dma_load_descriptor (struct dma_channel *channel)
{
{
  unsigned long desc_csr =
  unsigned long desc_csr =
    eval_direct32 (channel->regs.desc + DMA_DESC_CSR, 0, 0);
    eval_direct32 (channel->regs.desc + DMA_DESC_CSR, 0, 0);
 
 
  channel->load_next_descriptor_when_done =
  channel->load_next_descriptor_when_done =
    !TEST_FLAG (desc_csr, DMA_DESC_CSR, EOL);
    !TEST_FLAG (desc_csr, DMA_DESC_CSR, EOL);
 
 
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, INC_SRC,
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, INC_SRC,
               TEST_FLAG (desc_csr, DMA_DESC_CSR, INC_SRC));
               TEST_FLAG (desc_csr, DMA_DESC_CSR, INC_SRC));
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, INC_DST,
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, INC_DST,
               TEST_FLAG (desc_csr, DMA_DESC_CSR, INC_DST));
               TEST_FLAG (desc_csr, DMA_DESC_CSR, INC_DST));
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, SRC_SEL,
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, SRC_SEL,
               TEST_FLAG (desc_csr, DMA_DESC_CSR, SRC_SEL));
               TEST_FLAG (desc_csr, DMA_DESC_CSR, SRC_SEL));
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, DST_SEL,
  ASSIGN_FLAG (channel->regs.csr, DMA_CH_CSR, DST_SEL,
               TEST_FLAG (desc_csr, DMA_DESC_CSR, DST_SEL));
               TEST_FLAG (desc_csr, DMA_DESC_CSR, DST_SEL));
 
 
  SET_FIELD (channel->regs.sz, DMA_CH_SZ, TOT_SZ,
  SET_FIELD (channel->regs.sz, DMA_CH_SZ, TOT_SZ,
             GET_FIELD (desc_csr, DMA_DESC_CSR, TOT_SZ));
             GET_FIELD (desc_csr, DMA_DESC_CSR, TOT_SZ));
 
 
  channel->regs.a0 = eval_direct32 (channel->regs.desc + DMA_DESC_ADR0, 0, 0);
  channel->regs.a0 = eval_direct32 (channel->regs.desc + DMA_DESC_ADR0, 0, 0);
  channel->regs.a1 = eval_direct32 (channel->regs.desc + DMA_DESC_ADR1, 0, 0);
  channel->regs.a1 = eval_direct32 (channel->regs.desc + DMA_DESC_ADR1, 0, 0);
 
 
  channel->current_descriptor = channel->regs.desc;
  channel->current_descriptor = channel->regs.desc;
  channel->regs.desc =
  channel->regs.desc =
    eval_direct32 (channel->regs.desc + DMA_DESC_NEXT, 0, 0);
    eval_direct32 (channel->regs.desc + DMA_DESC_NEXT, 0, 0);
}
}
 
 
 
 
/* Initialize internal parameters used to implement transfers */
/* Initialize internal parameters used to implement transfers */
static void
static void
dma_init_transfer (struct dma_channel *channel)
dma_init_transfer (struct dma_channel *channel)
{
{
  channel->source = channel->regs.a0;
  channel->source = channel->regs.a0;
  channel->destination = channel->regs.a1;
  channel->destination = channel->regs.a1;
  channel->source_mask =
  channel->source_mask =
    TEST_FLAG (channel->regs.csr, DMA_CH_CSR,
    TEST_FLAG (channel->regs.csr, DMA_CH_CSR,
               INC_SRC) ? channel->regs.am0 : 0;
               INC_SRC) ? channel->regs.am0 : 0;
  channel->destination_mask =
  channel->destination_mask =
    TEST_FLAG (channel->regs.csr, DMA_CH_CSR,
    TEST_FLAG (channel->regs.csr, DMA_CH_CSR,
               INC_DST) ? channel->regs.am1 : 0;
               INC_DST) ? channel->regs.am1 : 0;
  channel->total_size = GET_FIELD (channel->regs.sz, DMA_CH_SZ, TOT_SZ);
  channel->total_size = GET_FIELD (channel->regs.sz, DMA_CH_SZ, TOT_SZ);
  channel->chunk_size = GET_FIELD (channel->regs.sz, DMA_CH_SZ, CHK_SZ);
  channel->chunk_size = GET_FIELD (channel->regs.sz, DMA_CH_SZ, CHK_SZ);
  if (!channel->chunk_size || (channel->chunk_size > channel->total_size))
  if (!channel->chunk_size || (channel->chunk_size > channel->total_size))
    channel->chunk_size = channel->total_size;
    channel->chunk_size = channel->total_size;
  channel->words_transferred = 0;
  channel->words_transferred = 0;
}
}
 
 
 
 
/* Take care of transfer termination */
/* Take care of transfer termination */
static void
static void
dma_channel_terminate_transfer (struct dma_channel *channel,
dma_channel_terminate_transfer (struct dma_channel *channel,
                                int generate_interrupt)
                                int generate_interrupt)
{
{
  /* Might be working in a linked list */
  /* Might be working in a linked list */
  if (channel->load_next_descriptor_when_done)
  if (channel->load_next_descriptor_when_done)
    {
    {
      dma_load_descriptor (channel);
      dma_load_descriptor (channel);
      dma_init_transfer (channel);
      dma_init_transfer (channel);
      /* Reschedule */
      /* Reschedule */
      SCHED_ADD (dma_channel_clock, channel, 1);
      SCHED_ADD (dma_channel_clock, channel, 1);
      return;
      return;
    }
    }
 
 
  /* Might be in auto-restart mode */
  /* Might be in auto-restart mode */
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, ARS))
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, ARS))
    {
    {
      dma_init_transfer (channel);
      dma_init_transfer (channel);
      return;
      return;
    }
    }
 
 
  /* If needed, write amount of data transferred back to memory */
  /* If needed, write amount of data transferred back to memory */
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, SZ_WB) &&
  if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, SZ_WB) &&
      TEST_FLAG (channel->regs.csr, DMA_CH_CSR, USE_ED))
      TEST_FLAG (channel->regs.csr, DMA_CH_CSR, USE_ED))
    {
    {
      /* TODO: What should we write back? Doc says "total number of remaining bytes" !? */
      /* TODO: What should we write back? Doc says "total number of remaining bytes" !? */
      unsigned long remaining_words =
      unsigned long remaining_words =
        channel->total_size - channel->words_transferred;
        channel->total_size - channel->words_transferred;
      SET_FIELD (channel->regs.sz, DMA_DESC_CSR, TOT_SZ, remaining_words);
      SET_FIELD (channel->regs.sz, DMA_DESC_CSR, TOT_SZ, remaining_words);
    }
    }
 
 
  /* Mark end of transfer */
  /* Mark end of transfer */
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, CH_EN);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, CH_EN);
  SET_FLAG (channel->regs.csr, DMA_CH_CSR, DONE);
  SET_FLAG (channel->regs.csr, DMA_CH_CSR, DONE);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, ERR);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY);
  CLEAR_FLAG (channel->regs.csr, DMA_CH_CSR, BUSY);
 
 
  /* If needed, generate interrupt */
  /* If needed, generate interrupt */
  if (generate_interrupt)
  if (generate_interrupt)
    {
    {
      /* TODO: Which channel should we interrupt? */
      /* TODO: Which channel should we interrupt? */
      if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, INE_DONE) &&
      if (TEST_FLAG (channel->regs.csr, DMA_CH_CSR, INE_DONE) &&
          (channel->controller->regs.int_msk_a & channel->channel_mask))
          (channel->controller->regs.int_msk_a & channel->channel_mask))
        {
        {
          SET_FLAG (channel->regs.csr, DMA_CH_CSR, INT_DONE);
          SET_FLAG (channel->regs.csr, DMA_CH_CSR, INT_DONE);
          channel->controller->regs.int_src_a = channel->channel_mask;
          channel->controller->regs.int_src_a = channel->channel_mask;
          report_interrupt (channel->controller->irq);
          report_interrupt (channel->controller->irq);
        }
        }
    }
    }
}
}
 
 
/* Utility function: Add 4 to a value with a mask */
/* Utility function: Add 4 to a value with a mask */
static void
static void
masked_increase (oraddr_t * value, unsigned long mask)
masked_increase (oraddr_t * value, unsigned long mask)
{
{
  *value = (*value & ~mask) | ((*value + 4) & mask);
  *value = (*value & ~mask) | ((*value + 4) & mask);
}
}
 
 
/*-------------------------------------------[ DMA<->Peripheral interface ]---*/
/*-------------------------------------------[ DMA<->Peripheral interface ]---*/
/*
/*
 * Simulation of control signals
 * Simulation of control signals
 * To be used by simulations for other devices, e.g. ethernet
 * To be used by simulations for other devices, e.g. ethernet
 */
 */
 
 
void
void
set_dma_req_i (struct dma_channel *channel)
set_dma_req_i (struct dma_channel *channel)
{
{
  channel->dma_req_i = 1;
  channel->dma_req_i = 1;
}
}
 
 
void
void
clear_dma_req_i (struct dma_channel *channel)
clear_dma_req_i (struct dma_channel *channel)
{
{
  channel->dma_req_i = 0;
  channel->dma_req_i = 0;
}
}
 
 
void
void
set_dma_nd_i (struct dma_channel *channel)
set_dma_nd_i (struct dma_channel *channel)
{
{
  channel->dma_nd_i = 1;
  channel->dma_nd_i = 1;
}
}
 
 
void
void
clear_dma_nd_i (struct dma_channel *channel)
clear_dma_nd_i (struct dma_channel *channel)
{
{
  channel->dma_nd_i = 0;
  channel->dma_nd_i = 0;
}
}
 
 
unsigned
unsigned
check_dma_ack_o (struct dma_channel *channel)
check_dma_ack_o (struct dma_channel *channel)
{
{
  return channel->dma_ack_o;
  return channel->dma_ack_o;
}
}
 
 
struct dma_channel *
struct dma_channel *
find_dma_controller_ch (unsigned controller, unsigned channel)
find_dma_controller_ch (unsigned controller, unsigned channel)
{
{
  struct dma_controller *cur = dmas;
  struct dma_controller *cur = dmas;
 
 
  while (cur && controller)
  while (cur && controller)
    {
    {
      cur = cur->next;
      cur = cur->next;
      controller--;
      controller--;
    }
    }
 
 
  if (!cur)
  if (!cur)
    return NULL;
    return NULL;
 
 
  return &(cur->ch[channel]);
  return &(cur->ch[channel]);
}
}
 
 
 
 
/*----------------------------------------------------[ DMA configuration ]---*/
/*----------------------------------------------------[ DMA configuration ]---*/
static void
static void
dma_baseaddr (union param_val val, void *dat)
dma_baseaddr (union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->baseaddr = val.addr_val;
  dma->baseaddr = val.addr_val;
}
}
 
 
static void
static void
dma_irq (union param_val val, void *dat)
dma_irq (union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->irq = val.int_val;
  dma->irq = val.int_val;
}
}
 
 
static void
static void
dma_vapi_id (union param_val val, void *dat)
dma_vapi_id (union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->vapi_id = val.int_val;
  dma->vapi_id = val.int_val;
}
}
 
 
static void
static void
dma_enabled (union param_val val, void *dat)
dma_enabled (union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->enabled = val.int_val;
  dma->enabled = val.int_val;
}
}
 
 
 
 
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/*!Initialize a new DMA configuration
/*!Initialize a new DMA configuration
 
 
   ALL parameters are set explicitly to default values.                      */
   ALL parameters are set explicitly to default values.                      */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
static void *
static void *
dma_sec_start ()
dma_sec_start ()
{
{
  struct dma_controller *new = malloc (sizeof (struct dma_controller));
  struct dma_controller *new = malloc (sizeof (struct dma_controller));
 
 
  if (!new)
  if (!new)
    {
    {
      fprintf (stderr, "Peripheral DMA: Run out of memory\n");
      fprintf (stderr, "Peripheral DMA: Run out of memory\n");
      exit (-1);
      exit (-1);
    }
    }
 
 
  new->next = NULL;
  new->next = NULL;
  new->enabled  = 1;
  new->enabled  = 1;
  new->baseaddr = 0;
  new->baseaddr = 0;
  new->irq      = 0;
  new->irq      = 0;
  new->vapi_id  = 0;
  new->vapi_id  = 0;
 
 
  return new;
  return new;
 
 
}       /* dma_sec_start() */
}       /* dma_sec_start() */
 
 
static void
static void
dma_sec_end (void *dat)
dma_sec_end (void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  struct dma_controller *cur;
  struct dma_controller *cur;
  struct mem_ops ops;
  struct mem_ops ops;
 
 
  if (!dma->enabled)
  if (!dma->enabled)
    {
    {
      free (dat);
      free (dat);
      return;
      return;
    }
    }
 
 
  memset (&ops, 0, sizeof (struct mem_ops));
  memset (&ops, 0, sizeof (struct mem_ops));
 
 
  ops.readfunc32 = dma_read32;
  ops.readfunc32 = dma_read32;
  ops.writefunc32 = dma_write32;
  ops.writefunc32 = dma_write32;
  ops.read_dat32 = dat;
  ops.read_dat32 = dat;
  ops.write_dat32 = dat;
  ops.write_dat32 = dat;
 
 
  /* FIXME: Correct delay?? */
  /* FIXME: Correct delay?? */
  ops.delayr = 2;
  ops.delayr = 2;
  ops.delayw = 2;
  ops.delayw = 2;
 
 
  reg_mem_area (dma->baseaddr, DMA_ADDR_SPACE, 0, &ops);
  reg_mem_area (dma->baseaddr, DMA_ADDR_SPACE, 0, &ops);
  reg_sim_reset (dma_reset, dat);
  reg_sim_reset (dma_reset, dat);
  reg_sim_stat (dma_status, dat);
  reg_sim_stat (dma_status, dat);
 
 
  if (dmas)
  if (dmas)
    {
    {
      for (cur = dmas; cur->next; cur = cur->next);
      for (cur = dmas; cur->next; cur = cur->next);
      cur->next = dma;
      cur->next = dma;
    }
    }
  else
  else
    dmas = dma;
    dmas = dma;
}
}
 
 
void
void
reg_dma_sec (void)
reg_dma_sec (void)
{
{
  struct config_section *sec =
  struct config_section *sec =
    reg_config_sec ("dma", dma_sec_start, dma_sec_end);
    reg_config_sec ("dma", dma_sec_start, dma_sec_end);
 
 
  reg_config_param (sec, "enabled", paramt_int, dma_enabled);
  reg_config_param (sec, "enabled",  PARAMT_INT, dma_enabled);
  reg_config_param (sec, "baseaddr", paramt_addr, dma_baseaddr);
  reg_config_param (sec, "baseaddr", PARAMT_ADDR, dma_baseaddr);
  reg_config_param (sec, "irq", paramt_int, dma_irq);
  reg_config_param (sec, "irq",      PARAMT_INT, dma_irq);
  reg_config_param (sec, "vapi_id", paramt_addr, dma_vapi_id);
  reg_config_param (sec, "vapi_id",  PARAMT_ADDR, dma_vapi_id);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.