OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [stable_0_2_0_rc1/] [or1ksim/] [peripheral/] [dma.c] - Diff between revs 1487 and 1491

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 1487 Rev 1491
/* dma.c -- Simulation of DMA
/* dma.c -- Simulation of DMA
   Copyright (C) 2001 by Erez Volk, erez@opencores.org
   Copyright (C) 2001 by Erez Volk, erez@opencores.org
 
 
   This file is part of OpenRISC 1000 Architectural Simulator.
   This file is part of OpenRISC 1000 Architectural Simulator.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
*/
 
 
/*
/*
 * This simulation of the DMA core is not meant to be full.
 * This simulation of the DMA core is not meant to be full.
 * It is written only to allow simulating the Ethernet core.
 * It is written only to allow simulating the Ethernet core.
 * Of course, if anyone feels like perfecting it, feel free...
 * Of course, if anyone feels like perfecting it, feel free...
 */
 */
 
 
#include <string.h>
#include <string.h>
 
 
#include "config.h"
#include "config.h"
 
 
#ifdef HAVE_INTTYPES_H
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#include <inttypes.h>
#endif
#endif
 
 
#include "port.h"
#include "port.h"
#include "arch.h"
#include "arch.h"
#include "dma.h"
#include "dma.h"
#include "sim-config.h"
#include "sim-config.h"
#include "pic.h"
#include "pic.h"
#include "abstract.h"
#include "abstract.h"
#include "fields.h"
#include "fields.h"
#include "sched.h"
#include "sched.h"
#include "debug.h"
#include "debug.h"
 
 
 
DEFAULT_DEBUG_CHANNEL(dma);
 
 
/* We keep a copy of all our controllers because we have to export an interface
/* We keep a copy of all our controllers because we have to export an interface
 * to other peripherals eg. ethernet */
 * to other peripherals eg. ethernet */
static struct dma_controller *dmas = NULL;
static struct dma_controller *dmas = NULL;
 
 
static uint32_t dma_read32( oraddr_t addr, void *dat );
static uint32_t dma_read32( oraddr_t addr, void *dat );
static void dma_write32( oraddr_t addr, uint32_t value, void *dat );
static void dma_write32( oraddr_t addr, uint32_t value, void *dat );
 
 
static unsigned long dma_read_ch_csr( struct dma_channel *channel );
static unsigned long dma_read_ch_csr( struct dma_channel *channel );
static void dma_write_ch_csr( struct dma_channel *channel, unsigned long value );
static void dma_write_ch_csr( struct dma_channel *channel, unsigned long value );
void dma_controller_clock( struct dma_controller *dma );
void dma_controller_clock( struct dma_controller *dma );
static void dma_load_descriptor( struct dma_channel *channel );
static void dma_load_descriptor( struct dma_channel *channel );
static void dma_init_transfer( struct dma_channel *channel );
static void dma_init_transfer( struct dma_channel *channel );
static void dma_channel_terminate_transfer( struct dma_channel *channel, int generate_interrupt );
static void dma_channel_terminate_transfer( struct dma_channel *channel, int generate_interrupt );
 
 
void dma_channel_clock( void *dat );
void dma_channel_clock( void *dat );
 
 
static void masked_increase( oraddr_t *value, unsigned long mask );
static void masked_increase( oraddr_t *value, unsigned long mask );
 
 
#define CHANNEL_ND_I(ch) (TEST_FLAG(ch->regs.csr,DMA_CH_CSR,MODE) && TEST_FLAG(ch->regs.csr,DMA_CH_CSR,USE_ED) && ch->dma_nd_i)
#define CHANNEL_ND_I(ch) (TEST_FLAG(ch->regs.csr,DMA_CH_CSR,MODE) && TEST_FLAG(ch->regs.csr,DMA_CH_CSR,USE_ED) && ch->dma_nd_i)
 
 
 
 
/* Reset. Initializes all registers to default and places devices in memory address space. */
/* Reset. Initializes all registers to default and places devices in memory address space. */
void dma_reset(void *dat)
void dma_reset(void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  unsigned channel_number;
  unsigned channel_number;
 
 
  memset( dma->ch, 0, sizeof(dma->ch) );
  memset( dma->ch, 0, sizeof(dma->ch) );
 
 
  dma->regs.csr = 0;
  dma->regs.csr = 0;
  dma->regs.int_msk_a = 0;
  dma->regs.int_msk_a = 0;
  dma->regs.int_msk_b = 0;
  dma->regs.int_msk_b = 0;
  dma->regs.int_src_a = 0;
  dma->regs.int_src_a = 0;
  dma->regs.int_src_b = 0;
  dma->regs.int_src_b = 0;
 
 
  for ( channel_number = 0; channel_number < DMA_NUM_CHANNELS; ++ channel_number ) {
  for ( channel_number = 0; channel_number < DMA_NUM_CHANNELS; ++ channel_number ) {
    dma->ch[channel_number].controller = dma;
    dma->ch[channel_number].controller = dma;
    dma->ch[channel_number].channel_number = channel_number;
    dma->ch[channel_number].channel_number = channel_number;
    dma->ch[channel_number].channel_mask = 1LU << channel_number;
    dma->ch[channel_number].channel_mask = 1LU << channel_number;
    dma->ch[channel_number].regs.am0 = dma->ch[channel_number].regs.am1 = 0xFFFFFFFC;
    dma->ch[channel_number].regs.am0 = dma->ch[channel_number].regs.am1 = 0xFFFFFFFC;
  }
  }
}
}
 
 
/* Print register values on stdout */
/* Print register values on stdout */
void dma_status( void *dat )
void dma_status( void *dat )
{
{
  unsigned j;
  unsigned j;
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
 
 
  if ( dma->baseaddr == 0 )
  if ( dma->baseaddr == 0 )
    return;
    return;
 
 
  PRINTF( "\nDMA controller at 0x%"PRIxADDR":\n", dma->baseaddr );
  PRINTF( "\nDMA controller at 0x%"PRIxADDR":\n", dma->baseaddr );
  PRINTF( "CSR       : 0x%08lX\n", dma->regs.csr );
  PRINTF( "CSR       : 0x%08lX\n", dma->regs.csr );
  PRINTF( "INT_MSK_A : 0x%08lX\n", dma->regs.int_msk_a );
  PRINTF( "INT_MSK_A : 0x%08lX\n", dma->regs.int_msk_a );
  PRINTF( "INT_MSK_B : 0x%08lX\n", dma->regs.int_msk_b );
  PRINTF( "INT_MSK_B : 0x%08lX\n", dma->regs.int_msk_b );
  PRINTF( "INT_SRC_A : 0x%08lX\n", dma->regs.int_src_a );
  PRINTF( "INT_SRC_A : 0x%08lX\n", dma->regs.int_src_a );
  PRINTF( "INT_SRC_B : 0x%08lX\n", dma->regs.int_src_b );
  PRINTF( "INT_SRC_B : 0x%08lX\n", dma->regs.int_src_b );
 
 
  for ( j = 0; j < DMA_NUM_CHANNELS; ++ j ) {
  for ( j = 0; j < DMA_NUM_CHANNELS; ++ j ) {
    struct dma_channel *channel = &(dma->ch[j]);
    struct dma_channel *channel = &(dma->ch[j]);
    if ( !channel->referenced )
    if ( !channel->referenced )
      continue;
      continue;
    PRINTF( "CH%u_CSR   : 0x%08lX\n", j, channel->regs.csr );
    PRINTF( "CH%u_CSR   : 0x%08lX\n", j, channel->regs.csr );
    PRINTF( "CH%u_SZ    : 0x%08lX\n", j, channel->regs.sz );
    PRINTF( "CH%u_SZ    : 0x%08lX\n", j, channel->regs.sz );
    PRINTF( "CH%u_A0    : 0x%08lX\n", j, channel->regs.a0 );
    PRINTF( "CH%u_A0    : 0x%08lX\n", j, channel->regs.a0 );
    PRINTF( "CH%u_AM0   : 0x%08lX\n", j, channel->regs.am0 );
    PRINTF( "CH%u_AM0   : 0x%08lX\n", j, channel->regs.am0 );
    PRINTF( "CH%u_A1    : 0x%08lX\n", j, channel->regs.a1 );
    PRINTF( "CH%u_A1    : 0x%08lX\n", j, channel->regs.a1 );
    PRINTF( "CH%u_AM1   : 0x%08lX\n", j, channel->regs.am1 );
    PRINTF( "CH%u_AM1   : 0x%08lX\n", j, channel->regs.am1 );
    PRINTF( "CH%u_DESC  : 0x%08lX\n", j, channel->regs.desc );
    PRINTF( "CH%u_DESC  : 0x%08lX\n", j, channel->regs.desc );
    PRINTF( "CH%u_SWPTR : 0x%08lX\n", j, channel->regs.swptr );
    PRINTF( "CH%u_SWPTR : 0x%08lX\n", j, channel->regs.swptr );
  }
  }
}
}
 
 
 
 
/* Read a register */
/* Read a register */
uint32_t dma_read32( oraddr_t addr, void *dat )
uint32_t dma_read32( oraddr_t addr, void *dat )
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
 
 
  if ( addr < DMA_CH_BASE ) {
  if ( addr < DMA_CH_BASE ) {
    /* case of global (not per-channel) registers */
    /* case of global (not per-channel) registers */
    switch( addr ) {
    switch( addr ) {
    case DMA_CSR: return dma->regs.csr;
    case DMA_CSR: return dma->regs.csr;
    case DMA_INT_MSK_A: return dma->regs.int_msk_a;
    case DMA_INT_MSK_A: return dma->regs.int_msk_a;
    case DMA_INT_MSK_B: return dma->regs.int_msk_b;
    case DMA_INT_MSK_B: return dma->regs.int_msk_b;
    case DMA_INT_SRC_A: return dma->regs.int_src_a;
    case DMA_INT_SRC_A: return dma->regs.int_src_a;
    case DMA_INT_SRC_B: return dma->regs.int_src_b;
    case DMA_INT_SRC_B: return dma->regs.int_src_b;
    default:
    default:
      fprintf( stderr, "dma_read32( 0x%"PRIxADDR" ): Illegal register\n",
      fprintf( stderr, "dma_read32( 0x%"PRIxADDR" ): Illegal register\n",
               addr + dma->baseaddr );
               addr + dma->baseaddr );
      return 0;
      return 0;
    }
    }
  } else {
  } else {
    /* case of per-channel registers */
    /* case of per-channel registers */
    unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
    unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
    addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
    addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
    switch( addr ) {
    switch( addr ) {
    case DMA_CH_CSR: return dma_read_ch_csr( &(dma->ch[chno]) );
    case DMA_CH_CSR: return dma_read_ch_csr( &(dma->ch[chno]) );
    case DMA_CH_SZ: return dma->ch[chno].regs.sz;
    case DMA_CH_SZ: return dma->ch[chno].regs.sz;
    case DMA_CH_A0: return dma->ch[chno].regs.a0;
    case DMA_CH_A0: return dma->ch[chno].regs.a0;
    case DMA_CH_AM0: return dma->ch[chno].regs.am0;
    case DMA_CH_AM0: return dma->ch[chno].regs.am0;
    case DMA_CH_A1: return dma->ch[chno].regs.a1;
    case DMA_CH_A1: return dma->ch[chno].regs.a1;
    case DMA_CH_AM1: return dma->ch[chno].regs.am1;
    case DMA_CH_AM1: return dma->ch[chno].regs.am1;
    case DMA_CH_DESC: return dma->ch[chno].regs.desc;
    case DMA_CH_DESC: return dma->ch[chno].regs.desc;
    case DMA_CH_SWPTR: return dma->ch[chno].regs.swptr;
    case DMA_CH_SWPTR: return dma->ch[chno].regs.swptr;
    }
    }
  }
  }
  return 0;
  return 0;
}
}
 
 
 
 
/* Handle read from a channel CSR */
/* Handle read from a channel CSR */
unsigned long dma_read_ch_csr( struct dma_channel *channel )
unsigned long dma_read_ch_csr( struct dma_channel *channel )
{
{
  unsigned long result = channel->regs.csr;
  unsigned long result = channel->regs.csr;
 
 
  /* before returning, clear all relevant bits */
  /* before returning, clear all relevant bits */
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, INT_CHUNK_DONE );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, INT_CHUNK_DONE );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, INT_DONE );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, INT_DONE );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, INT_ERR );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, INT_ERR );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
 
 
  return result;
  return result;
}
}
 
 
 
 
 
 
/* Write a register */
/* Write a register */
void dma_write32( oraddr_t addr, uint32_t value, void *dat )
void dma_write32( oraddr_t addr, uint32_t value, void *dat )
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
 
 
  /* case of global (not per-channel) registers */
  /* case of global (not per-channel) registers */
  if ( addr < DMA_CH_BASE ) {
  if ( addr < DMA_CH_BASE ) {
    switch( addr ) {
    switch( addr ) {
    case DMA_CSR:
    case DMA_CSR:
      if ( TEST_FLAG( value, DMA_CSR, PAUSE ) )
      if ( TEST_FLAG( value, DMA_CSR, PAUSE ) )
        fprintf( stderr, "dma: PAUSE not implemented\n" );
        fprintf( stderr, "dma: PAUSE not implemented\n" );
      break;
      break;
 
 
    case DMA_INT_MSK_A: dma->regs.int_msk_a = value; break;
    case DMA_INT_MSK_A: dma->regs.int_msk_a = value; break;
    case DMA_INT_MSK_B: dma->regs.int_msk_b = value; break;
    case DMA_INT_MSK_B: dma->regs.int_msk_b = value; break;
    case DMA_INT_SRC_A: dma->regs.int_src_a = value; break;
    case DMA_INT_SRC_A: dma->regs.int_src_a = value; break;
    case DMA_INT_SRC_B: dma->regs.int_src_b = value; break;
    case DMA_INT_SRC_B: dma->regs.int_src_b = value; break;
    default:
    default:
      fprintf( stderr, "dma_write32( 0x%"PRIxADDR" ): Illegal register\n",
      fprintf( stderr, "dma_write32( 0x%"PRIxADDR" ): Illegal register\n",
               addr + dma->baseaddr );
               addr + dma->baseaddr );
      return;
      return;
    }
    }
  } else {
  } else {
    /* case of per-channel registers */
    /* case of per-channel registers */
    unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
    unsigned chno = (addr - DMA_CH_BASE) / DMA_CH_SIZE;
    struct dma_channel *channel = &(dma->ch[chno]);
    struct dma_channel *channel = &(dma->ch[chno]);
    channel->referenced = 1;
    channel->referenced = 1;
    addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
    addr = (addr - DMA_CH_BASE) % DMA_CH_SIZE;
    switch( addr ) {
    switch( addr ) {
    case DMA_CSR: dma_write_ch_csr( &(dma->ch[chno]), value ); break;
    case DMA_CSR: dma_write_ch_csr( &(dma->ch[chno]), value ); break;
    case DMA_CH_SZ: channel->regs.sz = value; break;
    case DMA_CH_SZ: channel->regs.sz = value; break;
    case DMA_CH_A0: channel->regs.a0 = value; break;
    case DMA_CH_A0: channel->regs.a0 = value; break;
    case DMA_CH_AM0: channel->regs.am0 = value; break;
    case DMA_CH_AM0: channel->regs.am0 = value; break;
    case DMA_CH_A1: channel->regs.a1 = value; break;
    case DMA_CH_A1: channel->regs.a1 = value; break;
    case DMA_CH_AM1: channel->regs.am1 = value; break;
    case DMA_CH_AM1: channel->regs.am1 = value; break;
    case DMA_CH_DESC: channel->regs.desc = value; break;
    case DMA_CH_DESC: channel->regs.desc = value; break;
    case DMA_CH_SWPTR: channel->regs.swptr = value; break;
    case DMA_CH_SWPTR: channel->regs.swptr = value; break;
    }
    }
  }
  }
}
}
 
 
 
 
/* Write a channel CSR
/* Write a channel CSR
 * This ensures only the writable bits are modified.
 * This ensures only the writable bits are modified.
 */
 */
void dma_write_ch_csr( struct dma_channel *channel, unsigned long value )
void dma_write_ch_csr( struct dma_channel *channel, unsigned long value )
{
{
  /* Check if we should *start* a transfer */
  /* Check if we should *start* a transfer */
  if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN ) &&
  if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN ) &&
       TEST_FLAG( value, DMA_CH_CSR, CH_EN ))
       TEST_FLAG( value, DMA_CH_CSR, CH_EN ))
    SCHED_ADD( dma_channel_clock, channel, 1 );
    SCHED_ADD( dma_channel_clock, channel, 1 );
  else if ( !TEST_FLAG( value, DMA_CH_CSR, CH_EN ) )
  else if ( !TEST_FLAG( value, DMA_CH_CSR, CH_EN ) )
    /* The CH_EN flag is clear, check if we have a transfer in progress and
    /* The CH_EN flag is clear, check if we have a transfer in progress and
     * clear it */
     * clear it */
    SCHED_FIND_REMOVE( dma_channel_clock, channel );
    SCHED_FIND_REMOVE( dma_channel_clock, channel );
 
 
  /* Copy the writable bits to the channel CSR */
  /* Copy the writable bits to the channel CSR */
  channel->regs.csr &= ~DMA_CH_CSR_WRITE_MASK;
  channel->regs.csr &= ~DMA_CH_CSR_WRITE_MASK;
  channel->regs.csr |= value & DMA_CH_CSR_WRITE_MASK;
  channel->regs.csr |= value & DMA_CH_CSR_WRITE_MASK;
}
}
 
 
 
 
 
 
/* Clock tick for one channel on one DMA controller.
/* Clock tick for one channel on one DMA controller.
 * This does the actual "DMA" operation.
 * This does the actual "DMA" operation.
 * One chunk is transferred per clock.
 * One chunk is transferred per clock.
 */
 */
void dma_channel_clock( void *dat )
void dma_channel_clock( void *dat )
{
{
  struct dma_channel *channel = dat;
  struct dma_channel *channel = dat;
 
 
  /* Do we need to abort? */
  /* Do we need to abort? */
  if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, STOP ) ) {
  if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, STOP ) ) {
    debug( 3,  "DMA: STOP requested\n" );
    TRACE( "DMA: STOP requested\n" );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
    SET_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
    SET_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
 
 
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_ERR ) &&
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_ERR ) &&
         (channel->controller->regs.int_msk_a & channel->channel_mask) ) {
         (channel->controller->regs.int_msk_a & channel->channel_mask) ) {
      SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_ERR );
      SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_ERR );
      channel->controller->regs.int_src_a = channel->channel_mask;
      channel->controller->regs.int_src_a = channel->channel_mask;
      report_interrupt( channel->controller->irq );
      report_interrupt( channel->controller->irq );
    }
    }
 
 
    return;
    return;
  }
  }
 
 
  /* In HW Handshake mode, only work when dma_req_i asserted */
  /* In HW Handshake mode, only work when dma_req_i asserted */
  if ( TEST_FLAG(channel->regs.csr, DMA_CH_CSR, MODE) && !channel->dma_req_i ) {
  if ( TEST_FLAG(channel->regs.csr, DMA_CH_CSR, MODE) && !channel->dma_req_i ) {
    /* Reschedule */
    /* Reschedule */
    SCHED_ADD( dma_channel_clock, dat, 1 );
    SCHED_ADD( dma_channel_clock, dat, 1 );
    return;
    return;
  }
  }
 
 
  /* If this is the first cycle of the transfer, initialize our state */
  /* If this is the first cycle of the transfer, initialize our state */
  if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY ) ) {
  if ( !TEST_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY ) ) {
    debug( 4,  "DMA: Starting new transfer\n" );
    TRACE( "DMA: Starting new transfer\n" );
 
 
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
    CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
    SET_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
    SET_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
 
 
    /* If using linked lists, copy the appropriate fields to our registers */
    /* If using linked lists, copy the appropriate fields to our registers */
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, USE_ED ) )
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, USE_ED ) )
      dma_load_descriptor( channel );
      dma_load_descriptor( channel );
    else
    else
      channel->load_next_descriptor_when_done = 0;
      channel->load_next_descriptor_when_done = 0;
 
 
    /* Set our internal status */
    /* Set our internal status */
    dma_init_transfer( channel );
    dma_init_transfer( channel );
 
 
    /* Might need to skip descriptor */
    /* Might need to skip descriptor */
    if ( CHANNEL_ND_I( channel ) ) {
    if ( CHANNEL_ND_I( channel ) ) {
      debug( 3,  "DMA: dma_nd_i asserted before dma_req_i, skipping descriptor\n" );
      TRACE( "DMA: dma_nd_i asserted before dma_req_i, skipping descriptor\n" );
      dma_channel_terminate_transfer( channel, 0 );
      dma_channel_terminate_transfer( channel, 0 );
      return;
      return;
    }
    }
  }
  }
 
 
  /* Transfer one word */
  /* Transfer one word */
  set_direct32( channel->destination, eval_direct32( channel->source, 0, 0 ),
  set_direct32( channel->destination, eval_direct32( channel->source, 0, 0 ),
                0, 0 );
                0, 0 );
 
 
  /* Advance the source and destionation pointers */
  /* Advance the source and destionation pointers */
  masked_increase( &(channel->source), channel->source_mask );
  masked_increase( &(channel->source), channel->source_mask );
  masked_increase( &(channel->destination), channel->destination_mask );
  masked_increase( &(channel->destination), channel->destination_mask );
  ++ channel->words_transferred;
  ++ channel->words_transferred;
 
 
  /* Have we finished a whole chunk? */
  /* Have we finished a whole chunk? */
  channel->dma_ack_o = (channel->words_transferred % channel->chunk_size == 0);
  channel->dma_ack_o = (channel->words_transferred % channel->chunk_size == 0);
 
 
  /* When done with a chunk, check for dma_nd_i */
  /* When done with a chunk, check for dma_nd_i */
  if ( CHANNEL_ND_I( channel ) ) {
  if ( CHANNEL_ND_I( channel ) ) {
    debug( 3,  "DMA: dma_nd_i asserted\n" );
    TRACE( "DMA: dma_nd_i asserted\n" );
    dma_channel_terminate_transfer( channel, 0 );
    dma_channel_terminate_transfer( channel, 0 );
    return;
    return;
  }
  }
 
 
  /* Are we done? */
  /* Are we done? */
  if ( channel->words_transferred >= channel->total_size ) {
  if ( channel->words_transferred >= channel->total_size ) {
    dma_channel_terminate_transfer( channel, 1 );
    dma_channel_terminate_transfer( channel, 1 );
    return;
    return;
  }
  }
 
 
  /* Reschedule to transfer the next chunk */
  /* Reschedule to transfer the next chunk */
  SCHED_ADD( dma_channel_clock, dat, 1 );
  SCHED_ADD( dma_channel_clock, dat, 1 );
}
}
 
 
 
 
/* Copy relevant valued from linked list descriptor to channel registers */
/* Copy relevant valued from linked list descriptor to channel registers */
void dma_load_descriptor( struct dma_channel *channel )
void dma_load_descriptor( struct dma_channel *channel )
{
{
  unsigned long desc_csr = eval_direct32( channel->regs.desc + DMA_DESC_CSR, 0, 0 );
  unsigned long desc_csr = eval_direct32( channel->regs.desc + DMA_DESC_CSR, 0, 0 );
 
 
  channel->load_next_descriptor_when_done = !TEST_FLAG( desc_csr, DMA_DESC_CSR, EOL );
  channel->load_next_descriptor_when_done = !TEST_FLAG( desc_csr, DMA_DESC_CSR, EOL );
 
 
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, INC_SRC, TEST_FLAG( desc_csr, DMA_DESC_CSR, INC_SRC ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, INC_SRC, TEST_FLAG( desc_csr, DMA_DESC_CSR, INC_SRC ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, INC_DST, TEST_FLAG( desc_csr, DMA_DESC_CSR, INC_DST ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, INC_DST, TEST_FLAG( desc_csr, DMA_DESC_CSR, INC_DST ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, SRC_SEL, TEST_FLAG( desc_csr, DMA_DESC_CSR, SRC_SEL ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, SRC_SEL, TEST_FLAG( desc_csr, DMA_DESC_CSR, SRC_SEL ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, DST_SEL, TEST_FLAG( desc_csr, DMA_DESC_CSR, DST_SEL ) );
  ASSIGN_FLAG( channel->regs.csr, DMA_CH_CSR, DST_SEL, TEST_FLAG( desc_csr, DMA_DESC_CSR, DST_SEL ) );
 
 
  SET_FIELD( channel->regs.sz, DMA_CH_SZ, TOT_SZ,        GET_FIELD( desc_csr, DMA_DESC_CSR, TOT_SZ ) );
  SET_FIELD( channel->regs.sz, DMA_CH_SZ, TOT_SZ,        GET_FIELD( desc_csr, DMA_DESC_CSR, TOT_SZ ) );
 
 
  channel->regs.a0 = eval_direct32( channel->regs.desc + DMA_DESC_ADR0, 0, 0 );
  channel->regs.a0 = eval_direct32( channel->regs.desc + DMA_DESC_ADR0, 0, 0 );
  channel->regs.a1 = eval_direct32( channel->regs.desc + DMA_DESC_ADR1, 0, 0 );
  channel->regs.a1 = eval_direct32( channel->regs.desc + DMA_DESC_ADR1, 0, 0 );
 
 
  channel->current_descriptor = channel->regs.desc;
  channel->current_descriptor = channel->regs.desc;
  channel->regs.desc = eval_direct32( channel->regs.desc + DMA_DESC_NEXT, 0, 0 );
  channel->regs.desc = eval_direct32( channel->regs.desc + DMA_DESC_NEXT, 0, 0 );
}
}
 
 
 
 
/* Initialize internal parameters used to implement transfers */
/* Initialize internal parameters used to implement transfers */
void dma_init_transfer( struct dma_channel *channel )
void dma_init_transfer( struct dma_channel *channel )
{
{
  channel->source = channel->regs.a0;
  channel->source = channel->regs.a0;
  channel->destination = channel->regs.a1;
  channel->destination = channel->regs.a1;
  channel->source_mask = TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INC_SRC ) ? channel->regs.am0 : 0;
  channel->source_mask = TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INC_SRC ) ? channel->regs.am0 : 0;
  channel->destination_mask = TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INC_DST ) ? channel->regs.am1 : 0;
  channel->destination_mask = TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INC_DST ) ? channel->regs.am1 : 0;
  channel->total_size = GET_FIELD( channel->regs.sz, DMA_CH_SZ, TOT_SZ );
  channel->total_size = GET_FIELD( channel->regs.sz, DMA_CH_SZ, TOT_SZ );
  channel->chunk_size = GET_FIELD( channel->regs.sz, DMA_CH_SZ, CHK_SZ );
  channel->chunk_size = GET_FIELD( channel->regs.sz, DMA_CH_SZ, CHK_SZ );
  if ( !channel->chunk_size || (channel->chunk_size > channel->total_size) )
  if ( !channel->chunk_size || (channel->chunk_size > channel->total_size) )
    channel->chunk_size = channel->total_size;
    channel->chunk_size = channel->total_size;
  channel->words_transferred = 0;
  channel->words_transferred = 0;
}
}
 
 
 
 
/* Take care of transfer termination */
/* Take care of transfer termination */
void dma_channel_terminate_transfer( struct dma_channel *channel, int generate_interrupt )
void dma_channel_terminate_transfer( struct dma_channel *channel, int generate_interrupt )
{
{
  debug( 4,  "DMA: Terminating transfer\n" );
  TRACE( "DMA: Terminating transfer\n" );
 
 
  /* Might be working in a linked list */
  /* Might be working in a linked list */
  if ( channel->load_next_descriptor_when_done ) {
  if ( channel->load_next_descriptor_when_done ) {
    dma_load_descriptor( channel );
    dma_load_descriptor( channel );
    dma_init_transfer( channel );
    dma_init_transfer( channel );
    /* Reschedule */
    /* Reschedule */
    SCHED_ADD( dma_channel_clock, channel, 1 );
    SCHED_ADD( dma_channel_clock, channel, 1 );
    return;
    return;
  }
  }
 
 
  /* Might be in auto-restart mode */
  /* Might be in auto-restart mode */
  if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, ARS ) ) {
  if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, ARS ) ) {
    dma_init_transfer( channel );
    dma_init_transfer( channel );
    return;
    return;
  }
  }
 
 
  /* If needed, write amount of data transferred back to memory */
  /* If needed, write amount of data transferred back to memory */
  if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, SZ_WB ) &&
  if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, SZ_WB ) &&
       TEST_FLAG( channel->regs.csr, DMA_CH_CSR, USE_ED ) ) {
       TEST_FLAG( channel->regs.csr, DMA_CH_CSR, USE_ED ) ) {
   /* TODO: What should we write back? Doc says "total number of remaining bytes" !? */
   /* TODO: What should we write back? Doc says "total number of remaining bytes" !? */
    unsigned long remaining_words = channel->total_size - channel->words_transferred;
    unsigned long remaining_words = channel->total_size - channel->words_transferred;
    SET_FIELD( channel->regs.sz, DMA_DESC_CSR, TOT_SZ, remaining_words );
    SET_FIELD( channel->regs.sz, DMA_DESC_CSR, TOT_SZ, remaining_words );
  }
  }
 
 
  /* Mark end of transfer */
  /* Mark end of transfer */
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, CH_EN );
  SET_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
  SET_FLAG( channel->regs.csr, DMA_CH_CSR, DONE );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, ERR );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
  CLEAR_FLAG( channel->regs.csr, DMA_CH_CSR, BUSY );
 
 
  /* If needed, generate interrupt */
  /* If needed, generate interrupt */
  if ( generate_interrupt ) {
  if ( generate_interrupt ) {
    /* TODO: Which channel should we interrupt? */
    /* TODO: Which channel should we interrupt? */
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_DONE ) &&
    if ( TEST_FLAG( channel->regs.csr, DMA_CH_CSR, INE_DONE ) &&
         (channel->controller->regs.int_msk_a & channel->channel_mask) ) {
         (channel->controller->regs.int_msk_a & channel->channel_mask) ) {
      SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_DONE );
      SET_FLAG( channel->regs.csr, DMA_CH_CSR, INT_DONE );
      channel->controller->regs.int_src_a = channel->channel_mask;
      channel->controller->regs.int_src_a = channel->channel_mask;
      report_interrupt( channel->controller->irq );
      report_interrupt( channel->controller->irq );
    }
    }
  }
  }
}
}
 
 
/* Utility function: Add 4 to a value with a mask */
/* Utility function: Add 4 to a value with a mask */
static void masked_increase( oraddr_t *value, unsigned long mask )
static void masked_increase( oraddr_t *value, unsigned long mask )
{
{
  *value = (*value & ~mask) | ((*value + 4) & mask);
  *value = (*value & ~mask) | ((*value + 4) & mask);
}
}
 
 
/*-------------------------------------------[ DMA<->Peripheral interface ]---*/
/*-------------------------------------------[ DMA<->Peripheral interface ]---*/
/*
/*
 * Simulation of control signals
 * Simulation of control signals
 * To be used by simulations for other devices, e.g. ethernet
 * To be used by simulations for other devices, e.g. ethernet
 */
 */
 
 
void set_dma_req_i( struct dma_channel *channel )
void set_dma_req_i( struct dma_channel *channel )
{
{
  channel->dma_req_i = 1;
  channel->dma_req_i = 1;
}
}
 
 
void clear_dma_req_i( struct dma_channel *channel )
void clear_dma_req_i( struct dma_channel *channel )
{
{
  channel->dma_req_i = 0;
  channel->dma_req_i = 0;
}
}
 
 
void set_dma_nd_i( struct dma_channel *channel )
void set_dma_nd_i( struct dma_channel *channel )
{
{
  channel->dma_nd_i = 1;
  channel->dma_nd_i = 1;
}
}
 
 
void clear_dma_nd_i( struct dma_channel *channel )
void clear_dma_nd_i( struct dma_channel *channel )
{
{
  channel->dma_nd_i = 0;
  channel->dma_nd_i = 0;
}
}
 
 
unsigned check_dma_ack_o( struct dma_channel *channel )
unsigned check_dma_ack_o( struct dma_channel *channel )
{
{
  return channel->dma_ack_o;
  return channel->dma_ack_o;
}
}
 
 
struct dma_channel *find_dma_controller_ch( unsigned controller,
struct dma_channel *find_dma_controller_ch( unsigned controller,
                                            unsigned channel )
                                            unsigned channel )
{
{
  struct dma_controller *cur = dmas;
  struct dma_controller *cur = dmas;
 
 
  while( cur && controller ) {
  while( cur && controller ) {
    cur = cur->next;
    cur = cur->next;
    controller--;
    controller--;
  }
  }
 
 
  if( !cur )
  if( !cur )
    return NULL;
    return NULL;
 
 
  return &(cur->ch[channel]);
  return &(cur->ch[channel]);
}
}
 
 
 
 
/*----------------------------------------------------[ DMA configuration ]---*/
/*----------------------------------------------------[ DMA configuration ]---*/
void dma_baseaddr(union param_val val, void *dat)
void dma_baseaddr(union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->baseaddr = val.addr_val;
  dma->baseaddr = val.addr_val;
}
}
 
 
void dma_irq(union param_val val, void *dat)
void dma_irq(union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->irq = val.int_val;
  dma->irq = val.int_val;
}
}
 
 
void dma_vapi_id(union param_val val, void *dat)
void dma_vapi_id(union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->vapi_id = val.int_val;
  dma->vapi_id = val.int_val;
}
}
 
 
void dma_enabled(union param_val val, void *dat)
void dma_enabled(union param_val val, void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  dma->enabled = val.int_val;
  dma->enabled = val.int_val;
}
}
 
 
void *dma_sec_start(void)
void *dma_sec_start(void)
{
{
  struct dma_controller *new = malloc(sizeof(struct dma_controller));
  struct dma_controller *new = malloc(sizeof(struct dma_controller));
 
 
  if(!new) {
  if(!new) {
    fprintf(stderr, "Peripheral DMA: Run out of memory\n");
    fprintf(stderr, "Peripheral DMA: Run out of memory\n");
    exit(-1);
    exit(-1);
  }
  }
 
 
  new->next = NULL;
  new->next = NULL;
  new->enabled = 1;
  new->enabled = 1;
 
 
  return new;
  return new;
}
}
 
 
void dma_sec_end(void *dat)
void dma_sec_end(void *dat)
{
{
  struct dma_controller *dma = dat;
  struct dma_controller *dma = dat;
  struct dma_controller *cur;
  struct dma_controller *cur;
  struct mem_ops ops;
  struct mem_ops ops;
 
 
  if(!dma->enabled) {
  if(!dma->enabled) {
    free(dat);
    free(dat);
    return;
    return;
  }
  }
 
 
  memset(&ops, 0, sizeof(struct mem_ops));
  memset(&ops, 0, sizeof(struct mem_ops));
 
 
  ops.readfunc32 = dma_read32;
  ops.readfunc32 = dma_read32;
  ops.writefunc32 = dma_write32;
  ops.writefunc32 = dma_write32;
  ops.read_dat32 = dat;
  ops.read_dat32 = dat;
  ops.write_dat32 = dat;
  ops.write_dat32 = dat;
 
 
  /* FIXME: Correct delay?? */
  /* FIXME: Correct delay?? */
  ops.delayr = 2;
  ops.delayr = 2;
  ops.delayw = 2;
  ops.delayw = 2;
 
 
  reg_mem_area( dma->baseaddr, DMA_ADDR_SPACE, 0, &ops );
  reg_mem_area( dma->baseaddr, DMA_ADDR_SPACE, 0, &ops );
  reg_sim_reset( dma_reset, dat );
  reg_sim_reset( dma_reset, dat );
  reg_sim_stat( dma_status, dat );
  reg_sim_stat( dma_status, dat );
 
 
  if(dmas) {
  if(dmas) {
    for(cur = dmas; cur->next; cur = cur->next);
    for(cur = dmas; cur->next; cur = cur->next);
    cur->next = dma;
    cur->next = dma;
  } else
  } else
    dmas = dma;
    dmas = dma;
}
}
 
 
void reg_dma_sec(void)
void reg_dma_sec(void)
{
{
  struct config_section *sec = reg_config_sec("dma", dma_sec_start, dma_sec_end);
  struct config_section *sec = reg_config_sec("dma", dma_sec_start, dma_sec_end);
 
 
  reg_config_param(sec, "irq", paramt_int, dma_irq);
  reg_config_param(sec, "irq", paramt_int, dma_irq);
  reg_config_param(sec, "enabled", paramt_int, dma_enabled);
  reg_config_param(sec, "enabled", paramt_int, dma_enabled);
  reg_config_param(sec, "baseaddr", paramt_addr, dma_baseaddr);
  reg_config_param(sec, "baseaddr", paramt_addr, dma_baseaddr);
  reg_config_param(sec, "vapi_id", paramt_addr, dma_vapi_id);
  reg_config_param(sec, "vapi_id", paramt_addr, dma_vapi_id);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.