OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [orpsocv2/] [rtl/] [verilog/] [or1200/] [or1200_mult_mac.v] - Diff between revs 363 and 435

Only display areas with differences | Details | Blame | View Log

Rev 363 Rev 435
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
////                                                              ////
////                                                              ////
////  OR1200's Top level multiplier, divider and MAC              ////
////  OR1200's Top level multiplier, divider and MAC              ////
////                                                              ////
////                                                              ////
////  This file is part of the OpenRISC 1200 project              ////
////  This file is part of the OpenRISC 1200 project              ////
////  http://opencores.org/project,or1k                           ////
////  http://opencores.org/project,or1k                           ////
////                                                              ////
////                                                              ////
////  Description                                                 ////
////  Description                                                 ////
////  Multiplier is 32x32 however multiply instructions only      ////
////  Multiplier is 32x32 however multiply instructions only      ////
////  use lower 32 bits of the result. MAC is 32x32=64+64.        ////
////  use lower 32 bits of the result. MAC is 32x32=64+64.        ////
////                                                              ////
////                                                              ////
////  To Do:                                                      ////
////  To Do:                                                      ////
////   - make signed division better, w/o negating the operands   ////
////   - make signed division better, w/o negating the operands   ////
 
////   - implement non-serial divider that is synthesizable       ////
////                                                              ////
////                                                              ////
////  Author(s):                                                  ////
////  Author(s):                                                  ////
////      - Damjan Lampret, lampret@opencores.org                 ////
////      - Damjan Lampret, lampret@opencores.org                 ////
 
////      - Julius Baxter, julius@opencores.org                   ////
////                                                              ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
////                                                              ////
////                                                              ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG                 ////
//// Copyright (C) 2000, 2010 Authors and OPENCORES.ORG           ////
////                                                              ////
////                                                              ////
//// This source file may be used and distributed without         ////
//// This source file may be used and distributed without         ////
//// restriction provided that this copyright statement is not    ////
//// restriction provided that this copyright statement is not    ////
//// removed from the file and that any derivative work contains  ////
//// removed from the file and that any derivative work contains  ////
//// the original copyright notice and the associated disclaimer. ////
//// the original copyright notice and the associated disclaimer. ////
////                                                              ////
////                                                              ////
//// This source file is free software; you can redistribute it   ////
//// This source file is free software; you can redistribute it   ////
//// and/or modify it under the terms of the GNU Lesser General   ////
//// and/or modify it under the terms of the GNU Lesser General   ////
//// Public License as published by the Free Software Foundation; ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any   ////
//// either version 2.1 of the License, or (at your option) any   ////
//// later version.                                               ////
//// later version.                                               ////
////                                                              ////
////                                                              ////
//// This source is distributed in the hope that it will be       ////
//// This source is distributed in the hope that it will be       ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied   ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied   ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ////
//// PURPOSE.  See the GNU Lesser General Public License for more ////
//// PURPOSE.  See the GNU Lesser General Public License for more ////
//// details.                                                     ////
//// details.                                                     ////
////                                                              ////
////                                                              ////
//// You should have received a copy of the GNU Lesser General    ////
//// You should have received a copy of the GNU Lesser General    ////
//// Public License along with this source; if not, download it   ////
//// Public License along with this source; if not, download it   ////
//// from http://www.opencores.org/lgpl.shtml                     ////
//// from http://www.opencores.org/lgpl.shtml                     ////
////                                                              ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//
//
// CVS Revision History
// CVS Revision History
//
//
// $Log: or1200_mult_mac.v,v $
// $Log: or1200_mult_mac.v,v $
// Revision 2.0  2010/06/30 11:00:00  ORSoC
// Revision 2.0  2010/06/30 11:00:00  ORSoC
// Minor update: 
// Minor update: 
// Bugs fixed. 
// Bugs fixed. 
//
//
 
 
// synopsys translate_off
// synopsys translate_off
`include "timescale.v"
`include "timescale.v"
// synopsys translate_on
// synopsys translate_on
`include "or1200_defines.v"
`include "or1200_defines.v"
 
 
module or1200_mult_mac(
module or1200_mult_mac(
        // Clock and reset
                       // Clock and reset
        clk, rst,
                       clk, rst,
 
 
        // Multiplier/MAC interface
        // Multiplier/MAC interface
        ex_freeze, id_macrc_op, macrc_op, a, b, mac_op, alu_op, result, mac_stall_r,
                       ex_freeze, id_macrc_op, macrc_op, a, b, mac_op, alu_op,
 
                       result, mult_mac_stall,
 
 
        // SPR interface
                       // SPR interface
        spr_cs, spr_write, spr_addr, spr_dat_i, spr_dat_o
                       spr_cs, spr_write, spr_addr, spr_dat_i, spr_dat_o
);
                       );
 
 
parameter width = `OR1200_OPERAND_WIDTH;
   parameter width = `OR1200_OPERAND_WIDTH;
 
 
//
   //
// I/O
   // I/O
//
   //
 
 
//
   //
// Clock and reset
   // Clock and reset
//
   //
input                           clk;
   input                                clk;
input                           rst;
   input                                rst;
 
 
//
   //
// Multiplier/MAC interface
   // Multiplier/MAC interface
//
   //
input                           ex_freeze;
   input                                ex_freeze;
input                           id_macrc_op;
   input                                id_macrc_op;
input                           macrc_op;
   input                                macrc_op;
input   [width-1:0]              a;
   input [width-1:0]                     a;
input   [width-1:0]              b;
   input [width-1:0]                     b;
input   [`OR1200_MACOP_WIDTH-1:0]        mac_op;
   input [`OR1200_MACOP_WIDTH-1:0]       mac_op;
input   [`OR1200_ALUOP_WIDTH-1:0]        alu_op;
   input [`OR1200_ALUOP_WIDTH-1:0]       alu_op;
output  [width-1:0]              result;
output  [width-1:0]              result;
output                          mac_stall_r;
   output                               mult_mac_stall;
 
 
//
   //
// SPR interface
   // SPR interface
//
   //
input                           spr_cs;
   input                                spr_cs;
input                           spr_write;
   input                                spr_write;
input   [31:0]                   spr_addr;
   input [31:0]                  spr_addr;
input   [31:0]                   spr_dat_i;
   input [31:0]                  spr_dat_i;
output  [31:0]                   spr_dat_o;
   output [31:0]                         spr_dat_o;
 
 
//
   //
// Internal wires and regs
   // Internal wires and regs
//
//
`ifdef OR1200_MULT_IMPLEMENTED
 
reg     [width-1:0]              result;
reg     [width-1:0]              result;
 
`ifdef OR1200_MULT_IMPLEMENTED
reg     [2*width-1:0]            mul_prod_r;
reg     [2*width-1:0]            mul_prod_r;
 
   wire                                 alu_op_smul;
 
   wire                                 alu_op_umul;
 
   wire                                 alu_op_mul;
 
 `ifdef OR1200_MULT_SERIAL
 
   reg [5:0]                             serial_mul_cnt;
 
   reg                                  mul_free;
 
 `endif
`else
`else
wire    [width-1:0]              result;
 
wire    [2*width-1:0]            mul_prod_r;
wire    [2*width-1:0]            mul_prod_r;
`endif
`endif
wire    [2*width-1:0]            mul_prod;
wire    [2*width-1:0]            mul_prod;
 
   wire                                 mul_stall;
 
 
wire    [`OR1200_MACOP_WIDTH-1:0]        mac_op;
wire    [`OR1200_MACOP_WIDTH-1:0]        mac_op;
`ifdef OR1200_MAC_IMPLEMENTED
`ifdef OR1200_MAC_IMPLEMENTED
reg     [`OR1200_MACOP_WIDTH-1:0]        mac_op_r1;
   reg [`OR1200_MACOP_WIDTH-1:0]         mac_op_r1;
reg     [`OR1200_MACOP_WIDTH-1:0]        mac_op_r2;
   reg [`OR1200_MACOP_WIDTH-1:0]         mac_op_r2;
reg     [`OR1200_MACOP_WIDTH-1:0]        mac_op_r3;
   reg [`OR1200_MACOP_WIDTH-1:0]         mac_op_r3;
reg                             mac_stall_r;
   reg                                  mac_stall_r;
reg     [63:0]           mac_r;
   reg [63:0]                            mac_r;
`else
`else
wire    [`OR1200_MACOP_WIDTH-1:0]        mac_op_r1;
   wire [`OR1200_MACOP_WIDTH-1:0]        mac_op_r1;
wire    [`OR1200_MACOP_WIDTH-1:0]        mac_op_r2;
   wire [`OR1200_MACOP_WIDTH-1:0]        mac_op_r2;
wire    [`OR1200_MACOP_WIDTH-1:0]        mac_op_r3;
   wire [`OR1200_MACOP_WIDTH-1:0]        mac_op_r3;
wire                            mac_stall_r;
   wire                                 mac_stall_r;
wire    [63:0]           mac_r;
   wire [63:0]                           mac_r;
`endif
`endif
wire    [width-1:0]              x;
   wire [width-1:0]                      x;
wire    [width-1:0]              y;
   wire [width-1:0]                      y;
wire                            spr_maclo_we;
   wire                                 spr_maclo_we;
wire                            spr_machi_we;
wire                            spr_machi_we;
wire                            alu_op_div_divu;
 
wire                            alu_op_div;
wire                            alu_op_div;
 
   wire                                 alu_op_udiv;
 
   wire                                 alu_op_sdiv;
reg                             div_free;
reg                             div_free;
 
   wire                                 div_stall;
`ifdef OR1200_DIV_IMPLEMENTED
`ifdef OR1200_DIV_IMPLEMENTED
 
 `ifdef OR1200_DIV_SERIAL
 
   reg [2*width-1:0]                     div_quot_r;
wire    [width-1:0]              div_tmp;
wire    [width-1:0]              div_tmp;
reg     [5:0]                    div_cntr;
reg     [5:0]                    div_cntr;
 
 `else
 
   reg [width-1:0]                       div_quot_r;
 
   reg [width-1:0]                       div_quot_generic;
 
 `endif
`endif
`endif
 
 
//
   //
// Combinatorial logic
   // Combinatorial logic
//
//
 
`ifdef OR1200_MULT_IMPLEMENTED
 
   assign alu_op_smul = (alu_op == `OR1200_ALUOP_MUL);
 
   assign alu_op_umul = (alu_op == `OR1200_ALUOP_MULU);
 
   assign alu_op_mul = alu_op_smul | alu_op_umul;
 
`endif
`ifdef OR1200_MAC_IMPLEMENTED
`ifdef OR1200_MAC_IMPLEMENTED
assign spr_maclo_we = spr_cs & spr_write & spr_addr[`OR1200_MAC_ADDR];
   assign spr_maclo_we = spr_cs & spr_write & spr_addr[`OR1200_MAC_ADDR];
assign spr_machi_we = spr_cs & spr_write & !spr_addr[`OR1200_MAC_ADDR];
   assign spr_machi_we = spr_cs & spr_write & !spr_addr[`OR1200_MAC_ADDR];
assign spr_dat_o = spr_addr[`OR1200_MAC_ADDR] ? mac_r[31:0] : mac_r[63:32];
   assign spr_dat_o = spr_addr[`OR1200_MAC_ADDR] ? mac_r[31:0] : mac_r[63:32];
`else
`else
assign spr_maclo_we = 1'b0;
   assign spr_maclo_we = 1'b0;
assign spr_machi_we = 1'b0;
   assign spr_machi_we = 1'b0;
assign spr_dat_o = 32'h0000_0000;
   assign spr_dat_o = 32'h0000_0000;
`endif
`endif
`ifdef OR1200_LOWPWR_MULT
 
assign x = (alu_op_div & a[31]) ? ~a + 1'b1 :
 
           alu_op_div_divu | (alu_op == `OR1200_ALUOP_MUL) | (|mac_op) ?
 
           a : 32'h0000_0000;
 
assign y = (alu_op_div & b[31]) ? ~b + 1'b1 :
 
           alu_op_div_divu | (alu_op == `OR1200_ALUOP_MUL) | (|mac_op) ?
 
           b : 32'h0000_0000;
 
`else
 
assign x = alu_op_div & a[31] ? ~a + 32'b1 : a;
 
assign y = alu_op_div & b[31] ? ~b + 32'b1 : b;
 
`endif
 
`ifdef OR1200_DIV_IMPLEMENTED
`ifdef OR1200_DIV_IMPLEMENTED
assign alu_op_div = (alu_op == `OR1200_ALUOP_DIV);
   assign alu_op_sdiv = (alu_op == `OR1200_ALUOP_DIV);
assign alu_op_div_divu = alu_op_div | (alu_op == `OR1200_ALUOP_DIVU);
   assign alu_op_udiv = (alu_op == `OR1200_ALUOP_DIVU);
assign div_tmp = mul_prod_r[63:32] - y;
   assign alu_op_div = alu_op_sdiv | alu_op_udiv;
`else
`else
 
   assign alu_op_udiv = 1'b0;
 
   assign alu_op_sdiv = 1'b0;
assign alu_op_div = 1'b0;
assign alu_op_div = 1'b0;
assign alu_op_div_divu = 1'b0;
 
`endif
`endif
 
 
`ifdef OR1200_MULT_IMPLEMENTED
   assign x = (alu_op_sdiv | alu_op_smul) & a[31] ? ~a + 32'b1 :
 
              alu_op_div | alu_op_mul | (|mac_op) ? a : 32'd0;
 
   assign y = (alu_op_sdiv | alu_op_smul) & b[31] ? ~b + 32'b1 :
 
              alu_op_div | alu_op_mul | (|mac_op) ? b : 32'd0;
 
 
//
   //
// Select result of current ALU operation to be forwarded
   // Select result of current ALU operation to be forwarded
// to next instruction and to WB stage
   // to next instruction and to WB stage
//
   //
always @*
   always @*
  casez(alu_op) // synopsys parallel_case
     casez(alu_op)      // synopsys parallel_case
 `ifdef OR1200_DIV_IMPLEMENTED
`ifdef OR1200_DIV_IMPLEMENTED
    `OR1200_ALUOP_DIV: begin
    `OR1200_ALUOP_DIV: begin
       result = a[31] ^ b[31] ? ~mul_prod_r[31:0] + 32'd1 : mul_prod_r[31:0];
          result = a[31] ^ b[31] ? ~div_quot_r[31:0] + 32'd1 : div_quot_r[31:0];
 
       end
 
       `OR1200_ALUOP_DIVU: begin
 
          result = div_quot_r[31:0];
    end
    end
    `OR1200_ALUOP_DIVU,
 
 `endif
 `endif
 
`ifdef OR1200_MULT_IMPLEMENTED
    `OR1200_ALUOP_MUL: begin
    `OR1200_ALUOP_MUL: begin
 
          result = a[31] ^ b[31] ? ~mul_prod_r[31:0] + 32'd1 : mul_prod_r[31:0];
 
       end
 
         `OR1200_ALUOP_MULU: begin
       result = mul_prod_r[31:0];
       result = mul_prod_r[31:0];
    end
    end
 
`endif
    default:
    default:
 
`ifdef OR1200_MAC_IMPLEMENTED
 `ifdef OR1200_MAC_SHIFTBY
 `ifdef OR1200_MAC_SHIFTBY
      result = mac_r[`OR1200_MAC_SHIFTBY+31:`OR1200_MAC_SHIFTBY];
         result = mac_r[`OR1200_MAC_SHIFTBY+31:`OR1200_MAC_SHIFTBY];
 `else
 `else
      result = mac_r[31:0];
       result = mac_r[31:0];
 `endif
 `endif
 
`else
 
       result = {width{1'b0}};
 
`endif
  endcase
  endcase
 
 
 
`ifdef OR1200_MULT_IMPLEMENTED
 
 `ifdef OR1200_MULT_SERIAL
 
 
 
   always @(`OR1200_RST_EVENT rst or posedge clk)
 
     if (rst == `OR1200_RST_VALUE) begin
 
        mul_prod_r <=  64'h0000_0000_0000_0000;
 
        serial_mul_cnt <= 6'd0;
 
        mul_free <= 1'b1;
 
 
 
     end
 
     else if (|serial_mul_cnt) begin
 
        serial_mul_cnt <= serial_mul_cnt - 6'd1;
 
        if (mul_prod_r[0])
 
          mul_prod_r[(width*2)-1:width-1] <= mul_prod_r[(width*2)-1:width] + x;
 
        else
 
          mul_prod_r[(width*2)-1:width-1] <= {1'b0,mul_prod_r[(width*2)-1:
 
                                                              width]};
 
        mul_prod_r[width-2:0] <= mul_prod_r[width-1:1];
 
 
 
     end
 
     else if (alu_op_mul && mul_free) begin
 
        mul_prod_r <= {32'd0, y};
 
        mul_free <= 0;
 
        serial_mul_cnt <= 6'b10_0000;
 
     end
 
     else if (!ex_freeze | mul_free) begin
 
        mul_free <= 1'b1;
 
     end
 
 
 
   assign mul_stall = (|serial_mul_cnt);
 
 
 
 `else
 
 
   //
   //
   // Instantiation of the multiplier
   // Instantiation of the multiplier
   //
   //
 `ifdef OR1200_ASIC_MULTP2_32X32
  `ifdef OR1200_ASIC_MULTP2_32X32
or1200_amultp2_32x32 or1200_amultp2_32x32(
   or1200_amultp2_32x32 or1200_amultp2_32x32(
        .X(x),
                                             .X(x),
        .Y(y),
                                             .Y(y),
        .RST(rst),
                                             .RST(rst),
        .CLK(clk),
                                             .CLK(clk),
        .P(mul_prod)
                                             .P(mul_prod)
);
                                             );
`else // OR1200_ASIC_MULTP2_32X32
  `else // OR1200_ASIC_MULTP2_32X32
or1200_gmultp2_32x32 or1200_gmultp2_32x32(
   or1200_gmultp2_32x32 or1200_gmultp2_32x32(
        .X(x),
                                             .X(x),
        .Y(y),
                                             .Y(y),
        .RST(rst),
                                             .RST(rst),
        .CLK(clk),
                                             .CLK(clk),
        .P(mul_prod)
                                             .P(mul_prod)
);
                                             );
`endif // OR1200_ASIC_MULTP2_32X32
  `endif // OR1200_ASIC_MULTP2_32X32   
 
 
//
//
// Registered output from the multiplier and
   // Registered output from the multiplier
// an optional divider
 
//
//
always @(`OR1200_RST_EVENT rst or posedge clk)
   always @(`OR1200_RST_EVENT rst or posedge clk)
        if (rst == `OR1200_RST_VALUE) begin
     if (rst == `OR1200_RST_VALUE) begin
                mul_prod_r <=  64'h0000_0000_0000_0000;
                mul_prod_r <=  64'h0000_0000_0000_0000;
                div_free <=  1'b1;
 
`ifdef OR1200_DIV_IMPLEMENTED
 
                div_cntr <=  6'b00_0000;
 
`endif
 
        end
 
`ifdef OR1200_DIV_IMPLEMENTED
 
        else if (|div_cntr) begin
 
                if (div_tmp[31])
 
                        mul_prod_r <=  {mul_prod_r[62:0], 1'b0};
 
                else
 
                        mul_prod_r <=  {div_tmp[30:0], mul_prod_r[31:0], 1'b1};
 
                div_cntr <=  div_cntr - 6'd1;
 
        end
 
        else if (alu_op_div_divu && div_free) begin
 
                mul_prod_r <=  {31'b0, x[31:0], 1'b0};
 
                div_cntr <=  6'b10_0000;
 
                div_free <=  1'b0;
 
        end
        end
`endif // OR1200_DIV_IMPLEMENTED
     else begin
        else if (div_free | !ex_freeze) begin
 
                mul_prod_r <=  mul_prod[63:0];
                mul_prod_r <=  mul_prod[63:0];
                div_free <=  1'b1;
 
        end
        end
 
 
 
   assign mul_stall = 0;
 
 `endif // !`ifdef OR1200_MULT_SERIAL   
 
 
`else // OR1200_MULT_IMPLEMENTED
`else // OR1200_MULT_IMPLEMENTED
assign result = {width{1'b0}};
 
assign mul_prod = {2*width{1'b0}};
assign mul_prod = {2*width{1'b0}};
assign mul_prod_r = {2*width{1'b0}};
assign mul_prod_r = {2*width{1'b0}};
 
   assign mul_stall = 0;
`endif // OR1200_MULT_IMPLEMENTED
`endif // OR1200_MULT_IMPLEMENTED
 
 
`ifdef OR1200_MAC_IMPLEMENTED
`ifdef OR1200_MAC_IMPLEMENTED
// Signal to indicate when we should check for new MAC op
   // Signal to indicate when we should check for new MAC op
reg ex_freeze_r;
   reg ex_freeze_r;
 
 
always @(posedge clk or `OR1200_RST_EVENT rst)
   always @(posedge clk or `OR1200_RST_EVENT rst)
  if (rst == `OR1200_RST_VALUE)
     if (rst == `OR1200_RST_VALUE)
    ex_freeze_r <= 1'b1;
       ex_freeze_r <= 1'b1;
  else
     else
    ex_freeze_r <= ex_freeze;
       ex_freeze_r <= ex_freeze;
 
 
//
   //
// Propagation of l.mac opcode, only register it for one cycle
   // Propagation of l.mac opcode, only register it for one cycle
//
   //
always @(posedge clk or `OR1200_RST_EVENT rst)
   always @(posedge clk or `OR1200_RST_EVENT rst)
        if (rst == `OR1200_RST_VALUE)
     if (rst == `OR1200_RST_VALUE)
                mac_op_r1 <=  `OR1200_MACOP_WIDTH'b0;
       mac_op_r1 <=  `OR1200_MACOP_WIDTH'b0;
        else
     else
                mac_op_r1 <=  !ex_freeze_r ? mac_op : `OR1200_MACOP_WIDTH'b0;
       mac_op_r1 <=  !ex_freeze_r ? mac_op : `OR1200_MACOP_WIDTH'b0;
 
 
//
   //
// Propagation of l.mac opcode
   // Propagation of l.mac opcode
//
   //
always @(posedge clk or `OR1200_RST_EVENT rst)
   always @(posedge clk or `OR1200_RST_EVENT rst)
        if (rst == `OR1200_RST_VALUE)
     if (rst == `OR1200_RST_VALUE)
                mac_op_r2 <=  `OR1200_MACOP_WIDTH'b0;
       mac_op_r2 <=  `OR1200_MACOP_WIDTH'b0;
        else
     else
                mac_op_r2 <=  mac_op_r1;
       mac_op_r2 <=  mac_op_r1;
 
 
//
   //
// Propagation of l.mac opcode
   // Propagation of l.mac opcode
//
   //
always @(posedge clk or `OR1200_RST_EVENT rst)
   always @(posedge clk or `OR1200_RST_EVENT rst)
        if (rst == `OR1200_RST_VALUE)
     if (rst == `OR1200_RST_VALUE)
                mac_op_r3 <=  `OR1200_MACOP_WIDTH'b0;
       mac_op_r3 <=  `OR1200_MACOP_WIDTH'b0;
        else
     else
                mac_op_r3 <=  mac_op_r2;
       mac_op_r3 <=  mac_op_r2;
 
 
//
   //
// Implementation of MAC
   // Implementation of MAC
//
   //
always @(`OR1200_RST_EVENT rst or posedge clk)
   always @(`OR1200_RST_EVENT rst or posedge clk)
        if (rst == `OR1200_RST_VALUE)
     if (rst == `OR1200_RST_VALUE)
                mac_r <=  64'h0000_0000_0000_0000;
       mac_r <=  64'h0000_0000_0000_0000;
`ifdef OR1200_MAC_SPR_WE
 `ifdef OR1200_MAC_SPR_WE
        else if (spr_maclo_we)
     else if (spr_maclo_we)
                mac_r[31:0] <=  spr_dat_i;
       mac_r[31:0] <=  spr_dat_i;
        else if (spr_machi_we)
     else if (spr_machi_we)
                mac_r[63:32] <=  spr_dat_i;
       mac_r[63:32] <=  spr_dat_i;
`endif
 `endif
        else if (mac_op_r3 == `OR1200_MACOP_MAC)
     else if (mac_op_r3 == `OR1200_MACOP_MAC)
                mac_r <=  mac_r + mul_prod_r;
       mac_r <=  mac_r + mul_prod_r;
        else if (mac_op_r3 == `OR1200_MACOP_MSB)
     else if (mac_op_r3 == `OR1200_MACOP_MSB)
                mac_r <=  mac_r - mul_prod_r;
       mac_r <=  mac_r - mul_prod_r;
        else if (macrc_op && !ex_freeze)
     else if (macrc_op && !ex_freeze)
                mac_r <=  64'h0000_0000_0000_0000;
       mac_r <=  64'h0000_0000_0000_0000;
 
 
//
//
// Stall CPU if l.macrc is in ID and MAC still has to process l.mac instructions
   // Stall CPU if l.macrc is in ID and MAC still has to process l.mac 
// in EX stage (e.g. inside multiplier)
   // instructions in EX stage (e.g. inside multiplier)
// This stall signal is also used by the divider.
// This stall signal is also used by the divider.
//
   //
always @(`OR1200_RST_EVENT rst or posedge clk)
   always @(`OR1200_RST_EVENT rst or posedge clk)
        if (rst == `OR1200_RST_VALUE)
     if (rst == `OR1200_RST_VALUE)
                mac_stall_r <=  1'b0;
       mac_stall_r <=  1'b0;
        else
        else
                mac_stall_r <=  (|mac_op | (|mac_op_r1) | (|mac_op_r2)) & (id_macrc_op | mac_stall_r)
       mac_stall_r <=  (|mac_op | (|mac_op_r1) | (|mac_op_r2)) &
`ifdef OR1200_DIV_IMPLEMENTED
                       (id_macrc_op | mac_stall_r);
                                | (|div_cntr)
 
`endif
 
                                ;
 
`else // OR1200_MAC_IMPLEMENTED
`else // OR1200_MAC_IMPLEMENTED
assign mac_stall_r = 1'b0;
   assign mac_stall_r = 1'b0;
assign mac_r = {2*width{1'b0}};
   assign mac_r = {2*width{1'b0}};
assign mac_op_r1 = `OR1200_MACOP_WIDTH'b0;
   assign mac_op_r1 = `OR1200_MACOP_WIDTH'b0;
assign mac_op_r2 = `OR1200_MACOP_WIDTH'b0;
   assign mac_op_r2 = `OR1200_MACOP_WIDTH'b0;
assign mac_op_r3 = `OR1200_MACOP_WIDTH'b0;
   assign mac_op_r3 = `OR1200_MACOP_WIDTH'b0;
`endif // OR1200_MAC_IMPLEMENTED
`endif // OR1200_MAC_IMPLEMENTED
 
 
 
`ifdef OR1200_DIV_IMPLEMENTED
 
 
 
   //
 
   // Serial division
 
   //
 
 `ifdef OR1200_DIV_SERIAL
 
   assign div_tmp = div_quot_r[63:32] - y;
 
   always @(`OR1200_RST_EVENT rst or posedge clk)
 
     if (rst == `OR1200_RST_VALUE) begin
 
        div_quot_r <=  64'h0000_0000_0000_0000;
 
        div_free <=  1'b1;
 
        div_cntr <=  6'b00_0000;
 
     end
 
     else if (|div_cntr) begin
 
        if (div_tmp[31])
 
          div_quot_r <=  {div_quot_r[62:0], 1'b0};
 
        else
 
          div_quot_r <=  {div_tmp[30:0], div_quot_r[31:0], 1'b1};
 
        div_cntr <=  div_cntr - 6'd1;
 
     end
 
     else if (alu_op_div && div_free) begin
 
        div_quot_r <=  {31'b0, x[31:0], 1'b0};
 
        div_cntr <=  6'b10_0000;
 
        div_free <=  1'b0;
 
     end
 
     else if (div_free | !ex_freeze) begin
 
        //div_quot_r <=  div_quot[63:0];
 
        div_free <=  1'b1;
 
     end
 
 
 
   assign div_stall = (|div_cntr);
 
 
 
 
 
 `else // !`ifdef OR1200_DIV_SERIAL
 
 
 
   // Full divider
 
   // TODO: Perhaps provide module that can be technology dependent.
 
   always @(`OR1200_RST_EVENT rst or posedge clk) begin
 
      if (rst == `OR1200_RST_VALUE) begin
 
         div_quot_r <=  32'd0;
 
         div_quot_generic <= 32'd0;
 
      end
 
      else begin
 
         if (alu_op_udiv & !(|y)) // unsigned divide by 0 - force to MAX
 
           div_quot_generic[31:0] <= 32'hffff_ffff;
 
         else if (alu_op_div)
 
           div_quot_generic[31:0] <= x / y;
 
      end
 
 
 
      // Add any additional statges of pipelining as required here. Ensure
 
      // ends with div_quot_r.
 
      // Then add logic to ensure div_stall stays high for as long as the
 
      // division should take.      
 
 
 
      div_quot_r[31:0] <= div_quot_generic;
 
 
 
   end
 
 
 
   assign div_stall = 0;
 
 
 
 `endif
 
 
 
`else // !`ifdef OR1200_DIV_IMPLEMENTED
 
 
 
   assign div_stall = 0;
 
 
 
`endif // !`ifdef OR1200_DIV_IMPLEMENTED
 
 
 
 
 
   //   
 
   // Stall output
 
   //
 
   assign mult_mac_stall = mac_stall_r | div_stall | mul_stall;
 
 
endmodule
endmodule
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.