OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [orpsocv2/] [bench/] [sysc/] [src/] [Or1200MonitorSC.cpp] - Diff between revs 66 and 353

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 66 Rev 353
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
 
 
// SystemC OpenRISC 1200 Monitor: implementation
// SystemC OpenRISC 1200 Monitor: implementation
 
 
// Copyright (C) 2008  Embecosm Limited <info@embecosm.com>
// Copyright (C) 2008  Embecosm Limited <info@embecosm.com>
 
 
// Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
// Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
// Contributor Julius Baxter <jb@orsoc.se>
// Contributor Julius Baxter <jb@orsoc.se>
 
 
// This file is part of the cycle accurate model of the OpenRISC 1000 based
// This file is part of the cycle accurate model of the OpenRISC 1000 based
// system-on-chip, ORPSoC, built using Verilator.
// system-on-chip, ORPSoC, built using Verilator.
 
 
// This program is free software: you can redistribute it and/or modify it
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by
// under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or (at your
// the Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
// option) any later version.
 
 
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// License for more details.
 
 
// You should have received a copy of the GNU Lesser General Public License
// You should have received a copy of the GNU Lesser General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
 
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
 
 
// $Id$
// $Id$
 
 
#include <iostream>
#include <iostream>
#include <iomanip>
#include <iomanip>
#include <fstream>
#include <fstream>
#include <sys/types.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/in.h>
using namespace std;
using namespace std;
 
 
#include "Or1200MonitorSC.h"
#include "Or1200MonitorSC.h"
#include "OrpsocMain.h"
#include "OrpsocMain.h"
 
 
#include <errno.h>
#include <errno.h>
int monitor_to_gdb_pipe[2][2]; // [0][] - monitor to gdb, [1][] - gdb to monitor, [][0] - read, [][1] - write
int monitor_to_gdb_pipe[2][2]; // [0][] - monitor to gdb, [1][] - gdb to monitor, [][0] - read, [][1] - write
 
 
SC_HAS_PROCESS( Or1200MonitorSC );
SC_HAS_PROCESS( Or1200MonitorSC );
 
 
//! Constructor for the OpenRISC 1200 monitor
//! Constructor for the OpenRISC 1200 monitor
 
 
//! @param[in] name  Name of this module, passed to the parent constructor.
//! @param[in] name  Name of this module, passed to the parent constructor.
//! @param[in] accessor  Accessor class for this Verilated ORPSoC model
//! @param[in] accessor  Accessor class for this Verilated ORPSoC model
 
 
Or1200MonitorSC::Or1200MonitorSC (sc_core::sc_module_name   name,
Or1200MonitorSC::Or1200MonitorSC (sc_core::sc_module_name   name,
                                  OrpsocAccess             *_accessor,
                                  OrpsocAccess             *_accessor,
                                  MemoryLoad               *_memoryload,
                                  MemoryLoad               *_memoryload,
                                  int argc,
                                  int argc,
                                  char *argv[]) :
                                  char *argv[]) :
  sc_module (name),
  sc_module (name),
  accessor (_accessor),
  accessor (_accessor),
  memoryload(_memoryload)
  memoryload(_memoryload)
{
{
  string logfileDefault(DEFAULT_EXEC_LOG_FILE);
  string logfileDefault(DEFAULT_EXEC_LOG_FILE);
  string logfileNameString;
  string logfileNameString;
  logging_enabled = false;
  logging_enabled = false;
  logfile_name_provided = false;
  logfile_name_provided = false;
  profiling_enabled = false;
  profiling_enabled = false;
  string profileFileName(DEFAULT_PROF_FILE);
  string profileFileName(DEFAULT_PROF_FILE);
  memdumpFileName = (DEFAULT_MEMDUMP_FILE);
  memdumpFileName = (DEFAULT_MEMDUMP_FILE);
  int memdump_start = 0; int memdump_end = 0;
  int memdump_start = 0; int memdump_end = 0;
  do_memdump = false; // Default is not to do a dump of RAM at finish
  do_memdump = false; // Default is not to do a dump of RAM at finish
  logging_regs = true; // Execution log includes register values by default
  logging_regs = true; // Execution log includes register values by default
  bool rsp_server_enabled = false;
  bool rsp_server_enabled = false;
  wait_for_stall_cmd_response = false; // Default
  wait_for_stall_cmd_response = false; // Default
  insn_count = insn_count_rst = 0;
  insn_count = insn_count_rst = 0;
  cycle_count = cycle_count_rst = 0;
  cycle_count = cycle_count_rst = 0;
 
 
  exit_perf_summary_enabled = true; // Simulation exit performance summary is 
  exit_perf_summary_enabled = true; // Simulation exit performance summary is 
                                    // on by default. Turn off with "-q" on the 
                                    // on by default. Turn off with "-q" on the 
                                    // cmd line
                                    // cmd line
  monitor_for_crash = false;
  monitor_for_crash = false;
  lookslikewevecrashed_count = crash_monitor_buffer_head = 0;
  lookslikewevecrashed_count = crash_monitor_buffer_head = 0;
 
 
  bus_trans_log_enabled = bus_trans_log_name_provided =
  bus_trans_log_enabled = bus_trans_log_name_provided =
    bus_trans_log_start_delay_enable = false; // Default
    bus_trans_log_start_delay_enable = false; // Default
  string bus_trans_default_log_name(DEFAULT_BUS_LOG_FILE);
  string bus_trans_default_log_name(DEFAULT_BUS_LOG_FILE);
  string bus_trans_log_file;
  string bus_trans_log_file;
 
 
  // Parse the command line options
  // Parse the command line options
  bool cmdline_name_found = false;
  bool cmdline_name_found = false;
  if (argc > 1)
  if (argc > 1)
    {
    {
      // Search through the command line parameters for the "-log" option
      // Search through the command line parameters for the "-log" option
      for(int i=1; i < argc; i++)
      for(int i=1; i < argc; i++)
        {
        {
          if ((strcmp(argv[i], "-l")==0) ||
          if ((strcmp(argv[i], "-l")==0) ||
              (strcmp(argv[i], "--log")==0))
              (strcmp(argv[i], "--log")==0))
            {
            {
              logging_enabled = true;
              logging_enabled = true;
              binary_log_format = false;
              binary_log_format = false;
              if (i+1 < argc)
              if (i+1 < argc)
                if(argv[i+1][0] != '-')
                if(argv[i+1][0] != '-')
                  {
                  {
                    logfileNameString = (argv[i+1]);
                    logfileNameString = (argv[i+1]);
                    logfile_name_provided = true;
                    logfile_name_provided = true;
                  }
                  }
              if (!logfile_name_provided)
              if (!logfile_name_provided)
                logfileNameString = logfileDefault;
                logfileNameString = logfileDefault;
            }
            }
          else if ((strcmp(argv[i], "--log-noregs")==0))
          else if ((strcmp(argv[i], "--log-noregs")==0))
            {
            {
              logging_regs = false;
              logging_regs = false;
            }
            }
          else if ((strcmp(argv[i], "-b")==0) ||
          else if ((strcmp(argv[i], "-b")==0) ||
                   (strcmp(argv[i], "--binlog")==0))
                   (strcmp(argv[i], "--binlog")==0))
            {
            {
              logging_enabled = true;
              logging_enabled = true;
              binary_log_format = true;
              binary_log_format = true;
              if (i+1 < argc)
              if (i+1 < argc)
                if(argv[i+1][0] != '-')
                if(argv[i+1][0] != '-')
                  {
                  {
                    logfileNameString = (argv[i+1]);
                    logfileNameString = (argv[i+1]);
                    logfile_name_provided = true;
                    logfile_name_provided = true;
                  }
                  }
              if (!logfile_name_provided)
              if (!logfile_name_provided)
                logfileNameString = logfileDefault;
                logfileNameString = logfileDefault;
 
 
            }
            }
          else if ((strcmp(argv[i], "-c")==0) ||
          else if ((strcmp(argv[i], "-c")==0) ||
                   (strcmp(argv[i], "--crash-monitor")==0))
                   (strcmp(argv[i], "--crash-monitor")==0))
            {
            {
              monitor_for_crash = true;
              monitor_for_crash = true;
            }
            }
          else if ((strcmp(argv[i], "-q")==0) ||
          else if ((strcmp(argv[i], "-q")==0) ||
                   (strcmp(argv[i], "--quiet")==0))
                   (strcmp(argv[i], "--quiet")==0))
            {
            {
              exit_perf_summary_enabled = false;
              exit_perf_summary_enabled = false;
            }
            }
          else if ((strcmp(argv[i], "-p")==0) ||
          else if ((strcmp(argv[i], "-p")==0) ||
                   (strcmp(argv[i], "--profile")==0))
                   (strcmp(argv[i], "--profile")==0))
            {
            {
              profiling_enabled = true;
              profiling_enabled = true;
              // Check for !end of command line and that next thing is not a 
              // Check for !end of command line and that next thing is not a 
              // command
              // command
              if ((i+1 < argc)){
              if ((i+1 < argc)){
                if(argv[i+1][0] != '-')
                if(argv[i+1][0] != '-')
                  profileFileName = (argv[i+1]);
                  profileFileName = (argv[i+1]);
              }
              }
            }
            }
          else if ( (strcmp(argv[i], "-r")==0) ||
          else if ( (strcmp(argv[i], "-r")==0) ||
                    (strcmp(argv[i], "--rsp")==0) )
                    (strcmp(argv[i], "--rsp")==0) )
            {
            {
              // We need to detect this here too
              // We need to detect this here too
              rsp_server_enabled = true;
              rsp_server_enabled = true;
            }
            }
 
 
          else if ((strcmp(argv[i], "-m")==0) ||
          else if ((strcmp(argv[i], "-m")==0) ||
                   (strcmp(argv[i], "--memdump")==0))
                   (strcmp(argv[i], "--memdump")==0))
            {
            {
              do_memdump = true;
              do_memdump = true;
              // Check for !end of command line and that next thing is not a 
              // Check for !end of command line and that next thing is not a 
              // command or a memory address
              // command or a memory address
              if (i+1 < argc)
              if (i+1 < argc)
                {
                {
                  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) != 0))
                  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) != 0))
                    {
                    {
                      // Hopefully this is the filename we want to use.
                      // Hopefully this is the filename we want to use.
                      // All addresses should have preceeding hex identifier 0x
                      // All addresses should have preceeding hex identifier 0x
                      memdumpFileName = argv[i+1];
                      memdumpFileName = argv[i+1];
                      // We've used this next index, can safely increment i
                      // We've used this next index, can safely increment i
                      i++;
                      i++;
                    }
                    }
                }
                }
              if (i+1 < argc)
              if (i+1 < argc)
                {
                {
                  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) == 0))
                  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) == 0))
                    {
                    {
                      // Hopefully this is is the start address
                      // Hopefully this is is the start address
                      // All addresses should have preceeding hex identifier 0x
                      // All addresses should have preceeding hex identifier 0x
                      sscanf( argv[i+1], "0x%x", &memdump_start);
                      sscanf( argv[i+1], "0x%x", &memdump_start);
                      i++;
                      i++;
                    }
                    }
                }
                }
              if (i+1 < argc)
              if (i+1 < argc)
                {
                {
                  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) == 0))
                  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) == 0))
                    {
                    {
                      // Hopefully this is is the end address
                      // Hopefully this is is the end address
                      // All addresses should have preceeding hex identifier 0x
                      // All addresses should have preceeding hex identifier 0x
                      sscanf( argv[i+1], "0x%x", &memdump_end);
                      sscanf( argv[i+1], "0x%x", &memdump_end);
                      i++;
                      i++;
                    }
                    }
                }
                }
            }
            }
          else if ((strcmp(argv[i], "-u")==0) ||
          else if ((strcmp(argv[i], "-u")==0) ||
                   (strcmp(argv[i], "--bus-log")==0))
                   (strcmp(argv[i], "--bus-log")==0))
            {
            {
              bus_trans_log_enabled = true;
              bus_trans_log_enabled = true;
              if (i+1 < argc)
              if (i+1 < argc)
                if(argv[i+1][0] != '-')
                if(argv[i+1][0] != '-')
                  {
                  {
                    bus_trans_log_file = (argv[i+1]);
                    bus_trans_log_file = (argv[i+1]);
                    bus_trans_log_name_provided = true;
                    bus_trans_log_name_provided = true;
                  }
                  }
 
 
              if (!bus_trans_log_name_provided)
              if (!bus_trans_log_name_provided)
                bus_trans_log_file = bus_trans_default_log_name;
                bus_trans_log_file = bus_trans_default_log_name;
 
 
              // check for a log start delay
              // check for a log start delay
              if (i+2 < argc)
              if (i+2 < argc)
                if(argv[i+2][0] != '-')
                if(argv[i+2][0] != '-')
                  {
                  {
                    // We have a bus transaction log start delay
                    // We have a bus transaction log start delay
                    bus_trans_log_start_delay_enable = true;
                    bus_trans_log_start_delay_enable = true;
                    int time_val = atoi(argv[i+2]);
                    int time_val = atoi(argv[i+2]);
                    sc_time log_start_time(time_val,SC_NS);
                    sc_time log_start_time(time_val,SC_NS);
                    bus_trans_log_start_delay = log_start_time;
                    bus_trans_log_start_delay = log_start_time;
                  }
                  }
            }
            }
        }
        }
    }
    }
 
 
 
 
  if (!rsp_server_enabled)
  if (!rsp_server_enabled)
    {
    {
      monitor_to_gdb_pipe[0][0] = monitor_to_gdb_pipe[0][1] = NULL;
      monitor_to_gdb_pipe[0][0] = monitor_to_gdb_pipe[0][1] = NULL;
      monitor_to_gdb_pipe[1][0] = monitor_to_gdb_pipe[1][1] = NULL;
      monitor_to_gdb_pipe[1][0] = monitor_to_gdb_pipe[1][1] = NULL;
    }
    }
 
 
 
 
  // checkInstruction monitors the bus for special NOP instructionsl
  // checkInstruction monitors the bus for special NOP instructionsl
  SC_METHOD (checkInstruction);
  SC_METHOD (checkInstruction);
  sensitive << clk.pos();
  sensitive << clk.pos();
  dont_initialize();
  dont_initialize();
 
 
 
 
  if (profiling_enabled)
  if (profiling_enabled)
    {
    {
 
 
      profileFile.open(profileFileName.c_str(), ios::out); // Open profiling log file
      profileFile.open(profileFileName.c_str(), ios::out); // Open profiling log file
      if(profileFile.is_open())
      if(profileFile.is_open())
        {
        {
          // If the file was opened OK, then enabled logging and print a message.
          // If the file was opened OK, then enabled logging and print a message.
          profiling_enabled = true;
          profiling_enabled = true;
          cout << "* Execution profiling enabled. Logging to " << profileFileName << endl;
          cout << "* Execution profiling enabled. Logging to " << profileFileName << endl;
        }
        }
 
 
      // Setup profiling function
      // Setup profiling function
      SC_METHOD (callLog);
      SC_METHOD (callLog);
      sensitive << clk.pos();
      sensitive << clk.pos();
      dont_initialize();
      dont_initialize();
      start = clock();
      start = clock();
    }
    }
 
 
  if(logging_enabled)
  if(logging_enabled)
    {
    {
 
 
      /* Now open the file */
      /* Now open the file */
      if (binary_log_format)
      if (binary_log_format)
        statusFile.open(logfileNameString.c_str(), ios::out | ios::binary);
        statusFile.open(logfileNameString.c_str(), ios::out | ios::binary);
      else
      else
        statusFile.open(logfileNameString.c_str(), ios::out );
        statusFile.open(logfileNameString.c_str(), ios::out );
 
 
      /* Check the open() */
      /* Check the open() */
      if(statusFile.is_open() && binary_log_format)
      if(statusFile.is_open() && binary_log_format)
        {
        {
          cout << "* Processor execution logged in binary format to file: " << logfileNameString << endl;
          cout << "* Processor execution logged in binary format to file: " << logfileNameString << endl;
          /* Write out a byte indicating whether there's register values too */
          /* Write out a byte indicating whether there's register values too */
          statusFile.write((char*)&logging_regs, 1);
          statusFile.write((char*)&logging_regs, 1);
 
 
        }
        }
      else if (statusFile.is_open() && !binary_log_format)
      else if (statusFile.is_open() && !binary_log_format)
        cout << "* Processor execution logged to file: " << logfileNameString << endl;
        cout << "* Processor execution logged to file: " << logfileNameString << endl;
      else
      else
        /* Couldn't open */
        /* Couldn't open */
        logging_enabled = false;
        logging_enabled = false;
 
 
    }
    }
 
 
  if (logging_enabled)
  if (logging_enabled)
    {
    {
      if (binary_log_format)
      if (binary_log_format)
        {
        {
          SC_METHOD (displayStateBinary);
          SC_METHOD (displayStateBinary);
        }
        }
      else
      else
        {
        {
          SC_METHOD (displayState);
          SC_METHOD (displayState);
        }
        }
      sensitive << clk.pos();
      sensitive << clk.pos();
      dont_initialize();
      dont_initialize();
      start = clock();
      start = clock();
 
 
    }
    }
 
 
  if (monitor_for_crash)
  if (monitor_for_crash)
    {
    {
      cout << "* Crash monitor enabled" << endl;
      cout << "* Crash monitor enabled" << endl;
    }
    }
 
 
  // Check sizes we were given from memory dump command line options first
  // Check sizes we were given from memory dump command line options first
  if (do_memdump)
  if (do_memdump)
    {
    {
      if ((memdump_start > ORPSOC_SRAM_SIZE) || (memdump_end > ORPSOC_SRAM_SIZE) ||
      if ((memdump_start > ORPSOC_SRAM_SIZE) || (memdump_end > ORPSOC_SRAM_SIZE) ||
          ((memdump_start > memdump_end) && (memdump_end != 0)))
          ((memdump_start > memdump_end) && (memdump_end != 0)))
        {
        {
          do_memdump = false;
          do_memdump = false;
          cout << "* Memory dump addresses range incorrect. Limit of memory is 0x" << hex <<  ORPSOC_SRAM_SIZE << ". Memory dumping disabled." << endl;
          cout << "* Memory dump addresses range incorrect. Limit of memory is 0x" << hex <<  ORPSOC_SRAM_SIZE << ". Memory dumping disabled." << endl;
        }
        }
    }
    }
 
 
  if (do_memdump)
  if (do_memdump)
    {
    {
      // Were we given dump addresses? If not, we dump all of the memory
      // Were we given dump addresses? If not, we dump all of the memory
      // Size of memory isn't clearly defined in any one place. This could lead to
      // Size of memory isn't clearly defined in any one place. This could lead to
      // big problems when changing size of the RAM in simulation.
      // big problems when changing size of the RAM in simulation.
 
 
      if (memdump_start == 0 && memdump_end == 0)
      if (memdump_start == 0 && memdump_end == 0)
        memdump_end = ORPSOC_SRAM_SIZE;
        memdump_end = ORPSOC_SRAM_SIZE;
 
 
      if (memdump_start != 0 && memdump_end == 0)
      if (memdump_start != 0 && memdump_end == 0)
        {
        {
          // Probably just got the single memorydump param
          // Probably just got the single memorydump param
          // Interpet as a length from 0
          // Interpet as a length from 0
          memdump_end = memdump_start;
          memdump_end = memdump_start;
          memdump_start = 0;
          memdump_start = 0;
        }
        }
 
 
      if (memdump_start & 0x3) memdump_start &= ~0x3; // word-align the start address      
      if (memdump_start & 0x3) memdump_start &= ~0x3; // word-align the start address      
      if (memdump_end & 0x3) memdump_end = (memdump_end+4) & ~0x3; // word-align the start address
      if (memdump_end & 0x3) memdump_end = (memdump_end+4) & ~0x3; // word-align the start address
 
 
      memdump_start_addr = memdump_start;
      memdump_start_addr = memdump_start;
      memdump_end_addr = memdump_end;
      memdump_end_addr = memdump_end;
    }
    }
 
 
  if (bus_trans_log_enabled)
  /*
    {
  if (bus_trans_log_enabled)
      // Setup log file and register the bus monitoring function
    {
      busTransLog.open(bus_trans_log_file.c_str(), ios::out );
      // Setup log file and register the bus monitoring function
 
      busTransLog.open(bus_trans_log_file.c_str(), ios::out );
      if (busTransLog.is_open())
 
        {
      if (busTransLog.is_open())
          cout << "* System bus transactions logged to file: " <<
        {
            bus_trans_log_file;
          cout << "* System bus transactions logged to file: " <<
 
            bus_trans_log_file;
          if (bus_trans_log_start_delay_enable)
 
            cout << ", on at " << bus_trans_log_start_delay.to_string();
          if (bus_trans_log_start_delay_enable)
          cout << endl;
            cout << ", on at " << bus_trans_log_start_delay.to_string();
        }
          cout << endl;
      else
        }
        /* Couldn't open */
      else
        bus_trans_log_enabled = false;
        // Couldn't open
    }
        bus_trans_log_enabled = false;
 
    }
  if (bus_trans_log_enabled)
 
    {
 
      // Setup profiling function
  if (bus_trans_log_enabled)
      SC_METHOD (busMonitor);
    {
      sensitive << clk.pos();
      // Setup profiling function
      dont_initialize();
      SC_METHOD (busMonitor);
    }
      sensitive << clk.pos();
 
      dont_initialize();
 
    }
 
  */
 
 
}       // Or1200MonitorSC ()
}       // Or1200MonitorSC ()
 
 
//! Print usage for the options of this module
//! Print usage for the options of this module
void
void
Or1200MonitorSC::printUsage()
Or1200MonitorSC::printUsage()
{
{
  printf("\nLogging and diagnostic options:\n");
  printf("\nLogging and diagnostic options:\n");
  printf("  -p, --profile [<file>]Enable execution profiling output to <file> (default is\n\t\t\t"DEFAULT_PROF_FILE")\n");
  printf("  -p, --profile [<file>]Enable execution profiling output to <file> (default is\n\t\t\t"DEFAULT_PROF_FILE")\n");
  printf("  -l, --log <file>\tLog processor execution to <file>\n");
  printf("  -l, --log <file>\tLog processor execution to <file>\n");
  printf("      --log-noregs\tLog excludes register contents\n");
  printf("      --log-noregs\tLog excludes register contents\n");
 
 
  printf("  -b, --binlog <file>\tGenerate binary format execution log (faster, smaller)\n");
  printf("  -b, --binlog <file>\tGenerate binary format execution log (faster, smaller)\n");
 
 
  printf("  -q, --quiet\t\tDisable the performance summary at end of simulation\n");
  printf("  -q, --quiet\t\tDisable the performance summary at end of simulation\n");
  printf("  -m, --memdump <file> <0xstartaddr> <0xendaddr>\n\t\t\tDump data between <0xstartaddr> and <0xendaddr> from\n\t\t\tthe system's RAM to <file> in binary format on exit\n");
  printf("  -m, --memdump <file> <0xstartaddr> <0xendaddr>\n\t\t\tDump data between <0xstartaddr> and <0xendaddr> from\n\t\t\tthe system's RAM to <file> in binary format on exit\n");
  printf("  -c, --crash-monitor\tDetect when the processor has crashed and exit\n");
  printf("  -c, --crash-monitor\tDetect when the processor has crashed and exit\n");
  printf("  -u, --bus-log <file> <val>\n\t\t\tLog the wishbone bus transactions to <file>, opt. start\n\t\t\tafter <val> ns\n\n");
  printf("  -u, --bus-log <file> <val>\n\t\t\tLog the wishbone bus transactions to <file>, opt. start\n\t\t\tafter <val> ns\n\n");
 
 
}
}
 
 
//! Method to handle special instrutions
//! Method to handle special instrutions
 
 
//! These are l.nop instructions with constant values. At present the
//! These are l.nop instructions with constant values. At present the
//! following are implemented:
//! following are implemented:
 
 
//! - l.nop 1  Terminate the program
//! - l.nop 1  Terminate the program
//! - l.nop 2  Report the value in R3
//! - l.nop 2  Report the value in R3
//! - l.nop 3  Printf the string with the arguments in R3, etc
//! - l.nop 3  Printf the string with the arguments in R3, etc
//! - l.nop 4  Print a character
//! - l.nop 4  Print a character
 
 
//#define OR1200_OR32_NOP_BITS_31_TO_26               6'b000101
//#define OR1200_OR32_NOP_BITS_31_TO_26               6'b000101
#define OR1200_OR32_NOP               0x14000000
#define OR1200_OR32_NOP               0x14000000
 
 
extern int SIM_RUNNING;
extern int SIM_RUNNING;
void
void
Or1200MonitorSC::checkInstruction()
Or1200MonitorSC::checkInstruction()
{
{
  uint32_t  r3;
  uint32_t  r3;
  double    ts;
  double    ts;
  uint32_t current_WbInsn, current_WbPC;
  uint32_t current_WbInsn, current_WbPC;
 
 
  cycle_count++;
  cycle_count++;
 
 
  /* Check if this counts as an "executed" instruction */
  /* Check if this counts as an "executed" instruction */
  if (!accessor->getWbFreeze())
  if (!accessor->getWbFreeze())
    {
    {
      // Cache writeback stage instruction
      // Cache writeback stage instruction
      current_WbInsn = accessor->getWbInsn();
      current_WbInsn = accessor->getWbInsn();
 
 
      if ((((current_WbInsn & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(current_WbInsn & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
      if ((((current_WbInsn & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(current_WbInsn & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
        insn_count++;
        insn_count++;
      else
      else
        // Exception version
        // Exception version
        if (accessor->getExceptFlushpipe())
        if (accessor->getExceptFlushpipe())
          insn_count++;
          insn_count++;
    }
    }
 
 
  // Check the instruction when the freeze signal is low.
  // Check the instruction when the freeze signal is low.
  if ((!accessor->getWbFreeze()) && (accessor->getExceptType() == 0))
  if ((!accessor->getWbFreeze()) && (accessor->getExceptType() == 0))
    {
    {
      // Do something if we have l.nop
      // Do something if we have l.nop
      switch (current_WbInsn)
      switch (current_WbInsn)
        {
        {
        case NOP_EXIT:
        case NOP_EXIT:
          r3 = accessor->getGpr (3);
          r3 = accessor->getGpr (3);
          ts = sc_time_stamp().to_seconds() * 1000000000.0;
          ts = sc_time_stamp().to_seconds() * 1000000000.0;
          std::cout << std::fixed << std::setprecision (2) << ts;
          std::cout << std::fixed << std::setprecision (2) << ts;
          std::cout << " ns: Exiting (" << r3 << ")" << std::endl;
          std::cout << " ns: Exiting (" << r3 << ")" << std::endl;
          perfSummary();
          perfSummary();
          if (logging_enabled) statusFile.close();
          if (logging_enabled) statusFile.close();
          if (profiling_enabled) profileFile.close();
          if (profiling_enabled) profileFile.close();
          if (bus_trans_log_enabled) busTransLog.close();
          if (bus_trans_log_enabled) busTransLog.close();
          memdump();
          memdump();
          SIM_RUNNING=0;
          SIM_RUNNING=0;
          sc_stop();
          sc_stop();
          break;
          break;
 
 
        case NOP_REPORT:
        case NOP_REPORT:
          ts = sc_time_stamp().to_seconds() * 1000000000.0;
          ts = sc_time_stamp().to_seconds() * 1000000000.0;
          r3 = accessor->getGpr (3);
          r3 = accessor->getGpr (3);
          std::cout << std::fixed << std::setprecision (2) << ts;
          std::cout << std::fixed << std::setprecision (2) << ts;
          std::cout << " ns: report (" << hex << r3 << ")" << std::endl;
          std::cout << " ns: report (" << hex << r3 << ")" << std::endl;
          break;
          break;
 
 
        case NOP_PRINTF:
        case NOP_PRINTF:
          ts = sc_time_stamp().to_seconds() * 1000000000.0;
          ts = sc_time_stamp().to_seconds() * 1000000000.0;
          std::cout << std::fixed << std::setprecision (2) << ts;
          std::cout << std::fixed << std::setprecision (2) << ts;
          std::cout << " ns: printf: ";
          std::cout << " ns: printf: ";
          simPrintf(accessor->getGpr (4), accessor->getGpr (3));
          simPrintf(accessor->getGpr (4), accessor->getGpr (3));
          break;
          break;
 
 
        case NOP_PUTC:
        case NOP_PUTC:
          r3 = accessor->getGpr (3);
          r3 = accessor->getGpr (3);
          std::cout << (char)r3 << std::flush;
          std::cout << (char)r3 << std::flush;
          break;
          break;
        case NOP_CNT_RESET:
        case NOP_CNT_RESET:
          std::cout << "****************** counters reset ******************" << endl;
          std::cout << "****************** counters reset ******************" << endl;
          std::cout << "since last reset: cycles " << cycle_count - cycle_count_rst << ", insn #" << insn_count - insn_count_rst << endl;
          std::cout << "since last reset: cycles " << cycle_count - cycle_count_rst << ", insn #" << insn_count - insn_count_rst << endl;
          std::cout << "****************** counters reset ******************" << endl;
          std::cout << "****************** counters reset ******************" << endl;
          cycle_count_rst = cycle_count;
          cycle_count_rst = cycle_count;
          insn_count_rst = insn_count;
          insn_count_rst = insn_count;
          /* 3 separate counters we'll use for various things */
          /* 3 separate counters we'll use for various things */
        case NOP_CNT_RESET1:
        case NOP_CNT_RESET1:
          std::cout << "**** counter1 cycles: " << std::setfill('0') << std::setw(10) << cycle_count - cycles_1 << " resetting ********" << endl;
          std::cout << "**** counter1 cycles: " << std::setfill('0') << std::setw(10) << cycle_count - cycles_1 << " resetting ********" << endl;
          cycles_1 = cycle_count;
          cycles_1 = cycle_count;
          break;
          break;
        case NOP_CNT_RESET2:
        case NOP_CNT_RESET2:
          std::cout << "**** counter2 cycles: " << std::setfill('0') << std::setw(10) << cycle_count - cycles_2 << " resetting ********" << endl;
          std::cout << "**** counter2 cycles: " << std::setfill('0') << std::setw(10) << cycle_count - cycles_2 << " resetting ********" << endl;
          cycles_2 = cycle_count;
          cycles_2 = cycle_count;
          break;
          break;
        case NOP_CNT_RESET3:
        case NOP_CNT_RESET3:
          std::cout << "**** counter3 cycles: " << std::setfill('0') << std::setw(10) << cycle_count - cycles_3 << " resetting ********" << endl;
          std::cout << "**** counter3 cycles: " << std::setfill('0') << std::setw(10) << cycle_count - cycles_3 << " resetting ********" << endl;
          cycles_3 = cycle_count;
          cycles_3 = cycle_count;
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (monitor_for_crash)
      if (monitor_for_crash)
        {
        {
          current_WbPC = accessor->getWbPC();
          current_WbPC = accessor->getWbPC();
          // Look at current instruction
          // Look at current instruction
          if (current_WbInsn == 0x00000000)
          if (current_WbInsn == 0x00000000)
            {
            {
              // Looks like we've jumped somewhere incorrectly
              // Looks like we've jumped somewhere incorrectly
              lookslikewevecrashed_count++;
              lookslikewevecrashed_count++;
            }
            }
#define CRASH_MONITOR_LOG_BAD_INSNS 1
#define CRASH_MONITOR_LOG_BAD_INSNS 1
#if CRASH_MONITOR_LOG_BAD_INSNS
#if CRASH_MONITOR_LOG_BAD_INSNS
 
 
          /* Log so-called "bad" instructions, or at least instructions we
          /* Log so-called "bad" instructions, or at least instructions we
          executed, no matter if they caused us to increment
          executed, no matter if they caused us to increment
          lookslikewevecrashed_count, this way we get them in our list too */
          lookslikewevecrashed_count, this way we get them in our list too */
          if (((current_WbInsn & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(current_WbInsn & (1<<16)))
          if (((current_WbInsn & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(current_WbInsn & (1<<16)))
            {
            {
              crash_monitor_buffer[crash_monitor_buffer_head][0] = current_WbPC;
              crash_monitor_buffer[crash_monitor_buffer_head][0] = current_WbPC;
              crash_monitor_buffer[crash_monitor_buffer_head][1] = current_WbInsn;
              crash_monitor_buffer[crash_monitor_buffer_head][1] = current_WbInsn;
              /* Circular buffer */
              /* Circular buffer */
              if(crash_monitor_buffer_head < CRASH_MONITOR_BUFFER_SIZE-1)
              if(crash_monitor_buffer_head < CRASH_MONITOR_BUFFER_SIZE-1)
                crash_monitor_buffer_head++;
                crash_monitor_buffer_head++;
              else
              else
                crash_monitor_buffer_head = 0;
                crash_monitor_buffer_head = 0;
 
 
            }
            }
 
 
#else
#else
          else if (((current_WbInsn & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(current_WbInsn & (1<<16)))
          else if (((current_WbInsn & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(current_WbInsn & (1<<16)))
          {
          {
 
 
              crash_monitor_buffer[crash_monitor_buffer_head][0] = current_WbPC;
              crash_monitor_buffer[crash_monitor_buffer_head][0] = current_WbPC;
              crash_monitor_buffer[crash_monitor_buffer_head][1] = current_WbInsn;
              crash_monitor_buffer[crash_monitor_buffer_head][1] = current_WbInsn;
              /* Circular buffer */
              /* Circular buffer */
              if(crash_monitor_buffer_head < CRASH_MONITOR_BUFFER_SIZE-1)
              if(crash_monitor_buffer_head < CRASH_MONITOR_BUFFER_SIZE-1)
                crash_monitor_buffer_head++;
                crash_monitor_buffer_head++;
              else
              else
                crash_monitor_buffer_head = 0;
                crash_monitor_buffer_head = 0;
 
 
              /* Reset this */
              /* Reset this */
              lookslikewevecrashed_count  = 0;
              lookslikewevecrashed_count  = 0;
            }
            }
#endif    
#endif    
          if (wait_for_stall_cmd_response)
          if (wait_for_stall_cmd_response)
            {
            {
              // We've already crashed, and we're issued a command to stall the
              // We've already crashed, and we're issued a command to stall the
              // processor to the system C debug unit interface, and we're
              // processor to the system C debug unit interface, and we're
              // waiting for this debug unit to send back the message that we've
              // waiting for this debug unit to send back the message that we've
              // stalled.
              // stalled.
              char readChar;
              char readChar;
              int n = read(monitor_to_gdb_pipe[1][0], &readChar, sizeof(char));
              int n = read(monitor_to_gdb_pipe[1][0], &readChar, sizeof(char));
              if (!( ((n < 0) && (errno == EAGAIN)) || (n==0) ))
              if (!( ((n < 0) && (errno == EAGAIN)) || (n==0) ))
                wait_for_stall_cmd_response = false; // We got response
                wait_for_stall_cmd_response = false; // We got response
              lookslikewevecrashed_count = 0;
              lookslikewevecrashed_count = 0;
 
 
            }
            }
          else if (lookslikewevecrashed_count > 0)
          else if (lookslikewevecrashed_count > 0)
            {
            {
 
 
              if (lookslikewevecrashed_count >= CRASH_MONITOR_BUFFER_SIZE/4)
              if (lookslikewevecrashed_count >= CRASH_MONITOR_BUFFER_SIZE/4)
                {
                {
                  /* Probably crashed. Bail out, print out buffer */
                  /* Probably crashed. Bail out, print out buffer */
                  std::cout << "********************************************************************************"<< endl;
                  std::cout << "********************************************************************************"<< endl;
                  std::cout << "* Looks like processor crashed. Printing last " << CRASH_MONITOR_BUFFER_SIZE << " instructions executed:" << endl;
                  std::cout << "* Looks like processor crashed. Printing last " << CRASH_MONITOR_BUFFER_SIZE << " instructions executed:" << endl;
 
 
                  int crash_monitor_buffer_head_end = (crash_monitor_buffer_head > 0) ? crash_monitor_buffer_head - 1 : CRASH_MONITOR_BUFFER_SIZE-1;
                  int crash_monitor_buffer_head_end = (crash_monitor_buffer_head > 0) ? crash_monitor_buffer_head - 1 : CRASH_MONITOR_BUFFER_SIZE-1;
                  while (crash_monitor_buffer_head != crash_monitor_buffer_head_end)
                  while (crash_monitor_buffer_head != crash_monitor_buffer_head_end)
                    {
                    {
                      std::cout << "* PC: " << std::setfill('0') << hex << std::setw(8) << crash_monitor_buffer[crash_monitor_buffer_head][0] << "  INSN: " << std::setfill('0') << hex << std::setw(8) << crash_monitor_buffer[crash_monitor_buffer_head][1] << endl;
                      std::cout << "* PC: " << std::setfill('0') << hex << std::setw(8) << crash_monitor_buffer[crash_monitor_buffer_head][0] << "  INSN: " << std::setfill('0') << hex << std::setw(8) << crash_monitor_buffer[crash_monitor_buffer_head][1] << endl;
 
 
                      if(crash_monitor_buffer_head < CRASH_MONITOR_BUFFER_SIZE-1)
                      if(crash_monitor_buffer_head < CRASH_MONITOR_BUFFER_SIZE-1)
                        crash_monitor_buffer_head++;
                        crash_monitor_buffer_head++;
                      else
                      else
                        crash_monitor_buffer_head = 0;
                        crash_monitor_buffer_head = 0;
                    }
                    }
                  std::cout << "********************************************************************************"<< endl;
                  std::cout << "********************************************************************************"<< endl;
 
 
                  if ( (monitor_to_gdb_pipe[0][0] != NULL))
                  if ( (monitor_to_gdb_pipe[0][0] != NULL))
                    {
                    {
                      // If GDB server is running, we'll pass control back to
                      // If GDB server is running, we'll pass control back to
                      // the debugger instead of just quitting.
                      // the debugger instead of just quitting.
                      char interrupt = 0x3; // Arbitrary
                      char interrupt = 0x3; // Arbitrary
                      write(monitor_to_gdb_pipe[0][1],&interrupt,sizeof(char));
                      write(monitor_to_gdb_pipe[0][1],&interrupt,sizeof(char));
                      wait_for_stall_cmd_response = true;
                      wait_for_stall_cmd_response = true;
                      lookslikewevecrashed_count = 0;
                      lookslikewevecrashed_count = 0;
                      std::cout << "* Stalling processor and returning control to GDB"<< endl;
                      std::cout << "* Stalling processor and returning control to GDB"<< endl;
                      // Problem: the debug unit interface's stalling the processor over the simulated JTAG bus takes a while, in the meantime this monitor will continue running and keep triggering the crash detection code. We must somehow wait until the processor is stalled, or circumvent this crash detection output until we detect that the processor is stalled.
                      // Problem: the debug unit interface's stalling the processor over the simulated JTAG bus takes a while, in the meantime this monitor will continue running and keep triggering the crash detection code. We must somehow wait until the processor is stalled, or circumvent this crash detection output until we detect that the processor is stalled.
                      // Solution: Added another pipe, when we want to wait for preocssor to stall, we set wait_for_stall_cmd_response=true, then each time we get back to this monitor function we simply poll the pipe until we're stalled. (A blocking read didn't work - this function never yielded and the RSP server handling function never got called).
                      // Solution: Added another pipe, when we want to wait for preocssor to stall, we set wait_for_stall_cmd_response=true, then each time we get back to this monitor function we simply poll the pipe until we're stalled. (A blocking read didn't work - this function never yielded and the RSP server handling function never got called).
                      wait_for_stall_cmd_response = true;
                      wait_for_stall_cmd_response = true;
 
 
                    }
                    }
                  else
                  else
                    {
                    {
                      // Close down sim end exit
                      // Close down sim end exit
                      ts = sc_time_stamp().to_seconds() * 1000000000.0;
                      ts = sc_time_stamp().to_seconds() * 1000000000.0;
                      std::cout << std::fixed << std::setprecision (2) << ts;
                      std::cout << std::fixed << std::setprecision (2) << ts;
                      std::cout << " ns: Exiting (" << r3 << ")" << std::endl;
                      std::cout << " ns: Exiting (" << r3 << ")" << std::endl;
                      perfSummary();
                      perfSummary();
                      if (logging_enabled) statusFile.close();
                      if (logging_enabled) statusFile.close();
                      if (profiling_enabled) profileFile.close();
                      if (profiling_enabled) profileFile.close();
                      if (bus_trans_log_enabled) busTransLog.close();
                      if (bus_trans_log_enabled) busTransLog.close();
                      memdump();
                      memdump();
                      SIM_RUNNING=0;
                      SIM_RUNNING=0;
                      sc_stop();
                      sc_stop();
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
}       // checkInstruction()
}       // checkInstruction()
 
 
 
 
//! Method to log execution in terms of calls and returns
//! Method to log execution in terms of calls and returns
 
 
void
void
Or1200MonitorSC::callLog()
Or1200MonitorSC::callLog()
{
{
  uint32_t  exinsn, delaypc;
  uint32_t  exinsn, delaypc;
  uint32_t o_a; // operand a
  uint32_t o_a; // operand a
  uint32_t o_b; // operand b
  uint32_t o_b; // operand b
  struct label_entry *tmp;
  struct label_entry *tmp;
 
 
  // Instructions should be valid when freeze is low and there are no exceptions
  // Instructions should be valid when freeze is low and there are no exceptions
  //if (!accessor->getExFreeze())
  //if (!accessor->getExFreeze())
  if ((!accessor->getWbFreeze()) && (accessor->getExceptType() == 0))
  if ((!accessor->getWbFreeze()) && (accessor->getExceptType() == 0))
    {
    {
      //exinsn = accessor->getExInsn();// & 0x3ffffff;
      //exinsn = accessor->getExInsn();// & 0x3ffffff;
      exinsn = accessor->getWbInsn();
      exinsn = accessor->getWbInsn();
      // Check the instruction
      // Check the instruction
      switch((exinsn >> 26) & 0x3f) { // Check Opcode - top 6 bits
      switch((exinsn >> 26) & 0x3f) { // Check Opcode - top 6 bits
      case 0x1:
      case 0x1:
        /* Instruction: l.jal */
        /* Instruction: l.jal */
        o_a = (exinsn >> 0) & 0x3ffffff;
        o_a = (exinsn >> 0) & 0x3ffffff;
        if(o_a & 0x02000000) o_a |= 0xfe000000;
        if(o_a & 0x02000000) o_a |= 0xfe000000;
 
 
        //delaypc = accessor->getExPC() + (o_a * 4); // PC we're jumping to
        //delaypc = accessor->getExPC() + (o_a * 4); // PC we're jumping to
        delaypc = accessor->getWbPC() + (o_a * 4); // PC we're jumping to
        delaypc = accessor->getWbPC() + (o_a * 4); // PC we're jumping to
        // Now we have info about where we're jumping to. Output the info, with label if possible
        // Now we have info about where we're jumping to. Output the info, with label if possible
        // We print the PC we're jumping from + 8 which is the return address
        // We print the PC we're jumping from + 8 which is the return address
        if ( tmp = memoryload->get_label (delaypc) )
        if ( tmp = memoryload->get_label (delaypc) )
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " " << tmp->name << endl;
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " " << tmp->name << endl;
        else
        else
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " @" << hex << std::setw(8) << delaypc << endl;
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " @" << hex << std::setw(8) << delaypc << endl;
 
 
        break;
        break;
      case 0x11:
      case 0x11:
        /* Instruction: l.jr */
        /* Instruction: l.jr */
        // Bits 15-11 contain register number
        // Bits 15-11 contain register number
        o_b = (exinsn >> 11) & 0x1f;
        o_b = (exinsn >> 11) & 0x1f;
        if (o_b == 9) // l.jr r9 is typical return
        if (o_b == 9) // l.jr r9 is typical return
          {
          {
            // Now get the value in this register
            // Now get the value in this register
            delaypc = accessor->getGpr(o_b);
            delaypc = accessor->getGpr(o_b);
            // Output this jump
            // Output this jump
            profileFile << "-" << std::setfill('0') << hex << std::setw(8) << cycle_count << " "  << hex << std::setw(8) << delaypc << endl;
            profileFile << "-" << std::setfill('0') << hex << std::setw(8) << cycle_count << " "  << hex << std::setw(8) << delaypc << endl;
          }
          }
        break;
        break;
      case 0x12:
      case 0x12:
        /* Instruction: l.jalr */
        /* Instruction: l.jalr */
        o_b = (exinsn >> 11) & 0x1f;
        o_b = (exinsn >> 11) & 0x1f;
        // Now get the value in this register
        // Now get the value in this register
        delaypc = accessor->getGpr(o_b);
        delaypc = accessor->getGpr(o_b);
        // Now we have info about where we're jumping to. Output the info, with label if possible
        // Now we have info about where we're jumping to. Output the info, with label if possible
        // We print the PC we're jumping from + 8 which is the return address
        // We print the PC we're jumping from + 8 which is the return address
        if ( tmp = memoryload->get_label (delaypc) )
        if ( tmp = memoryload->get_label (delaypc) )
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " " << tmp->name << endl;
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " " << tmp->name << endl;
        else
        else
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " @" << hex << std::setw(8) << delaypc << endl;
          profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " @" << hex << std::setw(8) << delaypc << endl;
 
 
        break;
        break;
 
 
      }
      }
    }
    }
}       // callLog()
}       // callLog()
 
 
 
 
//! Method to output the state of the processor
//! Method to output the state of the processor
 
 
//! This function will output to a file, if enabled, the status of the processor
//! This function will output to a file, if enabled, the status of the processor
//! This copies what the verilog testbench module, or1200_monitor does in it its
//! This copies what the verilog testbench module, or1200_monitor does in it its
//! process which calls the display_arch_state tasks. This is designed to be 
//! process which calls the display_arch_state tasks. This is designed to be 
//! identical to that process, so the output is identical
//! identical to that process, so the output is identical
 
 
void
void
Or1200MonitorSC::displayState()
Or1200MonitorSC::displayState()
{
{
  // Output the state if we're not frozen and not flushing during a delay slot
  // Output the state if we're not frozen and not flushing during a delay slot
  if (!accessor->getWbFreeze())
  if (!accessor->getWbFreeze())
    {
    {
      if ((((accessor->getWbInsn() & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(accessor->getWbInsn() & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
      if ((((accessor->getWbInsn() & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(accessor->getWbInsn() & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
        {
        {
          // Print PC, instruction
          // Print PC, instruction
          statusFile << "\nEXECUTED("<< std::setfill(' ') << std::setw(11) << dec << insn_count << "): " << std::setfill('0') << hex << std::setw(8) << accessor->getWbPC() << ":  " << hex << std::setw(8) << accessor->getWbInsn() <<  endl;
          statusFile << "\nEXECUTED("<< std::setfill(' ') << std::setw(11) << dec << insn_count << "): " << std::setfill('0') << hex << std::setw(8) << accessor->getWbPC() << ":  " << hex << std::setw(8) << accessor->getWbInsn() <<  endl;
        }
        }
      // Exception version
      // Exception version
      else if (accessor->getExceptFlushpipe())
      else if (accessor->getExceptFlushpipe())
        {
        {
          // Print PC, instruction, indicate it caused an exception
          // Print PC, instruction, indicate it caused an exception
          statusFile << "\nEXECUTED("<< std::setfill(' ') << std::setw(11) << dec << insn_count << "): " << std::setfill('0') << hex << std::setw(8) << accessor->getExPC() << ":  " << hex << std::setw(8) << accessor->getExInsn() << "  (exception)" << endl;
          statusFile << "\nEXECUTED("<< std::setfill(' ') << std::setw(11) << dec << insn_count << "): " << std::setfill('0') << hex << std::setw(8) << accessor->getExPC() << ":  " << hex << std::setw(8) << accessor->getExInsn() << "  (exception)" << endl;
        }
        }
      else
      else
        return;
        return;
    }
    }
  else
  else
    return;
    return;
 
 
  if (logging_regs)
  if (logging_regs)
    {
    {
      // Print general purpose register contents
      // Print general purpose register contents
      for (int i=0; i<32; i++)
      for (int i=0; i<32; i++)
        {
        {
          if ((i%4 == 0)&&(i>0)) statusFile << endl;
          if ((i%4 == 0)&&(i>0)) statusFile << endl;
          statusFile << std::setfill('0');
          statusFile << std::setfill('0');
          statusFile << "GPR" << dec << std::setw(2) << i << ": " <<  hex << std::setw(8) << (uint32_t) accessor->getGpr(i) << "  ";
          statusFile << "GPR" << dec << std::setw(2) << i << ": " <<  hex << std::setw(8) << (uint32_t) accessor->getGpr(i) << "  ";
        }
        }
      statusFile << endl;
      statusFile << endl;
 
 
      statusFile << "SR   : " <<  hex << std::setw(8) << (uint32_t) accessor->getSprSr() << "  ";
      statusFile << "SR   : " <<  hex << std::setw(8) << (uint32_t) accessor->getSprSr() << "  ";
      statusFile << "EPCR0: " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEpcr() << "  ";
      statusFile << "EPCR0: " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEpcr() << "  ";
      statusFile << "EEAR0: " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEear() << "  ";
      statusFile << "EEAR0: " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEear() << "  ";
      statusFile << "ESR0 : " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEsr() << endl;
      statusFile << "ESR0 : " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEsr() << endl;
 
 
    }
    }
 
 
  return;
  return;
 
 
}       // displayState()
}       // displayState()
 
 
//! Method to output the state of the processor in binary format
//! Method to output the state of the processor in binary format
//! File format is simply first byte indicating whether register
//! File format is simply first byte indicating whether register
//! data is included, and then structs of the following type
//! data is included, and then structs of the following type
struct s_binary_output_buffer{
struct s_binary_output_buffer{
  long long insn_count;
  long long insn_count;
  uint32_t pc;
  uint32_t pc;
  uint32_t insn;
  uint32_t insn;
  char exception;
  char exception;
  uint32_t regs[32];
  uint32_t regs[32];
  uint32_t sr;
  uint32_t sr;
  uint32_t epcr0;
  uint32_t epcr0;
  uint32_t eear0;
  uint32_t eear0;
  uint32_t eser0;
  uint32_t eser0;
} __attribute__((__packed__));
} __attribute__((__packed__));
 
 
struct s_binary_output_buffer_sans_regs{
struct s_binary_output_buffer_sans_regs{
  long long insn_count;
  long long insn_count;
  uint32_t pc;
  uint32_t pc;
  uint32_t insn;
  uint32_t insn;
  char exception;
  char exception;
} __attribute__((__packed__));
} __attribute__((__packed__));
 
 
void
void
Or1200MonitorSC::displayStateBinary()
Or1200MonitorSC::displayStateBinary()
{
{
  struct s_binary_output_buffer outbuf;
  struct s_binary_output_buffer outbuf;
 
 
  // Output the state if we're not frozen and not flushing during a delay slot
  // Output the state if we're not frozen and not flushing during a delay slot
  if (!accessor->getWbFreeze())
  if (!accessor->getWbFreeze())
    {
    {
      if ((((accessor->getWbInsn() & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(accessor->getWbInsn() & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
      if ((((accessor->getWbInsn() & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(accessor->getWbInsn() & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
        {
        {
          outbuf.insn_count = insn_count;
          outbuf.insn_count = insn_count;
          outbuf.pc = (uint32_t) accessor->getWbPC();
          outbuf.pc = (uint32_t) accessor->getWbPC();
          outbuf.insn = (uint32_t) accessor->getWbInsn();
          outbuf.insn = (uint32_t) accessor->getWbInsn();
          outbuf.exception = 0;
          outbuf.exception = 0;
        }
        }
      // Exception version
      // Exception version
      else if (accessor->getExceptFlushpipe())
      else if (accessor->getExceptFlushpipe())
        {
        {
          outbuf.insn_count = insn_count;
          outbuf.insn_count = insn_count;
          outbuf.pc = (uint32_t) accessor->getExPC();
          outbuf.pc = (uint32_t) accessor->getExPC();
          outbuf.insn = (uint32_t) accessor->getExInsn();
          outbuf.insn = (uint32_t) accessor->getExInsn();
          outbuf.exception = 1;
          outbuf.exception = 1;
        }
        }
      else
      else
        return;
        return;
    }
    }
  else
  else
    return;
    return;
 
 
  if (logging_regs)
  if (logging_regs)
    {
    {
      // Print general purpose register contents
      // Print general purpose register contents
      for (int i=0; i<32; i++)
      for (int i=0; i<32; i++)
          outbuf.regs[i] = (uint32_t) accessor->getGpr(i);
          outbuf.regs[i] = (uint32_t) accessor->getGpr(i);
 
 
      outbuf.sr = (uint32_t) accessor->getSprSr();
      outbuf.sr = (uint32_t) accessor->getSprSr();
      outbuf.epcr0 = (uint32_t) accessor->getSprEpcr();
      outbuf.epcr0 = (uint32_t) accessor->getSprEpcr();
      outbuf.eear0 = (uint32_t) accessor->getSprEear();
      outbuf.eear0 = (uint32_t) accessor->getSprEear();
      outbuf.eser0 = (uint32_t) accessor->getSprEsr();
      outbuf.eser0 = (uint32_t) accessor->getSprEsr();
 
 
      statusFile.write((char*)&outbuf, sizeof(struct s_binary_output_buffer));
      statusFile.write((char*)&outbuf, sizeof(struct s_binary_output_buffer));
 
 
    }
    }
  else
  else
    statusFile.write((char*)&outbuf, sizeof(struct s_binary_output_buffer_sans_regs));
    statusFile.write((char*)&outbuf, sizeof(struct s_binary_output_buffer_sans_regs));
 
 
 
 
 
 
  return;
  return;
 
 
}       // displayStateBinary()
}       // displayStateBinary()
 
 
//! Function to calculate the number of instructions performed and the time taken
//! Function to calculate the number of instructions performed and the time taken
void
void
Or1200MonitorSC::perfSummary()
Or1200MonitorSC::perfSummary()
{
{
  if (exit_perf_summary_enabled)
  if (exit_perf_summary_enabled)
    {
    {
      double ts;
      double ts;
      ts = sc_time_stamp().to_seconds() * 1000000000.0;
      ts = sc_time_stamp().to_seconds() * 1000000000.0;
      int cycles = ts / (BENCH_CLK_HALFPERIOD*2); // Number of clock cycles we had
      int cycles = ts / (BENCH_CLK_HALFPERIOD*2); // Number of clock cycles we had
 
 
      clock_t finish = clock();
      clock_t finish = clock();
      double elapsed_time = (double(finish)-double(start))/CLOCKS_PER_SEC;
      double elapsed_time = (double(finish)-double(start))/CLOCKS_PER_SEC;
      // It took elapsed_time seconds to do insn_count instructions. Divide insn_count by the time to get instructions/second.
      // It took elapsed_time seconds to do insn_count instructions. Divide insn_count by the time to get instructions/second.
      double ips = (insn_count/elapsed_time);
      double ips = (insn_count/elapsed_time);
      double mips = (insn_count/elapsed_time)/1000000;
      double mips = (insn_count/elapsed_time)/1000000;
      int hertz = (int) ((cycles/elapsed_time)/1000);
      int hertz = (int) ((cycles/elapsed_time)/1000);
      std::cout << "* Or1200Monitor: simulated " << sc_time_stamp() << ", time elapsed: " << elapsed_time << " seconds" << endl;
      std::cout << "* Or1200Monitor: simulated " << sc_time_stamp() << ", time elapsed: " << elapsed_time << " seconds" << endl;
      std::cout << "* Or1200Monitor: simulated " << dec << cycles << " clock cycles, executed at approx " << hertz << "kHz" << endl;
      std::cout << "* Or1200Monitor: simulated " << dec << cycles << " clock cycles, executed at approx " << hertz << "kHz" << endl;
      std::cout << "* Or1200Monitor: simulated " << insn_count << " instructions, insn/sec. = " << ips /*<< ", mips = " << mips*/ << endl;
      std::cout << "* Or1200Monitor: simulated " << insn_count << " instructions, insn/sec. = " << ips /*<< ", mips = " << mips*/ << endl;
    }
    }
  return;
  return;
}       // perfSummary
}       // perfSummary
 
 
 
 
//! Dump contents of simulation's RAM to file
//! Dump contents of simulation's RAM to file
void
void
Or1200MonitorSC::memdump()
Or1200MonitorSC::memdump()
{
{
  if (!do_memdump) return;
  if (!do_memdump) return;
  uint32_t current_word;
  uint32_t current_word;
  int size_words = (memdump_end_addr/4) - (memdump_start_addr/4);
  int size_words = (memdump_end_addr/4) - (memdump_start_addr/4);
  if (!(size_words > 0)) return;
  if (!(size_words > 0)) return;
 
 
  // First try opening the file
  // First try opening the file
  memdumpFile.open(memdumpFileName.c_str(), ios::binary); // Open memorydump file
  memdumpFile.open(memdumpFileName.c_str(), ios::binary); // Open memorydump file
  if(memdumpFile.is_open())
  if(memdumpFile.is_open())
    {
    {
      // If we could open the file then turn on logging
      // If we could open the file then turn on logging
      cout << "* Dumping system RAM from  0x" << hex << memdump_start_addr << "-0x" << hex << memdump_end_addr << " to file " << memdumpFileName << endl;
      cout << "* Dumping system RAM from  0x" << hex << memdump_start_addr << "-0x" << hex << memdump_end_addr << " to file " << memdumpFileName << endl;
 
 
      while (size_words)
      while (size_words)
        {
        {
          // Read the data from the simulation memory
          // Read the data from the simulation memory
          current_word = accessor->get_mem32(memdump_start_addr);
          current_word = accessor->get_mem32(memdump_start_addr);
          // Change from whatever endian the host is (most
          // Change from whatever endian the host is (most
          // cases little) to big endian
          // cases little) to big endian
          current_word = htonl(current_word);
          current_word = htonl(current_word);
          memdumpFile.write((char*) &current_word, 4);
          memdumpFile.write((char*) &current_word, 4);
          memdump_start_addr+=4; size_words--;
          memdump_start_addr+=4; size_words--;
        }
        }
 
 
      // Ideally we've now finished piping out the data
      // Ideally we've now finished piping out the data
      // not 100% about the endianess of this.
      // not 100% about the endianess of this.
    }
    }
  memdumpFile.close();
  memdumpFile.close();
 
 
}
}
 
 
 
/*
 
void
 
Or1200MonitorSC::busMonitor()
 
{
 
 
 
  // This is for the wb_conmax module. Presumably other Wishbone bus arbiters
 
  // will need this section of the code to be re-written appropriately, along
 
  // with the relevent functions in the OrpsocAccess module.
 
 
 
  static busLogStates busLogState = BUS_LOG_IDLE;
 
  static int currentMaster = -1;
 
  static uint32_t currentAddr = 0, currentDataIn = 0;
 
  static uint32_t currentSel = 0, currentSlave = 0;
 
  static bool currentWe = false;
 
  static int cyclesWaited = 0;
 
 
 
  if (bus_trans_log_start_delay_enable)
 
    {
 
      if (sc_time_stamp() >= bus_trans_log_start_delay)
 
        {
 
          // No longer waiting
 
          bus_trans_log_start_delay_enable = false;
 
          cout << "* System log now enabled (time =  " << bus_trans_log_start_delay.to_string() << ")" << endl;
 
        }
 
 
 
      if (bus_trans_log_start_delay_enable)
 
        return;
 
    }
 
 
 
  switch ( busLogState )
 
    {
 
    case BUS_LOG_IDLE:
 
      {
 
        // Check the current granted master's cyc and stb inputs
 
        uint32_t gnt = accessor->getWbArbGrant();
 
        if (accessor->getWbArbMastCycI(gnt) && accessor->getWbArbMastStbI(gnt) &&
 
            !accessor->getWbArbMastAckO(gnt))
 
          {
 
            currentAddr = accessor->getWbArbMastAdrI(gnt);
 
            currentDataIn = accessor->getWbArbMastDatI(gnt);
 
            currentSel = (uint32_t) accessor->getWbArbMastSelI(gnt);
 
            currentSlave = (uint32_t)accessor->getWbArbMastSlaveSelDecoded(gnt)-1;
 
            currentWe = accessor->getWbArbMastWeI(gnt);
 
            currentMaster = gnt;
 
            busLogState = BUS_LOG_WAIT_FOR_ACK;
 
            cyclesWaited = 0;
 
          }
 
      }
 
 
 
      break;
 
 
 
    case BUS_LOG_WAIT_FOR_ACK:
 
 
 
      cyclesWaited++;
 
 
 
      // Check for ACK
 
      if (accessor->getWbArbMastAckO(currentMaster))
 
        {
 
          // Transaction completed
 
          busTransLog << sc_time_stamp() << " M" << currentMaster << " ";
 
          if (currentWe)
 
            busTransLog << " W " << hex << currentSel << " " << hex << std::setfill('0') << std::setw(8) << currentAddr << " S" << dec <<  currentSlave << " " << hex << std::setw(8) << currentDataIn << " " << dec << cyclesWaited << endl;
 
          else
 
            busTransLog << " R " << hex << currentSel << " " << hex << std::setfill('0') << std::setw(8) << currentAddr << " S" << dec << currentSlave << " "  << hex << std::setw(8) << accessor->getWbArbMastDatO(currentMaster) << " " << dec << cyclesWaited << endl;
 
 
 
          busLogState = BUS_LOG_IDLE;
 
        }
 
 
void
      break;
Or1200MonitorSC::busMonitor()
 
{
 
 
 
  // This is for the wb_conmax module. Presumably other Wishbone bus arbiters 
 
  // will need this section of the code to be re-written appropriately, along 
 
  // with the relevent functions in the OrpsocAccess module.
 
 
 
  static busLogStates busLogState = BUS_LOG_IDLE;
 
  static int currentMaster = -1;
 
  static uint32_t currentAddr = 0, currentDataIn = 0;
 
  static uint32_t currentSel = 0, currentSlave = 0;
 
  static bool currentWe = false;
 
  static int cyclesWaited = 0;
 
 
 
  if (bus_trans_log_start_delay_enable)
 
    {
 
      if (sc_time_stamp() >= bus_trans_log_start_delay)
 
        {
 
          // No longer waiting
 
          bus_trans_log_start_delay_enable = false;
 
          cout << "* System log now enabled (time =  " << bus_trans_log_start_delay.to_string() << ")" << endl;
 
        }
 
 
 
      if (bus_trans_log_start_delay_enable)
 
        return;
 
    }
 
 
 
  switch ( busLogState )
    }
    {
 
    case BUS_LOG_IDLE:
 
      {
 
        // Check the current granted master's cyc and stb inputs
 
        uint32_t gnt = accessor->getWbArbGrant();
 
        if (accessor->getWbArbMastCycI(gnt) && accessor->getWbArbMastStbI(gnt) &&
 
            !accessor->getWbArbMastAckO(gnt))
 
          {
 
            currentAddr = accessor->getWbArbMastAdrI(gnt);
 
            currentDataIn = accessor->getWbArbMastDatI(gnt);
 
            currentSel = (uint32_t) accessor->getWbArbMastSelI(gnt);
 
            currentSlave = (uint32_t)accessor->getWbArbMastSlaveSelDecoded(gnt)-1;
 
            currentWe = accessor->getWbArbMastWeI(gnt);
 
            currentMaster = gnt;
 
            busLogState = BUS_LOG_WAIT_FOR_ACK;
 
            cyclesWaited = 0;
 
          }
 
      }
 
 
 
      break;
 
 
 
    case BUS_LOG_WAIT_FOR_ACK:
 
 
 
      cyclesWaited++;
 
 
 
      // Check for ACK
 
      if (accessor->getWbArbMastAckO(currentMaster))
 
        {
 
          // Transaction completed
 
          busTransLog << sc_time_stamp() << " M" << currentMaster << " ";
 
          if (currentWe)
 
            busTransLog << " W " << hex << currentSel << " " << hex << std::setfill('0') << std::setw(8) << currentAddr << " S" << dec <<  currentSlave << " " << hex << std::setw(8) << currentDataIn << " " << dec << cyclesWaited << endl;
 
          else
 
            busTransLog << " R " << hex << currentSel << " " << hex << std::setfill('0') << std::setw(8) << currentAddr << " S" << dec << currentSlave << " "  << hex << std::setw(8) << accessor->getWbArbMastDatO(currentMaster) << " " << dec << cyclesWaited << endl;
 
 
 
          busLogState = BUS_LOG_IDLE;
 
        }
 
 
 
      break;
 
 
 
    }
 
 
 
  return;
 
 
 
}       // busMonitor ()
  return;
 
 
 
}       // busMonitor ()
 
*/
void
void
Or1200MonitorSC::simPrintf(uint32_t stackaddr, uint32_t regparam)
Or1200MonitorSC::simPrintf(uint32_t stackaddr, uint32_t regparam)
{
{
 
 
  //cerr << hex << stackaddr << " " << regparam << endl;
  //cerr << hex << stackaddr << " " << regparam << endl;
#define FMTLEN 2000
#define FMTLEN 2000
  char fmtstr[FMTLEN];
  char fmtstr[FMTLEN];
  uint32_t arg;
  uint32_t arg;
  oraddr_t argaddr;
  oraddr_t argaddr;
  char *fmtstrend;
  char *fmtstrend;
  char *fmtstrpart = fmtstr;
  char *fmtstrpart = fmtstr;
  int tee_exe_log;
  int tee_exe_log;
 
 
  /*simgetstr (stackaddr, regparam);*/
  /*simgetstr (stackaddr, regparam);*/
  /* Get the format string*/
  /* Get the format string*/
  uint32_t fmtaddr;
  uint32_t fmtaddr;
  int i;
  int i;
  fmtaddr = regparam;
  fmtaddr = regparam;
 
 
  i = 0;
  i = 0;
  while (accessor->get_mem8(fmtaddr) != '\0')
  while (accessor->get_mem8(fmtaddr) != '\0')
    {
    {
      fmtstr[i++] = accessor->get_mem8(fmtaddr);
      fmtstr[i++] = accessor->get_mem8(fmtaddr);
      fmtaddr++;
      fmtaddr++;
      if (i == FMTLEN - 1)
      if (i == FMTLEN - 1)
        break;
        break;
    }
    }
  fmtstr[i] = '\0';
  fmtstr[i] = '\0';
 
 
 
 
  argaddr = stackaddr;
  argaddr = stackaddr;
  int index, last_index;
  int index, last_index;
  index = last_index = 0;
  index = last_index = 0;
  char tmp_char;
  char tmp_char;
  while (1)
  while (1)
    {
    {
      /* Look for the next format argument, or end of string */
      /* Look for the next format argument, or end of string */
      while (!(fmtstrpart[index] == '\0' || fmtstrpart[index] == '%'))
      while (!(fmtstrpart[index] == '\0' || fmtstrpart[index] == '%'))
        index++;
        index++;
 
 
      if (fmtstrpart[index] == '\0' && index == last_index)
      if (fmtstrpart[index] == '\0' && index == last_index)
        /* We had something like "%d\0", so we're done*/
        /* We had something like "%d\0", so we're done*/
        return;
        return;
 
 
      if (fmtstrpart[index] == '\0')
      if (fmtstrpart[index] == '\0')
        {
        {
          /* Final printf */
          /* Final printf */
          printf("%s", (char*) fmtstrpart + last_index);
          printf("%s", (char*) fmtstrpart + last_index);
          return;
          return;
        }
        }
      else
      else
        {
        {
          /* We have a section between last_index and index that we should print out*/
          /* We have a section between last_index and index that we should print out*/
          fmtstrpart[index] = '\0'; /* Replace % with \0 for now */
          fmtstrpart[index] = '\0'; /* Replace % with \0 for now */
          printf ("%s",fmtstrpart + last_index);
          printf ("%s",fmtstrpart + last_index);
          fmtstrpart[index] = '%'; /* Replace the % */
          fmtstrpart[index] = '%'; /* Replace the % */
        }
        }
 
 
      last_index = index; /* last_index now pointing at the % */
      last_index = index; /* last_index now pointing at the % */
 
 
      /* Now extract the part that requires formatting */
      /* Now extract the part that requires formatting */
      /* Look for the end of the format argument*/
      /* Look for the end of the format argument*/
      while (!(fmtstrpart[index] == 'd' || fmtstrpart[index] == 'i'
      while (!(fmtstrpart[index] == 'd' || fmtstrpart[index] == 'i'
               || fmtstrpart[index] == 'o' || fmtstrpart[index] == 'u'
               || fmtstrpart[index] == 'o' || fmtstrpart[index] == 'u'
               || fmtstrpart[index] == 'x' || fmtstrpart[index] == 'X'
               || fmtstrpart[index] == 'x' || fmtstrpart[index] == 'X'
               || fmtstrpart[index] == 'f' || fmtstrpart[index] == 'e'
               || fmtstrpart[index] == 'f' || fmtstrpart[index] == 'e'
               || fmtstrpart[index] == 'E' || fmtstrpart[index] == 'g'
               || fmtstrpart[index] == 'E' || fmtstrpart[index] == 'g'
               || fmtstrpart[index] == 'G' || fmtstrpart[index] == 'c'
               || fmtstrpart[index] == 'G' || fmtstrpart[index] == 'c'
               || fmtstrpart[index] == 's' || fmtstrpart[index] == '\0'
               || fmtstrpart[index] == 's' || fmtstrpart[index] == '\0'
               || fmtstrpart[index+1] == '%'))
               || fmtstrpart[index+1] == '%'))
        index++;
        index++;
 
 
      if (fmtstrpart[index] == '\0')
      if (fmtstrpart[index] == '\0')
        {
        {
          // Error
          // Error
          return;
          return;
        }
        }
      else if (fmtstrpart[index] == '%' && fmtstrpart[index+1] == '%')
      else if (fmtstrpart[index] == '%' && fmtstrpart[index+1] == '%')
        {
        {
          /* Deal with the %% case to print a single % */
          /* Deal with the %% case to print a single % */
          index++;
          index++;
          printf("%%");
          printf("%%");
        }
        }
      else
      else
        {
        {
          /* We now will print the part that requires the next argument */
          /* We now will print the part that requires the next argument */
          /* Same trick, but this time remember what the char was */
          /* Same trick, but this time remember what the char was */
          tmp_char = fmtstrpart[index+1];
          tmp_char = fmtstrpart[index+1];
          fmtstrpart[index+1] = '\0'; /* Replace % with \0 for now */
          fmtstrpart[index+1] = '\0'; /* Replace % with \0 for now */
          /* Check what we're printing*/
          /* Check what we're printing*/
          if (fmtstrpart[index] == 's')
          if (fmtstrpart[index] == 's')
            {
            {
              /* It's a string, so pull it out of memory into a local char*
              /* It's a string, so pull it out of memory into a local char*
                 and pass it to printf() */
                 and pass it to printf() */
              int tmp_string_len, z;
              int tmp_string_len, z;
              /* Assume stackaddr already pointing at appropriate value*/
              /* Assume stackaddr already pointing at appropriate value*/
              oraddr_t ormem_str_ptr = accessor->get_mem32(argaddr);
              oraddr_t ormem_str_ptr = accessor->get_mem32(argaddr);
 
 
              while (accessor->get_mem8(ormem_str_ptr++) != '\0')
              while (accessor->get_mem8(ormem_str_ptr++) != '\0')
                tmp_string_len++;
                tmp_string_len++;
              tmp_string_len++; /* One for terminating char */
              tmp_string_len++; /* One for terminating char */
 
 
              char* str = (char *) malloc (tmp_string_len);
              char* str = (char *) malloc (tmp_string_len);
              if (str == NULL) return; /* Malloc failed, bigger issues than printf'ing out of sim */
              if (str == NULL) return; /* Malloc failed, bigger issues than printf'ing out of sim */
              ormem_str_ptr = accessor->get_mem32(argaddr); /* Reset start pointer value*/
              ormem_str_ptr = accessor->get_mem32(argaddr); /* Reset start pointer value*/
              for (z=0;z<tmp_string_len;z++)
              for (z=0;z<tmp_string_len;z++)
                str[z] = accessor->get_mem8(ormem_str_ptr+z);
                str[z] = accessor->get_mem8(ormem_str_ptr+z);
 
 
              printf (fmtstrpart + last_index, str);
              printf (fmtstrpart + last_index, str);
              free (str);
              free (str);
            }
            }
          else
          else
            {
            {
              /*
              /*
                 Some other kind of variable, pull it off the stack and print
                 Some other kind of variable, pull it off the stack and print
                 it out. Assume stackaddr already pointing at appropriate
                 it out. Assume stackaddr already pointing at appropriate
                 value
                 value
              */
              */
              arg = accessor->get_mem32(argaddr);
              arg = accessor->get_mem32(argaddr);
              printf (fmtstrpart + last_index, arg);
              printf (fmtstrpart + last_index, arg);
            }
            }
          argaddr+= 4; /* Increment argument pointer in stack */
          argaddr+= 4; /* Increment argument pointer in stack */
          fmtstrpart[index+1] = tmp_char; /* Replace the char we took out */
          fmtstrpart[index+1] = tmp_char; /* Replace the char we took out */
        }
        }
      index++;
      index++;
      last_index = index;
      last_index = index;
    }
    }
 
 
  return;
  return;
}       // simPrintf ()
}       // simPrintf ()
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.