OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [or1ksim/] [testsuite/] [test-code-or1k/] [cache/] [cache.c] - Diff between revs 346 and 458

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 346 Rev 458
/* cache.c. Cache test of Or1ksim
/* cache.c. Cache test of Or1ksim
 
 
   Copyright (C) 1999-2006 OpenCores
   Copyright (C) 1999-2006 OpenCores
   Copyright (C) 2010 Embecosm Limited
   Copyright (C) 2010 Embecosm Limited
 
 
   Contributors various OpenCores participants
   Contributors various OpenCores participants
   Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
   Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
 
 
   This file is part of OpenRISC 1000 Architectural Simulator.
   This file is part of OpenRISC 1000 Architectural Simulator.
 
 
   This program is free software; you can redistribute it and/or modify it
   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the Free
   under the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3 of the License, or (at your option)
   Software Foundation; either version 3 of the License, or (at your option)
   any later version.
   any later version.
 
 
   This program is distributed in the hope that it will be useful, but WITHOUT
   This program is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.
   more details.
 
 
   You should have received a copy of the GNU General Public License along
   You should have received a copy of the GNU General Public License along
   with this program.  If not, see <http:  www.gnu.org/licenses/>.  */
   with this program.  If not, see <http:  www.gnu.org/licenses/>.  */
 
 
/* ----------------------------------------------------------------------------
/* ----------------------------------------------------------------------------
   This code is commented throughout for use with Doxygen.
   This code is commented throughout for use with Doxygen.
   --------------------------------------------------------------------------*/
   --------------------------------------------------------------------------*/
 
 
#include "support.h"
#include "support.h"
#include "spr-defs.h"
#include "spr-defs.h"
 
 
 
 
#undef  UART
 
 
 
#define MEM_RAM 0x00100000
#define MEM_RAM 0x00100000
 
 
 
/* Linker script symbols */
 
extern unsigned int _ram_end;
 
 
 
unsigned int program_ram_end;
 
 
 
unsigned int ic_present;
 
unsigned int dc_present;
 
 
/* Number of IC sets (power of 2) */
/* Number of IC sets (power of 2) */
#define IC_SETS 256
unsigned int ic_sets;
#define DC_SETS 256
#define IC_SETS ic_sets
 
unsigned int dc_sets;
 
#define DC_SETS dc_sets
 
 
/* Block size in bytes (1, 2, 4, 8, 16, 32 etc.) */
/* Block size in bytes (1, 2, 4, 8, 16, 32 etc.) */
#define IC_BLOCK_SIZE 16
unsigned int ic_bs;
#define DC_BLOCK_SIZE 16
#define IC_BLOCK_SIZE ic_bs
 
unsigned int dc_bs;
 
#define DC_BLOCK_SIZE dc_bs
 
 
/* Number of IC ways (1, 2, 3 etc.). */
/* Number of IC ways (1, 2, 3 etc.). */
#define IC_WAYS 1
unsigned int ic_ways;
#define DC_WAYS 1
#define IC_WAYS ic_ways
 
unsigned int dc_ways;
 
#define DC_WAYS dc_ways
 
 
/* Cache size */
/* Cache size */
#define IC_SIZE (IC_WAYS*IC_SETS*IC_BLOCK_SIZE)
#define IC_SIZE (IC_WAYS*IC_SETS*IC_BLOCK_SIZE)
#define DC_SIZE (DC_WAYS*DC_SETS*DC_BLOCK_SIZE)
#define DC_SIZE (DC_WAYS*DC_SETS*DC_BLOCK_SIZE)
 
 
#if UART
 
#include "uart.h"
 
#define IN_CLK  20000000
 
#define UART_BASE  0x9c000000
 
#define UART_BAUD_RATE 9600
 
 
 
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
 
 
 
#define WAIT_FOR_XMITR \
 
        do { \
 
                lsr = REG8(UART_BASE + UART_LSR); \
 
        } while ((lsr & BOTH_EMPTY) != BOTH_EMPTY)
 
 
 
#define WAIT_FOR_THRE \
 
        do { \
 
                lsr = REG8(UART_BASE + UART_LSR); \
 
        } while ((lsr & UART_LSR_THRE) != UART_LSR_THRE)
 
 
 
#define CHECK_FOR_CHAR \
 
        (REG8(UART_BASE + UART_LSR) & UART_LSR_DR)
 
 
 
#define WAIT_FOR_CHAR \
 
         do { \
 
                lsr = REG8(UART_BASE + UART_LSR); \
 
         } while ((lsr & UART_LSR_DR) != UART_LSR_DR)
 
 
 
#define UART_TX_BUFF_LEN 32
 
#define UART_TX_BUFF_MASK (UART_TX_BUFF_LEN -1)
 
 
 
#define print_n(x)  \
 
  { \
 
    uart_putc(s[((x) >> 28) & 0x0f]); \
 
    uart_putc(s[((x) >> 24) & 0x0f]); \
 
    uart_putc(s[((x) >> 20) & 0x0f]); \
 
    uart_putc(s[((x) >> 16) & 0x0f]); \
 
    uart_putc(s[((x) >> 12) & 0x0f]); \
 
    uart_putc(s[((x) >> 8) & 0x0f]);  \
 
    uart_putc(s[((x) >> 4) & 0x0f]);  \
 
    uart_putc(s[((x) >> 0) & 0x0f]);  \
 
  }
 
 
 
const char s[] = "0123456789abcdef";
 
 
 
void uart_init(void)
 
{
 
        int devisor;
 
 
 
        /* Reset receiver and transmiter */
 
        REG8(UART_BASE + UART_FCR) = UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT | UART_FCR_TRIGGER_14;
 
 
 
        /* Disable all interrupts */
 
        REG8(UART_BASE + UART_IER) = 0x00;
 
 
 
        /* Set 8 bit char, 1 stop bit, no parity */
 
        REG8(UART_BASE + UART_LCR) = UART_LCR_WLEN8 & ~(UART_LCR_STOP | UART_LCR_PARITY);
 
 
 
        /* Set baud rate */
 
        devisor = IN_CLK/(16 * UART_BAUD_RATE);
 
        REG8(UART_BASE + UART_LCR) |= UART_LCR_DLAB;
 
        REG8(UART_BASE + UART_DLL) = devisor & 0x000000ff;
 
        REG8(UART_BASE + UART_DLM) = (devisor >> 8) & 0x000000ff;
 
        REG8(UART_BASE + UART_LCR) &= ~(UART_LCR_DLAB);
 
 
 
        return;
 
}
 
 
 
static inline void uart_putc(char c)
 
{
 
        unsigned char lsr;
 
 
 
        WAIT_FOR_THRE;
 
        REG8(UART_BASE + UART_TX) = c;
 
        if(c == '\n') {
 
          WAIT_FOR_THRE;
 
          REG8(UART_BASE + UART_TX) = '\r';
 
        }
 
        WAIT_FOR_XMITR;
 
}
 
 
 
static inline void print_str(char *str)
 
{
 
  while(*str != 0) {
 
    uart_putc(*str);
 
    str++;
 
  }
 
}
 
 
 
static inline char uart_getc()
 
{
 
        unsigned char lsr;
 
        char c;
 
 
 
        WAIT_FOR_CHAR;
 
        c = REG8(UART_BASE + UART_RX);
 
        return c;
 
}
 
#endif
 
 
 
extern void ic_enable(void);
extern void ic_enable(void);
extern void ic_disable(void);
extern void ic_disable(void);
extern void dc_enable(void);
extern void dc_enable(void);
extern void dc_disable(void);
extern void dc_disable(void);
extern void dc_inv(void);
extern void dc_inv(void);
extern unsigned long ic_inv_test(void);
extern unsigned long ic_inv_test(void);
extern unsigned long dc_inv_test(unsigned long);
extern unsigned long dc_inv_test(unsigned long);
 
 
extern void (*jalr)(void);
extern void (*jalr)(void);
extern void (*jr)(void);
extern void (*jr)(void);
 
 
/* Index on jump table */
/* Index on jump table */
unsigned long jump_indx;
unsigned long jump_indx;
 
 
/* Jump address table */
/* Jump address table */
unsigned long jump_add[15*IC_WAYS];
#define MAX_IC_WAYS 32
 
unsigned long jump_addr[15*MAX_IC_WAYS];
 
 
void dummy();
void dummy();
 
 
void jump_and_link(void)
void jump_and_link(void)
{
{
        asm("jalr:");
        asm("jalr:");
  asm("l.jr\tr9");
  asm("l.jr\tr9");
  asm("l.nop");
  asm("l.nop");
}
}
 
 
void jump(void)
void jump(void)
{
{
        asm("jr:");
        asm("jr:");
        /* Read and increment index */
        /* Read and increment index */
        asm("l.lwz\t\tr3,0(r11)");
        asm("l.lwz\t\tr3,0(r11)");
        asm("l.addi\t\tr3,r3,4");
        asm("l.addi\t\tr3,r3,4");
        asm("l.sw\t\t0(r11),r3");
        asm("l.sw\t\t0(r11),r3");
        /* Load next executin address from table */
        /* Load next executin address from table */
        asm("l.lwz\t\tr3,0(r3)");
        asm("l.lwz\t\tr3,0(r3)");
        /* Jump to that address */
        /* Jump to that address */
        asm("l.jr\t\tr3") ;
        asm("l.jr\t\tr3") ;
        /* Report that we succeeded */
        /* Report that we succeeded */
        asm("l.nop\t0");
        asm("l.nop\t0");
}
}
 
 
void copy_jr(unsigned long add)
void copy_jr(unsigned long add)
{
{
        memcpy((void *)add, (void *)&jr, 24);
        memcpy((void *)add, (void *)&jr, 24);
}
}
 
 
void call(unsigned long add)
void call(unsigned long add)
{
{
  asm("l.movhi\tr11,hi(jump_indx)" : :);
  asm("l.movhi\tr11,hi(jump_indx)" : :);
  asm("l.ori\tr11,r11,lo(jump_indx)" : :);
  asm("l.ori\tr11,r11,lo(jump_indx)" : :);
        asm("l.jalr\t\t%0" : : "r" (add) : "r11", "r9");
        asm("l.jalr\t\t%0" : : "r" (add) : "r11", "r9");
        asm("l.nop" : :);
        asm("l.nop" : :);
}
}
 
 
 
/* Determine cache configuration from cache configuration registers */
 
void init_cache_config(void)
 
{
 
 
 
        unsigned long iccfgr, dccfgr;
 
        unsigned long upr;
 
 
 
        ic_present = dc_present = 0;
 
 
 
        upr = mfspr (SPR_UPR);
 
 
 
        if (!(upr & SPR_UPR_ICP))
 
        {
 
                printf("No instruction cache present. Skipping tests.\n");
 
        }
 
        else
 
        {
 
                iccfgr = mfspr (SPR_ICCFGR);
 
 
 
                /* Number of ways */
 
                ic_ways = (1 << (iccfgr & SPR_ICCFGR_NCW));
 
 
 
                /* Number of sets */
 
                ic_sets = 1 << ((iccfgr & SPR_ICCFGR_NCS) >>
 
                                SPR_ICCFGR_NCS_OFF);
 
 
 
                /* Block size */
 
                ic_bs = 16 << ((iccfgr & SPR_ICCFGR_CBS) >> SPR_ICCFGR_CBS_OFF);
 
 
 
                ic_present = 1;
 
        }
 
 
 
        if (!(upr & SPR_UPR_DCP))
 
        {
 
                printf("No data cache present. Skipping tests.\n");
 
        }
 
        else
 
        {
 
                dccfgr = mfspr (SPR_DCCFGR);
 
 
 
                /* Number of ways */
 
                dc_ways = (1 << (dccfgr & SPR_DCCFGR_NCW));
 
 
 
                /* Number of sets */
 
                dc_sets = 1 << ((dccfgr & SPR_DCCFGR_NCS) >>
 
                                SPR_DCCFGR_NCS_OFF);
 
 
 
                /* Block size */
 
                dc_bs = 16 << ((dccfgr & SPR_DCCFGR_CBS) >> SPR_DCCFGR_CBS_OFF);
 
 
 
                dc_present = 1;
 
        }
 
 
 
}
 
 
int dc_test(void)
int dc_test(void)
{
{
        int i;
        int i;
        unsigned long base, add, ul;
        unsigned long base, add, ul;
 
 
        base = (((unsigned long)MEM_RAM / (IC_SETS*IC_BLOCK_SIZE)) * IC_SETS*IC_BLOCK_SIZE) + IC_SETS*IC_BLOCK_SIZE;
        base = (((unsigned long)MEM_RAM / (IC_SETS*IC_BLOCK_SIZE)) * IC_SETS*IC_BLOCK_SIZE) + IC_SETS*IC_BLOCK_SIZE;
 
 
        dc_enable();
        dc_enable();
 
 
        /* Cache miss r */
        /* Cache miss r */
        add = base;
        add = base;
        for(i = 0; i < DC_WAYS; i++) {
        for(i = 0; i < DC_WAYS; i++) {
                ul = REG32(add);
                ul = REG32(add);
                ul = REG32(add + DC_BLOCK_SIZE + 4);
                ul = REG32(add + DC_BLOCK_SIZE + 4);
                ul = REG32(add + 2*DC_BLOCK_SIZE + 8);
                ul = REG32(add + 2*DC_BLOCK_SIZE + 8);
                ul = REG32(add + 3*DC_BLOCK_SIZE + 12);
                ul = REG32(add + 3*DC_BLOCK_SIZE + 12);
                add += DC_SETS*DC_BLOCK_SIZE;
                add += DC_SETS*DC_BLOCK_SIZE;
        }
        }
 
 
        /* Cache hit w */
        /* Cache hit w */
        add = base;
        add = base;
        for(i = 0; i < DC_WAYS; i++) {
        for(i = 0; i < DC_WAYS; i++) {
                REG32(add + 0) = 0x00000001;
                REG32(add + 0) = 0x00000001;
                REG32(add + 4) = 0x00000000;
                REG32(add + 4) = 0x00000000;
                REG32(add + 8) = 0x00000000;
                REG32(add + 8) = 0x00000000;
                REG32(add + 12) = 0x00000000;
                REG32(add + 12) = 0x00000000;
                REG32(add + DC_BLOCK_SIZE + 0) = 0x00000000;
                REG32(add + DC_BLOCK_SIZE + 0) = 0x00000000;
                REG32(add + DC_BLOCK_SIZE + 4) = 0x00000002;
                REG32(add + DC_BLOCK_SIZE + 4) = 0x00000002;
                REG32(add + DC_BLOCK_SIZE + 8) = 0x00000000;
                REG32(add + DC_BLOCK_SIZE + 8) = 0x00000000;
                REG32(add + DC_BLOCK_SIZE + 12) = 0x00000000;
                REG32(add + DC_BLOCK_SIZE + 12) = 0x00000000;
                REG32(add + 2*DC_BLOCK_SIZE + 0) = 0x00000000;
                REG32(add + 2*DC_BLOCK_SIZE + 0) = 0x00000000;
                REG32(add + 2*DC_BLOCK_SIZE + 4) = 0x00000000;
                REG32(add + 2*DC_BLOCK_SIZE + 4) = 0x00000000;
                REG32(add + 2*DC_BLOCK_SIZE + 8) = 0x00000003;
                REG32(add + 2*DC_BLOCK_SIZE + 8) = 0x00000003;
                REG32(add + 2*DC_BLOCK_SIZE + 12) = 0x00000000;
                REG32(add + 2*DC_BLOCK_SIZE + 12) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 0) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 0) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 4) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 4) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 8) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 8) = 0x00000000;
                REG32(add + 3*DC_BLOCK_SIZE + 12) = 0x00000004;
                REG32(add + 3*DC_BLOCK_SIZE + 12) = 0x00000004;
                add += DC_SETS*DC_BLOCK_SIZE;
                add += DC_SETS*DC_BLOCK_SIZE;
        }
        }
 
 
        /* Cache hit r/w */
        /* Cache hit r/w */
        add = base;
        add = base;
        for(i = 0; i < DC_WAYS; i++) {
        for(i = 0; i < DC_WAYS; i++) {
                REG8(add + DC_BLOCK_SIZE - 4) = REG8(add + 3);
                REG8(add + DC_BLOCK_SIZE - 4) = REG8(add + 3);
                REG8(add + 2*DC_BLOCK_SIZE - 8) = REG8(add + DC_BLOCK_SIZE + 7);
                REG8(add + 2*DC_BLOCK_SIZE - 8) = REG8(add + DC_BLOCK_SIZE + 7);
                REG8(add + 3*DC_BLOCK_SIZE - 12) = REG8(add + 2*DC_BLOCK_SIZE + 11);
                REG8(add + 3*DC_BLOCK_SIZE - 12) = REG8(add + 2*DC_BLOCK_SIZE + 11);
                REG8(add + 4*DC_BLOCK_SIZE - 16) = REG8(add + 3*DC_BLOCK_SIZE + 15);
                REG8(add + 4*DC_BLOCK_SIZE - 16) = REG8(add + 3*DC_BLOCK_SIZE + 15);
                add += DC_SETS*DC_BLOCK_SIZE;
                add += DC_SETS*DC_BLOCK_SIZE;
        }
        }
 
 
        /* Cache hit/miss r/w */
        /* Cache hit/miss r/w */
        add = base;
        add = base;
        for(i = 0; i < DC_WAYS; i++) {
        for(i = 0; i < DC_WAYS; i++) {
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE) = REG16(add + DC_BLOCK_SIZE - 4) + REG16(add + 2);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE) = REG16(add + DC_BLOCK_SIZE - 4) + REG16(add + 2);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 2) = REG16(add + DC_BLOCK_SIZE - 8) + REG16(add + DC_BLOCK_SIZE + 6);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 2) = REG16(add + DC_BLOCK_SIZE - 8) + REG16(add + DC_BLOCK_SIZE + 6);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 4) = REG16(add + DC_BLOCK_SIZE - 12) + REG16(add + 2*DC_BLOCK_SIZE + 10);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 4) = REG16(add + DC_BLOCK_SIZE - 12) + REG16(add + 2*DC_BLOCK_SIZE + 10);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 6) = REG16(add+ DC_BLOCK_SIZE - 16) + REG16(add + 2*DC_BLOCK_SIZE + 14);
                REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 6) = REG16(add+ DC_BLOCK_SIZE - 16) + REG16(add + 2*DC_BLOCK_SIZE + 14);
                add += DC_SETS*DC_BLOCK_SIZE;
                add += DC_SETS*DC_BLOCK_SIZE;
        }
        }
 
 
        /* Fill cache with unused data */
        /* Fill cache with unused data */
        add = base + DC_WAYS*DC_SETS*DC_BLOCK_SIZE;
        add = base + DC_WAYS*DC_SETS*DC_BLOCK_SIZE;
        for(i = 0; i < DC_WAYS; i++) {
        for(i = 0; i < DC_WAYS; i++) {
                ul = REG32(add);
                ul = REG32(add);
                ul = REG32(add + DC_BLOCK_SIZE);
                ul = REG32(add + DC_BLOCK_SIZE);
                ul = REG32(add + 2*DC_BLOCK_SIZE);
                ul = REG32(add + 2*DC_BLOCK_SIZE);
                ul = REG32(add + 3*DC_BLOCK_SIZE);
                ul = REG32(add + 3*DC_BLOCK_SIZE);
                add += DC_SETS*DC_BLOCK_SIZE;
                add += DC_SETS*DC_BLOCK_SIZE;
        }
        }
 
 
        /* Cache hit/miss r */
        /* Cache hit/miss r */
        ul = 0;
        ul = 0;
        add = base;
        add = base;
        for(i = 0; i < DC_WAYS; i++) {
        for(i = 0; i < DC_WAYS; i++) {
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE) +
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE) +
                        REG16(add + DC_BLOCK_SIZE - 4) +
                        REG16(add + DC_BLOCK_SIZE - 4) +
                        REG16(add + 2);
                        REG16(add + 2);
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 2) +
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 2) +
                        REG16(add + DC_BLOCK_SIZE - 8) +
                        REG16(add + DC_BLOCK_SIZE - 8) +
                        REG16(add + DC_BLOCK_SIZE + 6);
                        REG16(add + DC_BLOCK_SIZE + 6);
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 4) +
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 4) +
                        REG16(add + DC_BLOCK_SIZE - 12) +
                        REG16(add + DC_BLOCK_SIZE - 12) +
                        REG16(add + 2*DC_BLOCK_SIZE + 10);
                        REG16(add + 2*DC_BLOCK_SIZE + 10);
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 6) +
                ul +=   REG16(add + (IC_SETS - 1)*IC_BLOCK_SIZE + 6) +
                        REG16(add+ DC_BLOCK_SIZE - 16) +
                        REG16(add+ DC_BLOCK_SIZE - 16) +
                        REG16(add + 2*DC_BLOCK_SIZE + 14);
                        REG16(add + 2*DC_BLOCK_SIZE + 14);
                add += DC_SETS*DC_BLOCK_SIZE;
                add += DC_SETS*DC_BLOCK_SIZE;
        }
        }
 
 
        dc_disable();
        dc_disable();
 
 
        return ul;
        return ul;
}
}
 
 
int ic_test(void)
int ic_test(void)
{
{
        int i;
        int i;
        unsigned long base, add;
        unsigned long base, addr;
 
 
        base = (((unsigned long)MEM_RAM / (IC_SETS*IC_BLOCK_SIZE)) * IC_SETS*IC_BLOCK_SIZE) + IC_SETS*IC_BLOCK_SIZE;
 
 
 
 
        base = (((unsigned int)program_ram_end / (IC_SETS*IC_BLOCK_SIZE)) *
 
                IC_SETS*IC_BLOCK_SIZE) + IC_SETS*IC_BLOCK_SIZE;
 
        //printf("ic_test\n");
 
        //printf("Test program from base at 0x%08x\n",(unsigned int)base);
        /* Copy jr to various location */
        /* Copy jr to various location */
        add = base;
        addr = base;
        for(i = 0; i < IC_WAYS; i++) {
        for(i = 0; i < IC_WAYS; i++) {
                copy_jr(add);
                copy_jr(addr);
                copy_jr(add + 2*IC_BLOCK_SIZE + 4);
                copy_jr(addr + 2*IC_BLOCK_SIZE + 4);
                copy_jr(add + 4*IC_BLOCK_SIZE + 8);
                copy_jr(addr + 4*IC_BLOCK_SIZE + 8);
                copy_jr(add + 6*IC_BLOCK_SIZE + 12);
                copy_jr(addr + 6*IC_BLOCK_SIZE + 12);
 
 
                copy_jr(add + (IC_SETS - 2)*IC_BLOCK_SIZE + 0);
                copy_jr(addr + (IC_SETS - 2)*IC_BLOCK_SIZE + 0);
                copy_jr(add + (IC_SETS - 4)*IC_BLOCK_SIZE + 4);
                copy_jr(addr + (IC_SETS - 4)*IC_BLOCK_SIZE + 4);
                copy_jr(add + (IC_SETS - 6)*IC_BLOCK_SIZE + 8);
                copy_jr(addr + (IC_SETS - 6)*IC_BLOCK_SIZE + 8);
                copy_jr(add + (IC_SETS - 8)*IC_BLOCK_SIZE + 12);
                copy_jr(addr + (IC_SETS - 8)*IC_BLOCK_SIZE + 12);
                add += IC_SETS*IC_BLOCK_SIZE;
                addr += IC_SETS*IC_BLOCK_SIZE;
        }
        }
 
 
        /* Load execution table which starts at address 4 (at address 0 is table index) */
        /* Load execution table which starts at address 4
        add = base;
           (at address 0 is table index) */
 
        addr = base;
        for(i = 0; i < IC_WAYS; i++) {
        for(i = 0; i < IC_WAYS; i++) {
                /* Cache miss */
                /* Cache miss */
                jump_add[15*i + 0] = add + 2*IC_BLOCK_SIZE + 4;
                jump_addr[15*i + 0] = addr + 2*IC_BLOCK_SIZE + 4;
                jump_add[15*i + 1] = add + 4*IC_BLOCK_SIZE + 8;
                jump_addr[15*i + 1] = addr + 4*IC_BLOCK_SIZE + 8;
                jump_add[15*i + 2] = add + 6*IC_BLOCK_SIZE + 12;
                jump_addr[15*i + 2] = addr + 6*IC_BLOCK_SIZE + 12;
                /* Cache hit/miss */
                /* Cache hit/miss */
                jump_add[15*i + 3] = add;
                jump_addr[15*i + 3] = addr;
                jump_add[15*i + 4] = add + (IC_SETS - 2)*IC_BLOCK_SIZE + 0;
                jump_addr[15*i + 4] = addr + (IC_SETS - 2)*IC_BLOCK_SIZE + 0;
                jump_add[15*i + 5] = add + 2*IC_BLOCK_SIZE + 4;
                jump_addr[15*i + 5] = addr + 2*IC_BLOCK_SIZE + 4;
                jump_add[15*i + 6] = add + (IC_SETS - 4)*IC_BLOCK_SIZE + 4;
                jump_addr[15*i + 6] = addr + (IC_SETS - 4)*IC_BLOCK_SIZE + 4;
                jump_add[15*i + 7] = add + 4*IC_BLOCK_SIZE + 8;
                jump_addr[15*i + 7] = addr + 4*IC_BLOCK_SIZE + 8;
                jump_add[15*i + 8] = add + (IC_SETS - 6)*IC_BLOCK_SIZE + 8;
                jump_addr[15*i + 8] = addr + (IC_SETS - 6)*IC_BLOCK_SIZE + 8;
                jump_add[15*i + 9] = add + 6*IC_BLOCK_SIZE + 12;
                jump_addr[15*i + 9] = addr + 6*IC_BLOCK_SIZE + 12;
                jump_add[15*i + 10] = add + (IC_SETS - 8)*IC_BLOCK_SIZE + 12;
                jump_addr[15*i + 10] = addr + (IC_SETS - 8)*IC_BLOCK_SIZE + 12;
                /* Cache hit */
                /* Cache hit */
                jump_add[15*i + 11] = add + (IC_SETS - 2)*IC_BLOCK_SIZE + 0;
                jump_addr[15*i + 11] = addr + (IC_SETS - 2)*IC_BLOCK_SIZE + 0;
                jump_add[15*i + 12] = add + (IC_SETS - 4)*IC_BLOCK_SIZE + 4;
                jump_addr[15*i + 12] = addr + (IC_SETS - 4)*IC_BLOCK_SIZE + 4;
                jump_add[15*i + 13] = add + (IC_SETS - 6)*IC_BLOCK_SIZE + 8;
                jump_addr[15*i + 13] = addr + (IC_SETS - 6)*IC_BLOCK_SIZE + 8;
                jump_add[15*i + 14] = add + (IC_SETS - 8)*IC_BLOCK_SIZE + 12;
                jump_addr[15*i + 14] = addr + (IC_SETS - 8)*IC_BLOCK_SIZE + 12;
 
 
                add += IC_SETS*IC_BLOCK_SIZE;
                addr += IC_SETS*IC_BLOCK_SIZE;
        }
        }
 
 
        /* Go home */
        /* Go home */
        jump_add[15*i] = (unsigned long)&jalr;
        /* Warning - if using all 32 sets, the SET_MAX define above will need
 
         to be incremented*/
 
        jump_addr[15*i] = (unsigned long)&jalr;
 
 
        /* Initilalize table index */
        /* Initilalize table index */
        jump_indx = (unsigned long)&jump_add[0];
        jump_indx = (unsigned long)&jump_addr[0];
 
 
        ic_enable();
        ic_enable();
 
 
        /* Go */
        /* Go */
        call(base);
        call(base);
 
 
        ic_disable();
        ic_disable();
 
 
        return 0;
        return 0;
}
}
 
 
/* Each of the 5 reports should be 0xdeaddead if the code is working
/* Each of the 5 reports should be 0xdeaddead if the code is working
   correctly. */
   correctly. */
int main(void)
int main(void)
{
{
        unsigned long rc, ret = 0;
        unsigned long rc, ret = 0;
 
 
#ifdef UART
        program_ram_end = (unsigned int)&_ram_end;
  /* Initialize controller */
        program_ram_end += 4;
  uart_init();
 
#endif
 
 
        /* Read UPR and configuration registers, extract cache settings */
#ifdef UART
        init_cache_config();
  print_str("DC test :            ");
 
#endif
        if (dc_present)
 
        {
 
                report(0);
 
 
        rc = dc_test();
        rc = dc_test();
 
 
  ret += rc;
  ret += rc;
#ifdef UART
 
  print_n(rc+0xdeaddca1);
 
  print_str("\n");
 
#else
 
        report(rc + 0xdeaddca1);
        report(rc + 0xdeaddca1);
#endif
 
 
 
#ifdef UART
                report(1);
  print_str("DC invalidate test : ");
 
#endif
 
        rc = dc_inv_test(MEM_RAM);
        rc = dc_inv_test(MEM_RAM);
 
 
  ret += rc;
  ret += rc;
#ifdef UART
 
  print_n(rc + 0x9e8daa91);
 
  print_str("\n");
 
#else
 
        report(rc + 0x9e8daa91);
        report(rc + 0x9e8daa91);
#endif
        }
 
 
 
        if (ic_present)
 
        {
 
                report(2);
 
 
#ifdef UART
 
  print_str("IC test :            ");
 
#endif
 
        rc = ic_test();
        rc = ic_test();
 
 
  ret += rc;
  ret += rc;
#ifdef UART
 
  print_n(rc + 0xdeaddead);
 
  print_str("\n");
 
#else
 
        report(rc + 0xdeaddead);
        report(rc + 0xdeaddead);
#endif
 
 
 
 
                report(3);
 
 
#ifdef UART
 
  print_str("IC invalidate test : ");
 
#endif
 
  ic_enable();
  ic_enable();
 
 
 
                report(4);
 
 
  rc = ic_inv_test();
  rc = ic_inv_test();
 
 
  ret += rc;
  ret += rc;
#ifdef UART
 
  print_n(rc + 0xdeadde8f);
 
  print_str("\n");
 
  while(1);
 
#else
 
        report(rc + 0xdeadde8f);
 
#endif
 
 
 
 
                report(rc + 0xdeadde8f);
 
 
        report(ret + 0x9e8da867);
        report(ret + 0x9e8da867);
 
        }
 
 
  exit(0);
  exit(0);
 
 
        return 0;
        return 0;
 
 
}
}
 
 
/* just for size calculation */
/* just for size calculation */
void dummy()
void dummy()
{
{
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.