OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [stable_0_2_0_rc2/] [or1ksim/] [cpu/] [common/] [abstract.c] - Diff between revs 1557 and 1584

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 1557 Rev 1584
/* abstract.c -- Abstract entities
/* abstract.c -- Abstract entities
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
   Copyright (C) 2005 György `nog' Jeney, nog@sdf.lonestar.org
   Copyright (C) 2005 György `nog' Jeney, nog@sdf.lonestar.org
 
 
This file is part of OpenRISC 1000 Architectural Simulator.
This file is part of OpenRISC 1000 Architectural Simulator.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
 
 
/* Abstract memory and routines that go with this. I need to
/* Abstract memory and routines that go with this. I need to
add all sorts of other abstract entities. Currently we have
add all sorts of other abstract entities. Currently we have
only memory. */
only memory. */
 
 
#include <stdlib.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdio.h>
#include <ctype.h>
#include <ctype.h>
#include <string.h>
#include <string.h>
 
 
#include "config.h"
#include "config.h"
 
 
#ifdef HAVE_INTTYPES_H
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#include <inttypes.h>
#endif
#endif
 
 
#include "port.h"
#include "port.h"
 
 
#include "arch.h"
#include "arch.h"
#include "parse.h"
#include "parse.h"
#include "abstract.h"
#include "abstract.h"
#include "sim-config.h"
#include "sim-config.h"
#include "labels.h"
#include "labels.h"
#include "except.h"
#include "except.h"
#include "debug_unit.h"
#include "debug_unit.h"
#include "opcode/or32.h"
#include "opcode/or32.h"
#include "spr_defs.h"
#include "spr_defs.h"
#include "execute.h"
#include "execute.h"
#include "sprs.h"
#include "sprs.h"
#include "support/profile.h"
#include "support/profile.h"
#include "dmmu.h"
#include "dmmu.h"
#include "immu.h"
#include "immu.h"
#include "dcache_model.h"
#include "dcache_model.h"
#include "icache_model.h"
#include "icache_model.h"
#include "debug.h"
#include "debug.h"
#include "stats.h"
#include "stats.h"
 
 
#if DYNAMIC_EXECUTION
#if DYNAMIC_EXECUTION
#include "dyn_rec.h"
#include "dyn_rec.h"
#endif
#endif
 
 
extern char *disassembled;
extern char *disassembled;
 
 
/* Pointer to memory area descriptions that are assigned to individual
/* Pointer to memory area descriptions that are assigned to individual
   peripheral devices. */
   peripheral devices. */
struct dev_memarea *dev_list;
struct dev_memarea *dev_list;
 
 
/* Temporary variable to increase speed.  */
/* Temporary variable to increase speed.  */
struct dev_memarea *cur_area;
struct dev_memarea *cur_area;
 
 
/* Pointer to memory controller device descriptor.  */
/* Pointer to memory controller device descriptor.  */
struct dev_memarea *mc_area = NULL;
struct dev_memarea *mc_area = NULL;
 
 
/* These are set by mmu if cache inhibit bit is set for current acces.  */
/* These are set by mmu if cache inhibit bit is set for current acces.  */
int data_ci, insn_ci;
int data_ci, insn_ci;
 
 
/* Virtual address of current access. */
/* Virtual address of current access. */
static oraddr_t cur_vadd;
static oraddr_t cur_vadd;
 
 
/* Read functions */
/* Read functions */
uint32_t eval_mem_32_inv(oraddr_t, void *);
uint32_t eval_mem_32_inv(oraddr_t, void *);
uint16_t eval_mem_16_inv(oraddr_t, void *);
uint16_t eval_mem_16_inv(oraddr_t, void *);
uint8_t eval_mem_8_inv(oraddr_t, void *);
uint8_t eval_mem_8_inv(oraddr_t, void *);
uint32_t eval_mem_32_inv_direct(oraddr_t, void *);
uint32_t eval_mem_32_inv_direct(oraddr_t, void *);
uint16_t eval_mem_16_inv_direct(oraddr_t, void *);
uint16_t eval_mem_16_inv_direct(oraddr_t, void *);
uint8_t eval_mem_8_inv_direct(oraddr_t, void *);
uint8_t eval_mem_8_inv_direct(oraddr_t, void *);
 
 
/* Write functions */
/* Write functions */
void set_mem_32_inv(oraddr_t, uint32_t, void *);
void set_mem_32_inv(oraddr_t, uint32_t, void *);
void set_mem_16_inv(oraddr_t, uint16_t, void *);
void set_mem_16_inv(oraddr_t, uint16_t, void *);
void set_mem_8_inv(oraddr_t, uint8_t, void *);
void set_mem_8_inv(oraddr_t, uint8_t, void *);
void set_mem_32_inv_direct(oraddr_t, uint32_t, void *);
void set_mem_32_inv_direct(oraddr_t, uint32_t, void *);
void set_mem_16_inv_direct(oraddr_t, uint16_t, void *);
void set_mem_16_inv_direct(oraddr_t, uint16_t, void *);
void set_mem_8_inv_direct(oraddr_t, uint8_t, void *);
void set_mem_8_inv_direct(oraddr_t, uint8_t, void *);
 
 
/* Calculates bit mask to fit the data */
/* Calculates bit mask to fit the data */
static unsigned int bit_mask (uint32_t data) {
static unsigned int bit_mask (uint32_t data) {
  int i = 0;
  int i = 0;
  data--;
  data--;
  while (data >> i)
  while (data >> i)
    data |= 1 << i++;
    data |= 1 << i++;
  return data;
  return data;
}
}
 
 
/* Register read and write function for a memory area.
/* Register read and write function for a memory area.
   addr is inside the area, if addr & addr_mask == addr_compare
   addr is inside the area, if addr & addr_mask == addr_compare
   (used also by peripheral devices like 16450 UART etc.) */
   (used also by peripheral devices like 16450 UART etc.) */
struct dev_memarea *register_memoryarea_mask(oraddr_t addr_mask,
struct dev_memarea *register_memoryarea_mask(oraddr_t addr_mask,
                                             oraddr_t addr_compare,
                                             oraddr_t addr_compare,
                                             uint32_t size, unsigned mc_dev)
                                             uint32_t size, unsigned mc_dev)
{
{
  struct dev_memarea **pptmp;
  struct dev_memarea **pptmp;
  unsigned int size_mask = bit_mask (size);
  unsigned int size_mask = bit_mask (size);
  int found_error = 0;
  int found_error = 0;
  addr_compare &= addr_mask;
  addr_compare &= addr_mask;
 
 
  debug(5, "addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %08"PRIx32"\n",
  debug(5, "addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %08"PRIx32"\n",
        addr_mask, addr_compare, addr_compare | bit_mask (size), size);
        addr_mask, addr_compare, addr_compare | bit_mask (size), size);
  /* Go to the end of the list. */
  /* Go to the end of the list. */
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
  for(pptmp = &dev_list; *pptmp; pptmp = &(*pptmp)->next)
    if (((addr_compare >= (*pptmp)->addr_compare) &&
    if (((addr_compare >= (*pptmp)->addr_compare) &&
         (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) ||
         (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size)) ||
        ((addr_compare + size > (*pptmp)->addr_compare) &&
        ((addr_compare + size > (*pptmp)->addr_compare) &&
         (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size))) {
         (addr_compare < (*pptmp)->addr_compare + (*pptmp)->size))) {
      if (!found_error) {
      if (!found_error) {
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "ERROR: Overlapping memory area(s):\n");
        fprintf (stderr, "\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
        fprintf (stderr, "\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
                         ", size %08"PRIx32"\n",
                         ", size %08"PRIx32"\n",
                 addr_mask, addr_compare, addr_compare | bit_mask (size), size);
                 addr_mask, addr_compare, addr_compare | bit_mask (size), size);
      }
      }
      found_error = 1;
      found_error = 1;
      fprintf (stderr, "and\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
      fprintf (stderr, "and\taddr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR
                       ", size %08"PRIx32"\n",
                       ", size %08"PRIx32"\n",
               (*pptmp)->addr_mask, (*pptmp)->addr_compare,
               (*pptmp)->addr_mask, (*pptmp)->addr_compare,
               (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size);
               (*pptmp)->addr_compare | (*pptmp)->size_mask, (*pptmp)->size);
    }
    }
 
 
  if (found_error)
  if (found_error)
    exit (-1);
    exit (-1);
 
 
  cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea));
  cur_area = *pptmp = (struct dev_memarea *)malloc(sizeof(struct dev_memarea));
 
 
  if (mc_dev)
  if (mc_dev)
    mc_area = *pptmp;
    mc_area = *pptmp;
 
 
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_mask = addr_mask;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->addr_compare = addr_compare;
  (*pptmp)->size = size;
  (*pptmp)->size = size;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->size_mask = size_mask;
  (*pptmp)->log = NULL;
  (*pptmp)->log = NULL;
  (*pptmp)->valid = 1;
  (*pptmp)->valid = 1;
  (*pptmp)->next = NULL;
  (*pptmp)->next = NULL;
 
 
  return *pptmp;
  return *pptmp;
}
}
 
 
/* Register read and write function for a memory area.
/* Register read and write function for a memory area.
   Memory areas should be aligned. Memory area is rounded up to
   Memory areas should be aligned. Memory area is rounded up to
   fit the nearest 2^n aligment.
   fit the nearest 2^n aligment.
   (used also by peripheral devices like 16450 UART etc.)
   (used also by peripheral devices like 16450 UART etc.)
   If mc_dev is 1, this device will be checked first for a match
   If mc_dev is 1, this device will be checked first for a match
   and will be accessed in case of overlaping memory areas.
   and will be accessed in case of overlaping memory areas.
   Only one device can have this set to 1 (used for memory controller) */
   Only one device can have this set to 1 (used for memory controller) */
struct dev_memarea *reg_mem_area(oraddr_t addr, uint32_t size, unsigned mc_dev,
struct dev_memarea *reg_mem_area(oraddr_t addr, uint32_t size, unsigned mc_dev,
                                 struct mem_ops *ops)
                                 struct mem_ops *ops)
{
{
  unsigned int size_mask = bit_mask (size);
  unsigned int size_mask = bit_mask (size);
  unsigned int addr_mask = ~size_mask;
  unsigned int addr_mask = ~size_mask;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  mem = register_memoryarea_mask(addr_mask, addr & addr_mask, size_mask + 1,
  mem = register_memoryarea_mask(addr_mask, addr & addr_mask, size_mask + 1,
                                 mc_dev);
                                 mc_dev);
 
 
  memcpy(&mem->ops, ops, sizeof(struct mem_ops));
  memcpy(&mem->ops, ops, sizeof(struct mem_ops));
  memcpy(&mem->direct_ops, ops, sizeof(struct mem_ops));
  memcpy(&mem->direct_ops, ops, sizeof(struct mem_ops));
 
 
  if(!ops->readfunc32) {
  if(!ops->readfunc32) {
    mem->ops.readfunc32 = eval_mem_32_inv;
    mem->ops.readfunc32 = eval_mem_32_inv;
    mem->direct_ops.readfunc32 = eval_mem_32_inv_direct;
    mem->direct_ops.readfunc32 = eval_mem_32_inv_direct;
    mem->direct_ops.read_dat32 = mem;
    mem->direct_ops.read_dat32 = mem;
  }
  }
  if(!ops->readfunc16) {
  if(!ops->readfunc16) {
    mem->ops.readfunc16 = eval_mem_16_inv;
    mem->ops.readfunc16 = eval_mem_16_inv;
    mem->direct_ops.readfunc16 = eval_mem_16_inv_direct;
    mem->direct_ops.readfunc16 = eval_mem_16_inv_direct;
    mem->direct_ops.read_dat16 = mem;
    mem->direct_ops.read_dat16 = mem;
  }
  }
  if(!ops->readfunc8) {
  if(!ops->readfunc8) {
    mem->ops.readfunc8 = eval_mem_8_inv;
    mem->ops.readfunc8 = eval_mem_8_inv;
    mem->direct_ops.readfunc8 = eval_mem_8_inv_direct;
    mem->direct_ops.readfunc8 = eval_mem_8_inv_direct;
    mem->direct_ops.read_dat8 = mem;
    mem->direct_ops.read_dat8 = mem;
  }
  }
 
 
  if(!ops->writefunc32) {
  if(!ops->writefunc32) {
    mem->ops.writefunc32 = set_mem_32_inv;
    mem->ops.writefunc32 = set_mem_32_inv;
    mem->direct_ops.writefunc32 = set_mem_32_inv_direct;
    mem->direct_ops.writefunc32 = set_mem_32_inv_direct;
    mem->direct_ops.write_dat32 = mem;
    mem->direct_ops.write_dat32 = mem;
  }
  }
  if(!ops->writefunc16) {
  if(!ops->writefunc16) {
    mem->ops.writefunc16 = set_mem_16_inv;
    mem->ops.writefunc16 = set_mem_16_inv;
    mem->direct_ops.writefunc16 = set_mem_16_inv_direct;
    mem->direct_ops.writefunc16 = set_mem_16_inv_direct;
    mem->direct_ops.write_dat16 = mem;
    mem->direct_ops.write_dat16 = mem;
  }
  }
  if(!ops->writefunc8) {
  if(!ops->writefunc8) {
    mem->ops.writefunc8 = set_mem_8_inv;
    mem->ops.writefunc8 = set_mem_8_inv;
    mem->direct_ops.writefunc8 = set_mem_8_inv_direct;
    mem->direct_ops.writefunc8 = set_mem_8_inv_direct;
    mem->direct_ops.write_dat8 = mem;
    mem->direct_ops.write_dat8 = mem;
  }
  }
 
 
  if(!ops->writeprog8) {
  if(!ops->writeprog8) {
    mem->ops.writeprog8 = mem->ops.writefunc8;
    mem->ops.writeprog8 = mem->ops.writefunc8;
    mem->ops.writeprog8_dat = mem->ops.write_dat8;
    mem->ops.writeprog8_dat = mem->ops.write_dat8;
  }
  }
 
 
  if(!ops->writeprog32) {
  if(!ops->writeprog32) {
    mem->ops.writeprog32 = mem->ops.writefunc32;
    mem->ops.writeprog32 = mem->ops.writefunc32;
    mem->ops.writeprog32_dat = mem->ops.write_dat32;
    mem->ops.writeprog32_dat = mem->ops.write_dat32;
  }
  }
 
 
  if(ops->log) {
  if(ops->log) {
    if(!(mem->log = fopen(ops->log, "w")))
    if(!(mem->log = fopen(ops->log, "w")))
      PRINTF("ERR: Unable to open %s to log memory acesses to\n", ops->log);
      PRINTF("ERR: Unable to open %s to log memory acesses to\n", ops->log);
  }
  }
 
 
  return mem;
  return mem;
}
}
 
 
/* Check if access is to registered area of memory. */
/* Check if access is to registered area of memory. */
inline struct dev_memarea *verify_memoryarea(oraddr_t addr)
inline struct dev_memarea *verify_memoryarea(oraddr_t addr)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check memory controller space first */
  /* Check memory controller space first */
  if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask))
  if (mc_area && (addr & mc_area->addr_mask) == (mc_area->addr_compare & mc_area->addr_mask))
    return cur_area = mc_area;
    return cur_area = mc_area;
 
 
  /* Check cached value */
  /* Check cached value */
  if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask))
  if (cur_area && (addr & cur_area->addr_mask) == (cur_area->addr_compare & cur_area->addr_mask))
    return cur_area;
    return cur_area;
 
 
  /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */
  /* When mc is enabled, we must check valid also, otherwise we assume it is nonzero */
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next)
    if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
    if ((addr & ptmp->addr_mask) == (ptmp->addr_compare & ptmp->addr_mask) && ptmp->valid)
      return cur_area = ptmp;
      return cur_area = ptmp;
  return cur_area = NULL;
  return cur_area = NULL;
}
}
 
 
/* Sets the valid bit (Used only by memory controllers) */
/* Sets the valid bit (Used only by memory controllers) */
void set_mem_valid(struct dev_memarea *mem, int valid)
void set_mem_valid(struct dev_memarea *mem, int valid)
{
{
  mem->valid = valid;
  mem->valid = valid;
}
}
 
 
/* Adjusts the read and write delays for the memory area pointed to by mem. */
/* Adjusts the read and write delays for the memory area pointed to by mem. */
void adjust_rw_delay(struct dev_memarea *mem, int delayr, int delayw)
void adjust_rw_delay(struct dev_memarea *mem, int delayr, int delayw)
{
{
  mem->ops.delayr = delayr;
  mem->ops.delayr = delayr;
  mem->ops.delayw = delayw;
  mem->ops.delayw = delayw;
}
}
 
 
uint8_t eval_mem_8_inv(oraddr_t memaddr, void *dat)
uint8_t eval_mem_8_inv(oraddr_t memaddr, void *dat)
{
{
  except_handle(EXCEPT_BUSERR, cur_vadd);
  except_handle(EXCEPT_BUSERR, cur_vadd);
  return 0;
  return 0;
}
}
 
 
uint16_t eval_mem_16_inv(oraddr_t memaddr, void *dat)
uint16_t eval_mem_16_inv(oraddr_t memaddr, void *dat)
{
{
  except_handle(EXCEPT_BUSERR, cur_vadd);
  except_handle(EXCEPT_BUSERR, cur_vadd);
  return 0;
  return 0;
}
}
 
 
uint32_t eval_mem_32_inv(oraddr_t memaddr, void *dat)
uint32_t eval_mem_32_inv(oraddr_t memaddr, void *dat)
{
{
  except_handle(EXCEPT_BUSERR, cur_vadd);
  except_handle(EXCEPT_BUSERR, cur_vadd);
  return 0;
  return 0;
}
}
 
 
void set_mem_8_inv(oraddr_t memaddr, uint8_t val, void *dat)
void set_mem_8_inv(oraddr_t memaddr, uint8_t val, void *dat)
{
{
  except_handle(EXCEPT_BUSERR, cur_vadd);
  except_handle(EXCEPT_BUSERR, cur_vadd);
}
}
 
 
void set_mem_16_inv(oraddr_t memaddr, uint16_t val, void *dat)
void set_mem_16_inv(oraddr_t memaddr, uint16_t val, void *dat)
{
{
  except_handle(EXCEPT_BUSERR, cur_vadd);
  except_handle(EXCEPT_BUSERR, cur_vadd);
}
}
 
 
void set_mem_32_inv(oraddr_t memaddr, uint32_t val, void *dat)
void set_mem_32_inv(oraddr_t memaddr, uint32_t val, void *dat)
{
{
  except_handle(EXCEPT_BUSERR, cur_vadd);
  except_handle(EXCEPT_BUSERR, cur_vadd);
}
}
 
 
uint8_t eval_mem_8_inv_direct(oraddr_t memaddr, void *dat)
uint8_t eval_mem_8_inv_direct(oraddr_t memaddr, void *dat)
{
{
  struct dev_memarea *mem = dat;
  struct dev_memarea *mem = dat;
 
 
  PRINTF("ERROR: Invalid 8-bit direct read from memory %"PRIxADDR"\n",
  PRINTF("ERROR: Invalid 8-bit direct read from memory %"PRIxADDR"\n",
         mem->addr_compare | memaddr);
         mem->addr_compare | memaddr);
  return 0;
  return 0;
}
}
 
 
uint16_t eval_mem_16_inv_direct(oraddr_t memaddr, void *dat)
uint16_t eval_mem_16_inv_direct(oraddr_t memaddr, void *dat)
{
{
  struct dev_memarea *mem = dat;
  struct dev_memarea *mem = dat;
 
 
  PRINTF("ERROR: Invalid 16-bit direct read from memory %"PRIxADDR"\n",
  PRINTF("ERROR: Invalid 16-bit direct read from memory %"PRIxADDR"\n",
         mem->addr_compare | memaddr);
         mem->addr_compare | memaddr);
  return 0;
  return 0;
}
}
 
 
uint32_t eval_mem_32_inv_direct(oraddr_t memaddr, void *dat)
uint32_t eval_mem_32_inv_direct(oraddr_t memaddr, void *dat)
{
{
  struct dev_memarea *mem = dat;
  struct dev_memarea *mem = dat;
 
 
  PRINTF("ERROR: Invalid 32-bit direct read from memory %"PRIxADDR"\n",
  PRINTF("ERROR: Invalid 32-bit direct read from memory %"PRIxADDR"\n",
         mem->addr_compare | memaddr);
         mem->addr_compare | memaddr);
  return 0;
  return 0;
}
}
 
 
void set_mem_8_inv_direct(oraddr_t memaddr, uint8_t val, void *dat)
void set_mem_8_inv_direct(oraddr_t memaddr, uint8_t val, void *dat)
{
{
  struct dev_memarea *mem = dat;
  struct dev_memarea *mem = dat;
 
 
  PRINTF("ERROR: Invalid 32-bit direct write to memory %"PRIxADDR"\n",
  PRINTF("ERROR: Invalid 32-bit direct write to memory %"PRIxADDR"\n",
         mem->addr_compare | memaddr);
         mem->addr_compare | memaddr);
}
}
 
 
void set_mem_16_inv_direct(oraddr_t memaddr, uint16_t val, void *dat)
void set_mem_16_inv_direct(oraddr_t memaddr, uint16_t val, void *dat)
{
{
  struct dev_memarea *mem = dat;
  struct dev_memarea *mem = dat;
 
 
  PRINTF("ERROR: Invalid 16-bit direct write to memory %"PRIxADDR"\n",
  PRINTF("ERROR: Invalid 16-bit direct write to memory %"PRIxADDR"\n",
         mem->addr_compare | memaddr);
         mem->addr_compare | memaddr);
}
}
 
 
void set_mem_32_inv_direct(oraddr_t memaddr, uint32_t val, void *dat)
void set_mem_32_inv_direct(oraddr_t memaddr, uint32_t val, void *dat)
{
{
  struct dev_memarea *mem = dat;
  struct dev_memarea *mem = dat;
 
 
  PRINTF("ERROR: Invalid 32-bit direct write to memory %"PRIxADDR"\n",
  PRINTF("ERROR: Invalid 32-bit direct write to memory %"PRIxADDR"\n",
         mem->addr_compare | memaddr);
         mem->addr_compare | memaddr);
}
}
 
 
/* For cpu accesses
/* For cpu accesses
 *
 *
 * NOTE: This function _is_ only called from eval_mem32 below and
 * NOTE: This function _is_ only called from eval_mem32 below and
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 */
 */
inline uint32_t evalsim_mem32(oraddr_t memaddr, oraddr_t vaddr)
inline uint32_t evalsim_mem32(oraddr_t memaddr, oraddr_t vaddr)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    runtime.sim.mem_cycles += mem->ops.delayr;
    runtime.sim.mem_cycles += mem->ops.delayr;
    return mem->ops.readfunc32(memaddr & mem->size_mask, mem->ops.read_dat32);
    return mem->ops.readfunc32(memaddr & mem->size_mask, mem->ops.read_dat32);
  } else {
  } else {
    PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: read out of memory (32-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
 
 
  return 0;
  return 0;
}
}
 
 
/* For cpu accesses
/* For cpu accesses
 *
 *
 * NOTE: This function _is_ only called from eval_mem16 below and
 * NOTE: This function _is_ only called from eval_mem16 below and
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 */
 */
inline uint16_t evalsim_mem16(oraddr_t memaddr, oraddr_t vaddr)
inline uint16_t evalsim_mem16(oraddr_t memaddr, oraddr_t vaddr)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    runtime.sim.mem_cycles += mem->ops.delayr;
    runtime.sim.mem_cycles += mem->ops.delayr;
    return mem->ops.readfunc16(memaddr & mem->size_mask, mem->ops.read_dat16);
    return mem->ops.readfunc16(memaddr & mem->size_mask, mem->ops.read_dat16);
  } else {
  } else {
    PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: read out of memory (16-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
 
 
  return 0;
  return 0;
}
}
 
 
/* For cpu accesses
/* For cpu accesses
 *
 *
 * NOTE: This function _is_ only called from eval_mem8 below and
 * NOTE: This function _is_ only called from eval_mem8 below and
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 * {i,d}c_simulate_read.  _Don't_ call it from anywere else.
 */
 */
inline uint8_t evalsim_mem8(oraddr_t memaddr, oraddr_t vaddr)
inline uint8_t evalsim_mem8(oraddr_t memaddr, oraddr_t vaddr)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    runtime.sim.mem_cycles += mem->ops.delayr;
    runtime.sim.mem_cycles += mem->ops.delayr;
    return mem->ops.readfunc8(memaddr & mem->size_mask, mem->ops.read_dat8);
    return mem->ops.readfunc8(memaddr & mem->size_mask, mem->ops.read_dat8);
  } else {
  } else {
    PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: read out of memory (8-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
 
 
  return 0;
  return 0;
}
}
 
 
/* Returns 32-bit values from mem array. Big endian version.
/* Returns 32-bit values from mem array. Big endian version.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint32_t eval_mem32(oraddr_t memaddr,int* breakpoint)
uint32_t eval_mem32(oraddr_t memaddr,int* breakpoint)
{
{
  uint32_t temp;
  uint32_t temp;
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_READ);
    mprofile (memaddr, MPROF_32 | MPROF_READ);
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return 0;
    return 0;
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
 
  phys_memaddr = dmmu_translate(memaddr, 0);
  phys_memaddr = dmmu_translate(memaddr, 0);
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = dc_simulate_read(phys_memaddr, memaddr, 4);
    temp = dc_simulate_read(phys_memaddr, memaddr, 4);
  else
  else
    temp = evalsim_mem32(phys_memaddr, memaddr);
    temp = evalsim_mem32(phys_memaddr, memaddr);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
 
 
  return temp;
  return temp;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do
/* for simulator accesses, the ones that cpu wouldn't do
 *
 *
 * STATISTICS OK
 * STATISTICS OK
 */
 */
uint32_t eval_direct32(oraddr_t memaddr, int through_mmu, int through_dc)
uint32_t eval_direct32(oraddr_t memaddr, int through_mmu, int through_dc)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return 0;
    return 0;
  }
  }
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu)
  if (through_mmu)
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
 
  if (through_dc)
  if (through_dc)
    return dc_simulate_read(phys_memaddr, memaddr, 4);
    return dc_simulate_read(phys_memaddr, memaddr, 4);
  else {
  else {
    if((mem = verify_memoryarea(phys_memaddr)))
    if((mem = verify_memoryarea(phys_memaddr)))
      return mem->direct_ops.readfunc32(phys_memaddr & mem->size_mask,
      return mem->direct_ops.readfunc32(phys_memaddr & mem->size_mask,
                                        mem->direct_ops.read_dat32);
                                        mem->direct_ops.read_dat32);
    else
    else
      PRINTF("ERR: 32-bit read out of memory area: %"PRIxADDR" (physical: %"
      PRINTF("ERR: 32-bit read out of memory area: %"PRIxADDR" (physical: %"
             PRIxADDR"\n", memaddr, phys_memaddr);
             PRIxADDR"\n", memaddr, phys_memaddr);
  }
  }
 
 
  return 0;
  return 0;
}
}
 
 
 
 
/* Returns 32-bit values from mem array. Big endian version.
/* Returns 32-bit values from mem array. Big endian version.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint32_t eval_insn(oraddr_t memaddr, int* breakpoint)
uint32_t eval_insn(oraddr_t memaddr, int* breakpoint)
{
{
  uint32_t temp;
  uint32_t temp;
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
    mprofile (memaddr, MPROF_32 | MPROF_FETCH);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
//  memaddr = simulate_ic_mmu_fetch(memaddr);
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
#if !(DYNAMIC_EXECUTION)
#if !(DYNAMIC_EXECUTION)
  phys_memaddr = immu_translate(memaddr);
  phys_memaddr = immu_translate(memaddr);
 
 
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
#endif
#endif
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);
 
 
  if (config.ic.enabled)
  if (config.ic.enabled)
    temp = ic_simulate_fetch(phys_memaddr, memaddr);
    temp = ic_simulate_fetch(phys_memaddr, memaddr);
  else
  else
    temp = evalsim_mem32(phys_memaddr, memaddr);
    temp = evalsim_mem32(phys_memaddr, memaddr);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);
  return temp;
  return temp;
}
}
 
 
/* Returns 32-bit values from mem array. Big endian version.
/* Returns 32-bit values from mem array. Big endian version.
 *
 *
 * STATISTICS OK
 * STATISTICS OK
 */
 */
uint32_t eval_insn_direct(oraddr_t memaddr, int through_mmu)
uint32_t eval_insn_direct(oraddr_t memaddr, int through_mmu)
{
{
  if(through_mmu)
  if(through_mmu)
    memaddr = peek_into_itlb(memaddr);
    memaddr = peek_into_itlb(memaddr);
 
 
  return eval_direct32(memaddr, 0, 0);
  return eval_direct32(memaddr, 0, 0);
}
}
 
 
 
 
/* Returns 16-bit values from mem array. Big endian version.
/* Returns 16-bit values from mem array. Big endian version.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint16_t eval_mem16(oraddr_t memaddr,int* breakpoint)
uint16_t eval_mem16(oraddr_t memaddr,int* breakpoint)
{
{
  uint16_t temp;
  uint16_t temp;
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_READ);
    mprofile (memaddr, MPROF_16 | MPROF_READ);
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return 0;
    return 0;
  }
  }
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr); /* 28/05/01 CZ */
 
 
  phys_memaddr = dmmu_translate(memaddr, 0);
  phys_memaddr = dmmu_translate(memaddr, 0);
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = dc_simulate_read(phys_memaddr, memaddr, 2);
    temp = dc_simulate_read(phys_memaddr, memaddr, 2);
  else
  else
    temp = evalsim_mem16(phys_memaddr, memaddr);
    temp = evalsim_mem16(phys_memaddr, memaddr);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
 
 
  return temp;
  return temp;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do
/* for simulator accesses, the ones that cpu wouldn't do
 *
 *
 * STATISTICS OK.
 * STATISTICS OK.
 */
 */
uint16_t eval_direct16(oraddr_t memaddr, int through_mmu, int through_dc)
uint16_t eval_direct16(oraddr_t memaddr, int through_mmu, int through_dc)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return 0;
    return 0;
  }
  }
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu)
  if (through_mmu)
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
 
  if (through_dc)
  if (through_dc)
    return dc_simulate_read(phys_memaddr, memaddr, 2);
    return dc_simulate_read(phys_memaddr, memaddr, 2);
  else {
  else {
    if((mem = verify_memoryarea(phys_memaddr)))
    if((mem = verify_memoryarea(phys_memaddr)))
      return mem->direct_ops.readfunc16(phys_memaddr & mem->size_mask,
      return mem->direct_ops.readfunc16(phys_memaddr & mem->size_mask,
                                        mem->direct_ops.read_dat16);
                                        mem->direct_ops.read_dat16);
    else
    else
      PRINTF("ERR: 16-bit read out of memory area: %"PRIxADDR" (physical: %"
      PRINTF("ERR: 16-bit read out of memory area: %"PRIxADDR" (physical: %"
             PRIxADDR"\n", memaddr, phys_memaddr);
             PRIxADDR"\n", memaddr, phys_memaddr);
  }
  }
 
 
  return 0;
  return 0;
}
}
 
 
/* Returns 8-bit values from mem array.
/* Returns 8-bit values from mem array.
 *
 *
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 * STATISTICS OK (only used for cpu_access, that is architectural access)
 */
 */
uint8_t eval_mem8(oraddr_t memaddr,int* breakpoint)
uint8_t eval_mem8(oraddr_t memaddr,int* breakpoint)
{
{
  uint8_t temp;
  uint8_t temp;
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_READ);
    mprofile (memaddr, MPROF_8 | MPROF_READ);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugLoadAddress,memaddr);  /* 28/05/01 CZ */
 
 
  phys_memaddr = dmmu_translate(memaddr, 0);
  phys_memaddr = dmmu_translate(memaddr, 0);
  if (except_pending)
  if (except_pending)
    return 0;
    return 0;
 
 
  if (config.dc.enabled)
  if (config.dc.enabled)
    temp = dc_simulate_read(phys_memaddr, memaddr, 1);
    temp = dc_simulate_read(phys_memaddr, memaddr, 1);
  else
  else
    temp = evalsim_mem8(phys_memaddr, memaddr);
    temp = evalsim_mem8(phys_memaddr, memaddr);
 
 
  if (config.debug.enabled)
  if (config.debug.enabled)
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
    *breakpoint += CheckDebugUnit(DebugLoadData,temp);  /* MM170901 */
  return temp;
  return temp;
}
}
 
 
/* for simulator accesses, the ones that cpu wouldn't do
/* for simulator accesses, the ones that cpu wouldn't do
 *
 *
 * STATISTICS OK.
 * STATISTICS OK.
 */
 */
uint8_t eval_direct8(oraddr_t memaddr, int through_mmu, int through_dc)
uint8_t eval_direct8(oraddr_t memaddr, int through_mmu, int through_dc)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu)
  if (through_mmu)
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
 
 
  if (through_dc)
  if (through_dc)
    return dc_simulate_read(phys_memaddr, memaddr, 1);
    return dc_simulate_read(phys_memaddr, memaddr, 1);
  else {
  else {
    if((mem = verify_memoryarea(phys_memaddr)))
    if((mem = verify_memoryarea(phys_memaddr)))
      return mem->direct_ops.readfunc8(phys_memaddr & mem->size_mask,
      return mem->direct_ops.readfunc8(phys_memaddr & mem->size_mask,
                                       mem->direct_ops.read_dat8);
                                       mem->direct_ops.read_dat8);
    else
    else
      PRINTF("ERR: 8-bit read out of memory area: %"PRIxADDR" (physical: %"
      PRINTF("ERR: 8-bit read out of memory area: %"PRIxADDR" (physical: %"
             PRIxADDR"\n", memaddr, phys_memaddr);
             PRIxADDR"\n", memaddr, phys_memaddr);
  }
  }
 
 
  return 0;
  return 0;
}
}
 
 
/* For cpu accesses
/* For cpu accesses
 *
 *
 * NOTE: This function _is_ only called from set_mem32 below and
 * NOTE: This function _is_ only called from set_mem32 below and
 * dc_simulate_write.  _Don't_ call it from anywere else.
 * dc_simulate_write.  _Don't_ call it from anywere else.
 */
 */
inline void setsim_mem32(oraddr_t memaddr, oraddr_t vaddr, uint32_t value)
inline void setsim_mem32(oraddr_t memaddr, oraddr_t vaddr, uint32_t value)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    cur_vadd = vaddr;
    cur_vadd = vaddr;
    runtime.sim.mem_cycles += mem->ops.delayw;
    runtime.sim.mem_cycles += mem->ops.delayw;
    mem->ops.writefunc32(memaddr & mem->size_mask, value, mem->ops.write_dat32);
    mem->ops.writefunc32(memaddr & mem->size_mask, value, mem->ops.write_dat32);
#if DYNAMIC_EXECUTION
#if DYNAMIC_EXECUTION
    dyn_checkwrite(memaddr);
    dyn_checkwrite(memaddr);
#endif
#endif
  } else {
  } else {
    PRINTF("EXCEPTION: write out of memory (32-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: write out of memory (32-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
}
}
 
 
/* For cpu accesses
/* For cpu accesses
 *
 *
 * NOTE: This function _is_ only called from set_mem16 below and
 * NOTE: This function _is_ only called from set_mem16 below and
 * dc_simulate_write.  _Don't_ call it from anywere else.
 * dc_simulate_write.  _Don't_ call it from anywere else.
 */
 */
inline void setsim_mem16(oraddr_t memaddr, oraddr_t vaddr, uint16_t value)
inline void setsim_mem16(oraddr_t memaddr, oraddr_t vaddr, uint16_t value)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    cur_vadd = vaddr;
    cur_vadd = vaddr;
    runtime.sim.mem_cycles += mem->ops.delayw;
    runtime.sim.mem_cycles += mem->ops.delayw;
    mem->ops.writefunc16(memaddr & mem->size_mask, value, mem->ops.write_dat16);
    mem->ops.writefunc16(memaddr & mem->size_mask, value, mem->ops.write_dat16);
#if DYNAMIC_EXECUTION
#if DYNAMIC_EXECUTION
    dyn_checkwrite(memaddr);
    dyn_checkwrite(memaddr);
#endif
#endif
  } else {
  } else {
    PRINTF("EXCEPTION: write out of memory (16-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: write out of memory (16-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
}
}
 
 
/* For cpu accesses
/* For cpu accesses
 *
 *
 * NOTE: This function _is_ only called from set_mem8 below and
 * NOTE: This function _is_ only called from set_mem8 below and
 * dc_simulate_write.  _Don't_ call it from anywere else.
 * dc_simulate_write.  _Don't_ call it from anywere else.
 */
 */
inline void setsim_mem8(oraddr_t memaddr, oraddr_t vaddr, uint8_t value)
inline void setsim_mem8(oraddr_t memaddr, oraddr_t vaddr, uint8_t value)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    cur_vadd = vaddr;
    cur_vadd = vaddr;
    runtime.sim.mem_cycles += mem->ops.delayw;
    runtime.sim.mem_cycles += mem->ops.delayw;
    mem->ops.writefunc8(memaddr & mem->size_mask, value, mem->ops.write_dat8);
    mem->ops.writefunc8(memaddr & mem->size_mask, value, mem->ops.write_dat8);
#if DYNAMIC_EXECUTION
#if DYNAMIC_EXECUTION
    dyn_checkwrite(memaddr);
    dyn_checkwrite(memaddr);
#endif
#endif
  } else {
  } else {
    PRINTF("EXCEPTION: write out of memory (8-bit access to %"PRIxADDR")\n",
    PRINTF("EXCEPTION: write out of memory (8-bit access to %"PRIxADDR")\n",
           memaddr);
           memaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
    except_handle(EXCEPT_BUSERR, vaddr);
  }
  }
}
}
 
 
/* Set mem, 32-bit. Big endian version.
/* Set mem, 32-bit. Big endian version.
 *
 *
 * STATISTICS OK. (the only suspicious usage is in sim-cmd.c,
 * STATISTICS OK. (the only suspicious usage is in sim-cmd.c,
 *                 where this instruction is used for patching memory,
 *                 where this instruction is used for patching memory,
 *                 wether this is cpu or architectual access is yet to
 *                 wether this is cpu or architectual access is yet to
 *                 be decided)
 *                 be decided)
 */
 */
void set_mem32(oraddr_t memaddr, uint32_t value, int* breakpoint)
void set_mem32(oraddr_t memaddr, uint32_t value, int* breakpoint)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
    mprofile (memaddr, MPROF_32 | MPROF_WRITE);
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
    return;
  }
  }
 
 
  phys_memaddr = dmmu_translate(memaddr, 1);;
  phys_memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (except_pending)
  if (except_pending)
    return;
    return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  if(config.dc.enabled)
  if(config.dc.enabled)
    dc_simulate_write(phys_memaddr, memaddr, value, 4);
    dc_simulate_write(phys_memaddr, memaddr, value, 4);
  else
  else
    setsim_mem32(phys_memaddr, memaddr, value);
    setsim_mem32(phys_memaddr, memaddr, value);
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %08"PRIx32"\n", memaddr,
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %08"PRIx32"\n", memaddr,
             value);
             value);
}
}
 
 
/*
/*
 * STATISTICS NOT OK.
 * STATISTICS NOT OK.
 */
 */
void set_direct32(oraddr_t memaddr, uint32_t value, int through_mmu,
void set_direct32(oraddr_t memaddr, uint32_t value, int through_mmu,
                  int through_dc)
                  int through_dc)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if (memaddr & 3) {
  if (memaddr & 3) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
    return;
  }
  }
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu) {
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
     */
    phys_memaddr = peek_into_dtlb(memaddr, 1, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 1, through_dc);
  }
  }
 
 
  if(through_dc)
  if(through_dc)
    dc_simulate_write(memaddr, memaddr, value, 4);
    dc_simulate_write(memaddr, memaddr, value, 4);
  else {
  else {
    if((mem = verify_memoryarea(phys_memaddr)))
    if((mem = verify_memoryarea(phys_memaddr)))
      mem->direct_ops.writefunc32(phys_memaddr & mem->size_mask, value,
      mem->direct_ops.writefunc32(phys_memaddr & mem->size_mask, value,
                                  mem->direct_ops.write_dat32);
                                  mem->direct_ops.write_dat32);
    else
    else
      PRINTF("ERR: 32-bit write out of memory area: %"PRIxADDR" (physical: %"
      PRINTF("ERR: 32-bit write out of memory area: %"PRIxADDR" (physical: %"
             PRIxADDR")\n", memaddr, phys_memaddr);
             PRIxADDR")\n", memaddr, phys_memaddr);
  }
  }
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %08"PRIx32"\n",
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %08"PRIx32"\n",
             memaddr, value);
             memaddr, value);
}
}
 
 
 
 
/* Set mem, 16-bit. Big endian version. */
/* Set mem, 16-bit. Big endian version. */
 
 
void set_mem16(oraddr_t memaddr, uint16_t value, int* breakpoint)
void set_mem16(oraddr_t memaddr, uint16_t value, int* breakpoint)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
    mprofile (memaddr, MPROF_16 | MPROF_WRITE);
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    except_handle (EXCEPT_ALIGN, memaddr);
    except_handle (EXCEPT_ALIGN, memaddr);
    return;
    return;
  }
  }
 
 
  phys_memaddr = dmmu_translate(memaddr, 1);;
  phys_memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (except_pending)
  if (except_pending)
    return;
    return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  if(config.dc.enabled)
  if(config.dc.enabled)
    dc_simulate_write(phys_memaddr, memaddr, value, 2);
    dc_simulate_write(phys_memaddr, memaddr, value, 2);
  else
  else
    setsim_mem16(phys_memaddr, memaddr, value);
    setsim_mem16(phys_memaddr, memaddr, value);
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %04"PRIx16"\n", memaddr,
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %04"PRIx16"\n", memaddr,
             value);
             value);
}
}
 
 
/*
/*
 * STATISTICS NOT OK.
 * STATISTICS NOT OK.
 */
 */
void set_direct16(oraddr_t memaddr, uint16_t value, int through_mmu,
void set_direct16(oraddr_t memaddr, uint16_t value, int through_mmu,
                  int through_dc)
                  int through_dc)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if (memaddr & 1) {
  if (memaddr & 1) {
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    PRINTF("%s:%d %s(): ERR unaligned access\n", __FILE__, __LINE__, __FUNCTION__);
    return;
    return;
  }
  }
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu) {
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
     */
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
  }
  }
 
 
  if(through_dc)
  if(through_dc)
    dc_simulate_write(memaddr, memaddr, value, 2);
    dc_simulate_write(memaddr, memaddr, value, 2);
  else {
  else {
    if((mem = verify_memoryarea(phys_memaddr)))
    if((mem = verify_memoryarea(phys_memaddr)))
      mem->direct_ops.writefunc16(phys_memaddr & mem->size_mask, value,
      mem->direct_ops.writefunc16(phys_memaddr & mem->size_mask, value,
                                  mem->direct_ops.write_dat16);
                                  mem->direct_ops.write_dat16);
    else
    else
      PRINTF("ERR: 16-bit write out of memory area: %"PRIxADDR" (physical: %"
      PRINTF("ERR: 16-bit write out of memory area: %"PRIxADDR" (physical: %"
             PRIxADDR"\n", memaddr, phys_memaddr);
             PRIxADDR"\n", memaddr, phys_memaddr);
  }
  }
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %04"PRIx16"\n",
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %04"PRIx16"\n",
             memaddr, value);
             memaddr, value);
}
}
 
 
/* Set mem, 8-bit. */
/* Set mem, 8-bit. */
void set_mem8(oraddr_t memaddr, uint8_t value, int* breakpoint)
void set_mem8(oraddr_t memaddr, uint8_t value, int* breakpoint)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
 
 
  if (config.sim.mprofile)
  if (config.sim.mprofile)
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
    mprofile (memaddr, MPROF_8 | MPROF_WRITE);
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  phys_memaddr = dmmu_translate(memaddr, 1);;
  phys_memaddr = dmmu_translate(memaddr, 1);;
  /* If we produced exception don't set anything */
  /* If we produced exception don't set anything */
  if (except_pending) return;
  if (except_pending) return;
 
 
  if (config.debug.enabled) {
  if (config.debug.enabled) {
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreAddress,memaddr);  /* 28/05/01 CZ */
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
    *breakpoint += CheckDebugUnit(DebugStoreData,value);
  }
  }
 
 
  if(config.dc.enabled)
  if(config.dc.enabled)
    dc_simulate_write(phys_memaddr, memaddr, value, 1);
    dc_simulate_write(phys_memaddr, memaddr, value, 1);
  else
  else
    setsim_mem8(phys_memaddr, memaddr, value);
    setsim_mem8(phys_memaddr, memaddr, value);
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %02"PRIx8"\n", memaddr,
    fprintf (cur_area->log, "[%"PRIxADDR"] -> write %02"PRIx8"\n", memaddr,
             value);
             value);
}
}
 
 
/*
/*
 * STATISTICS NOT OK.
 * STATISTICS NOT OK.
 */
 */
void set_direct8(oraddr_t memaddr, uint8_t value, int through_mmu,
void set_direct8(oraddr_t memaddr, uint8_t value, int through_mmu,
                 int through_dc)
                 int through_dc)
{
{
  oraddr_t phys_memaddr;
  oraddr_t phys_memaddr;
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  phys_memaddr = memaddr;
  phys_memaddr = memaddr;
 
 
  if (through_mmu) {
  if (through_mmu) {
    /* 0 - no write access, we do not want a DPF exception do we ;)
    /* 0 - no write access, we do not want a DPF exception do we ;)
     */
     */
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
    phys_memaddr = peek_into_dtlb(memaddr, 0, through_dc);
  }
  }
 
 
  if(through_dc)
  if(through_dc)
    dc_simulate_write(phys_memaddr, memaddr, value, 1);
    dc_simulate_write(phys_memaddr, memaddr, value, 1);
  else {
  else {
    if((mem = verify_memoryarea(phys_memaddr)))
    if((mem = verify_memoryarea(phys_memaddr)))
      mem->direct_ops.writefunc8(phys_memaddr & mem->size_mask, value,
      mem->direct_ops.writefunc8(phys_memaddr & mem->size_mask, value,
                                 mem->direct_ops.write_dat8);
                                 mem->direct_ops.write_dat8);
    else
    else
      PRINTF("ERR: 8-bit write out of memory area: %"PRIxADDR" (physical: %"
      PRINTF("ERR: 8-bit write out of memory area: %"PRIxADDR" (physical: %"
             PRIxADDR"\n", memaddr, phys_memaddr);
             PRIxADDR"\n", memaddr, phys_memaddr);
  }
  }
 
 
  if (cur_area && cur_area->log)
  if (cur_area && cur_area->log)
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %02"PRIx8"\n",
    fprintf (cur_area->log, "[%"PRIxADDR"] -> DIRECT write %02"PRIx8"\n",
             memaddr, value);
             memaddr, value);
}
}
 
 
 
 
/* set_program32 - same as set_direct32, but it also writes to memory that is
/* set_program32 - same as set_direct32, but it also writes to memory that is
 *                 non-writeable to the rest of the sim.  Used to do program
 *                 non-writeable to the rest of the sim.  Used to do program
 *                 loading.
 *                 loading.
 */
 */
void set_program32(oraddr_t memaddr, uint32_t value)
void set_program32(oraddr_t memaddr, uint32_t value)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if(memaddr & 3) {
  if(memaddr & 3) {
    PRINTF("%s(): ERR unaligned 32-bit program write\n", __FUNCTION__);
    PRINTF("%s(): ERR unaligned 32-bit program write\n", __FUNCTION__);
    return;
    return;
  }
  }
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    mem->ops.writeprog32(memaddr & mem->size_mask, value,
    mem->ops.writeprog32(memaddr & mem->size_mask, value,
                         mem->ops.writeprog32_dat);
                         mem->ops.writeprog32_dat);
  } else
  } else
    PRINTF("ERR: 32-bit program load out of memory area: %"PRIxADDR"\n",
    PRINTF("ERR: 32-bit program load out of memory area: %"PRIxADDR"\n",
           memaddr);
           memaddr);
}
}
 
 
/* set_program8 - same as set_direct8, but it also writes to memory that is
/* set_program8 - same as set_direct8, but it also writes to memory that is
 *                non-writeable to the rest of the sim.  Used to do program
 *                non-writeable to the rest of the sim.  Used to do program
 *                loading.
 *                loading.
 */
 */
void set_program8(oraddr_t memaddr, uint8_t value)
void set_program8(oraddr_t memaddr, uint8_t value)
{
{
  struct dev_memarea *mem;
  struct dev_memarea *mem;
 
 
  if((mem = verify_memoryarea(memaddr))) {
  if((mem = verify_memoryarea(memaddr))) {
    mem->ops.writeprog8(memaddr & mem->size_mask, value,
    mem->ops.writeprog8(memaddr & mem->size_mask, value,
                        mem->ops.writeprog8_dat);
                        mem->ops.writeprog8_dat);
  } else
  } else
    PRINTF("ERR: 8-bit program load out of memory area: %"PRIxADDR"\n",
    PRINTF("ERR: 8-bit program load out of memory area: %"PRIxADDR"\n",
           memaddr);
           memaddr);
}
}
 
 
void dumpmemory(oraddr_t from, oraddr_t to, int disasm, int nl)
void dumpmemory(oraddr_t from, oraddr_t to, int disasm, int nl)
{
{
  oraddr_t i, j;
  oraddr_t i, j;
  struct label_entry *tmp;
  struct label_entry *tmp;
  int ilen = disasm ? 4 : 16;
  int ilen = disasm ? 4 : 16;
 
 
  for(i = from; i < to; i += ilen) {
  for(i = from; i < to; i += ilen) {
    PRINTF("%"PRIxADDR": ", i);
 
    for (j = 0; j < ilen;) {
    for (j = 0; j < ilen;) {
      if (!disasm) {
      if (!disasm) {
        tmp = NULL;
        tmp = NULL;
        if (verify_memoryarea(i + j)) {
        if (verify_memoryarea(i + j)) {
          struct label_entry *entry;
          struct label_entry *entry;
          entry = get_label(i + j);
          entry = get_label(i + j);
          if (entry)
 
            PRINTF("(%s)", entry->name);
          if (entry) {
 
            PRINTF("\n%"PRIxADDR": ", i);
 
            PRINTF("\n<%s>:\n", entry->name);
 
            PRINTF("%"PRIxADDR": ", i);
 
          } else {
 
            PRINTF("%"PRIxADDR": ", i);
 
          }
 
 
          PRINTF("%02"PRIx8" ", eval_direct8(i + j, 0, 0));
          PRINTF("%02"PRIx8" ", eval_direct8(i + j, 0, 0));
        } else PRINTF("XX ");
        } else PRINTF("XX ");
        j++;
        j++;
      } else {
      } else {
        uint32_t _insn = eval_direct32(i, 0, 0);
        uint32_t _insn = eval_direct32(i, 0, 0);
        int index = insn_decode (_insn);
        int index = insn_decode (_insn);
        int len = insn_len (index);
        int len = insn_len (index);
 
 
        tmp = NULL;
        tmp = NULL;
        if (verify_memoryarea(i + j)) {
        if (verify_memoryarea(i + j)) {
          struct label_entry *entry;
          struct label_entry *entry;
          entry = get_label(i + j);
          entry = get_label(i + j);
          if (entry)
 
            PRINTF("(%s)", entry->name);
 
 
 
          PRINTF(": %08"PRIx32" ", _insn);
          if (entry) {
 
            PRINTF("\n%"PRIxADDR": ", i);
 
            PRINTF("<%s>:\n", entry->name);
 
            PRINTF("%"PRIxADDR": ", i);
 
          } else {
 
            PRINTF("%"PRIxADDR": ", i);
 
          }
 
 
 
          PRINTF("%08"PRIx32" ", _insn);
          if (index >= 0) {
          if (index >= 0) {
            disassemble_insn (_insn);
            disassemble_insn (_insn);
            PRINTF(" %s", disassembled);
            PRINTF(" %s", disassembled);
          } else
          } else
            PRINTF("<invalid>");
            PRINTF("<invalid>");
        } else PRINTF("XXXXXXXX");
        } else PRINTF("XXXXXXXX");
        j += len;
        j += len;
      }
      }
    }
    }
    if (nl)
    if (nl)
      PRINTF ("\n");
      PRINTF ("\n");
  }
  }
}
}
 
 
/* Closes files, etc. */
/* Closes files, etc. */
 
 
void done_memory_table (void)
void done_memory_table (void)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    if (ptmp->log)
    if (ptmp->log)
      fclose (ptmp->log);
      fclose (ptmp->log);
  }
  }
}
}
 
 
/* Displays current memory configuration */
/* Displays current memory configuration */
 
 
void memory_table_status (void)
void memory_table_status (void)
{
{
  struct dev_memarea *ptmp;
  struct dev_memarea *ptmp;
 
 
  /* Check list of registered devices. */
  /* Check list of registered devices. */
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
  for(ptmp = dev_list; ptmp; ptmp = ptmp->next) {
    PRINTF ("addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %"PRIx32"\n",
    PRINTF ("addr & %"PRIxADDR" == %"PRIxADDR" to %"PRIxADDR", size %"PRIx32"\n",
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->addr_mask, ptmp->addr_compare, ptmp->addr_compare | bit_mask (ptmp->size),
      ptmp->size);
      ptmp->size);
    PRINTF ("\t");
    PRINTF ("\t");
    if (ptmp->ops.delayr >= 0)
    if (ptmp->ops.delayr >= 0)
      PRINTF ("read delay = %i cycles, ", ptmp->ops.delayr);
      PRINTF ("read delay = %i cycles, ", ptmp->ops.delayr);
    else
    else
      PRINTF ("reads not possible, ");
      PRINTF ("reads not possible, ");
 
 
    if (ptmp->ops.delayw >= 0)
    if (ptmp->ops.delayw >= 0)
      PRINTF ("write delay = %i cycles", ptmp->ops.delayw);
      PRINTF ("write delay = %i cycles", ptmp->ops.delayw);
    else
    else
      PRINTF ("writes not possible");
      PRINTF ("writes not possible");
 
 
    if (ptmp->log)
    if (ptmp->log)
      PRINTF (", (logged)\n");
      PRINTF (", (logged)\n");
    else
    else
      PRINTF ("\n");
      PRINTF ("\n");
  }
  }
}
}
 
 
/* Outputs time in pretty form to dest string */
/* Outputs time in pretty form to dest string */
 
 
char *generate_time_pretty (char *dest, long time_ps)
char *generate_time_pretty (char *dest, long time_ps)
{
{
  int exp3 = 0;
  int exp3 = 0;
  if (time_ps) {
  if (time_ps) {
    while ((time_ps % 1000) == 0) {
    while ((time_ps % 1000) == 0) {
      time_ps /= 1000;
      time_ps /= 1000;
      exp3++;
      exp3++;
    }
    }
  }
  }
  sprintf (dest, "%li%cs", time_ps, "pnum"[exp3]);
  sprintf (dest, "%li%cs", time_ps, "pnum"[exp3]);
  return dest;
  return dest;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.