OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [nog_patch_47/] [or1ksim/] [cpu/] [common/] [abstract.c] - Diff between revs 992 and 997

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 992 Rev 997
/* abstract.c -- Abstract entities
/* abstract.c -- Abstract entities
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
 
 
This file is part of OpenRISC 1000 Architectural Simulator.
This file is part of OpenRISC 1000 Architectural Simulator.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
 
 
/* Abstract memory and routines that go with this. I need to
/* Abstract memory and routines that go with this. I need to
add all sorts of other abstract entities. Currently we have
add all sorts of other abstract entities. Currently we have
only memory. */
only memory. */
 
 
#include <stdlib.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdio.h>
#include <ctype.h>
#include <ctype.h>
#include <string.h>
#include <string.h>
 
 
#include "config.h"
#include "config.h"
#include "sim-config.h"
#include "sim-config.h"
 
 
#include "parse.h"
#include "parse.h"
#include "abstract.h"
#include "abstract.h"
#include "labels.h"
#include "labels.h"
#include "arch.h"
#include "arch.h"
#include "execute.h"
#include "execute.h"
#include "sprs.h"
#include "sprs.h"
#include "stats.h"
#include "stats.h"
#include "except.h"
#include "except.h"
#include "debug_unit.h"
#include "debug_unit.h"
#include "opcode/or32.h"
#include "opcode/or32.h"
#include "support/profile.h"
#include "support/profile.h"
 
 
extern unsigned long reg[];
extern unsigned long reg[];
extern char *disassembled;
extern char *disassembled;
 
 
/* This is an abstract+physical memory array rather than only physical
/* This is an abstract+physical memory array rather than only physical
   memory array */
   memory array */
static unsigned long *simmem32;
static unsigned long *simmem32;
 
 
/* Pointer to memory area descriptions that are assigned to individual
/* Pointer to memory area descriptions that are assigned to individual
   peripheral devices. */
   peripheral devices. */
struct dev_memarea *dev_list;
struct dev_memarea *dev_list;
 
 
/* Temporary variable to increase speed.  */
/* Temporary variable to increase speed.  */
struct dev_memarea *cur_area;
struct dev_memarea *cur_area;
 
 
/* Pointer to memory controller device descriptor.  */
/* Pointer to memory controller device descriptor.  */
struct dev_memarea *mc_area = (struct dev_memarea *)0;
struct dev_memarea *mc_area = (struct dev_memarea *)0;
 
 
/* These are set by mmu if cache inhibit bit is set for current acces.  */
/* These are set by mmu if cache inhibit bit is set for current acces.  */
int data_ci, insn_ci;
int data_ci, insn_ci;
 
 
/* Virtual address of current access. */
/* Virtual address of current access. */
unsigned long cur_vadd;
unsigned long cur_vadd;
 
 
/* Calculates bit mask to fit the data */
/* Calculates bit mask to fit the data */
unsigned long bit_mask (unsigned long data) {
unsigned long bit_mask (unsigned long data) {
  int i = 0;
  int i = 0;
  data--;
  data--;
  while (data >> i)
  while (data >> i)
    data |= 1 << i++;
    data |= 1 << i++;
  return data;
  return data;
}
}
 
 
/* Register read and write function for a memory area.
/* Register read and write function for a memory area.
   addr is inside the area, if addr & addr_mask == addr_compare
   addr is inside the area, if addr & addr_mask == addr_compare
   (used also by peripheral devices like 16450 UART etc.) */
   (used also by peripheral devices like 16450 UART etc.) */
void register_memoryarea_mask(unsigned long addr_mask, unsigned long addr_compare,
void register_memoryarea_mask(unsigned long addr_mask, unsigned long addr_compare,
                         unsigned long size, unsigned granularity, unsigned mc_dev,
                         unsigned long size, unsigned granularity, unsigned mc_dev,
                         unsigned long (readfunc)(unsigned long),
                         unsigned long (readfunc)(unsigned long),
                         void (writefunc)(unsigned long, unsigned long))
                         void (writefunc)(unsigned long, unsigned long))
{
{
  struct dev_memarea **pptmp;
  struct dev_memarea **pptmp;
  unsigned long size_mask = bit_mask (size);
  unsigned long size_mask = bit_mask (size);
  int found_error = 0;
  int found_error = 0;
  addr_compare &= addr_mask;
  addr_compare &= addr_mask;
 
 
  debug(5, "addr & %08x == %08x to %08x, size %08x, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity);
  debug(5, "addr & %08x == %08x to %08x, size %08x, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity);
  /* Go to the end of the list. */
  /* Go to the end of the list. */
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
    if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)
    if ((addr_compare >= (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)
     || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) {
     || (addr_compare + size > (*pptmp)->addr_compare) && (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) {
      if (!found_error) {
      if (!found_error) {
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "\taddr & %08x == %08x to %08x, size %08x, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity);
        fprintf (stderr, "\taddr & %08x == %08x to %08x, size %08x, gran %iB\n", addr_mask, addr_compare, addr_compare | bit_mask (size), size, granularity);
      }
      }
      found_error = 1;
      found_error = 1;
      fprintf (stderr, "and\taddr & %08x == %08x to %08x, size %08x, gran %iB\n", (*pptmp)->addr_mask, (*pptmp)->addr_compare,
      fprintf (stderr, "and\taddr & %08x == %08x to %08x, size %08x, gran %iB\n", (*pptmp)->addr_mask, (*pptmp)->addr_compare,
        (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size, (*pptmp)->granularity);
        (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size, (*pptmp)->granularity);
    }
    }
 
 
  if (found_error)
  if (found_error)
    exit (-1);
    exit (-1);
 
 
  cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea));
  cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea));
 
 
  if (mc_dev)
  if (mc_dev)
    mc_area = *pptmp;
    mc_area = *pptmp;
 
 
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->size = size;
  (*pptmp)->size = size;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->granularity = granularity;
  (*pptmp)->granularity = granularity;
  (*pptmp)->readfunc = readfunc;
  (*pptmp)->readfunc = readfunc;
  (*pptmp)->writefunc = writefunc;
  (*pptmp)->writefunc = writefunc;
  (*pptmp)->log = 0;
  (*pptmp)->log = 0;
  (*pptmp)->delayr = 2;
  (*pptmp)->delayr = 2;
  (*pptmp)->delayw = 2;
  (*pptmp)->delayw = 2;
  (*pptmp)->next = NULL;
  (*pptmp)->next = NULL;
}
}
 
 
/* Register read and write function for a memory area.
/* Register read and write function for a memory area.
   Memory areas should be aligned. Memory area is rounded up to
   Memory areas should be aligned. Memory area is rounded up to
   fit the nearest 2^n aligment.
   fit the nearest 2^n aligment.
   (used also by peripheral devices like 16450 UART etc.)
   (used also by peripheral devices like 16450 UART etc.)
   If mc_dev is 1, this means that this device will be checked first for match
   If mc_dev is 1, this means that this device will be checked first for match
   and will be accessed in case in overlaping memory spaces.
   and will be accessed in case in overlaping memory spaces.
   Only one device can have this set to 1 (used for memory controller) */
   Only one device can have this set to 1 (used for memory controller) */
void register_memoryarea(unsigned long addr,
void register_memoryarea(unsigned long addr,
                         unsigned long size, unsigned granularity, unsigned mc_dev,
                         unsigned long size, unsigned granularity, unsigned mc_dev,
                         unsigned long (readfunc)(unsigned long),
                         unsigned long (readfunc)(unsigned long),
                         void (writefunc)(unsigned long, unsigned long))
                         void (writefunc)(unsigned long, unsigned long))
{
{
  unsigned long size_mask = bit_mask (size);
  unsigned long size_mask = bit_mask (size);
  unsigned long addr_mask = ~size_mask;
  unsigned long addr_mask = ~size_mask;
  register_memoryarea_mask (addr_mask, addr & addr_mask,
  register_memoryarea_mask (addr_mask, addr & addr_mask,
                      size_mask + 1, granularity, mc_dev,
                      size_mask + 1, granularity, mc_dev,
                      readfunc, writefunc);
                      readfunc, writefunc);
}
}
 
 
 
 
/* Check if access is to registered area of memory. */
/* Check if access is to registered area of memory. */
inline struct dev_memarea *verify_memoryarea(unsigned long addr)
inline struct dev_memarea *verify_memoryarea(unsigned long addr)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check memory controller space first */
  /* Check memory controller space first */
  if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask))
  if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask))
    return cur_area = mc_area;
    return cur_area = mc_area;
 
 
  /* Check cached value */
  /* Check cached value */
  if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask))
  if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask))
    return cur_area;
    return cur_area;
 
 
  /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */
  /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */
  IFF (config.mc.enabled) {
  IFF (config.mc.enabled) {
    /* Check list of registered devices. */
    /* Check list of registered devices. */
    for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
    for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
      if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
      if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
        return cur_area = ptmp;
        return cur_area = ptmp;
  } else {
  } else {
    /* Check list of registered devices. */
    /* Check list of registered devices. */
    for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
    for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
      if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask))
      if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask))
        return cur_area = ptmp;
        return cur_area = ptmp;
  }
  }
  return cur_area = NULL;
  return cur_area = NULL;
}
}
 
 
/* Finds the memory area for the address and adjust the read and write delays for it. */
/* Finds the memory area for the address and adjust the read and write delays for it. */
void adjust_rw_delay(unsigned long memaddr, unsigned long delayr, unsigned long delayw)
void adjust_rw_delay(unsigned long memaddr, unsigned long delayr, unsigned long delayw)
{
{
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    cur_area->delayr = delayr;
    cur_area->delayr = delayr;
    cur_area->delayw = delayw;
    cur_area->delayw = delayw;
  }
  }
}
}
 
 
inline unsigned long evalsim_mem32(unsigned long memaddr)
inline unsigned long evalsim_mem32(unsigned long memaddr)
{
{
  unsigned long temp;
  unsigned long temp;
 
 
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    switch(cur_area->granularity) {
    case 4:
    case 4:
      temp = cur_area->readfunc(memaddr);
      temp = cur_area->readfunc(memaddr);
      runtime.sim.mem_cycles += cur_area->delayr;
      runtime.sim.mem_cycles += cur_area->delayr;
      break;
      break;
    case 1:
    case 1:
      temp = cur_area->readfunc(memaddr) << 24;
      temp = cur_area->readfunc(memaddr) << 24;
      temp |= cur_area->readfunc(memaddr + 1) << 16;
      temp |= cur_area->readfunc(memaddr + 1) << 16;
      temp |= cur_area->readfunc(memaddr + 2) << 8;
      temp |= cur_area->readfunc(memaddr + 2) << 8;
      temp |= cur_area->readfunc(memaddr + 3);
      temp |= cur_area->readfunc(memaddr + 3);
      runtime.sim.mem_cycles += cur_area->delayr * 4;
      runtime.sim.mem_cycles += cur_area->delayr * 4;
      break;
      break;
    case 2:
    case 2:
      temp = cur_area->readfunc(memaddr) << 16;
      temp = cur_area->readfunc(memaddr) << 16;
      temp |= cur_area->readfunc(memaddr + 2);
      temp |= cur_area->readfunc(memaddr + 2);
      runtime.sim.mem_cycles += cur_area->delayr * 2;
      runtime.sim.mem_cycles += cur_area->delayr * 2;
      break;
      break;
    }
    }
  }
  }
  return temp;
  return temp;
}
}
 
 
unsigned short evalsim_mem16(unsigned long memaddr)
unsigned short evalsim_mem16(unsigned long memaddr)
{
{
  unsigned long temp;
  unsigned long temp;
 
 
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    switch(cur_area->granularity) {
    case 1:
    case 1:
      temp = cur_area->readfunc(memaddr) << 8;
      temp = cur_area->readfunc(memaddr) << 8;
      temp |= cur_area->readfunc(memaddr + 1);
      temp |= cur_area->readfunc(memaddr + 1);
      runtime.sim.mem_cycles += cur_area->delayr * 2;
      runtime.sim.mem_cycles += cur_area->delayr * 2;
      break;
      break;
    case 2:
    case 2:
      temp = cur_area->readfunc(memaddr);
      temp = cur_area->readfunc(memaddr);
      runtime.sim.mem_cycles += cur_area->delayr;
      runtime.sim.mem_cycles += cur_area->delayr;
      break;
      break;
    case 4:
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp = evalsim_mem32 (memaddr & ~3ul);
      if (memaddr & 2)
      if (memaddr & 2)
        temp &= 0xffff;
        temp &= 0xffff;
      else
      else
        temp >>= 16;
        temp >>= 16;
      break;
      break;
    }
    }
  }
  }
  return temp;
  return temp;
}
}
 
 
unsigned char evalsim_mem8(unsigned long memaddr)
unsigned char evalsim_mem8(unsigned long memaddr)
{
{
  unsigned long temp;
  unsigned long temp;
 
 
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    switch(cur_area->granularity) {
    case 1:
    case 1:
      temp = cur_area->readfunc(memaddr);
      temp = cur_area->readfunc(memaddr);
      runtime.sim.mem_cycles += cur_area->delayr;
      runtime.sim.mem_cycles += cur_area->delayr;
      break;
      break;
    case 2:
    case 2:
      temp = evalsim_mem16 (memaddr & ~1ul);
      temp = evalsim_mem16 (memaddr & ~1ul);
      if (memaddr & 1)
      if (memaddr & 1)
        temp &= 0xff;
        temp &= 0xff;
      else
      else
        temp >>= 8;
        temp >>= 8;
      break;
      break;
    case 4:
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp >>= 8 * (3 - (memaddr & 3));
      temp >>= 8 * (3 - (memaddr & 3));
      temp &= 0xff;
      temp &= 0xff;
      break;
      break;
    }
    }
  }
  }
  return temp;
  return temp;
}
}
 
 
/* Returns 32-bit values from mem array. Big endian version. */
/* Returns 32-bit values from mem array. Big endian version. */
unsigned long read_mem(unsigned long memaddr,int* breakpoint)
unsigned long read_mem(unsigned long memaddr,int* breakpoint)
{
{
  unsigned long temp;
  unsigned long temp;
  struct dev_memarea *dev;
  struct dev_memarea *dev;
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
  temp = evalsim_mem32(memaddr);
  temp = evalsim_mem32(memaddr);
  if (!cur_area) {
  if (!cur_area) {
    printf("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr);
    PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    temp = 0;
    temp = 0;
  }
  }
 
 
  if (!pending.valid && cur_area->log)
  if (!pending.valid && cur_area->log)
    fprintf (cur_area->log, "[%08x] -> read %08x\n", memaddr, temp);
    fprintf (cur_area->log, "[%08x] -> read %08x\n", memaddr, temp);
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
 
 
/* Returns 32-bit values from mem array. Big endian version. */
/* Returns 32-bit values from mem array. Big endian version. */
unsigned long eval_mem32(unsigned long memaddr,int* breakpoint)
unsigned long eval_mem32(unsigned long memaddr,int* breakpoint)
{
{
 
 
  unsigned long temp;
  unsigned long temp;
  struct dev_memarea *dev;
  struct dev_memarea *dev;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_READ);
    mprofile (memaddr, MPROF_32 | MPROF_READ);
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return 0;
    return 0;
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
 
 
  memaddr = dmmu_translate(memaddr, 0);
  memaddr = dmmu_translate(memaddr, 0);
  if (pending.valid)
  if (pending.valid)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = dc_simulate_read(memaddr, 4);
    temp = dc_simulate_read(memaddr, 4);
  else {
  else {
    temp = evalsim_mem32(memaddr);
    temp = evalsim_mem32(memaddr);
    if (!cur_area) {
    if (!cur_area) {
      printf("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr);
      PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
      temp = 0;
    }
    }
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
 
 
/* Returns 32-bit values from mem array. Big endian version. */
/* Returns 32-bit values from mem array. Big endian version. */
unsigned long eval_insn(unsigned long memaddr,int* breakpoint)
unsigned long eval_insn(unsigned long memaddr,int* breakpoint)
{
{
  unsigned long temp;
  unsigned long temp;
  struct dev_memarea *dev;
  struct dev_memarea *dev;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
  cur_vadd = pc;
  cur_vadd = pc;
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
  if (config.ic.enabled)
  if (config.ic.enabled)
    temp = ic_simulate_fetch(memaddr);
    temp = ic_simulate_fetch(memaddr);
  else {
  else {
    temp = evalsim_mem32(memaddr);
    temp = evalsim_mem32(memaddr);
    if (!cur_area) {
    if (!cur_area) {
      printf("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr);
      PRINTF("EXCEPTION: read out of memory (32-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
      temp = 0;
    }
    }
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
 
 
/* Returns 16-bit values from mem array. Big endian version. */
/* Returns 16-bit values from mem array. Big endian version. */
 
 
unsigned short eval_mem16(unsigned long memaddr,int* breakpoint)
unsigned short eval_mem16(unsigned long memaddr,int* breakpoint)
{
{
  unsigned short temp;
  unsigned short temp;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_READ);
    mprofile (memaddr, MPROF_16 | MPROF_READ);
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return 0;
    return 0;
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
 
 
  memaddr = dmmu_translate(memaddr, 0);
  memaddr = dmmu_translate(memaddr, 0);
  if (pending.valid)
  if (pending.valid)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = (unsigned short)dc_simulate_read(memaddr, 2);
    temp = (unsigned short)dc_simulate_read(memaddr, 2);
  else {
  else {
    temp = evalsim_mem16(memaddr);
    temp = evalsim_mem16(memaddr);
    if (!cur_area) {
    if (!cur_area) {
      printf("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr);
      PRINTF("EXCEPTION: read out of memory (16-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
      temp = 0;
    }
    }
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
 
 
/* Returns 8-bit values from mem array. */
/* Returns 8-bit values from mem array. */
 
 
unsigned char eval_mem8(unsigned long memaddr,int* breakpoint)
unsigned char eval_mem8(unsigned long memaddr,int* breakpoint)
{
{
  unsigned char temp;
  unsigned char temp;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_READ);
    mprofile (memaddr, MPROF_8 | MPROF_READ);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
 
 
  memaddr = dmmu_translate(memaddr, 0);
  memaddr = dmmu_translate(memaddr, 0);
  if (pending.valid)
  if (pending.valid)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = (unsigned char)dc_simulate_read(memaddr, 1);
    temp = (unsigned char)dc_simulate_read(memaddr, 1);
  else {
  else {
    temp = evalsim_mem8(memaddr);
    temp = evalsim_mem8(memaddr);
    if (!cur_area) {
    if (!cur_area) {
      printf("EXCEPTION: read out of memory (8-bit access to %.8lx)\n", memaddr);
      PRINTF("EXCEPTION: read out of memory (8-bit access to %.8lx)\n", memaddr);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      except_handle(EXCEPT_BUSERR, cur_vadd);
      temp = 0;
      temp = 0;
    }
    }
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
 
 
void setsim_mem32(unsigned long memaddr, unsigned long value)
void setsim_mem32(unsigned long memaddr, unsigned long value)
{
{
  struct dev_memarea *dev;
  struct dev_memarea *dev;
 
 
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    switch(cur_area->granularity) {
    case 4:
    case 4:
      cur_area->writefunc(memaddr, value);
      cur_area->writefunc(memaddr, value);
      runtime.sim.mem_cycles += cur_area->delayw;
      runtime.sim.mem_cycles += cur_area->delayw;
      break;
      break;
    case 1:
    case 1:
      cur_area->writefunc(memaddr    , (value >> 24) & 0xFF);
      cur_area->writefunc(memaddr    , (value >> 24) & 0xFF);
      cur_area->writefunc(memaddr + 1, (value >> 16) & 0xFF);
      cur_area->writefunc(memaddr + 1, (value >> 16) & 0xFF);
      cur_area->writefunc(memaddr + 2, (value >>  8) & 0xFF);
      cur_area->writefunc(memaddr + 2, (value >>  8) & 0xFF);
      cur_area->writefunc(memaddr + 3, (value      ) & 0xFF);
      cur_area->writefunc(memaddr + 3, (value      ) & 0xFF);
      runtime.sim.mem_cycles += cur_area->delayw * 4;
      runtime.sim.mem_cycles += cur_area->delayw * 4;
      break;
      break;
    case 2:
    case 2:
      cur_area->writefunc(memaddr, (value >> 16) & 0xFFFF);
      cur_area->writefunc(memaddr, (value >> 16) & 0xFFFF);
      cur_area->writefunc(memaddr + 2, value & 0xFFFF);
      cur_area->writefunc(memaddr + 2, value & 0xFFFF);
      runtime.sim.mem_cycles += cur_area->delayw * 2;
      runtime.sim.mem_cycles += cur_area->delayw * 2;
      break;
      break;
    }
    }
  } else {
  } else {
    printf("EXCEPTION: write out of memory (32-bit access to %.8lx)\n", memaddr);
    PRINTF("EXCEPTION: write out of memory (32-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, cur_vadd);
  }
  }
}
}
 
 
void setsim_mem16(unsigned long memaddr, unsigned short value)
void setsim_mem16(unsigned long memaddr, unsigned short value)
{
{
  unsigned long temp;
  unsigned long temp;
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    switch(cur_area->granularity) {
    switch(cur_area->granularity) {
    case 1:
    case 1:
      cur_area->writefunc(memaddr, (value >> 8) & 0xFF);
      cur_area->writefunc(memaddr, (value >> 8) & 0xFF);
      cur_area->writefunc(memaddr + 1, value & 0xFF);
      cur_area->writefunc(memaddr + 1, value & 0xFF);
      runtime.sim.mem_cycles += cur_area->delayw * 2;
      runtime.sim.mem_cycles += cur_area->delayw * 2;
      break;
      break;
    case 2:
    case 2:
      cur_area->writefunc(memaddr, value & 0xFFFF);
      cur_area->writefunc(memaddr, value & 0xFFFF);
      runtime.sim.mem_cycles += cur_area->delayw;
      runtime.sim.mem_cycles += cur_area->delayw;
      break;
      break;
    case 4:
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp &= 0xffff << ((memaddr & 2) ? 16 : 0);
      temp &= 0xffff << ((memaddr & 2) ? 16 : 0);
      temp |= (unsigned long)(value & 0xffff) << ((memaddr & 2) ? 0 : 16);
      temp |= (unsigned long)(value & 0xffff) << ((memaddr & 2) ? 0 : 16);
      setsim_mem32 (memaddr & ~3ul, temp);
      setsim_mem32 (memaddr & ~3ul, temp);
      break;
      break;
    }
    }
  } else {
  } else {
    printf("EXCEPTION: write out of memory (16-bit access to %.8lx)\n", memaddr);
    PRINTF("EXCEPTION: write out of memory (16-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, cur_vadd);
  }
  }
}
}
 
 
void setsim_mem8(unsigned long memaddr, unsigned char value)
void setsim_mem8(unsigned long memaddr, unsigned char value)
{
{
  unsigned long temp;
  unsigned long temp;
  if (verify_memoryarea(memaddr)) {
  if (verify_memoryarea(memaddr)) {
    switch (cur_area->granularity) {
    switch (cur_area->granularity) {
    case 1:
    case 1:
      cur_area->writefunc(memaddr, value);
      cur_area->writefunc(memaddr, value);
      runtime.sim.mem_cycles += cur_area->delayw;
      runtime.sim.mem_cycles += cur_area->delayw;
      break;
      break;
    case 2:
    case 2:
      temp = evalsim_mem16 (memaddr & ~1ul);
      temp = evalsim_mem16 (memaddr & ~1ul);
      temp &= 0xff << ((memaddr & 1) ? 8 : 0);
      temp &= 0xff << ((memaddr & 1) ? 8 : 0);
      temp |= (unsigned short)(value & 0xff) << ((memaddr & 1) ? 0 : 8);
      temp |= (unsigned short)(value & 0xff) << ((memaddr & 1) ? 0 : 8);
      setsim_mem16 (memaddr & ~1ul, temp);
      setsim_mem16 (memaddr & ~1ul, temp);
      break;
      break;
    case 4:
    case 4:
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp = evalsim_mem32 (memaddr & ~3ul);
      temp &= ~(0xff << (8 * (3 - (memaddr & 3))));
      temp &= ~(0xff << (8 * (3 - (memaddr & 3))));
      temp |= (unsigned long)(value & 0xff) << (8 * (3 - (memaddr & 3)));
      temp |= (unsigned long)(value & 0xff) << (8 * (3 - (memaddr & 3)));
      setsim_mem32 (memaddr & ~3ul, temp);
      setsim_mem32 (memaddr & ~3ul, temp);
      break;
      break;
    }
    }
  } else {
  } else {
    printf("EXCEPTION: write out of memory (8-bit access to %.8lx)\n", memaddr);
    PRINTF("EXCEPTION: write out of memory (8-bit access to %.8lx)\n", memaddr);
    except_handle(EXCEPT_BUSERR, cur_vadd);
    except_handle(EXCEPT_BUSERR, cur_vadd);
  }
  }
}
}
 
 
/* Set mem, 32-bit. Big endian version. */
/* Set mem, 32-bit. Big endian version. */
 
 
void set_mem32(unsigned long memaddr, unsigned long value,int* breakpoint)
void set_mem32(unsigned long memaddr, unsigned long value,int* breakpoint)
{
{
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
    return;
  }
  }
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
  memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (pending.valid)
  if (pending.valid)
    return;
    return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  dc_simulate_write(memaddr, value, 4);
  dc_simulate_write(memaddr, value, 4);
 
 
  if (cur_area->log)
  if (cur_area->log)
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
}
}
 
 
/* Set mem, 16-bit. Big endian version. */
/* Set mem, 16-bit. Big endian version. */
 
 
void set_mem16(unsigned long memaddr, unsigned short value,int* breakpoint)
void set_mem16(unsigned long memaddr, unsigned short value,int* breakpoint)
{
{
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
    return;
  }
  }
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
  memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (pending.valid)
  if (pending.valid)
    return;
    return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  dc_simulate_write(memaddr, (unsigned long)value, 2);
  dc_simulate_write(memaddr, (unsigned long)value, 2);
 
 
  if (cur_area->log)
  if (cur_area->log)
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
}
}
 
 
/* Set mem, 8-bit. */
/* Set mem, 8-bit. */
 
 
void set_mem8(unsigned long memaddr, unsigned char value,int* breakpoint)
void set_mem8(unsigned long memaddr, unsigned char value,int* breakpoint)
{
{
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
 
 
  cur_vadd = memaddr;
  cur_vadd = memaddr;
  memaddr = dmmu_translate(memaddr, 1);;
  memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (pending.valid) return;
  if (pending.valid) return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  dc_simulate_write(memaddr, (unsigned long)value, 1);
  dc_simulate_write(memaddr, (unsigned long)value, 1);
 
 
  if (cur_area->log)
  if (cur_area->log)
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
    fprintf (cur_area->log, "[%08x] -> write %08x\n", memaddr, value);
}
}
 
 
void dumpmemory(unsigned int from, unsigned int to, int disasm, int nl)
void dumpmemory(unsigned int from, unsigned int to, int disasm, int nl)
{
{
  unsigned int i, j;
  unsigned int i, j;
  struct label_entry *tmp;
  struct label_entry *tmp;
  int breakpoint = 0;
  int breakpoint = 0;
  int ilen = disasm ? 4 : 16;
  int ilen = disasm ? 4 : 16;
 
 
  for(i = from; i < to; i += ilen) {
  for(i = from; i < to; i += ilen) {
    printf("%.8x: ", i);
    PRINTF("%.8x: ", i);
    for (j = 0; j < ilen;) {
    for (j = 0; j < ilen;) {
      int data = -1;
      int data = -1;
      if (!disasm) {
      if (!disasm) {
        tmp = NULL;
        tmp = NULL;
        if (verify_memoryarea(i+j)) {
        if (verify_memoryarea(i+j)) {
          struct label_entry *entry;
          struct label_entry *entry;
          entry = get_label(i + j);
          entry = get_label(i + j);
          if (entry)
          if (entry)
            printf("(%s)", entry->name);
            PRINTF("(%s)", entry->name);
          printf("%02x ", data = evalsim_mem8(i+j));
          PRINTF("%02x ", data = evalsim_mem8(i+j));
        } else printf("XX ");
        } else PRINTF("XX ");
        j++;
        j++;
      } else {
      } else {
        int breakpoint;
        int breakpoint;
        unsigned int _insn = read_mem(i, &breakpoint);
        unsigned int _insn = read_mem(i, &breakpoint);
        int index = insn_decode (_insn);
        int index = insn_decode (_insn);
        int len = insn_len (index);
        int len = insn_len (index);
 
 
        tmp = NULL;
        tmp = NULL;
        if (verify_memoryarea(i+j)) {
        if (verify_memoryarea(i+j)) {
          struct label_entry *entry;
          struct label_entry *entry;
          entry = get_label(i + j);
          entry = get_label(i + j);
          if (entry)
          if (entry)
            printf("(%s)", entry->name);
            PRINTF("(%s)", entry->name);
 
 
          printf(": %08x ", (unsigned long)_insn);
          PRINTF(": %08x ", (unsigned long)_insn);
          if (index >= 0) {
          if (index >= 0) {
            disassemble_insn (_insn);
            disassemble_insn (_insn);
            printf(" %s", disassembled);
            PRINTF(" %s", disassembled);
          } else
          } else
            printf("<invalid>");
            PRINTF("<invalid>");
        } else printf("XXXXXXXX");
        } else PRINTF("XXXXXXXX");
        j += len;
        j += len;
      }
      }
    }
    }
    if (nl)
    if (nl)
      printf ("\n");
      PRINTF ("\n");
  }
  }
}
}
 
 
unsigned long simmem_read_word(unsigned long addr) {
unsigned long simmem_read_word(unsigned long addr) {
  return simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2];
  return simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2];
}
}
 
 
void simmem_write_word(unsigned long addr, unsigned long value) {
void simmem_write_word(unsigned long addr, unsigned long value) {
  simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2] = value;
  simmem32[(cur_area->misc + (addr & cur_area->size_mask)) >> 2] = value;
}
}
 
 
unsigned long simmem_read_zero(unsigned long addr) {
unsigned long simmem_read_zero(unsigned long addr) {
  if (config.sim.verbose)
  if (config.sim.verbose)
    fprintf (stderr, "WARNING: memory read from non-read memory area 0x%08x.\n", addr);
    fprintf (stderr, "WARNING: memory read from non-read memory area 0x%08x.\n", addr);
  return 0;
  return 0;
}
}
 
 
void simmem_write_null(unsigned long addr, unsigned long value) {
void simmem_write_null(unsigned long addr, unsigned long value) {
  if (config.sim.verbose)
  if (config.sim.verbose)
    fprintf (stderr, "WARNING: memory write to 0x%08x, non-write memory area (value 0x%08x).\n", addr, value);
    fprintf (stderr, "WARNING: memory write to 0x%08x, non-write memory area (value 0x%08x).\n", addr, value);
}
}
 
 
/* Initialize memory table from a config struct */
/* Initialize memory table from a config struct */
 
 
void init_memory_table ()
void init_memory_table ()
{
{
  unsigned long memory_needed = 0;
  unsigned long memory_needed = 0;
 
 
  /* If nothing was defined, use default memory block */
  /* If nothing was defined, use default memory block */
  if (config.memory.nmemories) {
  if (config.memory.nmemories) {
    int i;
    int i;
    for (i = 0; i < config.memory.nmemories; i++) {
    for (i = 0; i < config.memory.nmemories; i++) {
      unsigned long start = config.memory.table[i].baseaddr;
      unsigned long start = config.memory.table[i].baseaddr;
      unsigned long length = config.memory.table[i].size;
      unsigned long length = config.memory.table[i].size;
      char *type = config.memory.table[i].name;
      char *type = config.memory.table[i].name;
      int rd = config.memory.table[i].delayr;
      int rd = config.memory.table[i].delayr;
      int wd = config.memory.table[i].delayw;
      int wd = config.memory.table[i].delayw;
      int ce = config.memory.table[i].ce;
      int ce = config.memory.table[i].ce;
      if (config.sim.verbose)
      if (config.sim.verbose)
        debug (1, "%08X %08X (%i KB): %s (activated by CE%i; read delay = %icyc, write delay = %icyc)\n",
        debug (1, "%08X %08X (%i KB): %s (activated by CE%i; read delay = %icyc, write delay = %icyc)\n",
          start, length, length >> 10, type, ce, rd, wd);
          start, length, length >> 10, type, ce, rd, wd);
      register_memoryarea(start, length, 4, 0, &simmem_read_word, &simmem_write_word);
      register_memoryarea(start, length, 4, 0, &simmem_read_word, &simmem_write_word);
      cur_area->misc = memory_needed;
      cur_area->misc = memory_needed;
      cur_area->chip_select = ce;
      cur_area->chip_select = ce;
      cur_area->valid = 1;
      cur_area->valid = 1;
      cur_area->delayw = wd;
      cur_area->delayw = wd;
      cur_area->delayr = rd;
      cur_area->delayr = rd;
      if (config.memory.table[i].log[0] != '\0') {
      if (config.memory.table[i].log[0] != '\0') {
        if ((cur_area->log = fopen (config.memory.table[i].log, "wt+")) == NULL)
        if ((cur_area->log = fopen (config.memory.table[i].log, "wt+")) == NULL)
          fprintf (stderr, "WARNING: Cannot open '%s'.\n", config.memory.table[i].log);
          fprintf (stderr, "WARNING: Cannot open '%s'.\n", config.memory.table[i].log);
      } else
      } else
        cur_area->log = NULL;
        cur_area->log = NULL;
      memory_needed += cur_area->size;
      memory_needed += cur_area->size;
    }
    }
    printf ("\n");
    PRINTF ("\n");
  } else {
  } else {
    if (config.sim.verbose)
    if (config.sim.verbose)
      fprintf (stderr, "WARNING: Memory not defined, assuming standard configuration.\n");
      fprintf (stderr, "WARNING: Memory not defined, assuming standard configuration.\n");
    register_memoryarea(DEFAULT_MEMORY_START, DEFAULT_MEMORY_LEN, 4, 0, &simmem_read_word, &simmem_write_word);
    register_memoryarea(DEFAULT_MEMORY_START, DEFAULT_MEMORY_LEN, 4, 0, &simmem_read_word, &simmem_write_word);
    cur_area->misc = memory_needed;
    cur_area->misc = memory_needed;
    cur_area->chip_select = 0;
    cur_area->chip_select = 0;
    cur_area->valid = 1;
    cur_area->valid = 1;
    cur_area->delayw = 1;
    cur_area->delayw = 1;
    cur_area->delayr = 1;
    cur_area->delayr = 1;
    cur_area->log = NULL;
    cur_area->log = NULL;
    memory_needed += cur_area->size;
    memory_needed += cur_area->size;
  }
  }
 
 
  simmem32 = (unsigned long *) malloc (sizeof (unsigned long) * ((memory_needed + 3) / 4));
  simmem32 = (unsigned long *) malloc (sizeof (unsigned long) * ((memory_needed + 3) / 4));
  if (!simmem32) {
  if (!simmem32) {
    fprintf (stderr, "Failed to allocate sim memory. Aborting\n");
    fprintf (stderr, "Failed to allocate sim memory. Aborting\n");
    exit (-1);
    exit (-1);
  }
  }
}
}
 
 
/* Changes read/write memory in read/write only */
/* Changes read/write memory in read/write only */
 
 
void lock_memory_table ()
void lock_memory_table ()
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    if (ptmp->delayr < 0 && ptmp->readfunc == &simmem_read_word)
    if (ptmp->delayr < 0 && ptmp->readfunc == &simmem_read_word)
      ptmp->readfunc = &simmem_read_zero;
      ptmp->readfunc = &simmem_read_zero;
    if (ptmp->delayw < 0 && ptmp->writefunc == &simmem_write_word)
    if (ptmp->delayw < 0 && ptmp->writefunc == &simmem_write_word)
      ptmp->writefunc = &simmem_write_null;
      ptmp->writefunc = &simmem_write_null;
 
 
    /* If this mem area is not for memory chip under MC control
    /* If this mem area is not for memory chip under MC control
       then this area is valid all the time */
       then this area is valid all the time */
    if (ptmp->readfunc != &simmem_read_word) {
    if (ptmp->readfunc != &simmem_read_word) {
      ptmp->valid = 1;
      ptmp->valid = 1;
      ptmp->chip_select = -1;
      ptmp->chip_select = -1;
    }
    }
  }
  }
}
}
 
 
/* Closes files, etc. */
/* Closes files, etc. */
 
 
void done_memory_table ()
void done_memory_table ()
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    if (ptmp->log)
    if (ptmp->log)
      fclose (ptmp->log);
      fclose (ptmp->log);
  }
  }
}
}
 
 
/* Displays current memory configuration */
/* Displays current memory configuration */
 
 
void memory_table_status ()
void memory_table_status ()
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    printf ("addr & %08x == %08x to %08x, size %08x, gran %iB\n",
    PRINTF ("addr & %08x == %08x to %08x, size %08x, gran %iB\n",
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->size, ptmp->granularity);
      ptmp->size, ptmp->granularity);
    printf ("\t");
    PRINTF ("\t");
    if (ptmp->delayr >= 0)
    if (ptmp->delayr >= 0)
      printf ("read delay = %i cycles, ", ptmp->delayr);
      PRINTF ("read delay = %i cycles, ", ptmp->delayr);
    else
    else
      printf ("reads not possible, ");
      PRINTF ("reads not possible, ");
 
 
    if (ptmp->delayw >= 0)
    if (ptmp->delayw >= 0)
      printf ("write delay = %i cycles", ptmp->delayw);
      PRINTF ("write delay = %i cycles", ptmp->delayw);
    else
    else
      printf ("writes not possible");
      PRINTF ("writes not possible");
 
 
    if (ptmp->log)
    if (ptmp->log)
      printf (", (logged)\n");
      PRINTF (", (logged)\n");
    else
    else
      printf ("\n");
      PRINTF ("\n");
  }
  }
}
}
 
 
/* Outputs time in pretty form to dest string */
/* Outputs time in pretty form to dest string */
 
 
char *generate_time_pretty (char *dest, long time_ps)
char *generate_time_pretty (char *dest, long time_ps)
{
{
  int exp3 = 0;
  int exp3 = 0;
  if (time_ps) {
  if (time_ps) {
    while ((time_ps % 1000) == 0) {
    while ((time_ps % 1000) == 0) {
      time_ps /= 1000;
      time_ps /= 1000;
      exp3++;
      exp3++;
    }
    }
  }
  }
  sprintf (dest, "%i%cs", time_ps, "pnum"[exp3]);
  sprintf (dest, "%i%cs", time_ps, "pnum"[exp3]);
  return dest;
  return dest;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.