OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [rtems/] [c/] [src/] [libnetworking/] [kern/] [uipc_socket2.c] - Diff between revs 30 and 173

Only display areas with differences | Details | Blame | View Log

Rev 30 Rev 173
/*
/*
 * This file has undergone several changes to reflect the
 * This file has undergone several changes to reflect the
 * differences between the RTEMS and FreeBSD kernels.
 * differences between the RTEMS and FreeBSD kernels.
 */
 */
 
 
/*
/*
 * Copyright (c) 1982, 1986, 1988, 1990, 1993
 * Copyright (c) 1982, 1986, 1988, 1990, 1993
 *      The Regents of the University of California.  All rights reserved.
 *      The Regents of the University of California.  All rights reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * modification, are permitted provided that the following conditions
 * are met:
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    must display the following acknowledgement:
 *      This product includes software developed by the University of
 *      This product includes software developed by the University of
 *      California, Berkeley and its contributors.
 *      California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *    without specific prior written permission.
 *
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * SUCH DAMAGE.
 *
 *
 *      @(#)uipc_socket2.c      8.1 (Berkeley) 6/10/93
 *      @(#)uipc_socket2.c      8.1 (Berkeley) 6/10/93
 * $Id: uipc_socket2.c,v 1.2 2001-09-27 12:01:51 chris Exp $
 * $Id: uipc_socket2.c,v 1.2 2001-09-27 12:01:51 chris Exp $
 */
 */
 
 
#include <sys/param.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/file.h>
#include <sys/buf.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/protosw.h>
#include <sys/stat.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/socketvar.h>
#include <sys/signalvar.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/sysctl.h>
 
 
/*
/*
 * Primitive routines for operating on sockets and socket buffers
 * Primitive routines for operating on sockets and socket buffers
 */
 */
 
 
u_long  sb_max = SB_MAX;                /* XXX should be static */
u_long  sb_max = SB_MAX;                /* XXX should be static */
SYSCTL_INT(_kern, KERN_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "")
SYSCTL_INT(_kern, KERN_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "")
 
 
static  u_long sb_efficiency = 8;       /* parameter for sbreserve() */
static  u_long sb_efficiency = 8;       /* parameter for sbreserve() */
SYSCTL_INT(_kern, OID_AUTO, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency,
SYSCTL_INT(_kern, OID_AUTO, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency,
           0, "");
           0, "");
 
 
/*
/*
 * Procedures to manipulate state flags of socket
 * Procedures to manipulate state flags of socket
 * and do appropriate wakeups.  Normal sequence from the
 * and do appropriate wakeups.  Normal sequence from the
 * active (originating) side is that soisconnecting() is
 * active (originating) side is that soisconnecting() is
 * called during processing of connect() call,
 * called during processing of connect() call,
 * resulting in an eventual call to soisconnected() if/when the
 * resulting in an eventual call to soisconnected() if/when the
 * connection is established.  When the connection is torn down
 * connection is established.  When the connection is torn down
 * soisdisconnecting() is called during processing of disconnect() call,
 * soisdisconnecting() is called during processing of disconnect() call,
 * and soisdisconnected() is called when the connection to the peer
 * and soisdisconnected() is called when the connection to the peer
 * is totally severed.  The semantics of these routines are such that
 * is totally severed.  The semantics of these routines are such that
 * connectionless protocols can call soisconnected() and soisdisconnected()
 * connectionless protocols can call soisconnected() and soisdisconnected()
 * only, bypassing the in-progress calls when setting up a ``connection''
 * only, bypassing the in-progress calls when setting up a ``connection''
 * takes no time.
 * takes no time.
 *
 *
 * From the passive side, a socket is created with
 * From the passive side, a socket is created with
 * two queues of sockets: so_q0 for connections in progress
 * two queues of sockets: so_q0 for connections in progress
 * and so_q for connections already made and awaiting user acceptance.
 * and so_q for connections already made and awaiting user acceptance.
 * As a protocol is preparing incoming connections, it creates a socket
 * As a protocol is preparing incoming connections, it creates a socket
 * structure queued on so_q0 by calling sonewconn().  When the connection
 * structure queued on so_q0 by calling sonewconn().  When the connection
 * is established, soisconnected() is called, and transfers the
 * is established, soisconnected() is called, and transfers the
 * socket structure to so_q, making it available to accept().
 * socket structure to so_q, making it available to accept().
 *
 *
 * If a socket is closed with sockets on either
 * If a socket is closed with sockets on either
 * so_q0 or so_q, these sockets are dropped.
 * so_q0 or so_q, these sockets are dropped.
 *
 *
 * If higher level protocols are implemented in
 * If higher level protocols are implemented in
 * the kernel, the wakeups done here will sometimes
 * the kernel, the wakeups done here will sometimes
 * cause software-interrupt process scheduling.
 * cause software-interrupt process scheduling.
 */
 */
 
 
void
void
soisconnecting(so)
soisconnecting(so)
        register struct socket *so;
        register struct socket *so;
{
{
 
 
        so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
        so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
        so->so_state |= SS_ISCONNECTING;
        so->so_state |= SS_ISCONNECTING;
}
}
 
 
void
void
soisconnected(so)
soisconnected(so)
        register struct socket *so;
        register struct socket *so;
{
{
        register struct socket *head = so->so_head;
        register struct socket *head = so->so_head;
 
 
        so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
        so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
        so->so_state |= SS_ISCONNECTED;
        so->so_state |= SS_ISCONNECTED;
        if (head && (so->so_state & SS_INCOMP)) {
        if (head && (so->so_state & SS_INCOMP)) {
                TAILQ_REMOVE(&head->so_incomp, so, so_list);
                TAILQ_REMOVE(&head->so_incomp, so, so_list);
                head->so_incqlen--;
                head->so_incqlen--;
                so->so_state &= ~SS_INCOMP;
                so->so_state &= ~SS_INCOMP;
                TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
                TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
                so->so_state |= SS_COMP;
                so->so_state |= SS_COMP;
                sorwakeup(head);
                sorwakeup(head);
                soconnwakeup(head);
                soconnwakeup(head);
        } else {
        } else {
                soconnwakeup(so);
                soconnwakeup(so);
                sorwakeup(so);
                sorwakeup(so);
                sowwakeup(so);
                sowwakeup(so);
        }
        }
}
}
 
 
void
void
soisdisconnecting(so)
soisdisconnecting(so)
        register struct socket *so;
        register struct socket *so;
{
{
 
 
        so->so_state &= ~SS_ISCONNECTING;
        so->so_state &= ~SS_ISCONNECTING;
        so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
        so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
        soconnwakeup(so);
        soconnwakeup(so);
        sowwakeup(so);
        sowwakeup(so);
        sorwakeup(so);
        sorwakeup(so);
}
}
 
 
void
void
soisdisconnected(so)
soisdisconnected(so)
        register struct socket *so;
        register struct socket *so;
{
{
 
 
        so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
        so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
        so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
        so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
        soconnwakeup(so);
        soconnwakeup(so);
        sowwakeup(so);
        sowwakeup(so);
        sorwakeup(so);
        sorwakeup(so);
}
}
 
 
/*
/*
 * Return a random connection that hasn't been serviced yet and
 * Return a random connection that hasn't been serviced yet and
 * is eligible for discard.  There is a one in qlen chance that
 * is eligible for discard.  There is a one in qlen chance that
 * we will return a null, saying that there are no dropable
 * we will return a null, saying that there are no dropable
 * requests.  In this case, the protocol specific code should drop
 * requests.  In this case, the protocol specific code should drop
 * the new request.  This insures fairness.
 * the new request.  This insures fairness.
 *
 *
 * This may be used in conjunction with protocol specific queue
 * This may be used in conjunction with protocol specific queue
 * congestion routines.
 * congestion routines.
 */
 */
struct socket *
struct socket *
sodropablereq(head)
sodropablereq(head)
        register struct socket *head;
        register struct socket *head;
{
{
        register struct socket *so;
        register struct socket *so;
        unsigned int i, j, qlen, m;
        unsigned int i, j, qlen, m;
 
 
        static int rnd;
        static int rnd;
        static long old_mono_secs;
        static long old_mono_secs;
        static unsigned int cur_cnt, old_cnt;
        static unsigned int cur_cnt, old_cnt;
 
 
        if ((i = (m = rtems_bsdnet_seconds_since_boot()) - old_mono_secs) != 0) {
        if ((i = (m = rtems_bsdnet_seconds_since_boot()) - old_mono_secs) != 0) {
                old_mono_secs = m;
                old_mono_secs = m;
                old_cnt = cur_cnt / i;
                old_cnt = cur_cnt / i;
                cur_cnt = 0;
                cur_cnt = 0;
        }
        }
 
 
        so = TAILQ_FIRST(&head->so_incomp);
        so = TAILQ_FIRST(&head->so_incomp);
        if (!so)
        if (!so)
                return (so);
                return (so);
 
 
        qlen = head->so_incqlen;
        qlen = head->so_incqlen;
        if (++cur_cnt > qlen || old_cnt > qlen) {
        if (++cur_cnt > qlen || old_cnt > qlen) {
                rnd = (314159 * rnd + 66329) & 0xffff;
                rnd = (314159 * rnd + 66329) & 0xffff;
                j = ((qlen + 1) * rnd) >> 16;
                j = ((qlen + 1) * rnd) >> 16;
 
 
                while (j-- && so)
                while (j-- && so)
                    so = TAILQ_NEXT(so, so_list);
                    so = TAILQ_NEXT(so, so_list);
        }
        }
 
 
        return (so);
        return (so);
}
}
 
 
/*
/*
 * When an attempt at a new connection is noted on a socket
 * When an attempt at a new connection is noted on a socket
 * which accepts connections, sonewconn is called.  If the
 * which accepts connections, sonewconn is called.  If the
 * connection is possible (subject to space constraints, etc.)
 * connection is possible (subject to space constraints, etc.)
 * then we allocate a new structure, propoerly linked into the
 * then we allocate a new structure, propoerly linked into the
 * data structure of the original socket, and return this.
 * data structure of the original socket, and return this.
 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
 *
 *
 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
 * to catch calls that are missing the (new) second parameter.
 * to catch calls that are missing the (new) second parameter.
 */
 */
struct socket *
struct socket *
sonewconn1(head, connstatus)
sonewconn1(head, connstatus)
        register struct socket *head;
        register struct socket *head;
        int connstatus;
        int connstatus;
{
{
        register struct socket *so;
        register struct socket *so;
 
 
        if (head->so_qlen > 3 * head->so_qlimit / 2)
        if (head->so_qlen > 3 * head->so_qlimit / 2)
                return ((struct socket *)0);
                return ((struct socket *)0);
        MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
        MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
        if (so == NULL)
        if (so == NULL)
                return ((struct socket *)0);
                return ((struct socket *)0);
        bzero((caddr_t)so, sizeof(*so));
        bzero((caddr_t)so, sizeof(*so));
        so->so_head = head;
        so->so_head = head;
        so->so_type = head->so_type;
        so->so_type = head->so_type;
        so->so_options = head->so_options &~ SO_ACCEPTCONN;
        so->so_options = head->so_options &~ SO_ACCEPTCONN;
        so->so_linger = head->so_linger;
        so->so_linger = head->so_linger;
        so->so_state = head->so_state | SS_NOFDREF;
        so->so_state = head->so_state | SS_NOFDREF;
        so->so_proto = head->so_proto;
        so->so_proto = head->so_proto;
        so->so_timeo = head->so_timeo;
        so->so_timeo = head->so_timeo;
        so->so_pgid = head->so_pgid;
        so->so_pgid = head->so_pgid;
        so->so_uid = head->so_uid;
        so->so_uid = head->so_uid;
        (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
        (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
        if (connstatus) {
        if (connstatus) {
                TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
                TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
                so->so_state |= SS_COMP;
                so->so_state |= SS_COMP;
        } else {
        } else {
                TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
                TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
                so->so_state |= SS_INCOMP;
                so->so_state |= SS_INCOMP;
                head->so_incqlen++;
                head->so_incqlen++;
        }
        }
        head->so_qlen++;
        head->so_qlen++;
        if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0)) {
        if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0)) {
                if (so->so_state & SS_COMP) {
                if (so->so_state & SS_COMP) {
                        TAILQ_REMOVE(&head->so_comp, so, so_list);
                        TAILQ_REMOVE(&head->so_comp, so, so_list);
                } else {
                } else {
                        TAILQ_REMOVE(&head->so_incomp, so, so_list);
                        TAILQ_REMOVE(&head->so_incomp, so, so_list);
                        head->so_incqlen--;
                        head->so_incqlen--;
                }
                }
                head->so_qlen--;
                head->so_qlen--;
                (void) free((caddr_t)so, M_SOCKET);
                (void) free((caddr_t)so, M_SOCKET);
                return ((struct socket *)0);
                return ((struct socket *)0);
        }
        }
        if (connstatus) {
        if (connstatus) {
                sorwakeup(head);
                sorwakeup(head);
                soconnwakeup(head);
                soconnwakeup(head);
                so->so_state |= connstatus;
                so->so_state |= connstatus;
        }
        }
        return (so);
        return (so);
}
}
 
 
/*
/*
 * Socantsendmore indicates that no more data will be sent on the
 * Socantsendmore indicates that no more data will be sent on the
 * socket; it would normally be applied to a socket when the user
 * socket; it would normally be applied to a socket when the user
 * informs the system that no more data is to be sent, by the protocol
 * informs the system that no more data is to be sent, by the protocol
 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
 * will be received, and will normally be applied to the socket by a
 * will be received, and will normally be applied to the socket by a
 * protocol when it detects that the peer will send no more data.
 * protocol when it detects that the peer will send no more data.
 * Data queued for reading in the socket may yet be read.
 * Data queued for reading in the socket may yet be read.
 */
 */
 
 
void
void
socantsendmore(so)
socantsendmore(so)
        struct socket *so;
        struct socket *so;
{
{
 
 
        so->so_state |= SS_CANTSENDMORE;
        so->so_state |= SS_CANTSENDMORE;
        sowwakeup(so);
        sowwakeup(so);
}
}
 
 
void
void
socantrcvmore(so)
socantrcvmore(so)
        struct socket *so;
        struct socket *so;
{
{
 
 
        so->so_state |= SS_CANTRCVMORE;
        so->so_state |= SS_CANTRCVMORE;
        sorwakeup(so);
        sorwakeup(so);
}
}
 
 
/*
/*
 * Socket buffer (struct sockbuf) utility routines.
 * Socket buffer (struct sockbuf) utility routines.
 *
 *
 * Each socket contains two socket buffers: one for sending data and
 * Each socket contains two socket buffers: one for sending data and
 * one for receiving data.  Each buffer contains a queue of mbufs,
 * one for receiving data.  Each buffer contains a queue of mbufs,
 * information about the number of mbufs and amount of data in the
 * information about the number of mbufs and amount of data in the
 * queue, and other fields allowing select() statements and notification
 * queue, and other fields allowing select() statements and notification
 * on data availability to be implemented.
 * on data availability to be implemented.
 *
 *
 * Data stored in a socket buffer is maintained as a list of records.
 * Data stored in a socket buffer is maintained as a list of records.
 * Each record is a list of mbufs chained together with the m_next
 * Each record is a list of mbufs chained together with the m_next
 * field.  Records are chained together with the m_nextpkt field. The upper
 * field.  Records are chained together with the m_nextpkt field. The upper
 * level routine soreceive() expects the following conventions to be
 * level routine soreceive() expects the following conventions to be
 * observed when placing information in the receive buffer:
 * observed when placing information in the receive buffer:
 *
 *
 * 1. If the protocol requires each message be preceded by the sender's
 * 1. If the protocol requires each message be preceded by the sender's
 *    name, then a record containing that name must be present before
 *    name, then a record containing that name must be present before
 *    any associated data (mbuf's must be of type MT_SONAME).
 *    any associated data (mbuf's must be of type MT_SONAME).
 * 2. If the protocol supports the exchange of ``access rights'' (really
 * 2. If the protocol supports the exchange of ``access rights'' (really
 *    just additional data associated with the message), and there are
 *    just additional data associated with the message), and there are
 *    ``rights'' to be received, then a record containing this data
 *    ``rights'' to be received, then a record containing this data
 *    should be present (mbuf's must be of type MT_RIGHTS).
 *    should be present (mbuf's must be of type MT_RIGHTS).
 * 3. If a name or rights record exists, then it must be followed by
 * 3. If a name or rights record exists, then it must be followed by
 *    a data record, perhaps of zero length.
 *    a data record, perhaps of zero length.
 *
 *
 * Before using a new socket structure it is first necessary to reserve
 * Before using a new socket structure it is first necessary to reserve
 * buffer space to the socket, by calling sbreserve().  This should commit
 * buffer space to the socket, by calling sbreserve().  This should commit
 * some of the available buffer space in the system buffer pool for the
 * some of the available buffer space in the system buffer pool for the
 * socket (currently, it does nothing but enforce limits).  The space
 * socket (currently, it does nothing but enforce limits).  The space
 * should be released by calling sbrelease() when the socket is destroyed.
 * should be released by calling sbrelease() when the socket is destroyed.
 */
 */
 
 
int
int
soreserve(so, sndcc, rcvcc)
soreserve(so, sndcc, rcvcc)
        register struct socket *so;
        register struct socket *so;
        u_long sndcc, rcvcc;
        u_long sndcc, rcvcc;
{
{
 
 
        if (sbreserve(&so->so_snd, sndcc) == 0)
        if (sbreserve(&so->so_snd, sndcc) == 0)
                goto bad;
                goto bad;
        if (sbreserve(&so->so_rcv, rcvcc) == 0)
        if (sbreserve(&so->so_rcv, rcvcc) == 0)
                goto bad2;
                goto bad2;
        if (so->so_rcv.sb_lowat == 0)
        if (so->so_rcv.sb_lowat == 0)
                so->so_rcv.sb_lowat = 1;
                so->so_rcv.sb_lowat = 1;
        if (so->so_snd.sb_lowat == 0)
        if (so->so_snd.sb_lowat == 0)
                so->so_snd.sb_lowat = MCLBYTES;
                so->so_snd.sb_lowat = MCLBYTES;
        if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
        if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
                so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
                so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
        return (0);
        return (0);
bad2:
bad2:
        sbrelease(&so->so_snd);
        sbrelease(&so->so_snd);
bad:
bad:
        return (ENOBUFS);
        return (ENOBUFS);
}
}
 
 
/*
/*
 * Allot mbufs to a sockbuf.
 * Allot mbufs to a sockbuf.
 * Attempt to scale mbmax so that mbcnt doesn't become limiting
 * Attempt to scale mbmax so that mbcnt doesn't become limiting
 * if buffering efficiency is near the normal case.
 * if buffering efficiency is near the normal case.
 */
 */
int
int
sbreserve(sb, cc)
sbreserve(sb, cc)
        struct sockbuf *sb;
        struct sockbuf *sb;
        u_long cc;
        u_long cc;
{
{
 
 
        if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
        if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
                return (0);
                return (0);
        sb->sb_hiwat = cc;
        sb->sb_hiwat = cc;
        sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
        sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
        if (sb->sb_lowat > sb->sb_hiwat)
        if (sb->sb_lowat > sb->sb_hiwat)
                sb->sb_lowat = sb->sb_hiwat;
                sb->sb_lowat = sb->sb_hiwat;
        return (1);
        return (1);
}
}
 
 
/*
/*
 * Free mbufs held by a socket, and reserved mbuf space.
 * Free mbufs held by a socket, and reserved mbuf space.
 */
 */
void
void
sbrelease(sb)
sbrelease(sb)
        struct sockbuf *sb;
        struct sockbuf *sb;
{
{
 
 
        sbflush(sb);
        sbflush(sb);
        sb->sb_hiwat = sb->sb_mbmax = 0;
        sb->sb_hiwat = sb->sb_mbmax = 0;
}
}
 
 
/*
/*
 * Routines to add and remove
 * Routines to add and remove
 * data from an mbuf queue.
 * data from an mbuf queue.
 *
 *
 * The routines sbappend() or sbappendrecord() are normally called to
 * The routines sbappend() or sbappendrecord() are normally called to
 * append new mbufs to a socket buffer, after checking that adequate
 * append new mbufs to a socket buffer, after checking that adequate
 * space is available, comparing the function sbspace() with the amount
 * space is available, comparing the function sbspace() with the amount
 * of data to be added.  sbappendrecord() differs from sbappend() in
 * of data to be added.  sbappendrecord() differs from sbappend() in
 * that data supplied is treated as the beginning of a new record.
 * that data supplied is treated as the beginning of a new record.
 * To place a sender's address, optional access rights, and data in a
 * To place a sender's address, optional access rights, and data in a
 * socket receive buffer, sbappendaddr() should be used.  To place
 * socket receive buffer, sbappendaddr() should be used.  To place
 * access rights and data in a socket receive buffer, sbappendrights()
 * access rights and data in a socket receive buffer, sbappendrights()
 * should be used.  In either case, the new data begins a new record.
 * should be used.  In either case, the new data begins a new record.
 * Note that unlike sbappend() and sbappendrecord(), these routines check
 * Note that unlike sbappend() and sbappendrecord(), these routines check
 * for the caller that there will be enough space to store the data.
 * for the caller that there will be enough space to store the data.
 * Each fails if there is not enough space, or if it cannot find mbufs
 * Each fails if there is not enough space, or if it cannot find mbufs
 * to store additional information in.
 * to store additional information in.
 *
 *
 * Reliable protocols may use the socket send buffer to hold data
 * Reliable protocols may use the socket send buffer to hold data
 * awaiting acknowledgement.  Data is normally copied from a socket
 * awaiting acknowledgement.  Data is normally copied from a socket
 * send buffer in a protocol with m_copy for output to a peer,
 * send buffer in a protocol with m_copy for output to a peer,
 * and then removing the data from the socket buffer with sbdrop()
 * and then removing the data from the socket buffer with sbdrop()
 * or sbdroprecord() when the data is acknowledged by the peer.
 * or sbdroprecord() when the data is acknowledged by the peer.
 */
 */
 
 
/*
/*
 * Append mbuf chain m to the last record in the
 * Append mbuf chain m to the last record in the
 * socket buffer sb.  The additional space associated
 * socket buffer sb.  The additional space associated
 * the mbuf chain is recorded in sb.  Empty mbufs are
 * the mbuf chain is recorded in sb.  Empty mbufs are
 * discarded and mbufs are compacted where possible.
 * discarded and mbufs are compacted where possible.
 */
 */
void
void
sbappend(sb, m)
sbappend(sb, m)
        struct sockbuf *sb;
        struct sockbuf *sb;
        struct mbuf *m;
        struct mbuf *m;
{
{
        register struct mbuf *n;
        register struct mbuf *n;
 
 
        if (m == 0)
        if (m == 0)
                return;
                return;
        n = sb->sb_mb;
        n = sb->sb_mb;
        if (n) {
        if (n) {
                while (n->m_nextpkt)
                while (n->m_nextpkt)
                        n = n->m_nextpkt;
                        n = n->m_nextpkt;
                do {
                do {
                        if (n->m_flags & M_EOR) {
                        if (n->m_flags & M_EOR) {
                                sbappendrecord(sb, m); /* XXXXXX!!!! */
                                sbappendrecord(sb, m); /* XXXXXX!!!! */
                                return;
                                return;
                        }
                        }
                } while (n->m_next && (n = n->m_next));
                } while (n->m_next && (n = n->m_next));
        }
        }
        sbcompress(sb, m, n);
        sbcompress(sb, m, n);
}
}
 
 
#ifdef SOCKBUF_DEBUG
#ifdef SOCKBUF_DEBUG
void
void
sbcheck(sb)
sbcheck(sb)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
{
{
        register struct mbuf *m;
        register struct mbuf *m;
        register int len = 0, mbcnt = 0;
        register int len = 0, mbcnt = 0;
 
 
        for (m = sb->sb_mb; m; m = m->m_next) {
        for (m = sb->sb_mb; m; m = m->m_next) {
                len += m->m_len;
                len += m->m_len;
                mbcnt += MSIZE;
                mbcnt += MSIZE;
                if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
                if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
                        mbcnt += m->m_ext.ext_size;
                        mbcnt += m->m_ext.ext_size;
                if (m->m_nextpkt)
                if (m->m_nextpkt)
                        panic("sbcheck nextpkt");
                        panic("sbcheck nextpkt");
        }
        }
        if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
        if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
                printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
                printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
                    mbcnt, sb->sb_mbcnt);
                    mbcnt, sb->sb_mbcnt);
                panic("sbcheck");
                panic("sbcheck");
        }
        }
}
}
#endif
#endif
 
 
/*
/*
 * As above, except the mbuf chain
 * As above, except the mbuf chain
 * begins a new record.
 * begins a new record.
 */
 */
void
void
sbappendrecord(sb, m0)
sbappendrecord(sb, m0)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
        register struct mbuf *m0;
        register struct mbuf *m0;
{
{
        register struct mbuf *m;
        register struct mbuf *m;
 
 
        if (m0 == 0)
        if (m0 == 0)
                return;
                return;
        m = sb->sb_mb;
        m = sb->sb_mb;
        if (m)
        if (m)
                while (m->m_nextpkt)
                while (m->m_nextpkt)
                        m = m->m_nextpkt;
                        m = m->m_nextpkt;
        /*
        /*
         * Put the first mbuf on the queue.
         * Put the first mbuf on the queue.
         * Note this permits zero length records.
         * Note this permits zero length records.
         */
         */
        sballoc(sb, m0);
        sballoc(sb, m0);
        if (m)
        if (m)
                m->m_nextpkt = m0;
                m->m_nextpkt = m0;
        else
        else
                sb->sb_mb = m0;
                sb->sb_mb = m0;
        m = m0->m_next;
        m = m0->m_next;
        m0->m_next = 0;
        m0->m_next = 0;
        if (m && (m0->m_flags & M_EOR)) {
        if (m && (m0->m_flags & M_EOR)) {
                m0->m_flags &= ~M_EOR;
                m0->m_flags &= ~M_EOR;
                m->m_flags |= M_EOR;
                m->m_flags |= M_EOR;
        }
        }
        sbcompress(sb, m, m0);
        sbcompress(sb, m, m0);
}
}
 
 
/*
/*
 * As above except that OOB data
 * As above except that OOB data
 * is inserted at the beginning of the sockbuf,
 * is inserted at the beginning of the sockbuf,
 * but after any other OOB data.
 * but after any other OOB data.
 */
 */
void
void
sbinsertoob(sb, m0)
sbinsertoob(sb, m0)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
        register struct mbuf *m0;
        register struct mbuf *m0;
{
{
        register struct mbuf *m;
        register struct mbuf *m;
        register struct mbuf **mp;
        register struct mbuf **mp;
 
 
        if (m0 == 0)
        if (m0 == 0)
                return;
                return;
        for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
        for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
            m = *mp;
            m = *mp;
            again:
            again:
                switch (m->m_type) {
                switch (m->m_type) {
 
 
                case MT_OOBDATA:
                case MT_OOBDATA:
                        continue;               /* WANT next train */
                        continue;               /* WANT next train */
 
 
                case MT_CONTROL:
                case MT_CONTROL:
                        m = m->m_next;
                        m = m->m_next;
                        if (m)
                        if (m)
                                goto again;     /* inspect THIS train further */
                                goto again;     /* inspect THIS train further */
                }
                }
                break;
                break;
        }
        }
        /*
        /*
         * Put the first mbuf on the queue.
         * Put the first mbuf on the queue.
         * Note this permits zero length records.
         * Note this permits zero length records.
         */
         */
        sballoc(sb, m0);
        sballoc(sb, m0);
        m0->m_nextpkt = *mp;
        m0->m_nextpkt = *mp;
        *mp = m0;
        *mp = m0;
        m = m0->m_next;
        m = m0->m_next;
        m0->m_next = 0;
        m0->m_next = 0;
        if (m && (m0->m_flags & M_EOR)) {
        if (m && (m0->m_flags & M_EOR)) {
                m0->m_flags &= ~M_EOR;
                m0->m_flags &= ~M_EOR;
                m->m_flags |= M_EOR;
                m->m_flags |= M_EOR;
        }
        }
        sbcompress(sb, m, m0);
        sbcompress(sb, m, m0);
}
}
 
 
/*
/*
 * Append address and data, and optionally, control (ancillary) data
 * Append address and data, and optionally, control (ancillary) data
 * to the receive queue of a socket.  If present,
 * to the receive queue of a socket.  If present,
 * m0 must include a packet header with total length.
 * m0 must include a packet header with total length.
 * Returns 0 if no space in sockbuf or insufficient mbufs.
 * Returns 0 if no space in sockbuf or insufficient mbufs.
 */
 */
int
int
sbappendaddr(sb, asa, m0, control)
sbappendaddr(sb, asa, m0, control)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
        struct sockaddr *asa;
        struct sockaddr *asa;
        struct mbuf *m0, *control;
        struct mbuf *m0, *control;
{
{
        register struct mbuf *m, *n;
        register struct mbuf *m, *n;
        int space = asa->sa_len;
        int space = asa->sa_len;
 
 
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
panic("sbappendaddr");
panic("sbappendaddr");
        if (m0)
        if (m0)
                space += m0->m_pkthdr.len;
                space += m0->m_pkthdr.len;
        for (n = control; n; n = n->m_next) {
        for (n = control; n; n = n->m_next) {
                space += n->m_len;
                space += n->m_len;
                if (n->m_next == 0)      /* keep pointer to last control buf */
                if (n->m_next == 0)      /* keep pointer to last control buf */
                        break;
                        break;
        }
        }
        if (space > sbspace(sb))
        if (space > sbspace(sb))
                return (0);
                return (0);
        if (asa->sa_len > MLEN)
        if (asa->sa_len > MLEN)
                return (0);
                return (0);
        MGET(m, M_DONTWAIT, MT_SONAME);
        MGET(m, M_DONTWAIT, MT_SONAME);
        if (m == 0)
        if (m == 0)
                return (0);
                return (0);
        m->m_len = asa->sa_len;
        m->m_len = asa->sa_len;
        bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
        bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
        if (n)
        if (n)
                n->m_next = m0;         /* concatenate data to control */
                n->m_next = m0;         /* concatenate data to control */
        else
        else
                control = m0;
                control = m0;
        m->m_next = control;
        m->m_next = control;
        for (n = m; n; n = n->m_next)
        for (n = m; n; n = n->m_next)
                sballoc(sb, n);
                sballoc(sb, n);
        n = sb->sb_mb;
        n = sb->sb_mb;
        if (n) {
        if (n) {
                while (n->m_nextpkt)
                while (n->m_nextpkt)
                        n = n->m_nextpkt;
                        n = n->m_nextpkt;
                n->m_nextpkt = m;
                n->m_nextpkt = m;
        } else
        } else
                sb->sb_mb = m;
                sb->sb_mb = m;
        return (1);
        return (1);
}
}
 
 
int
int
sbappendcontrol(sb, m0, control)
sbappendcontrol(sb, m0, control)
        struct sockbuf *sb;
        struct sockbuf *sb;
        struct mbuf *control, *m0;
        struct mbuf *control, *m0;
{
{
        register struct mbuf *m, *n;
        register struct mbuf *m, *n;
        int space = 0;
        int space = 0;
 
 
        if (control == 0)
        if (control == 0)
                panic("sbappendcontrol");
                panic("sbappendcontrol");
        for (m = control; ; m = m->m_next) {
        for (m = control; ; m = m->m_next) {
                space += m->m_len;
                space += m->m_len;
                if (m->m_next == 0)
                if (m->m_next == 0)
                        break;
                        break;
        }
        }
        n = m;                  /* save pointer to last control buffer */
        n = m;                  /* save pointer to last control buffer */
        for (m = m0; m; m = m->m_next)
        for (m = m0; m; m = m->m_next)
                space += m->m_len;
                space += m->m_len;
        if (space > sbspace(sb))
        if (space > sbspace(sb))
                return (0);
                return (0);
        n->m_next = m0;                 /* concatenate data to control */
        n->m_next = m0;                 /* concatenate data to control */
        for (m = control; m; m = m->m_next)
        for (m = control; m; m = m->m_next)
                sballoc(sb, m);
                sballoc(sb, m);
        n = sb->sb_mb;
        n = sb->sb_mb;
        if (n) {
        if (n) {
                while (n->m_nextpkt)
                while (n->m_nextpkt)
                        n = n->m_nextpkt;
                        n = n->m_nextpkt;
                n->m_nextpkt = control;
                n->m_nextpkt = control;
        } else
        } else
                sb->sb_mb = control;
                sb->sb_mb = control;
        return (1);
        return (1);
}
}
 
 
/*
/*
 * Compress mbuf chain m into the socket
 * Compress mbuf chain m into the socket
 * buffer sb following mbuf n.  If n
 * buffer sb following mbuf n.  If n
 * is null, the buffer is presumed empty.
 * is null, the buffer is presumed empty.
 */
 */
void
void
sbcompress(sb, m, n)
sbcompress(sb, m, n)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
        register struct mbuf *m, *n;
        register struct mbuf *m, *n;
{
{
        register int eor = 0;
        register int eor = 0;
        register struct mbuf *o;
        register struct mbuf *o;
 
 
        while (m) {
        while (m) {
                eor |= m->m_flags & M_EOR;
                eor |= m->m_flags & M_EOR;
                if (m->m_len == 0 &&
                if (m->m_len == 0 &&
                    (eor == 0 ||
                    (eor == 0 ||
                     (((o = m->m_next) || (o = n)) &&
                     (((o = m->m_next) || (o = n)) &&
                      o->m_type == m->m_type))) {
                      o->m_type == m->m_type))) {
                        m = m_free(m);
                        m = m_free(m);
                        continue;
                        continue;
                }
                }
                if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
                if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
                    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
                    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
                    n->m_type == m->m_type) {
                    n->m_type == m->m_type) {
                        bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
                        bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
                            (unsigned)m->m_len);
                            (unsigned)m->m_len);
                        n->m_len += m->m_len;
                        n->m_len += m->m_len;
                        sb->sb_cc += m->m_len;
                        sb->sb_cc += m->m_len;
                        m = m_free(m);
                        m = m_free(m);
                        continue;
                        continue;
                }
                }
                if (n)
                if (n)
                        n->m_next = m;
                        n->m_next = m;
                else
                else
                        sb->sb_mb = m;
                        sb->sb_mb = m;
                sballoc(sb, m);
                sballoc(sb, m);
                n = m;
                n = m;
                m->m_flags &= ~M_EOR;
                m->m_flags &= ~M_EOR;
                m = m->m_next;
                m = m->m_next;
                n->m_next = 0;
                n->m_next = 0;
        }
        }
        if (eor) {
        if (eor) {
                if (n)
                if (n)
                        n->m_flags |= eor;
                        n->m_flags |= eor;
                else
                else
                        printf("semi-panic: sbcompress\n");
                        printf("semi-panic: sbcompress\n");
        }
        }
}
}
 
 
/*
/*
 * Free all mbufs in a sockbuf.
 * Free all mbufs in a sockbuf.
 * Check that all resources are reclaimed.
 * Check that all resources are reclaimed.
 */
 */
void
void
sbflush(sb)
sbflush(sb)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
{
{
 
 
        if (sb->sb_flags & SB_LOCK)
        if (sb->sb_flags & SB_LOCK)
                panic("sbflush");
                panic("sbflush");
        while (sb->sb_mbcnt)
        while (sb->sb_mbcnt)
                sbdrop(sb, (int)sb->sb_cc);
                sbdrop(sb, (int)sb->sb_cc);
        if (sb->sb_cc || sb->sb_mb)
        if (sb->sb_cc || sb->sb_mb)
                panic("sbflush 2");
                panic("sbflush 2");
}
}
 
 
/*
/*
 * Drop data from (the front of) a sockbuf.
 * Drop data from (the front of) a sockbuf.
 */
 */
void
void
sbdrop(sb, len)
sbdrop(sb, len)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
        register int len;
        register int len;
{
{
        register struct mbuf *m, *mn;
        register struct mbuf *m, *mn;
        struct mbuf *next;
        struct mbuf *next;
 
 
        next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
        next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
        while (len > 0) {
        while (len > 0) {
                if (m == 0) {
                if (m == 0) {
                        if (next == 0)
                        if (next == 0)
                                panic("sbdrop");
                                panic("sbdrop");
                        m = next;
                        m = next;
                        next = m->m_nextpkt;
                        next = m->m_nextpkt;
                        continue;
                        continue;
                }
                }
                if (m->m_len > len) {
                if (m->m_len > len) {
                        m->m_len -= len;
                        m->m_len -= len;
                        m->m_data += len;
                        m->m_data += len;
                        sb->sb_cc -= len;
                        sb->sb_cc -= len;
                        break;
                        break;
                }
                }
                len -= m->m_len;
                len -= m->m_len;
                sbfree(sb, m);
                sbfree(sb, m);
                MFREE(m, mn);
                MFREE(m, mn);
                m = mn;
                m = mn;
        }
        }
        while (m && m->m_len == 0) {
        while (m && m->m_len == 0) {
                sbfree(sb, m);
                sbfree(sb, m);
                MFREE(m, mn);
                MFREE(m, mn);
                m = mn;
                m = mn;
        }
        }
        if (m) {
        if (m) {
                sb->sb_mb = m;
                sb->sb_mb = m;
                m->m_nextpkt = next;
                m->m_nextpkt = next;
        } else
        } else
                sb->sb_mb = next;
                sb->sb_mb = next;
}
}
 
 
/*
/*
 * Drop a record off the front of a sockbuf
 * Drop a record off the front of a sockbuf
 * and move the next record to the front.
 * and move the next record to the front.
 */
 */
void
void
sbdroprecord(sb)
sbdroprecord(sb)
        register struct sockbuf *sb;
        register struct sockbuf *sb;
{
{
        register struct mbuf *m, *mn;
        register struct mbuf *m, *mn;
 
 
        m = sb->sb_mb;
        m = sb->sb_mb;
        if (m) {
        if (m) {
                sb->sb_mb = m->m_nextpkt;
                sb->sb_mb = m->m_nextpkt;
                do {
                do {
                        sbfree(sb, m);
                        sbfree(sb, m);
                        MFREE(m, mn);
                        MFREE(m, mn);
                        m = mn;
                        m = mn;
                } while (m);
                } while (m);
        }
        }
}
}
 
 
/*
/*
 * Create a "control" mbuf containing the specified data
 * Create a "control" mbuf containing the specified data
 * with the specified type for presentation on a socket buffer.
 * with the specified type for presentation on a socket buffer.
 */
 */
struct mbuf *
struct mbuf *
sbcreatecontrol(p, size, type, level)
sbcreatecontrol(p, size, type, level)
        caddr_t p;
        caddr_t p;
        register int size;
        register int size;
        int type, level;
        int type, level;
{
{
        register struct cmsghdr *cp;
        register struct cmsghdr *cp;
        struct mbuf *m;
        struct mbuf *m;
 
 
        if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
        if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
                return ((struct mbuf *) NULL);
                return ((struct mbuf *) NULL);
        cp = mtod(m, struct cmsghdr *);
        cp = mtod(m, struct cmsghdr *);
        /* XXX check size? */
        /* XXX check size? */
        (void)memcpy(CMSG_DATA(cp), p, size);
        (void)memcpy(CMSG_DATA(cp), p, size);
        size += sizeof(*cp);
        size += sizeof(*cp);
        m->m_len = size;
        m->m_len = size;
        cp->cmsg_len = size;
        cp->cmsg_len = size;
        cp->cmsg_level = level;
        cp->cmsg_level = level;
        cp->cmsg_type = type;
        cp->cmsg_type = type;
        return (m);
        return (m);
}
}
 
 
#ifdef PRU_OLDSTYLE
#ifdef PRU_OLDSTYLE
/*
/*
 * The following routines mediate between the old-style `pr_usrreq'
 * The following routines mediate between the old-style `pr_usrreq'
 * protocol implementations and the new-style `struct pr_usrreqs'
 * protocol implementations and the new-style `struct pr_usrreqs'
 * calling convention.
 * calling convention.
 */
 */
 
 
/* syntactic sugar */
/* syntactic sugar */
#define nomb    (struct mbuf *)0
#define nomb    (struct mbuf *)0
 
 
static int
static int
old_abort(struct socket *so)
old_abort(struct socket *so)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_ABORT, nomb, nomb, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_ABORT, nomb, nomb, nomb);
}
}
 
 
static int
static int
old_accept(struct socket *so, struct mbuf *nam)
old_accept(struct socket *so, struct mbuf *nam)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_ACCEPT, nomb,  nam, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_ACCEPT, nomb,  nam, nomb);
}
}
 
 
static int
static int
old_attach(struct socket *so, int proto)
old_attach(struct socket *so, int proto)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_ATTACH, nomb,
        return so->so_proto->pr_ousrreq(so, PRU_ATTACH, nomb,
                                       (struct mbuf *)proto, /* XXX */
                                       (struct mbuf *)proto, /* XXX */
                                       nomb);
                                       nomb);
}
}
 
 
static int
static int
old_bind(struct socket *so, struct mbuf *nam)
old_bind(struct socket *so, struct mbuf *nam)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_BIND, nomb, nam, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_BIND, nomb, nam, nomb);
}
}
 
 
static int
static int
old_connect(struct socket *so, struct mbuf *nam)
old_connect(struct socket *so, struct mbuf *nam)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_CONNECT, nomb, nam, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_CONNECT, nomb, nam, nomb);
}
}
 
 
static int
static int
old_connect2(struct socket *so1, struct socket *so2)
old_connect2(struct socket *so1, struct socket *so2)
{
{
        return so1->so_proto->pr_ousrreq(so1, PRU_CONNECT2, nomb,
        return so1->so_proto->pr_ousrreq(so1, PRU_CONNECT2, nomb,
                                       (struct mbuf *)so2, nomb);
                                       (struct mbuf *)so2, nomb);
}
}
 
 
static int
static int
old_control(struct socket *so, int cmd, caddr_t data, struct ifnet *ifp)
old_control(struct socket *so, int cmd, caddr_t data, struct ifnet *ifp)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_CONTROL, (struct mbuf *)cmd,
        return so->so_proto->pr_ousrreq(so, PRU_CONTROL, (struct mbuf *)cmd,
                                       (struct mbuf *)data,
                                       (struct mbuf *)data,
                                       (struct mbuf *)ifp);
                                       (struct mbuf *)ifp);
}
}
 
 
static int
static int
old_detach(struct socket *so)
old_detach(struct socket *so)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_DETACH, nomb, nomb, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_DETACH, nomb, nomb, nomb);
}
}
 
 
static int
static int
old_disconnect(struct socket *so)
old_disconnect(struct socket *so)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_DISCONNECT, nomb, nomb, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_DISCONNECT, nomb, nomb, nomb);
}
}
 
 
static int
static int
old_listen(struct socket *so)
old_listen(struct socket *so)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_LISTEN, nomb, nomb, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_LISTEN, nomb, nomb, nomb);
}
}
 
 
static int
static int
old_peeraddr(struct socket *so, struct mbuf *nam)
old_peeraddr(struct socket *so, struct mbuf *nam)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_PEERADDR, nomb, nam, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_PEERADDR, nomb, nam, nomb);
}
}
 
 
static int
static int
old_rcvd(struct socket *so, int flags)
old_rcvd(struct socket *so, int flags)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_RCVD, nomb,
        return so->so_proto->pr_ousrreq(so, PRU_RCVD, nomb,
                                       (struct mbuf *)flags, /* XXX */
                                       (struct mbuf *)flags, /* XXX */
                                       nomb);
                                       nomb);
}
}
 
 
static int
static int
old_rcvoob(struct socket *so, struct mbuf *m, int flags)
old_rcvoob(struct socket *so, struct mbuf *m, int flags)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_RCVOOB, m,
        return so->so_proto->pr_ousrreq(so, PRU_RCVOOB, m,
                                       (struct mbuf *)flags, /* XXX */
                                       (struct mbuf *)flags, /* XXX */
                                       nomb);
                                       nomb);
}
}
 
 
static int
static int
old_send(struct socket *so, int flags, struct mbuf *m, struct mbuf *addr,
old_send(struct socket *so, int flags, struct mbuf *m, struct mbuf *addr,
         struct mbuf *control)
         struct mbuf *control)
{
{
        int req;
        int req;
 
 
        if (flags & PRUS_OOB) {
        if (flags & PRUS_OOB) {
                req = PRU_SENDOOB;
                req = PRU_SENDOOB;
        } else if(flags & PRUS_EOF) {
        } else if(flags & PRUS_EOF) {
                req = PRU_SEND_EOF;
                req = PRU_SEND_EOF;
        } else {
        } else {
                req = PRU_SEND;
                req = PRU_SEND;
        }
        }
        return so->so_proto->pr_ousrreq(so, req, m, addr, control);
        return so->so_proto->pr_ousrreq(so, req, m, addr, control);
}
}
 
 
static int
static int
old_sense(struct socket *so, struct stat *sb)
old_sense(struct socket *so, struct stat *sb)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_SENSE, (struct mbuf *)sb,
        return so->so_proto->pr_ousrreq(so, PRU_SENSE, (struct mbuf *)sb,
                                       nomb, nomb);
                                       nomb, nomb);
}
}
 
 
static int
static int
old_shutdown(struct socket *so)
old_shutdown(struct socket *so)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_SHUTDOWN, nomb, nomb, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_SHUTDOWN, nomb, nomb, nomb);
}
}
 
 
static int
static int
old_sockaddr(struct socket *so, struct mbuf *nam)
old_sockaddr(struct socket *so, struct mbuf *nam)
{
{
        return so->so_proto->pr_ousrreq(so, PRU_SOCKADDR, nomb, nam, nomb);
        return so->so_proto->pr_ousrreq(so, PRU_SOCKADDR, nomb, nam, nomb);
}
}
 
 
struct pr_usrreqs pru_oldstyle = {
struct pr_usrreqs pru_oldstyle = {
        old_abort, old_accept, old_attach, old_bind, old_connect,
        old_abort, old_accept, old_attach, old_bind, old_connect,
        old_connect2, old_control, old_detach, old_disconnect,
        old_connect2, old_control, old_detach, old_disconnect,
        old_listen, old_peeraddr, old_rcvd, old_rcvoob, old_send,
        old_listen, old_peeraddr, old_rcvd, old_rcvoob, old_send,
        old_sense, old_shutdown, old_sockaddr
        old_sense, old_shutdown, old_sockaddr
};
};
 
 
#endif /* PRU_OLDSTYLE */
#endif /* PRU_OLDSTYLE */
 
 
/*
/*
 * Some routines that return EOPNOTSUPP for entry points that are not
 * Some routines that return EOPNOTSUPP for entry points that are not
 * supported by a protocol.  Fill in as needed.
 * supported by a protocol.  Fill in as needed.
 */
 */
int
int
pru_accept_notsupp(struct socket *so, struct mbuf *nam)
pru_accept_notsupp(struct socket *so, struct mbuf *nam)
{
{
        return EOPNOTSUPP;
        return EOPNOTSUPP;
}
}
 
 
int
int
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
{
{
        return EOPNOTSUPP;
        return EOPNOTSUPP;
}
}
 
 
int
int
pru_control_notsupp(struct socket *so, int cmd, caddr_t data,
pru_control_notsupp(struct socket *so, int cmd, caddr_t data,
                    struct ifnet *ifp)
                    struct ifnet *ifp)
{
{
        return EOPNOTSUPP;
        return EOPNOTSUPP;
}
}
 
 
int
int
pru_listen_notsupp(struct socket *so)
pru_listen_notsupp(struct socket *so)
{
{
        return EOPNOTSUPP;
        return EOPNOTSUPP;
}
}
 
 
int
int
pru_rcvd_notsupp(struct socket *so, int flags)
pru_rcvd_notsupp(struct socket *so, int flags)
{
{
        return EOPNOTSUPP;
        return EOPNOTSUPP;
}
}
 
 
int
int
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
{
{
        return EOPNOTSUPP;
        return EOPNOTSUPP;
}
}
 
 
/*
/*
 * This isn't really a ``null'' operation, but it's the default one
 * This isn't really a ``null'' operation, but it's the default one
 * and doesn't do anything destructive.
 * and doesn't do anything destructive.
 */
 */
int
int
pru_sense_null(struct socket *so, struct stat *sb)
pru_sense_null(struct socket *so, struct stat *sb)
{
{
        sb->st_blksize = so->so_snd.sb_hiwat;
        sb->st_blksize = so->so_snd.sb_hiwat;
        return 0;
        return 0;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.