OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [VER_5_3/] [gdb-5.3/] [bfd/] [elflink.h] - Diff between revs 1182 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 1182 Rev 1765
/* ELF linker support.
/* ELF linker support.
   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of BFD, the Binary File Descriptor library.
This file is part of BFD, the Binary File Descriptor library.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 
 
/* ELF linker code.  */
/* ELF linker code.  */
 
 
/* This struct is used to pass information to routines called via
/* This struct is used to pass information to routines called via
   elf_link_hash_traverse which must return failure.  */
   elf_link_hash_traverse which must return failure.  */
 
 
struct elf_info_failed
struct elf_info_failed
{
{
  boolean failed;
  boolean failed;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct bfd_elf_version_tree *verdefs;
  struct bfd_elf_version_tree *verdefs;
};
};
 
 
static boolean is_global_data_symbol_definition
static boolean is_global_data_symbol_definition
  PARAMS ((bfd *, Elf_Internal_Sym *));
  PARAMS ((bfd *, Elf_Internal_Sym *));
static boolean elf_link_is_defined_archive_symbol
static boolean elf_link_is_defined_archive_symbol
  PARAMS ((bfd *, carsym *));
  PARAMS ((bfd *, carsym *));
static boolean elf_link_add_object_symbols
static boolean elf_link_add_object_symbols
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf_link_add_archive_symbols
static boolean elf_link_add_archive_symbols
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf_merge_symbol
static boolean elf_merge_symbol
  PARAMS ((bfd *, struct bfd_link_info *, const char *,
  PARAMS ((bfd *, struct bfd_link_info *, const char *,
           Elf_Internal_Sym *, asection **, bfd_vma *,
           Elf_Internal_Sym *, asection **, bfd_vma *,
           struct elf_link_hash_entry **, boolean *, boolean *,
           struct elf_link_hash_entry **, boolean *, boolean *,
           boolean *, boolean));
           boolean *, boolean));
static boolean elf_add_default_symbol
static boolean elf_add_default_symbol
  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
           const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
           const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
           boolean *, boolean, boolean));
           boolean *, boolean, boolean));
static boolean elf_export_symbol
static boolean elf_export_symbol
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_finalize_dynstr
static boolean elf_finalize_dynstr
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf_fix_symbol_flags
static boolean elf_fix_symbol_flags
  PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
  PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
static boolean elf_adjust_dynamic_symbol
static boolean elf_adjust_dynamic_symbol
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_link_find_version_dependencies
static boolean elf_link_find_version_dependencies
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_link_assign_sym_version
static boolean elf_link_assign_sym_version
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_collect_hash_codes
static boolean elf_collect_hash_codes
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_link_read_relocs_from_section
static boolean elf_link_read_relocs_from_section
  PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
  PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
static size_t compute_bucket_count
static size_t compute_bucket_count
  PARAMS ((struct bfd_link_info *));
  PARAMS ((struct bfd_link_info *));
static boolean elf_link_output_relocs
static boolean elf_link_output_relocs
  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
static boolean elf_link_size_reloc_section
static boolean elf_link_size_reloc_section
  PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
  PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
static void elf_link_adjust_relocs
static void elf_link_adjust_relocs
  PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
  PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
           struct elf_link_hash_entry **));
           struct elf_link_hash_entry **));
static int elf_link_sort_cmp1
static int elf_link_sort_cmp1
  PARAMS ((const void *, const void *));
  PARAMS ((const void *, const void *));
static int elf_link_sort_cmp2
static int elf_link_sort_cmp2
  PARAMS ((const void *, const void *));
  PARAMS ((const void *, const void *));
static size_t elf_link_sort_relocs
static size_t elf_link_sort_relocs
  PARAMS ((bfd *, struct bfd_link_info *, asection **));
  PARAMS ((bfd *, struct bfd_link_info *, asection **));
static boolean elf_section_ignore_discarded_relocs
static boolean elf_section_ignore_discarded_relocs
  PARAMS ((asection *));
  PARAMS ((asection *));
 
 
/* Given an ELF BFD, add symbols to the global hash table as
/* Given an ELF BFD, add symbols to the global hash table as
   appropriate.  */
   appropriate.  */
 
 
boolean
boolean
elf_bfd_link_add_symbols (abfd, info)
elf_bfd_link_add_symbols (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  switch (bfd_get_format (abfd))
  switch (bfd_get_format (abfd))
    {
    {
    case bfd_object:
    case bfd_object:
      return elf_link_add_object_symbols (abfd, info);
      return elf_link_add_object_symbols (abfd, info);
    case bfd_archive:
    case bfd_archive:
      return elf_link_add_archive_symbols (abfd, info);
      return elf_link_add_archive_symbols (abfd, info);
    default:
    default:
      bfd_set_error (bfd_error_wrong_format);
      bfd_set_error (bfd_error_wrong_format);
      return false;
      return false;
    }
    }
}
}


/* Return true iff this is a non-common, definition of a non-function symbol.  */
/* Return true iff this is a non-common, definition of a non-function symbol.  */
static boolean
static boolean
is_global_data_symbol_definition (abfd, sym)
is_global_data_symbol_definition (abfd, sym)
     bfd * abfd ATTRIBUTE_UNUSED;
     bfd * abfd ATTRIBUTE_UNUSED;
     Elf_Internal_Sym * sym;
     Elf_Internal_Sym * sym;
{
{
  /* Local symbols do not count, but target specific ones might.  */
  /* Local symbols do not count, but target specific ones might.  */
  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
    return false;
    return false;
 
 
  /* Function symbols do not count.  */
  /* Function symbols do not count.  */
  if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
  if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
    return false;
    return false;
 
 
  /* If the section is undefined, then so is the symbol.  */
  /* If the section is undefined, then so is the symbol.  */
  if (sym->st_shndx == SHN_UNDEF)
  if (sym->st_shndx == SHN_UNDEF)
    return false;
    return false;
 
 
  /* If the symbol is defined in the common section, then
  /* If the symbol is defined in the common section, then
     it is a common definition and so does not count.  */
     it is a common definition and so does not count.  */
  if (sym->st_shndx == SHN_COMMON)
  if (sym->st_shndx == SHN_COMMON)
    return false;
    return false;
 
 
  /* If the symbol is in a target specific section then we
  /* If the symbol is in a target specific section then we
     must rely upon the backend to tell us what it is.  */
     must rely upon the backend to tell us what it is.  */
  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
    /* FIXME - this function is not coded yet:
    /* FIXME - this function is not coded yet:
 
 
       return _bfd_is_global_symbol_definition (abfd, sym);
       return _bfd_is_global_symbol_definition (abfd, sym);
 
 
       Instead for now assume that the definition is not global,
       Instead for now assume that the definition is not global,
       Even if this is wrong, at least the linker will behave
       Even if this is wrong, at least the linker will behave
       in the same way that it used to do.  */
       in the same way that it used to do.  */
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Search the symbol table of the archive element of the archive ABFD
/* Search the symbol table of the archive element of the archive ABFD
   whose archive map contains a mention of SYMDEF, and determine if
   whose archive map contains a mention of SYMDEF, and determine if
   the symbol is defined in this element.  */
   the symbol is defined in this element.  */
static boolean
static boolean
elf_link_is_defined_archive_symbol (abfd, symdef)
elf_link_is_defined_archive_symbol (abfd, symdef)
     bfd * abfd;
     bfd * abfd;
     carsym * symdef;
     carsym * symdef;
{
{
  Elf_Internal_Shdr * hdr;
  Elf_Internal_Shdr * hdr;
  bfd_size_type symcount;
  bfd_size_type symcount;
  bfd_size_type extsymcount;
  bfd_size_type extsymcount;
  bfd_size_type extsymoff;
  bfd_size_type extsymoff;
  Elf_Internal_Sym *isymbuf;
  Elf_Internal_Sym *isymbuf;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isymend;
  Elf_Internal_Sym *isymend;
  boolean result;
  boolean result;
 
 
  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
  if (abfd == (bfd *) NULL)
  if (abfd == (bfd *) NULL)
    return false;
    return false;
 
 
  if (! bfd_check_format (abfd, bfd_object))
  if (! bfd_check_format (abfd, bfd_object))
    return false;
    return false;
 
 
  /* If we have already included the element containing this symbol in the
  /* If we have already included the element containing this symbol in the
     link then we do not need to include it again.  Just claim that any symbol
     link then we do not need to include it again.  Just claim that any symbol
     it contains is not a definition, so that our caller will not decide to
     it contains is not a definition, so that our caller will not decide to
     (re)include this element.  */
     (re)include this element.  */
  if (abfd->archive_pass)
  if (abfd->archive_pass)
    return false;
    return false;
 
 
  /* Select the appropriate symbol table.  */
  /* Select the appropriate symbol table.  */
  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
    hdr = &elf_tdata (abfd)->symtab_hdr;
    hdr = &elf_tdata (abfd)->symtab_hdr;
  else
  else
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
 
 
  symcount = hdr->sh_size / sizeof (Elf_External_Sym);
  symcount = hdr->sh_size / sizeof (Elf_External_Sym);
 
 
  /* The sh_info field of the symtab header tells us where the
  /* The sh_info field of the symtab header tells us where the
     external symbols start.  We don't care about the local symbols.  */
     external symbols start.  We don't care about the local symbols.  */
  if (elf_bad_symtab (abfd))
  if (elf_bad_symtab (abfd))
    {
    {
      extsymcount = symcount;
      extsymcount = symcount;
      extsymoff = 0;
      extsymoff = 0;
    }
    }
  else
  else
    {
    {
      extsymcount = symcount - hdr->sh_info;
      extsymcount = symcount - hdr->sh_info;
      extsymoff = hdr->sh_info;
      extsymoff = hdr->sh_info;
    }
    }
 
 
  if (extsymcount == 0)
  if (extsymcount == 0)
    return false;
    return false;
 
 
  /* Read in the symbol table.  */
  /* Read in the symbol table.  */
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
                                  NULL, NULL, NULL);
                                  NULL, NULL, NULL);
  if (isymbuf == NULL)
  if (isymbuf == NULL)
    return false;
    return false;
 
 
  /* Scan the symbol table looking for SYMDEF.  */
  /* Scan the symbol table looking for SYMDEF.  */
  result = false;
  result = false;
  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
    {
    {
      const char *name;
      const char *name;
 
 
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                                              isym->st_name);
                                              isym->st_name);
      if (name == (const char *) NULL)
      if (name == (const char *) NULL)
        break;
        break;
 
 
      if (strcmp (name, symdef->name) == 0)
      if (strcmp (name, symdef->name) == 0)
        {
        {
          result = is_global_data_symbol_definition (abfd, isym);
          result = is_global_data_symbol_definition (abfd, isym);
          break;
          break;
        }
        }
    }
    }
 
 
  free (isymbuf);
  free (isymbuf);
 
 
  return result;
  return result;
}
}


/* Add symbols from an ELF archive file to the linker hash table.  We
/* Add symbols from an ELF archive file to the linker hash table.  We
   don't use _bfd_generic_link_add_archive_symbols because of a
   don't use _bfd_generic_link_add_archive_symbols because of a
   problem which arises on UnixWare.  The UnixWare libc.so is an
   problem which arises on UnixWare.  The UnixWare libc.so is an
   archive which includes an entry libc.so.1 which defines a bunch of
   archive which includes an entry libc.so.1 which defines a bunch of
   symbols.  The libc.so archive also includes a number of other
   symbols.  The libc.so archive also includes a number of other
   object files, which also define symbols, some of which are the same
   object files, which also define symbols, some of which are the same
   as those defined in libc.so.1.  Correct linking requires that we
   as those defined in libc.so.1.  Correct linking requires that we
   consider each object file in turn, and include it if it defines any
   consider each object file in turn, and include it if it defines any
   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
   this; it looks through the list of undefined symbols, and includes
   this; it looks through the list of undefined symbols, and includes
   any object file which defines them.  When this algorithm is used on
   any object file which defines them.  When this algorithm is used on
   UnixWare, it winds up pulling in libc.so.1 early and defining a
   UnixWare, it winds up pulling in libc.so.1 early and defining a
   bunch of symbols.  This means that some of the other objects in the
   bunch of symbols.  This means that some of the other objects in the
   archive are not included in the link, which is incorrect since they
   archive are not included in the link, which is incorrect since they
   precede libc.so.1 in the archive.
   precede libc.so.1 in the archive.
 
 
   Fortunately, ELF archive handling is simpler than that done by
   Fortunately, ELF archive handling is simpler than that done by
   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
   oddities.  In ELF, if we find a symbol in the archive map, and the
   oddities.  In ELF, if we find a symbol in the archive map, and the
   symbol is currently undefined, we know that we must pull in that
   symbol is currently undefined, we know that we must pull in that
   object file.
   object file.
 
 
   Unfortunately, we do have to make multiple passes over the symbol
   Unfortunately, we do have to make multiple passes over the symbol
   table until nothing further is resolved.  */
   table until nothing further is resolved.  */
 
 
static boolean
static boolean
elf_link_add_archive_symbols (abfd, info)
elf_link_add_archive_symbols (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  symindex c;
  symindex c;
  boolean *defined = NULL;
  boolean *defined = NULL;
  boolean *included = NULL;
  boolean *included = NULL;
  carsym *symdefs;
  carsym *symdefs;
  boolean loop;
  boolean loop;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  if (! bfd_has_map (abfd))
  if (! bfd_has_map (abfd))
    {
    {
      /* An empty archive is a special case.  */
      /* An empty archive is a special case.  */
      if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
      if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
        return true;
        return true;
      bfd_set_error (bfd_error_no_armap);
      bfd_set_error (bfd_error_no_armap);
      return false;
      return false;
    }
    }
 
 
  /* Keep track of all symbols we know to be already defined, and all
  /* Keep track of all symbols we know to be already defined, and all
     files we know to be already included.  This is to speed up the
     files we know to be already included.  This is to speed up the
     second and subsequent passes.  */
     second and subsequent passes.  */
  c = bfd_ardata (abfd)->symdef_count;
  c = bfd_ardata (abfd)->symdef_count;
  if (c == 0)
  if (c == 0)
    return true;
    return true;
  amt = c;
  amt = c;
  amt *= sizeof (boolean);
  amt *= sizeof (boolean);
  defined = (boolean *) bfd_zmalloc (amt);
  defined = (boolean *) bfd_zmalloc (amt);
  included = (boolean *) bfd_zmalloc (amt);
  included = (boolean *) bfd_zmalloc (amt);
  if (defined == (boolean *) NULL || included == (boolean *) NULL)
  if (defined == (boolean *) NULL || included == (boolean *) NULL)
    goto error_return;
    goto error_return;
 
 
  symdefs = bfd_ardata (abfd)->symdefs;
  symdefs = bfd_ardata (abfd)->symdefs;
 
 
  do
  do
    {
    {
      file_ptr last;
      file_ptr last;
      symindex i;
      symindex i;
      carsym *symdef;
      carsym *symdef;
      carsym *symdefend;
      carsym *symdefend;
 
 
      loop = false;
      loop = false;
      last = -1;
      last = -1;
 
 
      symdef = symdefs;
      symdef = symdefs;
      symdefend = symdef + c;
      symdefend = symdef + c;
      for (i = 0; symdef < symdefend; symdef++, i++)
      for (i = 0; symdef < symdefend; symdef++, i++)
        {
        {
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
          bfd *element;
          bfd *element;
          struct bfd_link_hash_entry *undefs_tail;
          struct bfd_link_hash_entry *undefs_tail;
          symindex mark;
          symindex mark;
 
 
          if (defined[i] || included[i])
          if (defined[i] || included[i])
            continue;
            continue;
          if (symdef->file_offset == last)
          if (symdef->file_offset == last)
            {
            {
              included[i] = true;
              included[i] = true;
              continue;
              continue;
            }
            }
 
 
          h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
          h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
                                    false, false, false);
                                    false, false, false);
 
 
          if (h == NULL)
          if (h == NULL)
            {
            {
              char *p, *copy;
              char *p, *copy;
              size_t len, first;
              size_t len, first;
 
 
              /* If this is a default version (the name contains @@),
              /* If this is a default version (the name contains @@),
                 look up the symbol again with only one `@' as well
                 look up the symbol again with only one `@' as well
                 as without the version.  The effect is that references
                 as without the version.  The effect is that references
                 to the symbol with and without the version will be
                 to the symbol with and without the version will be
                 matched by the default symbol in the archive.  */
                 matched by the default symbol in the archive.  */
 
 
              p = strchr (symdef->name, ELF_VER_CHR);
              p = strchr (symdef->name, ELF_VER_CHR);
              if (p == NULL || p[1] != ELF_VER_CHR)
              if (p == NULL || p[1] != ELF_VER_CHR)
                continue;
                continue;
 
 
              /* First check with only one `@'.  */
              /* First check with only one `@'.  */
              len = strlen (symdef->name);
              len = strlen (symdef->name);
              copy = bfd_alloc (abfd, (bfd_size_type) len);
              copy = bfd_alloc (abfd, (bfd_size_type) len);
              if (copy == NULL)
              if (copy == NULL)
                goto error_return;
                goto error_return;
              first = p - symdef->name + 1;
              first = p - symdef->name + 1;
              memcpy (copy, symdef->name, first);
              memcpy (copy, symdef->name, first);
              memcpy (copy + first, symdef->name + first + 1, len - first);
              memcpy (copy + first, symdef->name + first + 1, len - first);
 
 
              h = elf_link_hash_lookup (elf_hash_table (info), copy,
              h = elf_link_hash_lookup (elf_hash_table (info), copy,
                                        false, false, false);
                                        false, false, false);
 
 
              if (h == NULL)
              if (h == NULL)
                {
                {
                  /* We also need to check references to the symbol
                  /* We also need to check references to the symbol
                     without the version.  */
                     without the version.  */
 
 
                  copy[first - 1] = '\0';
                  copy[first - 1] = '\0';
                  h = elf_link_hash_lookup (elf_hash_table (info),
                  h = elf_link_hash_lookup (elf_hash_table (info),
                                            copy, false, false, false);
                                            copy, false, false, false);
                }
                }
 
 
              bfd_release (abfd, copy);
              bfd_release (abfd, copy);
            }
            }
 
 
          if (h == NULL)
          if (h == NULL)
            continue;
            continue;
 
 
          if (h->root.type == bfd_link_hash_common)
          if (h->root.type == bfd_link_hash_common)
            {
            {
              /* We currently have a common symbol.  The archive map contains
              /* We currently have a common symbol.  The archive map contains
                 a reference to this symbol, so we may want to include it.  We
                 a reference to this symbol, so we may want to include it.  We
                 only want to include it however, if this archive element
                 only want to include it however, if this archive element
                 contains a definition of the symbol, not just another common
                 contains a definition of the symbol, not just another common
                 declaration of it.
                 declaration of it.
 
 
                 Unfortunately some archivers (including GNU ar) will put
                 Unfortunately some archivers (including GNU ar) will put
                 declarations of common symbols into their archive maps, as
                 declarations of common symbols into their archive maps, as
                 well as real definitions, so we cannot just go by the archive
                 well as real definitions, so we cannot just go by the archive
                 map alone.  Instead we must read in the element's symbol
                 map alone.  Instead we must read in the element's symbol
                 table and check that to see what kind of symbol definition
                 table and check that to see what kind of symbol definition
                 this is.  */
                 this is.  */
              if (! elf_link_is_defined_archive_symbol (abfd, symdef))
              if (! elf_link_is_defined_archive_symbol (abfd, symdef))
                continue;
                continue;
            }
            }
          else if (h->root.type != bfd_link_hash_undefined)
          else if (h->root.type != bfd_link_hash_undefined)
            {
            {
              if (h->root.type != bfd_link_hash_undefweak)
              if (h->root.type != bfd_link_hash_undefweak)
                defined[i] = true;
                defined[i] = true;
              continue;
              continue;
            }
            }
 
 
          /* We need to include this archive member.  */
          /* We need to include this archive member.  */
          element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
          element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
          if (element == (bfd *) NULL)
          if (element == (bfd *) NULL)
            goto error_return;
            goto error_return;
 
 
          if (! bfd_check_format (element, bfd_object))
          if (! bfd_check_format (element, bfd_object))
            goto error_return;
            goto error_return;
 
 
          /* Doublecheck that we have not included this object
          /* Doublecheck that we have not included this object
             already--it should be impossible, but there may be
             already--it should be impossible, but there may be
             something wrong with the archive.  */
             something wrong with the archive.  */
          if (element->archive_pass != 0)
          if (element->archive_pass != 0)
            {
            {
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              goto error_return;
              goto error_return;
            }
            }
          element->archive_pass = 1;
          element->archive_pass = 1;
 
 
          undefs_tail = info->hash->undefs_tail;
          undefs_tail = info->hash->undefs_tail;
 
 
          if (! (*info->callbacks->add_archive_element) (info, element,
          if (! (*info->callbacks->add_archive_element) (info, element,
                                                         symdef->name))
                                                         symdef->name))
            goto error_return;
            goto error_return;
          if (! elf_link_add_object_symbols (element, info))
          if (! elf_link_add_object_symbols (element, info))
            goto error_return;
            goto error_return;
 
 
          /* If there are any new undefined symbols, we need to make
          /* If there are any new undefined symbols, we need to make
             another pass through the archive in order to see whether
             another pass through the archive in order to see whether
             they can be defined.  FIXME: This isn't perfect, because
             they can be defined.  FIXME: This isn't perfect, because
             common symbols wind up on undefs_tail and because an
             common symbols wind up on undefs_tail and because an
             undefined symbol which is defined later on in this pass
             undefined symbol which is defined later on in this pass
             does not require another pass.  This isn't a bug, but it
             does not require another pass.  This isn't a bug, but it
             does make the code less efficient than it could be.  */
             does make the code less efficient than it could be.  */
          if (undefs_tail != info->hash->undefs_tail)
          if (undefs_tail != info->hash->undefs_tail)
            loop = true;
            loop = true;
 
 
          /* Look backward to mark all symbols from this object file
          /* Look backward to mark all symbols from this object file
             which we have already seen in this pass.  */
             which we have already seen in this pass.  */
          mark = i;
          mark = i;
          do
          do
            {
            {
              included[mark] = true;
              included[mark] = true;
              if (mark == 0)
              if (mark == 0)
                break;
                break;
              --mark;
              --mark;
            }
            }
          while (symdefs[mark].file_offset == symdef->file_offset);
          while (symdefs[mark].file_offset == symdef->file_offset);
 
 
          /* We mark subsequent symbols from this object file as we go
          /* We mark subsequent symbols from this object file as we go
             on through the loop.  */
             on through the loop.  */
          last = symdef->file_offset;
          last = symdef->file_offset;
        }
        }
    }
    }
  while (loop);
  while (loop);
 
 
  free (defined);
  free (defined);
  free (included);
  free (included);
 
 
  return true;
  return true;
 
 
 error_return:
 error_return:
  if (defined != (boolean *) NULL)
  if (defined != (boolean *) NULL)
    free (defined);
    free (defined);
  if (included != (boolean *) NULL)
  if (included != (boolean *) NULL)
    free (included);
    free (included);
  return false;
  return false;
}
}
 
 
/* This function is called when we want to define a new symbol.  It
/* This function is called when we want to define a new symbol.  It
   handles the various cases which arise when we find a definition in
   handles the various cases which arise when we find a definition in
   a dynamic object, or when there is already a definition in a
   a dynamic object, or when there is already a definition in a
   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
   OVERRIDE if the old symbol is overriding a new definition.  We set
   OVERRIDE if the old symbol is overriding a new definition.  We set
   TYPE_CHANGE_OK if it is OK for the type to change.  We set
   TYPE_CHANGE_OK if it is OK for the type to change.  We set
   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
   change, we mean that we shouldn't warn if the type or size does
   change, we mean that we shouldn't warn if the type or size does
   change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
   change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
   a shared object.  */
   a shared object.  */
 
 
static boolean
static boolean
elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
                  override, type_change_ok, size_change_ok, dt_needed)
                  override, type_change_ok, size_change_ok, dt_needed)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     const char *name;
     const char *name;
     Elf_Internal_Sym *sym;
     Elf_Internal_Sym *sym;
     asection **psec;
     asection **psec;
     bfd_vma *pvalue;
     bfd_vma *pvalue;
     struct elf_link_hash_entry **sym_hash;
     struct elf_link_hash_entry **sym_hash;
     boolean *override;
     boolean *override;
     boolean *type_change_ok;
     boolean *type_change_ok;
     boolean *size_change_ok;
     boolean *size_change_ok;
     boolean dt_needed;
     boolean dt_needed;
{
{
  asection *sec;
  asection *sec;
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
  int bind;
  int bind;
  bfd *oldbfd;
  bfd *oldbfd;
  boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
  boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
 
 
  *override = false;
  *override = false;
 
 
  sec = *psec;
  sec = *psec;
  bind = ELF_ST_BIND (sym->st_info);
  bind = ELF_ST_BIND (sym->st_info);
 
 
  if (! bfd_is_und_section (sec))
  if (! bfd_is_und_section (sec))
    h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
    h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
  else
  else
    h = ((struct elf_link_hash_entry *)
    h = ((struct elf_link_hash_entry *)
         bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
         bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
  if (h == NULL)
  if (h == NULL)
    return false;
    return false;
  *sym_hash = h;
  *sym_hash = h;
 
 
  /* This code is for coping with dynamic objects, and is only useful
  /* This code is for coping with dynamic objects, and is only useful
     if we are doing an ELF link.  */
     if we are doing an ELF link.  */
  if (info->hash->creator != abfd->xvec)
  if (info->hash->creator != abfd->xvec)
    return true;
    return true;
 
 
  /* For merging, we only care about real symbols.  */
  /* For merging, we only care about real symbols.  */
 
 
  while (h->root.type == bfd_link_hash_indirect
  while (h->root.type == bfd_link_hash_indirect
         || h->root.type == bfd_link_hash_warning)
         || h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* If we just created the symbol, mark it as being an ELF symbol.
  /* If we just created the symbol, mark it as being an ELF symbol.
     Other than that, there is nothing to do--there is no merge issue
     Other than that, there is nothing to do--there is no merge issue
     with a newly defined symbol--so we just return.  */
     with a newly defined symbol--so we just return.  */
 
 
  if (h->root.type == bfd_link_hash_new)
  if (h->root.type == bfd_link_hash_new)
    {
    {
      h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
      h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
      return true;
      return true;
    }
    }
 
 
  /* OLDBFD is a BFD associated with the existing symbol.  */
  /* OLDBFD is a BFD associated with the existing symbol.  */
 
 
  switch (h->root.type)
  switch (h->root.type)
    {
    {
    default:
    default:
      oldbfd = NULL;
      oldbfd = NULL;
      break;
      break;
 
 
    case bfd_link_hash_undefined:
    case bfd_link_hash_undefined:
    case bfd_link_hash_undefweak:
    case bfd_link_hash_undefweak:
      oldbfd = h->root.u.undef.abfd;
      oldbfd = h->root.u.undef.abfd;
      break;
      break;
 
 
    case bfd_link_hash_defined:
    case bfd_link_hash_defined:
    case bfd_link_hash_defweak:
    case bfd_link_hash_defweak:
      oldbfd = h->root.u.def.section->owner;
      oldbfd = h->root.u.def.section->owner;
      break;
      break;
 
 
    case bfd_link_hash_common:
    case bfd_link_hash_common:
      oldbfd = h->root.u.c.p->section->owner;
      oldbfd = h->root.u.c.p->section->owner;
      break;
      break;
    }
    }
 
 
  /* In cases involving weak versioned symbols, we may wind up trying
  /* In cases involving weak versioned symbols, we may wind up trying
     to merge a symbol with itself.  Catch that here, to avoid the
     to merge a symbol with itself.  Catch that here, to avoid the
     confusion that results if we try to override a symbol with
     confusion that results if we try to override a symbol with
     itself.  The additional tests catch cases like
     itself.  The additional tests catch cases like
     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
     dynamic object, which we do want to handle here.  */
     dynamic object, which we do want to handle here.  */
  if (abfd == oldbfd
  if (abfd == oldbfd
      && ((abfd->flags & DYNAMIC) == 0
      && ((abfd->flags & DYNAMIC) == 0
          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
    return true;
    return true;
 
 
  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
     respectively, is from a dynamic object.  */
     respectively, is from a dynamic object.  */
 
 
  if ((abfd->flags & DYNAMIC) != 0)
  if ((abfd->flags & DYNAMIC) != 0)
    newdyn = true;
    newdyn = true;
  else
  else
    newdyn = false;
    newdyn = false;
 
 
  if (oldbfd != NULL)
  if (oldbfd != NULL)
    olddyn = (oldbfd->flags & DYNAMIC) != 0;
    olddyn = (oldbfd->flags & DYNAMIC) != 0;
  else
  else
    {
    {
      asection *hsec;
      asection *hsec;
 
 
      /* This code handles the special SHN_MIPS_{TEXT,DATA} section
      /* This code handles the special SHN_MIPS_{TEXT,DATA} section
         indices used by MIPS ELF.  */
         indices used by MIPS ELF.  */
      switch (h->root.type)
      switch (h->root.type)
        {
        {
        default:
        default:
          hsec = NULL;
          hsec = NULL;
          break;
          break;
 
 
        case bfd_link_hash_defined:
        case bfd_link_hash_defined:
        case bfd_link_hash_defweak:
        case bfd_link_hash_defweak:
          hsec = h->root.u.def.section;
          hsec = h->root.u.def.section;
          break;
          break;
 
 
        case bfd_link_hash_common:
        case bfd_link_hash_common:
          hsec = h->root.u.c.p->section;
          hsec = h->root.u.c.p->section;
          break;
          break;
        }
        }
 
 
      if (hsec == NULL)
      if (hsec == NULL)
        olddyn = false;
        olddyn = false;
      else
      else
        olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
        olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
    }
    }
 
 
  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
     respectively, appear to be a definition rather than reference.  */
     respectively, appear to be a definition rather than reference.  */
 
 
  if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
  if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
    newdef = false;
    newdef = false;
  else
  else
    newdef = true;
    newdef = true;
 
 
  if (h->root.type == bfd_link_hash_undefined
  if (h->root.type == bfd_link_hash_undefined
      || h->root.type == bfd_link_hash_undefweak
      || h->root.type == bfd_link_hash_undefweak
      || h->root.type == bfd_link_hash_common)
      || h->root.type == bfd_link_hash_common)
    olddef = false;
    olddef = false;
  else
  else
    olddef = true;
    olddef = true;
 
 
  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
     symbol, respectively, appears to be a common symbol in a dynamic
     symbol, respectively, appears to be a common symbol in a dynamic
     object.  If a symbol appears in an uninitialized section, and is
     object.  If a symbol appears in an uninitialized section, and is
     not weak, and is not a function, then it may be a common symbol
     not weak, and is not a function, then it may be a common symbol
     which was resolved when the dynamic object was created.  We want
     which was resolved when the dynamic object was created.  We want
     to treat such symbols specially, because they raise special
     to treat such symbols specially, because they raise special
     considerations when setting the symbol size: if the symbol
     considerations when setting the symbol size: if the symbol
     appears as a common symbol in a regular object, and the size in
     appears as a common symbol in a regular object, and the size in
     the regular object is larger, we must make sure that we use the
     the regular object is larger, we must make sure that we use the
     larger size.  This problematic case can always be avoided in C,
     larger size.  This problematic case can always be avoided in C,
     but it must be handled correctly when using Fortran shared
     but it must be handled correctly when using Fortran shared
     libraries.
     libraries.
 
 
     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
     likewise for OLDDYNCOMMON and OLDDEF.
     likewise for OLDDYNCOMMON and OLDDEF.
 
 
     Note that this test is just a heuristic, and that it is quite
     Note that this test is just a heuristic, and that it is quite
     possible to have an uninitialized symbol in a shared object which
     possible to have an uninitialized symbol in a shared object which
     is really a definition, rather than a common symbol.  This could
     is really a definition, rather than a common symbol.  This could
     lead to some minor confusion when the symbol really is a common
     lead to some minor confusion when the symbol really is a common
     symbol in some regular object.  However, I think it will be
     symbol in some regular object.  However, I think it will be
     harmless.  */
     harmless.  */
 
 
  if (newdyn
  if (newdyn
      && newdef
      && newdef
      && (sec->flags & SEC_ALLOC) != 0
      && (sec->flags & SEC_ALLOC) != 0
      && (sec->flags & SEC_LOAD) == 0
      && (sec->flags & SEC_LOAD) == 0
      && sym->st_size > 0
      && sym->st_size > 0
      && bind != STB_WEAK
      && bind != STB_WEAK
      && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
      && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
    newdyncommon = true;
    newdyncommon = true;
  else
  else
    newdyncommon = false;
    newdyncommon = false;
 
 
  if (olddyn
  if (olddyn
      && olddef
      && olddef
      && h->root.type == bfd_link_hash_defined
      && h->root.type == bfd_link_hash_defined
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
      && (h->root.u.def.section->flags & SEC_LOAD) == 0
      && (h->root.u.def.section->flags & SEC_LOAD) == 0
      && h->size > 0
      && h->size > 0
      && h->type != STT_FUNC)
      && h->type != STT_FUNC)
    olddyncommon = true;
    olddyncommon = true;
  else
  else
    olddyncommon = false;
    olddyncommon = false;
 
 
  /* It's OK to change the type if either the existing symbol or the
  /* It's OK to change the type if either the existing symbol or the
     new symbol is weak unless it comes from a DT_NEEDED entry of
     new symbol is weak unless it comes from a DT_NEEDED entry of
     a shared object, in which case, the DT_NEEDED entry may not be
     a shared object, in which case, the DT_NEEDED entry may not be
     required at the run time.  */
     required at the run time.  */
 
 
  if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
  if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
      || h->root.type == bfd_link_hash_undefweak
      || h->root.type == bfd_link_hash_undefweak
      || bind == STB_WEAK)
      || bind == STB_WEAK)
    *type_change_ok = true;
    *type_change_ok = true;
 
 
  /* It's OK to change the size if either the existing symbol or the
  /* It's OK to change the size if either the existing symbol or the
     new symbol is weak, or if the old symbol is undefined.  */
     new symbol is weak, or if the old symbol is undefined.  */
 
 
  if (*type_change_ok
  if (*type_change_ok
      || h->root.type == bfd_link_hash_undefined)
      || h->root.type == bfd_link_hash_undefined)
    *size_change_ok = true;
    *size_change_ok = true;
 
 
  /* If both the old and the new symbols look like common symbols in a
  /* If both the old and the new symbols look like common symbols in a
     dynamic object, set the size of the symbol to the larger of the
     dynamic object, set the size of the symbol to the larger of the
     two.  */
     two.  */
 
 
  if (olddyncommon
  if (olddyncommon
      && newdyncommon
      && newdyncommon
      && sym->st_size != h->size)
      && sym->st_size != h->size)
    {
    {
      /* Since we think we have two common symbols, issue a multiple
      /* Since we think we have two common symbols, issue a multiple
         common warning if desired.  Note that we only warn if the
         common warning if desired.  Note that we only warn if the
         size is different.  If the size is the same, we simply let
         size is different.  If the size is the same, we simply let
         the old symbol override the new one as normally happens with
         the old symbol override the new one as normally happens with
         symbols defined in dynamic objects.  */
         symbols defined in dynamic objects.  */
 
 
      if (! ((*info->callbacks->multiple_common)
      if (! ((*info->callbacks->multiple_common)
             (info, h->root.root.string, oldbfd, bfd_link_hash_common,
             (info, h->root.root.string, oldbfd, bfd_link_hash_common,
              h->size, abfd, bfd_link_hash_common, sym->st_size)))
              h->size, abfd, bfd_link_hash_common, sym->st_size)))
        return false;
        return false;
 
 
      if (sym->st_size > h->size)
      if (sym->st_size > h->size)
        h->size = sym->st_size;
        h->size = sym->st_size;
 
 
      *size_change_ok = true;
      *size_change_ok = true;
    }
    }
 
 
  /* If we are looking at a dynamic object, and we have found a
  /* If we are looking at a dynamic object, and we have found a
     definition, we need to see if the symbol was already defined by
     definition, we need to see if the symbol was already defined by
     some other object.  If so, we want to use the existing
     some other object.  If so, we want to use the existing
     definition, and we do not want to report a multiple symbol
     definition, and we do not want to report a multiple symbol
     definition error; we do this by clobbering *PSEC to be
     definition error; we do this by clobbering *PSEC to be
     bfd_und_section_ptr.
     bfd_und_section_ptr.
 
 
     We treat a common symbol as a definition if the symbol in the
     We treat a common symbol as a definition if the symbol in the
     shared library is a function, since common symbols always
     shared library is a function, since common symbols always
     represent variables; this can cause confusion in principle, but
     represent variables; this can cause confusion in principle, but
     any such confusion would seem to indicate an erroneous program or
     any such confusion would seem to indicate an erroneous program or
     shared library.  We also permit a common symbol in a regular
     shared library.  We also permit a common symbol in a regular
     object to override a weak symbol in a shared object.
     object to override a weak symbol in a shared object.
 
 
     We prefer a non-weak definition in a shared library to a weak
     We prefer a non-weak definition in a shared library to a weak
     definition in the executable unless it comes from a DT_NEEDED
     definition in the executable unless it comes from a DT_NEEDED
     entry of a shared object, in which case, the DT_NEEDED entry
     entry of a shared object, in which case, the DT_NEEDED entry
     may not be required at the run time.  */
     may not be required at the run time.  */
 
 
  if (newdyn
  if (newdyn
      && newdef
      && newdef
      && (olddef
      && (olddef
          || (h->root.type == bfd_link_hash_common
          || (h->root.type == bfd_link_hash_common
              && (bind == STB_WEAK
              && (bind == STB_WEAK
                  || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
                  || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
      && (h->root.type != bfd_link_hash_defweak
      && (h->root.type != bfd_link_hash_defweak
          || dt_needed
          || dt_needed
          || bind == STB_WEAK))
          || bind == STB_WEAK))
    {
    {
      *override = true;
      *override = true;
      newdef = false;
      newdef = false;
      newdyncommon = false;
      newdyncommon = false;
 
 
      *psec = sec = bfd_und_section_ptr;
      *psec = sec = bfd_und_section_ptr;
      *size_change_ok = true;
      *size_change_ok = true;
 
 
      /* If we get here when the old symbol is a common symbol, then
      /* If we get here when the old symbol is a common symbol, then
         we are explicitly letting it override a weak symbol or
         we are explicitly letting it override a weak symbol or
         function in a dynamic object, and we don't want to warn about
         function in a dynamic object, and we don't want to warn about
         a type change.  If the old symbol is a defined symbol, a type
         a type change.  If the old symbol is a defined symbol, a type
         change warning may still be appropriate.  */
         change warning may still be appropriate.  */
 
 
      if (h->root.type == bfd_link_hash_common)
      if (h->root.type == bfd_link_hash_common)
        *type_change_ok = true;
        *type_change_ok = true;
    }
    }
 
 
  /* Handle the special case of an old common symbol merging with a
  /* Handle the special case of an old common symbol merging with a
     new symbol which looks like a common symbol in a shared object.
     new symbol which looks like a common symbol in a shared object.
     We change *PSEC and *PVALUE to make the new symbol look like a
     We change *PSEC and *PVALUE to make the new symbol look like a
     common symbol, and let _bfd_generic_link_add_one_symbol will do
     common symbol, and let _bfd_generic_link_add_one_symbol will do
     the right thing.  */
     the right thing.  */
 
 
  if (newdyncommon
  if (newdyncommon
      && h->root.type == bfd_link_hash_common)
      && h->root.type == bfd_link_hash_common)
    {
    {
      *override = true;
      *override = true;
      newdef = false;
      newdef = false;
      newdyncommon = false;
      newdyncommon = false;
      *pvalue = sym->st_size;
      *pvalue = sym->st_size;
      *psec = sec = bfd_com_section_ptr;
      *psec = sec = bfd_com_section_ptr;
      *size_change_ok = true;
      *size_change_ok = true;
    }
    }
 
 
  /* If the old symbol is from a dynamic object, and the new symbol is
  /* If the old symbol is from a dynamic object, and the new symbol is
     a definition which is not from a dynamic object, then the new
     a definition which is not from a dynamic object, then the new
     symbol overrides the old symbol.  Symbols from regular files
     symbol overrides the old symbol.  Symbols from regular files
     always take precedence over symbols from dynamic objects, even if
     always take precedence over symbols from dynamic objects, even if
     they are defined after the dynamic object in the link.
     they are defined after the dynamic object in the link.
 
 
     As above, we again permit a common symbol in a regular object to
     As above, we again permit a common symbol in a regular object to
     override a definition in a shared object if the shared object
     override a definition in a shared object if the shared object
     symbol is a function or is weak.
     symbol is a function or is weak.
 
 
     As above, we permit a non-weak definition in a shared object to
     As above, we permit a non-weak definition in a shared object to
     override a weak definition in a regular object.  */
     override a weak definition in a regular object.  */
 
 
  if (! newdyn
  if (! newdyn
      && (newdef
      && (newdef
          || (bfd_is_com_section (sec)
          || (bfd_is_com_section (sec)
              && (h->root.type == bfd_link_hash_defweak
              && (h->root.type == bfd_link_hash_defweak
                  || h->type == STT_FUNC)))
                  || h->type == STT_FUNC)))
      && olddyn
      && olddyn
      && olddef
      && olddef
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (bind != STB_WEAK
      && (bind != STB_WEAK
          || h->root.type == bfd_link_hash_defweak))
          || h->root.type == bfd_link_hash_defweak))
    {
    {
      /* Change the hash table entry to undefined, and let
      /* Change the hash table entry to undefined, and let
         _bfd_generic_link_add_one_symbol do the right thing with the
         _bfd_generic_link_add_one_symbol do the right thing with the
         new definition.  */
         new definition.  */
 
 
      h->root.type = bfd_link_hash_undefined;
      h->root.type = bfd_link_hash_undefined;
      h->root.u.undef.abfd = h->root.u.def.section->owner;
      h->root.u.undef.abfd = h->root.u.def.section->owner;
      *size_change_ok = true;
      *size_change_ok = true;
 
 
      olddef = false;
      olddef = false;
      olddyncommon = false;
      olddyncommon = false;
 
 
      /* We again permit a type change when a common symbol may be
      /* We again permit a type change when a common symbol may be
         overriding a function.  */
         overriding a function.  */
 
 
      if (bfd_is_com_section (sec))
      if (bfd_is_com_section (sec))
        *type_change_ok = true;
        *type_change_ok = true;
 
 
      /* This union may have been set to be non-NULL when this symbol
      /* This union may have been set to be non-NULL when this symbol
         was seen in a dynamic object.  We must force the union to be
         was seen in a dynamic object.  We must force the union to be
         NULL, so that it is correct for a regular symbol.  */
         NULL, so that it is correct for a regular symbol.  */
 
 
      h->verinfo.vertree = NULL;
      h->verinfo.vertree = NULL;
 
 
      /* In this special case, if H is the target of an indirection,
      /* In this special case, if H is the target of an indirection,
         we want the caller to frob with H rather than with the
         we want the caller to frob with H rather than with the
         indirect symbol.  That will permit the caller to redefine the
         indirect symbol.  That will permit the caller to redefine the
         target of the indirection, rather than the indirect symbol
         target of the indirection, rather than the indirect symbol
         itself.  FIXME: This will break the -y option if we store a
         itself.  FIXME: This will break the -y option if we store a
         symbol with a different name.  */
         symbol with a different name.  */
      *sym_hash = h;
      *sym_hash = h;
    }
    }
 
 
  /* Handle the special case of a new common symbol merging with an
  /* Handle the special case of a new common symbol merging with an
     old symbol that looks like it might be a common symbol defined in
     old symbol that looks like it might be a common symbol defined in
     a shared object.  Note that we have already handled the case in
     a shared object.  Note that we have already handled the case in
     which a new common symbol should simply override the definition
     which a new common symbol should simply override the definition
     in the shared library.  */
     in the shared library.  */
 
 
  if (! newdyn
  if (! newdyn
      && bfd_is_com_section (sec)
      && bfd_is_com_section (sec)
      && olddyncommon)
      && olddyncommon)
    {
    {
      /* It would be best if we could set the hash table entry to a
      /* It would be best if we could set the hash table entry to a
         common symbol, but we don't know what to use for the section
         common symbol, but we don't know what to use for the section
         or the alignment.  */
         or the alignment.  */
      if (! ((*info->callbacks->multiple_common)
      if (! ((*info->callbacks->multiple_common)
             (info, h->root.root.string, oldbfd, bfd_link_hash_common,
             (info, h->root.root.string, oldbfd, bfd_link_hash_common,
              h->size, abfd, bfd_link_hash_common, sym->st_size)))
              h->size, abfd, bfd_link_hash_common, sym->st_size)))
        return false;
        return false;
 
 
      /* If the predumed common symbol in the dynamic object is
      /* If the predumed common symbol in the dynamic object is
         larger, pretend that the new symbol has its size.  */
         larger, pretend that the new symbol has its size.  */
 
 
      if (h->size > *pvalue)
      if (h->size > *pvalue)
        *pvalue = h->size;
        *pvalue = h->size;
 
 
      /* FIXME: We no longer know the alignment required by the symbol
      /* FIXME: We no longer know the alignment required by the symbol
         in the dynamic object, so we just wind up using the one from
         in the dynamic object, so we just wind up using the one from
         the regular object.  */
         the regular object.  */
 
 
      olddef = false;
      olddef = false;
      olddyncommon = false;
      olddyncommon = false;
 
 
      h->root.type = bfd_link_hash_undefined;
      h->root.type = bfd_link_hash_undefined;
      h->root.u.undef.abfd = h->root.u.def.section->owner;
      h->root.u.undef.abfd = h->root.u.def.section->owner;
 
 
      *size_change_ok = true;
      *size_change_ok = true;
      *type_change_ok = true;
      *type_change_ok = true;
 
 
      h->verinfo.vertree = NULL;
      h->verinfo.vertree = NULL;
    }
    }
 
 
  /* Handle the special case of a weak definition in a regular object
  /* Handle the special case of a weak definition in a regular object
     followed by a non-weak definition in a shared object.  In this
     followed by a non-weak definition in a shared object.  In this
     case, we prefer the definition in the shared object unless it
     case, we prefer the definition in the shared object unless it
     comes from a DT_NEEDED entry of a shared object, in which case,
     comes from a DT_NEEDED entry of a shared object, in which case,
     the DT_NEEDED entry may not be required at the run time.  */
     the DT_NEEDED entry may not be required at the run time.  */
  if (olddef
  if (olddef
      && ! dt_needed
      && ! dt_needed
      && h->root.type == bfd_link_hash_defweak
      && h->root.type == bfd_link_hash_defweak
      && newdef
      && newdef
      && newdyn
      && newdyn
      && bind != STB_WEAK)
      && bind != STB_WEAK)
    {
    {
      /* To make this work we have to frob the flags so that the rest
      /* To make this work we have to frob the flags so that the rest
         of the code does not think we are using the regular
         of the code does not think we are using the regular
         definition.  */
         definition.  */
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
        h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
        h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
      else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
      else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
        h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
        h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
      h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
      h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
                                   | ELF_LINK_HASH_DEF_DYNAMIC);
                                   | ELF_LINK_HASH_DEF_DYNAMIC);
 
 
      /* If H is the target of an indirection, we want the caller to
      /* If H is the target of an indirection, we want the caller to
         use H rather than the indirect symbol.  Otherwise if we are
         use H rather than the indirect symbol.  Otherwise if we are
         defining a new indirect symbol we will wind up attaching it
         defining a new indirect symbol we will wind up attaching it
         to the entry we are overriding.  */
         to the entry we are overriding.  */
      *sym_hash = h;
      *sym_hash = h;
    }
    }
 
 
  /* Handle the special case of a non-weak definition in a shared
  /* Handle the special case of a non-weak definition in a shared
     object followed by a weak definition in a regular object.  In
     object followed by a weak definition in a regular object.  In
     this case we prefer to definition in the shared object.  To make
     this case we prefer to definition in the shared object.  To make
     this work we have to tell the caller to not treat the new symbol
     this work we have to tell the caller to not treat the new symbol
     as a definition.  */
     as a definition.  */
  if (olddef
  if (olddef
      && olddyn
      && olddyn
      && h->root.type != bfd_link_hash_defweak
      && h->root.type != bfd_link_hash_defweak
      && newdef
      && newdef
      && ! newdyn
      && ! newdyn
      && bind == STB_WEAK)
      && bind == STB_WEAK)
    *override = true;
    *override = true;
 
 
  return true;
  return true;
}
}
 
 
/* This function is called to create an indirect symbol from the
/* This function is called to create an indirect symbol from the
   default for the symbol with the default version if needed. The
   default for the symbol with the default version if needed. The
   symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
   symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
   set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
   set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
   indicates if it comes from a DT_NEEDED entry of a shared object.  */
   indicates if it comes from a DT_NEEDED entry of a shared object.  */
 
 
static boolean
static boolean
elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
                        dynsym, override, dt_needed)
                        dynsym, override, dt_needed)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     const char *name;
     const char *name;
     Elf_Internal_Sym *sym;
     Elf_Internal_Sym *sym;
     asection **psec;
     asection **psec;
     bfd_vma *value;
     bfd_vma *value;
     boolean *dynsym;
     boolean *dynsym;
     boolean override;
     boolean override;
     boolean dt_needed;
     boolean dt_needed;
{
{
  boolean type_change_ok;
  boolean type_change_ok;
  boolean size_change_ok;
  boolean size_change_ok;
  char *shortname;
  char *shortname;
  struct elf_link_hash_entry *hi;
  struct elf_link_hash_entry *hi;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  boolean collect;
  boolean collect;
  boolean dynamic;
  boolean dynamic;
  char *p;
  char *p;
  size_t len, shortlen;
  size_t len, shortlen;
  asection *sec;
  asection *sec;
 
 
  /* If this symbol has a version, and it is the default version, we
  /* If this symbol has a version, and it is the default version, we
     create an indirect symbol from the default name to the fully
     create an indirect symbol from the default name to the fully
     decorated name.  This will cause external references which do not
     decorated name.  This will cause external references which do not
     specify a version to be bound to this version of the symbol.  */
     specify a version to be bound to this version of the symbol.  */
  p = strchr (name, ELF_VER_CHR);
  p = strchr (name, ELF_VER_CHR);
  if (p == NULL || p[1] != ELF_VER_CHR)
  if (p == NULL || p[1] != ELF_VER_CHR)
    return true;
    return true;
 
 
  if (override)
  if (override)
    {
    {
      /* We are overridden by an old defition. We need to check if we
      /* We are overridden by an old defition. We need to check if we
         need to create the indirect symbol from the default name.  */
         need to create the indirect symbol from the default name.  */
      hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
      hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
                                 false, false);
                                 false, false);
      BFD_ASSERT (hi != NULL);
      BFD_ASSERT (hi != NULL);
      if (hi == h)
      if (hi == h)
        return true;
        return true;
      while (hi->root.type == bfd_link_hash_indirect
      while (hi->root.type == bfd_link_hash_indirect
             || hi->root.type == bfd_link_hash_warning)
             || hi->root.type == bfd_link_hash_warning)
        {
        {
          hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
          hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
          if (hi == h)
          if (hi == h)
            return true;
            return true;
        }
        }
    }
    }
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  collect = bed->collect;
  collect = bed->collect;
  dynamic = (abfd->flags & DYNAMIC) != 0;
  dynamic = (abfd->flags & DYNAMIC) != 0;
 
 
  shortlen = p - name;
  shortlen = p - name;
  shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
  shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
  if (shortname == NULL)
  if (shortname == NULL)
    return false;
    return false;
  memcpy (shortname, name, shortlen);
  memcpy (shortname, name, shortlen);
  shortname[shortlen] = '\0';
  shortname[shortlen] = '\0';
 
 
  /* We are going to create a new symbol.  Merge it with any existing
  /* We are going to create a new symbol.  Merge it with any existing
     symbol with this name.  For the purposes of the merge, act as
     symbol with this name.  For the purposes of the merge, act as
     though we were defining the symbol we just defined, although we
     though we were defining the symbol we just defined, although we
     actually going to define an indirect symbol.  */
     actually going to define an indirect symbol.  */
  type_change_ok = false;
  type_change_ok = false;
  size_change_ok = false;
  size_change_ok = false;
  sec = *psec;
  sec = *psec;
  if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
  if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
                          &hi, &override, &type_change_ok,
                          &hi, &override, &type_change_ok,
                          &size_change_ok, dt_needed))
                          &size_change_ok, dt_needed))
    return false;
    return false;
 
 
  if (! override)
  if (! override)
    {
    {
      if (! (_bfd_generic_link_add_one_symbol
      if (! (_bfd_generic_link_add_one_symbol
             (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
             (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
              (bfd_vma) 0, name, false, collect,
              (bfd_vma) 0, name, false, collect,
              (struct bfd_link_hash_entry **) &hi)))
              (struct bfd_link_hash_entry **) &hi)))
        return false;
        return false;
    }
    }
  else
  else
    {
    {
      /* In this case the symbol named SHORTNAME is overriding the
      /* In this case the symbol named SHORTNAME is overriding the
         indirect symbol we want to add.  We were planning on making
         indirect symbol we want to add.  We were planning on making
         SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
         SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
         is the name without a version.  NAME is the fully versioned
         is the name without a version.  NAME is the fully versioned
         name, and it is the default version.
         name, and it is the default version.
 
 
         Overriding means that we already saw a definition for the
         Overriding means that we already saw a definition for the
         symbol SHORTNAME in a regular object, and it is overriding
         symbol SHORTNAME in a regular object, and it is overriding
         the symbol defined in the dynamic object.
         the symbol defined in the dynamic object.
 
 
         When this happens, we actually want to change NAME, the
         When this happens, we actually want to change NAME, the
         symbol we just added, to refer to SHORTNAME.  This will cause
         symbol we just added, to refer to SHORTNAME.  This will cause
         references to NAME in the shared object to become references
         references to NAME in the shared object to become references
         to SHORTNAME in the regular object.  This is what we expect
         to SHORTNAME in the regular object.  This is what we expect
         when we override a function in a shared object: that the
         when we override a function in a shared object: that the
         references in the shared object will be mapped to the
         references in the shared object will be mapped to the
         definition in the regular object.  */
         definition in the regular object.  */
 
 
      while (hi->root.type == bfd_link_hash_indirect
      while (hi->root.type == bfd_link_hash_indirect
             || hi->root.type == bfd_link_hash_warning)
             || hi->root.type == bfd_link_hash_warning)
        hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
        hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
 
 
      h->root.type = bfd_link_hash_indirect;
      h->root.type = bfd_link_hash_indirect;
      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
      if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
      if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
        {
        {
          h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
          h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
          hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
          hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
          if (hi->elf_link_hash_flags
          if (hi->elf_link_hash_flags
              & (ELF_LINK_HASH_REF_REGULAR
              & (ELF_LINK_HASH_REF_REGULAR
                 | ELF_LINK_HASH_DEF_REGULAR))
                 | ELF_LINK_HASH_DEF_REGULAR))
            {
            {
              if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
              if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
                return false;
                return false;
            }
            }
        }
        }
 
 
      /* Now set HI to H, so that the following code will set the
      /* Now set HI to H, so that the following code will set the
         other fields correctly.  */
         other fields correctly.  */
      hi = h;
      hi = h;
    }
    }
 
 
  /* If there is a duplicate definition somewhere, then HI may not
  /* If there is a duplicate definition somewhere, then HI may not
     point to an indirect symbol.  We will have reported an error to
     point to an indirect symbol.  We will have reported an error to
     the user in that case.  */
     the user in that case.  */
 
 
  if (hi->root.type == bfd_link_hash_indirect)
  if (hi->root.type == bfd_link_hash_indirect)
    {
    {
      struct elf_link_hash_entry *ht;
      struct elf_link_hash_entry *ht;
 
 
      /* If the symbol became indirect, then we assume that we have
      /* If the symbol became indirect, then we assume that we have
         not seen a definition before.  */
         not seen a definition before.  */
      BFD_ASSERT ((hi->elf_link_hash_flags
      BFD_ASSERT ((hi->elf_link_hash_flags
                   & (ELF_LINK_HASH_DEF_DYNAMIC
                   & (ELF_LINK_HASH_DEF_DYNAMIC
                      | ELF_LINK_HASH_DEF_REGULAR)) == 0);
                      | ELF_LINK_HASH_DEF_REGULAR)) == 0);
 
 
      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
      (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
      (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
 
 
      /* See if the new flags lead us to realize that the symbol must
      /* See if the new flags lead us to realize that the symbol must
         be dynamic.  */
         be dynamic.  */
      if (! *dynsym)
      if (! *dynsym)
        {
        {
          if (! dynamic)
          if (! dynamic)
            {
            {
              if (info->shared
              if (info->shared
                  || ((hi->elf_link_hash_flags
                  || ((hi->elf_link_hash_flags
                       & ELF_LINK_HASH_REF_DYNAMIC) != 0))
                       & ELF_LINK_HASH_REF_DYNAMIC) != 0))
                *dynsym = true;
                *dynsym = true;
            }
            }
          else
          else
            {
            {
              if ((hi->elf_link_hash_flags
              if ((hi->elf_link_hash_flags
                   & ELF_LINK_HASH_REF_REGULAR) != 0)
                   & ELF_LINK_HASH_REF_REGULAR) != 0)
                *dynsym = true;
                *dynsym = true;
            }
            }
        }
        }
    }
    }
 
 
  /* We also need to define an indirection from the nondefault version
  /* We also need to define an indirection from the nondefault version
     of the symbol.  */
     of the symbol.  */
 
 
  len = strlen (name);
  len = strlen (name);
  shortname = bfd_hash_allocate (&info->hash->table, len);
  shortname = bfd_hash_allocate (&info->hash->table, len);
  if (shortname == NULL)
  if (shortname == NULL)
    return false;
    return false;
  memcpy (shortname, name, shortlen);
  memcpy (shortname, name, shortlen);
  memcpy (shortname + shortlen, p + 1, len - shortlen);
  memcpy (shortname + shortlen, p + 1, len - shortlen);
 
 
  /* Once again, merge with any existing symbol.  */
  /* Once again, merge with any existing symbol.  */
  type_change_ok = false;
  type_change_ok = false;
  size_change_ok = false;
  size_change_ok = false;
  sec = *psec;
  sec = *psec;
  if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
  if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
                          &hi, &override, &type_change_ok,
                          &hi, &override, &type_change_ok,
                          &size_change_ok, dt_needed))
                          &size_change_ok, dt_needed))
    return false;
    return false;
 
 
  if (override)
  if (override)
    {
    {
      /* Here SHORTNAME is a versioned name, so we don't expect to see
      /* Here SHORTNAME is a versioned name, so we don't expect to see
         the type of override we do in the case above unless it is
         the type of override we do in the case above unless it is
         overridden by a versioned definiton.  */
         overridden by a versioned definiton.  */
      if (hi->root.type != bfd_link_hash_defined
      if (hi->root.type != bfd_link_hash_defined
          && hi->root.type != bfd_link_hash_defweak)
          && hi->root.type != bfd_link_hash_defweak)
        (*_bfd_error_handler)
        (*_bfd_error_handler)
          (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
          (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
           bfd_archive_filename (abfd), shortname);
           bfd_archive_filename (abfd), shortname);
    }
    }
  else
  else
    {
    {
      if (! (_bfd_generic_link_add_one_symbol
      if (! (_bfd_generic_link_add_one_symbol
             (info, abfd, shortname, BSF_INDIRECT,
             (info, abfd, shortname, BSF_INDIRECT,
              bfd_ind_section_ptr, (bfd_vma) 0, name, false,
              bfd_ind_section_ptr, (bfd_vma) 0, name, false,
              collect, (struct bfd_link_hash_entry **) &hi)))
              collect, (struct bfd_link_hash_entry **) &hi)))
        return false;
        return false;
 
 
      /* If there is a duplicate definition somewhere, then HI may not
      /* If there is a duplicate definition somewhere, then HI may not
         point to an indirect symbol.  We will have reported an error
         point to an indirect symbol.  We will have reported an error
         to the user in that case.  */
         to the user in that case.  */
 
 
      if (hi->root.type == bfd_link_hash_indirect)
      if (hi->root.type == bfd_link_hash_indirect)
        {
        {
          /* If the symbol became indirect, then we assume that we have
          /* If the symbol became indirect, then we assume that we have
             not seen a definition before.  */
             not seen a definition before.  */
          BFD_ASSERT ((hi->elf_link_hash_flags
          BFD_ASSERT ((hi->elf_link_hash_flags
                       & (ELF_LINK_HASH_DEF_DYNAMIC
                       & (ELF_LINK_HASH_DEF_DYNAMIC
                          | ELF_LINK_HASH_DEF_REGULAR)) == 0);
                          | ELF_LINK_HASH_DEF_REGULAR)) == 0);
 
 
          (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
          (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
 
 
          /* See if the new flags lead us to realize that the symbol
          /* See if the new flags lead us to realize that the symbol
             must be dynamic.  */
             must be dynamic.  */
          if (! *dynsym)
          if (! *dynsym)
            {
            {
              if (! dynamic)
              if (! dynamic)
                {
                {
                  if (info->shared
                  if (info->shared
                      || ((hi->elf_link_hash_flags
                      || ((hi->elf_link_hash_flags
                           & ELF_LINK_HASH_REF_DYNAMIC) != 0))
                           & ELF_LINK_HASH_REF_DYNAMIC) != 0))
                    *dynsym = true;
                    *dynsym = true;
                }
                }
              else
              else
                {
                {
                  if ((hi->elf_link_hash_flags
                  if ((hi->elf_link_hash_flags
                       & ELF_LINK_HASH_REF_REGULAR) != 0)
                       & ELF_LINK_HASH_REF_REGULAR) != 0)
                    *dynsym = true;
                    *dynsym = true;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Add symbols from an ELF object file to the linker hash table.  */
/* Add symbols from an ELF object file to the linker hash table.  */
 
 
static boolean
static boolean
elf_link_add_object_symbols (abfd, info)
elf_link_add_object_symbols (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
  boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
                                      const Elf_Internal_Sym *,
                                      const Elf_Internal_Sym *,
                                      const char **, flagword *,
                                      const char **, flagword *,
                                      asection **, bfd_vma *));
                                      asection **, bfd_vma *));
  boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
  boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
                                   asection *, const Elf_Internal_Rela *));
                                   asection *, const Elf_Internal_Rela *));
  boolean collect;
  boolean collect;
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
  bfd_size_type symcount;
  bfd_size_type symcount;
  bfd_size_type extsymcount;
  bfd_size_type extsymcount;
  bfd_size_type extsymoff;
  bfd_size_type extsymoff;
  struct elf_link_hash_entry **sym_hash;
  struct elf_link_hash_entry **sym_hash;
  boolean dynamic;
  boolean dynamic;
  Elf_External_Versym *extversym = NULL;
  Elf_External_Versym *extversym = NULL;
  Elf_External_Versym *ever;
  Elf_External_Versym *ever;
  struct elf_link_hash_entry *weaks;
  struct elf_link_hash_entry *weaks;
  Elf_Internal_Sym *isymbuf = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isymend;
  Elf_Internal_Sym *isymend;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  boolean dt_needed;
  boolean dt_needed;
  struct elf_link_hash_table * hash_table;
  struct elf_link_hash_table * hash_table;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  hash_table = elf_hash_table (info);
  hash_table = elf_hash_table (info);
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  add_symbol_hook = bed->elf_add_symbol_hook;
  add_symbol_hook = bed->elf_add_symbol_hook;
  collect = bed->collect;
  collect = bed->collect;
 
 
  if ((abfd->flags & DYNAMIC) == 0)
  if ((abfd->flags & DYNAMIC) == 0)
    dynamic = false;
    dynamic = false;
  else
  else
    {
    {
      dynamic = true;
      dynamic = true;
 
 
      /* You can't use -r against a dynamic object.  Also, there's no
      /* You can't use -r against a dynamic object.  Also, there's no
         hope of using a dynamic object which does not exactly match
         hope of using a dynamic object which does not exactly match
         the format of the output file.  */
         the format of the output file.  */
      if (info->relocateable || info->hash->creator != abfd->xvec)
      if (info->relocateable || info->hash->creator != abfd->xvec)
        {
        {
          bfd_set_error (bfd_error_invalid_operation);
          bfd_set_error (bfd_error_invalid_operation);
          goto error_return;
          goto error_return;
        }
        }
    }
    }
 
 
  /* As a GNU extension, any input sections which are named
  /* As a GNU extension, any input sections which are named
     .gnu.warning.SYMBOL are treated as warning symbols for the given
     .gnu.warning.SYMBOL are treated as warning symbols for the given
     symbol.  This differs from .gnu.warning sections, which generate
     symbol.  This differs from .gnu.warning sections, which generate
     warnings when they are included in an output file.  */
     warnings when they are included in an output file.  */
  if (! info->shared)
  if (! info->shared)
    {
    {
      asection *s;
      asection *s;
 
 
      for (s = abfd->sections; s != NULL; s = s->next)
      for (s = abfd->sections; s != NULL; s = s->next)
        {
        {
          const char *name;
          const char *name;
 
 
          name = bfd_get_section_name (abfd, s);
          name = bfd_get_section_name (abfd, s);
          if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
          if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
            {
            {
              char *msg;
              char *msg;
              bfd_size_type sz;
              bfd_size_type sz;
 
 
              name += sizeof ".gnu.warning." - 1;
              name += sizeof ".gnu.warning." - 1;
 
 
              /* If this is a shared object, then look up the symbol
              /* If this is a shared object, then look up the symbol
                 in the hash table.  If it is there, and it is already
                 in the hash table.  If it is there, and it is already
                 been defined, then we will not be using the entry
                 been defined, then we will not be using the entry
                 from this shared object, so we don't need to warn.
                 from this shared object, so we don't need to warn.
                 FIXME: If we see the definition in a regular object
                 FIXME: If we see the definition in a regular object
                 later on, we will warn, but we shouldn't.  The only
                 later on, we will warn, but we shouldn't.  The only
                 fix is to keep track of what warnings we are supposed
                 fix is to keep track of what warnings we are supposed
                 to emit, and then handle them all at the end of the
                 to emit, and then handle them all at the end of the
                 link.  */
                 link.  */
              if (dynamic && abfd->xvec == info->hash->creator)
              if (dynamic && abfd->xvec == info->hash->creator)
                {
                {
                  struct elf_link_hash_entry *h;
                  struct elf_link_hash_entry *h;
 
 
                  h = elf_link_hash_lookup (hash_table, name,
                  h = elf_link_hash_lookup (hash_table, name,
                                            false, false, true);
                                            false, false, true);
 
 
                  /* FIXME: What about bfd_link_hash_common?  */
                  /* FIXME: What about bfd_link_hash_common?  */
                  if (h != NULL
                  if (h != NULL
                      && (h->root.type == bfd_link_hash_defined
                      && (h->root.type == bfd_link_hash_defined
                          || h->root.type == bfd_link_hash_defweak))
                          || h->root.type == bfd_link_hash_defweak))
                    {
                    {
                      /* We don't want to issue this warning.  Clobber
                      /* We don't want to issue this warning.  Clobber
                         the section size so that the warning does not
                         the section size so that the warning does not
                         get copied into the output file.  */
                         get copied into the output file.  */
                      s->_raw_size = 0;
                      s->_raw_size = 0;
                      continue;
                      continue;
                    }
                    }
                }
                }
 
 
              sz = bfd_section_size (abfd, s);
              sz = bfd_section_size (abfd, s);
              msg = (char *) bfd_alloc (abfd, sz + 1);
              msg = (char *) bfd_alloc (abfd, sz + 1);
              if (msg == NULL)
              if (msg == NULL)
                goto error_return;
                goto error_return;
 
 
              if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
              if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
                goto error_return;
                goto error_return;
 
 
              msg[sz] = '\0';
              msg[sz] = '\0';
 
 
              if (! (_bfd_generic_link_add_one_symbol
              if (! (_bfd_generic_link_add_one_symbol
                     (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
                     (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
                      false, collect, (struct bfd_link_hash_entry **) NULL)))
                      false, collect, (struct bfd_link_hash_entry **) NULL)))
                goto error_return;
                goto error_return;
 
 
              if (! info->relocateable)
              if (! info->relocateable)
                {
                {
                  /* Clobber the section size so that the warning does
                  /* Clobber the section size so that the warning does
                     not get copied into the output file.  */
                     not get copied into the output file.  */
                  s->_raw_size = 0;
                  s->_raw_size = 0;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  dt_needed = false;
  dt_needed = false;
  if (! dynamic)
  if (! dynamic)
    {
    {
      /* If we are creating a shared library, create all the dynamic
      /* If we are creating a shared library, create all the dynamic
         sections immediately.  We need to attach them to something,
         sections immediately.  We need to attach them to something,
         so we attach them to this BFD, provided it is the right
         so we attach them to this BFD, provided it is the right
         format.  FIXME: If there are no input BFD's of the same
         format.  FIXME: If there are no input BFD's of the same
         format as the output, we can't make a shared library.  */
         format as the output, we can't make a shared library.  */
      if (info->shared
      if (info->shared
          && is_elf_hash_table (info)
          && is_elf_hash_table (info)
          && ! hash_table->dynamic_sections_created
          && ! hash_table->dynamic_sections_created
          && abfd->xvec == info->hash->creator)
          && abfd->xvec == info->hash->creator)
        {
        {
          if (! elf_link_create_dynamic_sections (abfd, info))
          if (! elf_link_create_dynamic_sections (abfd, info))
            goto error_return;
            goto error_return;
        }
        }
    }
    }
  else if (! is_elf_hash_table (info))
  else if (! is_elf_hash_table (info))
    goto error_return;
    goto error_return;
  else
  else
    {
    {
      asection *s;
      asection *s;
      boolean add_needed;
      boolean add_needed;
      const char *name;
      const char *name;
      bfd_size_type oldsize;
      bfd_size_type oldsize;
      bfd_size_type strindex;
      bfd_size_type strindex;
 
 
      /* Find the name to use in a DT_NEEDED entry that refers to this
      /* Find the name to use in a DT_NEEDED entry that refers to this
         object.  If the object has a DT_SONAME entry, we use it.
         object.  If the object has a DT_SONAME entry, we use it.
         Otherwise, if the generic linker stuck something in
         Otherwise, if the generic linker stuck something in
         elf_dt_name, we use that.  Otherwise, we just use the file
         elf_dt_name, we use that.  Otherwise, we just use the file
         name.  If the generic linker put a null string into
         name.  If the generic linker put a null string into
         elf_dt_name, we don't make a DT_NEEDED entry at all, even if
         elf_dt_name, we don't make a DT_NEEDED entry at all, even if
         there is a DT_SONAME entry.  */
         there is a DT_SONAME entry.  */
      add_needed = true;
      add_needed = true;
      name = bfd_get_filename (abfd);
      name = bfd_get_filename (abfd);
      if (elf_dt_name (abfd) != NULL)
      if (elf_dt_name (abfd) != NULL)
        {
        {
          name = elf_dt_name (abfd);
          name = elf_dt_name (abfd);
          if (*name == '\0')
          if (*name == '\0')
            {
            {
              if (elf_dt_soname (abfd) != NULL)
              if (elf_dt_soname (abfd) != NULL)
                dt_needed = true;
                dt_needed = true;
 
 
              add_needed = false;
              add_needed = false;
            }
            }
        }
        }
      s = bfd_get_section_by_name (abfd, ".dynamic");
      s = bfd_get_section_by_name (abfd, ".dynamic");
      if (s != NULL)
      if (s != NULL)
        {
        {
          Elf_External_Dyn *dynbuf = NULL;
          Elf_External_Dyn *dynbuf = NULL;
          Elf_External_Dyn *extdyn;
          Elf_External_Dyn *extdyn;
          Elf_External_Dyn *extdynend;
          Elf_External_Dyn *extdynend;
          int elfsec;
          int elfsec;
          unsigned long shlink;
          unsigned long shlink;
          int rpath;
          int rpath;
          int runpath;
          int runpath;
 
 
          dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
          dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
          if (dynbuf == NULL)
          if (dynbuf == NULL)
            goto error_return;
            goto error_return;
 
 
          if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
          if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
                                          (file_ptr) 0, s->_raw_size))
                                          (file_ptr) 0, s->_raw_size))
            goto error_free_dyn;
            goto error_free_dyn;
 
 
          elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
          elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
          if (elfsec == -1)
          if (elfsec == -1)
            goto error_free_dyn;
            goto error_free_dyn;
          shlink = elf_elfsections (abfd)[elfsec]->sh_link;
          shlink = elf_elfsections (abfd)[elfsec]->sh_link;
 
 
          extdyn = dynbuf;
          extdyn = dynbuf;
          extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
          extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
          rpath = 0;
          rpath = 0;
          runpath = 0;
          runpath = 0;
          for (; extdyn < extdynend; extdyn++)
          for (; extdyn < extdynend; extdyn++)
            {
            {
              Elf_Internal_Dyn dyn;
              Elf_Internal_Dyn dyn;
 
 
              elf_swap_dyn_in (abfd, extdyn, &dyn);
              elf_swap_dyn_in (abfd, extdyn, &dyn);
              if (dyn.d_tag == DT_SONAME)
              if (dyn.d_tag == DT_SONAME)
                {
                {
                  unsigned int tagv = dyn.d_un.d_val;
                  unsigned int tagv = dyn.d_un.d_val;
                  name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  if (name == NULL)
                  if (name == NULL)
                    goto error_free_dyn;
                    goto error_free_dyn;
                }
                }
              if (dyn.d_tag == DT_NEEDED)
              if (dyn.d_tag == DT_NEEDED)
                {
                {
                  struct bfd_link_needed_list *n, **pn;
                  struct bfd_link_needed_list *n, **pn;
                  char *fnm, *anm;
                  char *fnm, *anm;
                  unsigned int tagv = dyn.d_un.d_val;
                  unsigned int tagv = dyn.d_un.d_val;
 
 
                  amt = sizeof (struct bfd_link_needed_list);
                  amt = sizeof (struct bfd_link_needed_list);
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  if (n == NULL || fnm == NULL)
                  if (n == NULL || fnm == NULL)
                    goto error_free_dyn;
                    goto error_free_dyn;
                  amt = strlen (fnm) + 1;
                  amt = strlen (fnm) + 1;
                  anm = bfd_alloc (abfd, amt);
                  anm = bfd_alloc (abfd, amt);
                  if (anm == NULL)
                  if (anm == NULL)
                    goto error_free_dyn;
                    goto error_free_dyn;
                  memcpy (anm, fnm, (size_t) amt);
                  memcpy (anm, fnm, (size_t) amt);
                  n->name = anm;
                  n->name = anm;
                  n->by = abfd;
                  n->by = abfd;
                  n->next = NULL;
                  n->next = NULL;
                  for (pn = & hash_table->needed;
                  for (pn = & hash_table->needed;
                       *pn != NULL;
                       *pn != NULL;
                       pn = &(*pn)->next)
                       pn = &(*pn)->next)
                    ;
                    ;
                  *pn = n;
                  *pn = n;
                }
                }
              if (dyn.d_tag == DT_RUNPATH)
              if (dyn.d_tag == DT_RUNPATH)
                {
                {
                  struct bfd_link_needed_list *n, **pn;
                  struct bfd_link_needed_list *n, **pn;
                  char *fnm, *anm;
                  char *fnm, *anm;
                  unsigned int tagv = dyn.d_un.d_val;
                  unsigned int tagv = dyn.d_un.d_val;
 
 
                  /* When we see DT_RPATH before DT_RUNPATH, we have
                  /* When we see DT_RPATH before DT_RUNPATH, we have
                     to clear runpath.  Do _NOT_ bfd_release, as that
                     to clear runpath.  Do _NOT_ bfd_release, as that
                     frees all more recently bfd_alloc'd blocks as
                     frees all more recently bfd_alloc'd blocks as
                     well.  */
                     well.  */
                  if (rpath && hash_table->runpath)
                  if (rpath && hash_table->runpath)
                    hash_table->runpath = NULL;
                    hash_table->runpath = NULL;
 
 
                  amt = sizeof (struct bfd_link_needed_list);
                  amt = sizeof (struct bfd_link_needed_list);
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  if (n == NULL || fnm == NULL)
                  if (n == NULL || fnm == NULL)
                    goto error_free_dyn;
                    goto error_free_dyn;
                  amt = strlen (fnm) + 1;
                  amt = strlen (fnm) + 1;
                  anm = bfd_alloc (abfd, amt);
                  anm = bfd_alloc (abfd, amt);
                  if (anm == NULL)
                  if (anm == NULL)
                    goto error_free_dyn;
                    goto error_free_dyn;
                  memcpy (anm, fnm, (size_t) amt);
                  memcpy (anm, fnm, (size_t) amt);
                  n->name = anm;
                  n->name = anm;
                  n->by = abfd;
                  n->by = abfd;
                  n->next = NULL;
                  n->next = NULL;
                  for (pn = & hash_table->runpath;
                  for (pn = & hash_table->runpath;
                       *pn != NULL;
                       *pn != NULL;
                       pn = &(*pn)->next)
                       pn = &(*pn)->next)
                    ;
                    ;
                  *pn = n;
                  *pn = n;
                  runpath = 1;
                  runpath = 1;
                  rpath = 0;
                  rpath = 0;
                }
                }
              /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
              /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
              if (!runpath && dyn.d_tag == DT_RPATH)
              if (!runpath && dyn.d_tag == DT_RPATH)
                {
                {
                  struct bfd_link_needed_list *n, **pn;
                  struct bfd_link_needed_list *n, **pn;
                  char *fnm, *anm;
                  char *fnm, *anm;
                  unsigned int tagv = dyn.d_un.d_val;
                  unsigned int tagv = dyn.d_un.d_val;
 
 
                  amt = sizeof (struct bfd_link_needed_list);
                  amt = sizeof (struct bfd_link_needed_list);
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
                  if (n == NULL || fnm == NULL)
                  if (n == NULL || fnm == NULL)
                    goto error_free_dyn;
                    goto error_free_dyn;
                  amt = strlen (fnm) + 1;
                  amt = strlen (fnm) + 1;
                  anm = bfd_alloc (abfd, amt);
                  anm = bfd_alloc (abfd, amt);
                  if (anm == NULL)
                  if (anm == NULL)
                    {
                    {
                    error_free_dyn:
                    error_free_dyn:
                      free (dynbuf);
                      free (dynbuf);
                      goto error_return;
                      goto error_return;
                    }
                    }
                  memcpy (anm, fnm, (size_t) amt);
                  memcpy (anm, fnm, (size_t) amt);
                  n->name = anm;
                  n->name = anm;
                  n->by = abfd;
                  n->by = abfd;
                  n->next = NULL;
                  n->next = NULL;
                  for (pn = & hash_table->runpath;
                  for (pn = & hash_table->runpath;
                       *pn != NULL;
                       *pn != NULL;
                       pn = &(*pn)->next)
                       pn = &(*pn)->next)
                    ;
                    ;
                  *pn = n;
                  *pn = n;
                  rpath = 1;
                  rpath = 1;
                }
                }
            }
            }
 
 
          free (dynbuf);
          free (dynbuf);
        }
        }
 
 
      /* We do not want to include any of the sections in a dynamic
      /* We do not want to include any of the sections in a dynamic
         object in the output file.  We hack by simply clobbering the
         object in the output file.  We hack by simply clobbering the
         list of sections in the BFD.  This could be handled more
         list of sections in the BFD.  This could be handled more
         cleanly by, say, a new section flag; the existing
         cleanly by, say, a new section flag; the existing
         SEC_NEVER_LOAD flag is not the one we want, because that one
         SEC_NEVER_LOAD flag is not the one we want, because that one
         still implies that the section takes up space in the output
         still implies that the section takes up space in the output
         file.  */
         file.  */
      bfd_section_list_clear (abfd);
      bfd_section_list_clear (abfd);
 
 
      /* If this is the first dynamic object found in the link, create
      /* If this is the first dynamic object found in the link, create
         the special sections required for dynamic linking.  */
         the special sections required for dynamic linking.  */
      if (! hash_table->dynamic_sections_created)
      if (! hash_table->dynamic_sections_created)
        if (! elf_link_create_dynamic_sections (abfd, info))
        if (! elf_link_create_dynamic_sections (abfd, info))
          goto error_return;
          goto error_return;
 
 
      if (add_needed)
      if (add_needed)
        {
        {
          /* Add a DT_NEEDED entry for this dynamic object.  */
          /* Add a DT_NEEDED entry for this dynamic object.  */
          oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
          oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
          strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
          strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
          if (strindex == (bfd_size_type) -1)
          if (strindex == (bfd_size_type) -1)
            goto error_return;
            goto error_return;
 
 
          if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
          if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
            {
            {
              asection *sdyn;
              asection *sdyn;
              Elf_External_Dyn *dyncon, *dynconend;
              Elf_External_Dyn *dyncon, *dynconend;
 
 
              /* The hash table size did not change, which means that
              /* The hash table size did not change, which means that
                 the dynamic object name was already entered.  If we
                 the dynamic object name was already entered.  If we
                 have already included this dynamic object in the
                 have already included this dynamic object in the
                 link, just ignore it.  There is no reason to include
                 link, just ignore it.  There is no reason to include
                 a particular dynamic object more than once.  */
                 a particular dynamic object more than once.  */
              sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
              sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
              BFD_ASSERT (sdyn != NULL);
              BFD_ASSERT (sdyn != NULL);
 
 
              dyncon = (Elf_External_Dyn *) sdyn->contents;
              dyncon = (Elf_External_Dyn *) sdyn->contents;
              dynconend = (Elf_External_Dyn *) (sdyn->contents +
              dynconend = (Elf_External_Dyn *) (sdyn->contents +
                                                sdyn->_raw_size);
                                                sdyn->_raw_size);
              for (; dyncon < dynconend; dyncon++)
              for (; dyncon < dynconend; dyncon++)
                {
                {
                  Elf_Internal_Dyn dyn;
                  Elf_Internal_Dyn dyn;
 
 
                  elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
                  elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
                  if (dyn.d_tag == DT_NEEDED
                  if (dyn.d_tag == DT_NEEDED
                      && dyn.d_un.d_val == strindex)
                      && dyn.d_un.d_val == strindex)
                    {
                    {
                      _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
                      _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
                      return true;
                      return true;
                    }
                    }
                }
                }
            }
            }
 
 
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
            goto error_return;
            goto error_return;
        }
        }
 
 
      /* Save the SONAME, if there is one, because sometimes the
      /* Save the SONAME, if there is one, because sometimes the
         linker emulation code will need to know it.  */
         linker emulation code will need to know it.  */
      if (*name == '\0')
      if (*name == '\0')
        name = basename (bfd_get_filename (abfd));
        name = basename (bfd_get_filename (abfd));
      elf_dt_name (abfd) = name;
      elf_dt_name (abfd) = name;
    }
    }
 
 
  /* If this is a dynamic object, we always link against the .dynsym
  /* If this is a dynamic object, we always link against the .dynsym
     symbol table, not the .symtab symbol table.  The dynamic linker
     symbol table, not the .symtab symbol table.  The dynamic linker
     will only see the .dynsym symbol table, so there is no reason to
     will only see the .dynsym symbol table, so there is no reason to
     look at .symtab for a dynamic object.  */
     look at .symtab for a dynamic object.  */
 
 
  if (! dynamic || elf_dynsymtab (abfd) == 0)
  if (! dynamic || elf_dynsymtab (abfd) == 0)
    hdr = &elf_tdata (abfd)->symtab_hdr;
    hdr = &elf_tdata (abfd)->symtab_hdr;
  else
  else
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
 
 
  symcount = hdr->sh_size / sizeof (Elf_External_Sym);
  symcount = hdr->sh_size / sizeof (Elf_External_Sym);
 
 
  /* The sh_info field of the symtab header tells us where the
  /* The sh_info field of the symtab header tells us where the
     external symbols start.  We don't care about the local symbols at
     external symbols start.  We don't care about the local symbols at
     this point.  */
     this point.  */
  if (elf_bad_symtab (abfd))
  if (elf_bad_symtab (abfd))
    {
    {
      extsymcount = symcount;
      extsymcount = symcount;
      extsymoff = 0;
      extsymoff = 0;
    }
    }
  else
  else
    {
    {
      extsymcount = symcount - hdr->sh_info;
      extsymcount = symcount - hdr->sh_info;
      extsymoff = hdr->sh_info;
      extsymoff = hdr->sh_info;
    }
    }
 
 
  sym_hash = NULL;
  sym_hash = NULL;
  if (extsymcount != 0)
  if (extsymcount != 0)
    {
    {
      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
                                      NULL, NULL, NULL);
                                      NULL, NULL, NULL);
      if (isymbuf == NULL)
      if (isymbuf == NULL)
        goto error_return;
        goto error_return;
 
 
      /* We store a pointer to the hash table entry for each external
      /* We store a pointer to the hash table entry for each external
         symbol.  */
         symbol.  */
      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
      sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
      sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
      if (sym_hash == NULL)
      if (sym_hash == NULL)
        goto error_free_sym;
        goto error_free_sym;
      elf_sym_hashes (abfd) = sym_hash;
      elf_sym_hashes (abfd) = sym_hash;
    }
    }
 
 
  if (dynamic)
  if (dynamic)
    {
    {
      /* Read in any version definitions.  */
      /* Read in any version definitions.  */
      if (! _bfd_elf_slurp_version_tables (abfd))
      if (! _bfd_elf_slurp_version_tables (abfd))
        goto error_free_sym;
        goto error_free_sym;
 
 
      /* Read in the symbol versions, but don't bother to convert them
      /* Read in the symbol versions, but don't bother to convert them
         to internal format.  */
         to internal format.  */
      if (elf_dynversym (abfd) != 0)
      if (elf_dynversym (abfd) != 0)
        {
        {
          Elf_Internal_Shdr *versymhdr;
          Elf_Internal_Shdr *versymhdr;
 
 
          versymhdr = &elf_tdata (abfd)->dynversym_hdr;
          versymhdr = &elf_tdata (abfd)->dynversym_hdr;
          extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
          extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
          if (extversym == NULL)
          if (extversym == NULL)
            goto error_free_sym;
            goto error_free_sym;
          amt = versymhdr->sh_size;
          amt = versymhdr->sh_size;
          if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
          if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
              || bfd_bread ((PTR) extversym, amt, abfd) != amt)
              || bfd_bread ((PTR) extversym, amt, abfd) != amt)
            goto error_free_vers;
            goto error_free_vers;
        }
        }
    }
    }
 
 
  weaks = NULL;
  weaks = NULL;
 
 
  ever = extversym != NULL ? extversym + extsymoff : NULL;
  ever = extversym != NULL ? extversym + extsymoff : NULL;
  for (isym = isymbuf, isymend = isymbuf + extsymcount;
  for (isym = isymbuf, isymend = isymbuf + extsymcount;
       isym < isymend;
       isym < isymend;
       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
    {
    {
      int bind;
      int bind;
      bfd_vma value;
      bfd_vma value;
      asection *sec;
      asection *sec;
      flagword flags;
      flagword flags;
      const char *name;
      const char *name;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      boolean definition;
      boolean definition;
      boolean size_change_ok, type_change_ok;
      boolean size_change_ok, type_change_ok;
      boolean new_weakdef;
      boolean new_weakdef;
      unsigned int old_alignment;
      unsigned int old_alignment;
      boolean override;
      boolean override;
 
 
      override = false;
      override = false;
 
 
      flags = BSF_NO_FLAGS;
      flags = BSF_NO_FLAGS;
      sec = NULL;
      sec = NULL;
      value = isym->st_value;
      value = isym->st_value;
      *sym_hash = NULL;
      *sym_hash = NULL;
 
 
      bind = ELF_ST_BIND (isym->st_info);
      bind = ELF_ST_BIND (isym->st_info);
      if (bind == STB_LOCAL)
      if (bind == STB_LOCAL)
        {
        {
          /* This should be impossible, since ELF requires that all
          /* This should be impossible, since ELF requires that all
             global symbols follow all local symbols, and that sh_info
             global symbols follow all local symbols, and that sh_info
             point to the first global symbol.  Unfortunatealy, Irix 5
             point to the first global symbol.  Unfortunatealy, Irix 5
             screws this up.  */
             screws this up.  */
          continue;
          continue;
        }
        }
      else if (bind == STB_GLOBAL)
      else if (bind == STB_GLOBAL)
        {
        {
          if (isym->st_shndx != SHN_UNDEF
          if (isym->st_shndx != SHN_UNDEF
              && isym->st_shndx != SHN_COMMON)
              && isym->st_shndx != SHN_COMMON)
            flags = BSF_GLOBAL;
            flags = BSF_GLOBAL;
        }
        }
      else if (bind == STB_WEAK)
      else if (bind == STB_WEAK)
        flags = BSF_WEAK;
        flags = BSF_WEAK;
      else
      else
        {
        {
          /* Leave it up to the processor backend.  */
          /* Leave it up to the processor backend.  */
        }
        }
 
 
      if (isym->st_shndx == SHN_UNDEF)
      if (isym->st_shndx == SHN_UNDEF)
        sec = bfd_und_section_ptr;
        sec = bfd_und_section_ptr;
      else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
      else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
        {
        {
          sec = section_from_elf_index (abfd, isym->st_shndx);
          sec = section_from_elf_index (abfd, isym->st_shndx);
          if (sec == NULL)
          if (sec == NULL)
            sec = bfd_abs_section_ptr;
            sec = bfd_abs_section_ptr;
          else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
          else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
            value -= sec->vma;
            value -= sec->vma;
        }
        }
      else if (isym->st_shndx == SHN_ABS)
      else if (isym->st_shndx == SHN_ABS)
        sec = bfd_abs_section_ptr;
        sec = bfd_abs_section_ptr;
      else if (isym->st_shndx == SHN_COMMON)
      else if (isym->st_shndx == SHN_COMMON)
        {
        {
          sec = bfd_com_section_ptr;
          sec = bfd_com_section_ptr;
          /* What ELF calls the size we call the value.  What ELF
          /* What ELF calls the size we call the value.  What ELF
             calls the value we call the alignment.  */
             calls the value we call the alignment.  */
          value = isym->st_size;
          value = isym->st_size;
        }
        }
      else
      else
        {
        {
          /* Leave it up to the processor backend.  */
          /* Leave it up to the processor backend.  */
        }
        }
 
 
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
                                              isym->st_name);
                                              isym->st_name);
      if (name == (const char *) NULL)
      if (name == (const char *) NULL)
        goto error_free_vers;
        goto error_free_vers;
 
 
      if (isym->st_shndx == SHN_COMMON
      if (isym->st_shndx == SHN_COMMON
          && ELF_ST_TYPE (isym->st_info) == STT_TLS)
          && ELF_ST_TYPE (isym->st_info) == STT_TLS)
        {
        {
          asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
          asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
 
 
          if (tcomm == NULL)
          if (tcomm == NULL)
            {
            {
              tcomm = bfd_make_section (abfd, ".tcommon");
              tcomm = bfd_make_section (abfd, ".tcommon");
              if (tcomm == NULL
              if (tcomm == NULL
                  || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
                  || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
                                                           | SEC_IS_COMMON
                                                           | SEC_IS_COMMON
                                                           | SEC_LINKER_CREATED
                                                           | SEC_LINKER_CREATED
                                                           | SEC_THREAD_LOCAL)))
                                                           | SEC_THREAD_LOCAL)))
                goto error_free_vers;
                goto error_free_vers;
            }
            }
          sec = tcomm;
          sec = tcomm;
        }
        }
      else if (add_symbol_hook)
      else if (add_symbol_hook)
        {
        {
          if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
          if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
                                    &value))
                                    &value))
            goto error_free_vers;
            goto error_free_vers;
 
 
          /* The hook function sets the name to NULL if this symbol
          /* The hook function sets the name to NULL if this symbol
             should be skipped for some reason.  */
             should be skipped for some reason.  */
          if (name == (const char *) NULL)
          if (name == (const char *) NULL)
            continue;
            continue;
        }
        }
 
 
      /* Sanity check that all possibilities were handled.  */
      /* Sanity check that all possibilities were handled.  */
      if (sec == (asection *) NULL)
      if (sec == (asection *) NULL)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          goto error_free_vers;
          goto error_free_vers;
        }
        }
 
 
      if (bfd_is_und_section (sec)
      if (bfd_is_und_section (sec)
          || bfd_is_com_section (sec))
          || bfd_is_com_section (sec))
        definition = false;
        definition = false;
      else
      else
        definition = true;
        definition = true;
 
 
      size_change_ok = false;
      size_change_ok = false;
      type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
      type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
      old_alignment = 0;
      old_alignment = 0;
      if (info->hash->creator->flavour == bfd_target_elf_flavour)
      if (info->hash->creator->flavour == bfd_target_elf_flavour)
        {
        {
          Elf_Internal_Versym iver;
          Elf_Internal_Versym iver;
          unsigned int vernum = 0;
          unsigned int vernum = 0;
 
 
          if (ever != NULL)
          if (ever != NULL)
            {
            {
              _bfd_elf_swap_versym_in (abfd, ever, &iver);
              _bfd_elf_swap_versym_in (abfd, ever, &iver);
              vernum = iver.vs_vers & VERSYM_VERSION;
              vernum = iver.vs_vers & VERSYM_VERSION;
 
 
              /* If this is a hidden symbol, or if it is not version
              /* If this is a hidden symbol, or if it is not version
                 1, we append the version name to the symbol name.
                 1, we append the version name to the symbol name.
                 However, we do not modify a non-hidden absolute
                 However, we do not modify a non-hidden absolute
                 symbol, because it might be the version symbol
                 symbol, because it might be the version symbol
                 itself.  FIXME: What if it isn't?  */
                 itself.  FIXME: What if it isn't?  */
              if ((iver.vs_vers & VERSYM_HIDDEN) != 0
              if ((iver.vs_vers & VERSYM_HIDDEN) != 0
                  || (vernum > 1 && ! bfd_is_abs_section (sec)))
                  || (vernum > 1 && ! bfd_is_abs_section (sec)))
                {
                {
                  const char *verstr;
                  const char *verstr;
                  size_t namelen, verlen, newlen;
                  size_t namelen, verlen, newlen;
                  char *newname, *p;
                  char *newname, *p;
 
 
                  if (isym->st_shndx != SHN_UNDEF)
                  if (isym->st_shndx != SHN_UNDEF)
                    {
                    {
                      if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
                      if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
                        {
                        {
                          (*_bfd_error_handler)
                          (*_bfd_error_handler)
                            (_("%s: %s: invalid version %u (max %d)"),
                            (_("%s: %s: invalid version %u (max %d)"),
                             bfd_archive_filename (abfd), name, vernum,
                             bfd_archive_filename (abfd), name, vernum,
                             elf_tdata (abfd)->dynverdef_hdr.sh_info);
                             elf_tdata (abfd)->dynverdef_hdr.sh_info);
                          bfd_set_error (bfd_error_bad_value);
                          bfd_set_error (bfd_error_bad_value);
                          goto error_free_vers;
                          goto error_free_vers;
                        }
                        }
                      else if (vernum > 1)
                      else if (vernum > 1)
                        verstr =
                        verstr =
                          elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
                          elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
                      else
                      else
                        verstr = "";
                        verstr = "";
                    }
                    }
                  else
                  else
                    {
                    {
                      /* We cannot simply test for the number of
                      /* We cannot simply test for the number of
                         entries in the VERNEED section since the
                         entries in the VERNEED section since the
                         numbers for the needed versions do not start
                         numbers for the needed versions do not start
                         at 0.  */
                         at 0.  */
                      Elf_Internal_Verneed *t;
                      Elf_Internal_Verneed *t;
 
 
                      verstr = NULL;
                      verstr = NULL;
                      for (t = elf_tdata (abfd)->verref;
                      for (t = elf_tdata (abfd)->verref;
                           t != NULL;
                           t != NULL;
                           t = t->vn_nextref)
                           t = t->vn_nextref)
                        {
                        {
                          Elf_Internal_Vernaux *a;
                          Elf_Internal_Vernaux *a;
 
 
                          for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                          for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                            {
                            {
                              if (a->vna_other == vernum)
                              if (a->vna_other == vernum)
                                {
                                {
                                  verstr = a->vna_nodename;
                                  verstr = a->vna_nodename;
                                  break;
                                  break;
                                }
                                }
                            }
                            }
                          if (a != NULL)
                          if (a != NULL)
                            break;
                            break;
                        }
                        }
                      if (verstr == NULL)
                      if (verstr == NULL)
                        {
                        {
                          (*_bfd_error_handler)
                          (*_bfd_error_handler)
                            (_("%s: %s: invalid needed version %d"),
                            (_("%s: %s: invalid needed version %d"),
                             bfd_archive_filename (abfd), name, vernum);
                             bfd_archive_filename (abfd), name, vernum);
                          bfd_set_error (bfd_error_bad_value);
                          bfd_set_error (bfd_error_bad_value);
                          goto error_free_vers;
                          goto error_free_vers;
                        }
                        }
                    }
                    }
 
 
                  namelen = strlen (name);
                  namelen = strlen (name);
                  verlen = strlen (verstr);
                  verlen = strlen (verstr);
                  newlen = namelen + verlen + 2;
                  newlen = namelen + verlen + 2;
                  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
                  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
                      && isym->st_shndx != SHN_UNDEF)
                      && isym->st_shndx != SHN_UNDEF)
                    ++newlen;
                    ++newlen;
 
 
                  newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
                  newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
                  if (newname == NULL)
                  if (newname == NULL)
                    goto error_free_vers;
                    goto error_free_vers;
                  memcpy (newname, name, namelen);
                  memcpy (newname, name, namelen);
                  p = newname + namelen;
                  p = newname + namelen;
                  *p++ = ELF_VER_CHR;
                  *p++ = ELF_VER_CHR;
                  /* If this is a defined non-hidden version symbol,
                  /* If this is a defined non-hidden version symbol,
                     we add another @ to the name.  This indicates the
                     we add another @ to the name.  This indicates the
                     default version of the symbol.  */
                     default version of the symbol.  */
                  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
                  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
                      && isym->st_shndx != SHN_UNDEF)
                      && isym->st_shndx != SHN_UNDEF)
                    *p++ = ELF_VER_CHR;
                    *p++ = ELF_VER_CHR;
                  memcpy (p, verstr, verlen + 1);
                  memcpy (p, verstr, verlen + 1);
 
 
                  name = newname;
                  name = newname;
                }
                }
            }
            }
 
 
          if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
          if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
                                  sym_hash, &override, &type_change_ok,
                                  sym_hash, &override, &type_change_ok,
                                  &size_change_ok, dt_needed))
                                  &size_change_ok, dt_needed))
            goto error_free_vers;
            goto error_free_vers;
 
 
          if (override)
          if (override)
            definition = false;
            definition = false;
 
 
          h = *sym_hash;
          h = *sym_hash;
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
          /* Remember the old alignment if this is a common symbol, so
          /* Remember the old alignment if this is a common symbol, so
             that we don't reduce the alignment later on.  We can't
             that we don't reduce the alignment later on.  We can't
             check later, because _bfd_generic_link_add_one_symbol
             check later, because _bfd_generic_link_add_one_symbol
             will set a default for the alignment which we want to
             will set a default for the alignment which we want to
             override.  */
             override.  */
          if (h->root.type == bfd_link_hash_common)
          if (h->root.type == bfd_link_hash_common)
            old_alignment = h->root.u.c.p->alignment_power;
            old_alignment = h->root.u.c.p->alignment_power;
 
 
          if (elf_tdata (abfd)->verdef != NULL
          if (elf_tdata (abfd)->verdef != NULL
              && ! override
              && ! override
              && vernum > 1
              && vernum > 1
              && definition)
              && definition)
            h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
            h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
        }
        }
 
 
      if (! (_bfd_generic_link_add_one_symbol
      if (! (_bfd_generic_link_add_one_symbol
             (info, abfd, name, flags, sec, value, (const char *) NULL,
             (info, abfd, name, flags, sec, value, (const char *) NULL,
              false, collect, (struct bfd_link_hash_entry **) sym_hash)))
              false, collect, (struct bfd_link_hash_entry **) sym_hash)))
        goto error_free_vers;
        goto error_free_vers;
 
 
      h = *sym_hash;
      h = *sym_hash;
      while (h->root.type == bfd_link_hash_indirect
      while (h->root.type == bfd_link_hash_indirect
             || h->root.type == bfd_link_hash_warning)
             || h->root.type == bfd_link_hash_warning)
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
      *sym_hash = h;
      *sym_hash = h;
 
 
      new_weakdef = false;
      new_weakdef = false;
      if (dynamic
      if (dynamic
          && definition
          && definition
          && (flags & BSF_WEAK) != 0
          && (flags & BSF_WEAK) != 0
          && ELF_ST_TYPE (isym->st_info) != STT_FUNC
          && ELF_ST_TYPE (isym->st_info) != STT_FUNC
          && info->hash->creator->flavour == bfd_target_elf_flavour
          && info->hash->creator->flavour == bfd_target_elf_flavour
          && h->weakdef == NULL)
          && h->weakdef == NULL)
        {
        {
          /* Keep a list of all weak defined non function symbols from
          /* Keep a list of all weak defined non function symbols from
             a dynamic object, using the weakdef field.  Later in this
             a dynamic object, using the weakdef field.  Later in this
             function we will set the weakdef field to the correct
             function we will set the weakdef field to the correct
             value.  We only put non-function symbols from dynamic
             value.  We only put non-function symbols from dynamic
             objects on this list, because that happens to be the only
             objects on this list, because that happens to be the only
             time we need to know the normal symbol corresponding to a
             time we need to know the normal symbol corresponding to a
             weak symbol, and the information is time consuming to
             weak symbol, and the information is time consuming to
             figure out.  If the weakdef field is not already NULL,
             figure out.  If the weakdef field is not already NULL,
             then this symbol was already defined by some previous
             then this symbol was already defined by some previous
             dynamic object, and we will be using that previous
             dynamic object, and we will be using that previous
             definition anyhow.  */
             definition anyhow.  */
 
 
          h->weakdef = weaks;
          h->weakdef = weaks;
          weaks = h;
          weaks = h;
          new_weakdef = true;
          new_weakdef = true;
        }
        }
 
 
      /* Set the alignment of a common symbol.  */
      /* Set the alignment of a common symbol.  */
      if (isym->st_shndx == SHN_COMMON
      if (isym->st_shndx == SHN_COMMON
          && h->root.type == bfd_link_hash_common)
          && h->root.type == bfd_link_hash_common)
        {
        {
          unsigned int align;
          unsigned int align;
 
 
          align = bfd_log2 (isym->st_value);
          align = bfd_log2 (isym->st_value);
          if (align > old_alignment
          if (align > old_alignment
              /* Permit an alignment power of zero if an alignment of one
              /* Permit an alignment power of zero if an alignment of one
                 is specified and no other alignments have been specified.  */
                 is specified and no other alignments have been specified.  */
              || (isym->st_value == 1 && old_alignment == 0))
              || (isym->st_value == 1 && old_alignment == 0))
            h->root.u.c.p->alignment_power = align;
            h->root.u.c.p->alignment_power = align;
        }
        }
 
 
      if (info->hash->creator->flavour == bfd_target_elf_flavour)
      if (info->hash->creator->flavour == bfd_target_elf_flavour)
        {
        {
          int old_flags;
          int old_flags;
          boolean dynsym;
          boolean dynsym;
          int new_flag;
          int new_flag;
 
 
          /* Remember the symbol size and type.  */
          /* Remember the symbol size and type.  */
          if (isym->st_size != 0
          if (isym->st_size != 0
              && (definition || h->size == 0))
              && (definition || h->size == 0))
            {
            {
              if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
              if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
                  (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
                   name, (unsigned long) h->size,
                   name, (unsigned long) h->size,
                   (unsigned long) isym->st_size, bfd_archive_filename (abfd));
                   (unsigned long) isym->st_size, bfd_archive_filename (abfd));
 
 
              h->size = isym->st_size;
              h->size = isym->st_size;
            }
            }
 
 
          /* If this is a common symbol, then we always want H->SIZE
          /* If this is a common symbol, then we always want H->SIZE
             to be the size of the common symbol.  The code just above
             to be the size of the common symbol.  The code just above
             won't fix the size if a common symbol becomes larger.  We
             won't fix the size if a common symbol becomes larger.  We
             don't warn about a size change here, because that is
             don't warn about a size change here, because that is
             covered by --warn-common.  */
             covered by --warn-common.  */
          if (h->root.type == bfd_link_hash_common)
          if (h->root.type == bfd_link_hash_common)
            h->size = h->root.u.c.size;
            h->size = h->root.u.c.size;
 
 
          if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
          if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
              && (definition || h->type == STT_NOTYPE))
              && (definition || h->type == STT_NOTYPE))
            {
            {
              if (h->type != STT_NOTYPE
              if (h->type != STT_NOTYPE
                  && h->type != ELF_ST_TYPE (isym->st_info)
                  && h->type != ELF_ST_TYPE (isym->st_info)
                  && ! type_change_ok)
                  && ! type_change_ok)
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
                  (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
                   name, h->type, ELF_ST_TYPE (isym->st_info),
                   name, h->type, ELF_ST_TYPE (isym->st_info),
                   bfd_archive_filename (abfd));
                   bfd_archive_filename (abfd));
 
 
              h->type = ELF_ST_TYPE (isym->st_info);
              h->type = ELF_ST_TYPE (isym->st_info);
            }
            }
 
 
          /* If st_other has a processor-specific meaning, specific code
          /* If st_other has a processor-specific meaning, specific code
             might be needed here.  */
             might be needed here.  */
          if (isym->st_other != 0)
          if (isym->st_other != 0)
            {
            {
              /* Combine visibilities, using the most constraining one.  */
              /* Combine visibilities, using the most constraining one.  */
              unsigned char hvis   = ELF_ST_VISIBILITY (h->other);
              unsigned char hvis   = ELF_ST_VISIBILITY (h->other);
              unsigned char symvis = ELF_ST_VISIBILITY (isym->st_other);
              unsigned char symvis = ELF_ST_VISIBILITY (isym->st_other);
 
 
              if (symvis && (hvis > symvis || hvis == 0))
              if (symvis && (hvis > symvis || hvis == 0))
                h->other = isym->st_other;
                h->other = isym->st_other;
 
 
              /* If neither has visibility, use the st_other of the
              /* If neither has visibility, use the st_other of the
                 definition.  This is an arbitrary choice, since the
                 definition.  This is an arbitrary choice, since the
                 other bits have no general meaning.  */
                 other bits have no general meaning.  */
              if (!symvis && !hvis
              if (!symvis && !hvis
                  && (definition || h->other == 0))
                  && (definition || h->other == 0))
                h->other = isym->st_other;
                h->other = isym->st_other;
            }
            }
 
 
          /* Set a flag in the hash table entry indicating the type of
          /* Set a flag in the hash table entry indicating the type of
             reference or definition we just found.  Keep a count of
             reference or definition we just found.  Keep a count of
             the number of dynamic symbols we find.  A dynamic symbol
             the number of dynamic symbols we find.  A dynamic symbol
             is one which is referenced or defined by both a regular
             is one which is referenced or defined by both a regular
             object and a shared object.  */
             object and a shared object.  */
          old_flags = h->elf_link_hash_flags;
          old_flags = h->elf_link_hash_flags;
          dynsym = false;
          dynsym = false;
          if (! dynamic)
          if (! dynamic)
            {
            {
              if (! definition)
              if (! definition)
                {
                {
                  new_flag = ELF_LINK_HASH_REF_REGULAR;
                  new_flag = ELF_LINK_HASH_REF_REGULAR;
                  if (bind != STB_WEAK)
                  if (bind != STB_WEAK)
                    new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
                    new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
                }
                }
              else
              else
                new_flag = ELF_LINK_HASH_DEF_REGULAR;
                new_flag = ELF_LINK_HASH_DEF_REGULAR;
              if (info->shared
              if (info->shared
                  || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
                  || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
                                   | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
                                   | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
                dynsym = true;
                dynsym = true;
            }
            }
          else
          else
            {
            {
              if (! definition)
              if (! definition)
                new_flag = ELF_LINK_HASH_REF_DYNAMIC;
                new_flag = ELF_LINK_HASH_REF_DYNAMIC;
              else
              else
                new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
                new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
              if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
              if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
                                | ELF_LINK_HASH_REF_REGULAR)) != 0
                                | ELF_LINK_HASH_REF_REGULAR)) != 0
                  || (h->weakdef != NULL
                  || (h->weakdef != NULL
                      && ! new_weakdef
                      && ! new_weakdef
                      && h->weakdef->dynindx != -1))
                      && h->weakdef->dynindx != -1))
                dynsym = true;
                dynsym = true;
            }
            }
 
 
          h->elf_link_hash_flags |= new_flag;
          h->elf_link_hash_flags |= new_flag;
 
 
          /* Check to see if we need to add an indirect symbol for
          /* Check to see if we need to add an indirect symbol for
             the default name.  */
             the default name.  */
          if (definition || h->root.type == bfd_link_hash_common)
          if (definition || h->root.type == bfd_link_hash_common)
            if (! elf_add_default_symbol (abfd, info, h, name, isym,
            if (! elf_add_default_symbol (abfd, info, h, name, isym,
                                          &sec, &value, &dynsym,
                                          &sec, &value, &dynsym,
                                          override, dt_needed))
                                          override, dt_needed))
              goto error_free_vers;
              goto error_free_vers;
 
 
          if (dynsym && h->dynindx == -1)
          if (dynsym && h->dynindx == -1)
            {
            {
              if (! _bfd_elf_link_record_dynamic_symbol (info, h))
              if (! _bfd_elf_link_record_dynamic_symbol (info, h))
                goto error_free_vers;
                goto error_free_vers;
              if (h->weakdef != NULL
              if (h->weakdef != NULL
                  && ! new_weakdef
                  && ! new_weakdef
                  && h->weakdef->dynindx == -1)
                  && h->weakdef->dynindx == -1)
                {
                {
                  if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
                  if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
                    goto error_free_vers;
                    goto error_free_vers;
                }
                }
            }
            }
          else if (dynsym && h->dynindx != -1)
          else if (dynsym && h->dynindx != -1)
            /* If the symbol already has a dynamic index, but
            /* If the symbol already has a dynamic index, but
               visibility says it should not be visible, turn it into
               visibility says it should not be visible, turn it into
               a local symbol.  */
               a local symbol.  */
            switch (ELF_ST_VISIBILITY (h->other))
            switch (ELF_ST_VISIBILITY (h->other))
              {
              {
              case STV_INTERNAL:
              case STV_INTERNAL:
              case STV_HIDDEN:
              case STV_HIDDEN:
                (*bed->elf_backend_hide_symbol) (info, h, true);
                (*bed->elf_backend_hide_symbol) (info, h, true);
                break;
                break;
              }
              }
 
 
          if (dt_needed && definition
          if (dt_needed && definition
              && (h->elf_link_hash_flags
              && (h->elf_link_hash_flags
                  & ELF_LINK_HASH_REF_REGULAR) != 0)
                  & ELF_LINK_HASH_REF_REGULAR) != 0)
            {
            {
              bfd_size_type oldsize;
              bfd_size_type oldsize;
              bfd_size_type strindex;
              bfd_size_type strindex;
 
 
              if (! is_elf_hash_table (info))
              if (! is_elf_hash_table (info))
                goto error_free_vers;
                goto error_free_vers;
 
 
              /* The symbol from a DT_NEEDED object is referenced from
              /* The symbol from a DT_NEEDED object is referenced from
                 the regular object to create a dynamic executable. We
                 the regular object to create a dynamic executable. We
                 have to make sure there is a DT_NEEDED entry for it.  */
                 have to make sure there is a DT_NEEDED entry for it.  */
 
 
              dt_needed = false;
              dt_needed = false;
              oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
              oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
              strindex = _bfd_elf_strtab_add (hash_table->dynstr,
              strindex = _bfd_elf_strtab_add (hash_table->dynstr,
                                              elf_dt_soname (abfd), false);
                                              elf_dt_soname (abfd), false);
              if (strindex == (bfd_size_type) -1)
              if (strindex == (bfd_size_type) -1)
                goto error_free_vers;
                goto error_free_vers;
 
 
              if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
              if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
                {
                {
                  asection *sdyn;
                  asection *sdyn;
                  Elf_External_Dyn *dyncon, *dynconend;
                  Elf_External_Dyn *dyncon, *dynconend;
 
 
                  sdyn = bfd_get_section_by_name (hash_table->dynobj,
                  sdyn = bfd_get_section_by_name (hash_table->dynobj,
                                                  ".dynamic");
                                                  ".dynamic");
                  BFD_ASSERT (sdyn != NULL);
                  BFD_ASSERT (sdyn != NULL);
 
 
                  dyncon = (Elf_External_Dyn *) sdyn->contents;
                  dyncon = (Elf_External_Dyn *) sdyn->contents;
                  dynconend = (Elf_External_Dyn *) (sdyn->contents +
                  dynconend = (Elf_External_Dyn *) (sdyn->contents +
                                                    sdyn->_raw_size);
                                                    sdyn->_raw_size);
                  for (; dyncon < dynconend; dyncon++)
                  for (; dyncon < dynconend; dyncon++)
                    {
                    {
                      Elf_Internal_Dyn dyn;
                      Elf_Internal_Dyn dyn;
 
 
                      elf_swap_dyn_in (hash_table->dynobj,
                      elf_swap_dyn_in (hash_table->dynobj,
                                       dyncon, &dyn);
                                       dyncon, &dyn);
                      BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
                      BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
                                  dyn.d_un.d_val != strindex);
                                  dyn.d_un.d_val != strindex);
                    }
                    }
                }
                }
 
 
              if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
              if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
                goto error_free_vers;
                goto error_free_vers;
            }
            }
        }
        }
    }
    }
 
 
  if (extversym != NULL)
  if (extversym != NULL)
    {
    {
      free (extversym);
      free (extversym);
      extversym = NULL;
      extversym = NULL;
    }
    }
 
 
  if (isymbuf != NULL)
  if (isymbuf != NULL)
    free (isymbuf);
    free (isymbuf);
  isymbuf = NULL;
  isymbuf = NULL;
 
 
  /* Now set the weakdefs field correctly for all the weak defined
  /* Now set the weakdefs field correctly for all the weak defined
     symbols we found.  The only way to do this is to search all the
     symbols we found.  The only way to do this is to search all the
     symbols.  Since we only need the information for non functions in
     symbols.  Since we only need the information for non functions in
     dynamic objects, that's the only time we actually put anything on
     dynamic objects, that's the only time we actually put anything on
     the list WEAKS.  We need this information so that if a regular
     the list WEAKS.  We need this information so that if a regular
     object refers to a symbol defined weakly in a dynamic object, the
     object refers to a symbol defined weakly in a dynamic object, the
     real symbol in the dynamic object is also put in the dynamic
     real symbol in the dynamic object is also put in the dynamic
     symbols; we also must arrange for both symbols to point to the
     symbols; we also must arrange for both symbols to point to the
     same memory location.  We could handle the general case of symbol
     same memory location.  We could handle the general case of symbol
     aliasing, but a general symbol alias can only be generated in
     aliasing, but a general symbol alias can only be generated in
     assembler code, handling it correctly would be very time
     assembler code, handling it correctly would be very time
     consuming, and other ELF linkers don't handle general aliasing
     consuming, and other ELF linkers don't handle general aliasing
     either.  */
     either.  */
  while (weaks != NULL)
  while (weaks != NULL)
    {
    {
      struct elf_link_hash_entry *hlook;
      struct elf_link_hash_entry *hlook;
      asection *slook;
      asection *slook;
      bfd_vma vlook;
      bfd_vma vlook;
      struct elf_link_hash_entry **hpp;
      struct elf_link_hash_entry **hpp;
      struct elf_link_hash_entry **hppend;
      struct elf_link_hash_entry **hppend;
 
 
      hlook = weaks;
      hlook = weaks;
      weaks = hlook->weakdef;
      weaks = hlook->weakdef;
      hlook->weakdef = NULL;
      hlook->weakdef = NULL;
 
 
      BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
      BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
                  || hlook->root.type == bfd_link_hash_defweak
                  || hlook->root.type == bfd_link_hash_defweak
                  || hlook->root.type == bfd_link_hash_common
                  || hlook->root.type == bfd_link_hash_common
                  || hlook->root.type == bfd_link_hash_indirect);
                  || hlook->root.type == bfd_link_hash_indirect);
      slook = hlook->root.u.def.section;
      slook = hlook->root.u.def.section;
      vlook = hlook->root.u.def.value;
      vlook = hlook->root.u.def.value;
 
 
      hpp = elf_sym_hashes (abfd);
      hpp = elf_sym_hashes (abfd);
      hppend = hpp + extsymcount;
      hppend = hpp + extsymcount;
      for (; hpp < hppend; hpp++)
      for (; hpp < hppend; hpp++)
        {
        {
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          h = *hpp;
          h = *hpp;
          if (h != NULL && h != hlook
          if (h != NULL && h != hlook
              && h->root.type == bfd_link_hash_defined
              && h->root.type == bfd_link_hash_defined
              && h->root.u.def.section == slook
              && h->root.u.def.section == slook
              && h->root.u.def.value == vlook)
              && h->root.u.def.value == vlook)
            {
            {
              hlook->weakdef = h;
              hlook->weakdef = h;
 
 
              /* If the weak definition is in the list of dynamic
              /* If the weak definition is in the list of dynamic
                 symbols, make sure the real definition is put there
                 symbols, make sure the real definition is put there
                 as well.  */
                 as well.  */
              if (hlook->dynindx != -1
              if (hlook->dynindx != -1
                  && h->dynindx == -1)
                  && h->dynindx == -1)
                {
                {
                  if (! _bfd_elf_link_record_dynamic_symbol (info, h))
                  if (! _bfd_elf_link_record_dynamic_symbol (info, h))
                    goto error_return;
                    goto error_return;
                }
                }
 
 
              /* If the real definition is in the list of dynamic
              /* If the real definition is in the list of dynamic
                 symbols, make sure the weak definition is put there
                 symbols, make sure the weak definition is put there
                 as well.  If we don't do this, then the dynamic
                 as well.  If we don't do this, then the dynamic
                 loader might not merge the entries for the real
                 loader might not merge the entries for the real
                 definition and the weak definition.  */
                 definition and the weak definition.  */
              if (h->dynindx != -1
              if (h->dynindx != -1
                  && hlook->dynindx == -1)
                  && hlook->dynindx == -1)
                {
                {
                  if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
                  if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
                    goto error_return;
                    goto error_return;
                }
                }
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  /* If this object is the same format as the output object, and it is
  /* If this object is the same format as the output object, and it is
     not a shared library, then let the backend look through the
     not a shared library, then let the backend look through the
     relocs.
     relocs.
 
 
     This is required to build global offset table entries and to
     This is required to build global offset table entries and to
     arrange for dynamic relocs.  It is not required for the
     arrange for dynamic relocs.  It is not required for the
     particular common case of linking non PIC code, even when linking
     particular common case of linking non PIC code, even when linking
     against shared libraries, but unfortunately there is no way of
     against shared libraries, but unfortunately there is no way of
     knowing whether an object file has been compiled PIC or not.
     knowing whether an object file has been compiled PIC or not.
     Looking through the relocs is not particularly time consuming.
     Looking through the relocs is not particularly time consuming.
     The problem is that we must either (1) keep the relocs in memory,
     The problem is that we must either (1) keep the relocs in memory,
     which causes the linker to require additional runtime memory or
     which causes the linker to require additional runtime memory or
     (2) read the relocs twice from the input file, which wastes time.
     (2) read the relocs twice from the input file, which wastes time.
     This would be a good case for using mmap.
     This would be a good case for using mmap.
 
 
     I have no idea how to handle linking PIC code into a file of a
     I have no idea how to handle linking PIC code into a file of a
     different format.  It probably can't be done.  */
     different format.  It probably can't be done.  */
  check_relocs = get_elf_backend_data (abfd)->check_relocs;
  check_relocs = get_elf_backend_data (abfd)->check_relocs;
  if (! dynamic
  if (! dynamic
      && abfd->xvec == info->hash->creator
      && abfd->xvec == info->hash->creator
      && check_relocs != NULL)
      && check_relocs != NULL)
    {
    {
      asection *o;
      asection *o;
 
 
      for (o = abfd->sections; o != NULL; o = o->next)
      for (o = abfd->sections; o != NULL; o = o->next)
        {
        {
          Elf_Internal_Rela *internal_relocs;
          Elf_Internal_Rela *internal_relocs;
          boolean ok;
          boolean ok;
 
 
          if ((o->flags & SEC_RELOC) == 0
          if ((o->flags & SEC_RELOC) == 0
              || o->reloc_count == 0
              || o->reloc_count == 0
              || ((info->strip == strip_all || info->strip == strip_debugger)
              || ((info->strip == strip_all || info->strip == strip_debugger)
                  && (o->flags & SEC_DEBUGGING) != 0)
                  && (o->flags & SEC_DEBUGGING) != 0)
              || bfd_is_abs_section (o->output_section))
              || bfd_is_abs_section (o->output_section))
            continue;
            continue;
 
 
          internal_relocs = (NAME(_bfd_elf,link_read_relocs)
          internal_relocs = (NAME(_bfd_elf,link_read_relocs)
                             (abfd, o, (PTR) NULL,
                             (abfd, o, (PTR) NULL,
                              (Elf_Internal_Rela *) NULL,
                              (Elf_Internal_Rela *) NULL,
                              info->keep_memory));
                              info->keep_memory));
          if (internal_relocs == NULL)
          if (internal_relocs == NULL)
            goto error_return;
            goto error_return;
 
 
          ok = (*check_relocs) (abfd, info, o, internal_relocs);
          ok = (*check_relocs) (abfd, info, o, internal_relocs);
 
 
          if (elf_section_data (o)->relocs != internal_relocs)
          if (elf_section_data (o)->relocs != internal_relocs)
            free (internal_relocs);
            free (internal_relocs);
 
 
          if (! ok)
          if (! ok)
            goto error_return;
            goto error_return;
        }
        }
    }
    }
 
 
  /* If this is a non-traditional, non-relocateable link, try to
  /* If this is a non-traditional, non-relocateable link, try to
     optimize the handling of the .stab/.stabstr sections.  */
     optimize the handling of the .stab/.stabstr sections.  */
  if (! dynamic
  if (! dynamic
      && ! info->relocateable
      && ! info->relocateable
      && ! info->traditional_format
      && ! info->traditional_format
      && info->hash->creator->flavour == bfd_target_elf_flavour
      && info->hash->creator->flavour == bfd_target_elf_flavour
      && is_elf_hash_table (info)
      && is_elf_hash_table (info)
      && (info->strip != strip_all && info->strip != strip_debugger))
      && (info->strip != strip_all && info->strip != strip_debugger))
    {
    {
      asection *stab, *stabstr;
      asection *stab, *stabstr;
 
 
      stab = bfd_get_section_by_name (abfd, ".stab");
      stab = bfd_get_section_by_name (abfd, ".stab");
      if (stab != NULL
      if (stab != NULL
          && (stab->flags & SEC_MERGE) == 0
          && (stab->flags & SEC_MERGE) == 0
          && !bfd_is_abs_section (stab->output_section))
          && !bfd_is_abs_section (stab->output_section))
        {
        {
          stabstr = bfd_get_section_by_name (abfd, ".stabstr");
          stabstr = bfd_get_section_by_name (abfd, ".stabstr");
 
 
          if (stabstr != NULL)
          if (stabstr != NULL)
            {
            {
              struct bfd_elf_section_data *secdata;
              struct bfd_elf_section_data *secdata;
 
 
              secdata = elf_section_data (stab);
              secdata = elf_section_data (stab);
              if (! _bfd_link_section_stabs (abfd,
              if (! _bfd_link_section_stabs (abfd,
                                             & hash_table->stab_info,
                                             & hash_table->stab_info,
                                             stab, stabstr,
                                             stab, stabstr,
                                             &secdata->sec_info))
                                             &secdata->sec_info))
                goto error_return;
                goto error_return;
              if (secdata->sec_info)
              if (secdata->sec_info)
                secdata->sec_info_type = ELF_INFO_TYPE_STABS;
                secdata->sec_info_type = ELF_INFO_TYPE_STABS;
            }
            }
        }
        }
    }
    }
 
 
  if (! info->relocateable && ! dynamic
  if (! info->relocateable && ! dynamic
      && is_elf_hash_table (info))
      && is_elf_hash_table (info))
    {
    {
      asection *s;
      asection *s;
 
 
      for (s = abfd->sections; s != NULL; s = s->next)
      for (s = abfd->sections; s != NULL; s = s->next)
        if ((s->flags & SEC_MERGE) != 0
        if ((s->flags & SEC_MERGE) != 0
            && !bfd_is_abs_section (s->output_section))
            && !bfd_is_abs_section (s->output_section))
          {
          {
            struct bfd_elf_section_data *secdata;
            struct bfd_elf_section_data *secdata;
 
 
            secdata = elf_section_data (s);
            secdata = elf_section_data (s);
            if (! _bfd_merge_section (abfd,
            if (! _bfd_merge_section (abfd,
                                      & hash_table->merge_info,
                                      & hash_table->merge_info,
                                      s, &secdata->sec_info))
                                      s, &secdata->sec_info))
              goto error_return;
              goto error_return;
            else if (secdata->sec_info)
            else if (secdata->sec_info)
              secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
              secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
          }
          }
    }
    }
 
 
  if (is_elf_hash_table (info))
  if (is_elf_hash_table (info))
    {
    {
      /* Add this bfd to the loaded list.  */
      /* Add this bfd to the loaded list.  */
      struct elf_link_loaded_list *n;
      struct elf_link_loaded_list *n;
 
 
      n = ((struct elf_link_loaded_list *)
      n = ((struct elf_link_loaded_list *)
           bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
           bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
      if (n == NULL)
      if (n == NULL)
        goto error_return;
        goto error_return;
      n->abfd = abfd;
      n->abfd = abfd;
      n->next = hash_table->loaded;
      n->next = hash_table->loaded;
      hash_table->loaded = n;
      hash_table->loaded = n;
    }
    }
 
 
  return true;
  return true;
 
 
 error_free_vers:
 error_free_vers:
  if (extversym != NULL)
  if (extversym != NULL)
    free (extversym);
    free (extversym);
 error_free_sym:
 error_free_sym:
  if (isymbuf != NULL)
  if (isymbuf != NULL)
    free (isymbuf);
    free (isymbuf);
 error_return:
 error_return:
  return false;
  return false;
}
}
 
 
/* Create some sections which will be filled in with dynamic linking
/* Create some sections which will be filled in with dynamic linking
   information.  ABFD is an input file which requires dynamic sections
   information.  ABFD is an input file which requires dynamic sections
   to be created.  The dynamic sections take up virtual memory space
   to be created.  The dynamic sections take up virtual memory space
   when the final executable is run, so we need to create them before
   when the final executable is run, so we need to create them before
   addresses are assigned to the output sections.  We work out the
   addresses are assigned to the output sections.  We work out the
   actual contents and size of these sections later.  */
   actual contents and size of these sections later.  */
 
 
boolean
boolean
elf_link_create_dynamic_sections (abfd, info)
elf_link_create_dynamic_sections (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  flagword flags;
  flagword flags;
  register asection *s;
  register asection *s;
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
 
 
  if (! is_elf_hash_table (info))
  if (! is_elf_hash_table (info))
    return false;
    return false;
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    return true;
    return true;
 
 
  /* Make sure that all dynamic sections use the same input BFD.  */
  /* Make sure that all dynamic sections use the same input BFD.  */
  if (elf_hash_table (info)->dynobj == NULL)
  if (elf_hash_table (info)->dynobj == NULL)
    elf_hash_table (info)->dynobj = abfd;
    elf_hash_table (info)->dynobj = abfd;
  else
  else
    abfd = elf_hash_table (info)->dynobj;
    abfd = elf_hash_table (info)->dynobj;
 
 
  /* Note that we set the SEC_IN_MEMORY flag for all of these
  /* Note that we set the SEC_IN_MEMORY flag for all of these
     sections.  */
     sections.  */
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
           | SEC_IN_MEMORY | SEC_LINKER_CREATED);
           | SEC_IN_MEMORY | SEC_LINKER_CREATED);
 
 
  /* A dynamically linked executable has a .interp section, but a
  /* A dynamically linked executable has a .interp section, but a
     shared library does not.  */
     shared library does not.  */
  if (! info->shared)
  if (! info->shared)
    {
    {
      s = bfd_make_section (abfd, ".interp");
      s = bfd_make_section (abfd, ".interp");
      if (s == NULL
      if (s == NULL
          || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
          || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
        return false;
        return false;
    }
    }
 
 
  if (! info->traditional_format
  if (! info->traditional_format
      && info->hash->creator->flavour == bfd_target_elf_flavour)
      && info->hash->creator->flavour == bfd_target_elf_flavour)
    {
    {
      s = bfd_make_section (abfd, ".eh_frame_hdr");
      s = bfd_make_section (abfd, ".eh_frame_hdr");
      if (s == NULL
      if (s == NULL
          || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
          || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
          || ! bfd_set_section_alignment (abfd, s, 2))
          || ! bfd_set_section_alignment (abfd, s, 2))
        return false;
        return false;
    }
    }
 
 
  /* Create sections to hold version informations.  These are removed
  /* Create sections to hold version informations.  These are removed
     if they are not needed.  */
     if they are not needed.  */
  s = bfd_make_section (abfd, ".gnu.version_d");
  s = bfd_make_section (abfd, ".gnu.version_d");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
    return false;
    return false;
 
 
  s = bfd_make_section (abfd, ".gnu.version");
  s = bfd_make_section (abfd, ".gnu.version");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_alignment (abfd, s, 1))
      || ! bfd_set_section_alignment (abfd, s, 1))
    return false;
    return false;
 
 
  s = bfd_make_section (abfd, ".gnu.version_r");
  s = bfd_make_section (abfd, ".gnu.version_r");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
    return false;
    return false;
 
 
  s = bfd_make_section (abfd, ".dynsym");
  s = bfd_make_section (abfd, ".dynsym");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
    return false;
    return false;
 
 
  s = bfd_make_section (abfd, ".dynstr");
  s = bfd_make_section (abfd, ".dynstr");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
    return false;
    return false;
 
 
  /* Create a strtab to hold the dynamic symbol names.  */
  /* Create a strtab to hold the dynamic symbol names.  */
  if (elf_hash_table (info)->dynstr == NULL)
  if (elf_hash_table (info)->dynstr == NULL)
    {
    {
      elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
      elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
      if (elf_hash_table (info)->dynstr == NULL)
      if (elf_hash_table (info)->dynstr == NULL)
        return false;
        return false;
    }
    }
 
 
  s = bfd_make_section (abfd, ".dynamic");
  s = bfd_make_section (abfd, ".dynamic");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags)
      || ! bfd_set_section_flags (abfd, s, flags)
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
    return false;
    return false;
 
 
  /* The special symbol _DYNAMIC is always set to the start of the
  /* The special symbol _DYNAMIC is always set to the start of the
     .dynamic section.  This call occurs before we have processed the
     .dynamic section.  This call occurs before we have processed the
     symbols for any dynamic object, so we don't have to worry about
     symbols for any dynamic object, so we don't have to worry about
     overriding a dynamic definition.  We could set _DYNAMIC in a
     overriding a dynamic definition.  We could set _DYNAMIC in a
     linker script, but we only want to define it if we are, in fact,
     linker script, but we only want to define it if we are, in fact,
     creating a .dynamic section.  We don't want to define it if there
     creating a .dynamic section.  We don't want to define it if there
     is no .dynamic section, since on some ELF platforms the start up
     is no .dynamic section, since on some ELF platforms the start up
     code examines it to decide how to initialize the process.  */
     code examines it to decide how to initialize the process.  */
  h = NULL;
  h = NULL;
  if (! (_bfd_generic_link_add_one_symbol
  if (! (_bfd_generic_link_add_one_symbol
         (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
         (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
          (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
          (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
          (struct bfd_link_hash_entry **) &h)))
          (struct bfd_link_hash_entry **) &h)))
    return false;
    return false;
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
  h->type = STT_OBJECT;
  h->type = STT_OBJECT;
 
 
  if (info->shared
  if (info->shared
      && ! _bfd_elf_link_record_dynamic_symbol (info, h))
      && ! _bfd_elf_link_record_dynamic_symbol (info, h))
    return false;
    return false;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
 
 
  s = bfd_make_section (abfd, ".hash");
  s = bfd_make_section (abfd, ".hash");
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
    return false;
    return false;
  elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
  elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
 
 
  /* Let the backend create the rest of the sections.  This lets the
  /* Let the backend create the rest of the sections.  This lets the
     backend set the right flags.  The backend will normally create
     backend set the right flags.  The backend will normally create
     the .got and .plt sections.  */
     the .got and .plt sections.  */
  if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
  if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
    return false;
    return false;
 
 
  elf_hash_table (info)->dynamic_sections_created = true;
  elf_hash_table (info)->dynamic_sections_created = true;
 
 
  return true;
  return true;
}
}
 
 
/* Add an entry to the .dynamic table.  */
/* Add an entry to the .dynamic table.  */
 
 
boolean
boolean
elf_add_dynamic_entry (info, tag, val)
elf_add_dynamic_entry (info, tag, val)
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     bfd_vma tag;
     bfd_vma tag;
     bfd_vma val;
     bfd_vma val;
{
{
  Elf_Internal_Dyn dyn;
  Elf_Internal_Dyn dyn;
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  asection *s;
  bfd_size_type newsize;
  bfd_size_type newsize;
  bfd_byte *newcontents;
  bfd_byte *newcontents;
 
 
  if (! is_elf_hash_table (info))
  if (! is_elf_hash_table (info))
    return false;
    return false;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  s = bfd_get_section_by_name (dynobj, ".dynamic");
  s = bfd_get_section_by_name (dynobj, ".dynamic");
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  newsize = s->_raw_size + sizeof (Elf_External_Dyn);
  newsize = s->_raw_size + sizeof (Elf_External_Dyn);
  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
  if (newcontents == NULL)
  if (newcontents == NULL)
    return false;
    return false;
 
 
  dyn.d_tag = tag;
  dyn.d_tag = tag;
  dyn.d_un.d_val = val;
  dyn.d_un.d_val = val;
  elf_swap_dyn_out (dynobj, &dyn,
  elf_swap_dyn_out (dynobj, &dyn,
                    (Elf_External_Dyn *) (newcontents + s->_raw_size));
                    (Elf_External_Dyn *) (newcontents + s->_raw_size));
 
 
  s->_raw_size = newsize;
  s->_raw_size = newsize;
  s->contents = newcontents;
  s->contents = newcontents;
 
 
  return true;
  return true;
}
}


/* Read and swap the relocs from the section indicated by SHDR.  This
/* Read and swap the relocs from the section indicated by SHDR.  This
   may be either a REL or a RELA section.  The relocations are
   may be either a REL or a RELA section.  The relocations are
   translated into RELA relocations and stored in INTERNAL_RELOCS,
   translated into RELA relocations and stored in INTERNAL_RELOCS,
   which should have already been allocated to contain enough space.
   which should have already been allocated to contain enough space.
   The EXTERNAL_RELOCS are a buffer where the external form of the
   The EXTERNAL_RELOCS are a buffer where the external form of the
   relocations should be stored.
   relocations should be stored.
 
 
   Returns false if something goes wrong.  */
   Returns false if something goes wrong.  */
 
 
static boolean
static boolean
elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
                                   internal_relocs)
                                   internal_relocs)
     bfd *abfd;
     bfd *abfd;
     Elf_Internal_Shdr *shdr;
     Elf_Internal_Shdr *shdr;
     PTR external_relocs;
     PTR external_relocs;
     Elf_Internal_Rela *internal_relocs;
     Elf_Internal_Rela *internal_relocs;
{
{
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* If there aren't any relocations, that's OK.  */
  /* If there aren't any relocations, that's OK.  */
  if (!shdr)
  if (!shdr)
    return true;
    return true;
 
 
  /* Position ourselves at the start of the section.  */
  /* Position ourselves at the start of the section.  */
  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
    return false;
    return false;
 
 
  /* Read the relocations.  */
  /* Read the relocations.  */
  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
    return false;
    return false;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
 
 
  /* Convert the external relocations to the internal format.  */
  /* Convert the external relocations to the internal format.  */
  if (shdr->sh_entsize == sizeof (Elf_External_Rel))
  if (shdr->sh_entsize == sizeof (Elf_External_Rel))
    {
    {
      Elf_External_Rel *erel;
      Elf_External_Rel *erel;
      Elf_External_Rel *erelend;
      Elf_External_Rel *erelend;
      Elf_Internal_Rela *irela;
      Elf_Internal_Rela *irela;
      Elf_Internal_Rel *irel;
      Elf_Internal_Rel *irel;
 
 
      erel = (Elf_External_Rel *) external_relocs;
      erel = (Elf_External_Rel *) external_relocs;
      erelend = erel + NUM_SHDR_ENTRIES (shdr);
      erelend = erel + NUM_SHDR_ENTRIES (shdr);
      irela = internal_relocs;
      irela = internal_relocs;
      amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
      amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
      irel = bfd_alloc (abfd, amt);
      irel = bfd_alloc (abfd, amt);
      for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
      for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
        {
        {
          unsigned int i;
          unsigned int i;
 
 
          if (bed->s->swap_reloc_in)
          if (bed->s->swap_reloc_in)
            (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
            (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
          else
          else
            elf_swap_reloc_in (abfd, erel, irel);
            elf_swap_reloc_in (abfd, erel, irel);
 
 
          for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
          for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
            {
            {
              irela[i].r_offset = irel[i].r_offset;
              irela[i].r_offset = irel[i].r_offset;
              irela[i].r_info = irel[i].r_info;
              irela[i].r_info = irel[i].r_info;
              irela[i].r_addend = 0;
              irela[i].r_addend = 0;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      Elf_External_Rela *erela;
      Elf_External_Rela *erela;
      Elf_External_Rela *erelaend;
      Elf_External_Rela *erelaend;
      Elf_Internal_Rela *irela;
      Elf_Internal_Rela *irela;
 
 
      BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
      BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
 
 
      erela = (Elf_External_Rela *) external_relocs;
      erela = (Elf_External_Rela *) external_relocs;
      erelaend = erela + NUM_SHDR_ENTRIES (shdr);
      erelaend = erela + NUM_SHDR_ENTRIES (shdr);
      irela = internal_relocs;
      irela = internal_relocs;
      for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
      for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
        {
        {
          if (bed->s->swap_reloca_in)
          if (bed->s->swap_reloca_in)
            (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
            (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
          else
          else
            elf_swap_reloca_in (abfd, erela, irela);
            elf_swap_reloca_in (abfd, erela, irela);
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Read and swap the relocs for a section O.  They may have been
/* Read and swap the relocs for a section O.  They may have been
   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
   not NULL, they are used as buffers to read into.  They are known to
   not NULL, they are used as buffers to read into.  They are known to
   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
   the return value is allocated using either malloc or bfd_alloc,
   the return value is allocated using either malloc or bfd_alloc,
   according to the KEEP_MEMORY argument.  If O has two relocation
   according to the KEEP_MEMORY argument.  If O has two relocation
   sections (both REL and RELA relocations), then the REL_HDR
   sections (both REL and RELA relocations), then the REL_HDR
   relocations will appear first in INTERNAL_RELOCS, followed by the
   relocations will appear first in INTERNAL_RELOCS, followed by the
   REL_HDR2 relocations.  */
   REL_HDR2 relocations.  */
 
 
Elf_Internal_Rela *
Elf_Internal_Rela *
NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
                                 keep_memory)
                                 keep_memory)
     bfd *abfd;
     bfd *abfd;
     asection *o;
     asection *o;
     PTR external_relocs;
     PTR external_relocs;
     Elf_Internal_Rela *internal_relocs;
     Elf_Internal_Rela *internal_relocs;
     boolean keep_memory;
     boolean keep_memory;
{
{
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr;
  PTR alloc1 = NULL;
  PTR alloc1 = NULL;
  Elf_Internal_Rela *alloc2 = NULL;
  Elf_Internal_Rela *alloc2 = NULL;
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  if (elf_section_data (o)->relocs != NULL)
  if (elf_section_data (o)->relocs != NULL)
    return elf_section_data (o)->relocs;
    return elf_section_data (o)->relocs;
 
 
  if (o->reloc_count == 0)
  if (o->reloc_count == 0)
    return NULL;
    return NULL;
 
 
  rel_hdr = &elf_section_data (o)->rel_hdr;
  rel_hdr = &elf_section_data (o)->rel_hdr;
 
 
  if (internal_relocs == NULL)
  if (internal_relocs == NULL)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
 
 
      size = o->reloc_count;
      size = o->reloc_count;
      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
      if (keep_memory)
      if (keep_memory)
        internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
        internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
      else
      else
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
      if (internal_relocs == NULL)
      if (internal_relocs == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (external_relocs == NULL)
  if (external_relocs == NULL)
    {
    {
      bfd_size_type size = rel_hdr->sh_size;
      bfd_size_type size = rel_hdr->sh_size;
 
 
      if (elf_section_data (o)->rel_hdr2)
      if (elf_section_data (o)->rel_hdr2)
        size += elf_section_data (o)->rel_hdr2->sh_size;
        size += elf_section_data (o)->rel_hdr2->sh_size;
      alloc1 = (PTR) bfd_malloc (size);
      alloc1 = (PTR) bfd_malloc (size);
      if (alloc1 == NULL)
      if (alloc1 == NULL)
        goto error_return;
        goto error_return;
      external_relocs = alloc1;
      external_relocs = alloc1;
    }
    }
 
 
  if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
  if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
                                          external_relocs,
                                          external_relocs,
                                          internal_relocs))
                                          internal_relocs))
    goto error_return;
    goto error_return;
  if (!elf_link_read_relocs_from_section
  if (!elf_link_read_relocs_from_section
      (abfd,
      (abfd,
       elf_section_data (o)->rel_hdr2,
       elf_section_data (o)->rel_hdr2,
       ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
       ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
       internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
       internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
                          * bed->s->int_rels_per_ext_rel)))
                          * bed->s->int_rels_per_ext_rel)))
    goto error_return;
    goto error_return;
 
 
  /* Cache the results for next time, if we can.  */
  /* Cache the results for next time, if we can.  */
  if (keep_memory)
  if (keep_memory)
    elf_section_data (o)->relocs = internal_relocs;
    elf_section_data (o)->relocs = internal_relocs;
 
 
  if (alloc1 != NULL)
  if (alloc1 != NULL)
    free (alloc1);
    free (alloc1);
 
 
  /* Don't free alloc2, since if it was allocated we are passing it
  /* Don't free alloc2, since if it was allocated we are passing it
     back (under the name of internal_relocs).  */
     back (under the name of internal_relocs).  */
 
 
  return internal_relocs;
  return internal_relocs;
 
 
 error_return:
 error_return:
  if (alloc1 != NULL)
  if (alloc1 != NULL)
    free (alloc1);
    free (alloc1);
  if (alloc2 != NULL)
  if (alloc2 != NULL)
    free (alloc2);
    free (alloc2);
  return NULL;
  return NULL;
}
}


/* Record an assignment to a symbol made by a linker script.  We need
/* Record an assignment to a symbol made by a linker script.  We need
   this in case some dynamic object refers to this symbol.  */
   this in case some dynamic object refers to this symbol.  */
 
 
boolean
boolean
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
     bfd *output_bfd ATTRIBUTE_UNUSED;
     bfd *output_bfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     const char *name;
     const char *name;
     boolean provide;
     boolean provide;
{
{
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
 
 
  if (info->hash->creator->flavour != bfd_target_elf_flavour)
  if (info->hash->creator->flavour != bfd_target_elf_flavour)
    return true;
    return true;
 
 
  h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
  h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
  if (h == NULL)
  if (h == NULL)
    return false;
    return false;
 
 
  if (h->root.type == bfd_link_hash_new)
  if (h->root.type == bfd_link_hash_new)
    h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
    h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
 
 
  /* If this symbol is being provided by the linker script, and it is
  /* If this symbol is being provided by the linker script, and it is
     currently defined by a dynamic object, but not by a regular
     currently defined by a dynamic object, but not by a regular
     object, then mark it as undefined so that the generic linker will
     object, then mark it as undefined so that the generic linker will
     force the correct value.  */
     force the correct value.  */
  if (provide
  if (provide
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
    h->root.type = bfd_link_hash_undefined;
    h->root.type = bfd_link_hash_undefined;
 
 
  /* If this symbol is not being provided by the linker script, and it is
  /* If this symbol is not being provided by the linker script, and it is
     currently defined by a dynamic object, but not by a regular object,
     currently defined by a dynamic object, but not by a regular object,
     then clear out any version information because the symbol will not be
     then clear out any version information because the symbol will not be
     associated with the dynamic object any more.  */
     associated with the dynamic object any more.  */
  if (!provide
  if (!provide
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
    h->verinfo.verdef = NULL;
    h->verinfo.verdef = NULL;
 
 
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
 
 
  if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
  if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
                                  | ELF_LINK_HASH_REF_DYNAMIC)) != 0
                                  | ELF_LINK_HASH_REF_DYNAMIC)) != 0
       || info->shared)
       || info->shared)
      && h->dynindx == -1)
      && h->dynindx == -1)
    {
    {
      if (! _bfd_elf_link_record_dynamic_symbol (info, h))
      if (! _bfd_elf_link_record_dynamic_symbol (info, h))
        return false;
        return false;
 
 
      /* If this is a weak defined symbol, and we know a corresponding
      /* If this is a weak defined symbol, and we know a corresponding
         real symbol from the same dynamic object, make sure the real
         real symbol from the same dynamic object, make sure the real
         symbol is also made into a dynamic symbol.  */
         symbol is also made into a dynamic symbol.  */
      if (h->weakdef != NULL
      if (h->weakdef != NULL
          && h->weakdef->dynindx == -1)
          && h->weakdef->dynindx == -1)
        {
        {
          if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
          if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
            return false;
            return false;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}


/* This structure is used to pass information to
/* This structure is used to pass information to
   elf_link_assign_sym_version.  */
   elf_link_assign_sym_version.  */
 
 
struct elf_assign_sym_version_info
struct elf_assign_sym_version_info
{
{
  /* Output BFD.  */
  /* Output BFD.  */
  bfd *output_bfd;
  bfd *output_bfd;
  /* General link information.  */
  /* General link information.  */
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  /* Version tree.  */
  /* Version tree.  */
  struct bfd_elf_version_tree *verdefs;
  struct bfd_elf_version_tree *verdefs;
  /* Whether we had a failure.  */
  /* Whether we had a failure.  */
  boolean failed;
  boolean failed;
};
};
 
 
/* This structure is used to pass information to
/* This structure is used to pass information to
   elf_link_find_version_dependencies.  */
   elf_link_find_version_dependencies.  */
 
 
struct elf_find_verdep_info
struct elf_find_verdep_info
{
{
  /* Output BFD.  */
  /* Output BFD.  */
  bfd *output_bfd;
  bfd *output_bfd;
  /* General link information.  */
  /* General link information.  */
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  /* The number of dependencies.  */
  /* The number of dependencies.  */
  unsigned int vers;
  unsigned int vers;
  /* Whether we had a failure.  */
  /* Whether we had a failure.  */
  boolean failed;
  boolean failed;
};
};
 
 
/* Array used to determine the number of hash table buckets to use
/* Array used to determine the number of hash table buckets to use
   based on the number of symbols there are.  If there are fewer than
   based on the number of symbols there are.  If there are fewer than
   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
   fewer than 37 we use 17 buckets, and so forth.  We never use more
   fewer than 37 we use 17 buckets, and so forth.  We never use more
   than 32771 buckets.  */
   than 32771 buckets.  */
 
 
static const size_t elf_buckets[] =
static const size_t elf_buckets[] =
{
{
  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
  16411, 32771, 0
  16411, 32771, 0
};
};
 
 
/* Compute bucket count for hashing table.  We do not use a static set
/* Compute bucket count for hashing table.  We do not use a static set
   of possible tables sizes anymore.  Instead we determine for all
   of possible tables sizes anymore.  Instead we determine for all
   possible reasonable sizes of the table the outcome (i.e., the
   possible reasonable sizes of the table the outcome (i.e., the
   number of collisions etc) and choose the best solution.  The
   number of collisions etc) and choose the best solution.  The
   weighting functions are not too simple to allow the table to grow
   weighting functions are not too simple to allow the table to grow
   without bounds.  Instead one of the weighting factors is the size.
   without bounds.  Instead one of the weighting factors is the size.
   Therefore the result is always a good payoff between few collisions
   Therefore the result is always a good payoff between few collisions
   (= short chain lengths) and table size.  */
   (= short chain lengths) and table size.  */
static size_t
static size_t
compute_bucket_count (info)
compute_bucket_count (info)
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  size_t dynsymcount = elf_hash_table (info)->dynsymcount;
  size_t dynsymcount = elf_hash_table (info)->dynsymcount;
  size_t best_size = 0;
  size_t best_size = 0;
  unsigned long int *hashcodes;
  unsigned long int *hashcodes;
  unsigned long int *hashcodesp;
  unsigned long int *hashcodesp;
  unsigned long int i;
  unsigned long int i;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* Compute the hash values for all exported symbols.  At the same
  /* Compute the hash values for all exported symbols.  At the same
     time store the values in an array so that we could use them for
     time store the values in an array so that we could use them for
     optimizations.  */
     optimizations.  */
  amt = dynsymcount;
  amt = dynsymcount;
  amt *= sizeof (unsigned long int);
  amt *= sizeof (unsigned long int);
  hashcodes = (unsigned long int *) bfd_malloc (amt);
  hashcodes = (unsigned long int *) bfd_malloc (amt);
  if (hashcodes == NULL)
  if (hashcodes == NULL)
    return 0;
    return 0;
  hashcodesp = hashcodes;
  hashcodesp = hashcodes;
 
 
  /* Put all hash values in HASHCODES.  */
  /* Put all hash values in HASHCODES.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_collect_hash_codes, &hashcodesp);
                          elf_collect_hash_codes, &hashcodesp);
 
 
  /* We have a problem here.  The following code to optimize the table
  /* We have a problem here.  The following code to optimize the table
     size requires an integer type with more the 32 bits.  If
     size requires an integer type with more the 32 bits.  If
     BFD_HOST_U_64_BIT is set we know about such a type.  */
     BFD_HOST_U_64_BIT is set we know about such a type.  */
#ifdef BFD_HOST_U_64_BIT
#ifdef BFD_HOST_U_64_BIT
  if (info->optimize)
  if (info->optimize)
    {
    {
      unsigned long int nsyms = hashcodesp - hashcodes;
      unsigned long int nsyms = hashcodesp - hashcodes;
      size_t minsize;
      size_t minsize;
      size_t maxsize;
      size_t maxsize;
      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
      unsigned long int *counts ;
      unsigned long int *counts ;
 
 
      /* Possible optimization parameters: if we have NSYMS symbols we say
      /* Possible optimization parameters: if we have NSYMS symbols we say
         that the hashing table must at least have NSYMS/4 and at most
         that the hashing table must at least have NSYMS/4 and at most
         2*NSYMS buckets.  */
         2*NSYMS buckets.  */
      minsize = nsyms / 4;
      minsize = nsyms / 4;
      if (minsize == 0)
      if (minsize == 0)
        minsize = 1;
        minsize = 1;
      best_size = maxsize = nsyms * 2;
      best_size = maxsize = nsyms * 2;
 
 
      /* Create array where we count the collisions in.  We must use bfd_malloc
      /* Create array where we count the collisions in.  We must use bfd_malloc
         since the size could be large.  */
         since the size could be large.  */
      amt = maxsize;
      amt = maxsize;
      amt *= sizeof (unsigned long int);
      amt *= sizeof (unsigned long int);
      counts = (unsigned long int *) bfd_malloc (amt);
      counts = (unsigned long int *) bfd_malloc (amt);
      if (counts == NULL)
      if (counts == NULL)
        {
        {
          free (hashcodes);
          free (hashcodes);
          return 0;
          return 0;
        }
        }
 
 
      /* Compute the "optimal" size for the hash table.  The criteria is a
      /* Compute the "optimal" size for the hash table.  The criteria is a
         minimal chain length.  The minor criteria is (of course) the size
         minimal chain length.  The minor criteria is (of course) the size
         of the table.  */
         of the table.  */
      for (i = minsize; i < maxsize; ++i)
      for (i = minsize; i < maxsize; ++i)
        {
        {
          /* Walk through the array of hashcodes and count the collisions.  */
          /* Walk through the array of hashcodes and count the collisions.  */
          BFD_HOST_U_64_BIT max;
          BFD_HOST_U_64_BIT max;
          unsigned long int j;
          unsigned long int j;
          unsigned long int fact;
          unsigned long int fact;
 
 
          memset (counts, '\0', i * sizeof (unsigned long int));
          memset (counts, '\0', i * sizeof (unsigned long int));
 
 
          /* Determine how often each hash bucket is used.  */
          /* Determine how often each hash bucket is used.  */
          for (j = 0; j < nsyms; ++j)
          for (j = 0; j < nsyms; ++j)
            ++counts[hashcodes[j] % i];
            ++counts[hashcodes[j] % i];
 
 
          /* For the weight function we need some information about the
          /* For the weight function we need some information about the
             pagesize on the target.  This is information need not be 100%
             pagesize on the target.  This is information need not be 100%
             accurate.  Since this information is not available (so far) we
             accurate.  Since this information is not available (so far) we
             define it here to a reasonable default value.  If it is crucial
             define it here to a reasonable default value.  If it is crucial
             to have a better value some day simply define this value.  */
             to have a better value some day simply define this value.  */
# ifndef BFD_TARGET_PAGESIZE
# ifndef BFD_TARGET_PAGESIZE
#  define BFD_TARGET_PAGESIZE   (4096)
#  define BFD_TARGET_PAGESIZE   (4096)
# endif
# endif
 
 
          /* We in any case need 2 + NSYMS entries for the size values and
          /* We in any case need 2 + NSYMS entries for the size values and
             the chains.  */
             the chains.  */
          max = (2 + nsyms) * (ARCH_SIZE / 8);
          max = (2 + nsyms) * (ARCH_SIZE / 8);
 
 
# if 1
# if 1
          /* Variant 1: optimize for short chains.  We add the squares
          /* Variant 1: optimize for short chains.  We add the squares
             of all the chain lengths (which favous many small chain
             of all the chain lengths (which favous many small chain
             over a few long chains).  */
             over a few long chains).  */
          for (j = 0; j < i; ++j)
          for (j = 0; j < i; ++j)
            max += counts[j] * counts[j];
            max += counts[j] * counts[j];
 
 
          /* This adds penalties for the overall size of the table.  */
          /* This adds penalties for the overall size of the table.  */
          fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
          fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
          max *= fact * fact;
          max *= fact * fact;
# else
# else
          /* Variant 2: Optimize a lot more for small table.  Here we
          /* Variant 2: Optimize a lot more for small table.  Here we
             also add squares of the size but we also add penalties for
             also add squares of the size but we also add penalties for
             empty slots (the +1 term).  */
             empty slots (the +1 term).  */
          for (j = 0; j < i; ++j)
          for (j = 0; j < i; ++j)
            max += (1 + counts[j]) * (1 + counts[j]);
            max += (1 + counts[j]) * (1 + counts[j]);
 
 
          /* The overall size of the table is considered, but not as
          /* The overall size of the table is considered, but not as
             strong as in variant 1, where it is squared.  */
             strong as in variant 1, where it is squared.  */
          fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
          fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
          max *= fact;
          max *= fact;
# endif
# endif
 
 
          /* Compare with current best results.  */
          /* Compare with current best results.  */
          if (max < best_chlen)
          if (max < best_chlen)
            {
            {
              best_chlen = max;
              best_chlen = max;
              best_size = i;
              best_size = i;
            }
            }
        }
        }
 
 
      free (counts);
      free (counts);
    }
    }
  else
  else
#endif /* defined (BFD_HOST_U_64_BIT) */
#endif /* defined (BFD_HOST_U_64_BIT) */
    {
    {
      /* This is the fallback solution if no 64bit type is available or if we
      /* This is the fallback solution if no 64bit type is available or if we
         are not supposed to spend much time on optimizations.  We select the
         are not supposed to spend much time on optimizations.  We select the
         bucket count using a fixed set of numbers.  */
         bucket count using a fixed set of numbers.  */
      for (i = 0; elf_buckets[i] != 0; i++)
      for (i = 0; elf_buckets[i] != 0; i++)
        {
        {
          best_size = elf_buckets[i];
          best_size = elf_buckets[i];
          if (dynsymcount < elf_buckets[i + 1])
          if (dynsymcount < elf_buckets[i + 1])
            break;
            break;
        }
        }
    }
    }
 
 
  /* Free the arrays we needed.  */
  /* Free the arrays we needed.  */
  free (hashcodes);
  free (hashcodes);
 
 
  return best_size;
  return best_size;
}
}
 
 
/* Set up the sizes and contents of the ELF dynamic sections.  This is
/* Set up the sizes and contents of the ELF dynamic sections.  This is
   called by the ELF linker emulation before_allocation routine.  We
   called by the ELF linker emulation before_allocation routine.  We
   must set the sizes of the sections before the linker sets the
   must set the sizes of the sections before the linker sets the
   addresses of the various sections.  */
   addresses of the various sections.  */
 
 
boolean
boolean
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
                                     filter_shlib,
                                     filter_shlib,
                                     auxiliary_filters, info, sinterpptr,
                                     auxiliary_filters, info, sinterpptr,
                                     verdefs)
                                     verdefs)
     bfd *output_bfd;
     bfd *output_bfd;
     const char *soname;
     const char *soname;
     const char *rpath;
     const char *rpath;
     const char *filter_shlib;
     const char *filter_shlib;
     const char * const *auxiliary_filters;
     const char * const *auxiliary_filters;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     asection **sinterpptr;
     asection **sinterpptr;
     struct bfd_elf_version_tree *verdefs;
     struct bfd_elf_version_tree *verdefs;
{
{
  bfd_size_type soname_indx;
  bfd_size_type soname_indx;
  bfd *dynobj;
  bfd *dynobj;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  struct elf_assign_sym_version_info asvinfo;
  struct elf_assign_sym_version_info asvinfo;
 
 
  *sinterpptr = NULL;
  *sinterpptr = NULL;
 
 
  soname_indx = (bfd_size_type) -1;
  soname_indx = (bfd_size_type) -1;
 
 
  if (info->hash->creator->flavour != bfd_target_elf_flavour)
  if (info->hash->creator->flavour != bfd_target_elf_flavour)
    return true;
    return true;
 
 
  if (! is_elf_hash_table (info))
  if (! is_elf_hash_table (info))
    return true;
    return true;
 
 
  /* Any syms created from now on start with -1 in
  /* Any syms created from now on start with -1 in
     got.refcount/offset and plt.refcount/offset.  */
     got.refcount/offset and plt.refcount/offset.  */
  elf_hash_table (info)->init_refcount = -1;
  elf_hash_table (info)->init_refcount = -1;
 
 
  /* The backend may have to create some sections regardless of whether
  /* The backend may have to create some sections regardless of whether
     we're dynamic or not.  */
     we're dynamic or not.  */
  bed = get_elf_backend_data (output_bfd);
  bed = get_elf_backend_data (output_bfd);
  if (bed->elf_backend_always_size_sections
  if (bed->elf_backend_always_size_sections
      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
    return false;
    return false;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  /* If there were no dynamic objects in the link, there is nothing to
  /* If there were no dynamic objects in the link, there is nothing to
     do here.  */
     do here.  */
  if (dynobj == NULL)
  if (dynobj == NULL)
    return true;
    return true;
 
 
  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
    return false;
    return false;
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      struct elf_info_failed eif;
      struct elf_info_failed eif;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      asection *dynstr;
      asection *dynstr;
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_expr *d;
      struct bfd_elf_version_expr *d;
      boolean all_defined;
      boolean all_defined;
 
 
      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
      BFD_ASSERT (*sinterpptr != NULL || info->shared);
      BFD_ASSERT (*sinterpptr != NULL || info->shared);
 
 
      if (soname != NULL)
      if (soname != NULL)
        {
        {
          soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
          soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                                             soname, true);
                                             soname, true);
          if (soname_indx == (bfd_size_type) -1
          if (soname_indx == (bfd_size_type) -1
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
                                          soname_indx))
                                          soname_indx))
            return false;
            return false;
        }
        }
 
 
      if (info->symbolic)
      if (info->symbolic)
        {
        {
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
                                       (bfd_vma) 0))
                                       (bfd_vma) 0))
            return false;
            return false;
          info->flags |= DF_SYMBOLIC;
          info->flags |= DF_SYMBOLIC;
        }
        }
 
 
      if (rpath != NULL)
      if (rpath != NULL)
        {
        {
          bfd_size_type indx;
          bfd_size_type indx;
 
 
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
                                      true);
                                      true);
          if (info->new_dtags)
          if (info->new_dtags)
            _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
            _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
          if (indx == (bfd_size_type) -1
          if (indx == (bfd_size_type) -1
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
              || (info->new_dtags
              || (info->new_dtags
                  && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
                  && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
                                              indx)))
                                              indx)))
            return false;
            return false;
        }
        }
 
 
      if (filter_shlib != NULL)
      if (filter_shlib != NULL)
        {
        {
          bfd_size_type indx;
          bfd_size_type indx;
 
 
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                                      filter_shlib, true);
                                      filter_shlib, true);
          if (indx == (bfd_size_type) -1
          if (indx == (bfd_size_type) -1
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
            return false;
            return false;
        }
        }
 
 
      if (auxiliary_filters != NULL)
      if (auxiliary_filters != NULL)
        {
        {
          const char * const *p;
          const char * const *p;
 
 
          for (p = auxiliary_filters; *p != NULL; p++)
          for (p = auxiliary_filters; *p != NULL; p++)
            {
            {
              bfd_size_type indx;
              bfd_size_type indx;
 
 
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                                          *p, true);
                                          *p, true);
              if (indx == (bfd_size_type) -1
              if (indx == (bfd_size_type) -1
                  || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
                  || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
                                              indx))
                                              indx))
                return false;
                return false;
            }
            }
        }
        }
 
 
      eif.info = info;
      eif.info = info;
      eif.verdefs = verdefs;
      eif.verdefs = verdefs;
      eif.failed = false;
      eif.failed = false;
 
 
      /* If we are supposed to export all symbols into the dynamic symbol
      /* If we are supposed to export all symbols into the dynamic symbol
         table (this is not the normal case), then do so.  */
         table (this is not the normal case), then do so.  */
      if (info->export_dynamic)
      if (info->export_dynamic)
        {
        {
          elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
          elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
                                  (PTR) &eif);
                                  (PTR) &eif);
          if (eif.failed)
          if (eif.failed)
            return false;
            return false;
        }
        }
 
 
      /* Make all global versions with definiton.  */
      /* Make all global versions with definiton.  */
      for (t = verdefs; t != NULL; t = t->next)
      for (t = verdefs; t != NULL; t = t->next)
        for (d = t->globals; d != NULL; d = d->next)
        for (d = t->globals; d != NULL; d = d->next)
          if (!d->symver && strchr (d->pattern, '*') == NULL)
          if (!d->symver && strchr (d->pattern, '*') == NULL)
            {
            {
              const char *verstr, *name;
              const char *verstr, *name;
              size_t namelen, verlen, newlen;
              size_t namelen, verlen, newlen;
              char *newname, *p;
              char *newname, *p;
              struct elf_link_hash_entry *newh;
              struct elf_link_hash_entry *newh;
 
 
              name = d->pattern;
              name = d->pattern;
              namelen = strlen (name);
              namelen = strlen (name);
              verstr = t->name;
              verstr = t->name;
              verlen = strlen (verstr);
              verlen = strlen (verstr);
              newlen = namelen + verlen + 3;
              newlen = namelen + verlen + 3;
 
 
              newname = (char *) bfd_malloc ((bfd_size_type) newlen);
              newname = (char *) bfd_malloc ((bfd_size_type) newlen);
              if (newname == NULL)
              if (newname == NULL)
                return false;
                return false;
              memcpy (newname, name, namelen);
              memcpy (newname, name, namelen);
 
 
              /* Check the hidden versioned definition.  */
              /* Check the hidden versioned definition.  */
              p = newname + namelen;
              p = newname + namelen;
              *p++ = ELF_VER_CHR;
              *p++ = ELF_VER_CHR;
              memcpy (p, verstr, verlen + 1);
              memcpy (p, verstr, verlen + 1);
              newh = elf_link_hash_lookup (elf_hash_table (info),
              newh = elf_link_hash_lookup (elf_hash_table (info),
                                           newname, false, false,
                                           newname, false, false,
                                           false);
                                           false);
              if (newh == NULL
              if (newh == NULL
                  || (newh->root.type != bfd_link_hash_defined
                  || (newh->root.type != bfd_link_hash_defined
                      && newh->root.type != bfd_link_hash_defweak))
                      && newh->root.type != bfd_link_hash_defweak))
                {
                {
                  /* Check the default versioned definition.  */
                  /* Check the default versioned definition.  */
                  *p++ = ELF_VER_CHR;
                  *p++ = ELF_VER_CHR;
                  memcpy (p, verstr, verlen + 1);
                  memcpy (p, verstr, verlen + 1);
                  newh = elf_link_hash_lookup (elf_hash_table (info),
                  newh = elf_link_hash_lookup (elf_hash_table (info),
                                               newname, false, false,
                                               newname, false, false,
                                               false);
                                               false);
                }
                }
              free (newname);
              free (newname);
 
 
              /* Mark this version if there is a definition and it is
              /* Mark this version if there is a definition and it is
                 not defined in a shared object.  */
                 not defined in a shared object.  */
              if (newh != NULL
              if (newh != NULL
                  && ((newh->elf_link_hash_flags
                  && ((newh->elf_link_hash_flags
                       & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
                       & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
                  && (newh->root.type == bfd_link_hash_defined
                  && (newh->root.type == bfd_link_hash_defined
                      || newh->root.type == bfd_link_hash_defweak))
                      || newh->root.type == bfd_link_hash_defweak))
                d->symver = 1;
                d->symver = 1;
            }
            }
 
 
      /* Attach all the symbols to their version information.  */
      /* Attach all the symbols to their version information.  */
      asvinfo.output_bfd = output_bfd;
      asvinfo.output_bfd = output_bfd;
      asvinfo.info = info;
      asvinfo.info = info;
      asvinfo.verdefs = verdefs;
      asvinfo.verdefs = verdefs;
      asvinfo.failed = false;
      asvinfo.failed = false;
 
 
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              elf_link_assign_sym_version,
                              elf_link_assign_sym_version,
                              (PTR) &asvinfo);
                              (PTR) &asvinfo);
      if (asvinfo.failed)
      if (asvinfo.failed)
        return false;
        return false;
 
 
      if (!info->allow_undefined_version)
      if (!info->allow_undefined_version)
        {
        {
          /* Check if all global versions have a definiton.  */
          /* Check if all global versions have a definiton.  */
          all_defined = true;
          all_defined = true;
          for (t = verdefs; t != NULL; t = t->next)
          for (t = verdefs; t != NULL; t = t->next)
            for (d = t->globals; d != NULL; d = d->next)
            for (d = t->globals; d != NULL; d = d->next)
              if (!d->symver && !d->script
              if (!d->symver && !d->script
                  && strchr (d->pattern, '*') == NULL)
                  && strchr (d->pattern, '*') == NULL)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%s: undefined version: %s"),
                    (_("%s: undefined version: %s"),
                     d->pattern, t->name);
                     d->pattern, t->name);
                  all_defined = false;
                  all_defined = false;
                }
                }
 
 
          if (!all_defined)
          if (!all_defined)
            {
            {
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return false;
              return false;
            }
            }
        }
        }
 
 
      /* Find all symbols which were defined in a dynamic object and make
      /* Find all symbols which were defined in a dynamic object and make
         the backend pick a reasonable value for them.  */
         the backend pick a reasonable value for them.  */
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              elf_adjust_dynamic_symbol,
                              elf_adjust_dynamic_symbol,
                              (PTR) &eif);
                              (PTR) &eif);
      if (eif.failed)
      if (eif.failed)
        return false;
        return false;
 
 
      /* Add some entries to the .dynamic section.  We fill in some of the
      /* Add some entries to the .dynamic section.  We fill in some of the
         values later, in elf_bfd_final_link, but we must add the entries
         values later, in elf_bfd_final_link, but we must add the entries
         now so that we know the final size of the .dynamic section.  */
         now so that we know the final size of the .dynamic section.  */
 
 
      /* If there are initialization and/or finalization functions to
      /* If there are initialization and/or finalization functions to
         call then add the corresponding DT_INIT/DT_FINI entries.  */
         call then add the corresponding DT_INIT/DT_FINI entries.  */
      h = (info->init_function
      h = (info->init_function
           ? elf_link_hash_lookup (elf_hash_table (info),
           ? elf_link_hash_lookup (elf_hash_table (info),
                                   info->init_function, false,
                                   info->init_function, false,
                                   false, false)
                                   false, false)
           : NULL);
           : NULL);
      if (h != NULL
      if (h != NULL
          && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
          && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
                                        | ELF_LINK_HASH_DEF_REGULAR)) != 0)
                                        | ELF_LINK_HASH_DEF_REGULAR)) != 0)
        {
        {
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
            return false;
            return false;
        }
        }
      h = (info->fini_function
      h = (info->fini_function
           ? elf_link_hash_lookup (elf_hash_table (info),
           ? elf_link_hash_lookup (elf_hash_table (info),
                                   info->fini_function, false,
                                   info->fini_function, false,
                                   false, false)
                                   false, false)
           : NULL);
           : NULL);
      if (h != NULL
      if (h != NULL
          && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
          && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
                                        | ELF_LINK_HASH_DEF_REGULAR)) != 0)
                                        | ELF_LINK_HASH_DEF_REGULAR)) != 0)
        {
        {
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
            return false;
            return false;
        }
        }
 
 
      if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
      if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
        {
        {
          /* DT_PREINIT_ARRAY is not allowed in shared library.  */
          /* DT_PREINIT_ARRAY is not allowed in shared library.  */
          if (info->shared)
          if (info->shared)
            {
            {
              bfd *sub;
              bfd *sub;
              asection *o;
              asection *o;
 
 
              for (sub = info->input_bfds; sub != NULL;
              for (sub = info->input_bfds; sub != NULL;
                   sub = sub->link_next)
                   sub = sub->link_next)
                for (o = sub->sections; o != NULL; o = o->next)
                for (o = sub->sections; o != NULL; o = o->next)
                  if (elf_section_data (o)->this_hdr.sh_type
                  if (elf_section_data (o)->this_hdr.sh_type
                      == SHT_PREINIT_ARRAY)
                      == SHT_PREINIT_ARRAY)
                    {
                    {
                      (*_bfd_error_handler)
                      (*_bfd_error_handler)
                        (_("%s: .preinit_array section is not allowed in DSO"),
                        (_("%s: .preinit_array section is not allowed in DSO"),
                         bfd_archive_filename (sub));
                         bfd_archive_filename (sub));
                      break;
                      break;
                    }
                    }
 
 
              bfd_set_error (bfd_error_nonrepresentable_section);
              bfd_set_error (bfd_error_nonrepresentable_section);
              return false;
              return false;
            }
            }
 
 
          if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
          if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
                                      (bfd_vma) 0)
                                      (bfd_vma) 0)
              || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
              || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
                                         (bfd_vma) 0))
                                         (bfd_vma) 0))
            return false;
            return false;
        }
        }
      if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
      if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
        {
        {
          if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
          if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
                                      (bfd_vma) 0)
                                      (bfd_vma) 0)
              || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
              || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
                                         (bfd_vma) 0))
                                         (bfd_vma) 0))
            return false;
            return false;
        }
        }
      if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
      if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
        {
        {
          if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
          if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
                                      (bfd_vma) 0)
                                      (bfd_vma) 0)
              || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
              || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
                                         (bfd_vma) 0))
                                         (bfd_vma) 0))
            return false;
            return false;
        }
        }
 
 
      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
      /* If .dynstr is excluded from the link, we don't want any of
      /* If .dynstr is excluded from the link, we don't want any of
         these tags.  Strictly, we should be checking each section
         these tags.  Strictly, we should be checking each section
         individually;  This quick check covers for the case where
         individually;  This quick check covers for the case where
         someone does a /DISCARD/ : { *(*) }.  */
         someone does a /DISCARD/ : { *(*) }.  */
      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
        {
        {
          bfd_size_type strsize;
          bfd_size_type strsize;
 
 
          strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
          strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
                                          (bfd_vma) sizeof (Elf_External_Sym)))
                                          (bfd_vma) sizeof (Elf_External_Sym)))
            return false;
            return false;
        }
        }
    }
    }
 
 
  /* The backend must work out the sizes of all the other dynamic
  /* The backend must work out the sizes of all the other dynamic
     sections.  */
     sections.  */
  if (bed->elf_backend_size_dynamic_sections
  if (bed->elf_backend_size_dynamic_sections
      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
    return false;
    return false;
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      bfd_size_type dynsymcount;
      bfd_size_type dynsymcount;
      asection *s;
      asection *s;
      size_t bucketcount = 0;
      size_t bucketcount = 0;
      size_t hash_entry_size;
      size_t hash_entry_size;
      unsigned int dtagcount;
      unsigned int dtagcount;
 
 
      /* Set up the version definition section.  */
      /* Set up the version definition section.  */
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      /* We may have created additional version definitions if we are
      /* We may have created additional version definitions if we are
         just linking a regular application.  */
         just linking a regular application.  */
      verdefs = asvinfo.verdefs;
      verdefs = asvinfo.verdefs;
 
 
      /* Skip anonymous version tag.  */
      /* Skip anonymous version tag.  */
      if (verdefs != NULL && verdefs->vernum == 0)
      if (verdefs != NULL && verdefs->vernum == 0)
        verdefs = verdefs->next;
        verdefs = verdefs->next;
 
 
      if (verdefs == NULL)
      if (verdefs == NULL)
        _bfd_strip_section_from_output (info, s);
        _bfd_strip_section_from_output (info, s);
      else
      else
        {
        {
          unsigned int cdefs;
          unsigned int cdefs;
          bfd_size_type size;
          bfd_size_type size;
          struct bfd_elf_version_tree *t;
          struct bfd_elf_version_tree *t;
          bfd_byte *p;
          bfd_byte *p;
          Elf_Internal_Verdef def;
          Elf_Internal_Verdef def;
          Elf_Internal_Verdaux defaux;
          Elf_Internal_Verdaux defaux;
 
 
          cdefs = 0;
          cdefs = 0;
          size = 0;
          size = 0;
 
 
          /* Make space for the base version.  */
          /* Make space for the base version.  */
          size += sizeof (Elf_External_Verdef);
          size += sizeof (Elf_External_Verdef);
          size += sizeof (Elf_External_Verdaux);
          size += sizeof (Elf_External_Verdaux);
          ++cdefs;
          ++cdefs;
 
 
          for (t = verdefs; t != NULL; t = t->next)
          for (t = verdefs; t != NULL; t = t->next)
            {
            {
              struct bfd_elf_version_deps *n;
              struct bfd_elf_version_deps *n;
 
 
              size += sizeof (Elf_External_Verdef);
              size += sizeof (Elf_External_Verdef);
              size += sizeof (Elf_External_Verdaux);
              size += sizeof (Elf_External_Verdaux);
              ++cdefs;
              ++cdefs;
 
 
              for (n = t->deps; n != NULL; n = n->next)
              for (n = t->deps; n != NULL; n = n->next)
                size += sizeof (Elf_External_Verdaux);
                size += sizeof (Elf_External_Verdaux);
            }
            }
 
 
          s->_raw_size = size;
          s->_raw_size = size;
          s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
          s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
          if (s->contents == NULL && s->_raw_size != 0)
          if (s->contents == NULL && s->_raw_size != 0)
            return false;
            return false;
 
 
          /* Fill in the version definition section.  */
          /* Fill in the version definition section.  */
 
 
          p = s->contents;
          p = s->contents;
 
 
          def.vd_version = VER_DEF_CURRENT;
          def.vd_version = VER_DEF_CURRENT;
          def.vd_flags = VER_FLG_BASE;
          def.vd_flags = VER_FLG_BASE;
          def.vd_ndx = 1;
          def.vd_ndx = 1;
          def.vd_cnt = 1;
          def.vd_cnt = 1;
          def.vd_aux = sizeof (Elf_External_Verdef);
          def.vd_aux = sizeof (Elf_External_Verdef);
          def.vd_next = (sizeof (Elf_External_Verdef)
          def.vd_next = (sizeof (Elf_External_Verdef)
                         + sizeof (Elf_External_Verdaux));
                         + sizeof (Elf_External_Verdaux));
 
 
          if (soname_indx != (bfd_size_type) -1)
          if (soname_indx != (bfd_size_type) -1)
            {
            {
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
                                      soname_indx);
                                      soname_indx);
              def.vd_hash = bfd_elf_hash (soname);
              def.vd_hash = bfd_elf_hash (soname);
              defaux.vda_name = soname_indx;
              defaux.vda_name = soname_indx;
            }
            }
          else
          else
            {
            {
              const char *name;
              const char *name;
              bfd_size_type indx;
              bfd_size_type indx;
 
 
              name = basename (output_bfd->filename);
              name = basename (output_bfd->filename);
              def.vd_hash = bfd_elf_hash (name);
              def.vd_hash = bfd_elf_hash (name);
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                                          name, false);
                                          name, false);
              if (indx == (bfd_size_type) -1)
              if (indx == (bfd_size_type) -1)
                return false;
                return false;
              defaux.vda_name = indx;
              defaux.vda_name = indx;
            }
            }
          defaux.vda_next = 0;
          defaux.vda_next = 0;
 
 
          _bfd_elf_swap_verdef_out (output_bfd, &def,
          _bfd_elf_swap_verdef_out (output_bfd, &def,
                                    (Elf_External_Verdef *) p);
                                    (Elf_External_Verdef *) p);
          p += sizeof (Elf_External_Verdef);
          p += sizeof (Elf_External_Verdef);
          _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
          _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
                                     (Elf_External_Verdaux *) p);
                                     (Elf_External_Verdaux *) p);
          p += sizeof (Elf_External_Verdaux);
          p += sizeof (Elf_External_Verdaux);
 
 
          for (t = verdefs; t != NULL; t = t->next)
          for (t = verdefs; t != NULL; t = t->next)
            {
            {
              unsigned int cdeps;
              unsigned int cdeps;
              struct bfd_elf_version_deps *n;
              struct bfd_elf_version_deps *n;
              struct elf_link_hash_entry *h;
              struct elf_link_hash_entry *h;
 
 
              cdeps = 0;
              cdeps = 0;
              for (n = t->deps; n != NULL; n = n->next)
              for (n = t->deps; n != NULL; n = n->next)
                ++cdeps;
                ++cdeps;
 
 
              /* Add a symbol representing this version.  */
              /* Add a symbol representing this version.  */
              h = NULL;
              h = NULL;
              if (! (_bfd_generic_link_add_one_symbol
              if (! (_bfd_generic_link_add_one_symbol
                     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
                     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
                      (bfd_vma) 0, (const char *) NULL, false,
                      (bfd_vma) 0, (const char *) NULL, false,
                      get_elf_backend_data (dynobj)->collect,
                      get_elf_backend_data (dynobj)->collect,
                      (struct bfd_link_hash_entry **) &h)))
                      (struct bfd_link_hash_entry **) &h)))
                return false;
                return false;
              h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
              h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
              h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
              h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
              h->type = STT_OBJECT;
              h->type = STT_OBJECT;
              h->verinfo.vertree = t;
              h->verinfo.vertree = t;
 
 
              if (! _bfd_elf_link_record_dynamic_symbol (info, h))
              if (! _bfd_elf_link_record_dynamic_symbol (info, h))
                return false;
                return false;
 
 
              def.vd_version = VER_DEF_CURRENT;
              def.vd_version = VER_DEF_CURRENT;
              def.vd_flags = 0;
              def.vd_flags = 0;
              if (t->globals == NULL && t->locals == NULL && ! t->used)
              if (t->globals == NULL && t->locals == NULL && ! t->used)
                def.vd_flags |= VER_FLG_WEAK;
                def.vd_flags |= VER_FLG_WEAK;
              def.vd_ndx = t->vernum + 1;
              def.vd_ndx = t->vernum + 1;
              def.vd_cnt = cdeps + 1;
              def.vd_cnt = cdeps + 1;
              def.vd_hash = bfd_elf_hash (t->name);
              def.vd_hash = bfd_elf_hash (t->name);
              def.vd_aux = sizeof (Elf_External_Verdef);
              def.vd_aux = sizeof (Elf_External_Verdef);
              if (t->next != NULL)
              if (t->next != NULL)
                def.vd_next = (sizeof (Elf_External_Verdef)
                def.vd_next = (sizeof (Elf_External_Verdef)
                               + (cdeps + 1) * sizeof (Elf_External_Verdaux));
                               + (cdeps + 1) * sizeof (Elf_External_Verdaux));
              else
              else
                def.vd_next = 0;
                def.vd_next = 0;
 
 
              _bfd_elf_swap_verdef_out (output_bfd, &def,
              _bfd_elf_swap_verdef_out (output_bfd, &def,
                                        (Elf_External_Verdef *) p);
                                        (Elf_External_Verdef *) p);
              p += sizeof (Elf_External_Verdef);
              p += sizeof (Elf_External_Verdef);
 
 
              defaux.vda_name = h->dynstr_index;
              defaux.vda_name = h->dynstr_index;
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
                                      h->dynstr_index);
                                      h->dynstr_index);
              if (t->deps == NULL)
              if (t->deps == NULL)
                defaux.vda_next = 0;
                defaux.vda_next = 0;
              else
              else
                defaux.vda_next = sizeof (Elf_External_Verdaux);
                defaux.vda_next = sizeof (Elf_External_Verdaux);
              t->name_indx = defaux.vda_name;
              t->name_indx = defaux.vda_name;
 
 
              _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
              _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
                                         (Elf_External_Verdaux *) p);
                                         (Elf_External_Verdaux *) p);
              p += sizeof (Elf_External_Verdaux);
              p += sizeof (Elf_External_Verdaux);
 
 
              for (n = t->deps; n != NULL; n = n->next)
              for (n = t->deps; n != NULL; n = n->next)
                {
                {
                  if (n->version_needed == NULL)
                  if (n->version_needed == NULL)
                    {
                    {
                      /* This can happen if there was an error in the
                      /* This can happen if there was an error in the
                         version script.  */
                         version script.  */
                      defaux.vda_name = 0;
                      defaux.vda_name = 0;
                    }
                    }
                  else
                  else
                    {
                    {
                      defaux.vda_name = n->version_needed->name_indx;
                      defaux.vda_name = n->version_needed->name_indx;
                      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
                      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
                                              defaux.vda_name);
                                              defaux.vda_name);
                    }
                    }
                  if (n->next == NULL)
                  if (n->next == NULL)
                    defaux.vda_next = 0;
                    defaux.vda_next = 0;
                  else
                  else
                    defaux.vda_next = sizeof (Elf_External_Verdaux);
                    defaux.vda_next = sizeof (Elf_External_Verdaux);
 
 
                  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
                  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
                                             (Elf_External_Verdaux *) p);
                                             (Elf_External_Verdaux *) p);
                  p += sizeof (Elf_External_Verdaux);
                  p += sizeof (Elf_External_Verdaux);
                }
                }
            }
            }
 
 
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
              || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
                                          (bfd_vma) cdefs))
                                          (bfd_vma) cdefs))
            return false;
            return false;
 
 
          elf_tdata (output_bfd)->cverdefs = cdefs;
          elf_tdata (output_bfd)->cverdefs = cdefs;
        }
        }
 
 
      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
        {
        {
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
            return false;
            return false;
        }
        }
 
 
      if (info->flags_1)
      if (info->flags_1)
        {
        {
          if (! info->shared)
          if (! info->shared)
            info->flags_1 &= ~ (DF_1_INITFIRST
            info->flags_1 &= ~ (DF_1_INITFIRST
                                | DF_1_NODELETE
                                | DF_1_NODELETE
                                | DF_1_NOOPEN);
                                | DF_1_NOOPEN);
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
                                       info->flags_1))
                                       info->flags_1))
            return false;
            return false;
        }
        }
 
 
      /* Work out the size of the version reference section.  */
      /* Work out the size of the version reference section.  */
 
 
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
      {
      {
        struct elf_find_verdep_info sinfo;
        struct elf_find_verdep_info sinfo;
 
 
        sinfo.output_bfd = output_bfd;
        sinfo.output_bfd = output_bfd;
        sinfo.info = info;
        sinfo.info = info;
        sinfo.vers = elf_tdata (output_bfd)->cverdefs;
        sinfo.vers = elf_tdata (output_bfd)->cverdefs;
        if (sinfo.vers == 0)
        if (sinfo.vers == 0)
          sinfo.vers = 1;
          sinfo.vers = 1;
        sinfo.failed = false;
        sinfo.failed = false;
 
 
        elf_link_hash_traverse (elf_hash_table (info),
        elf_link_hash_traverse (elf_hash_table (info),
                                elf_link_find_version_dependencies,
                                elf_link_find_version_dependencies,
                                (PTR) &sinfo);
                                (PTR) &sinfo);
 
 
        if (elf_tdata (output_bfd)->verref == NULL)
        if (elf_tdata (output_bfd)->verref == NULL)
          _bfd_strip_section_from_output (info, s);
          _bfd_strip_section_from_output (info, s);
        else
        else
          {
          {
            Elf_Internal_Verneed *t;
            Elf_Internal_Verneed *t;
            unsigned int size;
            unsigned int size;
            unsigned int crefs;
            unsigned int crefs;
            bfd_byte *p;
            bfd_byte *p;
 
 
            /* Build the version definition section.  */
            /* Build the version definition section.  */
            size = 0;
            size = 0;
            crefs = 0;
            crefs = 0;
            for (t = elf_tdata (output_bfd)->verref;
            for (t = elf_tdata (output_bfd)->verref;
                 t != NULL;
                 t != NULL;
                 t = t->vn_nextref)
                 t = t->vn_nextref)
              {
              {
                Elf_Internal_Vernaux *a;
                Elf_Internal_Vernaux *a;
 
 
                size += sizeof (Elf_External_Verneed);
                size += sizeof (Elf_External_Verneed);
                ++crefs;
                ++crefs;
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                  size += sizeof (Elf_External_Vernaux);
                  size += sizeof (Elf_External_Vernaux);
              }
              }
 
 
            s->_raw_size = size;
            s->_raw_size = size;
            s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
            s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
            if (s->contents == NULL)
            if (s->contents == NULL)
              return false;
              return false;
 
 
            p = s->contents;
            p = s->contents;
            for (t = elf_tdata (output_bfd)->verref;
            for (t = elf_tdata (output_bfd)->verref;
                 t != NULL;
                 t != NULL;
                 t = t->vn_nextref)
                 t = t->vn_nextref)
              {
              {
                unsigned int caux;
                unsigned int caux;
                Elf_Internal_Vernaux *a;
                Elf_Internal_Vernaux *a;
                bfd_size_type indx;
                bfd_size_type indx;
 
 
                caux = 0;
                caux = 0;
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                  ++caux;
                  ++caux;
 
 
                t->vn_version = VER_NEED_CURRENT;
                t->vn_version = VER_NEED_CURRENT;
                t->vn_cnt = caux;
                t->vn_cnt = caux;
                indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                                            elf_dt_name (t->vn_bfd) != NULL
                                            elf_dt_name (t->vn_bfd) != NULL
                                            ? elf_dt_name (t->vn_bfd)
                                            ? elf_dt_name (t->vn_bfd)
                                            : basename (t->vn_bfd->filename),
                                            : basename (t->vn_bfd->filename),
                                            false);
                                            false);
                if (indx == (bfd_size_type) -1)
                if (indx == (bfd_size_type) -1)
                  return false;
                  return false;
                t->vn_file = indx;
                t->vn_file = indx;
                t->vn_aux = sizeof (Elf_External_Verneed);
                t->vn_aux = sizeof (Elf_External_Verneed);
                if (t->vn_nextref == NULL)
                if (t->vn_nextref == NULL)
                  t->vn_next = 0;
                  t->vn_next = 0;
                else
                else
                  t->vn_next = (sizeof (Elf_External_Verneed)
                  t->vn_next = (sizeof (Elf_External_Verneed)
                                + caux * sizeof (Elf_External_Vernaux));
                                + caux * sizeof (Elf_External_Vernaux));
 
 
                _bfd_elf_swap_verneed_out (output_bfd, t,
                _bfd_elf_swap_verneed_out (output_bfd, t,
                                           (Elf_External_Verneed *) p);
                                           (Elf_External_Verneed *) p);
                p += sizeof (Elf_External_Verneed);
                p += sizeof (Elf_External_Verneed);
 
 
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
                  {
                  {
                    a->vna_hash = bfd_elf_hash (a->vna_nodename);
                    a->vna_hash = bfd_elf_hash (a->vna_nodename);
                    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
                                                a->vna_nodename, false);
                                                a->vna_nodename, false);
                    if (indx == (bfd_size_type) -1)
                    if (indx == (bfd_size_type) -1)
                      return false;
                      return false;
                    a->vna_name = indx;
                    a->vna_name = indx;
                    if (a->vna_nextptr == NULL)
                    if (a->vna_nextptr == NULL)
                      a->vna_next = 0;
                      a->vna_next = 0;
                    else
                    else
                      a->vna_next = sizeof (Elf_External_Vernaux);
                      a->vna_next = sizeof (Elf_External_Vernaux);
 
 
                    _bfd_elf_swap_vernaux_out (output_bfd, a,
                    _bfd_elf_swap_vernaux_out (output_bfd, a,
                                               (Elf_External_Vernaux *) p);
                                               (Elf_External_Vernaux *) p);
                    p += sizeof (Elf_External_Vernaux);
                    p += sizeof (Elf_External_Vernaux);
                  }
                  }
              }
              }
 
 
            if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
            if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
                                         (bfd_vma) 0)
                                         (bfd_vma) 0)
                || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
                || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
                                            (bfd_vma) crefs))
                                            (bfd_vma) crefs))
              return false;
              return false;
 
 
            elf_tdata (output_bfd)->cverrefs = crefs;
            elf_tdata (output_bfd)->cverrefs = crefs;
          }
          }
      }
      }
 
 
      /* Assign dynsym indicies.  In a shared library we generate a
      /* Assign dynsym indicies.  In a shared library we generate a
         section symbol for each output section, which come first.
         section symbol for each output section, which come first.
         Next come all of the back-end allocated local dynamic syms,
         Next come all of the back-end allocated local dynamic syms,
         followed by the rest of the global symbols.  */
         followed by the rest of the global symbols.  */
 
 
      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
 
 
      /* Work out the size of the symbol version section.  */
      /* Work out the size of the symbol version section.  */
      s = bfd_get_section_by_name (dynobj, ".gnu.version");
      s = bfd_get_section_by_name (dynobj, ".gnu.version");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
      if (dynsymcount == 0
      if (dynsymcount == 0
          || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
          || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
        {
        {
          _bfd_strip_section_from_output (info, s);
          _bfd_strip_section_from_output (info, s);
          /* The DYNSYMCOUNT might have changed if we were going to
          /* The DYNSYMCOUNT might have changed if we were going to
             output a dynamic symbol table entry for S.  */
             output a dynamic symbol table entry for S.  */
          dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
          dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
        }
        }
      else
      else
        {
        {
          s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
          s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
          s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
          s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
          if (s->contents == NULL)
          if (s->contents == NULL)
            return false;
            return false;
 
 
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
          if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
            return false;
            return false;
        }
        }
 
 
      /* Set the size of the .dynsym and .hash sections.  We counted
      /* Set the size of the .dynsym and .hash sections.  We counted
         the number of dynamic symbols in elf_link_add_object_symbols.
         the number of dynamic symbols in elf_link_add_object_symbols.
         We will build the contents of .dynsym and .hash when we build
         We will build the contents of .dynsym and .hash when we build
         the final symbol table, because until then we do not know the
         the final symbol table, because until then we do not know the
         correct value to give the symbols.  We built the .dynstr
         correct value to give the symbols.  We built the .dynstr
         section as we went along in elf_link_add_object_symbols.  */
         section as we went along in elf_link_add_object_symbols.  */
      s = bfd_get_section_by_name (dynobj, ".dynsym");
      s = bfd_get_section_by_name (dynobj, ".dynsym");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
      s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
      s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
      s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
      s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
      if (s->contents == NULL && s->_raw_size != 0)
      if (s->contents == NULL && s->_raw_size != 0)
        return false;
        return false;
 
 
      if (dynsymcount != 0)
      if (dynsymcount != 0)
        {
        {
          Elf_Internal_Sym isym;
          Elf_Internal_Sym isym;
 
 
          /* The first entry in .dynsym is a dummy symbol.  */
          /* The first entry in .dynsym is a dummy symbol.  */
          isym.st_value = 0;
          isym.st_value = 0;
          isym.st_size = 0;
          isym.st_size = 0;
          isym.st_name = 0;
          isym.st_name = 0;
          isym.st_info = 0;
          isym.st_info = 0;
          isym.st_other = 0;
          isym.st_other = 0;
          isym.st_shndx = 0;
          isym.st_shndx = 0;
          elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
          elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
        }
        }
 
 
      /* Compute the size of the hashing table.  As a side effect this
      /* Compute the size of the hashing table.  As a side effect this
         computes the hash values for all the names we export.  */
         computes the hash values for all the names we export.  */
      bucketcount = compute_bucket_count (info);
      bucketcount = compute_bucket_count (info);
 
 
      s = bfd_get_section_by_name (dynobj, ".hash");
      s = bfd_get_section_by_name (dynobj, ".hash");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
      hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
      hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
      s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
      s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
      s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
      s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
      if (s->contents == NULL)
      if (s->contents == NULL)
        return false;
        return false;
 
 
      bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
      bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
               s->contents);
               s->contents);
      bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
      bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
               s->contents + hash_entry_size);
               s->contents + hash_entry_size);
 
 
      elf_hash_table (info)->bucketcount = bucketcount;
      elf_hash_table (info)->bucketcount = bucketcount;
 
 
      s = bfd_get_section_by_name (dynobj, ".dynstr");
      s = bfd_get_section_by_name (dynobj, ".dynstr");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      elf_finalize_dynstr (output_bfd, info);
      elf_finalize_dynstr (output_bfd, info);
 
 
      s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
      s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
 
 
      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
        if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
        if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
          return false;
          return false;
    }
    }
 
 
  return true;
  return true;
}
}


/* This function is used to adjust offsets into .dynstr for
/* This function is used to adjust offsets into .dynstr for
   dynamic symbols.  This is called via elf_link_hash_traverse.  */
   dynamic symbols.  This is called via elf_link_hash_traverse.  */
 
 
static boolean elf_adjust_dynstr_offsets
static boolean elf_adjust_dynstr_offsets
PARAMS ((struct elf_link_hash_entry *, PTR));
PARAMS ((struct elf_link_hash_entry *, PTR));
 
 
static boolean
static boolean
elf_adjust_dynstr_offsets (h, data)
elf_adjust_dynstr_offsets (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
  struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  if (h->dynindx != -1)
  if (h->dynindx != -1)
    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
  return true;
  return true;
}
}
 
 
/* Assign string offsets in .dynstr, update all structures referencing
/* Assign string offsets in .dynstr, update all structures referencing
   them.  */
   them.  */
 
 
static boolean
static boolean
elf_finalize_dynstr (output_bfd, info)
elf_finalize_dynstr (output_bfd, info)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  struct elf_link_local_dynamic_entry *entry;
  struct elf_link_local_dynamic_entry *entry;
  struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
  struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
  bfd *dynobj = elf_hash_table (info)->dynobj;
  bfd *dynobj = elf_hash_table (info)->dynobj;
  asection *sdyn;
  asection *sdyn;
  bfd_size_type size;
  bfd_size_type size;
  Elf_External_Dyn *dyncon, *dynconend;
  Elf_External_Dyn *dyncon, *dynconend;
 
 
  _bfd_elf_strtab_finalize (dynstr);
  _bfd_elf_strtab_finalize (dynstr);
  size = _bfd_elf_strtab_size (dynstr);
  size = _bfd_elf_strtab_size (dynstr);
 
 
  /* Update all .dynamic entries referencing .dynstr strings.  */
  /* Update all .dynamic entries referencing .dynstr strings.  */
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  BFD_ASSERT (sdyn != NULL);
  BFD_ASSERT (sdyn != NULL);
 
 
  dyncon = (Elf_External_Dyn *) sdyn->contents;
  dyncon = (Elf_External_Dyn *) sdyn->contents;
  dynconend = (Elf_External_Dyn *) (sdyn->contents +
  dynconend = (Elf_External_Dyn *) (sdyn->contents +
                                    sdyn->_raw_size);
                                    sdyn->_raw_size);
  for (; dyncon < dynconend; dyncon++)
  for (; dyncon < dynconend; dyncon++)
    {
    {
      Elf_Internal_Dyn dyn;
      Elf_Internal_Dyn dyn;
 
 
      elf_swap_dyn_in (dynobj, dyncon, & dyn);
      elf_swap_dyn_in (dynobj, dyncon, & dyn);
      switch (dyn.d_tag)
      switch (dyn.d_tag)
        {
        {
        case DT_STRSZ:
        case DT_STRSZ:
          dyn.d_un.d_val = size;
          dyn.d_un.d_val = size;
          elf_swap_dyn_out (dynobj, & dyn, dyncon);
          elf_swap_dyn_out (dynobj, & dyn, dyncon);
          break;
          break;
        case DT_NEEDED:
        case DT_NEEDED:
        case DT_SONAME:
        case DT_SONAME:
        case DT_RPATH:
        case DT_RPATH:
        case DT_RUNPATH:
        case DT_RUNPATH:
        case DT_FILTER:
        case DT_FILTER:
        case DT_AUXILIARY:
        case DT_AUXILIARY:
          dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
          dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
          elf_swap_dyn_out (dynobj, & dyn, dyncon);
          elf_swap_dyn_out (dynobj, & dyn, dyncon);
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  /* Now update local dynamic symbols.  */
  /* Now update local dynamic symbols.  */
  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
                                                  entry->isym.st_name);
                                                  entry->isym.st_name);
 
 
  /* And the rest of dynamic symbols.  */
  /* And the rest of dynamic symbols.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_adjust_dynstr_offsets, dynstr);
                          elf_adjust_dynstr_offsets, dynstr);
 
 
  /* Adjust version definitions.  */
  /* Adjust version definitions.  */
  if (elf_tdata (output_bfd)->cverdefs)
  if (elf_tdata (output_bfd)->cverdefs)
    {
    {
      asection *s;
      asection *s;
      bfd_byte *p;
      bfd_byte *p;
      bfd_size_type i;
      bfd_size_type i;
      Elf_Internal_Verdef def;
      Elf_Internal_Verdef def;
      Elf_Internal_Verdaux defaux;
      Elf_Internal_Verdaux defaux;
 
 
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
      p = (bfd_byte *) s->contents;
      p = (bfd_byte *) s->contents;
      do
      do
        {
        {
          _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
          _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
                                   &def);
                                   &def);
          p += sizeof (Elf_External_Verdef);
          p += sizeof (Elf_External_Verdef);
          for (i = 0; i < def.vd_cnt; ++i)
          for (i = 0; i < def.vd_cnt; ++i)
            {
            {
              _bfd_elf_swap_verdaux_in (output_bfd,
              _bfd_elf_swap_verdaux_in (output_bfd,
                                        (Elf_External_Verdaux *) p, &defaux);
                                        (Elf_External_Verdaux *) p, &defaux);
              defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
              defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
                                                        defaux.vda_name);
                                                        defaux.vda_name);
              _bfd_elf_swap_verdaux_out (output_bfd,
              _bfd_elf_swap_verdaux_out (output_bfd,
                                         &defaux, (Elf_External_Verdaux *) p);
                                         &defaux, (Elf_External_Verdaux *) p);
              p += sizeof (Elf_External_Verdaux);
              p += sizeof (Elf_External_Verdaux);
            }
            }
        }
        }
      while (def.vd_next);
      while (def.vd_next);
    }
    }
 
 
  /* Adjust version references.  */
  /* Adjust version references.  */
  if (elf_tdata (output_bfd)->verref)
  if (elf_tdata (output_bfd)->verref)
    {
    {
      asection *s;
      asection *s;
      bfd_byte *p;
      bfd_byte *p;
      bfd_size_type i;
      bfd_size_type i;
      Elf_Internal_Verneed need;
      Elf_Internal_Verneed need;
      Elf_Internal_Vernaux needaux;
      Elf_Internal_Vernaux needaux;
 
 
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
      p = (bfd_byte *) s->contents;
      p = (bfd_byte *) s->contents;
      do
      do
        {
        {
          _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
          _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
                                    &need);
                                    &need);
          need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
          need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
          _bfd_elf_swap_verneed_out (output_bfd, &need,
          _bfd_elf_swap_verneed_out (output_bfd, &need,
                                     (Elf_External_Verneed *) p);
                                     (Elf_External_Verneed *) p);
          p += sizeof (Elf_External_Verneed);
          p += sizeof (Elf_External_Verneed);
          for (i = 0; i < need.vn_cnt; ++i)
          for (i = 0; i < need.vn_cnt; ++i)
            {
            {
              _bfd_elf_swap_vernaux_in (output_bfd,
              _bfd_elf_swap_vernaux_in (output_bfd,
                                        (Elf_External_Vernaux *) p, &needaux);
                                        (Elf_External_Vernaux *) p, &needaux);
              needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
              needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
                                                         needaux.vna_name);
                                                         needaux.vna_name);
              _bfd_elf_swap_vernaux_out (output_bfd,
              _bfd_elf_swap_vernaux_out (output_bfd,
                                         &needaux,
                                         &needaux,
                                         (Elf_External_Vernaux *) p);
                                         (Elf_External_Vernaux *) p);
              p += sizeof (Elf_External_Vernaux);
              p += sizeof (Elf_External_Vernaux);
            }
            }
        }
        }
      while (need.vn_next);
      while (need.vn_next);
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Fix up the flags for a symbol.  This handles various cases which
/* Fix up the flags for a symbol.  This handles various cases which
   can only be fixed after all the input files are seen.  This is
   can only be fixed after all the input files are seen.  This is
   currently called by both adjust_dynamic_symbol and
   currently called by both adjust_dynamic_symbol and
   assign_sym_version, which is unnecessary but perhaps more robust in
   assign_sym_version, which is unnecessary but perhaps more robust in
   the face of future changes.  */
   the face of future changes.  */
 
 
static boolean
static boolean
elf_fix_symbol_flags (h, eif)
elf_fix_symbol_flags (h, eif)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     struct elf_info_failed *eif;
     struct elf_info_failed *eif;
{
{
  /* If this symbol was mentioned in a non-ELF file, try to set
  /* If this symbol was mentioned in a non-ELF file, try to set
     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
     permit a non-ELF file to correctly refer to a symbol defined in
     permit a non-ELF file to correctly refer to a symbol defined in
     an ELF dynamic object.  */
     an ELF dynamic object.  */
  if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
  if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
    {
    {
      while (h->root.type == bfd_link_hash_indirect)
      while (h->root.type == bfd_link_hash_indirect)
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
      if (h->root.type != bfd_link_hash_defined
      if (h->root.type != bfd_link_hash_defined
          && h->root.type != bfd_link_hash_defweak)
          && h->root.type != bfd_link_hash_defweak)
        h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
        h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
                                   | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
                                   | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
      else
      else
        {
        {
          if (h->root.u.def.section->owner != NULL
          if (h->root.u.def.section->owner != NULL
              && (bfd_get_flavour (h->root.u.def.section->owner)
              && (bfd_get_flavour (h->root.u.def.section->owner)
                  == bfd_target_elf_flavour))
                  == bfd_target_elf_flavour))
            h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
            h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
                                       | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
                                       | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
          else
          else
            h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
            h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
        }
        }
 
 
      if (h->dynindx == -1
      if (h->dynindx == -1
          && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
          && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
              || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
              || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
        {
        {
          if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
          if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
            {
            {
              eif->failed = true;
              eif->failed = true;
              return false;
              return false;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
      /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
         was first seen in a non-ELF file.  Fortunately, if the symbol
         was first seen in a non-ELF file.  Fortunately, if the symbol
         was first seen in an ELF file, we're probably OK unless the
         was first seen in an ELF file, we're probably OK unless the
         symbol was defined in a non-ELF file.  Catch that case here.
         symbol was defined in a non-ELF file.  Catch that case here.
         FIXME: We're still in trouble if the symbol was first seen in
         FIXME: We're still in trouble if the symbol was first seen in
         a dynamic object, and then later in a non-ELF regular object.  */
         a dynamic object, and then later in a non-ELF regular object.  */
      if ((h->root.type == bfd_link_hash_defined
      if ((h->root.type == bfd_link_hash_defined
           || h->root.type == bfd_link_hash_defweak)
           || h->root.type == bfd_link_hash_defweak)
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
          && (h->root.u.def.section->owner != NULL
          && (h->root.u.def.section->owner != NULL
              ? (bfd_get_flavour (h->root.u.def.section->owner)
              ? (bfd_get_flavour (h->root.u.def.section->owner)
                 != bfd_target_elf_flavour)
                 != bfd_target_elf_flavour)
              : (bfd_is_abs_section (h->root.u.def.section)
              : (bfd_is_abs_section (h->root.u.def.section)
                 && (h->elf_link_hash_flags
                 && (h->elf_link_hash_flags
                     & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
                     & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
        h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
        h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
    }
    }
 
 
  /* If this is a final link, and the symbol was defined as a common
  /* If this is a final link, and the symbol was defined as a common
     symbol in a regular object file, and there was no definition in
     symbol in a regular object file, and there was no definition in
     any dynamic object, then the linker will have allocated space for
     any dynamic object, then the linker will have allocated space for
     the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
     the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
     flag will not have been set.  */
     flag will not have been set.  */
  if (h->root.type == bfd_link_hash_defined
  if (h->root.type == bfd_link_hash_defined
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
    h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
    h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
 
 
  /* If -Bsymbolic was used (which means to bind references to global
  /* If -Bsymbolic was used (which means to bind references to global
     symbols to the definition within the shared object), and this
     symbols to the definition within the shared object), and this
     symbol was defined in a regular object, then it actually doesn't
     symbol was defined in a regular object, then it actually doesn't
     need a PLT entry, and we can accomplish that by forcing it local.
     need a PLT entry, and we can accomplish that by forcing it local.
     Likewise, if the symbol has hidden or internal visibility.
     Likewise, if the symbol has hidden or internal visibility.
     FIXME: It might be that we also do not need a PLT for other
     FIXME: It might be that we also do not need a PLT for other
     non-hidden visibilities, but we would have to tell that to the
     non-hidden visibilities, but we would have to tell that to the
     backend specifically; we can't just clear PLT-related data here.  */
     backend specifically; we can't just clear PLT-related data here.  */
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
      && eif->info->shared
      && eif->info->shared
      && is_elf_hash_table (eif->info)
      && is_elf_hash_table (eif->info)
      && (eif->info->symbolic
      && (eif->info->symbolic
          || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
          || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
          || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
          || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
    {
    {
      struct elf_backend_data *bed;
      struct elf_backend_data *bed;
      boolean force_local;
      boolean force_local;
 
 
      bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
      bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
 
 
      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
                     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
                     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
    }
    }
 
 
  /* If this is a weak defined symbol in a dynamic object, and we know
  /* If this is a weak defined symbol in a dynamic object, and we know
     the real definition in the dynamic object, copy interesting flags
     the real definition in the dynamic object, copy interesting flags
     over to the real definition.  */
     over to the real definition.  */
  if (h->weakdef != NULL)
  if (h->weakdef != NULL)
    {
    {
      struct elf_link_hash_entry *weakdef;
      struct elf_link_hash_entry *weakdef;
 
 
      BFD_ASSERT (h->root.type == bfd_link_hash_defined
      BFD_ASSERT (h->root.type == bfd_link_hash_defined
                  || h->root.type == bfd_link_hash_defweak);
                  || h->root.type == bfd_link_hash_defweak);
      weakdef = h->weakdef;
      weakdef = h->weakdef;
      BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
                  || weakdef->root.type == bfd_link_hash_defweak);
                  || weakdef->root.type == bfd_link_hash_defweak);
      BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
      BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
 
 
      /* If the real definition is defined by a regular object file,
      /* If the real definition is defined by a regular object file,
         don't do anything special.  See the longer description in
         don't do anything special.  See the longer description in
         elf_adjust_dynamic_symbol, below.  */
         elf_adjust_dynamic_symbol, below.  */
      if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
      if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
        h->weakdef = NULL;
        h->weakdef = NULL;
      else
      else
        {
        {
          struct elf_backend_data *bed;
          struct elf_backend_data *bed;
 
 
          bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
          bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
          (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
          (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Make the backend pick a good value for a dynamic symbol.  This is
/* Make the backend pick a good value for a dynamic symbol.  This is
   called via elf_link_hash_traverse, and also calls itself
   called via elf_link_hash_traverse, and also calls itself
   recursively.  */
   recursively.  */
 
 
static boolean
static boolean
elf_adjust_dynamic_symbol (h, data)
elf_adjust_dynamic_symbol (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
  bfd *dynobj;
  bfd *dynobj;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    {
    {
      h->plt.offset = (bfd_vma) -1;
      h->plt.offset = (bfd_vma) -1;
      h->got.offset = (bfd_vma) -1;
      h->got.offset = (bfd_vma) -1;
 
 
      /* When warning symbols are created, they **replace** the "real"
      /* When warning symbols are created, they **replace** the "real"
         entry in the hash table, thus we never get to see the real
         entry in the hash table, thus we never get to see the real
         symbol in a hash traversal.  So look at it now.  */
         symbol in a hash traversal.  So look at it now.  */
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
    }
    }
 
 
  /* Ignore indirect symbols.  These are added by the versioning code.  */
  /* Ignore indirect symbols.  These are added by the versioning code.  */
  if (h->root.type == bfd_link_hash_indirect)
  if (h->root.type == bfd_link_hash_indirect)
    return true;
    return true;
 
 
  if (! is_elf_hash_table (eif->info))
  if (! is_elf_hash_table (eif->info))
    return false;
    return false;
 
 
  /* Fix the symbol flags.  */
  /* Fix the symbol flags.  */
  if (! elf_fix_symbol_flags (h, eif))
  if (! elf_fix_symbol_flags (h, eif))
    return false;
    return false;
 
 
  /* If this symbol does not require a PLT entry, and it is not
  /* If this symbol does not require a PLT entry, and it is not
     defined by a dynamic object, or is not referenced by a regular
     defined by a dynamic object, or is not referenced by a regular
     object, ignore it.  We do have to handle a weak defined symbol,
     object, ignore it.  We do have to handle a weak defined symbol,
     even if no regular object refers to it, if we decided to add it
     even if no regular object refers to it, if we decided to add it
     to the dynamic symbol table.  FIXME: Do we normally need to worry
     to the dynamic symbol table.  FIXME: Do we normally need to worry
     about symbols which are defined by one dynamic object and
     about symbols which are defined by one dynamic object and
     referenced by another one?  */
     referenced by another one?  */
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
      && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
      && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
          || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
          || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
              && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
              && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
    {
    {
      h->plt.offset = (bfd_vma) -1;
      h->plt.offset = (bfd_vma) -1;
      return true;
      return true;
    }
    }
 
 
  /* If we've already adjusted this symbol, don't do it again.  This
  /* If we've already adjusted this symbol, don't do it again.  This
     can happen via a recursive call.  */
     can happen via a recursive call.  */
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
    return true;
    return true;
 
 
  /* Don't look at this symbol again.  Note that we must set this
  /* Don't look at this symbol again.  Note that we must set this
     after checking the above conditions, because we may look at a
     after checking the above conditions, because we may look at a
     symbol once, decide not to do anything, and then get called
     symbol once, decide not to do anything, and then get called
     recursively later after REF_REGULAR is set below.  */
     recursively later after REF_REGULAR is set below.  */
  h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
  h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
 
 
  /* If this is a weak definition, and we know a real definition, and
  /* If this is a weak definition, and we know a real definition, and
     the real symbol is not itself defined by a regular object file,
     the real symbol is not itself defined by a regular object file,
     then get a good value for the real definition.  We handle the
     then get a good value for the real definition.  We handle the
     real symbol first, for the convenience of the backend routine.
     real symbol first, for the convenience of the backend routine.
 
 
     Note that there is a confusing case here.  If the real definition
     Note that there is a confusing case here.  If the real definition
     is defined by a regular object file, we don't get the real symbol
     is defined by a regular object file, we don't get the real symbol
     from the dynamic object, but we do get the weak symbol.  If the
     from the dynamic object, but we do get the weak symbol.  If the
     processor backend uses a COPY reloc, then if some routine in the
     processor backend uses a COPY reloc, then if some routine in the
     dynamic object changes the real symbol, we will not see that
     dynamic object changes the real symbol, we will not see that
     change in the corresponding weak symbol.  This is the way other
     change in the corresponding weak symbol.  This is the way other
     ELF linkers work as well, and seems to be a result of the shared
     ELF linkers work as well, and seems to be a result of the shared
     library model.
     library model.
 
 
     I will clarify this issue.  Most SVR4 shared libraries define the
     I will clarify this issue.  Most SVR4 shared libraries define the
     variable _timezone and define timezone as a weak synonym.  The
     variable _timezone and define timezone as a weak synonym.  The
     tzset call changes _timezone.  If you write
     tzset call changes _timezone.  If you write
       extern int timezone;
       extern int timezone;
       int _timezone = 5;
       int _timezone = 5;
       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
     you might expect that, since timezone is a synonym for _timezone,
     you might expect that, since timezone is a synonym for _timezone,
     the same number will print both times.  However, if the processor
     the same number will print both times.  However, if the processor
     backend uses a COPY reloc, then actually timezone will be copied
     backend uses a COPY reloc, then actually timezone will be copied
     into your process image, and, since you define _timezone
     into your process image, and, since you define _timezone
     yourself, _timezone will not.  Thus timezone and _timezone will
     yourself, _timezone will not.  Thus timezone and _timezone will
     wind up at different memory locations.  The tzset call will set
     wind up at different memory locations.  The tzset call will set
     _timezone, leaving timezone unchanged.  */
     _timezone, leaving timezone unchanged.  */
 
 
  if (h->weakdef != NULL)
  if (h->weakdef != NULL)
    {
    {
      /* If we get to this point, we know there is an implicit
      /* If we get to this point, we know there is an implicit
         reference by a regular object file via the weak symbol H.
         reference by a regular object file via the weak symbol H.
         FIXME: Is this really true?  What if the traversal finds
         FIXME: Is this really true?  What if the traversal finds
         H->WEAKDEF before it finds H?  */
         H->WEAKDEF before it finds H?  */
      h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
      h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
 
 
      if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
      if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
        return false;
        return false;
    }
    }
 
 
  /* If a symbol has no type and no size and does not require a PLT
  /* If a symbol has no type and no size and does not require a PLT
     entry, then we are probably about to do the wrong thing here: we
     entry, then we are probably about to do the wrong thing here: we
     are probably going to create a COPY reloc for an empty object.
     are probably going to create a COPY reloc for an empty object.
     This case can arise when a shared object is built with assembly
     This case can arise when a shared object is built with assembly
     code, and the assembly code fails to set the symbol type.  */
     code, and the assembly code fails to set the symbol type.  */
  if (h->size == 0
  if (h->size == 0
      && h->type == STT_NOTYPE
      && h->type == STT_NOTYPE
      && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
      && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
    (*_bfd_error_handler)
    (*_bfd_error_handler)
      (_("warning: type and size of dynamic symbol `%s' are not defined"),
      (_("warning: type and size of dynamic symbol `%s' are not defined"),
       h->root.root.string);
       h->root.root.string);
 
 
  dynobj = elf_hash_table (eif->info)->dynobj;
  dynobj = elf_hash_table (eif->info)->dynobj;
  bed = get_elf_backend_data (dynobj);
  bed = get_elf_backend_data (dynobj);
  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
    {
    {
      eif->failed = true;
      eif->failed = true;
      return false;
      return false;
    }
    }
 
 
  return true;
  return true;
}
}


/* This routine is used to export all defined symbols into the dynamic
/* This routine is used to export all defined symbols into the dynamic
   symbol table.  It is called via elf_link_hash_traverse.  */
   symbol table.  It is called via elf_link_hash_traverse.  */
 
 
static boolean
static boolean
elf_export_symbol (h, data)
elf_export_symbol (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
 
 
  /* Ignore indirect symbols.  These are added by the versioning code.  */
  /* Ignore indirect symbols.  These are added by the versioning code.  */
  if (h->root.type == bfd_link_hash_indirect)
  if (h->root.type == bfd_link_hash_indirect)
    return true;
    return true;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  if (h->dynindx == -1
  if (h->dynindx == -1
      && (h->elf_link_hash_flags
      && (h->elf_link_hash_flags
          & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
          & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
    {
    {
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_expr *d;
      struct bfd_elf_version_expr *d;
 
 
      for (t = eif->verdefs; t != NULL; t = t->next)
      for (t = eif->verdefs; t != NULL; t = t->next)
        {
        {
          if (t->globals != NULL)
          if (t->globals != NULL)
            {
            {
              for (d = t->globals; d != NULL; d = d->next)
              for (d = t->globals; d != NULL; d = d->next)
                {
                {
                  if ((*d->match) (d, h->root.root.string))
                  if ((*d->match) (d, h->root.root.string))
                    goto doit;
                    goto doit;
                }
                }
            }
            }
 
 
          if (t->locals != NULL)
          if (t->locals != NULL)
            {
            {
              for (d = t->locals ; d != NULL; d = d->next)
              for (d = t->locals ; d != NULL; d = d->next)
                {
                {
                  if ((*d->match) (d, h->root.root.string))
                  if ((*d->match) (d, h->root.root.string))
                    return true;
                    return true;
                }
                }
            }
            }
        }
        }
 
 
      if (!eif->verdefs)
      if (!eif->verdefs)
        {
        {
        doit:
        doit:
          if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
          if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
            {
            {
              eif->failed = true;
              eif->failed = true;
              return false;
              return false;
            }
            }
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}


/* Look through the symbols which are defined in other shared
/* Look through the symbols which are defined in other shared
   libraries and referenced here.  Update the list of version
   libraries and referenced here.  Update the list of version
   dependencies.  This will be put into the .gnu.version_r section.
   dependencies.  This will be put into the .gnu.version_r section.
   This function is called via elf_link_hash_traverse.  */
   This function is called via elf_link_hash_traverse.  */
 
 
static boolean
static boolean
elf_link_find_version_dependencies (h, data)
elf_link_find_version_dependencies (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
  Elf_Internal_Verneed *t;
  Elf_Internal_Verneed *t;
  Elf_Internal_Vernaux *a;
  Elf_Internal_Vernaux *a;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* We only care about symbols defined in shared objects with version
  /* We only care about symbols defined in shared objects with version
     information.  */
     information.  */
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
      || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
      || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
      || h->dynindx == -1
      || h->dynindx == -1
      || h->verinfo.verdef == NULL)
      || h->verinfo.verdef == NULL)
    return true;
    return true;
 
 
  /* See if we already know about this version.  */
  /* See if we already know about this version.  */
  for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
  for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
    {
    {
      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
        continue;
        continue;
 
 
      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
        if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
        if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
          return true;
          return true;
 
 
      break;
      break;
    }
    }
 
 
  /* This is a new version.  Add it to tree we are building.  */
  /* This is a new version.  Add it to tree we are building.  */
 
 
  if (t == NULL)
  if (t == NULL)
    {
    {
      amt = sizeof *t;
      amt = sizeof *t;
      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
      if (t == NULL)
      if (t == NULL)
        {
        {
          rinfo->failed = true;
          rinfo->failed = true;
          return false;
          return false;
        }
        }
 
 
      t->vn_bfd = h->verinfo.verdef->vd_bfd;
      t->vn_bfd = h->verinfo.verdef->vd_bfd;
      t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
      t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
      elf_tdata (rinfo->output_bfd)->verref = t;
      elf_tdata (rinfo->output_bfd)->verref = t;
    }
    }
 
 
  amt = sizeof *a;
  amt = sizeof *a;
  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
 
 
  /* Note that we are copying a string pointer here, and testing it
  /* Note that we are copying a string pointer here, and testing it
     above.  If bfd_elf_string_from_elf_section is ever changed to
     above.  If bfd_elf_string_from_elf_section is ever changed to
     discard the string data when low in memory, this will have to be
     discard the string data when low in memory, this will have to be
     fixed.  */
     fixed.  */
  a->vna_nodename = h->verinfo.verdef->vd_nodename;
  a->vna_nodename = h->verinfo.verdef->vd_nodename;
 
 
  a->vna_flags = h->verinfo.verdef->vd_flags;
  a->vna_flags = h->verinfo.verdef->vd_flags;
  a->vna_nextptr = t->vn_auxptr;
  a->vna_nextptr = t->vn_auxptr;
 
 
  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
  ++rinfo->vers;
  ++rinfo->vers;
 
 
  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
 
 
  t->vn_auxptr = a;
  t->vn_auxptr = a;
 
 
  return true;
  return true;
}
}
 
 
/* Figure out appropriate versions for all the symbols.  We may not
/* Figure out appropriate versions for all the symbols.  We may not
   have the version number script until we have read all of the input
   have the version number script until we have read all of the input
   files, so until that point we don't know which symbols should be
   files, so until that point we don't know which symbols should be
   local.  This function is called via elf_link_hash_traverse.  */
   local.  This function is called via elf_link_hash_traverse.  */
 
 
static boolean
static boolean
elf_link_assign_sym_version (h, data)
elf_link_assign_sym_version (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  struct elf_assign_sym_version_info *sinfo;
  struct elf_assign_sym_version_info *sinfo;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  struct elf_info_failed eif;
  struct elf_info_failed eif;
  char *p;
  char *p;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  sinfo = (struct elf_assign_sym_version_info *) data;
  sinfo = (struct elf_assign_sym_version_info *) data;
  info = sinfo->info;
  info = sinfo->info;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* Fix the symbol flags.  */
  /* Fix the symbol flags.  */
  eif.failed = false;
  eif.failed = false;
  eif.info = info;
  eif.info = info;
  if (! elf_fix_symbol_flags (h, &eif))
  if (! elf_fix_symbol_flags (h, &eif))
    {
    {
      if (eif.failed)
      if (eif.failed)
        sinfo->failed = true;
        sinfo->failed = true;
      return false;
      return false;
    }
    }
 
 
  /* We only need version numbers for symbols defined in regular
  /* We only need version numbers for symbols defined in regular
     objects.  */
     objects.  */
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
    return true;
    return true;
 
 
  bed = get_elf_backend_data (sinfo->output_bfd);
  bed = get_elf_backend_data (sinfo->output_bfd);
  p = strchr (h->root.root.string, ELF_VER_CHR);
  p = strchr (h->root.root.string, ELF_VER_CHR);
  if (p != NULL && h->verinfo.vertree == NULL)
  if (p != NULL && h->verinfo.vertree == NULL)
    {
    {
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_tree *t;
      boolean hidden;
      boolean hidden;
 
 
      hidden = true;
      hidden = true;
 
 
      /* There are two consecutive ELF_VER_CHR characters if this is
      /* There are two consecutive ELF_VER_CHR characters if this is
         not a hidden symbol.  */
         not a hidden symbol.  */
      ++p;
      ++p;
      if (*p == ELF_VER_CHR)
      if (*p == ELF_VER_CHR)
        {
        {
          hidden = false;
          hidden = false;
          ++p;
          ++p;
        }
        }
 
 
      /* If there is no version string, we can just return out.  */
      /* If there is no version string, we can just return out.  */
      if (*p == '\0')
      if (*p == '\0')
        {
        {
          if (hidden)
          if (hidden)
            h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
            h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
          return true;
          return true;
        }
        }
 
 
      /* Look for the version.  If we find it, it is no longer weak.  */
      /* Look for the version.  If we find it, it is no longer weak.  */
      for (t = sinfo->verdefs; t != NULL; t = t->next)
      for (t = sinfo->verdefs; t != NULL; t = t->next)
        {
        {
          if (strcmp (t->name, p) == 0)
          if (strcmp (t->name, p) == 0)
            {
            {
              size_t len;
              size_t len;
              char *alc;
              char *alc;
              struct bfd_elf_version_expr *d;
              struct bfd_elf_version_expr *d;
 
 
              len = p - h->root.root.string;
              len = p - h->root.root.string;
              alc = bfd_malloc ((bfd_size_type) len);
              alc = bfd_malloc ((bfd_size_type) len);
              if (alc == NULL)
              if (alc == NULL)
                return false;
                return false;
              memcpy (alc, h->root.root.string, len - 1);
              memcpy (alc, h->root.root.string, len - 1);
              alc[len - 1] = '\0';
              alc[len - 1] = '\0';
              if (alc[len - 2] == ELF_VER_CHR)
              if (alc[len - 2] == ELF_VER_CHR)
                alc[len - 2] = '\0';
                alc[len - 2] = '\0';
 
 
              h->verinfo.vertree = t;
              h->verinfo.vertree = t;
              t->used = true;
              t->used = true;
              d = NULL;
              d = NULL;
 
 
              if (t->globals != NULL)
              if (t->globals != NULL)
                {
                {
                  for (d = t->globals; d != NULL; d = d->next)
                  for (d = t->globals; d != NULL; d = d->next)
                    if ((*d->match) (d, alc))
                    if ((*d->match) (d, alc))
                      break;
                      break;
                }
                }
 
 
              /* See if there is anything to force this symbol to
              /* See if there is anything to force this symbol to
                 local scope.  */
                 local scope.  */
              if (d == NULL && t->locals != NULL)
              if (d == NULL && t->locals != NULL)
                {
                {
                  for (d = t->locals; d != NULL; d = d->next)
                  for (d = t->locals; d != NULL; d = d->next)
                    {
                    {
                      if ((*d->match) (d, alc))
                      if ((*d->match) (d, alc))
                        {
                        {
                          if (h->dynindx != -1
                          if (h->dynindx != -1
                              && info->shared
                              && info->shared
                              && ! info->export_dynamic)
                              && ! info->export_dynamic)
                            {
                            {
                              (*bed->elf_backend_hide_symbol) (info, h, true);
                              (*bed->elf_backend_hide_symbol) (info, h, true);
                            }
                            }
 
 
                          break;
                          break;
                        }
                        }
                    }
                    }
                }
                }
 
 
              free (alc);
              free (alc);
              break;
              break;
            }
            }
        }
        }
 
 
      /* If we are building an application, we need to create a
      /* If we are building an application, we need to create a
         version node for this version.  */
         version node for this version.  */
      if (t == NULL && ! info->shared)
      if (t == NULL && ! info->shared)
        {
        {
          struct bfd_elf_version_tree **pp;
          struct bfd_elf_version_tree **pp;
          int version_index;
          int version_index;
 
 
          /* If we aren't going to export this symbol, we don't need
          /* If we aren't going to export this symbol, we don't need
             to worry about it.  */
             to worry about it.  */
          if (h->dynindx == -1)
          if (h->dynindx == -1)
            return true;
            return true;
 
 
          amt = sizeof *t;
          amt = sizeof *t;
          t = ((struct bfd_elf_version_tree *)
          t = ((struct bfd_elf_version_tree *)
               bfd_alloc (sinfo->output_bfd, amt));
               bfd_alloc (sinfo->output_bfd, amt));
          if (t == NULL)
          if (t == NULL)
            {
            {
              sinfo->failed = true;
              sinfo->failed = true;
              return false;
              return false;
            }
            }
 
 
          t->next = NULL;
          t->next = NULL;
          t->name = p;
          t->name = p;
          t->globals = NULL;
          t->globals = NULL;
          t->locals = NULL;
          t->locals = NULL;
          t->deps = NULL;
          t->deps = NULL;
          t->name_indx = (unsigned int) -1;
          t->name_indx = (unsigned int) -1;
          t->used = true;
          t->used = true;
 
 
          version_index = 1;
          version_index = 1;
          /* Don't count anonymous version tag.  */
          /* Don't count anonymous version tag.  */
          if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
          if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
            version_index = 0;
            version_index = 0;
          for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
          for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
            ++version_index;
            ++version_index;
          t->vernum = version_index;
          t->vernum = version_index;
 
 
          *pp = t;
          *pp = t;
 
 
          h->verinfo.vertree = t;
          h->verinfo.vertree = t;
        }
        }
      else if (t == NULL)
      else if (t == NULL)
        {
        {
          /* We could not find the version for a symbol when
          /* We could not find the version for a symbol when
             generating a shared archive.  Return an error.  */
             generating a shared archive.  Return an error.  */
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%s: undefined versioned symbol name %s"),
            (_("%s: undefined versioned symbol name %s"),
             bfd_get_filename (sinfo->output_bfd), h->root.root.string);
             bfd_get_filename (sinfo->output_bfd), h->root.root.string);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          sinfo->failed = true;
          sinfo->failed = true;
          return false;
          return false;
        }
        }
 
 
      if (hidden)
      if (hidden)
        h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
        h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
    }
    }
 
 
  /* If we don't have a version for this symbol, see if we can find
  /* If we don't have a version for this symbol, see if we can find
     something.  */
     something.  */
  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
    {
    {
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_tree *t;
      struct bfd_elf_version_tree *local_ver;
      struct bfd_elf_version_tree *local_ver;
      struct bfd_elf_version_expr *d;
      struct bfd_elf_version_expr *d;
 
 
      /* See if can find what version this symbol is in.  If the
      /* See if can find what version this symbol is in.  If the
         symbol is supposed to be local, then don't actually register
         symbol is supposed to be local, then don't actually register
         it.  */
         it.  */
      local_ver = NULL;
      local_ver = NULL;
      for (t = sinfo->verdefs; t != NULL; t = t->next)
      for (t = sinfo->verdefs; t != NULL; t = t->next)
        {
        {
          if (t->globals != NULL)
          if (t->globals != NULL)
            {
            {
              boolean matched;
              boolean matched;
 
 
              matched = false;
              matched = false;
              for (d = t->globals; d != NULL; d = d->next)
              for (d = t->globals; d != NULL; d = d->next)
                {
                {
                  if ((*d->match) (d, h->root.root.string))
                  if ((*d->match) (d, h->root.root.string))
                    {
                    {
                      if (d->symver)
                      if (d->symver)
                        matched = true;
                        matched = true;
                      else
                      else
                        {
                        {
                          /* There is a version without definition.  Make
                          /* There is a version without definition.  Make
                             the symbol the default definition for this
                             the symbol the default definition for this
                             version.  */
                             version.  */
                          h->verinfo.vertree = t;
                          h->verinfo.vertree = t;
                          local_ver = NULL;
                          local_ver = NULL;
                          d->script = 1;
                          d->script = 1;
                          break;
                          break;
                        }
                        }
                    }
                    }
                }
                }
 
 
              if (d != NULL)
              if (d != NULL)
                break;
                break;
              else if (matched)
              else if (matched)
                /* There is no undefined version for this symbol. Hide the
                /* There is no undefined version for this symbol. Hide the
                   default one.  */
                   default one.  */
                (*bed->elf_backend_hide_symbol) (info, h, true);
                (*bed->elf_backend_hide_symbol) (info, h, true);
            }
            }
 
 
          if (t->locals != NULL)
          if (t->locals != NULL)
            {
            {
              for (d = t->locals; d != NULL; d = d->next)
              for (d = t->locals; d != NULL; d = d->next)
                {
                {
                  /* If the match is "*", keep looking for a more
                  /* If the match is "*", keep looking for a more
                     explicit, perhaps even global, match.  */
                     explicit, perhaps even global, match.  */
                  if (d->pattern[0] == '*' && d->pattern[1] == '\0')
                  if (d->pattern[0] == '*' && d->pattern[1] == '\0')
                    local_ver = t;
                    local_ver = t;
                  else if ((*d->match) (d, h->root.root.string))
                  else if ((*d->match) (d, h->root.root.string))
                    {
                    {
                      local_ver = t;
                      local_ver = t;
                      break;
                      break;
                    }
                    }
                }
                }
 
 
              if (d != NULL)
              if (d != NULL)
                break;
                break;
            }
            }
        }
        }
 
 
      if (local_ver != NULL)
      if (local_ver != NULL)
        {
        {
          h->verinfo.vertree = local_ver;
          h->verinfo.vertree = local_ver;
          if (h->dynindx != -1
          if (h->dynindx != -1
              && info->shared
              && info->shared
              && ! info->export_dynamic)
              && ! info->export_dynamic)
            {
            {
              (*bed->elf_backend_hide_symbol) (info, h, true);
              (*bed->elf_backend_hide_symbol) (info, h, true);
            }
            }
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}


/* Final phase of ELF linker.  */
/* Final phase of ELF linker.  */
 
 
/* A structure we use to avoid passing large numbers of arguments.  */
/* A structure we use to avoid passing large numbers of arguments.  */
 
 
struct elf_final_link_info
struct elf_final_link_info
{
{
  /* General link information.  */
  /* General link information.  */
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  /* Output BFD.  */
  /* Output BFD.  */
  bfd *output_bfd;
  bfd *output_bfd;
  /* Symbol string table.  */
  /* Symbol string table.  */
  struct bfd_strtab_hash *symstrtab;
  struct bfd_strtab_hash *symstrtab;
  /* .dynsym section.  */
  /* .dynsym section.  */
  asection *dynsym_sec;
  asection *dynsym_sec;
  /* .hash section.  */
  /* .hash section.  */
  asection *hash_sec;
  asection *hash_sec;
  /* symbol version section (.gnu.version).  */
  /* symbol version section (.gnu.version).  */
  asection *symver_sec;
  asection *symver_sec;
  /* first SHF_TLS section (if any).  */
  /* first SHF_TLS section (if any).  */
  asection *first_tls_sec;
  asection *first_tls_sec;
  /* Buffer large enough to hold contents of any section.  */
  /* Buffer large enough to hold contents of any section.  */
  bfd_byte *contents;
  bfd_byte *contents;
  /* Buffer large enough to hold external relocs of any section.  */
  /* Buffer large enough to hold external relocs of any section.  */
  PTR external_relocs;
  PTR external_relocs;
  /* Buffer large enough to hold internal relocs of any section.  */
  /* Buffer large enough to hold internal relocs of any section.  */
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *internal_relocs;
  /* Buffer large enough to hold external local symbols of any input
  /* Buffer large enough to hold external local symbols of any input
     BFD.  */
     BFD.  */
  Elf_External_Sym *external_syms;
  Elf_External_Sym *external_syms;
  /* And a buffer for symbol section indices.  */
  /* And a buffer for symbol section indices.  */
  Elf_External_Sym_Shndx *locsym_shndx;
  Elf_External_Sym_Shndx *locsym_shndx;
  /* Buffer large enough to hold internal local symbols of any input
  /* Buffer large enough to hold internal local symbols of any input
     BFD.  */
     BFD.  */
  Elf_Internal_Sym *internal_syms;
  Elf_Internal_Sym *internal_syms;
  /* Array large enough to hold a symbol index for each local symbol
  /* Array large enough to hold a symbol index for each local symbol
     of any input BFD.  */
     of any input BFD.  */
  long *indices;
  long *indices;
  /* Array large enough to hold a section pointer for each local
  /* Array large enough to hold a section pointer for each local
     symbol of any input BFD.  */
     symbol of any input BFD.  */
  asection **sections;
  asection **sections;
  /* Buffer to hold swapped out symbols.  */
  /* Buffer to hold swapped out symbols.  */
  Elf_External_Sym *symbuf;
  Elf_External_Sym *symbuf;
  /* And one for symbol section indices.  */
  /* And one for symbol section indices.  */
  Elf_External_Sym_Shndx *symshndxbuf;
  Elf_External_Sym_Shndx *symshndxbuf;
  /* Number of swapped out symbols in buffer.  */
  /* Number of swapped out symbols in buffer.  */
  size_t symbuf_count;
  size_t symbuf_count;
  /* Number of symbols which fit in symbuf.  */
  /* Number of symbols which fit in symbuf.  */
  size_t symbuf_size;
  size_t symbuf_size;
};
};
 
 
static boolean elf_link_output_sym
static boolean elf_link_output_sym
  PARAMS ((struct elf_final_link_info *, const char *,
  PARAMS ((struct elf_final_link_info *, const char *,
           Elf_Internal_Sym *, asection *));
           Elf_Internal_Sym *, asection *));
static boolean elf_link_flush_output_syms
static boolean elf_link_flush_output_syms
  PARAMS ((struct elf_final_link_info *));
  PARAMS ((struct elf_final_link_info *));
static boolean elf_link_output_extsym
static boolean elf_link_output_extsym
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_link_sec_merge_syms
static boolean elf_link_sec_merge_syms
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
static boolean elf_link_check_versioned_symbol
static boolean elf_link_check_versioned_symbol
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean elf_link_input_bfd
static boolean elf_link_input_bfd
  PARAMS ((struct elf_final_link_info *, bfd *));
  PARAMS ((struct elf_final_link_info *, bfd *));
static boolean elf_reloc_link_order
static boolean elf_reloc_link_order
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
           struct bfd_link_order *));
           struct bfd_link_order *));
 
 
/* This struct is used to pass information to elf_link_output_extsym.  */
/* This struct is used to pass information to elf_link_output_extsym.  */
 
 
struct elf_outext_info
struct elf_outext_info
{
{
  boolean failed;
  boolean failed;
  boolean localsyms;
  boolean localsyms;
  struct elf_final_link_info *finfo;
  struct elf_final_link_info *finfo;
};
};
 
 
/* Compute the size of, and allocate space for, REL_HDR which is the
/* Compute the size of, and allocate space for, REL_HDR which is the
   section header for a section containing relocations for O.  */
   section header for a section containing relocations for O.  */
 
 
static boolean
static boolean
elf_link_size_reloc_section (abfd, rel_hdr, o)
elf_link_size_reloc_section (abfd, rel_hdr, o)
     bfd *abfd;
     bfd *abfd;
     Elf_Internal_Shdr *rel_hdr;
     Elf_Internal_Shdr *rel_hdr;
     asection *o;
     asection *o;
{
{
  bfd_size_type reloc_count;
  bfd_size_type reloc_count;
  bfd_size_type num_rel_hashes;
  bfd_size_type num_rel_hashes;
 
 
  /* Figure out how many relocations there will be.  */
  /* Figure out how many relocations there will be.  */
  if (rel_hdr == &elf_section_data (o)->rel_hdr)
  if (rel_hdr == &elf_section_data (o)->rel_hdr)
    reloc_count = elf_section_data (o)->rel_count;
    reloc_count = elf_section_data (o)->rel_count;
  else
  else
    reloc_count = elf_section_data (o)->rel_count2;
    reloc_count = elf_section_data (o)->rel_count2;
 
 
  num_rel_hashes = o->reloc_count;
  num_rel_hashes = o->reloc_count;
  if (num_rel_hashes < reloc_count)
  if (num_rel_hashes < reloc_count)
    num_rel_hashes = reloc_count;
    num_rel_hashes = reloc_count;
 
 
  /* That allows us to calculate the size of the section.  */
  /* That allows us to calculate the size of the section.  */
  rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
  rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
 
 
  /* The contents field must last into write_object_contents, so we
  /* The contents field must last into write_object_contents, so we
     allocate it with bfd_alloc rather than malloc.  Also since we
     allocate it with bfd_alloc rather than malloc.  Also since we
     cannot be sure that the contents will actually be filled in,
     cannot be sure that the contents will actually be filled in,
     we zero the allocated space.  */
     we zero the allocated space.  */
  rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
  rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
    return false;
    return false;
 
 
  /* We only allocate one set of hash entries, so we only do it the
  /* We only allocate one set of hash entries, so we only do it the
     first time we are called.  */
     first time we are called.  */
  if (elf_section_data (o)->rel_hashes == NULL
  if (elf_section_data (o)->rel_hashes == NULL
      && num_rel_hashes)
      && num_rel_hashes)
    {
    {
      struct elf_link_hash_entry **p;
      struct elf_link_hash_entry **p;
 
 
      p = ((struct elf_link_hash_entry **)
      p = ((struct elf_link_hash_entry **)
           bfd_zmalloc (num_rel_hashes
           bfd_zmalloc (num_rel_hashes
                        * sizeof (struct elf_link_hash_entry *)));
                        * sizeof (struct elf_link_hash_entry *)));
      if (p == NULL)
      if (p == NULL)
        return false;
        return false;
 
 
      elf_section_data (o)->rel_hashes = p;
      elf_section_data (o)->rel_hashes = p;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* When performing a relocateable link, the input relocations are
/* When performing a relocateable link, the input relocations are
   preserved.  But, if they reference global symbols, the indices
   preserved.  But, if they reference global symbols, the indices
   referenced must be updated.  Update all the relocations in
   referenced must be updated.  Update all the relocations in
   REL_HDR (there are COUNT of them), using the data in REL_HASH.  */
   REL_HDR (there are COUNT of them), using the data in REL_HASH.  */
 
 
static void
static void
elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
     bfd *abfd;
     bfd *abfd;
     Elf_Internal_Shdr *rel_hdr;
     Elf_Internal_Shdr *rel_hdr;
     unsigned int count;
     unsigned int count;
     struct elf_link_hash_entry **rel_hash;
     struct elf_link_hash_entry **rel_hash;
{
{
  unsigned int i;
  unsigned int i;
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  Elf_Internal_Rel *irel;
  Elf_Internal_Rel *irel;
  Elf_Internal_Rela *irela;
  Elf_Internal_Rela *irela;
  bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
  bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
 
 
  irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
  irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
  if (irel == NULL)
  if (irel == NULL)
    {
    {
      (*_bfd_error_handler) (_("Error: out of memory"));
      (*_bfd_error_handler) (_("Error: out of memory"));
      abort ();
      abort ();
    }
    }
 
 
  amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
  amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
  irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
  irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
  if (irela == NULL)
  if (irela == NULL)
    {
    {
      (*_bfd_error_handler) (_("Error: out of memory"));
      (*_bfd_error_handler) (_("Error: out of memory"));
      abort ();
      abort ();
    }
    }
 
 
  for (i = 0; i < count; i++, rel_hash++)
  for (i = 0; i < count; i++, rel_hash++)
    {
    {
      if (*rel_hash == NULL)
      if (*rel_hash == NULL)
        continue;
        continue;
 
 
      BFD_ASSERT ((*rel_hash)->indx >= 0);
      BFD_ASSERT ((*rel_hash)->indx >= 0);
 
 
      if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
      if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
        {
        {
          Elf_External_Rel *erel;
          Elf_External_Rel *erel;
          unsigned int j;
          unsigned int j;
 
 
          erel = (Elf_External_Rel *) rel_hdr->contents + i;
          erel = (Elf_External_Rel *) rel_hdr->contents + i;
          if (bed->s->swap_reloc_in)
          if (bed->s->swap_reloc_in)
            (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
            (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
          else
          else
            elf_swap_reloc_in (abfd, erel, irel);
            elf_swap_reloc_in (abfd, erel, irel);
 
 
          for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
          for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
            irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
            irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
                                         ELF_R_TYPE (irel[j].r_info));
                                         ELF_R_TYPE (irel[j].r_info));
 
 
          if (bed->s->swap_reloc_out)
          if (bed->s->swap_reloc_out)
            (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
            (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
          else
          else
            elf_swap_reloc_out (abfd, irel, erel);
            elf_swap_reloc_out (abfd, irel, erel);
        }
        }
      else
      else
        {
        {
          Elf_External_Rela *erela;
          Elf_External_Rela *erela;
          unsigned int j;
          unsigned int j;
 
 
          BFD_ASSERT (rel_hdr->sh_entsize
          BFD_ASSERT (rel_hdr->sh_entsize
                      == sizeof (Elf_External_Rela));
                      == sizeof (Elf_External_Rela));
 
 
          erela = (Elf_External_Rela *) rel_hdr->contents + i;
          erela = (Elf_External_Rela *) rel_hdr->contents + i;
          if (bed->s->swap_reloca_in)
          if (bed->s->swap_reloca_in)
            (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
            (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
          else
          else
            elf_swap_reloca_in (abfd, erela, irela);
            elf_swap_reloca_in (abfd, erela, irela);
 
 
          for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
          for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
            irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
            irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
                                          ELF_R_TYPE (irela[j].r_info));
                                          ELF_R_TYPE (irela[j].r_info));
 
 
          if (bed->s->swap_reloca_out)
          if (bed->s->swap_reloca_out)
            (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
            (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
          else
          else
            elf_swap_reloca_out (abfd, irela, erela);
            elf_swap_reloca_out (abfd, irela, erela);
        }
        }
    }
    }
 
 
  free (irel);
  free (irel);
  free (irela);
  free (irela);
}
}
 
 
struct elf_link_sort_rela
struct elf_link_sort_rela
{
{
  bfd_vma offset;
  bfd_vma offset;
  enum elf_reloc_type_class type;
  enum elf_reloc_type_class type;
  union
  union
  {
  {
    Elf_Internal_Rel rel;
    Elf_Internal_Rel rel;
    Elf_Internal_Rela rela;
    Elf_Internal_Rela rela;
  } u;
  } u;
};
};
 
 
static int
static int
elf_link_sort_cmp1 (A, B)
elf_link_sort_cmp1 (A, B)
     const PTR A;
     const PTR A;
     const PTR B;
     const PTR B;
{
{
  struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
  struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
  struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
  struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
  int relativea, relativeb;
  int relativea, relativeb;
 
 
  relativea = a->type == reloc_class_relative;
  relativea = a->type == reloc_class_relative;
  relativeb = b->type == reloc_class_relative;
  relativeb = b->type == reloc_class_relative;
 
 
  if (relativea < relativeb)
  if (relativea < relativeb)
    return 1;
    return 1;
  if (relativea > relativeb)
  if (relativea > relativeb)
    return -1;
    return -1;
  if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
  if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
    return -1;
    return -1;
  if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
  if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
    return 1;
    return 1;
  if (a->u.rel.r_offset < b->u.rel.r_offset)
  if (a->u.rel.r_offset < b->u.rel.r_offset)
    return -1;
    return -1;
  if (a->u.rel.r_offset > b->u.rel.r_offset)
  if (a->u.rel.r_offset > b->u.rel.r_offset)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
static int
static int
elf_link_sort_cmp2 (A, B)
elf_link_sort_cmp2 (A, B)
     const PTR A;
     const PTR A;
     const PTR B;
     const PTR B;
{
{
  struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
  struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
  struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
  struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
  int copya, copyb;
  int copya, copyb;
 
 
  if (a->offset < b->offset)
  if (a->offset < b->offset)
    return -1;
    return -1;
  if (a->offset > b->offset)
  if (a->offset > b->offset)
    return 1;
    return 1;
  copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
  copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
  copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
  copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
  if (copya < copyb)
  if (copya < copyb)
    return -1;
    return -1;
  if (copya > copyb)
  if (copya > copyb)
    return 1;
    return 1;
  if (a->u.rel.r_offset < b->u.rel.r_offset)
  if (a->u.rel.r_offset < b->u.rel.r_offset)
    return -1;
    return -1;
  if (a->u.rel.r_offset > b->u.rel.r_offset)
  if (a->u.rel.r_offset > b->u.rel.r_offset)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
static size_t
static size_t
elf_link_sort_relocs (abfd, info, psec)
elf_link_sort_relocs (abfd, info, psec)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     asection **psec;
     asection **psec;
{
{
  bfd *dynobj = elf_hash_table (info)->dynobj;
  bfd *dynobj = elf_hash_table (info)->dynobj;
  asection *reldyn, *o;
  asection *reldyn, *o;
  boolean rel = false;
  boolean rel = false;
  bfd_size_type count, size;
  bfd_size_type count, size;
  size_t i, j, ret;
  size_t i, j, ret;
  struct elf_link_sort_rela *rela;
  struct elf_link_sort_rela *rela;
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
 
 
  reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
  reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
  if (reldyn == NULL || reldyn->_raw_size == 0)
  if (reldyn == NULL || reldyn->_raw_size == 0)
    {
    {
      reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
      reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
      if (reldyn == NULL || reldyn->_raw_size == 0)
      if (reldyn == NULL || reldyn->_raw_size == 0)
        return 0;
        return 0;
      rel = true;
      rel = true;
      count = reldyn->_raw_size / sizeof (Elf_External_Rel);
      count = reldyn->_raw_size / sizeof (Elf_External_Rel);
    }
    }
  else
  else
    count = reldyn->_raw_size / sizeof (Elf_External_Rela);
    count = reldyn->_raw_size / sizeof (Elf_External_Rela);
 
 
  size = 0;
  size = 0;
  for (o = dynobj->sections; o != NULL; o = o->next)
  for (o = dynobj->sections; o != NULL; o = o->next)
    if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
    if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
        == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
        == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
        && o->output_section == reldyn)
        && o->output_section == reldyn)
      size += o->_raw_size;
      size += o->_raw_size;
 
 
  if (size != reldyn->_raw_size)
  if (size != reldyn->_raw_size)
    return 0;
    return 0;
 
 
  rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
  rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
  if (rela == NULL)
  if (rela == NULL)
    {
    {
      (*info->callbacks->warning)
      (*info->callbacks->warning)
        (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
        (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
         (bfd_vma) 0);
         (bfd_vma) 0);
      return 0;
      return 0;
    }
    }
 
 
  for (o = dynobj->sections; o != NULL; o = o->next)
  for (o = dynobj->sections; o != NULL; o = o->next)
    if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
    if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
        == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
        == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
        && o->output_section == reldyn)
        && o->output_section == reldyn)
      {
      {
        if (rel)
        if (rel)
          {
          {
            Elf_External_Rel *erel, *erelend;
            Elf_External_Rel *erel, *erelend;
            struct elf_link_sort_rela *s;
            struct elf_link_sort_rela *s;
 
 
            erel = (Elf_External_Rel *) o->contents;
            erel = (Elf_External_Rel *) o->contents;
            erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
            erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
            s = rela + o->output_offset / sizeof (Elf_External_Rel);
            s = rela + o->output_offset / sizeof (Elf_External_Rel);
            for (; erel < erelend; erel++, s++)
            for (; erel < erelend; erel++, s++)
              {
              {
                if (bed->s->swap_reloc_in)
                if (bed->s->swap_reloc_in)
                  (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
                  (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
                else
                else
                  elf_swap_reloc_in (abfd, erel, &s->u.rel);
                  elf_swap_reloc_in (abfd, erel, &s->u.rel);
 
 
                s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
                s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
              }
              }
          }
          }
        else
        else
          {
          {
            Elf_External_Rela *erela, *erelaend;
            Elf_External_Rela *erela, *erelaend;
            struct elf_link_sort_rela *s;
            struct elf_link_sort_rela *s;
 
 
            erela = (Elf_External_Rela *) o->contents;
            erela = (Elf_External_Rela *) o->contents;
            erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
            erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
            s = rela + o->output_offset / sizeof (Elf_External_Rela);
            s = rela + o->output_offset / sizeof (Elf_External_Rela);
            for (; erela < erelaend; erela++, s++)
            for (; erela < erelaend; erela++, s++)
              {
              {
                if (bed->s->swap_reloca_in)
                if (bed->s->swap_reloca_in)
                  (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
                  (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
                                             &s->u.rela);
                                             &s->u.rela);
                else
                else
                  elf_swap_reloca_in (dynobj, erela, &s->u.rela);
                  elf_swap_reloca_in (dynobj, erela, &s->u.rela);
 
 
                s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
                s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
              }
              }
          }
          }
      }
      }
 
 
  qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
  qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
  for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
  for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
    ;
    ;
  for (i = ret, j = ret; i < count; i++)
  for (i = ret, j = ret; i < count; i++)
    {
    {
      if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
      if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
        j = i;
        j = i;
      rela[i].offset = rela[j].u.rel.r_offset;
      rela[i].offset = rela[j].u.rel.r_offset;
    }
    }
  qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
  qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
 
 
  for (o = dynobj->sections; o != NULL; o = o->next)
  for (o = dynobj->sections; o != NULL; o = o->next)
    if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
    if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
        == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
        == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
        && o->output_section == reldyn)
        && o->output_section == reldyn)
      {
      {
        if (rel)
        if (rel)
          {
          {
            Elf_External_Rel *erel, *erelend;
            Elf_External_Rel *erel, *erelend;
            struct elf_link_sort_rela *s;
            struct elf_link_sort_rela *s;
 
 
            erel = (Elf_External_Rel *) o->contents;
            erel = (Elf_External_Rel *) o->contents;
            erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
            erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
            s = rela + o->output_offset / sizeof (Elf_External_Rel);
            s = rela + o->output_offset / sizeof (Elf_External_Rel);
            for (; erel < erelend; erel++, s++)
            for (; erel < erelend; erel++, s++)
              {
              {
                if (bed->s->swap_reloc_out)
                if (bed->s->swap_reloc_out)
                  (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
                  (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
                                             (bfd_byte *) erel);
                                             (bfd_byte *) erel);
                else
                else
                  elf_swap_reloc_out (abfd, &s->u.rel, erel);
                  elf_swap_reloc_out (abfd, &s->u.rel, erel);
              }
              }
          }
          }
        else
        else
          {
          {
            Elf_External_Rela *erela, *erelaend;
            Elf_External_Rela *erela, *erelaend;
            struct elf_link_sort_rela *s;
            struct elf_link_sort_rela *s;
 
 
            erela = (Elf_External_Rela *) o->contents;
            erela = (Elf_External_Rela *) o->contents;
            erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
            erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
            s = rela + o->output_offset / sizeof (Elf_External_Rela);
            s = rela + o->output_offset / sizeof (Elf_External_Rela);
            for (; erela < erelaend; erela++, s++)
            for (; erela < erelaend; erela++, s++)
              {
              {
                if (bed->s->swap_reloca_out)
                if (bed->s->swap_reloca_out)
                  (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
                  (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
                                              (bfd_byte *) erela);
                                              (bfd_byte *) erela);
                else
                else
                  elf_swap_reloca_out (dynobj, &s->u.rela, erela);
                  elf_swap_reloca_out (dynobj, &s->u.rela, erela);
              }
              }
          }
          }
      }
      }
 
 
  free (rela);
  free (rela);
  *psec = reldyn;
  *psec = reldyn;
  return ret;
  return ret;
}
}
 
 
/* Do the final step of an ELF link.  */
/* Do the final step of an ELF link.  */
 
 
boolean
boolean
elf_bfd_final_link (abfd, info)
elf_bfd_final_link (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  boolean dynamic;
  boolean dynamic;
  boolean emit_relocs;
  boolean emit_relocs;
  bfd *dynobj;
  bfd *dynobj;
  struct elf_final_link_info finfo;
  struct elf_final_link_info finfo;
  register asection *o;
  register asection *o;
  register struct bfd_link_order *p;
  register struct bfd_link_order *p;
  register bfd *sub;
  register bfd *sub;
  bfd_size_type max_contents_size;
  bfd_size_type max_contents_size;
  bfd_size_type max_external_reloc_size;
  bfd_size_type max_external_reloc_size;
  bfd_size_type max_internal_reloc_count;
  bfd_size_type max_internal_reloc_count;
  bfd_size_type max_sym_count;
  bfd_size_type max_sym_count;
  bfd_size_type max_sym_shndx_count;
  bfd_size_type max_sym_shndx_count;
  file_ptr off;
  file_ptr off;
  Elf_Internal_Sym elfsym;
  Elf_Internal_Sym elfsym;
  unsigned int i;
  unsigned int i;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symstrtab_hdr;
  Elf_Internal_Shdr *symstrtab_hdr;
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_outext_info eoinfo;
  struct elf_outext_info eoinfo;
  boolean merged;
  boolean merged;
  size_t relativecount = 0;
  size_t relativecount = 0;
  asection *reldyn = 0;
  asection *reldyn = 0;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  if (! is_elf_hash_table (info))
  if (! is_elf_hash_table (info))
    return false;
    return false;
 
 
  if (info->shared)
  if (info->shared)
    abfd->flags |= DYNAMIC;
    abfd->flags |= DYNAMIC;
 
 
  dynamic = elf_hash_table (info)->dynamic_sections_created;
  dynamic = elf_hash_table (info)->dynamic_sections_created;
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  emit_relocs = (info->relocateable
  emit_relocs = (info->relocateable
                 || info->emitrelocations
                 || info->emitrelocations
                 || bed->elf_backend_emit_relocs);
                 || bed->elf_backend_emit_relocs);
 
 
  finfo.info = info;
  finfo.info = info;
  finfo.output_bfd = abfd;
  finfo.output_bfd = abfd;
  finfo.symstrtab = elf_stringtab_init ();
  finfo.symstrtab = elf_stringtab_init ();
  if (finfo.symstrtab == NULL)
  if (finfo.symstrtab == NULL)
    return false;
    return false;
 
 
  if (! dynamic)
  if (! dynamic)
    {
    {
      finfo.dynsym_sec = NULL;
      finfo.dynsym_sec = NULL;
      finfo.hash_sec = NULL;
      finfo.hash_sec = NULL;
      finfo.symver_sec = NULL;
      finfo.symver_sec = NULL;
    }
    }
  else
  else
    {
    {
      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
      BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
      BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
      /* Note that it is OK if symver_sec is NULL.  */
      /* Note that it is OK if symver_sec is NULL.  */
    }
    }
 
 
  finfo.contents = NULL;
  finfo.contents = NULL;
  finfo.external_relocs = NULL;
  finfo.external_relocs = NULL;
  finfo.internal_relocs = NULL;
  finfo.internal_relocs = NULL;
  finfo.external_syms = NULL;
  finfo.external_syms = NULL;
  finfo.locsym_shndx = NULL;
  finfo.locsym_shndx = NULL;
  finfo.internal_syms = NULL;
  finfo.internal_syms = NULL;
  finfo.indices = NULL;
  finfo.indices = NULL;
  finfo.sections = NULL;
  finfo.sections = NULL;
  finfo.symbuf = NULL;
  finfo.symbuf = NULL;
  finfo.symshndxbuf = NULL;
  finfo.symshndxbuf = NULL;
  finfo.symbuf_count = 0;
  finfo.symbuf_count = 0;
  finfo.first_tls_sec = NULL;
  finfo.first_tls_sec = NULL;
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
    if ((o->flags & SEC_THREAD_LOCAL) != 0
    if ((o->flags & SEC_THREAD_LOCAL) != 0
        && (o->flags & SEC_LOAD) != 0)
        && (o->flags & SEC_LOAD) != 0)
      {
      {
        finfo.first_tls_sec = o;
        finfo.first_tls_sec = o;
        break;
        break;
      }
      }
 
 
  /* Count up the number of relocations we will output for each output
  /* Count up the number of relocations we will output for each output
     section, so that we know the sizes of the reloc sections.  We
     section, so that we know the sizes of the reloc sections.  We
     also figure out some maximum sizes.  */
     also figure out some maximum sizes.  */
  max_contents_size = 0;
  max_contents_size = 0;
  max_external_reloc_size = 0;
  max_external_reloc_size = 0;
  max_internal_reloc_count = 0;
  max_internal_reloc_count = 0;
  max_sym_count = 0;
  max_sym_count = 0;
  max_sym_shndx_count = 0;
  max_sym_shndx_count = 0;
  merged = false;
  merged = false;
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
    {
    {
      o->reloc_count = 0;
      o->reloc_count = 0;
 
 
      for (p = o->link_order_head; p != NULL; p = p->next)
      for (p = o->link_order_head; p != NULL; p = p->next)
        {
        {
          if (p->type == bfd_section_reloc_link_order
          if (p->type == bfd_section_reloc_link_order
              || p->type == bfd_symbol_reloc_link_order)
              || p->type == bfd_symbol_reloc_link_order)
            ++o->reloc_count;
            ++o->reloc_count;
          else if (p->type == bfd_indirect_link_order)
          else if (p->type == bfd_indirect_link_order)
            {
            {
              asection *sec;
              asection *sec;
 
 
              sec = p->u.indirect.section;
              sec = p->u.indirect.section;
 
 
              /* Mark all sections which are to be included in the
              /* Mark all sections which are to be included in the
                 link.  This will normally be every section.  We need
                 link.  This will normally be every section.  We need
                 to do this so that we can identify any sections which
                 to do this so that we can identify any sections which
                 the linker has decided to not include.  */
                 the linker has decided to not include.  */
              sec->linker_mark = true;
              sec->linker_mark = true;
 
 
              if (sec->flags & SEC_MERGE)
              if (sec->flags & SEC_MERGE)
                merged = true;
                merged = true;
 
 
              if (info->relocateable || info->emitrelocations)
              if (info->relocateable || info->emitrelocations)
                o->reloc_count += sec->reloc_count;
                o->reloc_count += sec->reloc_count;
              else if (bed->elf_backend_count_relocs)
              else if (bed->elf_backend_count_relocs)
                {
                {
                  Elf_Internal_Rela * relocs;
                  Elf_Internal_Rela * relocs;
 
 
                  relocs = (NAME(_bfd_elf,link_read_relocs)
                  relocs = (NAME(_bfd_elf,link_read_relocs)
                            (abfd, sec, (PTR) NULL,
                            (abfd, sec, (PTR) NULL,
                             (Elf_Internal_Rela *) NULL, info->keep_memory));
                             (Elf_Internal_Rela *) NULL, info->keep_memory));
 
 
                  o->reloc_count
                  o->reloc_count
                    += (*bed->elf_backend_count_relocs) (sec, relocs);
                    += (*bed->elf_backend_count_relocs) (sec, relocs);
 
 
                  if (elf_section_data (o)->relocs != relocs)
                  if (elf_section_data (o)->relocs != relocs)
                    free (relocs);
                    free (relocs);
                }
                }
 
 
              if (sec->_raw_size > max_contents_size)
              if (sec->_raw_size > max_contents_size)
                max_contents_size = sec->_raw_size;
                max_contents_size = sec->_raw_size;
              if (sec->_cooked_size > max_contents_size)
              if (sec->_cooked_size > max_contents_size)
                max_contents_size = sec->_cooked_size;
                max_contents_size = sec->_cooked_size;
 
 
              /* We are interested in just local symbols, not all
              /* We are interested in just local symbols, not all
                 symbols.  */
                 symbols.  */
              if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
              if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
                  && (sec->owner->flags & DYNAMIC) == 0)
                  && (sec->owner->flags & DYNAMIC) == 0)
                {
                {
                  size_t sym_count;
                  size_t sym_count;
 
 
                  if (elf_bad_symtab (sec->owner))
                  if (elf_bad_symtab (sec->owner))
                    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
                    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
                                 / sizeof (Elf_External_Sym));
                                 / sizeof (Elf_External_Sym));
                  else
                  else
                    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
                    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
 
 
                  if (sym_count > max_sym_count)
                  if (sym_count > max_sym_count)
                    max_sym_count = sym_count;
                    max_sym_count = sym_count;
 
 
                  if (sym_count > max_sym_shndx_count
                  if (sym_count > max_sym_shndx_count
                      && elf_symtab_shndx (sec->owner) != 0)
                      && elf_symtab_shndx (sec->owner) != 0)
                    max_sym_shndx_count = sym_count;
                    max_sym_shndx_count = sym_count;
 
 
                  if ((sec->flags & SEC_RELOC) != 0)
                  if ((sec->flags & SEC_RELOC) != 0)
                    {
                    {
                      size_t ext_size;
                      size_t ext_size;
 
 
                      ext_size = elf_section_data (sec)->rel_hdr.sh_size;
                      ext_size = elf_section_data (sec)->rel_hdr.sh_size;
                      if (ext_size > max_external_reloc_size)
                      if (ext_size > max_external_reloc_size)
                        max_external_reloc_size = ext_size;
                        max_external_reloc_size = ext_size;
                      if (sec->reloc_count > max_internal_reloc_count)
                      if (sec->reloc_count > max_internal_reloc_count)
                        max_internal_reloc_count = sec->reloc_count;
                        max_internal_reloc_count = sec->reloc_count;
                    }
                    }
                }
                }
            }
            }
        }
        }
 
 
      if (o->reloc_count > 0)
      if (o->reloc_count > 0)
        o->flags |= SEC_RELOC;
        o->flags |= SEC_RELOC;
      else
      else
        {
        {
          /* Explicitly clear the SEC_RELOC flag.  The linker tends to
          /* Explicitly clear the SEC_RELOC flag.  The linker tends to
             set it (this is probably a bug) and if it is set
             set it (this is probably a bug) and if it is set
             assign_section_numbers will create a reloc section.  */
             assign_section_numbers will create a reloc section.  */
          o->flags &=~ SEC_RELOC;
          o->flags &=~ SEC_RELOC;
        }
        }
 
 
      /* If the SEC_ALLOC flag is not set, force the section VMA to
      /* If the SEC_ALLOC flag is not set, force the section VMA to
         zero.  This is done in elf_fake_sections as well, but forcing
         zero.  This is done in elf_fake_sections as well, but forcing
         the VMA to 0 here will ensure that relocs against these
         the VMA to 0 here will ensure that relocs against these
         sections are handled correctly.  */
         sections are handled correctly.  */
      if ((o->flags & SEC_ALLOC) == 0
      if ((o->flags & SEC_ALLOC) == 0
          && ! o->user_set_vma)
          && ! o->user_set_vma)
        o->vma = 0;
        o->vma = 0;
    }
    }
 
 
  if (! info->relocateable && merged)
  if (! info->relocateable && merged)
    elf_link_hash_traverse (elf_hash_table (info),
    elf_link_hash_traverse (elf_hash_table (info),
                            elf_link_sec_merge_syms, (PTR) abfd);
                            elf_link_sec_merge_syms, (PTR) abfd);
 
 
  /* Figure out the file positions for everything but the symbol table
  /* Figure out the file positions for everything but the symbol table
     and the relocs.  We set symcount to force assign_section_numbers
     and the relocs.  We set symcount to force assign_section_numbers
     to create a symbol table.  */
     to create a symbol table.  */
  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
  BFD_ASSERT (! abfd->output_has_begun);
  BFD_ASSERT (! abfd->output_has_begun);
  if (! _bfd_elf_compute_section_file_positions (abfd, info))
  if (! _bfd_elf_compute_section_file_positions (abfd, info))
    goto error_return;
    goto error_return;
 
 
  /* Figure out how many relocations we will have in each section.
  /* Figure out how many relocations we will have in each section.
     Just using RELOC_COUNT isn't good enough since that doesn't
     Just using RELOC_COUNT isn't good enough since that doesn't
     maintain a separate value for REL vs. RELA relocations.  */
     maintain a separate value for REL vs. RELA relocations.  */
  if (emit_relocs)
  if (emit_relocs)
    for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
    for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
      for (o = sub->sections; o != NULL; o = o->next)
      for (o = sub->sections; o != NULL; o = o->next)
        {
        {
          asection *output_section;
          asection *output_section;
 
 
          if (! o->linker_mark)
          if (! o->linker_mark)
            {
            {
              /* This section was omitted from the link.  */
              /* This section was omitted from the link.  */
              continue;
              continue;
            }
            }
 
 
          output_section = o->output_section;
          output_section = o->output_section;
 
 
          if (output_section != NULL
          if (output_section != NULL
              && (o->flags & SEC_RELOC) != 0)
              && (o->flags & SEC_RELOC) != 0)
            {
            {
              struct bfd_elf_section_data *esdi
              struct bfd_elf_section_data *esdi
                = elf_section_data (o);
                = elf_section_data (o);
              struct bfd_elf_section_data *esdo
              struct bfd_elf_section_data *esdo
                = elf_section_data (output_section);
                = elf_section_data (output_section);
              unsigned int *rel_count;
              unsigned int *rel_count;
              unsigned int *rel_count2;
              unsigned int *rel_count2;
              bfd_size_type entsize;
              bfd_size_type entsize;
              bfd_size_type entsize2;
              bfd_size_type entsize2;
 
 
              /* We must be careful to add the relocations from the
              /* We must be careful to add the relocations from the
                 input section to the right output count.  */
                 input section to the right output count.  */
              entsize = esdi->rel_hdr.sh_entsize;
              entsize = esdi->rel_hdr.sh_entsize;
              entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
              entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
              BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
              BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
                           || entsize == sizeof (Elf_External_Rela))
                           || entsize == sizeof (Elf_External_Rela))
                          && entsize2 != entsize
                          && entsize2 != entsize
                          && (entsize2 == 0
                          && (entsize2 == 0
                              || entsize2 == sizeof (Elf_External_Rel)
                              || entsize2 == sizeof (Elf_External_Rel)
                              || entsize2 == sizeof (Elf_External_Rela)));
                              || entsize2 == sizeof (Elf_External_Rela)));
              if (entsize == esdo->rel_hdr.sh_entsize)
              if (entsize == esdo->rel_hdr.sh_entsize)
                {
                {
                  rel_count = &esdo->rel_count;
                  rel_count = &esdo->rel_count;
                  rel_count2 = &esdo->rel_count2;
                  rel_count2 = &esdo->rel_count2;
                }
                }
              else
              else
                {
                {
                  rel_count = &esdo->rel_count2;
                  rel_count = &esdo->rel_count2;
                  rel_count2 = &esdo->rel_count;
                  rel_count2 = &esdo->rel_count;
                }
                }
 
 
              *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
              *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
              if (esdi->rel_hdr2)
              if (esdi->rel_hdr2)
                *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
                *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
              output_section->flags |= SEC_RELOC;
              output_section->flags |= SEC_RELOC;
            }
            }
        }
        }
 
 
  /* That created the reloc sections.  Set their sizes, and assign
  /* That created the reloc sections.  Set their sizes, and assign
     them file positions, and allocate some buffers.  */
     them file positions, and allocate some buffers.  */
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      if ((o->flags & SEC_RELOC) != 0)
      if ((o->flags & SEC_RELOC) != 0)
        {
        {
          if (!elf_link_size_reloc_section (abfd,
          if (!elf_link_size_reloc_section (abfd,
                                            &elf_section_data (o)->rel_hdr,
                                            &elf_section_data (o)->rel_hdr,
                                            o))
                                            o))
            goto error_return;
            goto error_return;
 
 
          if (elf_section_data (o)->rel_hdr2
          if (elf_section_data (o)->rel_hdr2
              && !elf_link_size_reloc_section (abfd,
              && !elf_link_size_reloc_section (abfd,
                                               elf_section_data (o)->rel_hdr2,
                                               elf_section_data (o)->rel_hdr2,
                                               o))
                                               o))
            goto error_return;
            goto error_return;
        }
        }
 
 
      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
         to count upwards while actually outputting the relocations.  */
         to count upwards while actually outputting the relocations.  */
      elf_section_data (o)->rel_count = 0;
      elf_section_data (o)->rel_count = 0;
      elf_section_data (o)->rel_count2 = 0;
      elf_section_data (o)->rel_count2 = 0;
    }
    }
 
 
  _bfd_elf_assign_file_positions_for_relocs (abfd);
  _bfd_elf_assign_file_positions_for_relocs (abfd);
 
 
  /* We have now assigned file positions for all the sections except
  /* We have now assigned file positions for all the sections except
     .symtab and .strtab.  We start the .symtab section at the current
     .symtab and .strtab.  We start the .symtab section at the current
     file position, and write directly to it.  We build the .strtab
     file position, and write directly to it.  We build the .strtab
     section in memory.  */
     section in memory.  */
  bfd_get_symcount (abfd) = 0;
  bfd_get_symcount (abfd) = 0;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  /* sh_name is set in prep_headers.  */
  /* sh_name is set in prep_headers.  */
  symtab_hdr->sh_type = SHT_SYMTAB;
  symtab_hdr->sh_type = SHT_SYMTAB;
  symtab_hdr->sh_flags = 0;
  symtab_hdr->sh_flags = 0;
  symtab_hdr->sh_addr = 0;
  symtab_hdr->sh_addr = 0;
  symtab_hdr->sh_size = 0;
  symtab_hdr->sh_size = 0;
  symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
  symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
  /* sh_link is set in assign_section_numbers.  */
  /* sh_link is set in assign_section_numbers.  */
  /* sh_info is set below.  */
  /* sh_info is set below.  */
  /* sh_offset is set just below.  */
  /* sh_offset is set just below.  */
  symtab_hdr->sh_addralign = bed->s->file_align;
  symtab_hdr->sh_addralign = bed->s->file_align;
 
 
  off = elf_tdata (abfd)->next_file_pos;
  off = elf_tdata (abfd)->next_file_pos;
  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
 
 
  /* Note that at this point elf_tdata (abfd)->next_file_pos is
  /* Note that at this point elf_tdata (abfd)->next_file_pos is
     incorrect.  We do not yet know the size of the .symtab section.
     incorrect.  We do not yet know the size of the .symtab section.
     We correct next_file_pos below, after we do know the size.  */
     We correct next_file_pos below, after we do know the size.  */
 
 
  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
     continuously seeking to the right position in the file.  */
     continuously seeking to the right position in the file.  */
  if (! info->keep_memory || max_sym_count < 20)
  if (! info->keep_memory || max_sym_count < 20)
    finfo.symbuf_size = 20;
    finfo.symbuf_size = 20;
  else
  else
    finfo.symbuf_size = max_sym_count;
    finfo.symbuf_size = max_sym_count;
  amt = finfo.symbuf_size;
  amt = finfo.symbuf_size;
  amt *= sizeof (Elf_External_Sym);
  amt *= sizeof (Elf_External_Sym);
  finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
  finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
  if (finfo.symbuf == NULL)
  if (finfo.symbuf == NULL)
    goto error_return;
    goto error_return;
  if (elf_numsections (abfd) > SHN_LORESERVE)
  if (elf_numsections (abfd) > SHN_LORESERVE)
    {
    {
      amt = finfo.symbuf_size;
      amt = finfo.symbuf_size;
      amt *= sizeof (Elf_External_Sym_Shndx);
      amt *= sizeof (Elf_External_Sym_Shndx);
      finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
      finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
      if (finfo.symshndxbuf == NULL)
      if (finfo.symshndxbuf == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  /* Start writing out the symbol table.  The first symbol is always a
  /* Start writing out the symbol table.  The first symbol is always a
     dummy symbol.  */
     dummy symbol.  */
  if (info->strip != strip_all
  if (info->strip != strip_all
      || emit_relocs)
      || emit_relocs)
    {
    {
      elfsym.st_value = 0;
      elfsym.st_value = 0;
      elfsym.st_size = 0;
      elfsym.st_size = 0;
      elfsym.st_info = 0;
      elfsym.st_info = 0;
      elfsym.st_other = 0;
      elfsym.st_other = 0;
      elfsym.st_shndx = SHN_UNDEF;
      elfsym.st_shndx = SHN_UNDEF;
      if (! elf_link_output_sym (&finfo, (const char *) NULL,
      if (! elf_link_output_sym (&finfo, (const char *) NULL,
                                 &elfsym, bfd_und_section_ptr))
                                 &elfsym, bfd_und_section_ptr))
        goto error_return;
        goto error_return;
    }
    }
 
 
#if 0
#if 0
  /* Some standard ELF linkers do this, but we don't because it causes
  /* Some standard ELF linkers do this, but we don't because it causes
     bootstrap comparison failures.  */
     bootstrap comparison failures.  */
  /* Output a file symbol for the output file as the second symbol.
  /* Output a file symbol for the output file as the second symbol.
     We output this even if we are discarding local symbols, although
     We output this even if we are discarding local symbols, although
     I'm not sure if this is correct.  */
     I'm not sure if this is correct.  */
  elfsym.st_value = 0;
  elfsym.st_value = 0;
  elfsym.st_size = 0;
  elfsym.st_size = 0;
  elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
  elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
  elfsym.st_other = 0;
  elfsym.st_other = 0;
  elfsym.st_shndx = SHN_ABS;
  elfsym.st_shndx = SHN_ABS;
  if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
  if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
                             &elfsym, bfd_abs_section_ptr))
                             &elfsym, bfd_abs_section_ptr))
    goto error_return;
    goto error_return;
#endif
#endif
 
 
  /* Output a symbol for each section.  We output these even if we are
  /* Output a symbol for each section.  We output these even if we are
     discarding local symbols, since they are used for relocs.  These
     discarding local symbols, since they are used for relocs.  These
     symbols have no names.  We store the index of each one in the
     symbols have no names.  We store the index of each one in the
     index field of the section, so that we can find it again when
     index field of the section, so that we can find it again when
     outputting relocs.  */
     outputting relocs.  */
  if (info->strip != strip_all
  if (info->strip != strip_all
      || emit_relocs)
      || emit_relocs)
    {
    {
      elfsym.st_size = 0;
      elfsym.st_size = 0;
      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
      elfsym.st_other = 0;
      elfsym.st_other = 0;
      for (i = 1; i < elf_numsections (abfd); i++)
      for (i = 1; i < elf_numsections (abfd); i++)
        {
        {
          o = section_from_elf_index (abfd, i);
          o = section_from_elf_index (abfd, i);
          if (o != NULL)
          if (o != NULL)
            o->target_index = bfd_get_symcount (abfd);
            o->target_index = bfd_get_symcount (abfd);
          elfsym.st_shndx = i;
          elfsym.st_shndx = i;
          if (info->relocateable || o == NULL)
          if (info->relocateable || o == NULL)
            elfsym.st_value = 0;
            elfsym.st_value = 0;
          else
          else
            elfsym.st_value = o->vma;
            elfsym.st_value = o->vma;
          if (! elf_link_output_sym (&finfo, (const char *) NULL,
          if (! elf_link_output_sym (&finfo, (const char *) NULL,
                                     &elfsym, o))
                                     &elfsym, o))
            goto error_return;
            goto error_return;
          if (i == SHN_LORESERVE)
          if (i == SHN_LORESERVE)
            i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
            i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
        }
        }
    }
    }
 
 
  /* Allocate some memory to hold information read in from the input
  /* Allocate some memory to hold information read in from the input
     files.  */
     files.  */
  if (max_contents_size != 0)
  if (max_contents_size != 0)
    {
    {
      finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
      finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
      if (finfo.contents == NULL)
      if (finfo.contents == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (max_external_reloc_size != 0)
  if (max_external_reloc_size != 0)
    {
    {
      finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
      finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
      if (finfo.external_relocs == NULL)
      if (finfo.external_relocs == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (max_internal_reloc_count != 0)
  if (max_internal_reloc_count != 0)
    {
    {
      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
      amt *= sizeof (Elf_Internal_Rela);
      amt *= sizeof (Elf_Internal_Rela);
      finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
      finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
      if (finfo.internal_relocs == NULL)
      if (finfo.internal_relocs == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (max_sym_count != 0)
  if (max_sym_count != 0)
    {
    {
      amt = max_sym_count * sizeof (Elf_External_Sym);
      amt = max_sym_count * sizeof (Elf_External_Sym);
      finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
      finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
      if (finfo.external_syms == NULL)
      if (finfo.external_syms == NULL)
        goto error_return;
        goto error_return;
 
 
      amt = max_sym_count * sizeof (Elf_Internal_Sym);
      amt = max_sym_count * sizeof (Elf_Internal_Sym);
      finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
      finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
      if (finfo.internal_syms == NULL)
      if (finfo.internal_syms == NULL)
        goto error_return;
        goto error_return;
 
 
      amt = max_sym_count * sizeof (long);
      amt = max_sym_count * sizeof (long);
      finfo.indices = (long *) bfd_malloc (amt);
      finfo.indices = (long *) bfd_malloc (amt);
      if (finfo.indices == NULL)
      if (finfo.indices == NULL)
        goto error_return;
        goto error_return;
 
 
      amt = max_sym_count * sizeof (asection *);
      amt = max_sym_count * sizeof (asection *);
      finfo.sections = (asection **) bfd_malloc (amt);
      finfo.sections = (asection **) bfd_malloc (amt);
      if (finfo.sections == NULL)
      if (finfo.sections == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (max_sym_shndx_count != 0)
  if (max_sym_shndx_count != 0)
    {
    {
      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
      finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
      finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
      if (finfo.locsym_shndx == NULL)
      if (finfo.locsym_shndx == NULL)
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (finfo.first_tls_sec)
  if (finfo.first_tls_sec)
    {
    {
      unsigned int align = 0;
      unsigned int align = 0;
      bfd_vma base = finfo.first_tls_sec->vma, end = 0;
      bfd_vma base = finfo.first_tls_sec->vma, end = 0;
      asection *sec;
      asection *sec;
 
 
      for (sec = finfo.first_tls_sec;
      for (sec = finfo.first_tls_sec;
           sec && (sec->flags & SEC_THREAD_LOCAL);
           sec && (sec->flags & SEC_THREAD_LOCAL);
           sec = sec->next)
           sec = sec->next)
        {
        {
          bfd_vma size = sec->_raw_size;
          bfd_vma size = sec->_raw_size;
 
 
          if (bfd_get_section_alignment (abfd, sec) > align)
          if (bfd_get_section_alignment (abfd, sec) > align)
            align = bfd_get_section_alignment (abfd, sec);
            align = bfd_get_section_alignment (abfd, sec);
          if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
          if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
            {
            {
              struct bfd_link_order *o;
              struct bfd_link_order *o;
 
 
              size = 0;
              size = 0;
              for (o = sec->link_order_head; o != NULL; o = o->next)
              for (o = sec->link_order_head; o != NULL; o = o->next)
                if (size < o->offset + o->size)
                if (size < o->offset + o->size)
                  size = o->offset + o->size;
                  size = o->offset + o->size;
            }
            }
          end = sec->vma + size;
          end = sec->vma + size;
        }
        }
      elf_hash_table (info)->tls_segment
      elf_hash_table (info)->tls_segment
        = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
        = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
      if (elf_hash_table (info)->tls_segment == NULL)
      if (elf_hash_table (info)->tls_segment == NULL)
        goto error_return;
        goto error_return;
      elf_hash_table (info)->tls_segment->start = base;
      elf_hash_table (info)->tls_segment->start = base;
      elf_hash_table (info)->tls_segment->size = end - base;
      elf_hash_table (info)->tls_segment->size = end - base;
      elf_hash_table (info)->tls_segment->align = align;
      elf_hash_table (info)->tls_segment->align = align;
    }
    }
 
 
  /* Since ELF permits relocations to be against local symbols, we
  /* Since ELF permits relocations to be against local symbols, we
     must have the local symbols available when we do the relocations.
     must have the local symbols available when we do the relocations.
     Since we would rather only read the local symbols once, and we
     Since we would rather only read the local symbols once, and we
     would rather not keep them in memory, we handle all the
     would rather not keep them in memory, we handle all the
     relocations for a single input file at the same time.
     relocations for a single input file at the same time.
 
 
     Unfortunately, there is no way to know the total number of local
     Unfortunately, there is no way to know the total number of local
     symbols until we have seen all of them, and the local symbol
     symbols until we have seen all of them, and the local symbol
     indices precede the global symbol indices.  This means that when
     indices precede the global symbol indices.  This means that when
     we are generating relocateable output, and we see a reloc against
     we are generating relocateable output, and we see a reloc against
     a global symbol, we can not know the symbol index until we have
     a global symbol, we can not know the symbol index until we have
     finished examining all the local symbols to see which ones we are
     finished examining all the local symbols to see which ones we are
     going to output.  To deal with this, we keep the relocations in
     going to output.  To deal with this, we keep the relocations in
     memory, and don't output them until the end of the link.  This is
     memory, and don't output them until the end of the link.  This is
     an unfortunate waste of memory, but I don't see a good way around
     an unfortunate waste of memory, but I don't see a good way around
     it.  Fortunately, it only happens when performing a relocateable
     it.  Fortunately, it only happens when performing a relocateable
     link, which is not the common case.  FIXME: If keep_memory is set
     link, which is not the common case.  FIXME: If keep_memory is set
     we could write the relocs out and then read them again; I don't
     we could write the relocs out and then read them again; I don't
     know how bad the memory loss will be.  */
     know how bad the memory loss will be.  */
 
 
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
    sub->output_has_begun = false;
    sub->output_has_begun = false;
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      for (p = o->link_order_head; p != NULL; p = p->next)
      for (p = o->link_order_head; p != NULL; p = p->next)
        {
        {
          if (p->type == bfd_indirect_link_order
          if (p->type == bfd_indirect_link_order
              && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
              && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
                  == bfd_target_elf_flavour)
                  == bfd_target_elf_flavour)
              && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
              && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
            {
            {
              if (! sub->output_has_begun)
              if (! sub->output_has_begun)
                {
                {
                  if (! elf_link_input_bfd (&finfo, sub))
                  if (! elf_link_input_bfd (&finfo, sub))
                    goto error_return;
                    goto error_return;
                  sub->output_has_begun = true;
                  sub->output_has_begun = true;
                }
                }
            }
            }
          else if (p->type == bfd_section_reloc_link_order
          else if (p->type == bfd_section_reloc_link_order
                   || p->type == bfd_symbol_reloc_link_order)
                   || p->type == bfd_symbol_reloc_link_order)
            {
            {
              if (! elf_reloc_link_order (abfd, info, o, p))
              if (! elf_reloc_link_order (abfd, info, o, p))
                goto error_return;
                goto error_return;
            }
            }
          else
          else
            {
            {
              if (! _bfd_default_link_order (abfd, info, o, p))
              if (! _bfd_default_link_order (abfd, info, o, p))
                goto error_return;
                goto error_return;
            }
            }
        }
        }
    }
    }
 
 
  /* Output any global symbols that got converted to local in a
  /* Output any global symbols that got converted to local in a
     version script or due to symbol visibility.  We do this in a
     version script or due to symbol visibility.  We do this in a
     separate step since ELF requires all local symbols to appear
     separate step since ELF requires all local symbols to appear
     prior to any global symbols.  FIXME: We should only do this if
     prior to any global symbols.  FIXME: We should only do this if
     some global symbols were, in fact, converted to become local.
     some global symbols were, in fact, converted to become local.
     FIXME: Will this work correctly with the Irix 5 linker?  */
     FIXME: Will this work correctly with the Irix 5 linker?  */
  eoinfo.failed = false;
  eoinfo.failed = false;
  eoinfo.finfo = &finfo;
  eoinfo.finfo = &finfo;
  eoinfo.localsyms = true;
  eoinfo.localsyms = true;
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
                          (PTR) &eoinfo);
                          (PTR) &eoinfo);
  if (eoinfo.failed)
  if (eoinfo.failed)
    return false;
    return false;
 
 
  /* That wrote out all the local symbols.  Finish up the symbol table
  /* That wrote out all the local symbols.  Finish up the symbol table
     with the global symbols. Even if we want to strip everything we
     with the global symbols. Even if we want to strip everything we
     can, we still need to deal with those global symbols that got
     can, we still need to deal with those global symbols that got
     converted to local in a version script.  */
     converted to local in a version script.  */
 
 
  /* The sh_info field records the index of the first non local symbol.  */
  /* The sh_info field records the index of the first non local symbol.  */
  symtab_hdr->sh_info = bfd_get_symcount (abfd);
  symtab_hdr->sh_info = bfd_get_symcount (abfd);
 
 
  if (dynamic
  if (dynamic
      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
    {
    {
      Elf_Internal_Sym sym;
      Elf_Internal_Sym sym;
      Elf_External_Sym *dynsym =
      Elf_External_Sym *dynsym =
        (Elf_External_Sym *) finfo.dynsym_sec->contents;
        (Elf_External_Sym *) finfo.dynsym_sec->contents;
      long last_local = 0;
      long last_local = 0;
 
 
      /* Write out the section symbols for the output sections.  */
      /* Write out the section symbols for the output sections.  */
      if (info->shared)
      if (info->shared)
        {
        {
          asection *s;
          asection *s;
 
 
          sym.st_size = 0;
          sym.st_size = 0;
          sym.st_name = 0;
          sym.st_name = 0;
          sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
          sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
          sym.st_other = 0;
          sym.st_other = 0;
 
 
          for (s = abfd->sections; s != NULL; s = s->next)
          for (s = abfd->sections; s != NULL; s = s->next)
            {
            {
              int indx;
              int indx;
              Elf_External_Sym *dest;
              Elf_External_Sym *dest;
 
 
              indx = elf_section_data (s)->this_idx;
              indx = elf_section_data (s)->this_idx;
              BFD_ASSERT (indx > 0);
              BFD_ASSERT (indx > 0);
              sym.st_shndx = indx;
              sym.st_shndx = indx;
              sym.st_value = s->vma;
              sym.st_value = s->vma;
              dest = dynsym + elf_section_data (s)->dynindx;
              dest = dynsym + elf_section_data (s)->dynindx;
              elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
              elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
            }
            }
 
 
          last_local = bfd_count_sections (abfd);
          last_local = bfd_count_sections (abfd);
        }
        }
 
 
      /* Write out the local dynsyms.  */
      /* Write out the local dynsyms.  */
      if (elf_hash_table (info)->dynlocal)
      if (elf_hash_table (info)->dynlocal)
        {
        {
          struct elf_link_local_dynamic_entry *e;
          struct elf_link_local_dynamic_entry *e;
          for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
          for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
            {
            {
              asection *s;
              asection *s;
              Elf_External_Sym *dest;
              Elf_External_Sym *dest;
 
 
              sym.st_size = e->isym.st_size;
              sym.st_size = e->isym.st_size;
              sym.st_other = e->isym.st_other;
              sym.st_other = e->isym.st_other;
 
 
              /* Copy the internal symbol as is.
              /* Copy the internal symbol as is.
                 Note that we saved a word of storage and overwrote
                 Note that we saved a word of storage and overwrote
                 the original st_name with the dynstr_index.  */
                 the original st_name with the dynstr_index.  */
              sym = e->isym;
              sym = e->isym;
 
 
              if (e->isym.st_shndx != SHN_UNDEF
              if (e->isym.st_shndx != SHN_UNDEF
                  && (e->isym.st_shndx < SHN_LORESERVE
                  && (e->isym.st_shndx < SHN_LORESERVE
                      || e->isym.st_shndx > SHN_HIRESERVE))
                      || e->isym.st_shndx > SHN_HIRESERVE))
                {
                {
                  s = bfd_section_from_elf_index (e->input_bfd,
                  s = bfd_section_from_elf_index (e->input_bfd,
                                                  e->isym.st_shndx);
                                                  e->isym.st_shndx);
 
 
                  sym.st_shndx =
                  sym.st_shndx =
                    elf_section_data (s->output_section)->this_idx;
                    elf_section_data (s->output_section)->this_idx;
                  sym.st_value = (s->output_section->vma
                  sym.st_value = (s->output_section->vma
                                  + s->output_offset
                                  + s->output_offset
                                  + e->isym.st_value);
                                  + e->isym.st_value);
                }
                }
 
 
              if (last_local < e->dynindx)
              if (last_local < e->dynindx)
                last_local = e->dynindx;
                last_local = e->dynindx;
 
 
              dest = dynsym + e->dynindx;
              dest = dynsym + e->dynindx;
              elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
              elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
            }
            }
        }
        }
 
 
      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
        last_local + 1;
        last_local + 1;
    }
    }
 
 
  /* We get the global symbols from the hash table.  */
  /* We get the global symbols from the hash table.  */
  eoinfo.failed = false;
  eoinfo.failed = false;
  eoinfo.localsyms = false;
  eoinfo.localsyms = false;
  eoinfo.finfo = &finfo;
  eoinfo.finfo = &finfo;
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
                          (PTR) &eoinfo);
                          (PTR) &eoinfo);
  if (eoinfo.failed)
  if (eoinfo.failed)
    return false;
    return false;
 
 
  /* If backend needs to output some symbols not present in the hash
  /* If backend needs to output some symbols not present in the hash
     table, do it now.  */
     table, do it now.  */
  if (bed->elf_backend_output_arch_syms)
  if (bed->elf_backend_output_arch_syms)
    {
    {
      typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
      typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
                                               Elf_Internal_Sym *,
                                               Elf_Internal_Sym *,
                                               asection *));
                                               asection *));
 
 
      if (! ((*bed->elf_backend_output_arch_syms)
      if (! ((*bed->elf_backend_output_arch_syms)
             (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
             (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
        return false;
        return false;
    }
    }
 
 
  /* Flush all symbols to the file.  */
  /* Flush all symbols to the file.  */
  if (! elf_link_flush_output_syms (&finfo))
  if (! elf_link_flush_output_syms (&finfo))
    return false;
    return false;
 
 
  /* Now we know the size of the symtab section.  */
  /* Now we know the size of the symtab section.  */
  off += symtab_hdr->sh_size;
  off += symtab_hdr->sh_size;
 
 
  /* Finish up and write out the symbol string table (.strtab)
  /* Finish up and write out the symbol string table (.strtab)
     section.  */
     section.  */
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
  /* sh_name was set in prep_headers.  */
  /* sh_name was set in prep_headers.  */
  symstrtab_hdr->sh_type = SHT_STRTAB;
  symstrtab_hdr->sh_type = SHT_STRTAB;
  symstrtab_hdr->sh_flags = 0;
  symstrtab_hdr->sh_flags = 0;
  symstrtab_hdr->sh_addr = 0;
  symstrtab_hdr->sh_addr = 0;
  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
  symstrtab_hdr->sh_entsize = 0;
  symstrtab_hdr->sh_entsize = 0;
  symstrtab_hdr->sh_link = 0;
  symstrtab_hdr->sh_link = 0;
  symstrtab_hdr->sh_info = 0;
  symstrtab_hdr->sh_info = 0;
  /* sh_offset is set just below.  */
  /* sh_offset is set just below.  */
  symstrtab_hdr->sh_addralign = 1;
  symstrtab_hdr->sh_addralign = 1;
 
 
  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
  elf_tdata (abfd)->next_file_pos = off;
  elf_tdata (abfd)->next_file_pos = off;
 
 
  if (bfd_get_symcount (abfd) > 0)
  if (bfd_get_symcount (abfd) > 0)
    {
    {
      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
          || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
          || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
        return false;
        return false;
    }
    }
 
 
  /* Adjust the relocs to have the correct symbol indices.  */
  /* Adjust the relocs to have the correct symbol indices.  */
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      if ((o->flags & SEC_RELOC) == 0)
      if ((o->flags & SEC_RELOC) == 0)
        continue;
        continue;
 
 
      elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
      elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
                              elf_section_data (o)->rel_count,
                              elf_section_data (o)->rel_count,
                              elf_section_data (o)->rel_hashes);
                              elf_section_data (o)->rel_hashes);
      if (elf_section_data (o)->rel_hdr2 != NULL)
      if (elf_section_data (o)->rel_hdr2 != NULL)
        elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
        elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
                                elf_section_data (o)->rel_count2,
                                elf_section_data (o)->rel_count2,
                                (elf_section_data (o)->rel_hashes
                                (elf_section_data (o)->rel_hashes
                                 + elf_section_data (o)->rel_count));
                                 + elf_section_data (o)->rel_count));
 
 
      /* Set the reloc_count field to 0 to prevent write_relocs from
      /* Set the reloc_count field to 0 to prevent write_relocs from
         trying to swap the relocs out itself.  */
         trying to swap the relocs out itself.  */
      o->reloc_count = 0;
      o->reloc_count = 0;
    }
    }
 
 
  if (dynamic && info->combreloc && dynobj != NULL)
  if (dynamic && info->combreloc && dynobj != NULL)
    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
 
 
  /* If we are linking against a dynamic object, or generating a
  /* If we are linking against a dynamic object, or generating a
     shared library, finish up the dynamic linking information.  */
     shared library, finish up the dynamic linking information.  */
  if (dynamic)
  if (dynamic)
    {
    {
      Elf_External_Dyn *dyncon, *dynconend;
      Elf_External_Dyn *dyncon, *dynconend;
 
 
      /* Fix up .dynamic entries.  */
      /* Fix up .dynamic entries.  */
      o = bfd_get_section_by_name (dynobj, ".dynamic");
      o = bfd_get_section_by_name (dynobj, ".dynamic");
      BFD_ASSERT (o != NULL);
      BFD_ASSERT (o != NULL);
 
 
      dyncon = (Elf_External_Dyn *) o->contents;
      dyncon = (Elf_External_Dyn *) o->contents;
      dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
      dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          const char *name;
          const char *name;
          unsigned int type;
          unsigned int type;
 
 
          elf_swap_dyn_in (dynobj, dyncon, &dyn);
          elf_swap_dyn_in (dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            default:
            default:
              break;
              break;
            case DT_NULL:
            case DT_NULL:
              if (relativecount > 0 && dyncon + 1 < dynconend)
              if (relativecount > 0 && dyncon + 1 < dynconend)
                {
                {
                  switch (elf_section_data (reldyn)->this_hdr.sh_type)
                  switch (elf_section_data (reldyn)->this_hdr.sh_type)
                    {
                    {
                    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
                    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
                    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
                    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
                    default: break;
                    default: break;
                    }
                    }
                  if (dyn.d_tag != DT_NULL)
                  if (dyn.d_tag != DT_NULL)
                    {
                    {
                      dyn.d_un.d_val = relativecount;
                      dyn.d_un.d_val = relativecount;
                      elf_swap_dyn_out (dynobj, &dyn, dyncon);
                      elf_swap_dyn_out (dynobj, &dyn, dyncon);
                      relativecount = 0;
                      relativecount = 0;
                    }
                    }
                }
                }
              break;
              break;
            case DT_INIT:
            case DT_INIT:
              name = info->init_function;
              name = info->init_function;
              goto get_sym;
              goto get_sym;
            case DT_FINI:
            case DT_FINI:
              name = info->fini_function;
              name = info->fini_function;
            get_sym:
            get_sym:
              {
              {
                struct elf_link_hash_entry *h;
                struct elf_link_hash_entry *h;
 
 
                h = elf_link_hash_lookup (elf_hash_table (info), name,
                h = elf_link_hash_lookup (elf_hash_table (info), name,
                                          false, false, true);
                                          false, false, true);
                if (h != NULL
                if (h != NULL
                    && (h->root.type == bfd_link_hash_defined
                    && (h->root.type == bfd_link_hash_defined
                        || h->root.type == bfd_link_hash_defweak))
                        || h->root.type == bfd_link_hash_defweak))
                  {
                  {
                    dyn.d_un.d_val = h->root.u.def.value;
                    dyn.d_un.d_val = h->root.u.def.value;
                    o = h->root.u.def.section;
                    o = h->root.u.def.section;
                    if (o->output_section != NULL)
                    if (o->output_section != NULL)
                      dyn.d_un.d_val += (o->output_section->vma
                      dyn.d_un.d_val += (o->output_section->vma
                                         + o->output_offset);
                                         + o->output_offset);
                    else
                    else
                      {
                      {
                        /* The symbol is imported from another shared
                        /* The symbol is imported from another shared
                           library and does not apply to this one.  */
                           library and does not apply to this one.  */
                        dyn.d_un.d_val = 0;
                        dyn.d_un.d_val = 0;
                      }
                      }
 
 
                    elf_swap_dyn_out (dynobj, &dyn, dyncon);
                    elf_swap_dyn_out (dynobj, &dyn, dyncon);
                  }
                  }
              }
              }
              break;
              break;
 
 
            case DT_PREINIT_ARRAYSZ:
            case DT_PREINIT_ARRAYSZ:
              name = ".preinit_array";
              name = ".preinit_array";
              goto get_size;
              goto get_size;
            case DT_INIT_ARRAYSZ:
            case DT_INIT_ARRAYSZ:
              name = ".init_array";
              name = ".init_array";
              goto get_size;
              goto get_size;
            case DT_FINI_ARRAYSZ:
            case DT_FINI_ARRAYSZ:
              name = ".fini_array";
              name = ".fini_array";
            get_size:
            get_size:
              o = bfd_get_section_by_name (abfd, name);
              o = bfd_get_section_by_name (abfd, name);
              if (o == NULL)
              if (o == NULL)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%s: could not find output section %s"),
                    (_("%s: could not find output section %s"),
                     bfd_get_filename (abfd), name);
                     bfd_get_filename (abfd), name);
                  goto error_return;
                  goto error_return;
                }
                }
              if (o->_raw_size == 0)
              if (o->_raw_size == 0)
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("warning: %s section has zero size"), name);
                  (_("warning: %s section has zero size"), name);
              dyn.d_un.d_val = o->_raw_size;
              dyn.d_un.d_val = o->_raw_size;
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
              break;
              break;
 
 
            case DT_PREINIT_ARRAY:
            case DT_PREINIT_ARRAY:
              name = ".preinit_array";
              name = ".preinit_array";
              goto get_vma;
              goto get_vma;
            case DT_INIT_ARRAY:
            case DT_INIT_ARRAY:
              name = ".init_array";
              name = ".init_array";
              goto get_vma;
              goto get_vma;
            case DT_FINI_ARRAY:
            case DT_FINI_ARRAY:
              name = ".fini_array";
              name = ".fini_array";
              goto get_vma;
              goto get_vma;
 
 
            case DT_HASH:
            case DT_HASH:
              name = ".hash";
              name = ".hash";
              goto get_vma;
              goto get_vma;
            case DT_STRTAB:
            case DT_STRTAB:
              name = ".dynstr";
              name = ".dynstr";
              goto get_vma;
              goto get_vma;
            case DT_SYMTAB:
            case DT_SYMTAB:
              name = ".dynsym";
              name = ".dynsym";
              goto get_vma;
              goto get_vma;
            case DT_VERDEF:
            case DT_VERDEF:
              name = ".gnu.version_d";
              name = ".gnu.version_d";
              goto get_vma;
              goto get_vma;
            case DT_VERNEED:
            case DT_VERNEED:
              name = ".gnu.version_r";
              name = ".gnu.version_r";
              goto get_vma;
              goto get_vma;
            case DT_VERSYM:
            case DT_VERSYM:
              name = ".gnu.version";
              name = ".gnu.version";
            get_vma:
            get_vma:
              o = bfd_get_section_by_name (abfd, name);
              o = bfd_get_section_by_name (abfd, name);
              if (o == NULL)
              if (o == NULL)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%s: could not find output section %s"),
                    (_("%s: could not find output section %s"),
                     bfd_get_filename (abfd), name);
                     bfd_get_filename (abfd), name);
                  goto error_return;
                  goto error_return;
                }
                }
              dyn.d_un.d_ptr = o->vma;
              dyn.d_un.d_ptr = o->vma;
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
              break;
              break;
 
 
            case DT_REL:
            case DT_REL:
            case DT_RELA:
            case DT_RELA:
            case DT_RELSZ:
            case DT_RELSZ:
            case DT_RELASZ:
            case DT_RELASZ:
              if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
              if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
                type = SHT_REL;
                type = SHT_REL;
              else
              else
                type = SHT_RELA;
                type = SHT_RELA;
              dyn.d_un.d_val = 0;
              dyn.d_un.d_val = 0;
              for (i = 1; i < elf_numsections (abfd); i++)
              for (i = 1; i < elf_numsections (abfd); i++)
                {
                {
                  Elf_Internal_Shdr *hdr;
                  Elf_Internal_Shdr *hdr;
 
 
                  hdr = elf_elfsections (abfd)[i];
                  hdr = elf_elfsections (abfd)[i];
                  if (hdr->sh_type == type
                  if (hdr->sh_type == type
                      && (hdr->sh_flags & SHF_ALLOC) != 0)
                      && (hdr->sh_flags & SHF_ALLOC) != 0)
                    {
                    {
                      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
                      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
                        dyn.d_un.d_val += hdr->sh_size;
                        dyn.d_un.d_val += hdr->sh_size;
                      else
                      else
                        {
                        {
                          if (dyn.d_un.d_val == 0
                          if (dyn.d_un.d_val == 0
                              || hdr->sh_addr < dyn.d_un.d_val)
                              || hdr->sh_addr < dyn.d_un.d_val)
                            dyn.d_un.d_val = hdr->sh_addr;
                            dyn.d_un.d_val = hdr->sh_addr;
                        }
                        }
                    }
                    }
                }
                }
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  /* If we have created any dynamic sections, then output them.  */
  /* If we have created any dynamic sections, then output them.  */
  if (dynobj != NULL)
  if (dynobj != NULL)
    {
    {
      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
        goto error_return;
        goto error_return;
 
 
      for (o = dynobj->sections; o != NULL; o = o->next)
      for (o = dynobj->sections; o != NULL; o = o->next)
        {
        {
          if ((o->flags & SEC_HAS_CONTENTS) == 0
          if ((o->flags & SEC_HAS_CONTENTS) == 0
              || o->_raw_size == 0
              || o->_raw_size == 0
              || o->output_section == bfd_abs_section_ptr)
              || o->output_section == bfd_abs_section_ptr)
            continue;
            continue;
          if ((o->flags & SEC_LINKER_CREATED) == 0)
          if ((o->flags & SEC_LINKER_CREATED) == 0)
            {
            {
              /* At this point, we are only interested in sections
              /* At this point, we are only interested in sections
                 created by elf_link_create_dynamic_sections.  */
                 created by elf_link_create_dynamic_sections.  */
              continue;
              continue;
            }
            }
          if ((elf_section_data (o->output_section)->this_hdr.sh_type
          if ((elf_section_data (o->output_section)->this_hdr.sh_type
               != SHT_STRTAB)
               != SHT_STRTAB)
              || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
              || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
            {
            {
              if (! bfd_set_section_contents (abfd, o->output_section,
              if (! bfd_set_section_contents (abfd, o->output_section,
                                              o->contents,
                                              o->contents,
                                              (file_ptr) o->output_offset,
                                              (file_ptr) o->output_offset,
                                              o->_raw_size))
                                              o->_raw_size))
                goto error_return;
                goto error_return;
            }
            }
          else
          else
            {
            {
              /* The contents of the .dynstr section are actually in a
              /* The contents of the .dynstr section are actually in a
                 stringtab.  */
                 stringtab.  */
              off = elf_section_data (o->output_section)->this_hdr.sh_offset;
              off = elf_section_data (o->output_section)->this_hdr.sh_offset;
              if (bfd_seek (abfd, off, SEEK_SET) != 0
              if (bfd_seek (abfd, off, SEEK_SET) != 0
                  || ! _bfd_elf_strtab_emit (abfd,
                  || ! _bfd_elf_strtab_emit (abfd,
                                             elf_hash_table (info)->dynstr))
                                             elf_hash_table (info)->dynstr))
                goto error_return;
                goto error_return;
            }
            }
        }
        }
    }
    }
 
 
  if (info->relocateable)
  if (info->relocateable)
    {
    {
      boolean failed = false;
      boolean failed = false;
 
 
      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
      if (failed)
      if (failed)
        goto error_return;
        goto error_return;
    }
    }
 
 
  /* If we have optimized stabs strings, output them.  */
  /* If we have optimized stabs strings, output them.  */
  if (elf_hash_table (info)->stab_info != NULL)
  if (elf_hash_table (info)->stab_info != NULL)
    {
    {
      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
        goto error_return;
        goto error_return;
    }
    }
 
 
  if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
  if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
    {
    {
      o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
      o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
                                   ".eh_frame_hdr");
                                   ".eh_frame_hdr");
      if (o
      if (o
          && (elf_section_data (o)->sec_info_type
          && (elf_section_data (o)->sec_info_type
              == ELF_INFO_TYPE_EH_FRAME_HDR))
              == ELF_INFO_TYPE_EH_FRAME_HDR))
        {
        {
          if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
          if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
            goto error_return;
            goto error_return;
        }
        }
    }
    }
 
 
  if (finfo.symstrtab != NULL)
  if (finfo.symstrtab != NULL)
    _bfd_stringtab_free (finfo.symstrtab);
    _bfd_stringtab_free (finfo.symstrtab);
  if (finfo.contents != NULL)
  if (finfo.contents != NULL)
    free (finfo.contents);
    free (finfo.contents);
  if (finfo.external_relocs != NULL)
  if (finfo.external_relocs != NULL)
    free (finfo.external_relocs);
    free (finfo.external_relocs);
  if (finfo.internal_relocs != NULL)
  if (finfo.internal_relocs != NULL)
    free (finfo.internal_relocs);
    free (finfo.internal_relocs);
  if (finfo.external_syms != NULL)
  if (finfo.external_syms != NULL)
    free (finfo.external_syms);
    free (finfo.external_syms);
  if (finfo.locsym_shndx != NULL)
  if (finfo.locsym_shndx != NULL)
    free (finfo.locsym_shndx);
    free (finfo.locsym_shndx);
  if (finfo.internal_syms != NULL)
  if (finfo.internal_syms != NULL)
    free (finfo.internal_syms);
    free (finfo.internal_syms);
  if (finfo.indices != NULL)
  if (finfo.indices != NULL)
    free (finfo.indices);
    free (finfo.indices);
  if (finfo.sections != NULL)
  if (finfo.sections != NULL)
    free (finfo.sections);
    free (finfo.sections);
  if (finfo.symbuf != NULL)
  if (finfo.symbuf != NULL)
    free (finfo.symbuf);
    free (finfo.symbuf);
  if (finfo.symshndxbuf != NULL)
  if (finfo.symshndxbuf != NULL)
    free (finfo.symbuf);
    free (finfo.symbuf);
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      if ((o->flags & SEC_RELOC) != 0
      if ((o->flags & SEC_RELOC) != 0
          && elf_section_data (o)->rel_hashes != NULL)
          && elf_section_data (o)->rel_hashes != NULL)
        free (elf_section_data (o)->rel_hashes);
        free (elf_section_data (o)->rel_hashes);
    }
    }
 
 
  elf_tdata (abfd)->linker = true;
  elf_tdata (abfd)->linker = true;
 
 
  return true;
  return true;
 
 
 error_return:
 error_return:
  if (finfo.symstrtab != NULL)
  if (finfo.symstrtab != NULL)
    _bfd_stringtab_free (finfo.symstrtab);
    _bfd_stringtab_free (finfo.symstrtab);
  if (finfo.contents != NULL)
  if (finfo.contents != NULL)
    free (finfo.contents);
    free (finfo.contents);
  if (finfo.external_relocs != NULL)
  if (finfo.external_relocs != NULL)
    free (finfo.external_relocs);
    free (finfo.external_relocs);
  if (finfo.internal_relocs != NULL)
  if (finfo.internal_relocs != NULL)
    free (finfo.internal_relocs);
    free (finfo.internal_relocs);
  if (finfo.external_syms != NULL)
  if (finfo.external_syms != NULL)
    free (finfo.external_syms);
    free (finfo.external_syms);
  if (finfo.locsym_shndx != NULL)
  if (finfo.locsym_shndx != NULL)
    free (finfo.locsym_shndx);
    free (finfo.locsym_shndx);
  if (finfo.internal_syms != NULL)
  if (finfo.internal_syms != NULL)
    free (finfo.internal_syms);
    free (finfo.internal_syms);
  if (finfo.indices != NULL)
  if (finfo.indices != NULL)
    free (finfo.indices);
    free (finfo.indices);
  if (finfo.sections != NULL)
  if (finfo.sections != NULL)
    free (finfo.sections);
    free (finfo.sections);
  if (finfo.symbuf != NULL)
  if (finfo.symbuf != NULL)
    free (finfo.symbuf);
    free (finfo.symbuf);
  if (finfo.symshndxbuf != NULL)
  if (finfo.symshndxbuf != NULL)
    free (finfo.symbuf);
    free (finfo.symbuf);
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      if ((o->flags & SEC_RELOC) != 0
      if ((o->flags & SEC_RELOC) != 0
          && elf_section_data (o)->rel_hashes != NULL)
          && elf_section_data (o)->rel_hashes != NULL)
        free (elf_section_data (o)->rel_hashes);
        free (elf_section_data (o)->rel_hashes);
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Add a symbol to the output symbol table.  */
/* Add a symbol to the output symbol table.  */
 
 
static boolean
static boolean
elf_link_output_sym (finfo, name, elfsym, input_sec)
elf_link_output_sym (finfo, name, elfsym, input_sec)
     struct elf_final_link_info *finfo;
     struct elf_final_link_info *finfo;
     const char *name;
     const char *name;
     Elf_Internal_Sym *elfsym;
     Elf_Internal_Sym *elfsym;
     asection *input_sec;
     asection *input_sec;
{
{
  Elf_External_Sym *dest;
  Elf_External_Sym *dest;
  Elf_External_Sym_Shndx *destshndx;
  Elf_External_Sym_Shndx *destshndx;
 
 
  boolean (*output_symbol_hook) PARAMS ((bfd *,
  boolean (*output_symbol_hook) PARAMS ((bfd *,
                                         struct bfd_link_info *info,
                                         struct bfd_link_info *info,
                                         const char *,
                                         const char *,
                                         Elf_Internal_Sym *,
                                         Elf_Internal_Sym *,
                                         asection *));
                                         asection *));
 
 
  output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
  output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
    elf_backend_link_output_symbol_hook;
    elf_backend_link_output_symbol_hook;
  if (output_symbol_hook != NULL)
  if (output_symbol_hook != NULL)
    {
    {
      if (! ((*output_symbol_hook)
      if (! ((*output_symbol_hook)
             (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
             (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
        return false;
        return false;
    }
    }
 
 
  if (name == (const char *) NULL || *name == '\0')
  if (name == (const char *) NULL || *name == '\0')
    elfsym->st_name = 0;
    elfsym->st_name = 0;
  else if (input_sec->flags & SEC_EXCLUDE)
  else if (input_sec->flags & SEC_EXCLUDE)
    elfsym->st_name = 0;
    elfsym->st_name = 0;
  else
  else
    {
    {
      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
                                                            name, true, false);
                                                            name, true, false);
      if (elfsym->st_name == (unsigned long) -1)
      if (elfsym->st_name == (unsigned long) -1)
        return false;
        return false;
    }
    }
 
 
  if (finfo->symbuf_count >= finfo->symbuf_size)
  if (finfo->symbuf_count >= finfo->symbuf_size)
    {
    {
      if (! elf_link_flush_output_syms (finfo))
      if (! elf_link_flush_output_syms (finfo))
        return false;
        return false;
    }
    }
 
 
  dest = finfo->symbuf + finfo->symbuf_count;
  dest = finfo->symbuf + finfo->symbuf_count;
  destshndx = finfo->symshndxbuf;
  destshndx = finfo->symshndxbuf;
  if (destshndx != NULL)
  if (destshndx != NULL)
    destshndx += finfo->symbuf_count;
    destshndx += finfo->symbuf_count;
  elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
  elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
  ++finfo->symbuf_count;
  ++finfo->symbuf_count;
 
 
  ++ bfd_get_symcount (finfo->output_bfd);
  ++ bfd_get_symcount (finfo->output_bfd);
 
 
  return true;
  return true;
}
}
 
 
/* Flush the output symbols to the file.  */
/* Flush the output symbols to the file.  */
 
 
static boolean
static boolean
elf_link_flush_output_syms (finfo)
elf_link_flush_output_syms (finfo)
     struct elf_final_link_info *finfo;
     struct elf_final_link_info *finfo;
{
{
  if (finfo->symbuf_count > 0)
  if (finfo->symbuf_count > 0)
    {
    {
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
      file_ptr pos;
      file_ptr pos;
      bfd_size_type amt;
      bfd_size_type amt;
 
 
      hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
      hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
      pos = hdr->sh_offset + hdr->sh_size;
      pos = hdr->sh_offset + hdr->sh_size;
      amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
      amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
      if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
      if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
          || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
          || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
        return false;
        return false;
 
 
      hdr->sh_size += amt;
      hdr->sh_size += amt;
 
 
      if (finfo->symshndxbuf != NULL)
      if (finfo->symshndxbuf != NULL)
        {
        {
          hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
          hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
          pos = hdr->sh_offset + hdr->sh_size;
          pos = hdr->sh_offset + hdr->sh_size;
          amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
          amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
          if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
          if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
              || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
              || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
                  != amt))
                  != amt))
            return false;
            return false;
 
 
          hdr->sh_size += amt;
          hdr->sh_size += amt;
        }
        }
 
 
      finfo->symbuf_count = 0;
      finfo->symbuf_count = 0;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Adjust all external symbols pointing into SEC_MERGE sections
/* Adjust all external symbols pointing into SEC_MERGE sections
   to reflect the object merging within the sections.  */
   to reflect the object merging within the sections.  */
 
 
static boolean
static boolean
elf_link_sec_merge_syms (h, data)
elf_link_sec_merge_syms (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  asection *sec;
  asection *sec;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  if ((h->root.type == bfd_link_hash_defined
  if ((h->root.type == bfd_link_hash_defined
       || h->root.type == bfd_link_hash_defweak)
       || h->root.type == bfd_link_hash_defweak)
      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
      && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
      && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
    {
    {
      bfd *output_bfd = (bfd *) data;
      bfd *output_bfd = (bfd *) data;
 
 
      h->root.u.def.value =
      h->root.u.def.value =
        _bfd_merged_section_offset (output_bfd,
        _bfd_merged_section_offset (output_bfd,
                                    &h->root.u.def.section,
                                    &h->root.u.def.section,
                                    elf_section_data (sec)->sec_info,
                                    elf_section_data (sec)->sec_info,
                                    h->root.u.def.value, (bfd_vma) 0);
                                    h->root.u.def.value, (bfd_vma) 0);
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
   allowing an unsatisfied unversioned symbol in the DSO to match a
   allowing an unsatisfied unversioned symbol in the DSO to match a
   versioned symbol that would normally require an explicit version.  */
   versioned symbol that would normally require an explicit version.  */
 
 
static boolean
static boolean
elf_link_check_versioned_symbol (info, h)
elf_link_check_versioned_symbol (info, h)
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
{
{
  bfd *undef_bfd = h->root.u.undef.abfd;
  bfd *undef_bfd = h->root.u.undef.abfd;
  struct elf_link_loaded_list *loaded;
  struct elf_link_loaded_list *loaded;
 
 
  if ((undef_bfd->flags & DYNAMIC) == 0
  if ((undef_bfd->flags & DYNAMIC) == 0
      || info->hash->creator->flavour != bfd_target_elf_flavour
      || info->hash->creator->flavour != bfd_target_elf_flavour
      || elf_dt_soname (h->root.u.undef.abfd) == NULL)
      || elf_dt_soname (h->root.u.undef.abfd) == NULL)
    return false;
    return false;
 
 
  for (loaded = elf_hash_table (info)->loaded;
  for (loaded = elf_hash_table (info)->loaded;
       loaded != NULL;
       loaded != NULL;
       loaded = loaded->next)
       loaded = loaded->next)
    {
    {
      bfd *input;
      bfd *input;
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
      bfd_size_type symcount;
      bfd_size_type symcount;
      bfd_size_type extsymcount;
      bfd_size_type extsymcount;
      bfd_size_type extsymoff;
      bfd_size_type extsymoff;
      Elf_Internal_Shdr *versymhdr;
      Elf_Internal_Shdr *versymhdr;
      Elf_Internal_Sym *isym;
      Elf_Internal_Sym *isym;
      Elf_Internal_Sym *isymend;
      Elf_Internal_Sym *isymend;
      Elf_Internal_Sym *isymbuf;
      Elf_Internal_Sym *isymbuf;
      Elf_External_Versym *ever;
      Elf_External_Versym *ever;
      Elf_External_Versym *extversym;
      Elf_External_Versym *extversym;
 
 
      input = loaded->abfd;
      input = loaded->abfd;
 
 
      /* We check each DSO for a possible hidden versioned definition.  */
      /* We check each DSO for a possible hidden versioned definition.  */
      if (input == undef_bfd
      if (input == undef_bfd
          || (input->flags & DYNAMIC) == 0
          || (input->flags & DYNAMIC) == 0
          || elf_dynversym (input) == 0)
          || elf_dynversym (input) == 0)
        continue;
        continue;
 
 
      hdr = &elf_tdata (input)->dynsymtab_hdr;
      hdr = &elf_tdata (input)->dynsymtab_hdr;
 
 
      symcount = hdr->sh_size / sizeof (Elf_External_Sym);
      symcount = hdr->sh_size / sizeof (Elf_External_Sym);
      if (elf_bad_symtab (input))
      if (elf_bad_symtab (input))
        {
        {
          extsymcount = symcount;
          extsymcount = symcount;
          extsymoff = 0;
          extsymoff = 0;
        }
        }
      else
      else
        {
        {
          extsymcount = symcount - hdr->sh_info;
          extsymcount = symcount - hdr->sh_info;
          extsymoff = hdr->sh_info;
          extsymoff = hdr->sh_info;
        }
        }
 
 
      if (extsymcount == 0)
      if (extsymcount == 0)
        continue;
        continue;
 
 
      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
                                      NULL, NULL, NULL);
                                      NULL, NULL, NULL);
      if (isymbuf == NULL)
      if (isymbuf == NULL)
        return false;
        return false;
 
 
      /* Read in any version definitions.  */
      /* Read in any version definitions.  */
      versymhdr = &elf_tdata (input)->dynversym_hdr;
      versymhdr = &elf_tdata (input)->dynversym_hdr;
      extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
      extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
      if (extversym == NULL)
      if (extversym == NULL)
        goto error_ret;
        goto error_ret;
 
 
      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
          || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
          || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
              != versymhdr->sh_size))
              != versymhdr->sh_size))
        {
        {
          free (extversym);
          free (extversym);
        error_ret:
        error_ret:
          free (isymbuf);
          free (isymbuf);
          return false;
          return false;
        }
        }
 
 
      ever = extversym + extsymoff;
      ever = extversym + extsymoff;
      isymend = isymbuf + extsymcount;
      isymend = isymbuf + extsymcount;
      for (isym = isymbuf; isym < isymend; isym++, ever++)
      for (isym = isymbuf; isym < isymend; isym++, ever++)
        {
        {
          const char *name;
          const char *name;
          Elf_Internal_Versym iver;
          Elf_Internal_Versym iver;
 
 
          if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
          if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
              || isym->st_shndx == SHN_UNDEF)
              || isym->st_shndx == SHN_UNDEF)
            continue;
            continue;
 
 
          name = bfd_elf_string_from_elf_section (input,
          name = bfd_elf_string_from_elf_section (input,
                                                  hdr->sh_link,
                                                  hdr->sh_link,
                                                  isym->st_name);
                                                  isym->st_name);
          if (strcmp (name, h->root.root.string) != 0)
          if (strcmp (name, h->root.root.string) != 0)
            continue;
            continue;
 
 
          _bfd_elf_swap_versym_in (input, ever, &iver);
          _bfd_elf_swap_versym_in (input, ever, &iver);
 
 
          if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
          if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
            {
            {
              /* If we have a non-hidden versioned sym, then it should
              /* If we have a non-hidden versioned sym, then it should
                 have provided a definition for the undefined sym.  */
                 have provided a definition for the undefined sym.  */
              abort ();
              abort ();
            }
            }
 
 
          if ((iver.vs_vers & VERSYM_VERSION) == 2)
          if ((iver.vs_vers & VERSYM_VERSION) == 2)
            {
            {
              /* This is the oldest (default) sym.  We can use it.  */
              /* This is the oldest (default) sym.  We can use it.  */
              free (extversym);
              free (extversym);
              free (isymbuf);
              free (isymbuf);
              return true;
              return true;
            }
            }
        }
        }
 
 
      free (extversym);
      free (extversym);
      free (isymbuf);
      free (isymbuf);
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Add an external symbol to the symbol table.  This is called from
/* Add an external symbol to the symbol table.  This is called from
   the hash table traversal routine.  When generating a shared object,
   the hash table traversal routine.  When generating a shared object,
   we go through the symbol table twice.  The first time we output
   we go through the symbol table twice.  The first time we output
   anything that might have been forced to local scope in a version
   anything that might have been forced to local scope in a version
   script.  The second time we output the symbols that are still
   script.  The second time we output the symbols that are still
   global symbols.  */
   global symbols.  */
 
 
static boolean
static boolean
elf_link_output_extsym (h, data)
elf_link_output_extsym (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
  struct elf_final_link_info *finfo = eoinfo->finfo;
  struct elf_final_link_info *finfo = eoinfo->finfo;
  boolean strip;
  boolean strip;
  Elf_Internal_Sym sym;
  Elf_Internal_Sym sym;
  asection *input_sec;
  asection *input_sec;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    {
    {
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
      if (h->root.type == bfd_link_hash_new)
      if (h->root.type == bfd_link_hash_new)
        return true;
        return true;
    }
    }
 
 
  /* Decide whether to output this symbol in this pass.  */
  /* Decide whether to output this symbol in this pass.  */
  if (eoinfo->localsyms)
  if (eoinfo->localsyms)
    {
    {
      if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
      if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
        return true;
        return true;
    }
    }
  else
  else
    {
    {
      if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
      if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
        return true;
        return true;
    }
    }
 
 
  /* If we are not creating a shared library, and this symbol is
  /* If we are not creating a shared library, and this symbol is
     referenced by a shared library but is not defined anywhere, then
     referenced by a shared library but is not defined anywhere, then
     warn that it is undefined.  If we do not do this, the runtime
     warn that it is undefined.  If we do not do this, the runtime
     linker will complain that the symbol is undefined when the
     linker will complain that the symbol is undefined when the
     program is run.  We don't have to worry about symbols that are
     program is run.  We don't have to worry about symbols that are
     referenced by regular files, because we will already have issued
     referenced by regular files, because we will already have issued
     warnings for them.  */
     warnings for them.  */
  if (! finfo->info->relocateable
  if (! finfo->info->relocateable
      && ! finfo->info->allow_shlib_undefined
      && ! finfo->info->allow_shlib_undefined
      && ! finfo->info->shared
      && ! finfo->info->shared
      && h->root.type == bfd_link_hash_undefined
      && h->root.type == bfd_link_hash_undefined
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
      && ! elf_link_check_versioned_symbol (finfo->info, h))
      && ! elf_link_check_versioned_symbol (finfo->info, h))
    {
    {
      if (! ((*finfo->info->callbacks->undefined_symbol)
      if (! ((*finfo->info->callbacks->undefined_symbol)
             (finfo->info, h->root.root.string, h->root.u.undef.abfd,
             (finfo->info, h->root.root.string, h->root.u.undef.abfd,
              (asection *) NULL, (bfd_vma) 0, true)))
              (asection *) NULL, (bfd_vma) 0, true)))
        {
        {
          eoinfo->failed = true;
          eoinfo->failed = true;
          return false;
          return false;
        }
        }
    }
    }
 
 
  /* We don't want to output symbols that have never been mentioned by
  /* We don't want to output symbols that have never been mentioned by
     a regular file, or that we have been told to strip.  However, if
     a regular file, or that we have been told to strip.  However, if
     h->indx is set to -2, the symbol is used by a reloc and we must
     h->indx is set to -2, the symbol is used by a reloc and we must
     output it.  */
     output it.  */
  if (h->indx == -2)
  if (h->indx == -2)
    strip = false;
    strip = false;
  else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
  else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
            || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
            || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
           && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
           && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
           && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
           && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
    strip = true;
    strip = true;
  else if (finfo->info->strip == strip_all
  else if (finfo->info->strip == strip_all
           || (finfo->info->strip == strip_some
           || (finfo->info->strip == strip_some
               && bfd_hash_lookup (finfo->info->keep_hash,
               && bfd_hash_lookup (finfo->info->keep_hash,
                                   h->root.root.string,
                                   h->root.root.string,
                                   false, false) == NULL))
                                   false, false) == NULL))
    strip = true;
    strip = true;
  else
  else
    strip = false;
    strip = false;
 
 
  /* If we're stripping it, and it's not a dynamic symbol, there's
  /* If we're stripping it, and it's not a dynamic symbol, there's
     nothing else to do unless it is a forced local symbol.  */
     nothing else to do unless it is a forced local symbol.  */
  if (strip
  if (strip
      && h->dynindx == -1
      && h->dynindx == -1
      && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
      && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
    return true;
    return true;
 
 
  sym.st_value = 0;
  sym.st_value = 0;
  sym.st_size = h->size;
  sym.st_size = h->size;
  sym.st_other = h->other;
  sym.st_other = h->other;
  if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
  if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
    sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
    sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
  else if (h->root.type == bfd_link_hash_undefweak
  else if (h->root.type == bfd_link_hash_undefweak
           || h->root.type == bfd_link_hash_defweak)
           || h->root.type == bfd_link_hash_defweak)
    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
  else
  else
    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
 
 
  switch (h->root.type)
  switch (h->root.type)
    {
    {
    default:
    default:
    case bfd_link_hash_new:
    case bfd_link_hash_new:
    case bfd_link_hash_warning:
    case bfd_link_hash_warning:
      abort ();
      abort ();
      return false;
      return false;
 
 
    case bfd_link_hash_undefined:
    case bfd_link_hash_undefined:
    case bfd_link_hash_undefweak:
    case bfd_link_hash_undefweak:
      input_sec = bfd_und_section_ptr;
      input_sec = bfd_und_section_ptr;
      sym.st_shndx = SHN_UNDEF;
      sym.st_shndx = SHN_UNDEF;
      break;
      break;
 
 
    case bfd_link_hash_defined:
    case bfd_link_hash_defined:
    case bfd_link_hash_defweak:
    case bfd_link_hash_defweak:
      {
      {
        input_sec = h->root.u.def.section;
        input_sec = h->root.u.def.section;
        if (input_sec->output_section != NULL)
        if (input_sec->output_section != NULL)
          {
          {
            sym.st_shndx =
            sym.st_shndx =
              _bfd_elf_section_from_bfd_section (finfo->output_bfd,
              _bfd_elf_section_from_bfd_section (finfo->output_bfd,
                                                 input_sec->output_section);
                                                 input_sec->output_section);
            if (sym.st_shndx == SHN_BAD)
            if (sym.st_shndx == SHN_BAD)
              {
              {
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("%s: could not find output section %s for input section %s"),
                  (_("%s: could not find output section %s for input section %s"),
                   bfd_get_filename (finfo->output_bfd),
                   bfd_get_filename (finfo->output_bfd),
                   input_sec->output_section->name,
                   input_sec->output_section->name,
                   input_sec->name);
                   input_sec->name);
                eoinfo->failed = true;
                eoinfo->failed = true;
                return false;
                return false;
              }
              }
 
 
            /* ELF symbols in relocateable files are section relative,
            /* ELF symbols in relocateable files are section relative,
               but in nonrelocateable files they are virtual
               but in nonrelocateable files they are virtual
               addresses.  */
               addresses.  */
            sym.st_value = h->root.u.def.value + input_sec->output_offset;
            sym.st_value = h->root.u.def.value + input_sec->output_offset;
            if (! finfo->info->relocateable)
            if (! finfo->info->relocateable)
              {
              {
                sym.st_value += input_sec->output_section->vma;
                sym.st_value += input_sec->output_section->vma;
                if (h->type == STT_TLS)
                if (h->type == STT_TLS)
                  {
                  {
                    /* STT_TLS symbols are relative to PT_TLS segment
                    /* STT_TLS symbols are relative to PT_TLS segment
                       base.  */
                       base.  */
                    BFD_ASSERT (finfo->first_tls_sec != NULL);
                    BFD_ASSERT (finfo->first_tls_sec != NULL);
                    sym.st_value -= finfo->first_tls_sec->vma;
                    sym.st_value -= finfo->first_tls_sec->vma;
                  }
                  }
              }
              }
          }
          }
        else
        else
          {
          {
            BFD_ASSERT (input_sec->owner == NULL
            BFD_ASSERT (input_sec->owner == NULL
                        || (input_sec->owner->flags & DYNAMIC) != 0);
                        || (input_sec->owner->flags & DYNAMIC) != 0);
            sym.st_shndx = SHN_UNDEF;
            sym.st_shndx = SHN_UNDEF;
            input_sec = bfd_und_section_ptr;
            input_sec = bfd_und_section_ptr;
          }
          }
      }
      }
      break;
      break;
 
 
    case bfd_link_hash_common:
    case bfd_link_hash_common:
      input_sec = h->root.u.c.p->section;
      input_sec = h->root.u.c.p->section;
      sym.st_shndx = SHN_COMMON;
      sym.st_shndx = SHN_COMMON;
      sym.st_value = 1 << h->root.u.c.p->alignment_power;
      sym.st_value = 1 << h->root.u.c.p->alignment_power;
      break;
      break;
 
 
    case bfd_link_hash_indirect:
    case bfd_link_hash_indirect:
      /* These symbols are created by symbol versioning.  They point
      /* These symbols are created by symbol versioning.  They point
         to the decorated version of the name.  For example, if the
         to the decorated version of the name.  For example, if the
         symbol foo@@GNU_1.2 is the default, which should be used when
         symbol foo@@GNU_1.2 is the default, which should be used when
         foo is used with no version, then we add an indirect symbol
         foo is used with no version, then we add an indirect symbol
         foo which points to foo@@GNU_1.2.  We ignore these symbols,
         foo which points to foo@@GNU_1.2.  We ignore these symbols,
         since the indirected symbol is already in the hash table.  */
         since the indirected symbol is already in the hash table.  */
      return true;
      return true;
    }
    }
 
 
  /* Give the processor backend a chance to tweak the symbol value,
  /* Give the processor backend a chance to tweak the symbol value,
     and also to finish up anything that needs to be done for this
     and also to finish up anything that needs to be done for this
     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
     forced local syms when non-shared is due to a historical quirk.  */
     forced local syms when non-shared is due to a historical quirk.  */
  if ((h->dynindx != -1
  if ((h->dynindx != -1
       || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
       || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
      && (finfo->info->shared
      && (finfo->info->shared
          || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
          || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
      && elf_hash_table (finfo->info)->dynamic_sections_created)
      && elf_hash_table (finfo->info)->dynamic_sections_created)
    {
    {
      struct elf_backend_data *bed;
      struct elf_backend_data *bed;
 
 
      bed = get_elf_backend_data (finfo->output_bfd);
      bed = get_elf_backend_data (finfo->output_bfd);
      if (! ((*bed->elf_backend_finish_dynamic_symbol)
      if (! ((*bed->elf_backend_finish_dynamic_symbol)
             (finfo->output_bfd, finfo->info, h, &sym)))
             (finfo->output_bfd, finfo->info, h, &sym)))
        {
        {
          eoinfo->failed = true;
          eoinfo->failed = true;
          return false;
          return false;
        }
        }
    }
    }
 
 
  /* If we are marking the symbol as undefined, and there are no
  /* If we are marking the symbol as undefined, and there are no
     non-weak references to this symbol from a regular object, then
     non-weak references to this symbol from a regular object, then
     mark the symbol as weak undefined; if there are non-weak
     mark the symbol as weak undefined; if there are non-weak
     references, mark the symbol as strong.  We can't do this earlier,
     references, mark the symbol as strong.  We can't do this earlier,
     because it might not be marked as undefined until the
     because it might not be marked as undefined until the
     finish_dynamic_symbol routine gets through with it.  */
     finish_dynamic_symbol routine gets through with it.  */
  if (sym.st_shndx == SHN_UNDEF
  if (sym.st_shndx == SHN_UNDEF
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
          || ELF_ST_BIND (sym.st_info) == STB_WEAK))
          || ELF_ST_BIND (sym.st_info) == STB_WEAK))
    {
    {
      int bindtype;
      int bindtype;
 
 
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
        bindtype = STB_GLOBAL;
        bindtype = STB_GLOBAL;
      else
      else
        bindtype = STB_WEAK;
        bindtype = STB_WEAK;
      sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
      sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
    }
    }
 
 
  /* If a symbol is not defined locally, we clear the visibility
  /* If a symbol is not defined locally, we clear the visibility
     field.  */
     field.  */
  if (! finfo->info->relocateable
  if (! finfo->info->relocateable
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
    sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
    sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
 
 
  /* If this symbol should be put in the .dynsym section, then put it
  /* If this symbol should be put in the .dynsym section, then put it
     there now.  We already know the symbol index.  We also fill in
     there now.  We already know the symbol index.  We also fill in
     the entry in the .hash section.  */
     the entry in the .hash section.  */
  if (h->dynindx != -1
  if (h->dynindx != -1
      && elf_hash_table (finfo->info)->dynamic_sections_created)
      && elf_hash_table (finfo->info)->dynamic_sections_created)
    {
    {
      size_t bucketcount;
      size_t bucketcount;
      size_t bucket;
      size_t bucket;
      size_t hash_entry_size;
      size_t hash_entry_size;
      bfd_byte *bucketpos;
      bfd_byte *bucketpos;
      bfd_vma chain;
      bfd_vma chain;
      Elf_External_Sym *esym;
      Elf_External_Sym *esym;
 
 
      sym.st_name = h->dynstr_index;
      sym.st_name = h->dynstr_index;
      esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
      esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
      elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
      elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
 
 
      bucketcount = elf_hash_table (finfo->info)->bucketcount;
      bucketcount = elf_hash_table (finfo->info)->bucketcount;
      bucket = h->elf_hash_value % bucketcount;
      bucket = h->elf_hash_value % bucketcount;
      hash_entry_size
      hash_entry_size
        = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
        = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
      bucketpos = ((bfd_byte *) finfo->hash_sec->contents
      bucketpos = ((bfd_byte *) finfo->hash_sec->contents
                   + (bucket + 2) * hash_entry_size);
                   + (bucket + 2) * hash_entry_size);
      chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
      chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
      bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
      bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
               bucketpos);
               bucketpos);
      bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
      bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
               ((bfd_byte *) finfo->hash_sec->contents
               ((bfd_byte *) finfo->hash_sec->contents
                + (bucketcount + 2 + h->dynindx) * hash_entry_size));
                + (bucketcount + 2 + h->dynindx) * hash_entry_size));
 
 
      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
        {
        {
          Elf_Internal_Versym iversym;
          Elf_Internal_Versym iversym;
          Elf_External_Versym *eversym;
          Elf_External_Versym *eversym;
 
 
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
            {
            {
              if (h->verinfo.verdef == NULL)
              if (h->verinfo.verdef == NULL)
                iversym.vs_vers = 0;
                iversym.vs_vers = 0;
              else
              else
                iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
                iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
            }
            }
          else
          else
            {
            {
              if (h->verinfo.vertree == NULL)
              if (h->verinfo.vertree == NULL)
                iversym.vs_vers = 1;
                iversym.vs_vers = 1;
              else
              else
                iversym.vs_vers = h->verinfo.vertree->vernum + 1;
                iversym.vs_vers = h->verinfo.vertree->vernum + 1;
            }
            }
 
 
          if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
          if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
            iversym.vs_vers |= VERSYM_HIDDEN;
            iversym.vs_vers |= VERSYM_HIDDEN;
 
 
          eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
          eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
          eversym += h->dynindx;
          eversym += h->dynindx;
          _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
          _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
        }
        }
    }
    }
 
 
  /* If we're stripping it, then it was just a dynamic symbol, and
  /* If we're stripping it, then it was just a dynamic symbol, and
     there's nothing else to do.  */
     there's nothing else to do.  */
  if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
  if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
    return true;
    return true;
 
 
  h->indx = bfd_get_symcount (finfo->output_bfd);
  h->indx = bfd_get_symcount (finfo->output_bfd);
 
 
  if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
  if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
    {
    {
      eoinfo->failed = true;
      eoinfo->failed = true;
      return false;
      return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
   originated from the section given by INPUT_REL_HDR) to the
   originated from the section given by INPUT_REL_HDR) to the
   OUTPUT_BFD.  */
   OUTPUT_BFD.  */
 
 
static boolean
static boolean
elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
                        internal_relocs)
                        internal_relocs)
     bfd *output_bfd;
     bfd *output_bfd;
     asection *input_section;
     asection *input_section;
     Elf_Internal_Shdr *input_rel_hdr;
     Elf_Internal_Shdr *input_rel_hdr;
     Elf_Internal_Rela *internal_relocs;
     Elf_Internal_Rela *internal_relocs;
{
{
  Elf_Internal_Rela *irela;
  Elf_Internal_Rela *irela;
  Elf_Internal_Rela *irelaend;
  Elf_Internal_Rela *irelaend;
  Elf_Internal_Shdr *output_rel_hdr;
  Elf_Internal_Shdr *output_rel_hdr;
  asection *output_section;
  asection *output_section;
  unsigned int *rel_countp = NULL;
  unsigned int *rel_countp = NULL;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  output_section = input_section->output_section;
  output_section = input_section->output_section;
  output_rel_hdr = NULL;
  output_rel_hdr = NULL;
 
 
  if (elf_section_data (output_section)->rel_hdr.sh_entsize
  if (elf_section_data (output_section)->rel_hdr.sh_entsize
      == input_rel_hdr->sh_entsize)
      == input_rel_hdr->sh_entsize)
    {
    {
      output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
      output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
      rel_countp = &elf_section_data (output_section)->rel_count;
      rel_countp = &elf_section_data (output_section)->rel_count;
    }
    }
  else if (elf_section_data (output_section)->rel_hdr2
  else if (elf_section_data (output_section)->rel_hdr2
           && (elf_section_data (output_section)->rel_hdr2->sh_entsize
           && (elf_section_data (output_section)->rel_hdr2->sh_entsize
               == input_rel_hdr->sh_entsize))
               == input_rel_hdr->sh_entsize))
    {
    {
      output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
      output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
      rel_countp = &elf_section_data (output_section)->rel_count2;
      rel_countp = &elf_section_data (output_section)->rel_count2;
    }
    }
  else
  else
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%s: relocation size mismatch in %s section %s"),
        (_("%s: relocation size mismatch in %s section %s"),
         bfd_get_filename (output_bfd),
         bfd_get_filename (output_bfd),
         bfd_archive_filename (input_section->owner),
         bfd_archive_filename (input_section->owner),
         input_section->name);
         input_section->name);
      bfd_set_error (bfd_error_wrong_object_format);
      bfd_set_error (bfd_error_wrong_object_format);
      return false;
      return false;
    }
    }
 
 
  bed = get_elf_backend_data (output_bfd);
  bed = get_elf_backend_data (output_bfd);
  irela = internal_relocs;
  irela = internal_relocs;
  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
                      * bed->s->int_rels_per_ext_rel);
                      * bed->s->int_rels_per_ext_rel);
 
 
  if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
  if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
    {
    {
      Elf_External_Rel *erel;
      Elf_External_Rel *erel;
      Elf_Internal_Rel *irel;
      Elf_Internal_Rel *irel;
 
 
      amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
      amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
      irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
      irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
      if (irel == NULL)
      if (irel == NULL)
        {
        {
          (*_bfd_error_handler) (_("Error: out of memory"));
          (*_bfd_error_handler) (_("Error: out of memory"));
          abort ();
          abort ();
        }
        }
 
 
      erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
      erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
      for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
      for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
        {
        {
          unsigned int i;
          unsigned int i;
 
 
          for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
          for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
            {
            {
              irel[i].r_offset = irela[i].r_offset;
              irel[i].r_offset = irela[i].r_offset;
              irel[i].r_info = irela[i].r_info;
              irel[i].r_info = irela[i].r_info;
              BFD_ASSERT (irela[i].r_addend == 0);
              BFD_ASSERT (irela[i].r_addend == 0);
            }
            }
 
 
          if (bed->s->swap_reloc_out)
          if (bed->s->swap_reloc_out)
            (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
            (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
          else
          else
            elf_swap_reloc_out (output_bfd, irel, erel);
            elf_swap_reloc_out (output_bfd, irel, erel);
        }
        }
 
 
      free (irel);
      free (irel);
    }
    }
  else
  else
    {
    {
      Elf_External_Rela *erela;
      Elf_External_Rela *erela;
 
 
      BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
      BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
 
 
      erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
      erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
      for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
      for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
        if (bed->s->swap_reloca_out)
        if (bed->s->swap_reloca_out)
          (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
          (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
        else
        else
          elf_swap_reloca_out (output_bfd, irela, erela);
          elf_swap_reloca_out (output_bfd, irela, erela);
    }
    }
 
 
  /* Bump the counter, so that we know where to add the next set of
  /* Bump the counter, so that we know where to add the next set of
     relocations.  */
     relocations.  */
  *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
  *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
 
 
  return true;
  return true;
}
}
 
 
/* Link an input file into the linker output file.  This function
/* Link an input file into the linker output file.  This function
   handles all the sections and relocations of the input file at once.
   handles all the sections and relocations of the input file at once.
   This is so that we only have to read the local symbols once, and
   This is so that we only have to read the local symbols once, and
   don't have to keep them in memory.  */
   don't have to keep them in memory.  */
 
 
static boolean
static boolean
elf_link_input_bfd (finfo, input_bfd)
elf_link_input_bfd (finfo, input_bfd)
     struct elf_final_link_info *finfo;
     struct elf_final_link_info *finfo;
     bfd *input_bfd;
     bfd *input_bfd;
{
{
  boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
  boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
                                       bfd *, asection *, bfd_byte *,
                                       bfd *, asection *, bfd_byte *,
                                       Elf_Internal_Rela *,
                                       Elf_Internal_Rela *,
                                       Elf_Internal_Sym *, asection **));
                                       Elf_Internal_Sym *, asection **));
  bfd *output_bfd;
  bfd *output_bfd;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  size_t locsymcount;
  size_t locsymcount;
  size_t extsymoff;
  size_t extsymoff;
  Elf_Internal_Sym *isymbuf;
  Elf_Internal_Sym *isymbuf;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isymend;
  Elf_Internal_Sym *isymend;
  long *pindex;
  long *pindex;
  asection **ppsection;
  asection **ppsection;
  asection *o;
  asection *o;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  boolean emit_relocs;
  boolean emit_relocs;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
 
 
  output_bfd = finfo->output_bfd;
  output_bfd = finfo->output_bfd;
  bed = get_elf_backend_data (output_bfd);
  bed = get_elf_backend_data (output_bfd);
  relocate_section = bed->elf_backend_relocate_section;
  relocate_section = bed->elf_backend_relocate_section;
 
 
  /* If this is a dynamic object, we don't want to do anything here:
  /* If this is a dynamic object, we don't want to do anything here:
     we don't want the local symbols, and we don't want the section
     we don't want the local symbols, and we don't want the section
     contents.  */
     contents.  */
  if ((input_bfd->flags & DYNAMIC) != 0)
  if ((input_bfd->flags & DYNAMIC) != 0)
    return true;
    return true;
 
 
  emit_relocs = (finfo->info->relocateable
  emit_relocs = (finfo->info->relocateable
                 || finfo->info->emitrelocations
                 || finfo->info->emitrelocations
                 || bed->elf_backend_emit_relocs);
                 || bed->elf_backend_emit_relocs);
 
 
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  if (elf_bad_symtab (input_bfd))
  if (elf_bad_symtab (input_bfd))
    {
    {
      locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
      locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
      extsymoff = 0;
      extsymoff = 0;
    }
    }
  else
  else
    {
    {
      locsymcount = symtab_hdr->sh_info;
      locsymcount = symtab_hdr->sh_info;
      extsymoff = symtab_hdr->sh_info;
      extsymoff = symtab_hdr->sh_info;
    }
    }
 
 
  /* Read the local symbols.  */
  /* Read the local symbols.  */
  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
  if (isymbuf == NULL && locsymcount != 0)
  if (isymbuf == NULL && locsymcount != 0)
    {
    {
      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
                                      finfo->internal_syms,
                                      finfo->internal_syms,
                                      finfo->external_syms,
                                      finfo->external_syms,
                                      finfo->locsym_shndx);
                                      finfo->locsym_shndx);
      if (isymbuf == NULL)
      if (isymbuf == NULL)
        return false;
        return false;
    }
    }
 
 
  /* Find local symbol sections and adjust values of symbols in
  /* Find local symbol sections and adjust values of symbols in
     SEC_MERGE sections.  Write out those local symbols we know are
     SEC_MERGE sections.  Write out those local symbols we know are
     going into the output file.  */
     going into the output file.  */
  isymend = isymbuf + locsymcount;
  isymend = isymbuf + locsymcount;
  for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
  for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
       isym < isymend;
       isym < isymend;
       isym++, pindex++, ppsection++)
       isym++, pindex++, ppsection++)
    {
    {
      asection *isec;
      asection *isec;
      const char *name;
      const char *name;
      Elf_Internal_Sym osym;
      Elf_Internal_Sym osym;
 
 
      *pindex = -1;
      *pindex = -1;
 
 
      if (elf_bad_symtab (input_bfd))
      if (elf_bad_symtab (input_bfd))
        {
        {
          if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
          if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
            {
            {
              *ppsection = NULL;
              *ppsection = NULL;
              continue;
              continue;
            }
            }
        }
        }
 
 
      if (isym->st_shndx == SHN_UNDEF)
      if (isym->st_shndx == SHN_UNDEF)
        isec = bfd_und_section_ptr;
        isec = bfd_und_section_ptr;
      else if (isym->st_shndx < SHN_LORESERVE
      else if (isym->st_shndx < SHN_LORESERVE
               || isym->st_shndx > SHN_HIRESERVE)
               || isym->st_shndx > SHN_HIRESERVE)
        {
        {
          isec = section_from_elf_index (input_bfd, isym->st_shndx);
          isec = section_from_elf_index (input_bfd, isym->st_shndx);
          if (isec
          if (isec
              && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
              && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
              && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
              && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
            isym->st_value =
            isym->st_value =
              _bfd_merged_section_offset (output_bfd, &isec,
              _bfd_merged_section_offset (output_bfd, &isec,
                                          elf_section_data (isec)->sec_info,
                                          elf_section_data (isec)->sec_info,
                                          isym->st_value, (bfd_vma) 0);
                                          isym->st_value, (bfd_vma) 0);
        }
        }
      else if (isym->st_shndx == SHN_ABS)
      else if (isym->st_shndx == SHN_ABS)
        isec = bfd_abs_section_ptr;
        isec = bfd_abs_section_ptr;
      else if (isym->st_shndx == SHN_COMMON)
      else if (isym->st_shndx == SHN_COMMON)
        isec = bfd_com_section_ptr;
        isec = bfd_com_section_ptr;
      else
      else
        {
        {
          /* Who knows?  */
          /* Who knows?  */
          isec = NULL;
          isec = NULL;
        }
        }
 
 
      *ppsection = isec;
      *ppsection = isec;
 
 
      /* Don't output the first, undefined, symbol.  */
      /* Don't output the first, undefined, symbol.  */
      if (ppsection == finfo->sections)
      if (ppsection == finfo->sections)
        continue;
        continue;
 
 
      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
        {
        {
          /* We never output section symbols.  Instead, we use the
          /* We never output section symbols.  Instead, we use the
             section symbol of the corresponding section in the output
             section symbol of the corresponding section in the output
             file.  */
             file.  */
          continue;
          continue;
        }
        }
 
 
      /* If we are stripping all symbols, we don't want to output this
      /* If we are stripping all symbols, we don't want to output this
         one.  */
         one.  */
      if (finfo->info->strip == strip_all)
      if (finfo->info->strip == strip_all)
        continue;
        continue;
 
 
      /* If we are discarding all local symbols, we don't want to
      /* If we are discarding all local symbols, we don't want to
         output this one.  If we are generating a relocateable output
         output this one.  If we are generating a relocateable output
         file, then some of the local symbols may be required by
         file, then some of the local symbols may be required by
         relocs; we output them below as we discover that they are
         relocs; we output them below as we discover that they are
         needed.  */
         needed.  */
      if (finfo->info->discard == discard_all)
      if (finfo->info->discard == discard_all)
        continue;
        continue;
 
 
      /* If this symbol is defined in a section which we are
      /* If this symbol is defined in a section which we are
         discarding, we don't need to keep it, but note that
         discarding, we don't need to keep it, but note that
         linker_mark is only reliable for sections that have contents.
         linker_mark is only reliable for sections that have contents.
         For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
         For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
         as well as linker_mark.  */
         as well as linker_mark.  */
      if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
      if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
          && isec != NULL
          && isec != NULL
          && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
          && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
              || (! finfo->info->relocateable
              || (! finfo->info->relocateable
                  && (isec->flags & SEC_EXCLUDE) != 0)))
                  && (isec->flags & SEC_EXCLUDE) != 0)))
        continue;
        continue;
 
 
      /* Get the name of the symbol.  */
      /* Get the name of the symbol.  */
      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
                                              isym->st_name);
                                              isym->st_name);
      if (name == NULL)
      if (name == NULL)
        return false;
        return false;
 
 
      /* See if we are discarding symbols with this name.  */
      /* See if we are discarding symbols with this name.  */
      if ((finfo->info->strip == strip_some
      if ((finfo->info->strip == strip_some
           && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
           && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
               == NULL))
               == NULL))
          || (((finfo->info->discard == discard_sec_merge
          || (((finfo->info->discard == discard_sec_merge
                && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
                && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
               || finfo->info->discard == discard_l)
               || finfo->info->discard == discard_l)
              && bfd_is_local_label_name (input_bfd, name)))
              && bfd_is_local_label_name (input_bfd, name)))
        continue;
        continue;
 
 
      /* If we get here, we are going to output this symbol.  */
      /* If we get here, we are going to output this symbol.  */
 
 
      osym = *isym;
      osym = *isym;
 
 
      /* Adjust the section index for the output file.  */
      /* Adjust the section index for the output file.  */
      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
                                                         isec->output_section);
                                                         isec->output_section);
      if (osym.st_shndx == SHN_BAD)
      if (osym.st_shndx == SHN_BAD)
        return false;
        return false;
 
 
      *pindex = bfd_get_symcount (output_bfd);
      *pindex = bfd_get_symcount (output_bfd);
 
 
      /* ELF symbols in relocateable files are section relative, but
      /* ELF symbols in relocateable files are section relative, but
         in executable files they are virtual addresses.  Note that
         in executable files they are virtual addresses.  Note that
         this code assumes that all ELF sections have an associated
         this code assumes that all ELF sections have an associated
         BFD section with a reasonable value for output_offset; below
         BFD section with a reasonable value for output_offset; below
         we assume that they also have a reasonable value for
         we assume that they also have a reasonable value for
         output_section.  Any special sections must be set up to meet
         output_section.  Any special sections must be set up to meet
         these requirements.  */
         these requirements.  */
      osym.st_value += isec->output_offset;
      osym.st_value += isec->output_offset;
      if (! finfo->info->relocateable)
      if (! finfo->info->relocateable)
        {
        {
          osym.st_value += isec->output_section->vma;
          osym.st_value += isec->output_section->vma;
          if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
          if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
            {
            {
              /* STT_TLS symbols are relative to PT_TLS segment base.  */
              /* STT_TLS symbols are relative to PT_TLS segment base.  */
              BFD_ASSERT (finfo->first_tls_sec != NULL);
              BFD_ASSERT (finfo->first_tls_sec != NULL);
              osym.st_value -= finfo->first_tls_sec->vma;
              osym.st_value -= finfo->first_tls_sec->vma;
            }
            }
        }
        }
 
 
      if (! elf_link_output_sym (finfo, name, &osym, isec))
      if (! elf_link_output_sym (finfo, name, &osym, isec))
        return false;
        return false;
    }
    }
 
 
  /* Relocate the contents of each section.  */
  /* Relocate the contents of each section.  */
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  for (o = input_bfd->sections; o != NULL; o = o->next)
  for (o = input_bfd->sections; o != NULL; o = o->next)
    {
    {
      bfd_byte *contents;
      bfd_byte *contents;
 
 
      if (! o->linker_mark)
      if (! o->linker_mark)
        {
        {
          /* This section was omitted from the link.  */
          /* This section was omitted from the link.  */
          continue;
          continue;
        }
        }
 
 
      if ((o->flags & SEC_HAS_CONTENTS) == 0
      if ((o->flags & SEC_HAS_CONTENTS) == 0
          || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
          || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
        continue;
        continue;
 
 
      if ((o->flags & SEC_LINKER_CREATED) != 0)
      if ((o->flags & SEC_LINKER_CREATED) != 0)
        {
        {
          /* Section was created by elf_link_create_dynamic_sections
          /* Section was created by elf_link_create_dynamic_sections
             or somesuch.  */
             or somesuch.  */
          continue;
          continue;
        }
        }
 
 
      /* Get the contents of the section.  They have been cached by a
      /* Get the contents of the section.  They have been cached by a
         relaxation routine.  Note that o is a section in an input
         relaxation routine.  Note that o is a section in an input
         file, so the contents field will not have been set by any of
         file, so the contents field will not have been set by any of
         the routines which work on output files.  */
         the routines which work on output files.  */
      if (elf_section_data (o)->this_hdr.contents != NULL)
      if (elf_section_data (o)->this_hdr.contents != NULL)
        contents = elf_section_data (o)->this_hdr.contents;
        contents = elf_section_data (o)->this_hdr.contents;
      else
      else
        {
        {
          contents = finfo->contents;
          contents = finfo->contents;
          if (! bfd_get_section_contents (input_bfd, o, contents,
          if (! bfd_get_section_contents (input_bfd, o, contents,
                                          (file_ptr) 0, o->_raw_size))
                                          (file_ptr) 0, o->_raw_size))
            return false;
            return false;
        }
        }
 
 
      if ((o->flags & SEC_RELOC) != 0)
      if ((o->flags & SEC_RELOC) != 0)
        {
        {
          Elf_Internal_Rela *internal_relocs;
          Elf_Internal_Rela *internal_relocs;
 
 
          /* Get the swapped relocs.  */
          /* Get the swapped relocs.  */
          internal_relocs = (NAME(_bfd_elf,link_read_relocs)
          internal_relocs = (NAME(_bfd_elf,link_read_relocs)
                             (input_bfd, o, finfo->external_relocs,
                             (input_bfd, o, finfo->external_relocs,
                              finfo->internal_relocs, false));
                              finfo->internal_relocs, false));
          if (internal_relocs == NULL
          if (internal_relocs == NULL
              && o->reloc_count > 0)
              && o->reloc_count > 0)
            return false;
            return false;
 
 
          /* Run through the relocs looking for any against symbols
          /* Run through the relocs looking for any against symbols
             from discarded sections and section symbols from
             from discarded sections and section symbols from
             removed link-once sections.  Complain about relocs
             removed link-once sections.  Complain about relocs
             against discarded sections.  Zero relocs against removed
             against discarded sections.  Zero relocs against removed
             link-once sections.  We should really complain if
             link-once sections.  We should really complain if
             anything in the final link tries to use it, but
             anything in the final link tries to use it, but
             DWARF-based exception handling might have an entry in
             DWARF-based exception handling might have an entry in
             .eh_frame to describe a routine in the linkonce section,
             .eh_frame to describe a routine in the linkonce section,
             and it turns out to be hard to remove the .eh_frame
             and it turns out to be hard to remove the .eh_frame
             entry too.  FIXME.  */
             entry too.  FIXME.  */
          if (!finfo->info->relocateable
          if (!finfo->info->relocateable
              && !elf_section_ignore_discarded_relocs (o))
              && !elf_section_ignore_discarded_relocs (o))
            {
            {
              Elf_Internal_Rela *rel, *relend;
              Elf_Internal_Rela *rel, *relend;
 
 
              rel = internal_relocs;
              rel = internal_relocs;
              relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
              relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
              for ( ; rel < relend; rel++)
              for ( ; rel < relend; rel++)
                {
                {
                  unsigned long r_symndx = ELF_R_SYM (rel->r_info);
                  unsigned long r_symndx = ELF_R_SYM (rel->r_info);
 
 
                  if (r_symndx >= locsymcount
                  if (r_symndx >= locsymcount
                      || (elf_bad_symtab (input_bfd)
                      || (elf_bad_symtab (input_bfd)
                          && finfo->sections[r_symndx] == NULL))
                          && finfo->sections[r_symndx] == NULL))
                    {
                    {
                      struct elf_link_hash_entry *h;
                      struct elf_link_hash_entry *h;
 
 
                      h = sym_hashes[r_symndx - extsymoff];
                      h = sym_hashes[r_symndx - extsymoff];
                      while (h->root.type == bfd_link_hash_indirect
                      while (h->root.type == bfd_link_hash_indirect
                             || h->root.type == bfd_link_hash_warning)
                             || h->root.type == bfd_link_hash_warning)
                        h = (struct elf_link_hash_entry *) h->root.u.i.link;
                        h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
                      /* Complain if the definition comes from a
                      /* Complain if the definition comes from a
                         discarded section.  */
                         discarded section.  */
                      if ((h->root.type == bfd_link_hash_defined
                      if ((h->root.type == bfd_link_hash_defined
                           || h->root.type == bfd_link_hash_defweak)
                           || h->root.type == bfd_link_hash_defweak)
                          && elf_discarded_section (h->root.u.def.section))
                          && elf_discarded_section (h->root.u.def.section))
                        {
                        {
#if BFD_VERSION_DATE < 20031005
#if BFD_VERSION_DATE < 20031005
                          if ((o->flags & SEC_DEBUGGING) != 0)
                          if ((o->flags & SEC_DEBUGGING) != 0)
                            {
                            {
#if BFD_VERSION_DATE > 20021005
#if BFD_VERSION_DATE > 20021005
                              (*finfo->info->callbacks->warning)
                              (*finfo->info->callbacks->warning)
                                (finfo->info,
                                (finfo->info,
                                 _("warning: relocation against removed section; zeroing"),
                                 _("warning: relocation against removed section; zeroing"),
                                 NULL, input_bfd, o, rel->r_offset);
                                 NULL, input_bfd, o, rel->r_offset);
#endif
#endif
                              BFD_ASSERT (r_symndx != 0);
                              BFD_ASSERT (r_symndx != 0);
                              memset (rel, 0, sizeof (*rel));
                              memset (rel, 0, sizeof (*rel));
                            }
                            }
                          else
                          else
#endif
#endif
                            {
                            {
                              if (! ((*finfo->info->callbacks->undefined_symbol)
                              if (! ((*finfo->info->callbacks->undefined_symbol)
                                     (finfo->info, h->root.root.string,
                                     (finfo->info, h->root.root.string,
                                      input_bfd, o, rel->r_offset,
                                      input_bfd, o, rel->r_offset,
                                      true)))
                                      true)))
                                return false;
                                return false;
                            }
                            }
                        }
                        }
                    }
                    }
                  else
                  else
                    {
                    {
                      asection *sec = finfo->sections[r_symndx];
                      asection *sec = finfo->sections[r_symndx];
 
 
                      if (sec != NULL && elf_discarded_section (sec))
                      if (sec != NULL && elf_discarded_section (sec))
                        {
                        {
#if BFD_VERSION_DATE < 20031005
#if BFD_VERSION_DATE < 20031005
                          if ((o->flags & SEC_DEBUGGING) != 0
                          if ((o->flags & SEC_DEBUGGING) != 0
                              || (sec->flags & SEC_LINK_ONCE) != 0)
                              || (sec->flags & SEC_LINK_ONCE) != 0)
                            {
                            {
#if BFD_VERSION_DATE > 20021005
#if BFD_VERSION_DATE > 20021005
                              (*finfo->info->callbacks->warning)
                              (*finfo->info->callbacks->warning)
                                (finfo->info,
                                (finfo->info,
                                 _("warning: relocation against removed section"),
                                 _("warning: relocation against removed section"),
                                 NULL, input_bfd, o, rel->r_offset);
                                 NULL, input_bfd, o, rel->r_offset);
#endif
#endif
                              BFD_ASSERT (r_symndx != 0);
                              BFD_ASSERT (r_symndx != 0);
                              rel->r_info
                              rel->r_info
                                = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
                                = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
                              rel->r_addend = 0;
                              rel->r_addend = 0;
                            }
                            }
                          else
                          else
#endif
#endif
                            {
                            {
                              boolean ok;
                              boolean ok;
                              const char *msg
                              const char *msg
                                = _("local symbols in discarded section %s");
                                = _("local symbols in discarded section %s");
                              bfd_size_type amt
                              bfd_size_type amt
                                = strlen (sec->name) + strlen (msg) - 1;
                                = strlen (sec->name) + strlen (msg) - 1;
                              char *buf = (char *) bfd_malloc (amt);
                              char *buf = (char *) bfd_malloc (amt);
 
 
                              if (buf != NULL)
                              if (buf != NULL)
                                sprintf (buf, msg, sec->name);
                                sprintf (buf, msg, sec->name);
                              else
                              else
                                buf = (char *) sec->name;
                                buf = (char *) sec->name;
                              ok = (*finfo->info->callbacks
                              ok = (*finfo->info->callbacks
                                    ->undefined_symbol) (finfo->info, buf,
                                    ->undefined_symbol) (finfo->info, buf,
                                                         input_bfd, o,
                                                         input_bfd, o,
                                                         rel->r_offset,
                                                         rel->r_offset,
                                                         true);
                                                         true);
                              if (buf != sec->name)
                              if (buf != sec->name)
                                free (buf);
                                free (buf);
                              if (!ok)
                              if (!ok)
                                return false;
                                return false;
                            }
                            }
                        }
                        }
                    }
                    }
                }
                }
            }
            }
 
 
          /* Relocate the section by invoking a back end routine.
          /* Relocate the section by invoking a back end routine.
 
 
             The back end routine is responsible for adjusting the
             The back end routine is responsible for adjusting the
             section contents as necessary, and (if using Rela relocs
             section contents as necessary, and (if using Rela relocs
             and generating a relocateable output file) adjusting the
             and generating a relocateable output file) adjusting the
             reloc addend as necessary.
             reloc addend as necessary.
 
 
             The back end routine does not have to worry about setting
             The back end routine does not have to worry about setting
             the reloc address or the reloc symbol index.
             the reloc address or the reloc symbol index.
 
 
             The back end routine is given a pointer to the swapped in
             The back end routine is given a pointer to the swapped in
             internal symbols, and can access the hash table entries
             internal symbols, and can access the hash table entries
             for the external symbols via elf_sym_hashes (input_bfd).
             for the external symbols via elf_sym_hashes (input_bfd).
 
 
             When generating relocateable output, the back end routine
             When generating relocateable output, the back end routine
             must handle STB_LOCAL/STT_SECTION symbols specially.  The
             must handle STB_LOCAL/STT_SECTION symbols specially.  The
             output symbol is going to be a section symbol
             output symbol is going to be a section symbol
             corresponding to the output section, which will require
             corresponding to the output section, which will require
             the addend to be adjusted.  */
             the addend to be adjusted.  */
 
 
          if (! (*relocate_section) (output_bfd, finfo->info,
          if (! (*relocate_section) (output_bfd, finfo->info,
                                     input_bfd, o, contents,
                                     input_bfd, o, contents,
                                     internal_relocs,
                                     internal_relocs,
                                     isymbuf,
                                     isymbuf,
                                     finfo->sections))
                                     finfo->sections))
            return false;
            return false;
 
 
          if (emit_relocs)
          if (emit_relocs)
            {
            {
              Elf_Internal_Rela *irela;
              Elf_Internal_Rela *irela;
              Elf_Internal_Rela *irelaend;
              Elf_Internal_Rela *irelaend;
              struct elf_link_hash_entry **rel_hash;
              struct elf_link_hash_entry **rel_hash;
              Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
              Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
              unsigned int next_erel;
              unsigned int next_erel;
              boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
              boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
                                                Elf_Internal_Shdr *,
                                                Elf_Internal_Shdr *,
                                                Elf_Internal_Rela *));
                                                Elf_Internal_Rela *));
              boolean rela_normal;
              boolean rela_normal;
 
 
              input_rel_hdr = &elf_section_data (o)->rel_hdr;
              input_rel_hdr = &elf_section_data (o)->rel_hdr;
              rela_normal = (bed->rela_normal
              rela_normal = (bed->rela_normal
                             && (input_rel_hdr->sh_entsize
                             && (input_rel_hdr->sh_entsize
                                 == sizeof (Elf_External_Rela)));
                                 == sizeof (Elf_External_Rela)));
 
 
              /* Adjust the reloc addresses and symbol indices.  */
              /* Adjust the reloc addresses and symbol indices.  */
 
 
              irela = internal_relocs;
              irela = internal_relocs;
              irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
              irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
              rel_hash = (elf_section_data (o->output_section)->rel_hashes
              rel_hash = (elf_section_data (o->output_section)->rel_hashes
                          + elf_section_data (o->output_section)->rel_count
                          + elf_section_data (o->output_section)->rel_count
                          + elf_section_data (o->output_section)->rel_count2);
                          + elf_section_data (o->output_section)->rel_count2);
              for (next_erel = 0; irela < irelaend; irela++, next_erel++)
              for (next_erel = 0; irela < irelaend; irela++, next_erel++)
                {
                {
                  unsigned long r_symndx;
                  unsigned long r_symndx;
                  asection *sec;
                  asection *sec;
                  Elf_Internal_Sym sym;
                  Elf_Internal_Sym sym;
 
 
                  if (next_erel == bed->s->int_rels_per_ext_rel)
                  if (next_erel == bed->s->int_rels_per_ext_rel)
                    {
                    {
                      rel_hash++;
                      rel_hash++;
                      next_erel = 0;
                      next_erel = 0;
                    }
                    }
 
 
                  irela->r_offset += o->output_offset;
                  irela->r_offset += o->output_offset;
 
 
                  /* Relocs in an executable have to be virtual addresses.  */
                  /* Relocs in an executable have to be virtual addresses.  */
                  if (!finfo->info->relocateable)
                  if (!finfo->info->relocateable)
                    irela->r_offset += o->output_section->vma;
                    irela->r_offset += o->output_section->vma;
 
 
                  r_symndx = ELF_R_SYM (irela->r_info);
                  r_symndx = ELF_R_SYM (irela->r_info);
 
 
                  if (r_symndx == 0)
                  if (r_symndx == 0)
                    continue;
                    continue;
 
 
                  if (r_symndx >= locsymcount
                  if (r_symndx >= locsymcount
                      || (elf_bad_symtab (input_bfd)
                      || (elf_bad_symtab (input_bfd)
                          && finfo->sections[r_symndx] == NULL))
                          && finfo->sections[r_symndx] == NULL))
                    {
                    {
                      struct elf_link_hash_entry *rh;
                      struct elf_link_hash_entry *rh;
                      unsigned long indx;
                      unsigned long indx;
 
 
                      /* This is a reloc against a global symbol.  We
                      /* This is a reloc against a global symbol.  We
                         have not yet output all the local symbols, so
                         have not yet output all the local symbols, so
                         we do not know the symbol index of any global
                         we do not know the symbol index of any global
                         symbol.  We set the rel_hash entry for this
                         symbol.  We set the rel_hash entry for this
                         reloc to point to the global hash table entry
                         reloc to point to the global hash table entry
                         for this symbol.  The symbol index is then
                         for this symbol.  The symbol index is then
                         set at the end of elf_bfd_final_link.  */
                         set at the end of elf_bfd_final_link.  */
                      indx = r_symndx - extsymoff;
                      indx = r_symndx - extsymoff;
                      rh = elf_sym_hashes (input_bfd)[indx];
                      rh = elf_sym_hashes (input_bfd)[indx];
                      while (rh->root.type == bfd_link_hash_indirect
                      while (rh->root.type == bfd_link_hash_indirect
                             || rh->root.type == bfd_link_hash_warning)
                             || rh->root.type == bfd_link_hash_warning)
                        rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
                        rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
 
 
                      /* Setting the index to -2 tells
                      /* Setting the index to -2 tells
                         elf_link_output_extsym that this symbol is
                         elf_link_output_extsym that this symbol is
                         used by a reloc.  */
                         used by a reloc.  */
                      BFD_ASSERT (rh->indx < 0);
                      BFD_ASSERT (rh->indx < 0);
                      rh->indx = -2;
                      rh->indx = -2;
 
 
                      *rel_hash = rh;
                      *rel_hash = rh;
 
 
                      continue;
                      continue;
                    }
                    }
 
 
                  /* This is a reloc against a local symbol.  */
                  /* This is a reloc against a local symbol.  */
 
 
                  *rel_hash = NULL;
                  *rel_hash = NULL;
                  sym = isymbuf[r_symndx];
                  sym = isymbuf[r_symndx];
                  sec = finfo->sections[r_symndx];
                  sec = finfo->sections[r_symndx];
                  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
                  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
                    {
                    {
                      /* I suppose the backend ought to fill in the
                      /* I suppose the backend ought to fill in the
                         section of any STT_SECTION symbol against a
                         section of any STT_SECTION symbol against a
                         processor specific section.  If we have
                         processor specific section.  If we have
                         discarded a section, the output_section will
                         discarded a section, the output_section will
                         be the absolute section.  */
                         be the absolute section.  */
                      if (bfd_is_abs_section (sec)
                      if (bfd_is_abs_section (sec)
                          || (sec != NULL
                          || (sec != NULL
                              && bfd_is_abs_section (sec->output_section)))
                              && bfd_is_abs_section (sec->output_section)))
                        r_symndx = 0;
                        r_symndx = 0;
                      else if (sec == NULL || sec->owner == NULL)
                      else if (sec == NULL || sec->owner == NULL)
                        {
                        {
                          bfd_set_error (bfd_error_bad_value);
                          bfd_set_error (bfd_error_bad_value);
                          return false;
                          return false;
                        }
                        }
                      else
                      else
                        {
                        {
                          r_symndx = sec->output_section->target_index;
                          r_symndx = sec->output_section->target_index;
                          BFD_ASSERT (r_symndx != 0);
                          BFD_ASSERT (r_symndx != 0);
                        }
                        }
 
 
                      /* Adjust the addend according to where the
                      /* Adjust the addend according to where the
                         section winds up in the output section.  */
                         section winds up in the output section.  */
                      if (rela_normal)
                      if (rela_normal)
                        irela->r_addend += sec->output_offset;
                        irela->r_addend += sec->output_offset;
                    }
                    }
                  else
                  else
                    {
                    {
                      if (finfo->indices[r_symndx] == -1)
                      if (finfo->indices[r_symndx] == -1)
                        {
                        {
                          unsigned long shlink;
                          unsigned long shlink;
                          const char *name;
                          const char *name;
                          asection *osec;
                          asection *osec;
 
 
                          if (finfo->info->strip == strip_all)
                          if (finfo->info->strip == strip_all)
                            {
                            {
                              /* You can't do ld -r -s.  */
                              /* You can't do ld -r -s.  */
                              bfd_set_error (bfd_error_invalid_operation);
                              bfd_set_error (bfd_error_invalid_operation);
                              return false;
                              return false;
                            }
                            }
 
 
                          /* This symbol was skipped earlier, but
                          /* This symbol was skipped earlier, but
                             since it is needed by a reloc, we
                             since it is needed by a reloc, we
                             must output it now.  */
                             must output it now.  */
                          shlink = symtab_hdr->sh_link;
                          shlink = symtab_hdr->sh_link;
                          name = (bfd_elf_string_from_elf_section
                          name = (bfd_elf_string_from_elf_section
                                  (input_bfd, shlink, sym.st_name));
                                  (input_bfd, shlink, sym.st_name));
                          if (name == NULL)
                          if (name == NULL)
                            return false;
                            return false;
 
 
                          osec = sec->output_section;
                          osec = sec->output_section;
                          sym.st_shndx =
                          sym.st_shndx =
                            _bfd_elf_section_from_bfd_section (output_bfd,
                            _bfd_elf_section_from_bfd_section (output_bfd,
                                                               osec);
                                                               osec);
                          if (sym.st_shndx == SHN_BAD)
                          if (sym.st_shndx == SHN_BAD)
                            return false;
                            return false;
 
 
                          sym.st_value += sec->output_offset;
                          sym.st_value += sec->output_offset;
                          if (! finfo->info->relocateable)
                          if (! finfo->info->relocateable)
                            {
                            {
                              sym.st_value += osec->vma;
                              sym.st_value += osec->vma;
                              if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
                              if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
                                {
                                {
                                  /* STT_TLS symbols are relative to PT_TLS
                                  /* STT_TLS symbols are relative to PT_TLS
                                     segment base.  */
                                     segment base.  */
                                  BFD_ASSERT (finfo->first_tls_sec != NULL);
                                  BFD_ASSERT (finfo->first_tls_sec != NULL);
                                  sym.st_value -= finfo->first_tls_sec->vma;
                                  sym.st_value -= finfo->first_tls_sec->vma;
                                }
                                }
                            }
                            }
 
 
                          finfo->indices[r_symndx]
                          finfo->indices[r_symndx]
                            = bfd_get_symcount (output_bfd);
                            = bfd_get_symcount (output_bfd);
 
 
                          if (! elf_link_output_sym (finfo, name, &sym, sec))
                          if (! elf_link_output_sym (finfo, name, &sym, sec))
                            return false;
                            return false;
                        }
                        }
 
 
                      r_symndx = finfo->indices[r_symndx];
                      r_symndx = finfo->indices[r_symndx];
                    }
                    }
 
 
                  irela->r_info = ELF_R_INFO (r_symndx,
                  irela->r_info = ELF_R_INFO (r_symndx,
                                              ELF_R_TYPE (irela->r_info));
                                              ELF_R_TYPE (irela->r_info));
                }
                }
 
 
              /* Swap out the relocs.  */
              /* Swap out the relocs.  */
              if (bed->elf_backend_emit_relocs
              if (bed->elf_backend_emit_relocs
                  && !(finfo->info->relocateable
                  && !(finfo->info->relocateable
                       || finfo->info->emitrelocations))
                       || finfo->info->emitrelocations))
                reloc_emitter = bed->elf_backend_emit_relocs;
                reloc_emitter = bed->elf_backend_emit_relocs;
              else
              else
                reloc_emitter = elf_link_output_relocs;
                reloc_emitter = elf_link_output_relocs;
 
 
              if (input_rel_hdr->sh_size != 0
              if (input_rel_hdr->sh_size != 0
                  && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
                  && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
                                         internal_relocs))
                                         internal_relocs))
                return false;
                return false;
 
 
              input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
              input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
              if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
              if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
                {
                {
                  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
                  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
                                      * bed->s->int_rels_per_ext_rel);
                                      * bed->s->int_rels_per_ext_rel);
                  if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
                  if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
                                          internal_relocs))
                                          internal_relocs))
                    return false;
                    return false;
                }
                }
            }
            }
        }
        }
 
 
      /* Write out the modified section contents.  */
      /* Write out the modified section contents.  */
      if (bed->elf_backend_write_section
      if (bed->elf_backend_write_section
          && (*bed->elf_backend_write_section) (output_bfd, o, contents))
          && (*bed->elf_backend_write_section) (output_bfd, o, contents))
        {
        {
          /* Section written out.  */
          /* Section written out.  */
        }
        }
      else switch (elf_section_data (o)->sec_info_type)
      else switch (elf_section_data (o)->sec_info_type)
        {
        {
        case ELF_INFO_TYPE_STABS:
        case ELF_INFO_TYPE_STABS:
          if (! (_bfd_write_section_stabs
          if (! (_bfd_write_section_stabs
                 (output_bfd,
                 (output_bfd,
                  &elf_hash_table (finfo->info)->stab_info,
                  &elf_hash_table (finfo->info)->stab_info,
                  o, &elf_section_data (o)->sec_info, contents)))
                  o, &elf_section_data (o)->sec_info, contents)))
            return false;
            return false;
          break;
          break;
        case ELF_INFO_TYPE_MERGE:
        case ELF_INFO_TYPE_MERGE:
          if (! (_bfd_write_merged_section
          if (! (_bfd_write_merged_section
                 (output_bfd, o, elf_section_data (o)->sec_info)))
                 (output_bfd, o, elf_section_data (o)->sec_info)))
            return false;
            return false;
          break;
          break;
        case ELF_INFO_TYPE_EH_FRAME:
        case ELF_INFO_TYPE_EH_FRAME:
          {
          {
            asection *ehdrsec;
            asection *ehdrsec;
 
 
            ehdrsec
            ehdrsec
              = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
              = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
                                         ".eh_frame_hdr");
                                         ".eh_frame_hdr");
            if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
            if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
                                                    contents)))
                                                    contents)))
              return false;
              return false;
          }
          }
          break;
          break;
        default:
        default:
          {
          {
            bfd_size_type sec_size;
            bfd_size_type sec_size;
 
 
            sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
            sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
            if (! (o->flags & SEC_EXCLUDE)
            if (! (o->flags & SEC_EXCLUDE)
                && ! bfd_set_section_contents (output_bfd, o->output_section,
                && ! bfd_set_section_contents (output_bfd, o->output_section,
                                               contents,
                                               contents,
                                               (file_ptr) o->output_offset,
                                               (file_ptr) o->output_offset,
                                               sec_size))
                                               sec_size))
              return false;
              return false;
          }
          }
          break;
          break;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Generate a reloc when linking an ELF file.  This is a reloc
/* Generate a reloc when linking an ELF file.  This is a reloc
   requested by the linker, and does come from any input file.  This
   requested by the linker, and does come from any input file.  This
   is used to build constructor and destructor tables when linking
   is used to build constructor and destructor tables when linking
   with -Ur.  */
   with -Ur.  */
 
 
static boolean
static boolean
elf_reloc_link_order (output_bfd, info, output_section, link_order)
elf_reloc_link_order (output_bfd, info, output_section, link_order)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     asection *output_section;
     asection *output_section;
     struct bfd_link_order *link_order;
     struct bfd_link_order *link_order;
{
{
  reloc_howto_type *howto;
  reloc_howto_type *howto;
  long indx;
  long indx;
  bfd_vma offset;
  bfd_vma offset;
  bfd_vma addend;
  bfd_vma addend;
  struct elf_link_hash_entry **rel_hash_ptr;
  struct elf_link_hash_entry **rel_hash_ptr;
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr;
  struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
  struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
 
 
  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
  if (howto == NULL)
  if (howto == NULL)
    {
    {
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return false;
      return false;
    }
    }
 
 
  addend = link_order->u.reloc.p->addend;
  addend = link_order->u.reloc.p->addend;
 
 
  /* Figure out the symbol index.  */
  /* Figure out the symbol index.  */
  rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
  rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
                  + elf_section_data (output_section)->rel_count
                  + elf_section_data (output_section)->rel_count
                  + elf_section_data (output_section)->rel_count2);
                  + elf_section_data (output_section)->rel_count2);
  if (link_order->type == bfd_section_reloc_link_order)
  if (link_order->type == bfd_section_reloc_link_order)
    {
    {
      indx = link_order->u.reloc.p->u.section->target_index;
      indx = link_order->u.reloc.p->u.section->target_index;
      BFD_ASSERT (indx != 0);
      BFD_ASSERT (indx != 0);
      *rel_hash_ptr = NULL;
      *rel_hash_ptr = NULL;
    }
    }
  else
  else
    {
    {
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
 
 
      /* Treat a reloc against a defined symbol as though it were
      /* Treat a reloc against a defined symbol as though it were
         actually against the section.  */
         actually against the section.  */
      h = ((struct elf_link_hash_entry *)
      h = ((struct elf_link_hash_entry *)
           bfd_wrapped_link_hash_lookup (output_bfd, info,
           bfd_wrapped_link_hash_lookup (output_bfd, info,
                                         link_order->u.reloc.p->u.name,
                                         link_order->u.reloc.p->u.name,
                                         false, false, true));
                                         false, false, true));
      if (h != NULL
      if (h != NULL
          && (h->root.type == bfd_link_hash_defined
          && (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak))
              || h->root.type == bfd_link_hash_defweak))
        {
        {
          asection *section;
          asection *section;
 
 
          section = h->root.u.def.section;
          section = h->root.u.def.section;
          indx = section->output_section->target_index;
          indx = section->output_section->target_index;
          *rel_hash_ptr = NULL;
          *rel_hash_ptr = NULL;
          /* It seems that we ought to add the symbol value to the
          /* It seems that we ought to add the symbol value to the
             addend here, but in practice it has already been added
             addend here, but in practice it has already been added
             because it was passed to constructor_callback.  */
             because it was passed to constructor_callback.  */
          addend += section->output_section->vma + section->output_offset;
          addend += section->output_section->vma + section->output_offset;
        }
        }
      else if (h != NULL)
      else if (h != NULL)
        {
        {
          /* Setting the index to -2 tells elf_link_output_extsym that
          /* Setting the index to -2 tells elf_link_output_extsym that
             this symbol is used by a reloc.  */
             this symbol is used by a reloc.  */
          h->indx = -2;
          h->indx = -2;
          *rel_hash_ptr = h;
          *rel_hash_ptr = h;
          indx = 0;
          indx = 0;
        }
        }
      else
      else
        {
        {
          if (! ((*info->callbacks->unattached_reloc)
          if (! ((*info->callbacks->unattached_reloc)
                 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
                 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
                  (asection *) NULL, (bfd_vma) 0)))
                  (asection *) NULL, (bfd_vma) 0)))
            return false;
            return false;
          indx = 0;
          indx = 0;
        }
        }
    }
    }
 
 
  /* If this is an inplace reloc, we must write the addend into the
  /* If this is an inplace reloc, we must write the addend into the
     object file.  */
     object file.  */
  if (howto->partial_inplace && addend != 0)
  if (howto->partial_inplace && addend != 0)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
      bfd_reloc_status_type rstat;
      bfd_reloc_status_type rstat;
      bfd_byte *buf;
      bfd_byte *buf;
      boolean ok;
      boolean ok;
      const char *sym_name;
      const char *sym_name;
 
 
      size = bfd_get_reloc_size (howto);
      size = bfd_get_reloc_size (howto);
      buf = (bfd_byte *) bfd_zmalloc (size);
      buf = (bfd_byte *) bfd_zmalloc (size);
      if (buf == (bfd_byte *) NULL)
      if (buf == (bfd_byte *) NULL)
        return false;
        return false;
      rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
      rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
      switch (rstat)
      switch (rstat)
        {
        {
        case bfd_reloc_ok:
        case bfd_reloc_ok:
          break;
          break;
 
 
        default:
        default:
        case bfd_reloc_outofrange:
        case bfd_reloc_outofrange:
          abort ();
          abort ();
 
 
        case bfd_reloc_overflow:
        case bfd_reloc_overflow:
          if (link_order->type == bfd_section_reloc_link_order)
          if (link_order->type == bfd_section_reloc_link_order)
            sym_name = bfd_section_name (output_bfd,
            sym_name = bfd_section_name (output_bfd,
                                         link_order->u.reloc.p->u.section);
                                         link_order->u.reloc.p->u.section);
          else
          else
            sym_name = link_order->u.reloc.p->u.name;
            sym_name = link_order->u.reloc.p->u.name;
          if (! ((*info->callbacks->reloc_overflow)
          if (! ((*info->callbacks->reloc_overflow)
                 (info, sym_name, howto->name, addend,
                 (info, sym_name, howto->name, addend,
                  (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
                  (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
            {
            {
              free (buf);
              free (buf);
              return false;
              return false;
            }
            }
          break;
          break;
        }
        }
      ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
      ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
                                     (file_ptr) link_order->offset, size);
                                     (file_ptr) link_order->offset, size);
      free (buf);
      free (buf);
      if (! ok)
      if (! ok)
        return false;
        return false;
    }
    }
 
 
  /* The address of a reloc is relative to the section in a
  /* The address of a reloc is relative to the section in a
     relocateable file, and is a virtual address in an executable
     relocateable file, and is a virtual address in an executable
     file.  */
     file.  */
  offset = link_order->offset;
  offset = link_order->offset;
  if (! info->relocateable)
  if (! info->relocateable)
    offset += output_section->vma;
    offset += output_section->vma;
 
 
  rel_hdr = &elf_section_data (output_section)->rel_hdr;
  rel_hdr = &elf_section_data (output_section)->rel_hdr;
 
 
  if (rel_hdr->sh_type == SHT_REL)
  if (rel_hdr->sh_type == SHT_REL)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
      Elf_Internal_Rel *irel;
      Elf_Internal_Rel *irel;
      Elf_External_Rel *erel;
      Elf_External_Rel *erel;
      unsigned int i;
      unsigned int i;
 
 
      size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
      size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
      irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
      irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
      if (irel == NULL)
      if (irel == NULL)
        return false;
        return false;
 
 
      for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
      for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
        irel[i].r_offset = offset;
        irel[i].r_offset = offset;
      irel[0].r_info = ELF_R_INFO (indx, howto->type);
      irel[0].r_info = ELF_R_INFO (indx, howto->type);
 
 
      erel = ((Elf_External_Rel *) rel_hdr->contents
      erel = ((Elf_External_Rel *) rel_hdr->contents
              + elf_section_data (output_section)->rel_count);
              + elf_section_data (output_section)->rel_count);
 
 
      if (bed->s->swap_reloc_out)
      if (bed->s->swap_reloc_out)
        (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
        (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
      else
      else
        elf_swap_reloc_out (output_bfd, irel, erel);
        elf_swap_reloc_out (output_bfd, irel, erel);
 
 
      free (irel);
      free (irel);
    }
    }
  else
  else
    {
    {
      bfd_size_type size;
      bfd_size_type size;
      Elf_Internal_Rela *irela;
      Elf_Internal_Rela *irela;
      Elf_External_Rela *erela;
      Elf_External_Rela *erela;
      unsigned int i;
      unsigned int i;
 
 
      size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
      size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
      irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
      irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
      if (irela == NULL)
      if (irela == NULL)
        return false;
        return false;
 
 
      for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
      for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
        irela[i].r_offset = offset;
        irela[i].r_offset = offset;
      irela[0].r_info = ELF_R_INFO (indx, howto->type);
      irela[0].r_info = ELF_R_INFO (indx, howto->type);
      irela[0].r_addend = addend;
      irela[0].r_addend = addend;
 
 
      erela = ((Elf_External_Rela *) rel_hdr->contents
      erela = ((Elf_External_Rela *) rel_hdr->contents
               + elf_section_data (output_section)->rel_count);
               + elf_section_data (output_section)->rel_count);
 
 
      if (bed->s->swap_reloca_out)
      if (bed->s->swap_reloca_out)
        (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
        (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
      else
      else
        elf_swap_reloca_out (output_bfd, irela, erela);
        elf_swap_reloca_out (output_bfd, irela, erela);
    }
    }
 
 
  ++elf_section_data (output_section)->rel_count;
  ++elf_section_data (output_section)->rel_count;
 
 
  return true;
  return true;
}
}


/* Allocate a pointer to live in a linker created section.  */
/* Allocate a pointer to live in a linker created section.  */
 
 
boolean
boolean
elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     elf_linker_section_t *lsect;
     elf_linker_section_t *lsect;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     const Elf_Internal_Rela *rel;
     const Elf_Internal_Rela *rel;
{
{
  elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
  elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
  elf_linker_section_pointers_t *linker_section_ptr;
  elf_linker_section_pointers_t *linker_section_ptr;
  unsigned long r_symndx = ELF_R_SYM (rel->r_info);
  unsigned long r_symndx = ELF_R_SYM (rel->r_info);
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  BFD_ASSERT (lsect != NULL);
  BFD_ASSERT (lsect != NULL);
 
 
  /* Is this a global symbol?  */
  /* Is this a global symbol?  */
  if (h != NULL)
  if (h != NULL)
    {
    {
      /* Has this symbol already been allocated?  If so, our work is done.  */
      /* Has this symbol already been allocated?  If so, our work is done.  */
      if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
      if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
                                                rel->r_addend,
                                                rel->r_addend,
                                                lsect->which))
                                                lsect->which))
        return true;
        return true;
 
 
      ptr_linker_section_ptr = &h->linker_section_pointer;
      ptr_linker_section_ptr = &h->linker_section_pointer;
      /* Make sure this symbol is output as a dynamic symbol.  */
      /* Make sure this symbol is output as a dynamic symbol.  */
      if (h->dynindx == -1)
      if (h->dynindx == -1)
        {
        {
          if (! elf_link_record_dynamic_symbol (info, h))
          if (! elf_link_record_dynamic_symbol (info, h))
            return false;
            return false;
        }
        }
 
 
      if (lsect->rel_section)
      if (lsect->rel_section)
        lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
        lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
    }
    }
  else
  else
    {
    {
      /* Allocation of a pointer to a local symbol.  */
      /* Allocation of a pointer to a local symbol.  */
      elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
      elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
 
 
      /* Allocate a table to hold the local symbols if first time.  */
      /* Allocate a table to hold the local symbols if first time.  */
      if (!ptr)
      if (!ptr)
        {
        {
          unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
          unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
          register unsigned int i;
          register unsigned int i;
 
 
          amt = num_symbols;
          amt = num_symbols;
          amt *= sizeof (elf_linker_section_pointers_t *);
          amt *= sizeof (elf_linker_section_pointers_t *);
          ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
          ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
 
 
          if (!ptr)
          if (!ptr)
            return false;
            return false;
 
 
          elf_local_ptr_offsets (abfd) = ptr;
          elf_local_ptr_offsets (abfd) = ptr;
          for (i = 0; i < num_symbols; i++)
          for (i = 0; i < num_symbols; i++)
            ptr[i] = (elf_linker_section_pointers_t *) 0;
            ptr[i] = (elf_linker_section_pointers_t *) 0;
        }
        }
 
 
      /* Has this symbol already been allocated?  If so, our work is done.  */
      /* Has this symbol already been allocated?  If so, our work is done.  */
      if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
      if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
                                                rel->r_addend,
                                                rel->r_addend,
                                                lsect->which))
                                                lsect->which))
        return true;
        return true;
 
 
      ptr_linker_section_ptr = &ptr[r_symndx];
      ptr_linker_section_ptr = &ptr[r_symndx];
 
 
      if (info->shared)
      if (info->shared)
        {
        {
          /* If we are generating a shared object, we need to
          /* If we are generating a shared object, we need to
             output a R_<xxx>_RELATIVE reloc so that the
             output a R_<xxx>_RELATIVE reloc so that the
             dynamic linker can adjust this GOT entry.  */
             dynamic linker can adjust this GOT entry.  */
          BFD_ASSERT (lsect->rel_section != NULL);
          BFD_ASSERT (lsect->rel_section != NULL);
          lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
          lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
        }
        }
    }
    }
 
 
  /* Allocate space for a pointer in the linker section, and allocate
  /* Allocate space for a pointer in the linker section, and allocate
     a new pointer record from internal memory.  */
     a new pointer record from internal memory.  */
  BFD_ASSERT (ptr_linker_section_ptr != NULL);
  BFD_ASSERT (ptr_linker_section_ptr != NULL);
  amt = sizeof (elf_linker_section_pointers_t);
  amt = sizeof (elf_linker_section_pointers_t);
  linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
  linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
 
 
  if (!linker_section_ptr)
  if (!linker_section_ptr)
    return false;
    return false;
 
 
  linker_section_ptr->next = *ptr_linker_section_ptr;
  linker_section_ptr->next = *ptr_linker_section_ptr;
  linker_section_ptr->addend = rel->r_addend;
  linker_section_ptr->addend = rel->r_addend;
  linker_section_ptr->which = lsect->which;
  linker_section_ptr->which = lsect->which;
  linker_section_ptr->written_address_p = false;
  linker_section_ptr->written_address_p = false;
  *ptr_linker_section_ptr = linker_section_ptr;
  *ptr_linker_section_ptr = linker_section_ptr;
 
 
#if 0
#if 0
  if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
  if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
    {
    {
      linker_section_ptr->offset = (lsect->section->_raw_size
      linker_section_ptr->offset = (lsect->section->_raw_size
                                    - lsect->hole_size + (ARCH_SIZE / 8));
                                    - lsect->hole_size + (ARCH_SIZE / 8));
      lsect->hole_offset += ARCH_SIZE / 8;
      lsect->hole_offset += ARCH_SIZE / 8;
      lsect->sym_offset  += ARCH_SIZE / 8;
      lsect->sym_offset  += ARCH_SIZE / 8;
      if (lsect->sym_hash)
      if (lsect->sym_hash)
        {
        {
          /* Bump up symbol value if needed.  */
          /* Bump up symbol value if needed.  */
          lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
          lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
#ifdef DEBUG
#ifdef DEBUG
          fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
          fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
                   lsect->sym_hash->root.root.string,
                   lsect->sym_hash->root.root.string,
                   (long) ARCH_SIZE / 8,
                   (long) ARCH_SIZE / 8,
                   (long) lsect->sym_hash->root.u.def.value);
                   (long) lsect->sym_hash->root.u.def.value);
#endif
#endif
        }
        }
    }
    }
  else
  else
#endif
#endif
    linker_section_ptr->offset = lsect->section->_raw_size;
    linker_section_ptr->offset = lsect->section->_raw_size;
 
 
  lsect->section->_raw_size += ARCH_SIZE / 8;
  lsect->section->_raw_size += ARCH_SIZE / 8;
 
 
#ifdef DEBUG
#ifdef DEBUG
  fprintf (stderr,
  fprintf (stderr,
           "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
           "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
           lsect->name, (long) linker_section_ptr->offset,
           lsect->name, (long) linker_section_ptr->offset,
           (long) lsect->section->_raw_size);
           (long) lsect->section->_raw_size);
#endif
#endif
 
 
  return true;
  return true;
}
}


#if ARCH_SIZE==64
#if ARCH_SIZE==64
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
#endif
#endif
#if ARCH_SIZE==32
#if ARCH_SIZE==32
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
#endif
#endif
 
 
/* Fill in the address for a pointer generated in a linker section.  */
/* Fill in the address for a pointer generated in a linker section.  */
 
 
bfd_vma
bfd_vma
elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
                                   relocation, rel, relative_reloc)
                                   relocation, rel, relative_reloc)
     bfd *output_bfd;
     bfd *output_bfd;
     bfd *input_bfd;
     bfd *input_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     elf_linker_section_t *lsect;
     elf_linker_section_t *lsect;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     bfd_vma relocation;
     bfd_vma relocation;
     const Elf_Internal_Rela *rel;
     const Elf_Internal_Rela *rel;
     int relative_reloc;
     int relative_reloc;
{
{
  elf_linker_section_pointers_t *linker_section_ptr;
  elf_linker_section_pointers_t *linker_section_ptr;
 
 
  BFD_ASSERT (lsect != NULL);
  BFD_ASSERT (lsect != NULL);
 
 
  if (h != NULL)
  if (h != NULL)
    {
    {
      /* Handle global symbol.  */
      /* Handle global symbol.  */
      linker_section_ptr = (_bfd_elf_find_pointer_linker_section
      linker_section_ptr = (_bfd_elf_find_pointer_linker_section
                            (h->linker_section_pointer,
                            (h->linker_section_pointer,
                             rel->r_addend,
                             rel->r_addend,
                             lsect->which));
                             lsect->which));
 
 
      BFD_ASSERT (linker_section_ptr != NULL);
      BFD_ASSERT (linker_section_ptr != NULL);
 
 
      if (! elf_hash_table (info)->dynamic_sections_created
      if (! elf_hash_table (info)->dynamic_sections_created
          || (info->shared
          || (info->shared
              && info->symbolic
              && info->symbolic
              && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
              && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
        {
        {
          /* This is actually a static link, or it is a
          /* This is actually a static link, or it is a
             -Bsymbolic link and the symbol is defined
             -Bsymbolic link and the symbol is defined
             locally.  We must initialize this entry in the
             locally.  We must initialize this entry in the
             global section.
             global section.
 
 
             When doing a dynamic link, we create a .rela.<xxx>
             When doing a dynamic link, we create a .rela.<xxx>
             relocation entry to initialize the value.  This
             relocation entry to initialize the value.  This
             is done in the finish_dynamic_symbol routine.  */
             is done in the finish_dynamic_symbol routine.  */
          if (!linker_section_ptr->written_address_p)
          if (!linker_section_ptr->written_address_p)
            {
            {
              linker_section_ptr->written_address_p = true;
              linker_section_ptr->written_address_p = true;
              bfd_put_ptr (output_bfd,
              bfd_put_ptr (output_bfd,
                           relocation + linker_section_ptr->addend,
                           relocation + linker_section_ptr->addend,
                           (lsect->section->contents
                           (lsect->section->contents
                            + linker_section_ptr->offset));
                            + linker_section_ptr->offset));
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      /* Handle local symbol.  */
      /* Handle local symbol.  */
      unsigned long r_symndx = ELF_R_SYM (rel->r_info);
      unsigned long r_symndx = ELF_R_SYM (rel->r_info);
      BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
      BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
      BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
      BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
      linker_section_ptr = (_bfd_elf_find_pointer_linker_section
      linker_section_ptr = (_bfd_elf_find_pointer_linker_section
                            (elf_local_ptr_offsets (input_bfd)[r_symndx],
                            (elf_local_ptr_offsets (input_bfd)[r_symndx],
                             rel->r_addend,
                             rel->r_addend,
                             lsect->which));
                             lsect->which));
 
 
      BFD_ASSERT (linker_section_ptr != NULL);
      BFD_ASSERT (linker_section_ptr != NULL);
 
 
      /* Write out pointer if it hasn't been rewritten out before.  */
      /* Write out pointer if it hasn't been rewritten out before.  */
      if (!linker_section_ptr->written_address_p)
      if (!linker_section_ptr->written_address_p)
        {
        {
          linker_section_ptr->written_address_p = true;
          linker_section_ptr->written_address_p = true;
          bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
          bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
                       lsect->section->contents + linker_section_ptr->offset);
                       lsect->section->contents + linker_section_ptr->offset);
 
 
          if (info->shared)
          if (info->shared)
            {
            {
              asection *srel = lsect->rel_section;
              asection *srel = lsect->rel_section;
              Elf_Internal_Rela *outrel;
              Elf_Internal_Rela *outrel;
              Elf_External_Rela *erel;
              Elf_External_Rela *erel;
              struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
              struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
              unsigned int i;
              unsigned int i;
              bfd_size_type amt;
              bfd_size_type amt;
 
 
              amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
              amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
              outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
              outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
              if (outrel == NULL)
              if (outrel == NULL)
                {
                {
                  (*_bfd_error_handler) (_("Error: out of memory"));
                  (*_bfd_error_handler) (_("Error: out of memory"));
                  return 0;
                  return 0;
                }
                }
 
 
              /* We need to generate a relative reloc for the dynamic
              /* We need to generate a relative reloc for the dynamic
                 linker.  */
                 linker.  */
              if (!srel)
              if (!srel)
                {
                {
                  srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
                  srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
                                                  lsect->rel_name);
                                                  lsect->rel_name);
                  lsect->rel_section = srel;
                  lsect->rel_section = srel;
                }
                }
 
 
              BFD_ASSERT (srel != NULL);
              BFD_ASSERT (srel != NULL);
 
 
              for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
              for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
                outrel[i].r_offset = (lsect->section->output_section->vma
                outrel[i].r_offset = (lsect->section->output_section->vma
                                      + lsect->section->output_offset
                                      + lsect->section->output_offset
                                      + linker_section_ptr->offset);
                                      + linker_section_ptr->offset);
              outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
              outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
              outrel[0].r_addend = 0;
              outrel[0].r_addend = 0;
              erel = (Elf_External_Rela *) lsect->section->contents;
              erel = (Elf_External_Rela *) lsect->section->contents;
              erel += elf_section_data (lsect->section)->rel_count;
              erel += elf_section_data (lsect->section)->rel_count;
              elf_swap_reloca_out (output_bfd, outrel, erel);
              elf_swap_reloca_out (output_bfd, outrel, erel);
              ++elf_section_data (lsect->section)->rel_count;
              ++elf_section_data (lsect->section)->rel_count;
 
 
              free (outrel);
              free (outrel);
            }
            }
        }
        }
    }
    }
 
 
  relocation = (lsect->section->output_offset
  relocation = (lsect->section->output_offset
                + linker_section_ptr->offset
                + linker_section_ptr->offset
                - lsect->hole_offset
                - lsect->hole_offset
                - lsect->sym_offset);
                - lsect->sym_offset);
 
 
#ifdef DEBUG
#ifdef DEBUG
  fprintf (stderr,
  fprintf (stderr,
           "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
           "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
           lsect->name, (long) relocation, (long) relocation);
           lsect->name, (long) relocation, (long) relocation);
#endif
#endif
 
 
  /* Subtract out the addend, because it will get added back in by the normal
  /* Subtract out the addend, because it will get added back in by the normal
     processing.  */
     processing.  */
  return relocation - linker_section_ptr->addend;
  return relocation - linker_section_ptr->addend;
}
}


/* Garbage collect unused sections.  */
/* Garbage collect unused sections.  */
 
 
static boolean elf_gc_mark
static boolean elf_gc_mark
  PARAMS ((struct bfd_link_info *, asection *,
  PARAMS ((struct bfd_link_info *, asection *,
           asection * (*) (asection *, struct bfd_link_info *,
           asection * (*) (asection *, struct bfd_link_info *,
                           Elf_Internal_Rela *, struct elf_link_hash_entry *,
                           Elf_Internal_Rela *, struct elf_link_hash_entry *,
                           Elf_Internal_Sym *)));
                           Elf_Internal_Sym *)));
 
 
static boolean elf_gc_sweep
static boolean elf_gc_sweep
  PARAMS ((struct bfd_link_info *,
  PARAMS ((struct bfd_link_info *,
           boolean (*) (bfd *, struct bfd_link_info *, asection *,
           boolean (*) (bfd *, struct bfd_link_info *, asection *,
                        const Elf_Internal_Rela *)));
                        const Elf_Internal_Rela *)));
 
 
static boolean elf_gc_sweep_symbol
static boolean elf_gc_sweep_symbol
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
 
 
static boolean elf_gc_allocate_got_offsets
static boolean elf_gc_allocate_got_offsets
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
 
 
static boolean elf_gc_propagate_vtable_entries_used
static boolean elf_gc_propagate_vtable_entries_used
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
 
 
static boolean elf_gc_smash_unused_vtentry_relocs
static boolean elf_gc_smash_unused_vtentry_relocs
  PARAMS ((struct elf_link_hash_entry *, PTR));
  PARAMS ((struct elf_link_hash_entry *, PTR));
 
 
/* The mark phase of garbage collection.  For a given section, mark
/* The mark phase of garbage collection.  For a given section, mark
   it and any sections in this section's group, and all the sections
   it and any sections in this section's group, and all the sections
   which define symbols to which it refers.  */
   which define symbols to which it refers.  */
 
 
static boolean
static boolean
elf_gc_mark (info, sec, gc_mark_hook)
elf_gc_mark (info, sec, gc_mark_hook)
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     asection *sec;
     asection *sec;
     asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
     asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
                                         Elf_Internal_Rela *,
                                         Elf_Internal_Rela *,
                                         struct elf_link_hash_entry *,
                                         struct elf_link_hash_entry *,
                                         Elf_Internal_Sym *));
                                         Elf_Internal_Sym *));
{
{
  boolean ret;
  boolean ret;
  asection *group_sec;
  asection *group_sec;
 
 
  sec->gc_mark = 1;
  sec->gc_mark = 1;
 
 
  /* Mark all the sections in the group.  */
  /* Mark all the sections in the group.  */
  group_sec = elf_section_data (sec)->next_in_group;
  group_sec = elf_section_data (sec)->next_in_group;
  if (group_sec && !group_sec->gc_mark)
  if (group_sec && !group_sec->gc_mark)
    if (!elf_gc_mark (info, group_sec, gc_mark_hook))
    if (!elf_gc_mark (info, group_sec, gc_mark_hook))
      return false;
      return false;
 
 
  /* Look through the section relocs.  */
  /* Look through the section relocs.  */
  ret = true;
  ret = true;
  if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
  if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
    {
    {
      Elf_Internal_Rela *relstart, *rel, *relend;
      Elf_Internal_Rela *relstart, *rel, *relend;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      struct elf_link_hash_entry **sym_hashes;
      struct elf_link_hash_entry **sym_hashes;
      size_t nlocsyms;
      size_t nlocsyms;
      size_t extsymoff;
      size_t extsymoff;
      bfd *input_bfd = sec->owner;
      bfd *input_bfd = sec->owner;
      struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
      struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
      Elf_Internal_Sym *isym = NULL;
      Elf_Internal_Sym *isym = NULL;
 
 
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      sym_hashes = elf_sym_hashes (input_bfd);
      sym_hashes = elf_sym_hashes (input_bfd);
 
 
      /* Read the local symbols.  */
      /* Read the local symbols.  */
      if (elf_bad_symtab (input_bfd))
      if (elf_bad_symtab (input_bfd))
        {
        {
          nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
          nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
          extsymoff = 0;
          extsymoff = 0;
        }
        }
      else
      else
        extsymoff = nlocsyms = symtab_hdr->sh_info;
        extsymoff = nlocsyms = symtab_hdr->sh_info;
 
 
      isym = (Elf_Internal_Sym *) symtab_hdr->contents;
      isym = (Elf_Internal_Sym *) symtab_hdr->contents;
      if (isym == NULL && nlocsyms != 0)
      if (isym == NULL && nlocsyms != 0)
        {
        {
          isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
          isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
                                       NULL, NULL, NULL);
                                       NULL, NULL, NULL);
          if (isym == NULL)
          if (isym == NULL)
            return false;
            return false;
        }
        }
 
 
      /* Read the relocations.  */
      /* Read the relocations.  */
      relstart = (NAME(_bfd_elf,link_read_relocs)
      relstart = (NAME(_bfd_elf,link_read_relocs)
                  (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
                  (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
                   info->keep_memory));
                   info->keep_memory));
      if (relstart == NULL)
      if (relstart == NULL)
        {
        {
          ret = false;
          ret = false;
          goto out1;
          goto out1;
        }
        }
      relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
      relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
 
 
      for (rel = relstart; rel < relend; rel++)
      for (rel = relstart; rel < relend; rel++)
        {
        {
          unsigned long r_symndx;
          unsigned long r_symndx;
          asection *rsec;
          asection *rsec;
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          r_symndx = ELF_R_SYM (rel->r_info);
          r_symndx = ELF_R_SYM (rel->r_info);
          if (r_symndx == 0)
          if (r_symndx == 0)
            continue;
            continue;
 
 
          if (r_symndx >= nlocsyms
          if (r_symndx >= nlocsyms
              || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
              || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
            {
            {
              h = sym_hashes[r_symndx - extsymoff];
              h = sym_hashes[r_symndx - extsymoff];
              rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
              rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
            }
            }
          else
          else
            {
            {
              rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
              rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
            }
            }
 
 
          if (rsec && !rsec->gc_mark)
          if (rsec && !rsec->gc_mark)
            {
            {
              if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
              if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
                rsec->gc_mark = 1;
                rsec->gc_mark = 1;
              else if (!elf_gc_mark (info, rsec, gc_mark_hook))
              else if (!elf_gc_mark (info, rsec, gc_mark_hook))
                {
                {
                  ret = false;
                  ret = false;
                  goto out2;
                  goto out2;
                }
                }
            }
            }
        }
        }
 
 
    out2:
    out2:
      if (elf_section_data (sec)->relocs != relstart)
      if (elf_section_data (sec)->relocs != relstart)
        free (relstart);
        free (relstart);
    out1:
    out1:
      if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
      if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
        {
        {
          if (! info->keep_memory)
          if (! info->keep_memory)
            free (isym);
            free (isym);
          else
          else
            symtab_hdr->contents = (unsigned char *) isym;
            symtab_hdr->contents = (unsigned char *) isym;
        }
        }
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* The sweep phase of garbage collection.  Remove all garbage sections.  */
/* The sweep phase of garbage collection.  Remove all garbage sections.  */
 
 
static boolean
static boolean
elf_gc_sweep (info, gc_sweep_hook)
elf_gc_sweep (info, gc_sweep_hook)
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
     boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
                                       asection *, const Elf_Internal_Rela *));
                                       asection *, const Elf_Internal_Rela *));
{
{
  bfd *sub;
  bfd *sub;
 
 
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
    {
    {
      asection *o;
      asection *o;
 
 
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
        continue;
        continue;
 
 
      for (o = sub->sections; o != NULL; o = o->next)
      for (o = sub->sections; o != NULL; o = o->next)
        {
        {
          /* Keep special sections.  Keep .debug sections.  */
          /* Keep special sections.  Keep .debug sections.  */
          if ((o->flags & SEC_LINKER_CREATED)
          if ((o->flags & SEC_LINKER_CREATED)
              || (o->flags & SEC_DEBUGGING))
              || (o->flags & SEC_DEBUGGING))
            o->gc_mark = 1;
            o->gc_mark = 1;
 
 
          if (o->gc_mark)
          if (o->gc_mark)
            continue;
            continue;
 
 
          /* Skip sweeping sections already excluded.  */
          /* Skip sweeping sections already excluded.  */
          if (o->flags & SEC_EXCLUDE)
          if (o->flags & SEC_EXCLUDE)
            continue;
            continue;
 
 
          /* Since this is early in the link process, it is simple
          /* Since this is early in the link process, it is simple
             to remove a section from the output.  */
             to remove a section from the output.  */
          o->flags |= SEC_EXCLUDE;
          o->flags |= SEC_EXCLUDE;
 
 
          /* But we also have to update some of the relocation
          /* But we also have to update some of the relocation
             info we collected before.  */
             info we collected before.  */
          if (gc_sweep_hook
          if (gc_sweep_hook
              && (o->flags & SEC_RELOC) && o->reloc_count > 0)
              && (o->flags & SEC_RELOC) && o->reloc_count > 0)
            {
            {
              Elf_Internal_Rela *internal_relocs;
              Elf_Internal_Rela *internal_relocs;
              boolean r;
              boolean r;
 
 
              internal_relocs = (NAME(_bfd_elf,link_read_relocs)
              internal_relocs = (NAME(_bfd_elf,link_read_relocs)
                                 (o->owner, o, NULL, NULL, info->keep_memory));
                                 (o->owner, o, NULL, NULL, info->keep_memory));
              if (internal_relocs == NULL)
              if (internal_relocs == NULL)
                return false;
                return false;
 
 
              r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
              r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
 
 
              if (elf_section_data (o)->relocs != internal_relocs)
              if (elf_section_data (o)->relocs != internal_relocs)
                free (internal_relocs);
                free (internal_relocs);
 
 
              if (!r)
              if (!r)
                return false;
                return false;
            }
            }
        }
        }
    }
    }
 
 
  /* Remove the symbols that were in the swept sections from the dynamic
  /* Remove the symbols that were in the swept sections from the dynamic
     symbol table.  GCFIXME: Anyone know how to get them out of the
     symbol table.  GCFIXME: Anyone know how to get them out of the
     static symbol table as well?  */
     static symbol table as well?  */
  {
  {
    int i = 0;
    int i = 0;
 
 
    elf_link_hash_traverse (elf_hash_table (info),
    elf_link_hash_traverse (elf_hash_table (info),
                            elf_gc_sweep_symbol,
                            elf_gc_sweep_symbol,
                            (PTR) &i);
                            (PTR) &i);
 
 
    elf_hash_table (info)->dynsymcount = i;
    elf_hash_table (info)->dynsymcount = i;
  }
  }
 
 
  return true;
  return true;
}
}
 
 
/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
 
 
static boolean
static boolean
elf_gc_sweep_symbol (h, idxptr)
elf_gc_sweep_symbol (h, idxptr)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR idxptr;
     PTR idxptr;
{
{
  int *idx = (int *) idxptr;
  int *idx = (int *) idxptr;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  if (h->dynindx != -1
  if (h->dynindx != -1
      && ((h->root.type != bfd_link_hash_defined
      && ((h->root.type != bfd_link_hash_defined
           && h->root.type != bfd_link_hash_defweak)
           && h->root.type != bfd_link_hash_defweak)
          || h->root.u.def.section->gc_mark))
          || h->root.u.def.section->gc_mark))
    h->dynindx = (*idx)++;
    h->dynindx = (*idx)++;
 
 
  return true;
  return true;
}
}
 
 
/* Propogate collected vtable information.  This is called through
/* Propogate collected vtable information.  This is called through
   elf_link_hash_traverse.  */
   elf_link_hash_traverse.  */
 
 
static boolean
static boolean
elf_gc_propagate_vtable_entries_used (h, okp)
elf_gc_propagate_vtable_entries_used (h, okp)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR okp;
     PTR okp;
{
{
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* Those that are not vtables.  */
  /* Those that are not vtables.  */
  if (h->vtable_parent == NULL)
  if (h->vtable_parent == NULL)
    return true;
    return true;
 
 
  /* Those vtables that do not have parents, we cannot merge.  */
  /* Those vtables that do not have parents, we cannot merge.  */
  if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
  if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
    return true;
    return true;
 
 
  /* If we've already been done, exit.  */
  /* If we've already been done, exit.  */
  if (h->vtable_entries_used && h->vtable_entries_used[-1])
  if (h->vtable_entries_used && h->vtable_entries_used[-1])
    return true;
    return true;
 
 
  /* Make sure the parent's table is up to date.  */
  /* Make sure the parent's table is up to date.  */
  elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
  elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
 
 
  if (h->vtable_entries_used == NULL)
  if (h->vtable_entries_used == NULL)
    {
    {
      /* None of this table's entries were referenced.  Re-use the
      /* None of this table's entries were referenced.  Re-use the
         parent's table.  */
         parent's table.  */
      h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
      h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
      h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
      h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
    }
    }
  else
  else
    {
    {
      size_t n;
      size_t n;
      boolean *cu, *pu;
      boolean *cu, *pu;
 
 
      /* Or the parent's entries into ours.  */
      /* Or the parent's entries into ours.  */
      cu = h->vtable_entries_used;
      cu = h->vtable_entries_used;
      cu[-1] = true;
      cu[-1] = true;
      pu = h->vtable_parent->vtable_entries_used;
      pu = h->vtable_parent->vtable_entries_used;
      if (pu != NULL)
      if (pu != NULL)
        {
        {
          asection *sec = h->root.u.def.section;
          asection *sec = h->root.u.def.section;
          struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
          struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
          int file_align = bed->s->file_align;
          int file_align = bed->s->file_align;
 
 
          n = h->vtable_parent->vtable_entries_size / file_align;
          n = h->vtable_parent->vtable_entries_size / file_align;
          while (n--)
          while (n--)
            {
            {
              if (*pu)
              if (*pu)
                *cu = true;
                *cu = true;
              pu++;
              pu++;
              cu++;
              cu++;
            }
            }
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
static boolean
static boolean
elf_gc_smash_unused_vtentry_relocs (h, okp)
elf_gc_smash_unused_vtentry_relocs (h, okp)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR okp;
     PTR okp;
{
{
  asection *sec;
  asection *sec;
  bfd_vma hstart, hend;
  bfd_vma hstart, hend;
  Elf_Internal_Rela *relstart, *relend, *rel;
  Elf_Internal_Rela *relstart, *relend, *rel;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  int file_align;
  int file_align;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* Take care of both those symbols that do not describe vtables as
  /* Take care of both those symbols that do not describe vtables as
     well as those that are not loaded.  */
     well as those that are not loaded.  */
  if (h->vtable_parent == NULL)
  if (h->vtable_parent == NULL)
    return true;
    return true;
 
 
  BFD_ASSERT (h->root.type == bfd_link_hash_defined
  BFD_ASSERT (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak);
              || h->root.type == bfd_link_hash_defweak);
 
 
  sec = h->root.u.def.section;
  sec = h->root.u.def.section;
  hstart = h->root.u.def.value;
  hstart = h->root.u.def.value;
  hend = hstart + h->size;
  hend = hstart + h->size;
 
 
  relstart = (NAME(_bfd_elf,link_read_relocs)
  relstart = (NAME(_bfd_elf,link_read_relocs)
              (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
              (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
  if (!relstart)
  if (!relstart)
    return *(boolean *) okp = false;
    return *(boolean *) okp = false;
  bed = get_elf_backend_data (sec->owner);
  bed = get_elf_backend_data (sec->owner);
  file_align = bed->s->file_align;
  file_align = bed->s->file_align;
 
 
  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
 
 
  for (rel = relstart; rel < relend; ++rel)
  for (rel = relstart; rel < relend; ++rel)
    if (rel->r_offset >= hstart && rel->r_offset < hend)
    if (rel->r_offset >= hstart && rel->r_offset < hend)
      {
      {
        /* If the entry is in use, do nothing.  */
        /* If the entry is in use, do nothing.  */
        if (h->vtable_entries_used
        if (h->vtable_entries_used
            && (rel->r_offset - hstart) < h->vtable_entries_size)
            && (rel->r_offset - hstart) < h->vtable_entries_size)
          {
          {
            bfd_vma entry = (rel->r_offset - hstart) / file_align;
            bfd_vma entry = (rel->r_offset - hstart) / file_align;
            if (h->vtable_entries_used[entry])
            if (h->vtable_entries_used[entry])
              continue;
              continue;
          }
          }
        /* Otherwise, kill it.  */
        /* Otherwise, kill it.  */
        rel->r_offset = rel->r_info = rel->r_addend = 0;
        rel->r_offset = rel->r_info = rel->r_addend = 0;
      }
      }
 
 
  return true;
  return true;
}
}
 
 
/* Do mark and sweep of unused sections.  */
/* Do mark and sweep of unused sections.  */
 
 
boolean
boolean
elf_gc_sections (abfd, info)
elf_gc_sections (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  boolean ok = true;
  boolean ok = true;
  bfd *sub;
  bfd *sub;
  asection * (*gc_mark_hook)
  asection * (*gc_mark_hook)
    PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
    PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
             struct elf_link_hash_entry *h, Elf_Internal_Sym *));
             struct elf_link_hash_entry *h, Elf_Internal_Sym *));
 
 
  if (!get_elf_backend_data (abfd)->can_gc_sections
  if (!get_elf_backend_data (abfd)->can_gc_sections
      || info->relocateable || info->emitrelocations
      || info->relocateable || info->emitrelocations
      || elf_hash_table (info)->dynamic_sections_created)
      || elf_hash_table (info)->dynamic_sections_created)
    return true;
    return true;
 
 
  /* Apply transitive closure to the vtable entry usage info.  */
  /* Apply transitive closure to the vtable entry usage info.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_gc_propagate_vtable_entries_used,
                          elf_gc_propagate_vtable_entries_used,
                          (PTR) &ok);
                          (PTR) &ok);
  if (!ok)
  if (!ok)
    return false;
    return false;
 
 
  /* Kill the vtable relocations that were not used.  */
  /* Kill the vtable relocations that were not used.  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_gc_smash_unused_vtentry_relocs,
                          elf_gc_smash_unused_vtentry_relocs,
                          (PTR) &ok);
                          (PTR) &ok);
  if (!ok)
  if (!ok)
    return false;
    return false;
 
 
  /* Grovel through relocs to find out who stays ...  */
  /* Grovel through relocs to find out who stays ...  */
 
 
  gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
  gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
    {
    {
      asection *o;
      asection *o;
 
 
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
        continue;
        continue;
 
 
      for (o = sub->sections; o != NULL; o = o->next)
      for (o = sub->sections; o != NULL; o = o->next)
        {
        {
          if (o->flags & SEC_KEEP)
          if (o->flags & SEC_KEEP)
            if (!elf_gc_mark (info, o, gc_mark_hook))
            if (!elf_gc_mark (info, o, gc_mark_hook))
              return false;
              return false;
        }
        }
    }
    }
 
 
  /* ... and mark SEC_EXCLUDE for those that go.  */
  /* ... and mark SEC_EXCLUDE for those that go.  */
  if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
  if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
    return false;
    return false;
 
 
  return true;
  return true;
}
}


/* Called from check_relocs to record the existance of a VTINHERIT reloc.  */
/* Called from check_relocs to record the existance of a VTINHERIT reloc.  */
 
 
boolean
boolean
elf_gc_record_vtinherit (abfd, sec, h, offset)
elf_gc_record_vtinherit (abfd, sec, h, offset)
     bfd *abfd;
     bfd *abfd;
     asection *sec;
     asection *sec;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     bfd_vma offset;
     bfd_vma offset;
{
{
  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
  struct elf_link_hash_entry **search, *child;
  struct elf_link_hash_entry **search, *child;
  bfd_size_type extsymcount;
  bfd_size_type extsymcount;
 
 
  /* The sh_info field of the symtab header tells us where the
  /* The sh_info field of the symtab header tells us where the
     external symbols start.  We don't care about the local symbols at
     external symbols start.  We don't care about the local symbols at
     this point.  */
     this point.  */
  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
  if (!elf_bad_symtab (abfd))
  if (!elf_bad_symtab (abfd))
    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
 
 
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes_end = sym_hashes + extsymcount;
  sym_hashes_end = sym_hashes + extsymcount;
 
 
  /* Hunt down the child symbol, which is in this section at the same
  /* Hunt down the child symbol, which is in this section at the same
     offset as the relocation.  */
     offset as the relocation.  */
  for (search = sym_hashes; search != sym_hashes_end; ++search)
  for (search = sym_hashes; search != sym_hashes_end; ++search)
    {
    {
      if ((child = *search) != NULL
      if ((child = *search) != NULL
          && (child->root.type == bfd_link_hash_defined
          && (child->root.type == bfd_link_hash_defined
              || child->root.type == bfd_link_hash_defweak)
              || child->root.type == bfd_link_hash_defweak)
          && child->root.u.def.section == sec
          && child->root.u.def.section == sec
          && child->root.u.def.value == offset)
          && child->root.u.def.value == offset)
        goto win;
        goto win;
    }
    }
 
 
  (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
  (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
                         bfd_archive_filename (abfd), sec->name,
                         bfd_archive_filename (abfd), sec->name,
                         (unsigned long) offset);
                         (unsigned long) offset);
  bfd_set_error (bfd_error_invalid_operation);
  bfd_set_error (bfd_error_invalid_operation);
  return false;
  return false;
 
 
 win:
 win:
  if (!h)
  if (!h)
    {
    {
      /* This *should* only be the absolute section.  It could potentially
      /* This *should* only be the absolute section.  It could potentially
         be that someone has defined a non-global vtable though, which
         be that someone has defined a non-global vtable though, which
         would be bad.  It isn't worth paging in the local symbols to be
         would be bad.  It isn't worth paging in the local symbols to be
         sure though; that case should simply be handled by the assembler.  */
         sure though; that case should simply be handled by the assembler.  */
 
 
      child->vtable_parent = (struct elf_link_hash_entry *) -1;
      child->vtable_parent = (struct elf_link_hash_entry *) -1;
    }
    }
  else
  else
    child->vtable_parent = h;
    child->vtable_parent = h;
 
 
  return true;
  return true;
}
}
 
 
/* Called from check_relocs to record the existance of a VTENTRY reloc.  */
/* Called from check_relocs to record the existance of a VTENTRY reloc.  */
 
 
boolean
boolean
elf_gc_record_vtentry (abfd, sec, h, addend)
elf_gc_record_vtentry (abfd, sec, h, addend)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     asection *sec ATTRIBUTE_UNUSED;
     asection *sec ATTRIBUTE_UNUSED;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     bfd_vma addend;
     bfd_vma addend;
{
{
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  int file_align = bed->s->file_align;
  int file_align = bed->s->file_align;
 
 
  if (addend >= h->vtable_entries_size)
  if (addend >= h->vtable_entries_size)
    {
    {
      size_t size, bytes;
      size_t size, bytes;
      boolean *ptr = h->vtable_entries_used;
      boolean *ptr = h->vtable_entries_used;
 
 
      /* While the symbol is undefined, we have to be prepared to handle
      /* While the symbol is undefined, we have to be prepared to handle
         a zero size.  */
         a zero size.  */
      if (h->root.type == bfd_link_hash_undefined)
      if (h->root.type == bfd_link_hash_undefined)
        size = addend;
        size = addend;
      else
      else
        {
        {
          size = h->size;
          size = h->size;
          if (size < addend)
          if (size < addend)
            {
            {
              /* Oops!  We've got a reference past the defined end of
              /* Oops!  We've got a reference past the defined end of
                 the table.  This is probably a bug -- shall we warn?  */
                 the table.  This is probably a bug -- shall we warn?  */
              size = addend;
              size = addend;
            }
            }
        }
        }
 
 
      /* Allocate one extra entry for use as a "done" flag for the
      /* Allocate one extra entry for use as a "done" flag for the
         consolidation pass.  */
         consolidation pass.  */
      bytes = (size / file_align + 1) * sizeof (boolean);
      bytes = (size / file_align + 1) * sizeof (boolean);
 
 
      if (ptr)
      if (ptr)
        {
        {
          ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
          ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
 
 
          if (ptr != NULL)
          if (ptr != NULL)
            {
            {
              size_t oldbytes;
              size_t oldbytes;
 
 
              oldbytes = ((h->vtable_entries_size / file_align + 1)
              oldbytes = ((h->vtable_entries_size / file_align + 1)
                          * sizeof (boolean));
                          * sizeof (boolean));
              memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
              memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
            }
            }
        }
        }
      else
      else
        ptr = bfd_zmalloc ((bfd_size_type) bytes);
        ptr = bfd_zmalloc ((bfd_size_type) bytes);
 
 
      if (ptr == NULL)
      if (ptr == NULL)
        return false;
        return false;
 
 
      /* And arrange for that done flag to be at index -1.  */
      /* And arrange for that done flag to be at index -1.  */
      h->vtable_entries_used = ptr + 1;
      h->vtable_entries_used = ptr + 1;
      h->vtable_entries_size = size;
      h->vtable_entries_size = size;
    }
    }
 
 
  h->vtable_entries_used[addend / file_align] = true;
  h->vtable_entries_used[addend / file_align] = true;
 
 
  return true;
  return true;
}
}
 
 
/* And an accompanying bit to work out final got entry offsets once
/* And an accompanying bit to work out final got entry offsets once
   we're done.  Should be called from final_link.  */
   we're done.  Should be called from final_link.  */
 
 
boolean
boolean
elf_gc_common_finalize_got_offsets (abfd, info)
elf_gc_common_finalize_got_offsets (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  bfd *i;
  bfd *i;
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
  bfd_vma gotoff;
  bfd_vma gotoff;
 
 
  /* The GOT offset is relative to the .got section, but the GOT header is
  /* The GOT offset is relative to the .got section, but the GOT header is
     put into the .got.plt section, if the backend uses it.  */
     put into the .got.plt section, if the backend uses it.  */
  if (bed->want_got_plt)
  if (bed->want_got_plt)
    gotoff = 0;
    gotoff = 0;
  else
  else
    gotoff = bed->got_header_size;
    gotoff = bed->got_header_size;
 
 
  /* Do the local .got entries first.  */
  /* Do the local .got entries first.  */
  for (i = info->input_bfds; i; i = i->link_next)
  for (i = info->input_bfds; i; i = i->link_next)
    {
    {
      bfd_signed_vma *local_got;
      bfd_signed_vma *local_got;
      bfd_size_type j, locsymcount;
      bfd_size_type j, locsymcount;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
 
 
      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
        continue;
        continue;
 
 
      local_got = elf_local_got_refcounts (i);
      local_got = elf_local_got_refcounts (i);
      if (!local_got)
      if (!local_got)
        continue;
        continue;
 
 
      symtab_hdr = &elf_tdata (i)->symtab_hdr;
      symtab_hdr = &elf_tdata (i)->symtab_hdr;
      if (elf_bad_symtab (i))
      if (elf_bad_symtab (i))
        locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
        locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
      else
      else
        locsymcount = symtab_hdr->sh_info;
        locsymcount = symtab_hdr->sh_info;
 
 
      for (j = 0; j < locsymcount; ++j)
      for (j = 0; j < locsymcount; ++j)
        {
        {
          if (local_got[j] > 0)
          if (local_got[j] > 0)
            {
            {
              local_got[j] = gotoff;
              local_got[j] = gotoff;
              gotoff += ARCH_SIZE / 8;
              gotoff += ARCH_SIZE / 8;
            }
            }
          else
          else
            local_got[j] = (bfd_vma) -1;
            local_got[j] = (bfd_vma) -1;
        }
        }
    }
    }
 
 
  /* Then the global .got entries.  .plt refcounts are handled by
  /* Then the global .got entries.  .plt refcounts are handled by
     adjust_dynamic_symbol  */
     adjust_dynamic_symbol  */
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          elf_gc_allocate_got_offsets,
                          elf_gc_allocate_got_offsets,
                          (PTR) &gotoff);
                          (PTR) &gotoff);
  return true;
  return true;
}
}
 
 
/* We need a special top-level link routine to convert got reference counts
/* We need a special top-level link routine to convert got reference counts
   to real got offsets.  */
   to real got offsets.  */
 
 
static boolean
static boolean
elf_gc_allocate_got_offsets (h, offarg)
elf_gc_allocate_got_offsets (h, offarg)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR offarg;
     PTR offarg;
{
{
  bfd_vma *off = (bfd_vma *) offarg;
  bfd_vma *off = (bfd_vma *) offarg;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  if (h->got.refcount > 0)
  if (h->got.refcount > 0)
    {
    {
      h->got.offset = off[0];
      h->got.offset = off[0];
      off[0] += ARCH_SIZE / 8;
      off[0] += ARCH_SIZE / 8;
    }
    }
  else
  else
    h->got.offset = (bfd_vma) -1;
    h->got.offset = (bfd_vma) -1;
 
 
  return true;
  return true;
}
}
 
 
/* Many folk need no more in the way of final link than this, once
/* Many folk need no more in the way of final link than this, once
   got entry reference counting is enabled.  */
   got entry reference counting is enabled.  */
 
 
boolean
boolean
elf_gc_common_final_link (abfd, info)
elf_gc_common_final_link (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  if (!elf_gc_common_finalize_got_offsets (abfd, info))
  if (!elf_gc_common_finalize_got_offsets (abfd, info))
    return false;
    return false;
 
 
  /* Invoke the regular ELF backend linker to do all the work.  */
  /* Invoke the regular ELF backend linker to do all the work.  */
  return elf_bfd_final_link (abfd, info);
  return elf_bfd_final_link (abfd, info);
}
}
 
 
/* This function will be called though elf_link_hash_traverse to store
/* This function will be called though elf_link_hash_traverse to store
   all hash value of the exported symbols in an array.  */
   all hash value of the exported symbols in an array.  */
 
 
static boolean
static boolean
elf_collect_hash_codes (h, data)
elf_collect_hash_codes (h, data)
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     PTR data;
     PTR data;
{
{
  unsigned long **valuep = (unsigned long **) data;
  unsigned long **valuep = (unsigned long **) data;
  const char *name;
  const char *name;
  char *p;
  char *p;
  unsigned long ha;
  unsigned long ha;
  char *alc = NULL;
  char *alc = NULL;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  /* Ignore indirect symbols.  These are added by the versioning code.  */
  /* Ignore indirect symbols.  These are added by the versioning code.  */
  if (h->dynindx == -1)
  if (h->dynindx == -1)
    return true;
    return true;
 
 
  name = h->root.root.string;
  name = h->root.root.string;
  p = strchr (name, ELF_VER_CHR);
  p = strchr (name, ELF_VER_CHR);
  if (p != NULL)
  if (p != NULL)
    {
    {
      alc = bfd_malloc ((bfd_size_type) (p - name + 1));
      alc = bfd_malloc ((bfd_size_type) (p - name + 1));
      memcpy (alc, name, (size_t) (p - name));
      memcpy (alc, name, (size_t) (p - name));
      alc[p - name] = '\0';
      alc[p - name] = '\0';
      name = alc;
      name = alc;
    }
    }
 
 
  /* Compute the hash value.  */
  /* Compute the hash value.  */
  ha = bfd_elf_hash (name);
  ha = bfd_elf_hash (name);
 
 
  /* Store the found hash value in the array given as the argument.  */
  /* Store the found hash value in the array given as the argument.  */
  *(*valuep)++ = ha;
  *(*valuep)++ = ha;
 
 
  /* And store it in the struct so that we can put it in the hash table
  /* And store it in the struct so that we can put it in the hash table
     later.  */
     later.  */
  h->elf_hash_value = ha;
  h->elf_hash_value = ha;
 
 
  if (alc != NULL)
  if (alc != NULL)
    free (alc);
    free (alc);
 
 
  return true;
  return true;
}
}
 
 
boolean
boolean
elf_reloc_symbol_deleted_p (offset, cookie)
elf_reloc_symbol_deleted_p (offset, cookie)
     bfd_vma offset;
     bfd_vma offset;
     PTR cookie;
     PTR cookie;
{
{
  struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
  struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
 
 
  if (rcookie->bad_symtab)
  if (rcookie->bad_symtab)
    rcookie->rel = rcookie->rels;
    rcookie->rel = rcookie->rels;
 
 
  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
    {
    {
      unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
      unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
 
 
      if (! rcookie->bad_symtab)
      if (! rcookie->bad_symtab)
        if (rcookie->rel->r_offset > offset)
        if (rcookie->rel->r_offset > offset)
          return false;
          return false;
      if (rcookie->rel->r_offset != offset)
      if (rcookie->rel->r_offset != offset)
        continue;
        continue;
 
 
      if (r_symndx >= rcookie->locsymcount
      if (r_symndx >= rcookie->locsymcount
          || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
          || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
        {
        {
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
          h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
 
 
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
          if ((h->root.type == bfd_link_hash_defined
          if ((h->root.type == bfd_link_hash_defined
               || h->root.type == bfd_link_hash_defweak)
               || h->root.type == bfd_link_hash_defweak)
              && elf_discarded_section (h->root.u.def.section))
              && elf_discarded_section (h->root.u.def.section))
            return true;
            return true;
          else
          else
            return false;
            return false;
        }
        }
      else
      else
        {
        {
          /* It's not a relocation against a global symbol,
          /* It's not a relocation against a global symbol,
             but it could be a relocation against a local
             but it could be a relocation against a local
             symbol for a discarded section.  */
             symbol for a discarded section.  */
          asection *isec;
          asection *isec;
          Elf_Internal_Sym *isym;
          Elf_Internal_Sym *isym;
 
 
          /* Need to: get the symbol; get the section.  */
          /* Need to: get the symbol; get the section.  */
          isym = &rcookie->locsyms[r_symndx];
          isym = &rcookie->locsyms[r_symndx];
          if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
          if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
            {
            {
              isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
              isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
              if (isec != NULL && elf_discarded_section (isec))
              if (isec != NULL && elf_discarded_section (isec))
                return true;
                return true;
            }
            }
        }
        }
      return false;
      return false;
    }
    }
  return false;
  return false;
}
}
 
 
/* Discard unneeded references to discarded sections.
/* Discard unneeded references to discarded sections.
   Returns true if any section's size was changed.  */
   Returns true if any section's size was changed.  */
/* This function assumes that the relocations are in sorted order,
/* This function assumes that the relocations are in sorted order,
   which is true for all known assemblers.  */
   which is true for all known assemblers.  */
 
 
boolean
boolean
elf_bfd_discard_info (output_bfd, info)
elf_bfd_discard_info (output_bfd, info)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  struct elf_reloc_cookie cookie;
  struct elf_reloc_cookie cookie;
  asection *stab, *eh, *ehdr;
  asection *stab, *eh, *ehdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
  bfd *abfd;
  bfd *abfd;
  boolean ret = false;
  boolean ret = false;
  boolean strip = info->strip == strip_all || info->strip == strip_debugger;
  boolean strip = info->strip == strip_all || info->strip == strip_debugger;
 
 
  if (info->relocateable
  if (info->relocateable
      || info->traditional_format
      || info->traditional_format
      || info->hash->creator->flavour != bfd_target_elf_flavour
      || info->hash->creator->flavour != bfd_target_elf_flavour
      || ! is_elf_hash_table (info))
      || ! is_elf_hash_table (info))
    return false;
    return false;
 
 
  ehdr = NULL;
  ehdr = NULL;
  if (elf_hash_table (info)->dynobj != NULL)
  if (elf_hash_table (info)->dynobj != NULL)
    ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
    ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
                                    ".eh_frame_hdr");
                                    ".eh_frame_hdr");
 
 
  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
    {
    {
      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
        continue;
        continue;
 
 
      bed = get_elf_backend_data (abfd);
      bed = get_elf_backend_data (abfd);
 
 
      if ((abfd->flags & DYNAMIC) != 0)
      if ((abfd->flags & DYNAMIC) != 0)
        continue;
        continue;
 
 
      eh = NULL;
      eh = NULL;
      if (ehdr)
      if (ehdr)
        {
        {
          eh = bfd_get_section_by_name (abfd, ".eh_frame");
          eh = bfd_get_section_by_name (abfd, ".eh_frame");
          if (eh && (eh->_raw_size == 0
          if (eh && (eh->_raw_size == 0
                     || bfd_is_abs_section (eh->output_section)))
                     || bfd_is_abs_section (eh->output_section)))
            eh = NULL;
            eh = NULL;
        }
        }
 
 
      stab = NULL;
      stab = NULL;
      if (!strip)
      if (!strip)
        {
        {
          stab = bfd_get_section_by_name (abfd, ".stab");
          stab = bfd_get_section_by_name (abfd, ".stab");
          if (stab && (stab->_raw_size == 0
          if (stab && (stab->_raw_size == 0
                       || bfd_is_abs_section (stab->output_section)))
                       || bfd_is_abs_section (stab->output_section)))
            stab = NULL;
            stab = NULL;
        }
        }
      if ((! stab
      if ((! stab
           || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
           || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
          && ! eh
          && ! eh
          && (strip || ! bed->elf_backend_discard_info))
          && (strip || ! bed->elf_backend_discard_info))
        continue;
        continue;
 
 
      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
      cookie.abfd = abfd;
      cookie.abfd = abfd;
      cookie.sym_hashes = elf_sym_hashes (abfd);
      cookie.sym_hashes = elf_sym_hashes (abfd);
      cookie.bad_symtab = elf_bad_symtab (abfd);
      cookie.bad_symtab = elf_bad_symtab (abfd);
      if (cookie.bad_symtab)
      if (cookie.bad_symtab)
        {
        {
          cookie.locsymcount =
          cookie.locsymcount =
            symtab_hdr->sh_size / sizeof (Elf_External_Sym);
            symtab_hdr->sh_size / sizeof (Elf_External_Sym);
          cookie.extsymoff = 0;
          cookie.extsymoff = 0;
        }
        }
      else
      else
        {
        {
          cookie.locsymcount = symtab_hdr->sh_info;
          cookie.locsymcount = symtab_hdr->sh_info;
          cookie.extsymoff = symtab_hdr->sh_info;
          cookie.extsymoff = symtab_hdr->sh_info;
        }
        }
 
 
      cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
      cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
      if (cookie.locsyms == NULL && cookie.locsymcount != 0)
      if (cookie.locsyms == NULL && cookie.locsymcount != 0)
        {
        {
          cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
          cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                                 cookie.locsymcount, 0,
                                                 cookie.locsymcount, 0,
                                                 NULL, NULL, NULL);
                                                 NULL, NULL, NULL);
          if (cookie.locsyms == NULL)
          if (cookie.locsyms == NULL)
            return false;
            return false;
        }
        }
 
 
      if (stab)
      if (stab)
        {
        {
          cookie.rels = (NAME(_bfd_elf,link_read_relocs)
          cookie.rels = (NAME(_bfd_elf,link_read_relocs)
                         (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                         (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                          info->keep_memory));
                          info->keep_memory));
          if (cookie.rels)
          if (cookie.rels)
            {
            {
              cookie.rel = cookie.rels;
              cookie.rel = cookie.rels;
              cookie.relend =
              cookie.relend =
                cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
                cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
              if (_bfd_discard_section_stabs (abfd, stab,
              if (_bfd_discard_section_stabs (abfd, stab,
                                              elf_section_data (stab)->sec_info,
                                              elf_section_data (stab)->sec_info,
                                              elf_reloc_symbol_deleted_p,
                                              elf_reloc_symbol_deleted_p,
                                              &cookie))
                                              &cookie))
                ret = true;
                ret = true;
              if (elf_section_data (stab)->relocs != cookie.rels)
              if (elf_section_data (stab)->relocs != cookie.rels)
                free (cookie.rels);
                free (cookie.rels);
            }
            }
        }
        }
 
 
      if (eh)
      if (eh)
        {
        {
          cookie.rels = NULL;
          cookie.rels = NULL;
          cookie.rel = NULL;
          cookie.rel = NULL;
          cookie.relend = NULL;
          cookie.relend = NULL;
          if (eh->reloc_count)
          if (eh->reloc_count)
            cookie.rels = (NAME(_bfd_elf,link_read_relocs)
            cookie.rels = (NAME(_bfd_elf,link_read_relocs)
                           (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                           (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                            info->keep_memory));
                            info->keep_memory));
          if (cookie.rels)
          if (cookie.rels)
            {
            {
              cookie.rel = cookie.rels;
              cookie.rel = cookie.rels;
              cookie.relend =
              cookie.relend =
                cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
                cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
            }
            }
          if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
          if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
                                                 elf_reloc_symbol_deleted_p,
                                                 elf_reloc_symbol_deleted_p,
                                                 &cookie))
                                                 &cookie))
            ret = true;
            ret = true;
          if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
          if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
            free (cookie.rels);
            free (cookie.rels);
        }
        }
 
 
      if (bed->elf_backend_discard_info)
      if (bed->elf_backend_discard_info)
        {
        {
          if (bed->elf_backend_discard_info (abfd, &cookie, info))
          if (bed->elf_backend_discard_info (abfd, &cookie, info))
            ret = true;
            ret = true;
        }
        }
 
 
      if (cookie.locsyms != NULL
      if (cookie.locsyms != NULL
          && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
          && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
        {
        {
          if (! info->keep_memory)
          if (! info->keep_memory)
            free (cookie.locsyms);
            free (cookie.locsyms);
          else
          else
            symtab_hdr->contents = (unsigned char *) cookie.locsyms;
            symtab_hdr->contents = (unsigned char *) cookie.locsyms;
        }
        }
    }
    }
 
 
  if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
  if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
    ret = true;
    ret = true;
  return ret;
  return ret;
}
}
 
 
static boolean
static boolean
elf_section_ignore_discarded_relocs (sec)
elf_section_ignore_discarded_relocs (sec)
     asection *sec;
     asection *sec;
{
{
  struct elf_backend_data *bed;
  struct elf_backend_data *bed;
 
 
  switch (elf_section_data (sec)->sec_info_type)
  switch (elf_section_data (sec)->sec_info_type)
    {
    {
    case ELF_INFO_TYPE_STABS:
    case ELF_INFO_TYPE_STABS:
    case ELF_INFO_TYPE_EH_FRAME:
    case ELF_INFO_TYPE_EH_FRAME:
      return true;
      return true;
    default:
    default:
      break;
      break;
    }
    }
 
 
  bed = get_elf_backend_data (sec->owner);
  bed = get_elf_backend_data (sec->owner);
  if (bed->elf_backend_ignore_discarded_relocs != NULL
  if (bed->elf_backend_ignore_discarded_relocs != NULL
      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.