OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [ecos-2.0/] [packages/] [redboot/] [v2_0/] [doc/] [redboot_installing.sgml] - Diff between revs 1254 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 1254 Rev 1765
-->
Installation and Testing
Installation and Testing
installing and testing RedBoot
installing and testing RedBoot
RedBootinstalling and testing
RedBootinstalling and testing
AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board
AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board
Overview
Overview
Matsushita MN103E010 (AM33/2.0) ASB2305 Board
Matsushita MN103E010 (AM33/2.0) ASB2305 Board
installing and testing
installing and testing
installing and testing
installing and testing
Matsushita MN103E010 (AM33/2.0) ASB2305 Board
Matsushita MN103E010 (AM33/2.0) ASB2305 Board
RedBoot supports the debug serial port and the built in ethernet port for communication and
RedBoot supports the debug serial port and the built in ethernet port for communication and
downloads. The default serial port settings are 115200,8,N,1 with RTS/CTS flow control. RedBoot can
downloads. The default serial port settings are 115200,8,N,1 with RTS/CTS flow control. RedBoot can
run from either flash, and can support flash management for either the boot PROM or the system
run from either flash, and can support flash management for either the boot PROM or the system
flash regions.
flash regions.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              PROM
              PROM
              [ROM]
              [ROM]
              RedBoot running from the boot PROM and able to
              RedBoot running from the boot PROM and able to
              access the system flash.
              access the system flash.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              FLASH
              FLASH
              [ROM]
              [ROM]
              RedBoot running from the system flash and able to
              RedBoot running from the system flash and able to
              access the boot PROM.
              access the boot PROM.
              redboot_FLASH.ecm
              redboot_FLASH.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM and able to access the
              RedBoot running from RAM and able to access the
              boot PROM.
              boot PROM.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation
Initial Installation
Unless a pre-programmed system flash module is available to be plugged into a new board,
Unless a pre-programmed system flash module is available to be plugged into a new board,
RedBoot must be installed with the aid of a JTAG interface unit. To achieve this, the RAM mode
RedBoot must be installed with the aid of a JTAG interface unit. To achieve this, the RAM mode
RedBoot must be loaded directly into RAM by JTAG and started, and then that
RedBoot must be loaded directly into RAM by JTAG and started, and then that
must be used to store the ROM mode RedBoot into the boot PROM.
must be used to store the ROM mode RedBoot into the boot PROM.
These instructions assume that you have binary images of the RAM-based and boot PROM-based
These instructions assume that you have binary images of the RAM-based and boot PROM-based
RedBoot images available.
RedBoot images available.
Preparing to program the board
Preparing to program the board
If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to
If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to
be changed:
be changed:
Jumper across ST18 on the board to allow write access to the boot PROM.
Jumper across ST18 on the board to allow write access to the boot PROM.
Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.
Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.
Set the switch S5 (on the front of the board) to boot from whichever flash is
Set the switch S5 (on the front of the board) to boot from whichever flash is
not being programmed. Note that the RedBoot image cannot access the flash from
not being programmed. Note that the RedBoot image cannot access the flash from
which it is currently executing (it can only access the other flash).
which it is currently executing (it can only access the other flash).
The RedBoot binary image files should also be copied to the TFTP pickup area on the host providing
The RedBoot binary image files should also be copied to the TFTP pickup area on the host providing
TFTP services if that is how RedBoot should pick up the images it is going to program into the
TFTP services if that is how RedBoot should pick up the images it is going to program into the
flash. Alternatively, the images can be passed by YMODEM over the serial link.
flash. Alternatively, the images can be passed by YMODEM over the serial link.
Preparing to use the JTAG debugger
Preparing to use the JTAG debugger
The JTAG debugger will also need setting up:
The JTAG debugger will also need setting up:
Install the JTAG debugger software (WICE103E) on a PC running Windows (WinNT is
Install the JTAG debugger software (WICE103E) on a PC running Windows (WinNT is
probably the best choice for this) in “C:/PanaX”.
probably the best choice for this) in “C:/PanaX”.
Install the Matsushita provided “project” into the
Install the Matsushita provided “project” into the
“C:/Panax/wice103e/prj” directory.
“C:/Panax/wice103e/prj” directory.
Install the RedBoot image files into the “C:/Panax/wice103e/prj”
Install the RedBoot image files into the “C:/Panax/wice103e/prj”
directory under the names redboot.ram and redboot.prom.
directory under the names redboot.ram and redboot.prom.
Make sure the PC's BIOS has the parallel port set to full bidirectional
Make sure the PC's BIOS has the parallel port set to full bidirectional
mode.
mode.
Connect the JTAG debugger to the PC's parallel port.
Connect the JTAG debugger to the PC's parallel port.
Connect the JTAG debugger to the board.
Connect the JTAG debugger to the board.
Set the switch on the front of the board to boot from “boot
Set the switch on the front of the board to boot from “boot
PROM”.
PROM”.
Power up the JTAG debugger and then power up the board.
Power up the JTAG debugger and then power up the board.
Connect the board's Debug Serial port to a computer by a null modem cable.
Connect the board's Debug Serial port to a computer by a null modem cable.
Start minicom or some other serial communication software and set for 115200 baud,
Start minicom or some other serial communication software and set for 115200 baud,
1-N-8 with hardware (RTS/CTS) flow control.
1-N-8 with hardware (RTS/CTS) flow control.
Loading the RAM-based RedBoot via JTAG
Loading the RAM-based RedBoot via JTAG
To perform the first half of the operation, the following steps should be followed:
To perform the first half of the operation, the following steps should be followed:
Start the JTAG debugger software.
Start the JTAG debugger software.
Run the following commands at the JTAG debugger's prompt to set up the MMU registers on the
Run the following commands at the JTAG debugger's prompt to set up the MMU registers on the
CPU.
CPU.
ed 0xc0002000, 0x12000580
ed 0xc0002000, 0x12000580
ed 0xd8c00100, 0x8000fe01
ed 0xd8c00100, 0x8000fe01
ed 0xd8c00200, 0x21111000
ed 0xd8c00200, 0x21111000
ed 0xd8c00204, 0x00100200
ed 0xd8c00204, 0x00100200
ed 0xd8c00208, 0x00000004
ed 0xd8c00208, 0x00000004
ed 0xd8c00110, 0x8400fe01
ed 0xd8c00110, 0x8400fe01
ed 0xd8c00210, 0x21111000
ed 0xd8c00210, 0x21111000
ed 0xd8c00214, 0x00100200
ed 0xd8c00214, 0x00100200
ed 0xd8c00218, 0x00000004
ed 0xd8c00218, 0x00000004
ed 0xd8c00120, 0x8600ff81
ed 0xd8c00120, 0x8600ff81
ed 0xd8c00220, 0x21111000
ed 0xd8c00220, 0x21111000
ed 0xd8c00224, 0x00100200
ed 0xd8c00224, 0x00100200
ed 0xd8c00228, 0x00000004
ed 0xd8c00228, 0x00000004
ed 0xd8c00130, 0x8680ff81
ed 0xd8c00130, 0x8680ff81
ed 0xd8c00230, 0x21111000
ed 0xd8c00230, 0x21111000
ed 0xd8c00234, 0x00100200
ed 0xd8c00234, 0x00100200
ed 0xd8c00238, 0x00000004
ed 0xd8c00238, 0x00000004
ed 0xd8c00140, 0x9800f801
ed 0xd8c00140, 0x9800f801
ed 0xd8c00240, 0x00140000
ed 0xd8c00240, 0x00140000
ed 0xd8c00244, 0x11011100
ed 0xd8c00244, 0x11011100
ed 0xd8c00248, 0x01000001
ed 0xd8c00248, 0x01000001
ed 0xda000000, 0x55561645
ed 0xda000000, 0x55561645
ed 0xda000004, 0x000003c0
ed 0xda000004, 0x000003c0
ed 0xda000008, 0x9000fe01
ed 0xda000008, 0x9000fe01
ed 0xda00000c, 0x9200fe01
ed 0xda00000c, 0x9200fe01
ed 0xda000000, 0xa89b0654
ed 0xda000000, 0xa89b0654
Run the following commands at the JTAG debugger's prompt to tell it what regions of the CPU's
Run the following commands at the JTAG debugger's prompt to tell it what regions of the CPU's
address space it can access:
address space it can access:
ex 0x80000000,0x81ffffff,/mexram
ex 0x80000000,0x81ffffff,/mexram
ex 0x84000000,0x85ffffff,/mexram
ex 0x84000000,0x85ffffff,/mexram
ex 0x86000000,0x867fffff,/mexram
ex 0x86000000,0x867fffff,/mexram
ex 0x86800000,0x87ffffff,/mexram
ex 0x86800000,0x87ffffff,/mexram
ex 0x8c000000,0x8cffffff,/mexram
ex 0x8c000000,0x8cffffff,/mexram
ex 0x90000000,0x93ffffff,/mexram
ex 0x90000000,0x93ffffff,/mexram
Instruct the debugger to load the RAM RedBoot image into RAM:
Instruct the debugger to load the RAM RedBoot image into RAM:
_pc=90000000
_pc=90000000
u_pc
u_pc
rd redboot.ram,90000000
rd redboot.ram,90000000
Load the boot PROM RedBoot into RAM:
Load the boot PROM RedBoot into RAM:
rd redboot.prom,91020000
rd redboot.prom,91020000
Start RedBoot in RAM:
Start RedBoot in RAM:
g
g
Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or DHCP
Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or DHCP
server to try and automatically get an IP address for the board. Note, however, that it should send
server to try and automatically get an IP address for the board. Note, however, that it should send
a plus over the serial port immediately, and the 7-segment LEDs should display “rh
a plus over the serial port immediately, and the 7-segment LEDs should display “rh
8”.
8”.
Loading the boot PROM-based RedBoot via the RAM mode RedBoot
Loading the boot PROM-based RedBoot via the RAM mode RedBoot
Once the RAM mode RedBoot is up and running, it can be communicated with by way of the serial
Once the RAM mode RedBoot is up and running, it can be communicated with by way of the serial
port. Commands can now be entered directly to RedBoot for flashing the boot PROM.
port. Commands can now be entered directly to RedBoot for flashing the boot PROM.
Instruct RedBoot to initialise the boot PROM:
Instruct RedBoot to initialise the boot PROM:
RedBoot> fi init
RedBoot> fi init
Write the previously loaded redboot.prom image into the boot PROM:
Write the previously loaded redboot.prom image into the boot PROM:
RedBoot> fi write -f 0x80000000 -b 0x91020000 -l 0x00020000
RedBoot> fi write -f 0x80000000 -b 0x91020000 -l 0x00020000
Check that RedBoot has written the image:
Check that RedBoot has written the image:
RedBoot> dump -b 0x91020000
RedBoot> dump -b 0x91020000
RedBoot> dump -b 0x80000000
RedBoot> dump -b 0x80000000
Barring the difference in address, the two dumps should be the same.
Barring the difference in address, the two dumps should be the same.
Close the JTAG software and power-cycle the board. The RedBoot banners should be
Close the JTAG software and power-cycle the board. The RedBoot banners should be
displayed again over the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot
displayed again over the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot
will now be running.
will now be running.
Power off the board and unjumper ST18 to write-protect the contents of the boot
Power off the board and unjumper ST18 to write-protect the contents of the boot
PROM. Then power the board back up.
PROM. Then power the board back up.
Run the following command to initialise the system flash:
Run the following command to initialise the system flash:
RedBoot> fi init
RedBoot> fi init
Then program the system flash based RedBoot into the system flash:
Then program the system flash based RedBoot into the system flash:
RedBoot> load -r -b %{FREEMEMLO} redboot_FLASH.bin
RedBoot> load -r -b %{FREEMEMLO} redboot_FLASH.bin
RedBoot> fi write -f 0x84000000 -b %{FREEMEMLO} -l 0x00020000
RedBoot> fi write -f 0x84000000 -b %{FREEMEMLO} -l 0x00020000
NOTE
NOTE
RedBoot arranges the flashes on booting such that they always appear at the same addresses,
RedBoot arranges the flashes on booting such that they always appear at the same addresses,
no matter which one was booted from.
no matter which one was booted from.
A similar sequence of commands can be used to program the boot PROM when RedBoot has been
A similar sequence of commands can be used to program the boot PROM when RedBoot has been
booted from an image stored in the system flash.
booted from an image stored in the system flash.
RedBoot> load -r -b %{FREEMEMLO} /tftpboot/redboot_ROM.bin
RedBoot> load -r -b %{FREEMEMLO} /tftpboot/redboot_ROM.bin
RedBoot> fi write -f 0x80000000 -b %{FREEMEMLO} -l 0x00020000
RedBoot> fi write -f 0x80000000 -b %{FREEMEMLO} -l 0x00020000
See  for details on configuring the RedBoot in
See  for details on configuring the RedBoot in
general, and also  for more details on programming the system
general, and also  for more details on programming the system
flash.
flash.
Additional Commands
Additional Commands
The exec command which allows the loading and execution of
The exec command which allows the loading and execution of
Linux kernels, is supported for this architecture (see ). The
Linux kernels, is supported for this architecture (see ). The
exec parameters used for ASB2305 board are:
exec parameters used for ASB2305 board are:
-w <time>
-w <time>
Wait time in seconds before starting kernel
Wait time in seconds before starting kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
<addr>
<addr>
Kernel entry point, defaulting to the entry point of the last image
Kernel entry point, defaulting to the entry point of the last image
loaded
loaded
The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed
The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed
by “cmdline:” if it was supplied.
by “cmdline:” if it was supplied.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the ASB2305 board.
RedBoot sets up the following memory map on the ASB2305 board.
NOTE
NOTE
The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However, all those
The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However, all those
regions can be accessed uncached by adding 0x20000000 to the address.
regions can be accessed uncached by adding 0x20000000 to the address.
Physical Address Range   Description
Physical Address Range   Description
-----------------------  -----------
-----------------------  -----------
0x80000000 - 0x9FFFFFFF  Cached Region
0x80000000 - 0x9FFFFFFF  Cached Region
0x80000000 - 0x81FFFFFF  Boot PROM
0x80000000 - 0x81FFFFFF  Boot PROM
0x84000000 - 0x85FFFFFF  System Flash
0x84000000 - 0x85FFFFFF  System Flash
0x86000000 - 0x86007FFF  64Kbit Sys Config EEPROM
0x86000000 - 0x86007FFF  64Kbit Sys Config EEPROM
0x86F90000 - 0x86F90003  4x 7-segment LEDs
0x86F90000 - 0x86F90003  4x 7-segment LEDs
0x86FA0000 - 0x86FA0003  Software DIP Switches
0x86FA0000 - 0x86FA0003  Software DIP Switches
0x86FB0000 - 0x86FB001F  PC16550 Debug Serial Port
0x86FB0000 - 0x86FB001F  PC16550 Debug Serial Port
0x8C000000 - 0x8FFFFFFF  On-Chip Memory (repeated 16Kb SRAM)
0x8C000000 - 0x8FFFFFFF  On-Chip Memory (repeated 16Kb SRAM)
0x90000000 - 0x93FFFFFF  SDRAM
0x90000000 - 0x93FFFFFF  SDRAM
0x98000000 - 0x9BFFFFFF  Paged PCI Memory Space (64Mb)
0x98000000 - 0x9BFFFFFF  Paged PCI Memory Space (64Mb)
0x9C000000 - 0x9DFFFFFF  PCI Local SRAM (32Mb)
0x9C000000 - 0x9DFFFFFF  PCI Local SRAM (32Mb)
0x9E000000 - 0x9E03FFFF  PCI I/O Space
0x9E000000 - 0x9E03FFFF  PCI I/O Space
0x9E040000 - 0x9E0400FF  AM33-PCI Bridge Registers
0x9E040000 - 0x9E0400FF  AM33-PCI Bridge Registers
0x9FFFFFF4 - 0x9FFFFFF7  PCI Memory Page Register
0x9FFFFFF4 - 0x9FFFFFF7  PCI Memory Page Register
0x9FFFFFF8 - 0x9FFFFFFF  PCI Config Registers
0x9FFFFFF8 - 0x9FFFFFFF  PCI Config Registers
0xA0000000 - 0xBFFFFFFF  Uncached Mirror Region
0xA0000000 - 0xBFFFFFFF  Uncached Mirror Region
0xC0000000 - 0xDFFFFFFF  CPU Control Registers
0xC0000000 - 0xDFFFFFFF  CPU Control Registers
The ASB2305 HAL makes use of the on-chip memory in the following way:
The ASB2305 HAL makes use of the on-chip memory in the following way:
0x8C000000 - 0x8C0000FF  hal_vsr_table
0x8C000000 - 0x8C0000FF  hal_vsr_table
0x8C000100 - 0x8C0001FF  hal_virtual_vector_table
0x8C000100 - 0x8C0001FF  hal_virtual_vector_table
0x8C001000 -             Linux command line (RedBoot exec command)
0x8C001000 -             Linux command line (RedBoot exec command)
           - 0x8C003FFF  Emergency DoubleFault Exception Stack
           - 0x8C003FFF  Emergency DoubleFault Exception Stack
Currently the CPU's interrupt table lies at the beginning of the RedBoot image, which must
Currently the CPU's interrupt table lies at the beginning of the RedBoot image, which must
therefore be aligned to a 0xFF000000 mask.
therefore be aligned to a 0xFF000000 mask.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=asb2305
export TARGET=asb2305
export ARCH_DIR=mn10300
export ARCH_DIR=mn10300
export PLATFORM_DIR=asb2305
export PLATFORM_DIR=asb2305
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM7 ARM Evaluator7T
ARM/ARM7 ARM Evaluator7T
Overview
Overview
ARM Evaluator7Tinstalling and
ARM Evaluator7Tinstalling and
testinginstalling and testing
testinginstalling and testing
ARM Evaluator7TRedBoot supports
ARM Evaluator7TRedBoot supports
both serial ports for communication and downloads. The default serial port
both serial ports for communication and downloads. The default serial port
settings are 38400,8,N,1.
settings are 38400,8,N,1.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from flash address 0x20000, with
              RedBoot running from flash address 0x20000, with
              ARM Boot Monitor in flash boot sector.
              ARM Boot Monitor in flash boot sector.
              redboot_ROMA.ecm
              redboot_ROMA.ecm
            
            
Initial Installation
Initial Installation
RedBoot is installed using the on-board boot environment. See the user
RedBoot is installed using the on-board boot environment. See the user
manual for full details.
manual for full details.
Quick download instructions
Quick download instructions
Here are quick start instructions for downloading the prebuilt Redboot
Here are quick start instructions for downloading the prebuilt Redboot
image:
image:
Boot the board and press ENTER:
Boot the board and press ENTER:
      ARM Evaluator7T Boot Monitor PreRelease 1.00
      ARM Evaluator7T Boot Monitor PreRelease 1.00
      Press ENTER within 2 seconds to stop autoboot
      Press ENTER within 2 seconds to stop autoboot
      Boot: 
      Boot: 
Erase the part of the flash where RedBoot will get programmed:
Erase the part of the flash where RedBoot will get programmed:
      Boot: flasherase 01820000 10000
      Boot: flasherase 01820000 10000
Prepare to download the UU-encoded version of the RedBoot
Prepare to download the UU-encoded version of the RedBoot
image:
image:
      Boot: download 10000
      Boot: download 10000
      Ready to download. Use 'transmit' option on terminal emulator to download file.
      Ready to download. Use 'transmit' option on terminal emulator to download file.
Either use ASCII transmit option in the terminal emulator,
Either use ASCII transmit option in the terminal emulator,
or on Linux, simply cat the file to the serial port:      $ 
or on Linux, simply cat the file to the serial port:      $ 
cat redboot.UU > /dev/ttyS0When complete, you should
cat redboot.UU > /dev/ttyS0When complete, you should
see:      Loaded file redboot.bin at address 000100000, size = 41960
see:      Loaded file redboot.bin at address 000100000, size = 41960
      Boot:
      Boot:
Program the flash:      Boot: flashwrite 01820000 10000 10000
Program the flash:      Boot: flashwrite 01820000 10000 10000
And verify that the module is available:      Boot: 
And verify that the module is available:      Boot: 
rommodules
rommodules
      Header   Base     Limit
      Header   Base     Limit
      018057c8 01800000 018059e7 BootStrapLoader v1.0 Apr 27 2000 10:33:58
      018057c8 01800000 018059e7 BootStrapLoader v1.0 Apr 27 2000 10:33:58
      01828f24 01820000 0182a3e8 RedBoot              Apr  5 2001
      01828f24 01820000 0182a3e8 RedBoot              Apr  5 2001
Reboot the board and you should see the RedBoot banner.
Reboot the board and you should see the RedBoot banner.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the E7T board. </code></pre></td>
        <td class="diff"><pre><code><para>RedBoot sets up the following memory map on the E7T board. <note><title></code></pre></td>
      </tr>
      <tr class="diffcode">
        <td class="diff"><pre><code>NOTE
NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
  Physical Address Range  C B  Description
  Physical Address Range  C B  Description
----------------------- - -  -----------
----------------------- - -  -----------
0x00000000 - 0x0007ffff Y N  SDRAM
0x00000000 - 0x0007ffff Y N  SDRAM
0x03ff0000 - 0x03ffffff N N  Microcontroller registers
0x03ff0000 - 0x03ffffff N N  Microcontroller registers
0x01820000 - 0x0187ffff N N  System flash (mirrored)
0x01820000 - 0x0187ffff N N  System flash (mirrored)
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=e7t
export TARGET=e7t
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=e7t
export PLATFORM_DIR=e7t
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM7+ARM9 ARM Integrator
ARM/ARM7+ARM9 ARM Integrator
Overview
Overview
ARM Integratorinstalling and
ARM Integratorinstalling and
testinginstalling and testing
testinginstalling and testing
ARM IntegratorRedBoot supports
ARM IntegratorRedBoot supports
both serial ports for communication and downloads. The default serial port
both serial ports for communication and downloads. The default serial port
settings are 38400,8,N,1.
settings are 38400,8,N,1.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
Initial Installation
Initial Installation
RedBoot is installed using the on-board bootPROM environment. See the user
RedBoot is installed using the on-board bootPROM environment. See the user
manual for full details.
manual for full details.
Quick download instructions
Quick download instructions
Here are quick start instructions for downloading the prebuilt Redboot
Here are quick start instructions for downloading the prebuilt Redboot
image:
image:
Set DIP switch S1[1] to the ON position and reset or
Set DIP switch S1[1] to the ON position and reset or
power the board up. You will see the bootPROM startup message on
power the board up. You will see the bootPROM startup message on
serial port A (J14):
serial port A (J14):
Initialising...
Initialising...
ARM bootPROM [Version 1.3] Rebuilt on Jun 26 2001 at 22:04:10
ARM bootPROM [Version 1.3] Rebuilt on Jun 26 2001 at 22:04:10
Running on a Integrator Evaluation Board
Running on a Integrator Evaluation Board
Board Revision V1.0, ARM966E-S Processor
Board Revision V1.0, ARM966E-S Processor
Memory Size is 16MBytes, Flash Size is 32MBytes
Memory Size is 16MBytes, Flash Size is 32MBytes
Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Board designed by ARM Limited
Board designed by ARM Limited
Hardware support provided at http://www.arm.com/
Hardware support provided at http://www.arm.com/
For help on the available commands type ? or h
For help on the available commands type ? or h
boot Monitor >
boot Monitor >
Issue the FLASH ROM load command:
Issue the FLASH ROM load command:
boot Monitor > L
boot Monitor > L
Load Motorola S-Records into flash
Load Motorola S-Records into flash
Deleting Image 0
Deleting Image 0
The S-Record loader only accepts input on the serial port.
The S-Record loader only accepts input on the serial port.
Type Ctrl/C to exit loader.
Type Ctrl/C to exit loader.
Either use the ASCII transmit option in the terminal emulator,
Either use the ASCII transmit option in the terminal emulator,
or on Linux, simply cat the file to the serial port:
or on Linux, simply cat the file to the serial port:
$ cat redboot.srec > /dev/ttyS0
$ cat redboot.srec > /dev/ttyS0
When complete, type Ctrl-C and you should see something similar to:
When complete, type Ctrl-C and you should see something similar to:
................................
................................
................................
................................
....................
....................
Downloaded 5,394 records in 81 seconds.
Downloaded 5,394 records in 81 seconds.
Overwritten block/s
Overwritten block/s
    0
    0
boot Monitor >
boot Monitor >
Set DIP switch S1[1] to the OFF position and reboot
Set DIP switch S1[1] to the OFF position and reboot
the board and you should see the RedBoot banner.
the board and you should see the RedBoot banner.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the Integrator board. </code></pre></td>
        <td class="diff"><pre><code><para>RedBoot sets up the following memory map on the Integrator board. <note><title></code></pre></td>
      </tr>
      <tr class="diffcode">
        <td class="diff"><pre><code>NOTE
NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
ARM7TDMI
ARM7TDMI
--------
--------
Physical Address Range  C B  Description
Physical Address Range  C B  Description
----------------------- - -  -----------
----------------------- - -  -----------
0x00000000 - 0x0007ffff N N  SSRAM
0x00000000 - 0x0007ffff N N  SSRAM
0x00080000 - 0x0fffffff N N  SDRAM (depends on part fitted)
0x00080000 - 0x0fffffff N N  SDRAM (depends on part fitted)
0x10000000 - 0x1fffffff N N  System control and peripheral registers
0x10000000 - 0x1fffffff N N  System control and peripheral registers
0x20000000 - 0x23ffffff N N  Boot ROM (contains boot Monitor)
0x20000000 - 0x23ffffff N N  Boot ROM (contains boot Monitor)
0x24000000 - 0x27ffffff N N  FLASH ROM (contains RedBoot)
0x24000000 - 0x27ffffff N N  FLASH ROM (contains RedBoot)
0x28000000 - 0x2bffffff N N  SSRAM echo area
0x28000000 - 0x2bffffff N N  SSRAM echo area
0x40000000 - 0x5fffffff N N  PCI Memory access windows
0x40000000 - 0x5fffffff N N  PCI Memory access windows
0x60000000 - 0x60ffffff N N  PCI IO access window
0x60000000 - 0x60ffffff N N  PCI IO access window
0x61000000 - 0x61ffffff N N  PCI config space window
0x61000000 - 0x61ffffff N N  PCI config space window
0x62000000 - 0x6200ffff N N  PCI bridge register window
0x62000000 - 0x6200ffff N N  PCI bridge register window
0x80000000 - 0x8fffffff N N  SDRAM echo area (used for PCI accesses)
0x80000000 - 0x8fffffff N N  SDRAM echo area (used for PCI accesses)
ARM966E
ARM966E
-------
-------
Physical Address Range  C B  Description
Physical Address Range  C B  Description
----------------------- - -  -----------
----------------------- - -  -----------
0x00000000 - 0x000fffff N N  SSRAM
0x00000000 - 0x000fffff N N  SSRAM
0x00100000 - 0x0fffffff N N  SDRAM (depends on part fitted)
0x00100000 - 0x0fffffff N N  SDRAM (depends on part fitted)
0x10000000 - 0x1fffffff N N  System control and peripheral registers
0x10000000 - 0x1fffffff N N  System control and peripheral registers
0x20000000 - 0x23ffffff N N  Boot ROM (contains boot Monitor)
0x20000000 - 0x23ffffff N N  Boot ROM (contains boot Monitor)
0x24000000 - 0x27ffffff N N  FLASH ROM (contains RedBoot)
0x24000000 - 0x27ffffff N N  FLASH ROM (contains RedBoot)
0x28000000 - 0x2bffffff N N  SSRAM echo area
0x28000000 - 0x2bffffff N N  SSRAM echo area
0x40000000 - 0x5fffffff N N  PCI Memory access windows
0x40000000 - 0x5fffffff N N  PCI Memory access windows
0x60000000 - 0x60ffffff N N  PCI IO access window
0x60000000 - 0x60ffffff N N  PCI IO access window
0x61000000 - 0x61ffffff N N  PCI config space window
0x61000000 - 0x61ffffff N N  PCI config space window
0x62000000 - 0x6200ffff N N  PCI bridge register window
0x62000000 - 0x6200ffff N N  PCI bridge register window
0x80000000 - 0x8fffffff N N  SDRAM echo area (used for PCI accesses)
0x80000000 - 0x8fffffff N N  SDRAM echo area (used for PCI accesses)
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=integrator
export TARGET=integrator
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=integrator
export PLATFORM_DIR=integrator
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9
ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9
Overview
Overview
ARM ARM7 PID, Dev7 and Dev9
ARM ARM7 PID, Dev7 and Dev9
installing and testinginstalling
installing and testinginstalling
and testingARM ARM7 PID, Dev7 and Dev9RedBoot
and testingARM ARM7 PID, Dev7 and Dev9RedBoot
uses either of the serial ports. The default serial port settings are 38400,8,N,1.
uses either of the serial ports. The default serial port settings are 38400,8,N,1.
Management of onboard flash is also supported.
Management of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
Device programmer is used to program socketed flash parts with ROM version
Device programmer is used to program socketed flash parts with ROM version
of RedBoot. 
of RedBoot. 
Alternatively, to install RedBoot on a target that already has eCos
Alternatively, to install RedBoot on a target that already has eCos
GDB stubs, download the RAM mode image of RedBoot and run it. Initialize the
GDB stubs, download the RAM mode image of RedBoot and run it. Initialize the
flash image directory: fis init Then
flash image directory: fis init Then
download the ROM version of RedBoot and program it into flash: 
download the ROM version of RedBoot and program it into flash: 
RedBoot> load -b %{FREEMEMLO} -m ymodem
RedBoot> load -b %{FREEMEMLO} -m ymodem
RedBoot> fi cr RedBoot
RedBoot> fi cr RedBoot
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the PID board. 
RedBoot sets up the following memory map on the PID board. 
Physical Address Range Description
Physical Address Range Description
----------------------- -----------
----------------------- -----------
0x00000000 - 0x0007ffff DRAM
0x00000000 - 0x0007ffff DRAM
0x04000000 - 0x04080000 flash
0x04000000 - 0x04080000 flash
0x08000000 - 0x09ffffff ASB Expansion
0x08000000 - 0x09ffffff ASB Expansion
0x0a000000 - 0x0bffffff APB Reference Peripheral
0x0a000000 - 0x0bffffff APB Reference Peripheral
0x0c000000 - 0x0fffffff NISA Serial, Parallel and PC Card ports 
0x0c000000 - 0x0fffffff NISA Serial, Parallel and PC Card ports 
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=pid
export TARGET=pid
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=pid
export PLATFORM_DIR=pid
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM7 Atmel AT91 Evaluation Board (EB40)
ARM/ARM7 Atmel AT91 Evaluation Board (EB40)
Overview
Overview
Atmel AT91/EB40
Atmel AT91/EB40
installing and testing
installing and testing
installing and testingAtmel AT91/EB40
installing and testingAtmel AT91/EB40
RedBoot supports both serial ports.
RedBoot supports both serial ports.
The default serial port settings are 38400,8,N,1. RedBoot
The default serial port settings are 38400,8,N,1. RedBoot
also supports minimal flash management on the EB40.
also supports minimal flash management on the EB40.
However, since the flash device (AT29LV1024) is so small (only the upper 64K is
However, since the flash device (AT29LV1024) is so small (only the upper 64K is
available for general use), only the simple flash write command 'fis
available for general use), only the simple flash write command 'fis
write' is supported.
write' is supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
This development board comes with ARM's debug tool, Angel, installed in flash.
This development board comes with ARM's debug tool, Angel, installed in flash.
At this time, Angel will not be replaced.  Rather, RedBoot will be placed in
At this time, Angel will not be replaced.  Rather, RedBoot will be placed in
the alternate half of flash.  Switch SW1 is used which monitor to boot.  Selecting
the alternate half of flash.  Switch SW1 is used which monitor to boot.  Selecting
SW1 to "lower mem" will choose Angel.  Select SW1 to "Upper mem" for RedBoot once
SW1 to "lower mem" will choose Angel.  Select SW1 to "Upper mem" for RedBoot once
it has been installed.
it has been installed.
Set SW1 to "lower mem" and connect serial port A to a host computer.  Using GDB
Set SW1 to "lower mem" and connect serial port A to a host computer.  Using GDB
from the host and Angel on the board, download the RAM mode image of RedBoot
from the host and Angel on the board, download the RAM mode image of RedBoot
to the board. SW1 should then be set to "upper mem" just before starting RedBoot using
to the board. SW1 should then be set to "upper mem" just before starting RedBoot using
the 'cont' command. Once RedBoot is started, the Angel session must be interrupted (on
the 'cont' command. Once RedBoot is started, the Angel session must be interrupted (on
Linux this can be done using ^Z).  Follow this by connecting to the board using
Linux this can be done using ^Z).  Follow this by connecting to the board using
minicom at 38400-8N1.  At this point, RedBoot will be running on the board in
minicom at 38400-8N1.  At this point, RedBoot will be running on the board in
RAM.  Now, download the ROMRAM mode image and program it to flash.
RAM.  Now, download the ROMRAM mode image and program it to flash.
arm-elf-gdb redboot_RAM.elf
arm-elf-gdb redboot_RAM.elf
(gdb) tar rdi s=/dev/ttyS0
(gdb) tar rdi s=/dev/ttyS0
Angel Debug Monitor (serial) 1.04 (Advanced RISC Machines SDT 2.5) for
Angel Debug Monitor (serial) 1.04 (Advanced RISC Machines SDT 2.5) for
AT91EB40 (2.00)
AT91EB40 (2.00)
Angel Debug Monitor rebuilt on Apr 07 2000 at 12:40:31
Angel Debug Monitor rebuilt on Apr 07 2000 at 12:40:31
Serial Rate:   9600
Serial Rate:   9600
Connected to ARM RDI target.
Connected to ARM RDI target.
(gdb) set $cpsr=0xd3
(gdb) set $cpsr=0xd3
(gdb) load
(gdb) load
Loading section .rom_vectors, size 0x40 lma 0x2020000
Loading section .rom_vectors, size 0x40 lma 0x2020000
Loading section .text, size 0x7fd8 lma 0x2020040
Loading section .text, size 0x7fd8 lma 0x2020040
Loading section .rodata, size 0x15a0 lma 0x2028018
Loading section .rodata, size 0x15a0 lma 0x2028018
Loading section .data, size 0x2e4 lma 0x20295b8
Loading section .data, size 0x2e4 lma 0x20295b8
Start address 0x2020040 , load size 39068
Start address 0x2020040 , load size 39068
Transfer rate: 6250 bits/sec, 500 bytes/write.
Transfer rate: 6250 bits/sec, 500 bytes/write.
At this point, set SW1 to "upper mem".
At this point, set SW1 to "upper mem".
(gdb) cont
(gdb) cont
Continuing.
Continuing.
At this point, suspend the GDB session (use Ctrl-Z) and start a
At this point, suspend the GDB session (use Ctrl-Z) and start a
terminal emulator:
terminal emulator:
RedBoot> version
RedBoot> version
RedBoot(tm) bootstrap and debug environment [RAM]
RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 14:09:27, Jul 20 2001
Non-certified release, version UNKNOWN - built 14:09:27, Jul 20 2001
Platform: Atmel AT91/EB40 (ARM7TDMI)
Platform: Atmel AT91/EB40 (ARM7TDMI)
Copyright (C) 2000, 2001, Red Hat, Inc.
Copyright (C) 2000, 2001, Red Hat, Inc.
RAM: 0x02000000-0x02080000, 0x020116d8-0x0207fd00 available
RAM: 0x02000000-0x02080000, 0x020116d8-0x0207fd00 available
FLASH: 0x01010000 - 0x01020000, 256 blocks of 0x00000100 bytes each.
FLASH: 0x01010000 - 0x01020000, 256 blocks of 0x00000100 bytes each.
RedBoot> load -m ymodem -b %{FREEMEMLO}
RedBoot> load -m ymodem -b %{FREEMEMLO}
Use minicom to send the file redboot_ROMRAM.srec via YModem.
Use minicom to send the file redboot_ROMRAM.srec via YModem.
RedBoot> fi wr -f 0x01010000 -b %{FREEMEMLO} -l 0xe100
RedBoot> fi wr -f 0x01010000 -b %{FREEMEMLO} -l 0xe100
Press the "reset" pushbutton and RedBoot
Press the "reset" pushbutton and RedBoot
should come up on the board.
should come up on the board.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
This processor has no MMU, so the only memory map is for physical addresses.
This processor has no MMU, so the only memory map is for physical addresses.
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x00000fff    On-chip SRAM
0x00000000 - 0x00000fff    On-chip SRAM
0x01000000 - 0x0101ffff    Flash
0x01000000 - 0x0101ffff    Flash
0x02000000 - 0x0207ffff    RAM
0x02000000 - 0x0207ffff    RAM
0xffe00000 - 0xffffffff    I/O registers
0xffe00000 - 0xffffffff    I/O registers
The flash based RedBoot image occupies virtual addresses 0x01010000 - 0x0101dfff
The flash based RedBoot image occupies virtual addresses 0x01010000 - 0x0101dfff
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=eb40
export TARGET=eb40
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=at91
export PLATFORM_DIR=at91
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM7 Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312) 
ARM/ARM7 Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312) 
Overview
Overview
Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)
Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)
installing and testing
installing and testing
installing and testingCirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)
installing and testingCirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)
RedBoot supports both serial ports on the board and
RedBoot supports both serial ports on the board and
the ethernet port. The default serial port settings are 38400,8,N,1. RedBoot
the ethernet port. The default serial port settings are 38400,8,N,1. RedBoot
also supports flash management on the EDB7xxx for the NOR flash
also supports flash management on the EDB7xxx for the NOR flash
only.
only.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector (EDB7312 only).
              board's flash boot sector (EDB7312 only).
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
A Windows or Linux utility is used to program flash using serial port
A Windows or Linux utility is used to program flash using serial port
#1 via on-chip programming firmware. See board documentation for details on
#1 via on-chip programming firmware. See board documentation for details on
in situ flash programming. 
in situ flash programming. 
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
The MMU page tables and LCD display buffer, if enabled, are located
The MMU page tables and LCD display buffer, if enabled, are located
at the end of DRAM. NOTE</code></pre></td>
        <td class="diff"><pre><code>at the end of DRAM. <note><title>NOTE</code></pre></td>
      </tr>
      <tr class="diffcode">
        <td class="diff"><pre><code>
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x01ffffff    NOR Flash (EDB7211, EDB7212)
0x00000000 - 0x01ffffff    NOR Flash (EDB7211, EDB7212)
0x00000000 - 0x00ffffff    NOR Flash (EDB7312)
0x00000000 - 0x00ffffff    NOR Flash (EDB7312)
0x10000000 - 0x11ffffff    NAND Flash
0x10000000 - 0x11ffffff    NAND Flash
0x20000000 - 0x2fffffff    Expansion 2
0x20000000 - 0x2fffffff    Expansion 2
0x30000000 - 0x3fffffff    Expansion 3
0x30000000 - 0x3fffffff    Expansion 3
0x40000000 - 0x4fffffff    PCMCIA 0
0x40000000 - 0x4fffffff    PCMCIA 0
0x50000000 - 0x5fffffff    PCMCIA 1
0x50000000 - 0x5fffffff    PCMCIA 1
0x60000000 - 0x600007ff    On-chip SRAM
0x60000000 - 0x600007ff    On-chip SRAM
0x80000000 - 0x8fffffff    I/O registers
0x80000000 - 0x8fffffff    I/O registers
0xc0000000 - 0xc1ffffff    DRAM (EDB7211, EDB7212)
0xc0000000 - 0xc1ffffff    DRAM (EDB7211, EDB7212)
0xc0000000 - 0xc0ffffff    DRAM (EDB7312)
0xc0000000 - 0xc0ffffff    DRAM (EDB7312)
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x01ffffff  Y Y  DRAM
0x00000000 - 0x01ffffff  Y Y  DRAM
0x00000000 - 0x00fcffff  Y Y  DRAM (EDB7312)
0x00000000 - 0x00fcffff  Y Y  DRAM (EDB7312)
0x20000000 - 0x2fffffff  N N  Expansion 2
0x20000000 - 0x2fffffff  N N  Expansion 2
0x30000000 - 0x3fffffff  N N  Expansion 3
0x30000000 - 0x3fffffff  N N  Expansion 3
0x40000000 - 0x4fffffff  N N  PCMCIA 0
0x40000000 - 0x4fffffff  N N  PCMCIA 0
0x50000000 - 0x5fffffff  N N  PCMCIA 1
0x50000000 - 0x5fffffff  N N  PCMCIA 1
0x60000000 - 0x600007ff  Y Y  On-chip SRAM
0x60000000 - 0x600007ff  Y Y  On-chip SRAM
0x80000000 - 0x8fffffff  N N  I/O registers
0x80000000 - 0x8fffffff  N N  I/O registers
0xc0000000 - 0xc001ffff  N Y  LCD buffer (if configured)
0xc0000000 - 0xc001ffff  N Y  LCD buffer (if configured)
0xe0000000 - 0xe1ffffff  Y Y  NOR Flash (EDB7211, EDB7212)
0xe0000000 - 0xe1ffffff  Y Y  NOR Flash (EDB7211, EDB7212)
0xe0000000 - 0xe0ffffff  Y Y  NOR Flash (EDB7312)
0xe0000000 - 0xe0ffffff  Y Y  NOR Flash (EDB7312)
0xf0000000 - 0xf1ffffff  Y Y  NAND Flash
0xf0000000 - 0xf1ffffff  Y Y  NAND Flash
The flash based RedBoot image occupies virtual addresses 0xe0000000 - 0xe003ffff.
The flash based RedBoot image occupies virtual addresses 0xe0000000 - 0xe003ffff.
Platform Resource Usage
Platform Resource Usage
The EP7xxx timer #2 is used as a polled timer to provide timeout support
The EP7xxx timer #2 is used as a polled timer to provide timeout support
for network and XModem file transfers.
for network and XModem file transfers.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=edb7211
export TARGET=edb7211
export TARGET=edb7212
export TARGET=edb7212
export TARGET=edb7312
export TARGET=edb7312
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=edb7xxx
export PLATFORM_DIR=edb7xxx
Use one of the TARGET settings only.
Use one of the TARGET settings only.
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM9 Agilent AAED2000
ARM/ARM9 Agilent AAED2000
Overview
Overview
Agilent AAED2000 ARM9 (aaed)
Agilent AAED2000 ARM9 (aaed)
installing and testing
installing and testing
installing and testingAgilent AAED2000 ARM9 (aaed)
installing and testingAgilent AAED2000 ARM9 (aaed)
RedBoot supports the serial and ethernet ports
RedBoot supports the serial and ethernet ports
on the board. The default serial port settings are 38400,8,N,1.
on the board. The default serial port settings are 38400,8,N,1.
RedBoot also supports flash management on the AAED2000.
RedBoot also supports flash management on the AAED2000.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_primary_ROMRAM.ecm
              redboot_primary_ROMRAM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_primary_RAM.ecm
              redboot_primary_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
It is possible to install RedBoot in one of two ways. Either as
It is possible to install RedBoot in one of two ways. Either as
the primary bootmonitor on the board (installed to blocks 0-1 of the
the primary bootmonitor on the board (installed to blocks 0-1 of the
flash) or as the secondary bootmonitor on the board (installed to
flash) or as the secondary bootmonitor on the board (installed to
blocks 1-2 of the flash).
blocks 1-2 of the flash).
Presently, only the former method is supported.
Presently, only the former method is supported.
-->
RedBoot as Primary Bootmonitor
RedBoot as Primary Bootmonitor
RedBoot is installed in flash using the on-board ARM Boot
RedBoot is installed in flash using the on-board ARM Boot
Monitor.
Monitor.
Boot the board while pressing SPACE. This should bring up the
Boot the board while pressing SPACE. This should bring up the
Boot Monitor:
Boot Monitor:
ARM bootPROM [Version 1.3] Rebuilt on Jul 16 2001 at 16:21:36
ARM bootPROM [Version 1.3] Rebuilt on Jul 16 2001 at 16:21:36
Running on a P920 board Evaluation Board
Running on a P920 board Evaluation Board
Board Revision V1.0, ARM920T processor Processor
Board Revision V1.0, ARM920T processor Processor
Memory Size is 32MBytes, Flash Size is 32MBytes
Memory Size is 32MBytes, Flash Size is 32MBytes
Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Board designed by ARM Limited
Board designed by ARM Limited
Hardware support provided at http://www.arm.com/
Hardware support provided at http://www.arm.com/
For help on the available commands type ? or h
For help on the available commands type ? or h
boot Monitor >
boot Monitor >
Download the RAM mode image of RedBoot configured as a primary
Download the RAM mode image of RedBoot configured as a primary
bootmonitor using the ARM bootmonitor's SREC-download command:
bootmonitor using the ARM bootmonitor's SREC-download command:
boot Monitor > m
boot Monitor > m
Load Motorola S-Record image into memory and execute it
Load Motorola S-Record image into memory and execute it
The S-Record loader only accepts input on the serial port.
The S-Record loader only accepts input on the serial port.
Record addresses must be between 0x00008000 and 0x01E0F510.
Record addresses must be between 0x00008000 and 0x01E0F510.
Type Ctrl/C to exit loader.
Type Ctrl/C to exit loader.
Use the terminal emulator's ASCII upload command, or (on Linux) simply
Use the terminal emulator's ASCII upload command, or (on Linux) simply
cat the file to the serial port:
cat the file to the serial port:
$ cat redboot_primary_RAM/redboot.srec >/dev/ttyS1
$ cat redboot_primary_RAM/redboot.srec >/dev/ttyS1
You should see RedBoot start up:
You should see RedBoot start up:
FLASH configuration checksum error or invalid key
FLASH configuration checksum error or invalid key
Ethernet eth0: MAC address 00:30:d3:03:04:99
Ethernet eth0: MAC address 00:30:d3:03:04:99
IP: 192.168.42.111, Default server: 192.168.42.3
IP: 192.168.42.111, Default server: 192.168.42.3
RedBoot(tm) bootstrap and debug environment [RAM]
RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 13:15:40, Nov  9 2001
Non-certified release, version UNKNOWN - built 13:15:40, Nov  9 2001
Platform: AAED2000 system (ARM9) [Primary]
Platform: AAED2000 system (ARM9) [Primary]
Copyright (C) 2000, 2001, Red Hat, Inc.
Copyright (C) 2000, 2001, Red Hat, Inc.
RAM: 0x00000000-0x01f80000, 0x0006f208-0x01f51000 available
RAM: 0x00000000-0x01f80000, 0x0006f208-0x01f51000 available
FLASH: 0x60000000 - 0x62000000, 256 blocks of 0x00020000 bytes each.
FLASH: 0x60000000 - 0x62000000, 256 blocks of 0x00020000 bytes each.
RedBoot>
RedBoot>
As can be seen from the output above, the network has been configured
As can be seen from the output above, the network has been configured
to give the board an IP address and information about the default
to give the board an IP address and information about the default
server. If things are not set up on your network, you can still
server. If things are not set up on your network, you can still
continue, but use the Y-modem download method when loading the RedBoot
continue, but use the Y-modem download method when loading the RedBoot
ROMRAM mode image.
ROMRAM mode image.
Now initialize RedBoot's FIS:
Now initialize RedBoot's FIS:
RedBoot> fis init
RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
*** Initialize FLASH Image System
    Warning: device contents not erased, some blocks may not be usable
    Warning: device contents not erased, some blocks may not be usable
... Erase from 0x61fe0000-0x62000000: .
... Erase from 0x61fe0000-0x62000000: .
... Program from 0x01f5f000-0x01f5f300 at 0x61fe0000: .
... Program from 0x01f5f000-0x01f5f300 at 0x61fe0000: .
Download the ROMRAM mode image of RedBoot via ethernet:
Download the ROMRAM mode image of RedBoot via ethernet:
RedBoot> load -b %{FREEMEMLO} redboot_primary_ROMRAM/redboot.srec
RedBoot> load -b %{FREEMEMLO} redboot_primary_ROMRAM/redboot.srec
or using serial Y-modem protocol:
or using serial Y-modem protocol:
RedBoot> load -mode ymodem -b %{FREEMEMLO}
RedBoot> load -mode ymodem -b %{FREEMEMLO}
(Use the terminal emulator's Y-modem upload command to send the file
(Use the terminal emulator's Y-modem upload command to send the file
redboot_primary_ROMRAM/redboot.srec.)
redboot_primary_ROMRAM/redboot.srec.)
When the image has been downloaded, program it into flash:
When the image has been downloaded, program it into flash:
Address offset = 0x00ff8000
Address offset = 0x00ff8000
Entry point: 0x00008040, address range: 0x00008000-0x0002da80
Entry point: 0x00008040, address range: 0x00008000-0x0002da80
RedBoot> fi cr RedBoot
RedBoot> fi cr RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
An image named 'RedBoot' exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot'
* CAUTION * about to program 'RedBoot'
            at 0x60000000..0x6003ffff from 0x00100000 - continue (y/n)? y
            at 0x60000000..0x6003ffff from 0x00100000 - continue (y/n)? y
... Erase from 0x60000000-0x60040000: ..
... Erase from 0x60000000-0x60040000: ..
... Program from 0x00100000-0x00140000 at 0x60000000: ..
... Program from 0x00100000-0x00140000 at 0x60000000: ..
... Erase from 0x61fe0000-0x62000000: .
... Erase from 0x61fe0000-0x62000000: .
... Program from 0x01f5f000-0x01f7f000 at 0x61fe0000: .
... Program from 0x01f5f000-0x01f7f000 at 0x61fe0000: .
Now reset the board. You should see the RedBoot banner.
Now reset the board. You should see the RedBoot banner.
-->
Special RedBoot Commands 
Special RedBoot Commands 
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels,
and execution of Linux kernels,
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the AAED2000 are:
exec parameters used for the AAED2000 are:
-b <addr>
-b <addr>
Location Linux kernel was loaded to
Location Linux kernel was loaded to
-l <len>
-l <len>
Length of kernel
Length of kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
-r <addr>
-r <addr>
'initrd' ramdisk location
'initrd' ramdisk location
-s <len>
-s <len>
Length of initrd ramdisk
Length of initrd ramdisk
The parameters for kernel image base and size are automatically
The parameters for kernel image base and size are automatically
set after a load operation. So one way of starting the kernel would
set after a load operation. So one way of starting the kernel would
be:
be:
RedBoot> load -r -b 0x100000 zImage
RedBoot> load -r -b 0x100000 zImage
Raw file loaded 0x00100000-0x001a3d6c
Raw file loaded 0x00100000-0x001a3d6c
RedBoot> exec -c "console=ttyAC0,38400"
RedBoot> exec -c "console=ttyAC0,38400"
Using base address 0x00100000 and length 0x000a3d6c
Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....
Uncompressing Linux.....
An image could also be put in flash and started directly:
An image could also be put in flash and started directly:
RedBoot> exec -b 0x60040000 -l 0xc0000 -c "console=ttyAC0,38400"
RedBoot> exec -b 0x60040000 -l 0xc0000 -c "console=ttyAC0,38400"
Uncompressing Linux.....
Uncompressing Linux.....
Memory Maps 
Memory Maps 
The MMU page tables are located at 0x4000. NOTE</code></pre></td>
        <td class="diff"><pre><code><para>The MMU page tables are located at 0x4000. <note><title>NOTE</code></pre></td>
      </tr>
      <tr class="diffcode">
        <td class="diff"><pre><code>
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x01ffffff    Flash
0x00000000 - 0x01ffffff    Flash
0x10000000 - 0x100fffff    Ethernet
0x10000000 - 0x100fffff    Ethernet
0x30000000 - 0x300fffff    Board registers
0x30000000 - 0x300fffff    Board registers
0x40000000 - 0x4fffffff    PCMCIA Slot (0)
0x40000000 - 0x4fffffff    PCMCIA Slot (0)
0x50000000 - 0x5fffffff    Compact Flash Slot (1)
0x50000000 - 0x5fffffff    Compact Flash Slot (1)
0x80000000 - 0x800037ff    I/O registers
0x80000000 - 0x800037ff    I/O registers
0xb0060000 - 0xb00fffff    On-chip SRAM
0xb0060000 - 0xb00fffff    On-chip SRAM
0xf0000000 - 0xfd3fffff    SDRAM
0xf0000000 - 0xfd3fffff    SDRAM
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x01f7ffff  Y Y  SDRAM
0x00000000 - 0x01f7ffff  Y Y  SDRAM
0x01f80000 - 0x01ffffff  Y Y  SDRAM (used for LCD frame buffer)
0x01f80000 - 0x01ffffff  Y Y  SDRAM (used for LCD frame buffer)
0x10000000 - 0x100fffff  N N  Ethernet
0x10000000 - 0x100fffff  N N  Ethernet
0x30000000 - 0x300fffff  N N  Board registers
0x30000000 - 0x300fffff  N N  Board registers
0x40000000 - 0x4fffffff  N N  PCMCIA Slot (0)
0x40000000 - 0x4fffffff  N N  PCMCIA Slot (0)
0x50000000 - 0x5fffffff  N N  Compact Flash Slot (1)
0x50000000 - 0x5fffffff  N N  Compact Flash Slot (1)
0x60000000 - 0x61ffffff  N N  Flash
0x60000000 - 0x61ffffff  N N  Flash
0x80000000 - 0x800037ff  N N  I/O registers
0x80000000 - 0x800037ff  N N  I/O registers
0xf0000000 - 0xffffffff  N N  SDRAM (uncached)
0xf0000000 - 0xffffffff  N N  SDRAM (uncached)
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=aaed
export TARGET=aaed
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/aaed2000
export PLATFORM_DIR=arm9/aaed2000
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/ARM9 Altera Excalibur
ARM/ARM9 Altera Excalibur
Overview
Overview
Altera Excalibur ARM9 (excalibur_arm9)
Altera Excalibur ARM9 (excalibur_arm9)
installing and testing
installing and testing
installing and testingAltera Excalibur ARM9 (excalibur_arm9)
installing and testingAltera Excalibur ARM9 (excalibur_arm9)
RedBoot supports the serial port labelled
RedBoot supports the serial port labelled
P2 on the board. The default serial port settings are 57600,8,N,1. RedBoot
P2 on the board. The default serial port settings are 57600,8,N,1. RedBoot
also supports flash management on the Excalibur.
also supports flash management on the Excalibur.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
            
            
              REDBOOT
              REDBOOT
              [ROMRAM]
              [ROMRAM]
              RedBoot running from top of RAM, but contained in
              RedBoot running from top of RAM, but contained in
              the board's flash boot sector.
              the board's flash boot sector.
              redboot_REDBOOT.ecm
              redboot_REDBOOT.ecm
            
            
 NOTE
 NOTE
RedBoot is currently hardwired to use a 128MB SDRAM SIMM module.
RedBoot is currently hardwired to use a 128MB SDRAM SIMM module.
Initial Installation Method 
Initial Installation Method 
A Windows utility
A Windows utility
(exc_flash_programmer.exe) is used to
(exc_flash_programmer.exe) is used to
program flash using the ByteBlasterMV JTAG unit.
program flash using the ByteBlasterMV JTAG unit.
See board documentation for details on
See board documentation for details on
in situ flash programming. 
in situ flash programming. 
For ethernet to work (under Linux) the following jumper
For ethernet to work (under Linux) the following jumper
settings should be used on a REV 2 board: 
settings should be used on a REV 2 board: 
SW2-9    : OFF
SW2-9    : OFF
U179     : 2-3
U179     : 2-3
JP14-18  : OPEN
JP14-18  : OPEN
JP40-41  : 2-3
JP40-41  : 2-3
JP51-55  : 2-3
JP51-55  : 2-3
Flash management
Flash management
The ROMRAM and REDBOOT configurations supported on this platform
The ROMRAM and REDBOOT configurations supported on this platform
differ only in the memory layout (ROMRAM configuration runs RedBoot from
differ only in the memory layout (ROMRAM configuration runs RedBoot from
0x00008000 while REDBOOT configuration runs RedBoot from 0x07f80000). The
0x00008000 while REDBOOT configuration runs RedBoot from 0x07f80000). The
REDBOOT configuration allows applications to be loaded and run from
REDBOOT configuration allows applications to be loaded and run from
address 0x00008000.
address 0x00008000.
Special RedBoot Commands 
Special RedBoot Commands 
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels,
and execution of Linux kernels,
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the Excalibur are:
exec parameters used for the Excalibur are:
-b <addr>
-b <addr>
Location Linux kernel was loaded to
Location Linux kernel was loaded to
-l <len>
-l <len>
Length of kernel
Length of kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
-r <addr>
-r <addr>
'initrd' ramdisk location
'initrd' ramdisk location
-s <len>
-s <len>
Length of initrd ramdisk
Length of initrd ramdisk
The parameters for kernel image base and size are automatically
The parameters for kernel image base and size are automatically
set after a load operation. So one way of starting the kernel would
set after a load operation. So one way of starting the kernel would
be:
be:
RedBoot> load -r -b 0x100000 zImage
RedBoot> load -r -b 0x100000 zImage
Raw file loaded 0x00100000-0x001a3d6c
Raw file loaded 0x00100000-0x001a3d6c
RedBoot> exec -c "console=ttyUA0,57600"
RedBoot> exec -c "console=ttyUA0,57600"
Using base address 0x00100000 and length 0x000a3d6c
Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....
Uncompressing Linux.....
An image could also be put in flash and started directly:
An image could also be put in flash and started directly:
RedBoot> exec -b 0x40400000 -l 0xc0000 -c "console=ttyUA0,57600"
RedBoot> exec -b 0x40400000 -l 0xc0000 -c "console=ttyUA0,57600"
Uncompressing Linux.....
Uncompressing Linux.....
Memory Maps 
Memory Maps 
The MMU page tables are located at 0x4000. NOTE</code></pre></td>
        <td class="diff"><pre><code><para>The MMU page tables are located at 0x4000. <note><title>NOTE</code></pre></td>
      </tr>
      <tr class="diffcode">
        <td class="diff"><pre><code>
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x07ffffff    SDRAM
0x00000000 - 0x07ffffff    SDRAM
0x08000000 - 0x0805ffff    On-chip SRAM
0x08000000 - 0x0805ffff    On-chip SRAM
0x40000000 - 0x40ffffff    Flash
0x40000000 - 0x40ffffff    Flash
0x7fffc000 - 0x7fffffff    I/O registers
0x7fffc000 - 0x7fffffff    I/O registers
0x80000000 - 0x8001ffff    PLD
0x80000000 - 0x8001ffff    PLD
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x07ffffff  Y Y  SDRAM
0x00000000 - 0x07ffffff  Y Y  SDRAM
0x08000000 - 0x0805ffff  Y Y  On-chip SRAM
0x08000000 - 0x0805ffff  Y Y  On-chip SRAM
0x40000000 - 0x403fffff  N Y  Flash
0x40000000 - 0x403fffff  N Y  Flash
0x7fffc000 - 0x7fffffff  N N  I/O registers
0x7fffc000 - 0x7fffffff  N N  I/O registers
0x80000000 - 0x8001ffff  N N  PLD
0x80000000 - 0x8001ffff  N N  PLD
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=excalibur_arm9
export TARGET=excalibur_arm9
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/excalibur
export PLATFORM_DIR=arm9/excalibur
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA110) Intel EBSA 285
ARM/StrongARM(SA110) Intel EBSA 285
Overview
Overview
Intel StrongArm EBSA 285installing
Intel StrongArm EBSA 285installing
and testinginstalling and testing
and testinginstalling and testing
Intel StrongArm EBSA 285RedBoot
Intel StrongArm EBSA 285RedBoot
uses the single EBSA-285 serial port. The default serial port settings are
uses the single EBSA-285 serial port. The default serial port settings are
38400,8,N,1. If the EBSA-285 is used as a host on a PCI backplane, ethernet
38400,8,N,1. If the EBSA-285 is used as a host on a PCI backplane, ethernet
is supported using an Intel PRO/100+ ethernet adapter. Management of
is supported using an Intel PRO/100+ ethernet adapter. Management of
onboard flash is also supported.
onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
A linux application is used to program the flash over the PCI bus. Sources
A linux application is used to program the flash over the PCI bus. Sources
and build instructions for this utility are located in the RedBoot sources
and build instructions for this utility are located in the RedBoot sources
in: packages/hal/arm/ebsa285/current/support/linux/safl_util
in: packages/hal/arm/ebsa285/current/support/linux/safl_util
Communication Channels 
Communication Channels 
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
Physical and virtual mapping are mapped one to one on the EBSA-285 using
Physical and virtual mapping are mapped one to one on the EBSA-285 using
a first level page table located at address 0x4000. No second level tables
a first level page table located at address 0x4000. No second level tables
are used. NOTE 
are used. NOTE 
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Address Range            C B  Description
Address Range            C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x01ffffff  Y Y  SDRAM
0x00000000 - 0x01ffffff  Y Y  SDRAM
0x40000000 - 0x400fffff  N N  21285 Registers
0x40000000 - 0x400fffff  N N  21285 Registers
0x41000000 - 0x413fffff  Y N  flash
0x41000000 - 0x413fffff  Y N  flash
0x42000000 - 0x420fffff  N N  21285 CSR Space
0x42000000 - 0x420fffff  N N  21285 CSR Space
0x50000000 - 0x50ffffff  Y Y  Cache Clean
0x50000000 - 0x50ffffff  Y Y  Cache Clean
0x78000000 - 0x78ffffff  N N  Outbound Write Flush
0x78000000 - 0x78ffffff  N N  Outbound Write Flush
0x79000000 - 0x7c0fffff  N N  PCI IACK/Config/IO
0x79000000 - 0x7c0fffff  N N  PCI IACK/Config/IO
0x80000000 - 0xffffffff  N Y  PCI Memory 
0x80000000 - 0xffffffff  N Y  PCI Memory 
Platform Resource Usage 
Platform Resource Usage 
Timer3 is used as a polled timer to provide timeout support for networking
Timer3 is used as a polled timer to provide timeout support for networking
and XModem file transfers.
and XModem file transfers.
-->
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=ebsa285
export TARGET=ebsa285
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=ebsa285
export PLATFORM_DIR=ebsa285
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA1100) Intel Brutus
ARM/StrongARM(SA1100) Intel Brutus
Overview
Overview
Intel-SA1100 (Brutus)installing
Intel-SA1100 (Brutus)installing
and testinginstalling and testing
and testinginstalling and testing
Intel SA1100 (Brutus)RedBoot
Intel SA1100 (Brutus)RedBoot
supports both board serial ports on the Brutus board. The default serial port
supports both board serial ports on the Brutus board. The default serial port
settings are 38400,8,N,1. flash management is not currently supported. 
settings are 38400,8,N,1. flash management is not currently supported. 
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
Device programmer is used to program socketed flash parts.
Device programmer is used to program socketed flash parts.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
The first level page table is located at physical address 0xc0004000.
The first level page table is located at physical address 0xc0004000.
No second level tables are used.
No second level tables are used.
NOTE
NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x000fffff    Boot ROM
0x00000000 - 0x000fffff    Boot ROM
0x08000000 - 0x083fffff    Application flash
0x08000000 - 0x083fffff    Application flash
0x10000000 - 0x100fffff    SRAM
0x10000000 - 0x100fffff    SRAM
0x18000000 - 0x180fffff    Chip Select 3
0x18000000 - 0x180fffff    Chip Select 3
0x20000000 - 0x3fffffff    PCMCIA
0x20000000 - 0x3fffffff    PCMCIA
0x80000000 - 0xbfffffff    SA-1100 Internal Registers
0x80000000 - 0xbfffffff    SA-1100 Internal Registers
0xc0000000 - 0xc7ffffff    DRAM Bank 0
0xc0000000 - 0xc7ffffff    DRAM Bank 0
0xc8000000 - 0xcfffffff    DRAM Bank 1
0xc8000000 - 0xcfffffff    DRAM Bank 1
0xd0000000 - 0xd7ffffff    DRAM Bank 2
0xd0000000 - 0xd7ffffff    DRAM Bank 2
0xd8000000 - 0xdfffffff    DRAM Bank 3
0xd8000000 - 0xdfffffff    DRAM Bank 3
0xe0000000 - 0xe7ffffff    Cache Clean
0xe0000000 - 0xe7ffffff    Cache Clean
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x003fffff  Y Y  DRAM Bank 0
0x00000000 - 0x003fffff  Y Y  DRAM Bank 0
0x00400000 - 0x007fffff  Y Y  DRAM Bank 1
0x00400000 - 0x007fffff  Y Y  DRAM Bank 1
0x00800000 - 0x00bfffff  Y Y  DRAM Bank 2
0x00800000 - 0x00bfffff  Y Y  DRAM Bank 2
0x00c00000 - 0x00ffffff  Y Y  DRAM Bank 3
0x00c00000 - 0x00ffffff  Y Y  DRAM Bank 3
0x08000000 - 0x083fffff  Y Y  Application flash
0x08000000 - 0x083fffff  Y Y  Application flash
0x10000000 - 0x100fffff  Y N  SRAM
0x10000000 - 0x100fffff  Y N  SRAM
0x20000000 - 0x3fffffff  N N  PCMCIA
0x20000000 - 0x3fffffff  N N  PCMCIA
0x40000000 - 0x400fffff  Y Y  Boot ROM
0x40000000 - 0x400fffff  Y Y  Boot ROM
0x80000000 - 0xbfffffff  N N  SA-1100 Internal Registers
0x80000000 - 0xbfffffff  N N  SA-1100 Internal Registers
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
Platform Resource Usage 
Platform Resource Usage 
The SA11x0 OS timer is used as a polled timer to provide timeout
The SA11x0 OS timer is used as a polled timer to provide timeout
support for XModem file transfers.
support for XModem file transfers.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=brutus
export TARGET=brutus
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/brutus
export PLATFORM_DIR=sa11x0/brutus
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board 
ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board 
Overview
Overview
Intel SA1100 Multimedia Board
Intel SA1100 Multimedia Board
installing and testinginstalling
installing and testinginstalling
and testingIntel SA1100 Multimedia Board
and testingIntel SA1100 Multimedia Board
RedBoot supports both board serial ports. The default serial port
RedBoot supports both board serial ports. The default serial port
settings are 38400,8,N,1. flash management is also supported.
settings are 38400,8,N,1. flash management is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
A device programmer is used to program socketed flash parts.
A device programmer is used to program socketed flash parts.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
The first level page table is located at physical address 0xc0004000.
The first level page table is located at physical address 0xc0004000.
No second level tables are used.NOTE
No second level tables are used.NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x000fffff    Boot flash
0x00000000 - 0x000fffff    Boot flash
0x08000000 - 0x083fffff    Application flash
0x08000000 - 0x083fffff    Application flash
0x10000000 - 0x107fffff    SA-1101 Board Registers
0x10000000 - 0x107fffff    SA-1101 Board Registers
0x18000000 - 0x180fffff    Ct8020 DSP
0x18000000 - 0x180fffff    Ct8020 DSP
0x18400000 - 0x184fffff    XBusReg
0x18400000 - 0x184fffff    XBusReg
0x18800000 - 0x188fffff    SysRegA
0x18800000 - 0x188fffff    SysRegA
0x18c00000 - 0x18cfffff    SysRegB
0x18c00000 - 0x18cfffff    SysRegB
0x19000000 - 0x193fffff    Spare CPLD A
0x19000000 - 0x193fffff    Spare CPLD A
0x19400000 - 0x197fffff    Spare CPLD B
0x19400000 - 0x197fffff    Spare CPLD B
0x20000000 - 0x3fffffff    PCMCIA
0x20000000 - 0x3fffffff    PCMCIA
0x80000000 - 0xbfffffff    SA1100 Internal Registers
0x80000000 - 0xbfffffff    SA1100 Internal Registers
0xc0000000 - 0xc07fffff    DRAM Bank 0
0xc0000000 - 0xc07fffff    DRAM Bank 0
0xe0000000 - 0xe7ffffff    Cache Clean
0xe0000000 - 0xe7ffffff    Cache Clean
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x007fffff  Y Y  DRAM Bank 0
0x00000000 - 0x007fffff  Y Y  DRAM Bank 0
0x08000000 - 0x083fffff  Y Y  Application flash
0x08000000 - 0x083fffff  Y Y  Application flash
0x10000000 - 0x100fffff  N N  SA-1101 Registers
0x10000000 - 0x100fffff  N N  SA-1101 Registers
0x18000000 - 0x180fffff  N N  Ct8020 DSP
0x18000000 - 0x180fffff  N N  Ct8020 DSP
0x18400000 - 0x184fffff  N N  XBusReg
0x18400000 - 0x184fffff  N N  XBusReg
0x18800000 - 0x188fffff  N N  SysRegA
0x18800000 - 0x188fffff  N N  SysRegA
0x18c00000 - 0x18cfffff  N N  SysRegB
0x18c00000 - 0x18cfffff  N N  SysRegB
0x19000000 - 0x193fffff  N N  Spare CPLD A
0x19000000 - 0x193fffff  N N  Spare CPLD A
0x19400000 - 0x197fffff  N N  Spare CPLD B
0x19400000 - 0x197fffff  N N  Spare CPLD B
0x20000000 - 0x3fffffff  N N  PCMCIA
0x20000000 - 0x3fffffff  N N  PCMCIA
0x50000000 - 0x500fffff  Y Y  Boot flash
0x50000000 - 0x500fffff  Y Y  Boot flash
0x80000000 - 0xbfffffff  N N  SA1100 Internal Registers
0x80000000 - 0xbfffffff  N N  SA1100 Internal Registers
0xc0000000 - 0xc07fffff  N Y  DRAM Bank 0
0xc0000000 - 0xc07fffff  N Y  DRAM Bank 0
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
Platform Resource Usage 
Platform Resource Usage 
 The SA11x0 OS timer is used as a polled timer to provide timeout support
 The SA11x0 OS timer is used as a polled timer to provide timeout support
for XModem file transfers.
for XModem file transfers.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=sa1100mm
export TARGET=sa1100mm
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/sa1100mm
export PLATFORM_DIR=sa11x0/sa1100mm
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA1110) Intel SA1110 (Assabet) 
ARM/StrongARM(SA1110) Intel SA1110 (Assabet) 
Overview
Overview
Intel SA1110 (Assabet)installing
Intel SA1110 (Assabet)installing
and testinginstalling and testing
and testinginstalling and testing
Intel SA1110 (Assabet)RedBoot
Intel SA1110 (Assabet)RedBoot
supports the board serial port and the compact flash ethernet port. The default
supports the board serial port and the compact flash ethernet port. The default
serial port settings are 38400,8,N,1. RedBoot also supports flash management
serial port settings are 38400,8,N,1. RedBoot also supports flash management
on the Assabet. 
on the Assabet. 
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method
Initial Installation Method
A Windows or Linux utility is used to program flash over parallel port
A Windows or Linux utility is used to program flash over parallel port
driven JTAG interface. See board documentation for details on in situ flash
driven JTAG interface. See board documentation for details on in situ flash
programming. 
programming. 
The flash parts are also socketed and may be programmed in a suitable
The flash parts are also socketed and may be programmed in a suitable
device programmer.
device programmer.
Special RedBoot Commands
Special RedBoot Commands
None.
None.
Memory Maps
Memory Maps
The first level page table is located at physical address 0xc0004000.
The first level page table is located at physical address 0xc0004000.
No second level tables are used.NOTE
No second level tables are used.NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x07ffffff    flash
0x00000000 - 0x07ffffff    flash
0x08000000 - 0x0fffffff    SA-1111 Board flash
0x08000000 - 0x0fffffff    SA-1111 Board flash
0x10000000 - 0x17ffffff    Board Registers
0x10000000 - 0x17ffffff    Board Registers
0x18000000 - 0x1fffffff    Ethernet
0x18000000 - 0x1fffffff    Ethernet
0x20000000 - 0x2fffffff    SA-1111 Board PCMCIA
0x20000000 - 0x2fffffff    SA-1111 Board PCMCIA
0x30000000 - 0x3fffffff    Compact Flash
0x30000000 - 0x3fffffff    Compact Flash
0x40000000 - 0x47ffffff    SA-1111 Board
0x40000000 - 0x47ffffff    SA-1111 Board
0x48000000 - 0x4bffffff    GFX
0x48000000 - 0x4bffffff    GFX
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0xc0000000 - 0xc7ffffff    DRAM Bank 0
0xc0000000 - 0xc7ffffff    DRAM Bank 0
0xc8000000 - 0xcfffffff    DRAM Bank 1
0xc8000000 - 0xcfffffff    DRAM Bank 1
0xd0000000 - 0xd7ffffff    DRAM Bank 2
0xd0000000 - 0xd7ffffff    DRAM Bank 2
0xd8000000 - 0xdfffffff    DRAM Bank 3
0xd8000000 - 0xdfffffff    DRAM Bank 3
0xe0000000 - 0xe7ffffff    Cache Clean
0xe0000000 - 0xe7ffffff    Cache Clean
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x01ffffff  Y Y  DRAM Bank 0
0x00000000 - 0x01ffffff  Y Y  DRAM Bank 0
0x08000000 - 0x0fffffff  Y Y  SA-1111 Board flash
0x08000000 - 0x0fffffff  Y Y  SA-1111 Board flash
0x10000000 - 0x17ffffff  N N  Board Registers
0x10000000 - 0x17ffffff  N N  Board Registers
0x18000000 - 0x1fffffff  N N  Ethernet
0x18000000 - 0x1fffffff  N N  Ethernet
0x20000000 - 0x2fffffff  N N  SA-1111 Board PCMCIA
0x20000000 - 0x2fffffff  N N  SA-1111 Board PCMCIA
0x30000000 - 0x3fffffff  N N  Compact Flash
0x30000000 - 0x3fffffff  N N  Compact Flash
0x40000000 - 0x47ffffff  N N  SA-1111 Board
0x40000000 - 0x47ffffff  N N  SA-1111 Board
0x48000000 - 0x4bffffff  N N  GFX
0x48000000 - 0x4bffffff  N N  GFX
0x50000000 - 0x57ffffff  Y Y  flash
0x50000000 - 0x57ffffff  Y Y  flash
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff  N Y  DRAM Bank 0
0xc0000000 - 0xc1ffffff  N Y  DRAM Bank 0
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
Platform Resource Usage 
Platform Resource Usage 
The SA11x0 OS timer is used as a polled timer to provide timeout support
The SA11x0 OS timer is used as a polled timer to provide timeout support
for network and XModem file transfers.
for network and XModem file transfers.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=assabet
export TARGET=assabet
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/assabet
export PLATFORM_DIR=sa11x0/assabet
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine
ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine
Overview
Overview
commEngineinstalling and testing
commEngineinstalling and testing
nanoEngine
nanoEngine
installing and testinginstalling
installing and testinginstalling
and testingcommEngine
and testingcommEngine
installing and testingnanoEngine
installing and testingnanoEngine
RedBoot supports a serial port and the built in ethernet port
RedBoot supports a serial port and the built in ethernet port
for communication and downloads. The default serial port settings are 38400,8,N,1.
for communication and downloads. The default serial port settings are 38400,8,N,1.
RedBoot runs from and supports flash management for the system flash
RedBoot runs from and supports flash management for the system flash
region.
region.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              POST
              POST
              [ROM]
              [ROM]
              RedBoot running from the first free flash block
              RedBoot running from the first free flash block
              at 0x40000.
              at 0x40000.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation
Initial Installation
Unlike other targets, the nanoEngine comes equipped with boot firmware
Unlike other targets, the nanoEngine comes equipped with boot firmware
which you cannot modify.  See chapter 5, "nanoEngine Firmware" of the 
which you cannot modify.  See chapter 5, "nanoEngine Firmware" of the 
nanoEngine Hardware Reference Manual (we refer to "July 17, 2000
nanoEngine Hardware Reference Manual (we refer to "July 17, 2000
Rev 0.6") from Bright Star Engineering. 
Rev 0.6") from Bright Star Engineering. 
Because of this, eCos, and therefore Redboot, only supports a
Because of this, eCos, and therefore Redboot, only supports a
special configuration of the ROM mode, starting at offset 0x40000 in
special configuration of the ROM mode, starting at offset 0x40000 in
the flash.
the flash.
Briefly, the POST-configuration RedBoot image lives in flash following the
Briefly, the POST-configuration RedBoot image lives in flash following the
BSE firmware. The BSE firmware is configured, using its standard 
BSE firmware. The BSE firmware is configured, using its standard 
bootcmd command, to run RedBoot at startup.
bootcmd command, to run RedBoot at startup.
Download Instructions
Download Instructions
You can perform the initial load of the POST-configuration RedBoot image into
You can perform the initial load of the POST-configuration RedBoot image into
flash using the BSE firmware's load command.
flash using the BSE firmware's load command.
This will load a binary file, using TFTP, and program it into flash in one
This will load a binary file, using TFTP, and program it into flash in one
operation. Because no memory management is used in the BSE firmware, flash
operation. Because no memory management is used in the BSE firmware, flash
is mapped from address zero upwards, so the address for the RedBoot POST image
is mapped from address zero upwards, so the address for the RedBoot POST image
is 0x40000.  You must use the binary version of RedBoot for this,
is 0x40000.  You must use the binary version of RedBoot for this,
redboot-post.bin.
redboot-post.bin.
This assumes you have set up the other BSE firmware config
This assumes you have set up the other BSE firmware config
parameters such that it can communicate over your network to your TFTP
parameters such that it can communicate over your network to your TFTP
server.
server.
>load redboot-post.bin 40000
>load redboot-post.bin 40000
loading ... erasing blk at 00040000
loading ... erasing blk at 00040000
erasing blk at 00050000
erasing blk at 00050000
94168 bytes loaded cksum 00008579
94168 bytes loaded cksum 00008579
done
done
>
>
> set bootcmd "go 40000"
> set bootcmd "go 40000"
> get
> get
myip = 10.16.19.198
myip = 10.16.19.198
netmask = 255.255.255.0
netmask = 255.255.255.0
eth = 0
eth = 0
gateway = 10.16.19.66
gateway = 10.16.19.66
serverip = 10.16.19.66
serverip = 10.16.19.66
bootcmd = go 40000
bootcmd = go 40000
>
>
NOTE
NOTE
the BSE firmware runs its serial IO at 9600 Baud; RedBoot runs instead
the BSE firmware runs its serial IO at 9600 Baud; RedBoot runs instead
at 38400 Baud. You must select the right baud rate in your terminal program
at 38400 Baud. You must select the right baud rate in your terminal program
to be able to set up the BSE firmware.
to be able to set up the BSE firmware.
After a reset, the BSE firmware will print
After a reset, the BSE firmware will print
Boot: BSE 2000 Sep 12 2000 14:00:30
Boot: BSE 2000 Sep 12 2000 14:00:30
autoboot: "go 40000" [hit ESC to abort]
autoboot: "go 40000" [hit ESC to abort]
and then RedBoot starts, switching to 38400 Baud.
and then RedBoot starts, switching to 38400 Baud.
Once you have installed a bootable RedBoot in the system in this
Once you have installed a bootable RedBoot in the system in this
manner, we advise re-installing using the generic method described in
manner, we advise re-installing using the generic method described in
 in order that the Flash Image System
 in order that the Flash Image System
contains an appropriate description of the flash entries.
contains an appropriate description of the flash entries.
Cohabiting with POST in Flash
Cohabiting with POST in Flash
The configuration file named redboot_POST.ecm
The configuration file named redboot_POST.ecm
configures RedBoot to build for execution at address 0x50040000 (or, during
configures RedBoot to build for execution at address 0x50040000 (or, during
bootup, 0x00040000). This is to allow power-on self-test (POST) code or immutable
bootup, 0x00040000). This is to allow power-on self-test (POST) code or immutable
firmware to live in the lower addresses of the flash and to run before RedBoot
firmware to live in the lower addresses of the flash and to run before RedBoot
gets control. The assumption is that RedBoot will be entered at its base address
gets control. The assumption is that RedBoot will be entered at its base address
in physical memory, that is 0x00040000.
in physical memory, that is 0x00040000.
Alternatively, for testing, you can call it in an already running system
Alternatively, for testing, you can call it in an already running system
by using go 0x50040040 at another RedBoot prompt, or
by using go 0x50040040 at another RedBoot prompt, or
a branch to that address. The address is where the reset vector
a branch to that address. The address is where the reset vector
points. It is reported by RedBoot's load command
points. It is reported by RedBoot's load command
and listed
and listed
by the fis list command, amongst other
by the fis list command, amongst other
places.
places.
Using the POST configuration enables a normal config option which causes
Using the POST configuration enables a normal config option which causes
linking and initialization against memory layout files called "...post..."
linking and initialization against memory layout files called "...post..."
rather than "...rom..." or "...ram..." in the include/pkgconf
rather than "...rom..." or "...ram..." in the include/pkgconf
 directory. Specifically:include/pkgconf/mlt_arm_sa11x0_nano_post.h
 directory. Specifically:include/pkgconf/mlt_arm_sa11x0_nano_post.h
include/pkgconf/mlt_arm_sa11x0_nano_post.ldi
include/pkgconf/mlt_arm_sa11x0_nano_post.ldi
include/pkgconf/mlt_arm_sa11x0_nano_post.mlt
include/pkgconf/mlt_arm_sa11x0_nano_post.mlt
It is these you should edit if you wish to move the execution address
It is these you should edit if you wish to move the execution address
from 0x50040000 in the POST configuration.  Startup mode naturally
from 0x50040000 in the POST configuration.  Startup mode naturally
remains ROM in this configuration.
remains ROM in this configuration.
Because the nanoEngine contains immutable boot firmware at the start
Because the nanoEngine contains immutable boot firmware at the start
of flash, RedBoot for this target is configured to reserve that area in the
of flash, RedBoot for this target is configured to reserve that area in the
Flash Image System, and to create by default an entry for the POST
Flash Image System, and to create by default an entry for the POST
mode RedBoot.
mode RedBoot.
RedBoot> fis list
RedBoot> fis list
Name              FLASH addr  Mem addr    Length      Entry point
Name              FLASH addr  Mem addr    Length      Entry point
(reserved)        0x50000000  0x50000000  0x00040000  0x00000000
(reserved)        0x50000000  0x50000000  0x00040000  0x00000000
RedBoot[post]     0x50040000  0x00100000  0x00020000  0x50040040
RedBoot[post]     0x50040000  0x00100000  0x00020000  0x50040040
RedBoot config    0x503E0000  0x503E0000  0x00010000  0x00000000
RedBoot config    0x503E0000  0x503E0000  0x00010000  0x00000000
FIS directory     0x503F0000  0x503F0000  0x00010000  0x00000000
FIS directory     0x503F0000  0x503F0000  0x00010000  0x00000000
RedBoot>
RedBoot>
The entry "(reserved)" ensures that the FIS cannot attempt
The entry "(reserved)" ensures that the FIS cannot attempt
to overwrite the BSE firmware, thus ensuring that the board remains bootable
to overwrite the BSE firmware, thus ensuring that the board remains bootable
and recoverable even after installing a broken RedBoot image.
and recoverable even after installing a broken RedBoot image.
Special RedBoot Commands
Special RedBoot Commands
The nanoEngine/commEngine has one or two Intel i82559 Ethernet controllers
The nanoEngine/commEngine has one or two Intel i82559 Ethernet controllers
installed, but these have no associated serial EEPROM in which to record their
installed, but these have no associated serial EEPROM in which to record their
Ethernet Station Address (ESA, or MAC address). The BSE firmware records an
Ethernet Station Address (ESA, or MAC address). The BSE firmware records an
ESA for the device it uses, but this information is not available to RedBoot;
ESA for the device it uses, but this information is not available to RedBoot;
we cannot share it.
we cannot share it.
To keep the ESAs for the two ethernet interfaces, two new items of RedBoot
To keep the ESAs for the two ethernet interfaces, two new items of RedBoot
configuration data are introduced.  You can list them with the RedBoot command 
configuration data are introduced.  You can list them with the RedBoot command 
fconfig -l thus:
fconfig -l thus:
RedBoot> fconfig -l
RedBoot> fconfig -l
Run script at boot: false
Run script at boot: false
Use BOOTP for network configuration: false
Use BOOTP for network configuration: false
Local IP address: 10.16.19.91
Local IP address: 10.16.19.91
Default server IP address: 10.16.19.66
Default server IP address: 10.16.19.66
Network hardware address [MAC] for eth0: 0x00:0xB5:0xE0:0xB5:0xE0:0x99
Network hardware address [MAC] for eth0: 0x00:0xB5:0xE0:0xB5:0xE0:0x99
Network hardware address [MAC] for eth1: 0x00:0xB5:0xE0:0xB5:0xE0:0x9A
Network hardware address [MAC] for eth1: 0x00:0xB5:0xE0:0xB5:0xE0:0x9A
GDB connection port: 9000
GDB connection port: 9000
Network debug at boot time: false
Network debug at boot time: false
RedBoot>
RedBoot>
You should set them before running RedBoot or eCos applications with
You should set them before running RedBoot or eCos applications with
the board connected to a network. The fconfig 
the board connected to a network. The fconfig 
command can be used as for any configuration data item; the entire ESA
command can be used as for any configuration data item; the entire ESA
is entered in one line.
is entered in one line.
Memory Maps
Memory Maps
The first level page table is located at physical address 0xc0004000.
The first level page table is located at physical address 0xc0004000.
 No second level tables are used.   NOTE
 No second level tables are used.   NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x003fffff    4Mb FLASH (nCS0)
0x00000000 - 0x003fffff    4Mb FLASH (nCS0)
0x18000000 - 0x18ffffff    Internal PCI bus - 2 x i82559 ethernet
0x18000000 - 0x18ffffff    Internal PCI bus - 2 x i82559 ethernet
0x40000000 - 0x4fffffff    External IO or PCI bus
0x40000000 - 0x4fffffff    External IO or PCI bus
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0xc0000000 - 0xc7ffffff    DRAM Bank 0 - 32Mb SDRAM
0xc0000000 - 0xc7ffffff    DRAM Bank 0 - 32Mb SDRAM
0xc8000000 - 0xcfffffff    DRAM Bank 1 - empty
0xc8000000 - 0xcfffffff    DRAM Bank 1 - empty
0xe0000000 - 0xe7ffffff    Cache Clean
0xe0000000 - 0xe7ffffff    Cache Clean
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x001fffff  Y Y  DRAM - 8Mb to 32Mb
0x00000000 - 0x001fffff  Y Y  DRAM - 8Mb to 32Mb
0x18000000 - 0x180fffff  N N  Internal PCI bus - 2 x i82559 ethernet
0x18000000 - 0x180fffff  N N  Internal PCI bus - 2 x i82559 ethernet
0x40000000 - 0x4fffffff  N N  External IO or PCI bus
0x40000000 - 0x4fffffff  N N  External IO or PCI bus
0x50000000 - 0x51ffffff  Y Y  Up to 32Mb FLASH (nCS0)
0x50000000 - 0x51ffffff  Y Y  Up to 32Mb FLASH (nCS0)
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0xc0000000 - 0xc0ffffff  N Y  DRAM Bank 0: 8 or 16Mb
0xc0000000 - 0xc0ffffff  N Y  DRAM Bank 0: 8 or 16Mb
0xc8000000 - 0xc8ffffff  N Y  DRAM Bank 1: 8 or 16Mb or absent
0xc8000000 - 0xc8ffffff  N Y  DRAM Bank 1: 8 or 16Mb or absent
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean
The ethernet devices use a "PCI window" to communicate with the CPU.
The ethernet devices use a "PCI window" to communicate with the CPU.
This is 1Mb of SDRAM which is shared with the ethernet devices that are on
This is 1Mb of SDRAM which is shared with the ethernet devices that are on
the PCI bus. It is neither cached nor buffered, to ensure that CPU and PCI
the PCI bus. It is neither cached nor buffered, to ensure that CPU and PCI
accesses see correct data in the correct order. By default it is configured
accesses see correct data in the correct order. By default it is configured
to be megabyte number 30, at addresses 0x01e00000-0x01efffff. This can be
to be megabyte number 30, at addresses 0x01e00000-0x01efffff. This can be
modified, and indeed must be, if less than 32Mb of SDRAM is installed, via
modified, and indeed must be, if less than 32Mb of SDRAM is installed, via
the memory layout tool, or by moving the section __pci_window
the memory layout tool, or by moving the section __pci_window
 referred to by symbols CYGMEM_SECTION_pci_window*
 referred to by symbols CYGMEM_SECTION_pci_window*
 in the linker script.   
 in the linker script.   
Though the nanoEngine ships with 32Mb of SDRAM all attached to DRAM
Though the nanoEngine ships with 32Mb of SDRAM all attached to DRAM
bank 0, the code can cope with any of these combinations also; "2 x " in this
bank 0, the code can cope with any of these combinations also; "2 x " in this
context means one device in each DRAM Bank.     1 x 8Mb = 8Mb     2 x 8Mb = 16Mb
context means one device in each DRAM Bank.     1 x 8Mb = 8Mb     2 x 8Mb = 16Mb
1 x 16Mb = 16Mb   2 x 16Mb = 32MbAll are programmed the same
1 x 16Mb = 16Mb   2 x 16Mb = 32MbAll are programmed the same
in the memory controller.   
in the memory controller.   
Startup code detects which is fitted and programs the memory map accordingly.
Startup code detects which is fitted and programs the memory map accordingly.
If the device(s) is 8Mb, then there are gaps in the physical memory map, because
If the device(s) is 8Mb, then there are gaps in the physical memory map, because
a high order address bit is not connected. The gaps are the higher 2Mb out
a high order address bit is not connected. The gaps are the higher 2Mb out
of every 4Mb.
of every 4Mb.
 The SA11x0 OS timer is used as a polled timer to provide timeout
 The SA11x0 OS timer is used as a polled timer to provide timeout
support within RedBoot.
support within RedBoot.
Nano Platform Port
Nano Platform Port
The nano is in the set of SA11X0-based platforms. It uses the arm architectural
The nano is in the set of SA11X0-based platforms. It uses the arm architectural
HAL, the sa11x0 variant HAL, plus the nano platform hal. These are components
HAL, the sa11x0 variant HAL, plus the nano platform hal. These are components
        CYGPKG_HAL_ARM                  hal/arm/arch/
        CYGPKG_HAL_ARM                  hal/arm/arch/
CYGPKG_HAL_ARM_SA11X0           hal/arm/sa11x0/var
CYGPKG_HAL_ARM_SA11X0           hal/arm/sa11x0/var
CYGPKG_HAL_ARM_SA11X0_NANO      hal/arm/sa11x0/nano respectively.
CYGPKG_HAL_ARM_SA11X0_NANO      hal/arm/sa11x0/nano respectively.
  
  
The target name is "nano" which includes all these, plus the ethernet
The target name is "nano" which includes all these, plus the ethernet
driver packages, flash driver, and so on.
driver packages, flash driver, and so on.
Ethernet Driver
Ethernet Driver
The ethernet driver is in two parts:   
The ethernet driver is in two parts:   
A generic ether driver for Intel i8255x series devices, specifically
A generic ether driver for Intel i8255x series devices, specifically
the i82559, is devs/eth/intel/i82559.  Its
the i82559, is devs/eth/intel/i82559.  Its
package name is CYGPKG_DEVS_ETH_INTEL_I82559.
package name is CYGPKG_DEVS_ETH_INTEL_I82559.
  
  
The platform-specific ether driver is devs/eth/arm/nano
The platform-specific ether driver is devs/eth/arm/nano
.  Its package is CYGPKG_DEVS_ETH_ARM_NANO
.  Its package is CYGPKG_DEVS_ETH_ARM_NANO
.  This tells the generic driver the address in IO memory
.  This tells the generic driver the address in IO memory
of the chip, for example, and other configuration details. This driver picks
of the chip, for example, and other configuration details. This driver picks
up the ESA from RedBoot's configuration data - unless configured to use a
up the ESA from RedBoot's configuration data - unless configured to use a
static ESA in the usual manner. 
static ESA in the usual manner. 
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=nano
export TARGET=nano
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/nano
export PLATFORM_DIR=sa11x0/nano
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC
ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC
Compaq iPAQ PocketPCinstalling and
Compaq iPAQ PocketPCinstalling and
testinginstalling and testing
testinginstalling and testing
Compaq iPAQ PocketPC
Compaq iPAQ PocketPC
Overview
Overview
RedBoot supports the serial port via cradle or cable, and Compact Flash
RedBoot supports the serial port via cradle or cable, and Compact Flash
ethernet cards if fitted for communication and downloads. The LCD touchscreen
ethernet cards if fitted for communication and downloads. The LCD touchscreen
may also be used for the console, although by default RedBoot will switch
may also be used for the console, although by default RedBoot will switch
exclusively to one channel once input arrives. 
exclusively to one channel once input arrives. 
The default serial port settings are 38400,8,N,1. RedBoot runs from
The default serial port settings are 38400,8,N,1. RedBoot runs from
and supports flash management for the system flash region. 
and supports flash management for the system flash region. 
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
            
            
              WinCE
              WinCE
              [RAM]
              [RAM]
              RedBoot running from RAM, started from
              RedBoot running from RAM, started from
              OSloader.
              OSloader.
              redboot_WinCE.ecm
              redboot_WinCE.ecm
            
            
Initial Installation
Initial Installation
RedBoot ROM and WinCE mode images are needed by the installation process.
RedBoot ROM and WinCE mode images are needed by the installation process.
Installing RedBoot on the iPAQ using Windows/CE
Installing RedBoot on the iPAQ using Windows/CE
The Windows/CE environment originally shipped with the iPAQ contains a hidden
The Windows/CE environment originally shipped with the iPAQ contains a hidden
mini-loader, sometimes referred to as the "Parrot" loader.  This loader can
mini-loader, sometimes referred to as the "Parrot" loader.  This loader can
be started by holding down the action button (the joypad) while resetting
be started by holding down the action button (the joypad) while resetting
the unit or when powering on.  At this point, a blue bird will appear on
the unit or when powering on.  At this point, a blue bird will appear on
the LCD screen.  Also at this point, a simple loader can be accessed over the
the LCD screen.  Also at this point, a simple loader can be accessed over the
serial port at 115200/8N1.  Using this loader, the contents of the iPAQ flash
serial port at 115200/8N1.  Using this loader, the contents of the iPAQ flash
memory can be saved to a Compact Flash memory card.
memory can be saved to a Compact Flash memory card.
NOTEWe have only tested this operation with a 32Mbyte CF memory card.
NOTEWe have only tested this operation with a 32Mbyte CF memory card.
Given that the backup will take 16MBytes + 1KByte, something more than a 16MByte
Given that the backup will take 16MBytes + 1KByte, something more than a 16MByte
card will be required.
card will be required.
Use the "r2c" command to dump Flash contents to the CF memory card.  Once this
Use the "r2c" command to dump Flash contents to the CF memory card.  Once this
completes, RedBoot can be installed with no fear since the Parrot loader can
completes, RedBoot can be installed with no fear since the Parrot loader can
be used to restore the Flash contents at a later time.
be used to restore the Flash contents at a later time.
If you expect to completely recover the state of the iPAQ Win/CE environment, then
If you expect to completely recover the state of the iPAQ Win/CE environment, then
HotSync should be run to backup all "RAM" files as well before installing RedBoot.
HotSync should be run to backup all "RAM" files as well before installing RedBoot.
The next step in installing RedBoot on the iPAQ actually involves Windows/CE,
The next step in installing RedBoot on the iPAQ actually involves Windows/CE,
which is the native environment on the unit.  Using WinCE, you need to
which is the native environment on the unit.  Using WinCE, you need to
install an application which will run a RAM based version of RedBoot. Once
install an application which will run a RAM based version of RedBoot. Once
this is installed and running, RedBoot can be used to update the flash with
this is installed and running, RedBoot can be used to update the flash with
a native/ROM version of RedBoot.       
a native/ROM version of RedBoot.       
Using ActiveSync, copy the file OSloader to your iPAQ. 
Using ActiveSync, copy the file OSloader to your iPAQ. 
Using ActiveSync, copy the file redboot_WinCE.bin to the iPAQ
Using ActiveSync, copy the file redboot_WinCE.bin to the iPAQ
as bootldr in its root directory.  Note: this is not the top level folder
as bootldr in its root directory.  Note: this is not the top level folder
displayed by Windows (Mobile Device), but rather the 'My Pocket PC' folder
displayed by Windows (Mobile Device), but rather the 'My Pocket PC' folder
within it.
within it.
Execute OSloader.  If you didn't create a shortcut, then you
Execute OSloader.  If you didn't create a shortcut, then you
will have to poke around for it using the WinCE file explorer.
will have to poke around for it using the WinCE file explorer.
Choose the Tools->BootLdr->Run after loading
Choose the Tools->BootLdr->Run after loading
from file menu item.   
from file menu item.   
At this point, the RAM based version of RedBoot should be running.
At this point, the RAM based version of RedBoot should be running.
 You should be able to return to this point by just executing the last two
 You should be able to return to this point by just executing the last two
steps of the previous process if necessary.
steps of the previous process if necessary.
Installing RedBoot on the iPAQ - using the Compaq boot loader
Installing RedBoot on the iPAQ - using the Compaq boot loader
This method of installation is no longer supported.
This method of installation is no longer supported.
If you have previously installed either the Compaq boot loader or older
If you have previously installed either the Compaq boot loader or older
versions of RedBoot, restore the Win/CE environment and proceed as outlined
versions of RedBoot, restore the Win/CE environment and proceed as outlined
above.
above.
Setting up and testing RedBoot
Setting up and testing RedBoot
When RedBoot first comes up, it will want to initialize its LCD touch
When RedBoot first comes up, it will want to initialize its LCD touch
screen parameters. It does this by displaying a keyboard graphic and asks
screen parameters. It does this by displaying a keyboard graphic and asks
you to press certain keys.  Using the stylus, press and hold until the prompt
you to press certain keys.  Using the stylus, press and hold until the prompt
is withdrawn. When you lift the stylus, RedBoot will continue with the next
is withdrawn. When you lift the stylus, RedBoot will continue with the next
calibration.    
calibration.    
Once the LCD touchscreen has been calibrated, RedBoot will start. The
Once the LCD touchscreen has been calibrated, RedBoot will start. The
calibration step can be skipped by pressing the return/abort
calibration step can be skipped by pressing the return/abort
button on the unit (right most button with a curved arrow icon). Additionally,
button on the unit (right most button with a curved arrow icon). Additionally,
the unit will assume default values if the screen is not touched within about
the unit will assume default values if the screen is not touched within about
15 seconds.   
15 seconds.   
Once RedBoot has started, you should get information similar to this
Once RedBoot has started, you should get information similar to this
on the LCD screen.  It will also appear on the serial port at 38400,8,N,1.
on the LCD screen.  It will also appear on the serial port at 38400,8,N,1.
RedBoot(tm) bootstrap and debug environment [ROM]
RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 06:17:41, Mar 19 2001
Non-certified release, version UNKNOWN - built 06:17:41, Mar 19 2001
Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Copyright (C) 2000, 2001, Red Hat, Inc.
Copyright (C) 2000, 2001, Red Hat, Inc.
RAM: 0x00000000-0x01fc0000, 0x0001f200-0x01f70000 available
RAM: 0x00000000-0x01fc0000, 0x0001f200-0x01f70000 available
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes
each.
each.
Since the LCD touchscreen is only 30 characters wide, some of this
Since the LCD touchscreen is only 30 characters wide, some of this
data will be off the right hand side of the display. The joypad may be
data will be off the right hand side of the display. The joypad may be
used to pan left and right in order to see the full lines.  
used to pan left and right in order to see the full lines.  
If you have a Compact Flash ethernet card, RedBoot should find
If you have a Compact Flash ethernet card, RedBoot should find
it.  You'll need to have BOOTP enabled for this unit (see your
it.  You'll need to have BOOTP enabled for this unit (see your
sysadmin for details).  If it does, it will print a message like:
sysadmin for details).  If it does, it will print a message like:
... Waiting for network card: .Ready!
... Waiting for network card: .Ready!
Socket Communications Inc: CF+ LPE Revision E 08/04/99
Socket Communications Inc: CF+ LPE Revision E 08/04/99
IP: 192.168.1.34, Default server: 192.168.1.101
IP: 192.168.1.34, Default server: 192.168.1.101
Installing RedBoot permanently
Installing RedBoot permanently
Once you are satisfied with the setup and that RedBoot is operating
Once you are satisfied with the setup and that RedBoot is operating
properly in your environment, you can set up your iPAQ unit to have RedBoot
properly in your environment, you can set up your iPAQ unit to have RedBoot
be the bootstrap application.
be the bootstrap application.
CAUTION
CAUTION
This step will destroy your Windows/CE environment.
This step will destroy your Windows/CE environment.
Before you take this step, it is strongly recommended you save your WinCE FLASH contents
Before you take this step, it is strongly recommended you save your WinCE FLASH contents
as outlined above using the "parrot" loader, or
as outlined above using the "parrot" loader, or
by using the Compaq OSloader:
by using the Compaq OSloader:
Using OSloader on the iPAQ, select the Tools->Flash->Save
Using OSloader on the iPAQ, select the Tools->Flash->Save
to files....  menu item.
to files....  menu item.
Four (4) files, 4MB each in size will be created.
Four (4) files, 4MB each in size will be created.
After each file is created, copy the file to your computer,
After each file is created, copy the file to your computer,
then delete the file from the iPAQ to make room in the WinCE ramdisk for the
then delete the file from the iPAQ to make room in the WinCE ramdisk for the
next file.
next file.
You will need to download the version of RedBoot designed as the
You will need to download the version of RedBoot designed as the
ROM bootstrap. Then install it permanently  using these commands:
ROM bootstrap. Then install it permanently  using these commands:
 
 
RedBoot> lo -r -b 0x100000 redboot_ROM.bin
RedBoot> lo -r -b 0x100000 redboot_ROM.bin
RedBoot> fi loc -f 0x50000000 -l 0x40000
RedBoot> fi loc -f 0x50000000 -l 0x40000
RedBoot> fis init
RedBoot> fis init
RedBoot> fi unl -f 0x50040000 -l 0x40000
RedBoot> fi unl -f 0x50040000 -l 0x40000
RedBoot> fi cr RedBoot -b 0x100000
RedBoot> fi cr RedBoot -b 0x100000
RedBoot> fi loc -f 0x50040000 -l 0x40000
RedBoot> fi loc -f 0x50040000 -l 0x40000
RedBoot> reset
RedBoot> reset
WARNING
WARNING
You must type these commands exactly! Failure to do so may render your
You must type these commands exactly! Failure to do so may render your
iPAQ totally useless. Once you've done this, RedBoot should come up every
iPAQ totally useless. Once you've done this, RedBoot should come up every
time you reset.
time you reset.
Restoring Windows/CE
Restoring Windows/CE
To restore Windows/CE from the backup taken in ,
To restore Windows/CE from the backup taken in ,
visit http://www.handhelds.org/projects/wincerestoration.html
visit http://www.handhelds.org/projects/wincerestoration.html
for directions.
for directions.
Additional commands
Additional commands
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels,
and execution of Linux kernels,
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the iPAQ are:
exec parameters used for the iPAQ are:
-b <addr>
-b <addr>
Location Linux kernel was loaded to
Location Linux kernel was loaded to
-l <len>
-l <len>
Length of kernel
Length of kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
-r <addr>
-r <addr>
'initrd' ramdisk location
'initrd' ramdisk location
-s <len>
-s <len>
Length of initrd ramdisk
Length of initrd ramdisk
Linux kernels may be run on the iPAQ using the sources from the anonymous
Linux kernels may be run on the iPAQ using the sources from the anonymous
CVS repository at the Handhelds project (
CVS repository at the Handhelds project (
http://www.handhelds.org/) with
http://www.handhelds.org/) with
the elinux.patch patch file applied. This file can be
the elinux.patch patch file applied. This file can be
found in the
found in the
misc/ subdirectory of the iPAQ platform HAL in the
misc/ subdirectory of the iPAQ platform HAL in the
RedBoot sources, normally
RedBoot sources, normally
hal/arm/sa11x0/ipaq/VERSION/misc/
hal/arm/sa11x0/ipaq/VERSION/misc/
  
  
On the iPAQ (and indeed all SA11x0 platforms), Linux expects to be loaded
On the iPAQ (and indeed all SA11x0 platforms), Linux expects to be loaded
at address 0xC0008000 and the entry point is also at 0xC0008000.
at address 0xC0008000 and the entry point is also at 0xC0008000.
Memory Maps
Memory Maps
RedBoot sets up the following memory map on the iPAQ:   The first level
RedBoot sets up the following memory map on the iPAQ:   The first level
page table is located at physical address 0xC0004000.  No second level tables
page table is located at physical address 0xC0004000.  No second level tables
are used.   NOTE
are used.   NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
 Physical Address Range     Description
 Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x01ffffff    16Mb to 32Mb FLASH (nCS0) [organized as below]
0x00000000 - 0x01ffffff    16Mb to 32Mb FLASH (nCS0) [organized as below]
  0x000000 - 0x0003ffff      Parrot Loader
  0x000000 - 0x0003ffff      Parrot Loader
  0x040000 - 0x0007ffff      RedBoot
  0x040000 - 0x0007ffff      RedBoot
  0xf80000 - 0x00fbffff      Fconfig data
  0xf80000 - 0x00fbffff      Fconfig data
  0xfc0000 - 0x00ffffff      FIS directory
  0xfc0000 - 0x00ffffff      FIS directory
0x30000000 - 0x3fffffff    Compact Flash
0x30000000 - 0x3fffffff    Compact Flash
0x48000000 - 0x4bffffff    iPAQ internal registers
0x48000000 - 0x4bffffff    iPAQ internal registers
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff    DRAM Bank 0 - 32Mb SDRAM
0xc0000000 - 0xc1ffffff    DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - 0xe7ffffff    Cache Clean
0xe0000000 - 0xe7ffffff    Cache Clean
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x01ffffff  Y Y  DRAM - 32Mb
0x00000000 - 0x01ffffff  Y Y  DRAM - 32Mb
0x30000000 - 0x3fffffff  N N  Compact Flash
0x30000000 - 0x3fffffff  N N  Compact Flash
0x48000000 - 0x4bffffff  N N  iPAQ internal registers
0x48000000 - 0x4bffffff  N N  iPAQ internal registers
0x50000000 - 0x51ffffff  Y Y  Up to 32Mb FLASH (nCS0)
0x50000000 - 0x51ffffff  Y Y  Up to 32Mb FLASH (nCS0)
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff  N Y  DRAM Bank 0: 32Mb
0xc0000000 - 0xc1ffffff  N Y  DRAM Bank 0: 32Mb
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean    
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean    
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=ipaq
export TARGET=ipaq
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/ipaq
export PLATFORM_DIR=sa11x0/ipaq
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/StrongARM(SA11X0) Intrinsyc CerfCube
ARM/StrongARM(SA11X0) Intrinsyc CerfCube
Intrinsyc CerfCubeinstalling and
Intrinsyc CerfCubeinstalling and
testinginstalling and testing
testinginstalling and testing
Intrinsyc CerfCube
Intrinsyc CerfCube
Overview
Overview
RedBoot supports the serial port and the builtin
RedBoot supports the serial port and the builtin
ethernet connection for communication and downloads.
ethernet connection for communication and downloads.
The default serial port settings are 38400,8,N,1. RedBoot runs from
The default serial port settings are 38400,8,N,1. RedBoot runs from
and supports flash management for the system flash region. 
and supports flash management for the system flash region. 
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation
Initial Installation
The original boot loader supplied with the CerfCube can be used to install
The original boot loader supplied with the CerfCube can be used to install
RedBoot.  Connect to the device using a serial port at 38400/8N1.
RedBoot.  Connect to the device using a serial port at 38400/8N1.
Copy the binary RedBoot ROM mode image to an available TFTP server.
Copy the binary RedBoot ROM mode image to an available TFTP server.
Issue these commands to the Instrinsyc loader:
Issue these commands to the Instrinsyc loader:
download tftp:x.x.x.x redboot_ROM.bin 0xc0000000
download tftp:x.x.x.x redboot_ROM.bin 0xc0000000
flashloader 0x00000000 0xc0000000 0x20000
flashloader 0x00000000 0xc0000000 0x20000
where x.x.x.x is the IP address of the TFTP
where x.x.x.x is the IP address of the TFTP
server.
server.
NOTE
NOTE
Other installation methods may be available via the Intrinsyc loader.
Other installation methods may be available via the Intrinsyc loader.
Contact Intrinsyc for details.
Contact Intrinsyc for details.
Additional commands
Additional commands
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels,
and execution of Linux kernels,
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the CerfCube are:
exec parameters used for the CerfCube are:
-b <addr>
-b <addr>
Location Linux kernel was loaded to
Location Linux kernel was loaded to
-l <len>
-l <len>
Length of kernel
Length of kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
-r <addr>
-r <addr>
'initrd' ramdisk location
'initrd' ramdisk location
-s <len>
-s <len>
Length of initrd ramdisk
Length of initrd ramdisk
Memory Maps
Memory Maps
RedBoot sets up the following memory map on the CerfCube:   The first level
RedBoot sets up the following memory map on the CerfCube:   The first level
page table is located at physical address 0xC0004000.  No second level tables
page table is located at physical address 0xC0004000.  No second level tables
are used.   NOTE
are used.   NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
 Physical Address Range     Description
 Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x01ffffff    16Mb to 32Mb FLASH (nCS0) [organized as below]
0x00000000 - 0x01ffffff    16Mb to 32Mb FLASH (nCS0) [organized as below]
  0x000000 - 0x0001ffff      RedBoot
  0x000000 - 0x0001ffff      RedBoot
  0x020000 - 0x0003ffff      RedBoot [RAM version]
  0x020000 - 0x0003ffff      RedBoot [RAM version]
  0xfc0000 - 0x00fdffff      Fconfig data
  0xfc0000 - 0x00fdffff      Fconfig data
  0xfe0000 - 0x00ffffff      FIS directory
  0xfe0000 - 0x00ffffff      FIS directory
0x0f000000 - 0x0fffffff    Onboard ethernet
0x0f000000 - 0x0fffffff    Onboard ethernet
0x10000000 - 0x17ffffff    CerfCube internal registers
0x10000000 - 0x17ffffff    CerfCube internal registers
0x20000000 - 0x3fffffff    PCMCIA / Compact Flash
0x20000000 - 0x3fffffff    PCMCIA / Compact Flash
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0x80000000 - 0xbfffffff    SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff    DRAM Bank 0 - 32Mb SDRAM
0xc0000000 - 0xc1ffffff    DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - 0xe7ffffff    Cache Clean
0xe0000000 - 0xe7ffffff    Cache Clean
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x01ffffff  Y Y  DRAM - 32Mb
0x00000000 - 0x01ffffff  Y Y  DRAM - 32Mb
0x08000000 - 0x0fffffff  N N  Onboard ethernet controller
0x08000000 - 0x0fffffff  N N  Onboard ethernet controller
0x10000000 - 0x17ffffff  N N  CerfCube internal registers
0x10000000 - 0x17ffffff  N N  CerfCube internal registers
0x20000000 - 0x3fffffff  N N  PCMCIA / Compact Flash
0x20000000 - 0x3fffffff  N N  PCMCIA / Compact Flash
0x50000000 - 0x51ffffff  Y Y  Up to 32Mb FLASH (nCS0)
0x50000000 - 0x51ffffff  Y Y  Up to 32Mb FLASH (nCS0)
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0x80000000 - 0xbfffffff  N N  SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff  N Y  DRAM Bank 0: 32Mb
0xc0000000 - 0xc1ffffff  N Y  DRAM Bank 0: 32Mb
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean    
0xe0000000 - 0xe7ffffff  Y Y  Cache Clean    
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=cerf
export TARGET=cerf
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/cerf
export PLATFORM_DIR=sa11x0/cerf
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
ARM/Xscale Cyclone IQ80310
ARM/Xscale Cyclone IQ80310
Overview
Overview
Cyclone IQ80310installing and
Cyclone IQ80310installing and
testinginstalling and testing
testinginstalling and testing
Cyclone IQ80310RedBoot supports
Cyclone IQ80310RedBoot supports
both serial ports and the built-in ethernet port for communication and downloads.
both serial ports and the built-in ethernet port for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot also supports flash
The default serial port settings are 115200,8,N,1. RedBoot also supports flash
management for the onboard 8MB flash.
management for the onboard 8MB flash.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
            
            
              ROMA
              ROMA
              [ROM]
              [ROM]
              RedBoot running from flash address 0x40000, with
              RedBoot running from flash address 0x40000, with
              ARM bootloader in flash boot sector.
              ARM bootloader in flash boot sector.
              redboot_ROMA.ecm
              redboot_ROMA.ecm
            
            
            
            
              RAMA
              RAMA
              [RAM]
              [RAM]
              RedBoot running from RAM with ARM bootloader in
              RedBoot running from RAM with ARM bootloader in
              flash boot sector.
              flash boot sector.
              redboot_RAMA.ecm
              redboot_RAMA.ecm
            
            
Initial Installation Method
Initial Installation Method
The board manufacturer provides a DOS application which is
The board manufacturer provides a DOS application which is
capable of programming the flash over the PCI bus, and this is
capable of programming the flash over the PCI bus, and this is
required for initial installations of RedBoot. Please see the board
required for initial installations of RedBoot. Please see the board
manual for information on using this utility.  In general, the process
manual for information on using this utility.  In general, the process
involves programming one of the two flash based RedBoot images to
involves programming one of the two flash based RedBoot images to
flash. The ROM mode RedBoot (which runs from the flash boot sector)
flash. The ROM mode RedBoot (which runs from the flash boot sector)
should be programmed to flash address 0x00000000. The ROMA RedBoot
should be programmed to flash address 0x00000000. The ROMA RedBoot
mode (which is started by the ARM bootloader) should be programmed to
mode (which is started by the ARM bootloader) should be programmed to
flash address 0x00004000.
flash address 0x00004000.
 To install RedBoot to run from the flash boot sector, use the manufacturer's
 To install RedBoot to run from the flash boot sector, use the manufacturer's
flash utility to install the ROM mode image at address zero.
flash utility to install the ROM mode image at address zero.
To install RedBoot to run from address 0x40000 with the ARM bootloader
To install RedBoot to run from address 0x40000 with the ARM bootloader
in the flash boot sector, use the manufacturer's flash utility to install
in the flash boot sector, use the manufacturer's flash utility to install
the ROMA mode image at address 0x40000. 
the ROMA mode image at address 0x40000. 
After booting the initial installation of RedBoot, this warning may
After booting the initial installation of RedBoot, this warning may
be printed: flash configuration checksum error or invalid key
be printed: flash configuration checksum error or invalid key
This is normal, and indicates that the flash must be configured
This is normal, and indicates that the flash must be configured
for use by RedBoot. Even if the above message is not printed, it may be a
for use by RedBoot. Even if the above message is not printed, it may be a
good idea to reinitialize the flash anyway. Do this with the 
good idea to reinitialize the flash anyway. Do this with the 
fis command: RedBoot> fis init
fis command: RedBoot> fis init
About to initialize [format] flash image system - continue (y/n)? y
About to initialize [format] flash image system - continue (y/n)? y
*** Initialize flash Image System
*** Initialize flash Image System
Warning: device contents not erased, some blocks may not be usable
Warning: device contents not erased, some blocks may not be usable
... Unlock from 0x007e0000-0x00800000: .
... Unlock from 0x007e0000-0x00800000: .
... Erase from 0x007e0000-0x00800000: .
... Erase from 0x007e0000-0x00800000: .
... Program from 0xa1fd0000-0xa1fd0400 at 0x007e0000: .
... Program from 0xa1fd0000-0xa1fd0400 at 0x007e0000: .
... Lock from 0x007e0000-0x00800000: .
... Lock from 0x007e0000-0x00800000: .
Followed by the fconfig command:
Followed by the fconfig command:
   RedBoot> fconfig
   RedBoot> fconfig
   Run script at boot: false
   Run script at boot: false
   Use BOOTP for network configuration: false
   Use BOOTP for network configuration: false
   Local IP address: 192.168.1.153
   Local IP address: 192.168.1.153
   Default server IP address: 192.168.1.10
   Default server IP address: 192.168.1.10
   GDB connection port: 1000
   GDB connection port: 1000
   Network debug at boot time: false
   Network debug at boot time: false
   Update RedBoot non-volatile configuration - continue (y/n)? y
   Update RedBoot non-volatile configuration - continue (y/n)? y
   ... Unlock from 0x007c0000-0x007e0000: .
   ... Unlock from 0x007c0000-0x007e0000: .
   ... Erase from 0x007c0000-0x007e0000: .
   ... Erase from 0x007c0000-0x007e0000: .
   ... Program from 0xa0013018-0xa0013418 at 0x007c0000: .
   ... Program from 0xa0013018-0xa0013418 at 0x007c0000: .
   ... Lock from 0x007c0000-0x007e0000: .
   ... Lock from 0x007c0000-0x007e0000: .
When later updating RedBoot in situ, it is important to
When later updating RedBoot in situ, it is important to
use a matching ROM and RAM mode pair of images. So use either RAM/ROM
use a matching ROM and RAM mode pair of images. So use either RAM/ROM
or RAMA/ROMA images. Do not mix them.
or RAMA/ROMA images. Do not mix them.
Error codes
Error codes
RedBoot uses the two digit LED display to indicate errors during   board
RedBoot uses the two digit LED display to indicate errors during   board
initialization. Possible error codes are:      88 - Unknown Error
initialization. Possible error codes are:      88 - Unknown Error
55 - I2C Error
55 - I2C Error
FF - SDRAM Error
FF - SDRAM Error
01 - No Error
01 - No Error
Using RedBoot with ARM Bootloader 
Using RedBoot with ARM Bootloader 
RedBoot can coexist with ARM tools in flash on the IQ80310 board. In
RedBoot can coexist with ARM tools in flash on the IQ80310 board. In
this configuration, the ARM bootloader will occupy the flash boot sector while
this configuration, the ARM bootloader will occupy the flash boot sector while
RedBoot is located at flash address 0x40000. The sixteen position rotary switch
RedBoot is located at flash address 0x40000. The sixteen position rotary switch
is used to tell the ARM bootloader to jump to the RedBoot image located at
is used to tell the ARM bootloader to jump to the RedBoot image located at
address 0x40000. RedBoot is selected by switch position 0 or 1. Other switch
address 0x40000. RedBoot is selected by switch position 0 or 1. Other switch
positions are used by the ARM firmware and RedBoot will not be started. 
positions are used by the ARM firmware and RedBoot will not be started. 
Special RedBoot Commands 
Special RedBoot Commands 
A special RedBoot command, diag, is used to
A special RedBoot command, diag, is used to
access a set of hardware diagnostics provided by the board
access a set of hardware diagnostics provided by the board
manufacturer. To access the diagnostic menu, enter diag at the RedBoot prompt:
manufacturer. To access the diagnostic menu, enter diag at the RedBoot prompt:
RedBoot> diag
RedBoot> diag
Entering Hardware Diagnostics - Disabling Data Cache!
Entering Hardware Diagnostics - Disabling Data Cache!
1 - Memory Tests
1 - Memory Tests
2 - Repeating Memory Tests
2 - Repeating Memory Tests
3 - 16C552 DUART Serial Port Tests
3 - 16C552 DUART Serial Port Tests
4 - Rotary Switch S1 Test for positions 0-3
4 - Rotary Switch S1 Test for positions 0-3
5 - seven Segment LED Tests
5 - seven Segment LED Tests
6 - Backplane Detection Test
6 - Backplane Detection Test
7 - Battery Status Test
7 - Battery Status Test
8 - External Timer Test
8 - External Timer Test
9 - i82559 Ethernet Configuration
9 - i82559 Ethernet Configuration
10 - i82559 Ethernet Test
10 - i82559 Ethernet Test
11 - Secondary PCI Bus Test
11 - Secondary PCI Bus Test
12 - Primary PCI Bus Test
12 - Primary PCI Bus Test
13 - i960Rx/303 PCI Interrupt Test
13 - i960Rx/303 PCI Interrupt Test
14 - Internal Timer Test
14 - Internal Timer Test
15 - GPIO Test
15 - GPIO Test
0 - quit Enter the menu item number (0 to quit):
0 - quit Enter the menu item number (0 to quit):
Tests for various hardware subsystems are provided, and some
Tests for various hardware subsystems are provided, and some
tests require special hardware in order to execute normally. The Ethernet
tests require special hardware in order to execute normally. The Ethernet
Configuration item may be used to set the board ethernet address.
Configuration item may be used to set the board ethernet address.
IQ80310 Hardware Tests
IQ80310 Hardware Tests
1 - Memory Tests
1 - Memory Tests
2 - Repeating Memory Tests
2 - Repeating Memory Tests
3 - 16C552 DUART Serial Port Tests
3 - 16C552 DUART Serial Port Tests
4 - Rotary Switch S1 Test for positions 0-3
4 - Rotary Switch S1 Test for positions 0-3
5 - 7 Segment LED Tests
5 - 7 Segment LED Tests
6 - Backplane Detection Test
6 - Backplane Detection Test
7 - Battery Status Test
7 - Battery Status Test
8 - External Timer Test
8 - External Timer Test
9 - i82559 Ethernet Configuration
9 - i82559 Ethernet Configuration
10 - i82559 Ethernet Test
10 - i82559 Ethernet Test
11 - i960Rx/303 PCI Interrupt Test
11 - i960Rx/303 PCI Interrupt Test
12 - Internal Timer Test
12 - Internal Timer Test
13 - Secondary PCI Bus Test
13 - Secondary PCI Bus Test
14 - Primary PCI Bus Test
14 - Primary PCI Bus Test
15 - Battery Backup SDRAM Memory Test
15 - Battery Backup SDRAM Memory Test
16 - GPIO Test
16 - GPIO Test
17 - Repeat-On-Fail Memory Test
17 - Repeat-On-Fail Memory Test
18 - Coyonosa Cache Loop (No return)
18 - Coyonosa Cache Loop (No return)
19 - Show Software and Hardware Revision
19 - Show Software and Hardware Revision
0 - quit
0 - quit
Enter the menu item number (0 to quit):  
Enter the menu item number (0 to quit):  
Tests for various hardware subsystems are provided, and some tests require
Tests for various hardware subsystems are provided, and some tests require
special hardware in order to execute normally. The Ethernet Configuration
special hardware in order to execute normally. The Ethernet Configuration
item may be used to set the board ethernet address.
item may be used to set the board ethernet address.
Rebuilding RedBoot 
Rebuilding RedBoot 
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=iq80310
export TARGET=iq80310
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=iq80310
export PLATFORM_DIR=iq80310
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
Interrupts
Interrupts
RedBoot uses an interrupt vector table which is located at address 0xA000A004.
RedBoot uses an interrupt vector table which is located at address 0xA000A004.
Entries in this table are pointers to functions with this protoype::      
Entries in this table are pointers to functions with this protoype::      
int irq_handler( unsigned vector, unsigned data )On an IQ80310
int irq_handler( unsigned vector, unsigned data )On an IQ80310
board, the vector argument is one of 49 interrupts defined in 
board, the vector argument is one of 49 interrupts defined in 
hal/arm/iq80310/current/include/hal_platform_ints.h::   
hal/arm/iq80310/current/include/hal_platform_ints.h::   
// *** 80200 CPU ***
// *** 80200 CPU ***
#define CYGNUM_HAL_INTERRUPT_reserved0     0
#define CYGNUM_HAL_INTERRUPT_reserved0     0
#define CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL 1 // See Ch.12 - Performance Mon.
#define CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL 1 // See Ch.12 - Performance Mon.
#define CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL 2 // PMU counter 0/1 overflow
#define CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL 2 // PMU counter 0/1 overflow
#define CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL 3 // PMU clock overflow
#define CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL 3 // PMU clock overflow
#define CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT 4 // See Ch.11 - Bus Control Unit
#define CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT 4 // See Ch.11 - Bus Control Unit
#define CYGNUM_HAL_INTERRUPT_NIRQ          5 // external IRQ
#define CYGNUM_HAL_INTERRUPT_NIRQ          5 // external IRQ
#define CYGNUM_HAL_INTERRUPT_NFIQ          6 // external FIQ
#define CYGNUM_HAL_INTERRUPT_NFIQ          6 // external FIQ
// *** XINT6 interrupts ***
// *** XINT6 interrupts ***
#define CYGNUM_HAL_INTERRUPT_DMA_0         7
#define CYGNUM_HAL_INTERRUPT_DMA_0         7
#define CYGNUM_HAL_INTERRUPT_DMA_1         8
#define CYGNUM_HAL_INTERRUPT_DMA_1         8
#define CYGNUM_HAL_INTERRUPT_DMA_2         9
#define CYGNUM_HAL_INTERRUPT_DMA_2         9
#define CYGNUM_HAL_INTERRUPT_GTSC         10 // Global Time Stamp Counter
#define CYGNUM_HAL_INTERRUPT_GTSC         10 // Global Time Stamp Counter
#define CYGNUM_HAL_INTERRUPT_PEC          11 // Performance Event Counter
#define CYGNUM_HAL_INTERRUPT_PEC          11 // Performance Event Counter
#define CYGNUM_HAL_INTERRUPT_AAIP         12 // application accelerator unit
#define CYGNUM_HAL_INTERRUPT_AAIP         12 // application accelerator unit
// *** XINT7 interrupts ***
// *** XINT7 interrupts ***
// I2C interrupts
// I2C interrupts
#define CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY 13
#define CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY 13
#define CYGNUM_HAL_INTERRUPT_I2C_RX_FULL  14
#define CYGNUM_HAL_INTERRUPT_I2C_RX_FULL  14
#define CYGNUM_HAL_INTERRUPT_I2C_BUS_ERR  15
#define CYGNUM_HAL_INTERRUPT_I2C_BUS_ERR  15
#define CYGNUM_HAL_INTERRUPT_I2C_STOP     16
#define CYGNUM_HAL_INTERRUPT_I2C_STOP     16
#define CYGNUM_HAL_INTERRUPT_I2C_LOSS     17
#define CYGNUM_HAL_INTERRUPT_I2C_LOSS     17
#define CYGNUM_HAL_INTERRUPT_I2C_ADDRESS  18
#define CYGNUM_HAL_INTERRUPT_I2C_ADDRESS  18
// Messaging Unit interrupts
// Messaging Unit interrupts
#define CYGNUM_HAL_INTERRUPT_MESSAGE_0           19
#define CYGNUM_HAL_INTERRUPT_MESSAGE_0           19
#define CYGNUM_HAL_INTERRUPT_MESSAGE_1           20
#define CYGNUM_HAL_INTERRUPT_MESSAGE_1           20
#define CYGNUM_HAL_INTERRUPT_DOORBELL            21
#define CYGNUM_HAL_INTERRUPT_DOORBELL            21
#define CYGNUM_HAL_INTERRUPT_NMI_DOORBELL        22
#define CYGNUM_HAL_INTERRUPT_NMI_DOORBELL        22
#define CYGNUM_HAL_INTERRUPT_QUEUE_POST          23
#define CYGNUM_HAL_INTERRUPT_QUEUE_POST          23
#define CYGNUM_HAL_INTERRUPT_OUTBOUND_QUEUE_FULL 24
#define CYGNUM_HAL_INTERRUPT_OUTBOUND_QUEUE_FULL 24
#define CYGNUM_HAL_INTERRUPT_INDEX_REGISTER      25
#define CYGNUM_HAL_INTERRUPT_INDEX_REGISTER      25
// PCI Address Translation Unit
// PCI Address Translation Unit
#define CYGNUM_HAL_INTERRUPT_BIST                26
#define CYGNUM_HAL_INTERRUPT_BIST                26
// *** External board interrupts (XINT3) ***
// *** External board interrupts (XINT3) ***
#define CYGNUM_HAL_INTERRUPT_TIMER        27 // external timer
#define CYGNUM_HAL_INTERRUPT_TIMER        27 // external timer
#define CYGNUM_HAL_INTERRUPT_ETHERNET     28 // onboard enet
#define CYGNUM_HAL_INTERRUPT_ETHERNET     28 // onboard enet
#define CYGNUM_HAL_INTERRUPT_SERIAL_A     29 // 16x50 uart A
#define CYGNUM_HAL_INTERRUPT_SERIAL_A     29 // 16x50 uart A
#define CYGNUM_HAL_INTERRUPT_SERIAL_B     30 // 16x50 uart B
#define CYGNUM_HAL_INTERRUPT_SERIAL_B     30 // 16x50 uart B
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTD   31 // secondary PCI INTD
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTD   31 // secondary PCI INTD
// The hardware doesn't (yet?) provide masking or status for these
// The hardware doesn't (yet?) provide masking or status for these
// even though they can trigger cpu interrupts. ISRs will need to
// even though they can trigger cpu interrupts. ISRs will need to
// poll the device to see if the device actually triggered the
// poll the device to see if the device actually triggered the
// interrupt.
// interrupt.
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTC   32 // secondary PCI INTC
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTC   32 // secondary PCI INTC
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTB   33 // secondary PCI INTB
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTB   33 // secondary PCI INTB
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTA   34 // secondary PCI INTA
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTA   34 // secondary PCI INTA
// *** NMI Interrupts go to FIQ ***
// *** NMI Interrupts go to FIQ ***
#define CYGNUM_HAL_INTERRUPT_MCU_ERR       35
#define CYGNUM_HAL_INTERRUPT_MCU_ERR       35
#define CYGNUM_HAL_INTERRUPT_PATU_ERR      36
#define CYGNUM_HAL_INTERRUPT_PATU_ERR      36
#define CYGNUM_HAL_INTERRUPT_SATU_ERR      37
#define CYGNUM_HAL_INTERRUPT_SATU_ERR      37
#define CYGNUM_HAL_INTERRUPT_PBDG_ERR      38
#define CYGNUM_HAL_INTERRUPT_PBDG_ERR      38
#define CYGNUM_HAL_INTERRUPT_SBDG_ERR      39
#define CYGNUM_HAL_INTERRUPT_SBDG_ERR      39
#define CYGNUM_HAL_INTERRUPT_DMA0_ERR      40
#define CYGNUM_HAL_INTERRUPT_DMA0_ERR      40
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR      41
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR      41
#define CYGNUM_HAL_INTERRUPT_DMA2_ERR      42
#define CYGNUM_HAL_INTERRUPT_DMA2_ERR      42
#define CYGNUM_HAL_INTERRUPT_MU_ERR        43
#define CYGNUM_HAL_INTERRUPT_MU_ERR        43
#define CYGNUM_HAL_INTERRUPT_reserved52    44
#define CYGNUM_HAL_INTERRUPT_reserved52    44
#define CYGNUM_HAL_INTERRUPT_AAU_ERR       45
#define CYGNUM_HAL_INTERRUPT_AAU_ERR       45
#define CYGNUM_HAL_INTERRUPT_BIU_ERR       46
#define CYGNUM_HAL_INTERRUPT_BIU_ERR       46
// *** ATU FIQ sources ***
// *** ATU FIQ sources ***
#define CYGNUM_HAL_INTERRUPT_P_SERR        47
#define CYGNUM_HAL_INTERRUPT_P_SERR        47
#define CYGNUM_HAL_INTERRUPT_S_SERR        48The data passed
#define CYGNUM_HAL_INTERRUPT_S_SERR        48The data passed
to the ISR is pulled from a data table (hal_interrupt_data)
to the ISR is pulled from a data table (hal_interrupt_data)
 which immediately follows the interrupt vector table. With
 which immediately follows the interrupt vector table. With
49 interrupts, the data table starts at address 0xA000A0C8.   
49 interrupts, the data table starts at address 0xA000A0C8.   
An application may create a normal C function with the above prototype
An application may create a normal C function with the above prototype
to be an ISR. Just poke its address into the table at the correct index and
to be an ISR. Just poke its address into the table at the correct index and
enable the interrupt at its source. The return value of the ISR is ignored
enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.
by RedBoot.
Memory Maps
Memory Maps
The first level page table is located at 0xa0004000. Two second level
The first level page table is located at 0xa0004000. Two second level
tables are also used. One second level table is located at 0xa0008000 and
tables are also used. One second level table is located at 0xa0008000 and
maps the first 1MB of flash. The other second level table is at 0xa0008400,
maps the first 1MB of flash. The other second level table is at 0xa0008400,
and maps the first 1MB of SDRAM. NOTE
and maps the first 1MB of SDRAM. NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x00000fff    flash Memory
0x00000000 - 0x00000fff    flash Memory
0x00001000 - 0x00001fff    80312 Internal Registers
0x00001000 - 0x00001fff    80312 Internal Registers
0x00002000 - 0x007fffff    flash Memory
0x00002000 - 0x007fffff    flash Memory
0x00800000 - 0x7fffffff    PCI ATU Outbound Direct Window
0x00800000 - 0x7fffffff    PCI ATU Outbound Direct Window
0x80000000 - 0x83ffffff    Primary PCI 32-bit Memory
0x80000000 - 0x83ffffff    Primary PCI 32-bit Memory
0x84000000 - 0x87ffffff    Primary PCI 64-bit Memory
0x84000000 - 0x87ffffff    Primary PCI 64-bit Memory
0x88000000 - 0x8bffffff    Secondary PCI 32-bit Memory
0x88000000 - 0x8bffffff    Secondary PCI 32-bit Memory
0x8c000000 - 0x8fffffff    Secondary PCI 64-bit Memory
0x8c000000 - 0x8fffffff    Secondary PCI 64-bit Memory
0x90000000 - 0x9000ffff    Primary PCI IO Space
0x90000000 - 0x9000ffff    Primary PCI IO Space
0x90010000 - 0x9001ffff    Secondary PCI IO Space
0x90010000 - 0x9001ffff    Secondary PCI IO Space
0x90020000 - 0x9fffffff    Unused
0x90020000 - 0x9fffffff    Unused
0xa0000000 - 0xbfffffff    SDRAM
0xa0000000 - 0xbfffffff    SDRAM
0xc0000000 - 0xefffffff    Unused
0xc0000000 - 0xefffffff    Unused
0xf0000000 - 0xffffffff    80200 Internal Registers
0xf0000000 - 0xffffffff    80200 Internal Registers
Virtual Address Range    C B  Description
Virtual Address Range    C B  Description
-----------------------  - -  ----------------------------------
-----------------------  - -  ----------------------------------
0x00000000 - 0x00000fff  Y Y  SDRAM
0x00000000 - 0x00000fff  Y Y  SDRAM
0x00001000 - 0x00001fff  N N  80312 Internal Registers
0x00001000 - 0x00001fff  N N  80312 Internal Registers
0x00002000 - 0x007fffff  Y N  flash Memory
0x00002000 - 0x007fffff  Y N  flash Memory
0x00800000 - 0x7fffffff  N N  PCI ATU Outbound Direct Window
0x00800000 - 0x7fffffff  N N  PCI ATU Outbound Direct Window
0x80000000 - 0x83ffffff  N N  Primary PCI 32-bit Memory
0x80000000 - 0x83ffffff  N N  Primary PCI 32-bit Memory
0x84000000 - 0x87ffffff  N N  Primary PCI 64-bit Memory
0x84000000 - 0x87ffffff  N N  Primary PCI 64-bit Memory
0x88000000 - 0x8bffffff  N N  Secondary PCI 32-bit Memory
0x88000000 - 0x8bffffff  N N  Secondary PCI 32-bit Memory
0x8c000000 - 0x8fffffff  N N  Secondary PCI 64-bit Memory
0x8c000000 - 0x8fffffff  N N  Secondary PCI 64-bit Memory
0x90000000 - 0x9000ffff  N N  Primary PCI IO Space
0x90000000 - 0x9000ffff  N N  Primary PCI IO Space
0x90010000 - 0x9001ffff  N N  Secondary PCI IO Space
0x90010000 - 0x9001ffff  N N  Secondary PCI IO Space
0xa0000000 - 0xbfffffff  Y Y  SDRAM
0xa0000000 - 0xbfffffff  Y Y  SDRAM
0xc0000000 - 0xcfffffff  Y Y  Cache Flush Region
0xc0000000 - 0xcfffffff  Y Y  Cache Flush Region
0xd0000000 - 0xd0000fff  Y N  first 4k page of flash
0xd0000000 - 0xd0000fff  Y N  first 4k page of flash
0xf0000000 - 0xffffffff  N N  80200 Internal Registers 
0xf0000000 - 0xffffffff  N N  80200 Internal Registers 
Platform Resource Usage
Platform Resource Usage
The external timer is used as a polled timer to provide timeout support
The external timer is used as a polled timer to provide timeout support
for networking and XModem file transfers.
for networking and XModem file transfers.
ARM/Xscale Intel IQ80321
ARM/Xscale Intel IQ80321
Overview
Overview
Intel IQ80321installing and
Intel IQ80321installing and
testinginstalling and testing
testinginstalling and testing
Intel IQ80321RedBoot supports
Intel IQ80321RedBoot supports
the serial port and the built-in ethernet port for communication and downloads.
the serial port and the built-in ethernet port for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot also supports flash
The default serial port settings are 115200,8,N,1. RedBoot also supports flash
management for the onboard 8MB flash.
management for the onboard 8MB flash.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method
Initial Installation Method
The board manufacturer provides a DOS application which is capable of
The board manufacturer provides a DOS application which is capable of
programming the flash over the PCI bus, and this is required for initial installations
programming the flash over the PCI bus, and this is required for initial installations
of RedBoot. Please see the board manual for information on using this utility.
of RedBoot. Please see the board manual for information on using this utility.
In general, the process involves programming the ROM mode RedBoot
In general, the process involves programming the ROM mode RedBoot
image to flash. RedBoot should be programmed to flash address
image to flash. RedBoot should be programmed to flash address
0x00000000 using the DOS utility.
0x00000000 using the DOS utility.
After booting the initial installation of RedBoot, this warning may
After booting the initial installation of RedBoot, this warning may
be printed: flash configuration checksum error or invalid key
be printed: flash configuration checksum error or invalid key
This is normal, and indicates that the flash must be configured
This is normal, and indicates that the flash must be configured
for use by RedBoot. Even if the above message is not printed, it may be a
for use by RedBoot. Even if the above message is not printed, it may be a
good idea to reinitialize the flash anyway. Do this with the 
good idea to reinitialize the flash anyway. Do this with the 
fis command: RedBoot> fis init
fis command: RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
*** Initialize FLASH Image System
    Warning: device contents not erased, some blocks may not be usable
    Warning: device contents not erased, some blocks may not be usable
    ... Unlock from 0xf07e0000-0xf0800000: .
    ... Unlock from 0xf07e0000-0xf0800000: .
    ... Erase from 0xf07e0000-0xf0800000: .
    ... Erase from 0xf07e0000-0xf0800000: .
    ... Program from 0x01ddf000-0x01ddf400 at 0xf07e0000: .
    ... Program from 0x01ddf000-0x01ddf400 at 0xf07e0000: .
    ... Lock from 0xf07e0000-0xf0800000: .
    ... Lock from 0xf07e0000-0xf0800000: .
Switch Settings
Switch Settings
The 80321 board is highly configurable through a number of switches and jumpers.
The 80321 board is highly configurable through a number of switches and jumpers.
RedBoot makes some assumptions about board configuration and attention must be paid
RedBoot makes some assumptions about board configuration and attention must be paid
to these assumptions for reliable RedBoot operation:
to these assumptions for reliable RedBoot operation:
The onboard ethernet and the secondary slot may be placed in a
The onboard ethernet and the secondary slot may be placed in a
private space so that they are not seen by a PC BIOS. If the board is to be used
private space so that they are not seen by a PC BIOS. If the board is to be used
in a PC with BIOS, then the ethernet should be placed in this private space so that
in a PC with BIOS, then the ethernet should be placed in this private space so that
RedBoot and the BIOS do not conflict.
RedBoot and the BIOS do not conflict.
RedBoot assumes that the board is plugged into a PC with BIOS. This
RedBoot assumes that the board is plugged into a PC with BIOS. This
requires RedBoot to detect when the BIOS has configured the PCI-X secondary bus. If
requires RedBoot to detect when the BIOS has configured the PCI-X secondary bus. If
the board is placed in a backplane, RedBoot will never see the BIOS configure the
the board is placed in a backplane, RedBoot will never see the BIOS configure the
secondary bus. To prevent this wait, set switch S7E1-3 to ON when using the board
secondary bus. To prevent this wait, set switch S7E1-3 to ON when using the board
in a backplane.
in a backplane.
For the remaining switch settings, the following is a known good
For the remaining switch settings, the following is a known good
configuration:
configuration:
S1D1All OFF
S1D1All OFF
S7E17 is ON, all others OFF
S7E17 is ON, all others OFF
S8E12,3,5,6 are ON, all others OFF
S8E12,3,5,6 are ON, all others OFF
S8E22,3 are ON, all others OFF
S8E22,3 are ON, all others OFF
S9E13 is ON, all others OFF
S9E13 is ON, all others OFF
S4D11,3 are ON, all others OFF
S4D11,3 are ON, all others OFF
J9E12,3 jumpered
J9E12,3 jumpered
J9F12,3 jumpered
J9F12,3 jumpered
J3F1Nothing jumpered
J3F1Nothing jumpered
J3G12,3 jumpered
J3G12,3 jumpered
J1G22,3 jumpered
J1G22,3 jumpered
LED Codes
LED Codes
RedBoot uses the two digit LED display to indicate status during   board
RedBoot uses the two digit LED display to indicate status during   board
initialization. Possible codes are:
initialization. Possible codes are:
LED     Actions
LED     Actions
-------------------------------------------------------------
-------------------------------------------------------------
        Power-On/Reset
        Power-On/Reset
88
88
        Set the CPSR
        Set the CPSR
        Enable coprocessor access
        Enable coprocessor access
        Drain write and fill buffer
        Drain write and fill buffer
        Setup PBIU chip selects
        Setup PBIU chip selects
A1
A1
        Enable the Icache
        Enable the Icache
A2
A2
        Move FLASH chip select from 0x0 to 0xF0000000
        Move FLASH chip select from 0x0 to 0xF0000000
        Jump to new FLASH location
        Jump to new FLASH location
A3
A3
        Setup and enable the MMU
        Setup and enable the MMU
A4
A4
        I2C interface initialization
        I2C interface initialization
90
90
        Wait for I2C initialization to complete
        Wait for I2C initialization to complete
91
91
        Send address (via I2C) to the DIMM
        Send address (via I2C) to the DIMM
92
92
        Wait for transmit complete
        Wait for transmit complete
93
93
        Read SDRAM PD data from DIMM
        Read SDRAM PD data from DIMM
94
94
        Read remainder of EEPROM data.
        Read remainder of EEPROM data.
        An error will result in one of the following
        An error will result in one of the following
        error codes on the LEDs:
        error codes on the LEDs:
        77 BAD EEPROM checksum
        77 BAD EEPROM checksum
        55 I2C protocol error
        55 I2C protocol error
        FF bank size error
        FF bank size error
A5
A5
        Setup DDR memory interface
        Setup DDR memory interface
A6
A6
        Enable branch target buffer
        Enable branch target buffer
        Drain the write & fill buffers
        Drain the write & fill buffers
        Flush Icache, Dcache and BTB
        Flush Icache, Dcache and BTB
        Flush instuction and data TLBs
        Flush instuction and data TLBs
        Drain the write & fill buffers
        Drain the write & fill buffers
SL
SL
        ECC Scrub Loop
        ECC Scrub Loop
SE
SE
A7
A7
        Clean, drain, flush the main Dcache
        Clean, drain, flush the main Dcache
A8
A8
        Clean, drain, flush the mini Dcache
        Clean, drain, flush the mini Dcache
        Flush Dcache
        Flush Dcache
        Drain the write & fill buffers
        Drain the write & fill buffers
A9
A9
        Enable ECC
        Enable ECC
AA
AA
        Save SDRAM size
        Save SDRAM size
        Move MMU tables into RAM
        Move MMU tables into RAM
AB
AB
        Clean, drain, flush the main Dcache
        Clean, drain, flush the main Dcache
        Clean, drain, flush the mini Dcache
        Clean, drain, flush the mini Dcache
        Drain the write & fill buffers
        Drain the write & fill buffers
AC
AC
        Set the TTB register to DRAM mmu_table
        Set the TTB register to DRAM mmu_table
AD
AD
        Set mode to IRQ mode
        Set mode to IRQ mode
A7
A7
        Move SWI & Undefined "vectors" to RAM (at 0x0)
        Move SWI & Undefined "vectors" to RAM (at 0x0)
A6
A6
        Switch to supervisor mode
        Switch to supervisor mode
A5
A5
        Move remaining "vectors" to RAM (at 0x0)
        Move remaining "vectors" to RAM (at 0x0)
A4
A4
        Copy DATA to RAM
        Copy DATA to RAM
        Initialize interrupt exception environment
        Initialize interrupt exception environment
        Initialize stack
        Initialize stack
        Clear BSS section
        Clear BSS section
A3
A3
        Call platform specific hardware initialization
        Call platform specific hardware initialization
A2
A2
        Run through static constructors
        Run through static constructors
A1
A1
        Start up the eCos kernel or RedBoot
        Start up the eCos kernel or RedBoot
Special RedBoot Commands 
Special RedBoot Commands 
A special RedBoot command, diag, is used to
A special RedBoot command, diag, is used to
access a set of hardware diagnostics. To access the diagnostic menu,
access a set of hardware diagnostics. To access the diagnostic menu,
enter diag at the RedBoot prompt:
enter diag at the RedBoot prompt:
RedBoot> diag
RedBoot> diag
Entering Hardware Diagnostics - Disabling Data Cache!
Entering Hardware Diagnostics - Disabling Data Cache!
  IQ80321 Hardware Tests
  IQ80321 Hardware Tests
 1 - Memory Tests
 1 - Memory Tests
 2 - Repeating Memory Tests
 2 - Repeating Memory Tests
 3 - Repeat-On-Fail Memory Tests
 3 - Repeat-On-Fail Memory Tests
 4 - Rotary Switch S1 Test
 4 - Rotary Switch S1 Test
 5 - 7 Segment LED Tests
 5 - 7 Segment LED Tests
 6 - i82544 Ethernet Configuration
 6 - i82544 Ethernet Configuration
 7 - Baterry Status Test
 7 - Baterry Status Test
 8 - Battery Backup SDRAM Memory Test
 8 - Battery Backup SDRAM Memory Test
 9 - Timer Test
 9 - Timer Test
10 - PCI Bus test
10 - PCI Bus test
11 - CPU Cache Loop (No Return)
11 - CPU Cache Loop (No Return)
 0 - quit
 0 - quit
Enter the menu item number (0 to quit):
Enter the menu item number (0 to quit):
Tests for various hardware subsystems are provided, and some tests require
Tests for various hardware subsystems are provided, and some tests require
special hardware in order to execute normally. The Ethernet Configuration
special hardware in order to execute normally. The Ethernet Configuration
item may be used to set the board ethernet address.
item may be used to set the board ethernet address.
Memory Tests
Memory Tests
This test is used to test installed DDR SDRAM memory. Five different
This test is used to test installed DDR SDRAM memory. Five different
tests are run over the given address ranges. If errors are encountered, the
tests are run over the given address ranges. If errors are encountered, the
test is aborted and information about the failure is printed. When selected,
test is aborted and information about the failure is printed. When selected,
the user will be prompted to enter the base address of the test range and its
the user will be prompted to enter the base address of the test range and its
size. The numbers must be in hex with no leading “0x”
size. The numbers must be in hex with no leading “0x”
Enter the menu item number (0 to quit): 1
Enter the menu item number (0 to quit): 1
Base address of memory to test (in hex): 100000
Base address of memory to test (in hex): 100000
Size of memory to test (in hex): 200000
Size of memory to test (in hex): 200000
Testing memory from 0x00100000 to 0x002fffff.
Testing memory from 0x00100000 to 0x002fffff.
Walking 1's test:
Walking 1's test:
0000000100000002000000040000000800000010000000200000004000000080
0000000100000002000000040000000800000010000000200000004000000080
0000010000000200000004000000080000001000000020000000400000008000
0000010000000200000004000000080000001000000020000000400000008000
0001000000020000000400000008000000100000002000000040000000800000
0001000000020000000400000008000000100000002000000040000000800000
0100000002000000040000000800000010000000200000004000000080000000
0100000002000000040000000800000010000000200000004000000080000000
passed
passed
32-bit address test: passed
32-bit address test: passed
32-bit address bar test: passed
32-bit address bar test: passed
8-bit address test: passed
8-bit address test: passed
Byte address bar test: passed
Byte address bar test: passed
Memory test done.
Memory test done.
Repeating Memory Tests
Repeating Memory Tests
The repeating memory tests are exactly the same as the above memory tests,
The repeating memory tests are exactly the same as the above memory tests,
except that the tests are automatically rerun after completion. The only way out
except that the tests are automatically rerun after completion. The only way out
of this test is to reset the board.
of this test is to reset the board.
Repeat-On-Fail Memory Tests
Repeat-On-Fail Memory Tests
This is similar to the repeating memory tests except that when an error
This is similar to the repeating memory tests except that when an error
is found, the failing test continuously retries on the failing address.
is found, the failing test continuously retries on the failing address.
Rotary Switch S1 Test
Rotary Switch S1 Test
This tests the operation of the sixteen position rotary switch. When run,
This tests the operation of the sixteen position rotary switch. When run,
this test will display the current position of the rotary switch on the LED
this test will display the current position of the rotary switch on the LED
display. Slowly dial through each position and confirm reading on LED.
display. Slowly dial through each position and confirm reading on LED.
7 Segment LED Tests
7 Segment LED Tests
This tests the operation of the seven segment displays. When run, each
This tests the operation of the seven segment displays. When run, each
LED cycles through 0 through F and a decimal point.
LED cycles through 0 through F and a decimal point.
i82544 Ethernet Configuration
i82544 Ethernet Configuration
This test initializes the ethernet controller’s serial EEPROM if
This test initializes the ethernet controller’s serial EEPROM if
the current contents are invalid. In any case, this test will also allow the
the current contents are invalid. In any case, this test will also allow the
user to enter a six byte ethernet MAC address into the serial EEPROM.
user to enter a six byte ethernet MAC address into the serial EEPROM.
Enter the menu item number (0 to quit): 6
Enter the menu item number (0 to quit): 6
Current MAC address: 00:80:4d:46:00:02
Current MAC address: 00:80:4d:46:00:02
Enter desired MAC address: 00:80:4d:46:00:01
Enter desired MAC address: 00:80:4d:46:00:01
Writing to the Serial EEPROM... Done
Writing to the Serial EEPROM... Done
******** Reset The Board To Have Changes Take Effect ********
******** Reset The Board To Have Changes Take Effect ********
Battery Status Test
Battery Status Test
This tests the current status of the battery. First, the test checks to
This tests the current status of the battery. First, the test checks to
see if the battery is installed and reports that finding. If the battery is
see if the battery is installed and reports that finding. If the battery is
installed, the test further determines whether the battery status is one or
installed, the test further determines whether the battery status is one or
more of the following:
more of the following:
Battery is charging.
Battery is charging.
Battery is fully discharged.
Battery is fully discharged.
Battery voltage measures within normal operating range.
Battery voltage measures within normal operating range.
Battery Backup SDRAM Memory Test
Battery Backup SDRAM Memory Test
This tests the battery backup of SDRAM memory. This test is a three
This tests the battery backup of SDRAM memory. This test is a three
step process:
step process:
Select Battery backup test from main diag menu, then write
Select Battery backup test from main diag menu, then write
data to SDRAM.
data to SDRAM.
Turn off power for 60 seconds, then repower the board.
Turn off power for 60 seconds, then repower the board.
Select Battery backup test from main diag menu, then check
Select Battery backup test from main diag menu, then check
data that was written in step 1.
data that was written in step 1.
Timer Test
Timer Test
This tests the internal timer by printing a number of dots at one
This tests the internal timer by printing a number of dots at one
second intervals.
second intervals.
PCI Bus Test
PCI Bus Test
This tests the secondary PCI-X bus and socket. This test requires that
This tests the secondary PCI-X bus and socket. This test requires that
an IQ80310 board be plugged into the secondary slot of the IOP80321 board.
an IQ80310 board be plugged into the secondary slot of the IOP80321 board.
The test assumes at least 32MB of installed memory on the IQ80310. That memory
The test assumes at least 32MB of installed memory on the IQ80310. That memory
is mapped into the IOP80321 address space and the memory tests are run on that
is mapped into the IOP80321 address space and the memory tests are run on that
memory.
memory.
CPU Cache Loop
CPU Cache Loop
This test puts the CPU into a tight loop run entirely from the ICache.
This test puts the CPU into a tight loop run entirely from the ICache.
This should prevent all external bus accesses.
This should prevent all external bus accesses.
Rebuilding RedBoot 
Rebuilding RedBoot 
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=iq80321
export TARGET=iq80321
export ARCH_DIR=arm
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/iq80321
export PLATFORM_DIR=xscale/iq80321
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
Interrupts
Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004.
RedBoot uses an interrupt vector table which is located at address 0x8004.
Entries in this table are pointers to functions with this protoype::      
Entries in this table are pointers to functions with this protoype::      
int irq_handler( unsigned vector, unsigned data )On an IQ80321
int irq_handler( unsigned vector, unsigned data )On an IQ80321
board, the vector argument is one of 32 interrupts defined in 
board, the vector argument is one of 32 interrupts defined in 
hal/arm/xscale/verde/current/include/hal_var_ints.h::   
hal/arm/xscale/verde/current/include/hal_var_ints.h::   
// *** 80200 CPU ***
// *** 80200 CPU ***
#define CYGNUM_HAL_INTERRUPT_DMA0_EOT      0
#define CYGNUM_HAL_INTERRUPT_DMA0_EOT      0
#define CYGNUM_HAL_INTERRUPT_DMA0_EOC      1
#define CYGNUM_HAL_INTERRUPT_DMA0_EOC      1
#define CYGNUM_HAL_INTERRUPT_DMA1_EOT      2
#define CYGNUM_HAL_INTERRUPT_DMA1_EOT      2
#define CYGNUM_HAL_INTERRUPT_DMA1_EOC      3
#define CYGNUM_HAL_INTERRUPT_DMA1_EOC      3
#define CYGNUM_HAL_INTERRUPT_RSVD_4        4
#define CYGNUM_HAL_INTERRUPT_RSVD_4        4
#define CYGNUM_HAL_INTERRUPT_RSVD_5        5
#define CYGNUM_HAL_INTERRUPT_RSVD_5        5
#define CYGNUM_HAL_INTERRUPT_AA_EOT        6
#define CYGNUM_HAL_INTERRUPT_AA_EOT        6
#define CYGNUM_HAL_INTERRUPT_AA_EOC        7
#define CYGNUM_HAL_INTERRUPT_AA_EOC        7
#define CYGNUM_HAL_INTERRUPT_CORE_PMON     8
#define CYGNUM_HAL_INTERRUPT_CORE_PMON     8
#define CYGNUM_HAL_INTERRUPT_TIMER0        9
#define CYGNUM_HAL_INTERRUPT_TIMER0        9
#define CYGNUM_HAL_INTERRUPT_TIMER1        10
#define CYGNUM_HAL_INTERRUPT_TIMER1        10
#define CYGNUM_HAL_INTERRUPT_I2C_0         11
#define CYGNUM_HAL_INTERRUPT_I2C_0         11
#define CYGNUM_HAL_INTERRUPT_I2C_1         12
#define CYGNUM_HAL_INTERRUPT_I2C_1         12
#define CYGNUM_HAL_INTERRUPT_MESSAGING     13
#define CYGNUM_HAL_INTERRUPT_MESSAGING     13
#define CYGNUM_HAL_INTERRUPT_ATU_BIST      14
#define CYGNUM_HAL_INTERRUPT_ATU_BIST      14
#define CYGNUM_HAL_INTERRUPT_PERFMON       15
#define CYGNUM_HAL_INTERRUPT_PERFMON       15
#define CYGNUM_HAL_INTERRUPT_CORE_PMU      16
#define CYGNUM_HAL_INTERRUPT_CORE_PMU      16
#define CYGNUM_HAL_INTERRUPT_BIU_ERR       17
#define CYGNUM_HAL_INTERRUPT_BIU_ERR       17
#define CYGNUM_HAL_INTERRUPT_ATU_ERR       18
#define CYGNUM_HAL_INTERRUPT_ATU_ERR       18
#define CYGNUM_HAL_INTERRUPT_MCU_ERR       19
#define CYGNUM_HAL_INTERRUPT_MCU_ERR       19
#define CYGNUM_HAL_INTERRUPT_DMA0_ERR      20
#define CYGNUM_HAL_INTERRUPT_DMA0_ERR      20
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR      22
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR      22
#define CYGNUM_HAL_INTERRUPT_AA_ERR        23
#define CYGNUM_HAL_INTERRUPT_AA_ERR        23
#define CYGNUM_HAL_INTERRUPT_MSG_ERR       24
#define CYGNUM_HAL_INTERRUPT_MSG_ERR       24
#define CYGNUM_HAL_INTERRUPT_SSP           25
#define CYGNUM_HAL_INTERRUPT_SSP           25
#define CYGNUM_HAL_INTERRUPT_RSVD_26       26
#define CYGNUM_HAL_INTERRUPT_RSVD_26       26
#define CYGNUM_HAL_INTERRUPT_XINT0         27
#define CYGNUM_HAL_INTERRUPT_XINT0         27
#define CYGNUM_HAL_INTERRUPT_XINT1         28
#define CYGNUM_HAL_INTERRUPT_XINT1         28
#define CYGNUM_HAL_INTERRUPT_XINT2         29
#define CYGNUM_HAL_INTERRUPT_XINT2         29
#define CYGNUM_HAL_INTERRUPT_XINT3         30
#define CYGNUM_HAL_INTERRUPT_XINT3         30
#define CYGNUM_HAL_INTERRUPT_HPI           31
#define CYGNUM_HAL_INTERRUPT_HPI           31
The data passed to the ISR is pulled from a data table (hal_interrupt_data)
The data passed to the ISR is pulled from a data table (hal_interrupt_data)
 which immediately follows the interrupt vector table. With
 which immediately follows the interrupt vector table. With
32 interrupts, the data table starts at address 0x8084.   
32 interrupts, the data table starts at address 0x8084.   
An application may create a normal C function with the above prototype
An application may create a normal C function with the above prototype
to be an ISR. Just poke its address into the table at the correct index and
to be an ISR. Just poke its address into the table at the correct index and
enable the interrupt at its source. The return value of the ISR is ignored
enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.
by RedBoot.
Memory Maps
Memory Maps
The RAM based page table is located at RAM start + 0x4000. RedBoot may be configured
The RAM based page table is located at RAM start + 0x4000. RedBoot may be configured
for one of two memory maps. The difference between them is the location of RAM and the
for one of two memory maps. The difference between them is the location of RAM and the
PCI outbound windows. The alternative memory map may be used when
PCI outbound windows. The alternative memory map may be used when
building RedBoot or eCos by using the RAM_ALTMAP
building RedBoot or eCos by using the RAM_ALTMAP
and ROM_ALTMAP startup types in the configuration.
and ROM_ALTMAP startup types in the configuration.
NOTE
NOTE
The virtual memory maps in this section use a C, B, and X column to indicate
The virtual memory maps in this section use a C, B, and X column to indicate
the caching policy for the region..
the caching policy for the region..
X C B  Description
X C B  Description
- - -  ---------------------------------------------
- - -  ---------------------------------------------
0 0 0  Uncached/Unbuffered
0 0 0  Uncached/Unbuffered
0 0 1  Uncached/Buffered
0 0 1  Uncached/Buffered
0 1 0  Cached/Buffered    Write Through, Read Allocate
0 1 0  Cached/Buffered    Write Through, Read Allocate
0 1 1  Cached/Buffered    Write Back, Read Allocate
0 1 1  Cached/Buffered    Write Back, Read Allocate
1 0 0  Invalid -- not used
1 0 0  Invalid -- not used
1 0 1  Uncached/Buffered  No write buffer coalescing
1 0 1  Uncached/Buffered  No write buffer coalescing
1 1 0  Mini DCache - Policy set by Aux Ctl Register
1 1 0  Mini DCache - Policy set by Aux Ctl Register
1 1 1  Cached/Buffered    Write Back, Read/Write Allocate
1 1 1  Cached/Buffered    Write Back, Read/Write Allocate
Physical Address Range     Description
Physical Address Range     Description
-----------------------    ----------------------------------
-----------------------    ----------------------------------
0x00000000 - 0x7fffffff    ATU Outbound Direct Window
0x00000000 - 0x7fffffff    ATU Outbound Direct Window
0x80000000 - 0x900fffff    ATU Outbound Translate Windows
0x80000000 - 0x900fffff    ATU Outbound Translate Windows
0xa0000000 - 0xbfffffff    SDRAM
0xa0000000 - 0xbfffffff    SDRAM
0xf0000000 - 0xf0800000    FLASH               (PBIU CS0)
0xf0000000 - 0xf0800000    FLASH               (PBIU CS0)
0xfe800000 - 0xfe800fff    UART                (PBIU CS1)
0xfe800000 - 0xfe800fff    UART                (PBIU CS1)
0xfe840000 - 0xfe840fff    Left 7-segment LED  (PBIU CS3)
0xfe840000 - 0xfe840fff    Left 7-segment LED  (PBIU CS3)
0xfe850000 - 0xfe850fff    Right 7-segment LED (PBIU CS2)
0xfe850000 - 0xfe850fff    Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff    Rotary Switch       (PBIU CS4)
0xfe8d0000 - 0xfe8d0fff    Rotary Switch       (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff    Baterry Status      (PBIU CS5)
0xfe8f0000 - 0xfe8f0fff    Baterry Status      (PBIU CS5)
0xfff00000 - 0xffffffff    Verde Memory mapped Registers
0xfff00000 - 0xffffffff    Verde Memory mapped Registers
Default Virtual Map      X C B  Description
Default Virtual Map      X C B  Description
-----------------------  - - -  ----------------------------------
-----------------------  - - -  ----------------------------------
0x00000000 - 0x1fffffff  1 1 1  SDRAM
0x00000000 - 0x1fffffff  1 1 1  SDRAM
0x20000000 - 0x9fffffff  0 0 0  ATU Outbound Direct Window
0x20000000 - 0x9fffffff  0 0 0  ATU Outbound Direct Window
0xa0000000 - 0xb00fffff  0 0 0  ATU Outbound Translate Windows
0xa0000000 - 0xb00fffff  0 0 0  ATU Outbound Translate Windows
0xc0000000 - 0xdfffffff  0 0 0  Uncached alias for SDRAM
0xc0000000 - 0xdfffffff  0 0 0  Uncached alias for SDRAM
0xe0000000 - 0xe00fffff  1 1 1  Cache flush region (no phys mem)
0xe0000000 - 0xe00fffff  1 1 1  Cache flush region (no phys mem)
0xf0000000 - 0xf0800000  0 1 0  FLASH               (PBIU CS0)
0xf0000000 - 0xf0800000  0 1 0  FLASH               (PBIU CS0)
0xfe800000 - 0xfe800fff  0 0 0  UART                (PBIU CS1)
0xfe800000 - 0xfe800fff  0 0 0  UART                (PBIU CS1)
0xfe840000 - 0xfe840fff  0 0 0  Left 7-segment LED  (PBIU CS3)
0xfe840000 - 0xfe840fff  0 0 0  Left 7-segment LED  (PBIU CS3)
0xfe850000 - 0xfe850fff  0 0 0  Right 7-segment LED (PBIU CS2)
0xfe850000 - 0xfe850fff  0 0 0  Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff  0 0 0  Rotary Switch       (PBIU CS4)
0xfe8d0000 - 0xfe8d0fff  0 0 0  Rotary Switch       (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff  0 0 0  Baterry Status      (PBIU CS5)
0xfe8f0000 - 0xfe8f0fff  0 0 0  Baterry Status      (PBIU CS5)
0xfff00000 - 0xffffffff  0 0 0  Verde Memory mapped Registers
0xfff00000 - 0xffffffff  0 0 0  Verde Memory mapped Registers
Alternate Virtual Map    X C B  Description
Alternate Virtual Map    X C B  Description
-----------------------  - - -  ----------------------------------
-----------------------  - - -  ----------------------------------
0x00000000 - 0x000fffff  1 1 1  Alias for 1st MB of SDRAM
0x00000000 - 0x000fffff  1 1 1  Alias for 1st MB of SDRAM
0x00100000 - 0x7fffffff  0 0 0  ATU Outbound Direct Window
0x00100000 - 0x7fffffff  0 0 0  ATU Outbound Direct Window
0x80000000 - 0x900fffff  0 0 0  ATU Outbound Translate Windows
0x80000000 - 0x900fffff  0 0 0  ATU Outbound Translate Windows
0xa0000000 - 0xbfffffff  1 1 1  SDRAM
0xa0000000 - 0xbfffffff  1 1 1  SDRAM
0xc0000000 - 0xdfffffff  0 0 0  Uncached alias for SDRAM
0xc0000000 - 0xdfffffff  0 0 0  Uncached alias for SDRAM
0xe0000000 - 0xe00fffff  1 1 1  Cache flush region (no phys mem)
0xe0000000 - 0xe00fffff  1 1 1  Cache flush region (no phys mem)
0xf0000000 - 0xf0800000  0 1 0  FLASH               (PBIU CS0)
0xf0000000 - 0xf0800000  0 1 0  FLASH               (PBIU CS0)
0xfe800000 - 0xfe800fff  0 0 0  UART                (PBIU CS1)
0xfe800000 - 0xfe800fff  0 0 0  UART                (PBIU CS1)
0xfe840000 - 0xfe840fff  0 0 0  Left 7-segment LED  (PBIU CS3)
0xfe840000 - 0xfe840fff  0 0 0  Left 7-segment LED  (PBIU CS3)
0xfe850000 - 0xfe850fff  0 0 0  Right 7-segment LED (PBIU CS2)
0xfe850000 - 0xfe850fff  0 0 0  Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff  0 0 0  Rotary Switch       (PBIU CS4)
0xfe8d0000 - 0xfe8d0fff  0 0 0  Rotary Switch       (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff  0 0 0  Baterry Status      (PBIU CS5)
0xfe8f0000 - 0xfe8f0fff  0 0 0  Baterry Status      (PBIU CS5)
0xfff00000 - 0xffffffff  0 0 0  Verde Memory mapped Registers
0xfff00000 - 0xffffffff  0 0 0  Verde Memory mapped Registers
Platform Resource Usage
Platform Resource Usage
The Verde programmable timer0 is used for timeout support
The Verde programmable timer0 is used for timeout support
for networking and XModem file transfers.
for networking and XModem file transfers.
CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board 
CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board 
Overview
Overview
Samsung CalmRISC16 Core EVBinstalling
Samsung CalmRISC16 Core EVBinstalling
and testinginstalling and testing
and testinginstalling and testing
Samsung CalmRISC16 Core EVB The
Samsung CalmRISC16 Core EVB The
Samsung CalmRISC16 evaluation platform consists of two boards connected by a
Samsung CalmRISC16 evaluation platform consists of two boards connected by a
ribbon cable. One board contains the CPU core and memory. The other board is
ribbon cable. One board contains the CPU core and memory. The other board is
called the MDSChip board and provides the host interface. The calmRISC16 is a
called the MDSChip board and provides the host interface. The calmRISC16 is a
harvard architecture with separate 22-bit program and data addresses. The
harvard architecture with separate 22-bit program and data addresses. The
instruction set provides no instruction for writing to program memory. The
instruction set provides no instruction for writing to program memory. The
MDSChip board firmware (called CalmBreaker) provides a pseudo register interface
MDSChip board firmware (called CalmBreaker) provides a pseudo register interface
so that code running on the core has access to a serial channel and a mechanism
so that code running on the core has access to a serial channel and a mechanism
to write to program memory. The serial channel is fixed at 57600-8-N-1 by the
to write to program memory. The serial channel is fixed at 57600-8-N-1 by the
firmware. The CalmBreaker firmware also provides a serial protocol which
firmware. The CalmBreaker firmware also provides a serial protocol which
allows a host to download a program and to start or stop the core board.
allows a host to download a program and to start or stop the core board.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running via the MDSChip board.
              RedBoot running via the MDSChip board.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
The CalmRISC16 core is controlled through the MDSChip board. There is
The CalmRISC16 core is controlled through the MDSChip board. There is
no non-volatile storage available for RedBoot, so RedBoot must be downloaded
no non-volatile storage available for RedBoot, so RedBoot must be downloaded
to the board on every power cycle. A small utility program is used to download
to the board on every power cycle. A small utility program is used to download
S-record files to the eval board. Sources and build instructions for this
S-record files to the eval board. Sources and build instructions for this
utility are located in the RedBoot sources in:
utility are located in the RedBoot sources in:
packages/hal/calmrisc16/ceb/current/support
packages/hal/calmrisc16/ceb/current/support
To download the RedBoot image, first press the reset button on the MDSChip
To download the RedBoot image, first press the reset button on the MDSChip
board. The green 'Run' LED on the core board should go off. Now, use the
board. The green 'Run' LED on the core board should go off. Now, use the
utility to download the RedBoot image with:
utility to download the RedBoot image with:
$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf
$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf
Note that the '-p /dev/term/b' specifies the serial port to use and will vary
Note that the '-p /dev/term/b' specifies the serial port to use and will vary
from system to system. The download will take about two minutes. After it
from system to system. The download will take about two minutes. After it
finishes, start RedBoot with:
finishes, start RedBoot with:
$ calmbreaker -p /dev/term/b --run
$ calmbreaker -p /dev/term/b --run
The 'Run' LED on the core board should be on. Connecting to the MDSboard with
The 'Run' LED on the core board should be on. Connecting to the MDSboard with
a terminal and typing enter should result in RedBoot reprinting the command
a terminal and typing enter should result in RedBoot reprinting the command
prompt.
prompt.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Special Note on Serial Channel 
Special Note on Serial Channel 
The MDSChip board uses a relatively slow microcontroller to provide
The MDSChip board uses a relatively slow microcontroller to provide
the pseudo-register interface to the core board. This pseudo-register
the pseudo-register interface to the core board. This pseudo-register
interface provides access to the serial channel and write access to program
interface provides access to the serial channel and write access to program
memory. Those interfaces are slow and the serial channel is easily overrun
memory. Those interfaces are slow and the serial channel is easily overrun
by a fast host. For this reason, GDB must be told to limit the size of code
by a fast host. For this reason, GDB must be told to limit the size of code
download packets to avoid serial overrun. This is done with the following
download packets to avoid serial overrun. This is done with the following
GDB command:
GDB command:
(gdb) set download-write-size 25
(gdb) set download-write-size 25
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=calm16_ceb
export TARGET=calm16_ceb
export ARCH_DIR=calmrisc16
export ARCH_DIR=calmrisc16
export PLATFORM_DIR=ceb
export PLATFORM_DIR=ceb
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board 
CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board 
Overview
Overview
Samsung CalmRISC32 Core EVBinstalling
Samsung CalmRISC32 Core EVBinstalling
and testinginstalling and testing
and testinginstalling and testing
Samsung CalmRISC32 Core EVB The
Samsung CalmRISC32 Core EVB The
Samsung CalmRISC32 evaluation platform consists of two boards connected by a
Samsung CalmRISC32 evaluation platform consists of two boards connected by a
ribbon cable. One board contains the CPU core and memory. The other board is
ribbon cable. One board contains the CPU core and memory. The other board is
called the MDSChip board and provides the host interface. The calmRISC32 is a
called the MDSChip board and provides the host interface. The calmRISC32 is a
harvard architecture with separate 32-bit program and data addresses. The
harvard architecture with separate 32-bit program and data addresses. The
instruction set provides no instruction for writing to program memory. The
instruction set provides no instruction for writing to program memory. The
MDSChip board firmware (called CalmBreaker) provides a pseudo register interface
MDSChip board firmware (called CalmBreaker) provides a pseudo register interface
so that code running on the core has access to a serial channel and a mechanism
so that code running on the core has access to a serial channel and a mechanism
to write to program memory. The serial channel is fixed at 57600-8-N-1 by the
to write to program memory. The serial channel is fixed at 57600-8-N-1 by the
firmware. The CalmBreaker firmware also provides a serial protocol which
firmware. The CalmBreaker firmware also provides a serial protocol which
allows a host to download a program and to start or stop the core board.
allows a host to download a program and to start or stop the core board.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running via the MDSChip board.
              RedBoot running via the MDSChip board.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
The calmRISC32 core is controlled through the MDSChip board. There is
The calmRISC32 core is controlled through the MDSChip board. There is
no non-volatile storage available for RedBoot, so RedBoot must be downloaded
no non-volatile storage available for RedBoot, so RedBoot must be downloaded
to the board on every power cycle. A small utility program is used to download
to the board on every power cycle. A small utility program is used to download
S-record files to the eval board. Sources and build instructions for this
S-record files to the eval board. Sources and build instructions for this
utility are located in the RedBoot sources in:
utility are located in the RedBoot sources in:
packages/hal/calmrisc32/ceb/current/support
packages/hal/calmrisc32/ceb/current/support
To download the RedBoot image, first press the reset button on the MDSChip
To download the RedBoot image, first press the reset button on the MDSChip
board. The green 'Run' LED on the core board should go off. Now, use the
board. The green 'Run' LED on the core board should go off. Now, use the
utility to download the RedBoot image with:
utility to download the RedBoot image with:
$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf
$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf
Note that the '-p /dev/term/b' specifies the serial port to use and will vary
Note that the '-p /dev/term/b' specifies the serial port to use and will vary
from system to syetm. The download will take about two minutes. After it
from system to syetm. The download will take about two minutes. After it
finishes, start RedBoot with:
finishes, start RedBoot with:
$ calmbreaker -p /dev/term/b --run
$ calmbreaker -p /dev/term/b --run
The 'Run' LED on the core board should be on. Connecting to the MDSboard with
The 'Run' LED on the core board should be on. Connecting to the MDSboard with
a terminal and typing enter should result in RedBoot reprinting the command
a terminal and typing enter should result in RedBoot reprinting the command
prompt.
prompt.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Special Note on Serial Channel 
Special Note on Serial Channel 
The MDSChip board uses a relatively slow microcontroller to provide
The MDSChip board uses a relatively slow microcontroller to provide
the pseudo-register interface to the core board. This pseudo-register
the pseudo-register interface to the core board. This pseudo-register
interface provides access to the serial channel and write access to program
interface provides access to the serial channel and write access to program
memory. Those interfaces are slow and the serial channel is easily overrun
memory. Those interfaces are slow and the serial channel is easily overrun
by a fast host. For this reason, GDB must be told to limit the size of code
by a fast host. For this reason, GDB must be told to limit the size of code
download packets to avoid serial overrun. This is done with the following
download packets to avoid serial overrun. This is done with the following
GDB command:
GDB command:
(gdb) set download-write-size 25
(gdb) set download-write-size 25
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=calm32_ceb
export TARGET=calm32_ceb
export ARCH_DIR=calmrisc32
export ARCH_DIR=calmrisc32
export PLATFORM_DIR=ceb
export PLATFORM_DIR=ceb
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
FRV/FRV400 Fujitsu FR-V 400 (MB-93091)
FRV/FRV400 Fujitsu FR-V 400 (MB-93091)
Overview
Overview
Fujitsu FR-V 400
Fujitsu FR-V 400
installing and testing
installing and testing
installing and testing
installing and testing
Fujitsu FR-V 400
Fujitsu FR-V 400
RedBoot supports both serial ports, which are available via
RedBoot supports both serial ports, which are available via
the stacked serial connectors on the mother board.
the stacked serial connectors on the mother board.
The topmost port is the default and is considered to be port 0 by RedBoot.
The topmost port is the default and is considered to be port 0 by RedBoot.
The bottommost port is serial port 1.
The bottommost port is serial port 1.
The default serial port settings are 38400,8,N,1.
The default serial port settings are 38400,8,N,1.
FLASH management is also supported, but only for the FLASH device in IC7.
FLASH management is also supported, but only for the FLASH device in IC7.
This arrangement allows for IC8 to retain either the original Fujitsu board
This arrangement allows for IC8 to retain either the original Fujitsu board
firmware, or some application specific contents.
firmware, or some application specific contents.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
RedBoot can be installed by directly programming the FLASH device in IC7
RedBoot can be installed by directly programming the FLASH device in IC7
or by using the Fujitsu provided software to download and install a
or by using the Fujitsu provided software to download and install a
version into the FLASH device.  Complete instructions are provided
version into the FLASH device.  Complete instructions are provided
separately.
separately.
Special RedBoot Commands
Special RedBoot Commands
None.
None.
Memory Maps
Memory Maps
The memory map of this platform is fixed by the hardware (cannot
The memory map of this platform is fixed by the hardware (cannot
be changed by software).  The only attributes which can be modified are
be changed by software).  The only attributes which can be modified are
control over cacheability, as noted below.
control over cacheability, as noted below.
Address                 Cache?      Resource
Address                 Cache?      Resource
00000000-03EFFFFF         Yes       SDRAM (via plugin DIMM)
00000000-03EFFFFF         Yes       SDRAM (via plugin DIMM)
03F00000-03FFFFFF         No        SDRAM (used for PCI window)
03F00000-03FFFFFF         No        SDRAM (used for PCI window)
10000000-1FFFFFFF         No        MB86943 PCI bridge
10000000-1FFFFFFF         No        MB86943 PCI bridge
20000000-201FFFFF         No        SRAM
20000000-201FFFFF         No        SRAM
21000000-23FFFFFF         No        Motherboard resources
21000000-23FFFFFF         No        Motherboard resources
24000000-25FFFFFF         No        PCI I/O space
24000000-25FFFFFF         No        PCI I/O space
26000000-2FFFFFFF         No        PCI Memory space
26000000-2FFFFFFF         No        PCI Memory space
30000000-FDFFFFFF         ??        Unused
30000000-FDFFFFFF         ??        Unused
FE000000-FEFFFFFF         No        I/O devices
FE000000-FEFFFFFF         No        I/O devices
FF000000-FF1FFFFF         No        IC7 - RedBoot FLASH
FF000000-FF1FFFFF         No        IC7 - RedBoot FLASH
FF200000-FF3FFFFF         No        IC8 - unused FLASH
FF200000-FF3FFFFF         No        IC8 - unused FLASH
FF400000-FFFFFFFF         No        Misc other I/O
FF400000-FFFFFFFF         No        Misc other I/O
 NOTE
 NOTE
The only configuration currently suppored requires a 64MB SDRAM
The only configuration currently suppored requires a 64MB SDRAM
DIMM to be present on the CPU card.  No other memory configuration
DIMM to be present on the CPU card.  No other memory configuration
is supported at this time.
is supported at this time.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=frv400
export TARGET=frv400
export ARCH_DIR=frv
export ARCH_DIR=frv
export PLATFORM_DIR=frv400
export PLATFORM_DIR=frv400
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
IA32/x86 x86-Based PC
IA32/x86 x86-Based PC
Overview
Overview
x86 Based PCinstalling and
x86 Based PCinstalling and
testinginstalling and testing
testinginstalling and testing
x86 Based PCRedBoot supports
x86 Based PCRedBoot supports
two serial ports and an Intel i82559 based ethernet card (for example an Intel
two serial ports and an Intel i82559 based ethernet card (for example an Intel
EtherExpress Pro 10/100) for communication and downloads. The default serial
EtherExpress Pro 10/100) for communication and downloads. The default serial
port settings are 38400,8,N,1.
port settings are 38400,8,N,1.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              Floppy
              Floppy
              [Floppy]
              [Floppy]
              RedBoot running from a boot floppy disk installed
              RedBoot running from a boot floppy disk installed
              in the A: drive of the PC.
              in the A: drive of the PC.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
Initial Installation
Initial Installation
RedBoot takes the form of a self-booting image that must be written
RedBoot takes the form of a self-booting image that must be written
onto a formatted floppy disk. The process will erase any file system or data
onto a formatted floppy disk. The process will erase any file system or data
that already exists on that disk, so proceed with caution.
that already exists on that disk, so proceed with caution.
For Red Hat Linux users, this can be done by:
For Red Hat Linux users, this can be done by:
$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0H1440
$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0H1440
For NT Cygwin users, this can be done by first ensuring that the raw
For NT Cygwin users, this can be done by first ensuring that the raw
floppy device is mounted as /dev/fd0. To check if this
floppy device is mounted as /dev/fd0. To check if this
is the case, type the command mount at the Cygwin bash
is the case, type the command mount at the Cygwin bash
prompt. If the floppy drive is already mounted, it will be listed as something
prompt. If the floppy drive is already mounted, it will be listed as something
similar to the following line:
similar to the following line:
  \\.\a: /dev/fd0 user binmode
  \\.\a: /dev/fd0 user binmode
If this line is not listed, then mount the floppy drive using the command:
If this line is not listed, then mount the floppy drive using the command:
$ mount -f -b //./a: /dev/fd0
$ mount -f -b //./a: /dev/fd0
To actually install the boot image on the floppy, use the command:
To actually install the boot image on the floppy, use the command:
$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0
$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0
Insert this floppy in the A: drive of the PC to be used as a target
Insert this floppy in the A: drive of the PC to be used as a target
and ensure that the BIOS is configured to boot from A: by default. On reset,
and ensure that the BIOS is configured to boot from A: by default. On reset,
the PC will boot from the floppy and be ready to be debugged via either serial
the PC will boot from the floppy and be ready to be debugged via either serial
line, or via the ethernet interface if it is installed.
line, or via the ethernet interface if it is installed.
NOTE
NOTE
Unreliable floppy media may cause the write to silently fail. This
Unreliable floppy media may cause the write to silently fail. This
can be determined if the RedBoot image does not correctly
can be determined if the RedBoot image does not correctly
boot. In such cases, the floppy should be (unconditionally) reformatted
boot. In such cases, the floppy should be (unconditionally) reformatted
using the fdformat command on Linux, or
using the fdformat command on Linux, or
format a: /u on DOS/Windows.
format a: /u on DOS/Windows.
Flash management
Flash management
PC RedBoot does not support any FLASH commands.
PC RedBoot does not support any FLASH commands.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
All selectors are initialized to map the entire 32-bit address space
All selectors are initialized to map the entire 32-bit address space
in the familiar protected mode flat model. Page translation is not used.
in the familiar protected mode flat model. Page translation is not used.
RAM up to 640K is mapped to 0x0 to 0xa0000. RAM above 640K is mapped
RAM up to 640K is mapped to 0x0 to 0xa0000. RAM above 640K is mapped
from address 0x100000 upwards. Space is reserved between 0xa0000 and
from address 0x100000 upwards. Space is reserved between 0xa0000 and
0x100000 for option ROMs and the BIOS.
0x100000 for option ROMs and the BIOS.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=pc
export TARGET=pc
export ARCH_DIR=i386
export ARCH_DIR=i386
export PLATFORM_DIR=pc
export PLATFORM_DIR=pc
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Atlas Board
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Atlas Board
Overview
Overview
MIPS Atlas Board with CoreLV 4KC and CoreLV 5KC
MIPS Atlas Board with CoreLV 4KC and CoreLV 5KC
installing and testing
installing and testing
installing and testingMIPS Atlas Board with
installing and testingMIPS Atlas Board with
CoreLV 4KC and CoreLV 5KCRedBoot supports the DgbSer
CoreLV 4KC and CoreLV 5KCRedBoot supports the DgbSer
serial port and the built in ethernet port for communication and downloads.
serial port and the built in ethernet port for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot runs from and supports
The default serial port settings are 115200,8,N,1. RedBoot runs from and supports
flash management for the system flash region.
flash management for the system flash region.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation
Initial Installation
RedBoot is installed using the code download facility built into the
RedBoot is installed using the code download facility built into the
Atlas board. See the Atlas User manual for details, and also the Atlas download
Atlas board. See the Atlas User manual for details, and also the Atlas download
format in .
format in .
Quick download instructions
Quick download instructions
Here are quick start instructions for downloading the prebuilt RedBoot
Here are quick start instructions for downloading the prebuilt RedBoot
image.
image.
Locate the prebuilt files in the bin directory: 
Locate the prebuilt files in the bin directory: 
deleteall.dl and redboot.dl.
deleteall.dl and redboot.dl.
Make sure switch S1-1 is OFF and switch S5-1 is ON. Reset
Make sure switch S1-1 is OFF and switch S5-1 is ON. Reset
the board and verify that the LED display reads Flash DL.
the board and verify that the LED display reads Flash DL.
Make sure your parallel port is connected to the 1284 port
Make sure your parallel port is connected to the 1284 port
Of the Atlas board. 
Of the Atlas board. 
Send the deleteall.dl file to the
Send the deleteall.dl file to the
parallel port to erase previous images:
parallel port to erase previous images:
$ cat deleteall.dl >/dev/lp0
$ cat deleteall.dl >/dev/lp0
When this is complete, the LED display should read
When this is complete, the LED display should read
Deleted.
Deleted.
Send the ROM mode RedBoot image to the board:
Send the ROM mode RedBoot image to the board:
$ cat redboot.dl >/dev/lp0
$ cat redboot.dl >/dev/lp0
When this is complete, the LED display should show the last
When this is complete, the LED display should show the last
address programmed. This will be something like: 1fc17000
address programmed. This will be something like: 1fc17000
. 
. 
Change switch S5-1 to OFF and reset the board. The LED display
Change switch S5-1 to OFF and reset the board. The LED display
should read RedBoot. 
should read RedBoot. 
Run the RedBoot fis init
Run the RedBoot fis init
and fconfig commands to initialize the flash.
and fconfig commands to initialize the flash.
See , 
See , 
and  for details. 
and  for details. 
Atlas download format
Atlas download format
In order to download RedBoot to the Atlas board, it must be converted
In order to download RedBoot to the Atlas board, it must be converted
to the Atlas download format. There are different ways of doing this depending
to the Atlas download format. There are different ways of doing this depending
on which version of the developer's kit is shipped with the board.   
on which version of the developer's kit is shipped with the board.   
The Atlas Developer's Kit CD contains an 
The Atlas Developer's Kit CD contains an 
srec2flash utility. The source code for this utility is part
srec2flash utility. The source code for this utility is part
of the yamon/yamon-src-01.01.tar.gz tarball
of the yamon/yamon-src-01.01.tar.gz tarball
on the Dev Kit CD. The path in the expanded tarball is 
on the Dev Kit CD. The path in the expanded tarball is 
class="directory">yamon/bin/tools.  To use
class="directory">yamon/bin/tools.  To use
srec2flash to convert the S-record file:
srec2flash to convert the S-record file:
$ srec2flash -EL -S29 redboot.srec >redboot.dl
$ srec2flash -EL -S29 redboot.srec >redboot.dl
The Atlas/Malta Developer's Kit CD
The Atlas/Malta Developer's Kit CD
contains an srecconv.pl utility which requires
contains an srecconv.pl utility which requires
Perl. This utilty is part of the yamon/yamon-src-02.00.tar.gz
Perl. This utilty is part of the yamon/yamon-src-02.00.tar.gz
tarball on the Dev Kit CD. The path in the expanded tarball
tarball on the Dev Kit CD. The path in the expanded tarball
is yamon/bin/tools.   To use 
is yamon/bin/tools.   To use 
srecconv to convert the S-record file:
srecconv to convert the S-record file:
$ cp redboot_ROM.srec redboot_ROM.rec
$ cp redboot_ROM.srec redboot_ROM.rec
$ srecconv.pl -ES L -A 29 redboot_ROM
$ srecconv.pl -ES L -A 29 redboot_ROM
The resulting file is named redboot_ROM.fl.
The resulting file is named redboot_ROM.fl.
Flash management
Flash management
Additional config options
Additional config options
The ethernet MAC address is stored in flash manually using the 
The ethernet MAC address is stored in flash manually using the 
fconfig command. You can use the YAMON setenv
fconfig command. You can use the YAMON setenv
ethaddr command to print out the board ethernet address.
ethaddr command to print out the board ethernet address.
Typically, it is:    00:0d:a0:00:xx:xx where
Typically, it is:    00:0d:a0:00:xx:xx where
xx.xx is the hex representation of the
xx.xx is the hex representation of the
board serial number.
board serial number.
Additional commands
Additional commands
The exec command which allows the
The exec command which allows the
loading and execution of Linux kernels, is supported for this architecture
loading and execution of Linux kernels, is supported for this architecture
 (see ). The
 (see ). The
exec parameters used for MIPS boards are:
exec parameters used for MIPS boards are:
-b <addr>
-b <addr>
Location to store command line and environment passed to kernel
Location to store command line and environment passed to kernel
-w <time>
-w <time>
Wait time in seconds before starting kernel
Wait time in seconds before starting kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
<addr>
<addr>
Kernel entry point, defaulting to the entry point of the last image
Kernel entry point, defaulting to the entry point of the last image
loaded
loaded
Linux kernels on MIPS platforms expect the entry point to be called with arguments
Linux kernels on MIPS platforms expect the entry point to be called with arguments
in the registers equivalent to a C call with prototype:
in the registers equivalent to a C call with prototype:
void Linux(int argc, char **argv, char **envp);
void Linux(int argc, char **argv, char **envp);
RedBoot will place the appropriate data at the offset specified by the
RedBoot will place the appropriate data at the offset specified by the
-b parameter, or by default at address 0x80080000, and will set the
-b parameter, or by default at address 0x80080000, and will set the
arguments accordingly when calling into the kernel.
arguments accordingly when calling into the kernel.
The default entry point, if no image with explicit entry point has been loaded and
The default entry point, if no image with explicit entry point has been loaded and
none is specified, is 0x80000750.
none is specified, is 0x80000750.
Interrupts
Interrupts
RedBoot uses an interrupt vector table which is located at address 0x80000400.
RedBoot uses an interrupt vector table which is located at address 0x80000400.
Entries in this table are pointers to functions with this protoype:      
Entries in this table are pointers to functions with this protoype:      
int irq_handler( unsigned vector, unsigned data )On an atlas
int irq_handler( unsigned vector, unsigned data )On an atlas
board, the vector argument is one of 25 interrupts defined in 
board, the vector argument is one of 25 interrupts defined in 
hal/mips/atlas/VERSION/include/plf_intr.h: 
hal/mips/atlas/VERSION/include/plf_intr.h: 
#define CYGNUM_HAL_INTERRUPT_SER                 0
#define CYGNUM_HAL_INTERRUPT_SER                 0
#define CYGNUM_HAL_INTERRUPT_TIM0                1
#define CYGNUM_HAL_INTERRUPT_TIM0                1
#define CYGNUM_HAL_INTERRUPT_2                   2
#define CYGNUM_HAL_INTERRUPT_2                   2
#define CYGNUM_HAL_INTERRUPT_3                   3
#define CYGNUM_HAL_INTERRUPT_3                   3
#define CYGNUM_HAL_INTERRUPT_RTC                 4
#define CYGNUM_HAL_INTERRUPT_RTC                 4
#define CYGNUM_HAL_INTERRUPT_COREHI              5
#define CYGNUM_HAL_INTERRUPT_COREHI              5
#define CYGNUM_HAL_INTERRUPT_CORELO              6
#define CYGNUM_HAL_INTERRUPT_CORELO              6
#define CYGNUM_HAL_INTERRUPT_7                   7
#define CYGNUM_HAL_INTERRUPT_7                   7
#define CYGNUM_HAL_INTERRUPT_PCIA                8
#define CYGNUM_HAL_INTERRUPT_PCIA                8
#define CYGNUM_HAL_INTERRUPT_PCIB                9
#define CYGNUM_HAL_INTERRUPT_PCIB                9
#define CYGNUM_HAL_INTERRUPT_PCIC               10
#define CYGNUM_HAL_INTERRUPT_PCIC               10
#define CYGNUM_HAL_INTERRUPT_PCID               11
#define CYGNUM_HAL_INTERRUPT_PCID               11
#define CYGNUM_HAL_INTERRUPT_ENUM               12
#define CYGNUM_HAL_INTERRUPT_ENUM               12
#define CYGNUM_HAL_INTERRUPT_DEG                13
#define CYGNUM_HAL_INTERRUPT_DEG                13
#define CYGNUM_HAL_INTERRUPT_ATXFAIL            14
#define CYGNUM_HAL_INTERRUPT_ATXFAIL            14
#define CYGNUM_HAL_INTERRUPT_INTA               15
#define CYGNUM_HAL_INTERRUPT_INTA               15
#define CYGNUM_HAL_INTERRUPT_INTB               16
#define CYGNUM_HAL_INTERRUPT_INTB               16
#define CYGNUM_HAL_INTERRUPT_INTC               17
#define CYGNUM_HAL_INTERRUPT_INTC               17
#define CYGNUM_HAL_INTERRUPT_INTD               18
#define CYGNUM_HAL_INTERRUPT_INTD               18
#define CYGNUM_HAL_INTERRUPT_SERR               19
#define CYGNUM_HAL_INTERRUPT_SERR               19
#define CYGNUM_HAL_INTERRUPT_HW1                20
#define CYGNUM_HAL_INTERRUPT_HW1                20
#define CYGNUM_HAL_INTERRUPT_HW2                21
#define CYGNUM_HAL_INTERRUPT_HW2                21
#define CYGNUM_HAL_INTERRUPT_HW3                22
#define CYGNUM_HAL_INTERRUPT_HW3                22
#define CYGNUM_HAL_INTERRUPT_HW4                23
#define CYGNUM_HAL_INTERRUPT_HW4                23
#define CYGNUM_HAL_INTERRUPT_HW5                24The data
#define CYGNUM_HAL_INTERRUPT_HW5                24The data
passed to the ISR is pulled from a data table (hal_interrupt_data
passed to the ISR is pulled from a data table (hal_interrupt_data
) which immediately follows the interrupt vector table. With
) which immediately follows the interrupt vector table. With
25 interrupts, the data table starts at address 0x80000464 on atlas.
25 interrupts, the data table starts at address 0x80000464 on atlas.
An application may create a normal C function with the above prototype
An application may create a normal C function with the above prototype
to be an ISR. Just poke its address into the table at the correct index and
to be an ISR. Just poke its address into the table at the correct index and
enable the interrupt at its source. The return value of the ISR is ignored
enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot. 
by RedBoot. 
Memory Maps 
Memory Maps 
Memory Maps RedBoot sets up the following memory map on the Atlas board.
Memory Maps RedBoot sets up the following memory map on the Atlas board.
Physical Address Range Description
Physical Address Range Description
----------------------- -------------
----------------------- -------------
0x00000000 - 0x07ffffff SDRAM
0x00000000 - 0x07ffffff SDRAM
0x08000000 - 0x17ffffff PCI Memory Space
0x08000000 - 0x17ffffff PCI Memory Space
0x18000000 - 0x1bdfffff PCI I/O Space
0x18000000 - 0x1bdfffff PCI I/O Space
0x1be00000 - 0x1bffffff System Controller
0x1be00000 - 0x1bffffff System Controller
0x1c000000 - 0x1dffffff System flash
0x1c000000 - 0x1dffffff System flash
0x1e000000 - 0x1e3fffff Monitor flash
0x1e000000 - 0x1e3fffff Monitor flash
0x1f000000 - 0x1fbfffff FPGA
0x1f000000 - 0x1fbfffff FPGA
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=atlas_mips32_4kc
export TARGET=atlas_mips32_4kc
export TARGET=atlas_mips64_5kc
export TARGET=atlas_mips64_5kc
export ARCH_DIR=mips
export ARCH_DIR=mips
export PLATFORM_DIR=atlas
export PLATFORM_DIR=atlas
Use one of the TARGET settings only.
Use one of the TARGET settings only.
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Malta Board 
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Malta Board 
Overview
Overview
MIPS Malta Board with CoreLV 4KC and CoreLV 5KC
MIPS Malta Board with CoreLV 4KC and CoreLV 5KC
installing and testing
installing and testing
installing and testingMIPS Malta Board with
installing and testingMIPS Malta Board with
CoreLV 4KC and CoreLV 5KCRedBoot supports both front
CoreLV 4KC and CoreLV 5KCRedBoot supports both front
facing serial ports and the built in ethernet port for communication and downloads.
facing serial ports and the built in ethernet port for communication and downloads.
The default serial port settings are 38400,8,N,1. RedBoot runs from and supports
The default serial port settings are 38400,8,N,1. RedBoot runs from and supports
flash management for the system flash region.
flash management for the system flash region.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation
Initial Installation
RedBoot is installed using the code download facility built into the
RedBoot is installed using the code download facility built into the
Malta board. See the Malta User manual for details, and also the Malta download
Malta board. See the Malta User manual for details, and also the Malta download
format in .
format in .
Quick download instructions
Quick download instructions
Here are quick start instructions for downloading the prebuilt RedBoot
Here are quick start instructions for downloading the prebuilt RedBoot
image. 
image. 
Locate the prebuilt files in the bin directory: 
Locate the prebuilt files in the bin directory: 
deleteall.fl and redboot_ROM.fl. 
deleteall.fl and redboot_ROM.fl. 
Make sure switch S5-1 is ON. Reset the board and verify that
Make sure switch S5-1 is ON. Reset the board and verify that
the LED display reads Flash DL. 
the LED display reads Flash DL. 
Make sure your parallel port is connected to the 1284 port
Make sure your parallel port is connected to the 1284 port
Of the Atlas board. 
Of the Atlas board. 
Send the deleteall.fl file to the
Send the deleteall.fl file to the
parallel port to erase previous images:
parallel port to erase previous images:
$ cat deleteall.fl >/dev/lp0
$ cat deleteall.fl >/dev/lp0
When this is complete, the LED display should read
When this is complete, the LED display should read
Deleted.
Deleted.
Send the RedBoot image to the board:
Send the RedBoot image to the board:
$ cat redboot_ROM.fl >/dev/lp0
$ cat redboot_ROM.fl >/dev/lp0
When this is complete, the LED display should show the last address
When this is complete, the LED display should show the last address
programmed. This will be something like:
programmed. This will be something like:
1fc17000. 
1fc17000. 
Change switch S5-1 to OFF and reset the board. The LED display
Change switch S5-1 to OFF and reset the board. The LED display
should read RedBoot. 
should read RedBoot. 
Run the RedBoot fis init and 
Run the RedBoot fis init and 
fconfig commands to initialize the flash. See 
fconfig commands to initialize the flash. See 
and  for details. 
and  for details. 
Malta download format
Malta download format
In order to download RedBoot to the Malta board, it must be converted
In order to download RedBoot to the Malta board, it must be converted
to the Malta download format.
to the Malta download format.
The Atlas/Malta Developer's Kit CD contains an 
The Atlas/Malta Developer's Kit CD contains an 
srecconv.pl utility which requires Perl. This utility is part
srecconv.pl utility which requires Perl. This utility is part
of the yamon/yamon-src-02.00.tar.gz tarball
of the yamon/yamon-src-02.00.tar.gz tarball
on the Dev Kit CD. The path in the expanded tarball is 
on the Dev Kit CD. The path in the expanded tarball is 
class="directory">yamon/bin/tools.  To use
class="directory">yamon/bin/tools.  To use
srecconv to convert the S-record file:
srecconv to convert the S-record file:
$ cp redboot_ROM.srec redboot_ROM.rec
$ cp redboot_ROM.srec redboot_ROM.rec
$ srecconv.pl -ES L -A 29 redboot_ROM
$ srecconv.pl -ES L -A 29 redboot_ROM
The resulting file is named redboot_ROM.fl.
The resulting file is named redboot_ROM.fl.
Additional commands
Additional commands
The exec command which allows the
The exec command which allows the
loading and execution of Linux kernels, is supported for this architecture
loading and execution of Linux kernels, is supported for this architecture
 (see ). The
 (see ). The
exec parameters used for MIPS boards are:
exec parameters used for MIPS boards are:
-b <addr>
-b <addr>
Location to store command line and environment passed to kernel
Location to store command line and environment passed to kernel
-w <time>
-w <time>
Wait time in seconds before starting kernel
Wait time in seconds before starting kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
<addr>
<addr>
Kernel entry point, defaulting to the entry point of the last image
Kernel entry point, defaulting to the entry point of the last image
loaded
loaded
Linux kernels on MIPS platforms expect the entry point to be called with arguments
Linux kernels on MIPS platforms expect the entry point to be called with arguments
in the registers equivalent to a C call with prototype:
in the registers equivalent to a C call with prototype:
void Linux(int argc, char **argv, char **envp);
void Linux(int argc, char **argv, char **envp);
RedBoot will place the appropriate data at the offset specified by the
RedBoot will place the appropriate data at the offset specified by the
-b parameter, or by default at address 0x80080000, and will set the
-b parameter, or by default at address 0x80080000, and will set the
arguments accordingly when calling into the kernel.
arguments accordingly when calling into the kernel.
The default entry point, if no image with explicit entry point has been loaded and
The default entry point, if no image with explicit entry point has been loaded and
none is specified, is 0x80000750.
none is specified, is 0x80000750.
Interrupts
Interrupts
RedBoot uses an interrupt vector table which is located at address 0x80000200.
RedBoot uses an interrupt vector table which is located at address 0x80000200.
Entries in this table are pointers to functions with this protoype:      
Entries in this table are pointers to functions with this protoype:      
int irq_handler( unsigned vector, unsigned data )On the malta
int irq_handler( unsigned vector, unsigned data )On the malta
board, the vector argument is one of 22 interrupts defined in 
board, the vector argument is one of 22 interrupts defined in 
hal/mips/malta/VERSION/include/plf_intr.h: 
hal/mips/malta/VERSION/include/plf_intr.h: 
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_INTR   0
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_INTR   0
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_SMI    1
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_SMI    1
#define CYGNUM_HAL_INTERRUPT_CBUS_UART           2
#define CYGNUM_HAL_INTERRUPT_CBUS_UART           2
#define CYGNUM_HAL_INTERRUPT_COREHI              3
#define CYGNUM_HAL_INTERRUPT_COREHI              3
#define CYGNUM_HAL_INTERRUPT_CORELO              4
#define CYGNUM_HAL_INTERRUPT_CORELO              4
#define CYGNUM_HAL_INTERRUPT_COMPARE             5
#define CYGNUM_HAL_INTERRUPT_COMPARE             5
#define CYGNUM_HAL_INTERRUPT_TIMER               6
#define CYGNUM_HAL_INTERRUPT_TIMER               6
#define CYGNUM_HAL_INTERRUPT_KEYBOARD            7
#define CYGNUM_HAL_INTERRUPT_KEYBOARD            7
#define CYGNUM_HAL_INTERRUPT_CASCADE             8
#define CYGNUM_HAL_INTERRUPT_CASCADE             8
#define CYGNUM_HAL_INTERRUPT_TTY1                9
#define CYGNUM_HAL_INTERRUPT_TTY1                9
#define CYGNUM_HAL_INTERRUPT_TTY0               10
#define CYGNUM_HAL_INTERRUPT_TTY0               10
#define CYGNUM_HAL_INTERRUPT_11                 11
#define CYGNUM_HAL_INTERRUPT_11                 11
#define CYGNUM_HAL_INTERRUPT_FLOPPY             12
#define CYGNUM_HAL_INTERRUPT_FLOPPY             12
#define CYGNUM_HAL_INTERRUPT_PARALLEL           13
#define CYGNUM_HAL_INTERRUPT_PARALLEL           13
#define CYGNUM_HAL_INTERRUPT_REAL_TIME_CLOCK    14
#define CYGNUM_HAL_INTERRUPT_REAL_TIME_CLOCK    14
#define CYGNUM_HAL_INTERRUPT_I2C                15
#define CYGNUM_HAL_INTERRUPT_I2C                15
#define CYGNUM_HAL_INTERRUPT_PCI_AB             16
#define CYGNUM_HAL_INTERRUPT_PCI_AB             16
#define CYGNUM_HAL_INTERRUPT_PCI_CD             17
#define CYGNUM_HAL_INTERRUPT_PCI_CD             17
#define CYGNUM_HAL_INTERRUPT_MOUSE              18
#define CYGNUM_HAL_INTERRUPT_MOUSE              18
#define CYGNUM_HAL_INTERRUPT_19                 19
#define CYGNUM_HAL_INTERRUPT_19                 19
#define CYGNUM_HAL_INTERRUPT_IDE_PRIMARY        20
#define CYGNUM_HAL_INTERRUPT_IDE_PRIMARY        20
#define CYGNUM_HAL_INTERRUPT_IDE_SECONDARY      21The data
#define CYGNUM_HAL_INTERRUPT_IDE_SECONDARY      21The data
passed to the ISR is pulled from a data table (hal_interrupt_data
passed to the ISR is pulled from a data table (hal_interrupt_data
) which immediately follows the interrupt vector table. With
) which immediately follows the interrupt vector table. With
22 interrupts, the data table starts at address 0x80000258.
22 interrupts, the data table starts at address 0x80000258.
An application may create a normal C function with the above prototype
An application may create a normal C function with the above prototype
to be an ISR. Just poke its address into the table at the correct index and
to be an ISR. Just poke its address into the table at the correct index and
enable the interrupt at its source. The return value of the ISR is ignored
enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot. 
by RedBoot. 
Memory Maps 
Memory Maps 
Memory Maps RedBoot sets up the following memory map on the Malta board.
Memory Maps RedBoot sets up the following memory map on the Malta board.
NOTE
NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range  C B  Description
Physical Address Range  C B  Description
----------------------- - -  -----------
----------------------- - -  -----------
0x80000000 - 0x81ffffff Y Y  SDRAM
0x80000000 - 0x81ffffff Y Y  SDRAM
0x9e000000 - 0x9e3fffff Y N  System flash (cached)
0x9e000000 - 0x9e3fffff Y N  System flash (cached)
0x9fc00000 - 0x9fffffff Y N  System flash (mirrored)
0x9fc00000 - 0x9fffffff Y N  System flash (mirrored)
0xa8000000 - 0xb7ffffff N N  PCI Memory Space
0xa8000000 - 0xb7ffffff N N  PCI Memory Space
0xb4000000 - 0xb40fffff N N  Galileo System Controller
0xb4000000 - 0xb40fffff N N  Galileo System Controller
0xb8000000 - 0xb80fffff N N  Southbridge / ISA
0xb8000000 - 0xb80fffff N N  Southbridge / ISA
0xb8100000 - 0xbbdfffff N N  PCI I/O Space
0xb8100000 - 0xbbdfffff N N  PCI I/O Space
0xbe000000 - 0xbe3fffff N N  System flash (noncached)
0xbe000000 - 0xbe3fffff N N  System flash (noncached)
0xbf000000 - 0xbfffffff N N  Board logic FPGA
0xbf000000 - 0xbfffffff N N  Board logic FPGA
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=malta_mips32_4kc
export TARGET=malta_mips32_4kc
export ARCH_DIR=mips
export ARCH_DIR=mips
export PLATFORM_DIR=malta
export PLATFORM_DIR=malta
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
MIPS/RM7000 PMC-Sierra Ocelot
MIPS/RM7000 PMC-Sierra Ocelot
Overview
Overview
PMC-Sierra MIPS RM7000 Ocelotinstalling
PMC-Sierra MIPS RM7000 Ocelotinstalling
and testinginstalling and testing
and testinginstalling and testing
PMC-Sierra MIPS RM7000 OcelotRedBoot
PMC-Sierra MIPS RM7000 OcelotRedBoot
uses the front facing serial port. The default serial port settings are 38400,8,N,1.
uses the front facing serial port. The default serial port settings are 38400,8,N,1.
RedBoot also supports ethernet. Management of onboard flash is also supported.
RedBoot also supports ethernet. Management of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Additional commands
Additional commands
The exec command which allows the
The exec command which allows the
loading and execution of Linux kernels, is supported for this architecture
loading and execution of Linux kernels, is supported for this architecture
 (see ). The
 (see ). The
exec parameters used for MIPS boards are:
exec parameters used for MIPS boards are:
-b <addr>
-b <addr>
Location to store command line and environment passed to kernel
Location to store command line and environment passed to kernel
-w <time>
-w <time>
Wait time in seconds before starting kernel
Wait time in seconds before starting kernel
-c "params"
-c "params"
Parameters passed to kernel
Parameters passed to kernel
<addr>
<addr>
Kernel entry point, defaulting to the entry point of the last image
Kernel entry point, defaulting to the entry point of the last image
loaded
loaded
Linux kernels on MIPS platforms expect the entry point to be called with arguments
Linux kernels on MIPS platforms expect the entry point to be called with arguments
in the registers equivalent to a C call with prototype:
in the registers equivalent to a C call with prototype:
void Linux(int argc, char **argv, char **envp);
void Linux(int argc, char **argv, char **envp);
RedBoot will place the appropriate data at the offset specified by the
RedBoot will place the appropriate data at the offset specified by the
-b parameter, or by default at address 0x80080000, and will set the
-b parameter, or by default at address 0x80080000, and will set the
arguments accordingly when calling into the kernel.
arguments accordingly when calling into the kernel.
The default entry point, if no image with explicit entry point has been loaded and
The default entry point, if no image with explicit entry point has been loaded and
none is specified, is 0x80000750.
none is specified, is 0x80000750.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the Ocelot board. 
RedBoot sets up the following memory map on the Ocelot board. 
Note that these addresses are accessed through kseg0/1 and thus translate
Note that these addresses are accessed through kseg0/1 and thus translate
to the actual address range 0x80000000-0xbfffffff, depending on the need for
to the actual address range 0x80000000-0xbfffffff, depending on the need for
caching/non-caching access to the bus.NOTE
caching/non-caching access to the bus.NOTE
The virtual memory maps in this section use a C and B column to indicate
The virtual memory maps in this section use a C and B column to indicate
whether or not the region is cached (C) or buffered (B).
whether or not the region is cached (C) or buffered (B).
Physical Address Range Description
Physical Address Range Description
----------------------- -----------
----------------------- -----------
0x00000000 - 0x0fffffff SDRAM
0x00000000 - 0x0fffffff SDRAM
0x10000000 - 0x10ffffff PCI I/O space
0x10000000 - 0x10ffffff PCI I/O space
0x12000000 - 0x13ffffff PCI Memory space
0x12000000 - 0x13ffffff PCI Memory space
0x14000000 - 0x1400ffff Galileo system controller
0x14000000 - 0x1400ffff Galileo system controller
0x1c000000 - 0x1c0000ff PLD (board logic)
0x1c000000 - 0x1c0000ff PLD (board logic)
0x1fc00000 - 0x1fc7ffff flash
0x1fc00000 - 0x1fc7ffff flash
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=ocelot
export TARGET=ocelot
export ARCH_DIR=mips
export ARCH_DIR=mips
export PLATFORM_DIR=rm7000/ocelot
export PLATFORM_DIR=rm7000/ocelot
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
MIPS/VR4375 NEC DDB-VRC4375
MIPS/VR4375 NEC DDB-VRC4375
Overview
Overview
NEC DDB-VRC4375
NEC DDB-VRC4375
installing and testing
installing and testing
installing and testingNEC DDB-VRC4375
installing and testingNEC DDB-VRC4375
RedBoot supports only serial port 1, which is connected to the upper
RedBoot supports only serial port 1, which is connected to the upper
of the stacked serial connectors on the board. The default serial
of the stacked serial connectors on the board. The default serial
port settings are 38400,8,N,1. FLASH management is also supported.
port settings are 38400,8,N,1. FLASH management is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
A device programmer should be used to program a socketed FLASH part
A device programmer should be used to program a socketed FLASH part
(AMD 29F040). The board as delivered is configured for a 512K
(AMD 29F040). The board as delivered is configured for a 512K
EPROM. To install a FLASH ROM, Jumpers J30, J31 and J36 need to be
EPROM. To install a FLASH ROM, Jumpers J30, J31 and J36 need to be
changed as described in the board's User Manual.
changed as described in the board's User Manual.
Special RedBoot Commands
Special RedBoot Commands
None.
None.
Memory Maps
Memory Maps
RedBoot sets up the memory map primarily as described in the board's
RedBoot sets up the memory map primarily as described in the board's
User Manual. There are some minor differences, noted in the following
User Manual. There are some minor differences, noted in the following
table:
table:
Physical                Virtual                 Resource
Physical                Virtual                 Resource
Addresses               Addresses
Addresses               Addresses
00000000-01FFFFFF       80000000-81FFFFFF       Base SDRAM (cached)
00000000-01FFFFFF       80000000-81FFFFFF       Base SDRAM (cached)
00000000-01FFFFFF       A0000000-A1FFFFFF       Base SDRAM (uncached)
00000000-01FFFFFF       A0000000-A1FFFFFF       Base SDRAM (uncached)
0C000000-0C0BFFFF       AC000000-AC0B0000       PCI IO space
0C000000-0C0BFFFF       AC000000-AC0B0000       PCI IO space
0F000000-0F0001FF       AF000000-AF0001FF       VRC4375 Registers
0F000000-0F0001FF       AF000000-AF0001FF       VRC4375 Registers
1C000000-1C0FFFFF       BC000000-BC0FFFFF       VRC4372 Registers
1C000000-1C0FFFFF       BC000000-BC0FFFFF       VRC4372 Registers
1C100000-1DFFFFFF       BC100000-BDFFFFFF       PCI Memory space
1C100000-1DFFFFFF       BC100000-BDFFFFFF       PCI Memory space
1FC00000-1FC7FFFF       BFC00000-BFC7FFFF       FLASH ROM
1FC00000-1FC7FFFF       BFC00000-BFC7FFFF       FLASH ROM
80000000-8000000D       C0000000-C000000D       RTC
80000000-8000000D       C0000000-C000000D       RTC
8000000E-80007FFF       C000000E-C0007FFF       NVRAM
8000000E-80007FFF       C000000E-C0007FFF       NVRAM
81000000-81FFFFFF       C1000000-C1FFFFFF       Z85C30 DUART
81000000-81FFFFFF       C1000000-C1FFFFFF       Z85C30 DUART
82000000-82FFFFFF       C2000000-C2FFFFFF       Z8536 Timer
82000000-82FFFFFF       C2000000-C2FFFFFF       Z8536 Timer
83000000-83FFFFFF       C3000000-C3FFFFFF       8255 Parallel port
83000000-83FFFFFF       C3000000-C3FFFFFF       8255 Parallel port
87000000-87FFFFFF       C7000000-C7FFFFFF       Seven segment display
87000000-87FFFFFF       C7000000-C7FFFFFF       Seven segment display
 NOTE
 NOTE
By default the VRC4375 SIMM control registers are not programmed
By default the VRC4375 SIMM control registers are not programmed
since the values used must depend on the SIMMs installed. If SIMMs
since the values used must depend on the SIMMs installed. If SIMMs
are to be used, correct values must be placed in these registers
are to be used, correct values must be placed in these registers
before accessing the SIMM address range.
before accessing the SIMM address range.
 NOTE
 NOTE
The allocation of address ranges to devices in the PCI IO and
The allocation of address ranges to devices in the PCI IO and
memory spaces is handled by the eCos PCI support library. They do
memory spaces is handled by the eCos PCI support library. They do
not correspond to those described in the board User Manual.
not correspond to those described in the board User Manual.
 NOTE
 NOTE
The MMU has been set up to relocate the VRC4372 supported devices
The MMU has been set up to relocate the VRC4372 supported devices
mapped at physical addresses 0x8xxxxxxx to virtual addresses
mapped at physical addresses 0x8xxxxxxx to virtual addresses
0xCxxxxxxx.
0xCxxxxxxx.
Ethernet Driver
Ethernet Driver
The ethernet driver is in two parts:
The ethernet driver is in two parts:
A generic ether driver for the Intel i21143 device is located in
A generic ether driver for the Intel i21143 device is located in
devs/eth/intel/i21143. Its package name is CYGPKG_DEVS_ETH_INTEL_I21143.
devs/eth/intel/i21143. Its package name is CYGPKG_DEVS_ETH_INTEL_I21143.
The platform-specific ether driver is 
The platform-specific ether driver is 
class="directory">devs/eth/mips/vrc4375. Its package is
class="directory">devs/eth/mips/vrc4375. Its package is
CYGPKG_DEVS_ETH_MIPS_VRC4375. This
CYGPKG_DEVS_ETH_MIPS_VRC4375. This
tells the generic driver the address in IO memory of the chip, for
tells the generic driver the address in IO memory of the chip, for
example, and other configuration details.  The ESA (MAC address) is by
example, and other configuration details.  The ESA (MAC address) is by
default collected from on-board serial EEPROM, unless configured
default collected from on-board serial EEPROM, unless configured
statically within this package.
statically within this package.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=vrc4373
export TARGET=vrc4373
export ARCH_DIR=mips
export ARCH_DIR=mips
export PLATFORM_DIR=vrc4373
export PLATFORM_DIR=vrc4373
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
PowerPC/MPC860T Analogue & Micro PowerPC 860T
PowerPC/MPC860T Analogue & Micro PowerPC 860T
Overview
Overview
Analogue & Micro PowerPC 860Tinstalling
Analogue & Micro PowerPC 860Tinstalling
and testinginstalling and testing
and testinginstalling and testing
Analogue & Micro PowerPC 860TRedBoot uses
Analogue & Micro PowerPC 860TRedBoot uses
the SMC1 serial port. The default serial port settings are 38400,8,N,1.
the SMC1 serial port. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the RJ-45 connector. Management of
Ethernet is also supported using the RJ-45 connector. Management of
onboard flash is also supported.
onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROMRAM
              ROMRAM
              [ROMRAM]
              [ROMRAM]
              RedBoot running from RAM, but contained in the
              RedBoot running from RAM, but contained in the
              board's flash boot sector.
              board's flash boot sector.
              redboot_ROMRAM.ecm
              redboot_ROMRAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
RedBoot must be installed at the A & M factory.
RedBoot must be installed at the A & M factory.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
Memory Maps RedBoot sets up the following memory map on the MBX board.
Memory Maps RedBoot sets up the following memory map on the MBX board.
Physical Address Range Description
Physical Address Range Description
----------------------- -----------
----------------------- -----------
0x00000000 - 0x007fffff DRAM
0x00000000 - 0x007fffff DRAM
0xfe000000 - 0xfe0fffff flash (AMD29LV8008B)
0xfe000000 - 0xfe0fffff flash (AMD29LV8008B)
0xff000000 - 0xff0fffff MPC registers
0xff000000 - 0xff0fffff MPC registers
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=viper
export TARGET=viper
export ARCH_DIR=powerpc
export ARCH_DIR=powerpc
export PLATFORM_DIR=viper
export PLATFORM_DIR=viper
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
PowerPC/MPC8XX Motorola MBX
PowerPC/MPC8XX Motorola MBX
Overview
Overview
Motorola PowerPC MBXinstalling
Motorola PowerPC MBXinstalling
and testinginstalling and testing
and testinginstalling and testing
Motorola PowerPC MBXRedBoot uses
Motorola PowerPC MBXRedBoot uses
the SMC1/COM1 serial port. The default serial port settings are 38400,8,N,1.
the SMC1/COM1 serial port. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the 10-base T connector. 
Ethernet is also supported using the 10-base T connector. 
Management of onboard flash is also supported.
Management of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
Device programmer is used to program the XU1 socketed flash part  (AM29F040B)
Device programmer is used to program the XU1 socketed flash part  (AM29F040B)
with the ROM mode image of RedBoot. Use the on-board EPPC-Bug monitor to update
with the ROM mode image of RedBoot. Use the on-board EPPC-Bug monitor to update
RedBoot. 
RedBoot. 
This assumes that you have EPPC-Bug in the on-board flash. This can
This assumes that you have EPPC-Bug in the on-board flash. This can
be determined by setting up the board according to the following instructions
be determined by setting up the board according to the following instructions
and powering up the board. 
and powering up the board. 
The EPPC-Bug prompt should appear on the SMC1 connector at 9600 baud,
The EPPC-Bug prompt should appear on the SMC1 connector at 9600 baud,
8N1. 
8N1. 
Set jumper 3 to 2-3 [allow XU1 flash to be programmed]  
Set jumper 3 to 2-3 [allow XU1 flash to be programmed]  
Set jumper 4 to 2-3 [boot EPPC-Bug] 
Set jumper 4 to 2-3 [boot EPPC-Bug] 
If it is available, program the flash by following these steps: 
If it is available, program the flash by following these steps: 
Prepare EPPC-Bug for download: EPPC-Bug>lo 0
Prepare EPPC-Bug for download: EPPC-Bug>lo 0
At this point the monitor is ready for input. It will not
At this point the monitor is ready for input. It will not
return the prompt until the file has been downloaded.  
return the prompt until the file has been downloaded.  
Use the terminal emulator's ASCII download feature (or a simple
Use the terminal emulator's ASCII download feature (or a simple
clipboard copy/paste operation) to download the
clipboard copy/paste operation) to download the
redboot.ppcbug file.
redboot.ppcbug file.
Note that on Linux, Minicom's ASCII
Note that on Linux, Minicom's ASCII
download feature seems to be broken. A workaround is to load the file
download feature seems to be broken. A workaround is to load the file
into emacs (or another editor) and copy the
into emacs (or another editor) and copy the
full contents to the clipboard. Then press the mouse paste-button (usually
full contents to the clipboard. Then press the mouse paste-button (usually
the middle one) over the Minicom window.  
the middle one) over the Minicom window.  
Program the flash with the downloaded data: 
Program the flash with the downloaded data: 
EPPC-Bug>pflash 40000 60000 fc000000
EPPC-Bug>pflash 40000 60000 fc000000
Switch off the power, and change jumper 4 to 1-2. Turn on
Switch off the power, and change jumper 4 to 1-2. Turn on
the power again. The board should now boot using the newly programmed RedBoot.
the power again. The board should now boot using the newly programmed RedBoot.
Special RedBoot Commands 
Special RedBoot Commands 
None.
None.
Memory Maps 
Memory Maps 
Memory Maps RedBoot sets up the following memory map on the MBX board.
Memory Maps RedBoot sets up the following memory map on the MBX board.
Physical Address Range Description
Physical Address Range Description
----------------------- -----------
----------------------- -----------
0x00000000 - 0x003fffff DRAM
0x00000000 - 0x003fffff DRAM
0xfa100000 - 0xfa100003 LEDs
0xfa100000 - 0xfa100003 LEDs
0xfe000000 - 0xfe07ffff flash (AMD29F040B)
0xfe000000 - 0xfe07ffff flash (AMD29F040B)
0xff000000 - 0xff0fffff MPC registers
0xff000000 - 0xff0fffff MPC registers
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=mbx
export TARGET=mbx
export ARCH_DIR=powerpc
export ARCH_DIR=powerpc
export PLATFORM_DIR=mbx
export PLATFORM_DIR=mbx
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
SuperH/SH3(SH7708) Hitachi EDK7708
SuperH/SH3(SH7708) Hitachi EDK7708
Overview
Overview
Hitachi SH EDK7708installing
Hitachi SH EDK7708installing
and testinginstalling and testing
and testinginstalling and testing
Hitachi SH EDK7708RedBoot uses
Hitachi SH EDK7708RedBoot uses
the serial port. The default serial port settings are 38400,8,N,1.
the serial port. The default serial port settings are 38400,8,N,1.
Management of onboard flash is also supported.
Management of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
Program the ROM RedBoot image into flash using an eprom programmer.
Program the ROM RedBoot image into flash using an eprom programmer.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the EDK7708 board.
RedBoot sets up the following memory map on the EDK7708 board.
Physical Address Range  Description
Physical Address Range  Description
----------------------- -----------
----------------------- -----------
0x80000000 - 0x8001ffff Flash (AT29LV1024)
0x80000000 - 0x8001ffff Flash (AT29LV1024)
0x88000000 - 0x881fffff DRAM
0x88000000 - 0x881fffff DRAM
0xa4000000 - 0xa40000ff LED ON
0xa4000000 - 0xa40000ff LED ON
0xb8000000 - 0xb80000ff LED ON
0xb8000000 - 0xb80000ff LED ON
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=edk7708
export TARGET=edk7708
export ARCH_DIR=sh
export ARCH_DIR=sh
export PLATFORM_DIR=edk7708
export PLATFORM_DIR=edk7708
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
SuperH/SH3(SH7709) Hitachi Solution Engine 7709
SuperH/SH3(SH7709) Hitachi Solution Engine 7709
Overview
Overview
Hitachi SH SE7709installing
Hitachi SH SE7709installing
and testinginstalling and testing
and testinginstalling and testing
Hitachi SH SE7709This
Hitachi SH SE7709This
description covers the MS7709SE01 variant. See 
description covers the MS7709SE01 variant. See 
for instructions for the MS7729SE01 and MS7709SSE0101 variants.
for instructions for the MS7729SE01 and MS7709SSE0101 variants.
RedBoot uses
RedBoot uses
the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1.
the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the 10-base T connector. 
Ethernet is also supported using the 10-base T connector. 
Management of onboard flash is also supported.
Management of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
The Solution Engine ships with the Hitachi boot monitor in EPROM
The Solution Engine ships with the Hitachi boot monitor in EPROM
which allows for initial programming of RedBoot:
which allows for initial programming of RedBoot:
Set switch SW4-1 to ON [boot from EPROM]
Set switch SW4-1 to ON [boot from EPROM]
Connect a serial cable to CN1 (SCI) and power up the board.
Connect a serial cable to CN1 (SCI) and power up the board.
After the boot monitor banner, invoke the flash
After the boot monitor banner, invoke the flash
download/program command:Ready >fl
download/program command:Ready >fl
The monitor should now ask for input:
The monitor should now ask for input:
Flash ROM data copy to RAM
Flash ROM data copy to RAM
Please Send A S-format RecordAt this point copy the
Please Send A S-format RecordAt this point copy the
RedBoot ROM SREC file to the serial port:
RedBoot ROM SREC file to the serial port:
$ cat redboot_SE7709RP_ROM.eprom.srec > /dev/ttyS0
$ cat redboot_SE7709RP_ROM.eprom.srec > /dev/ttyS0
Eventually you
Eventually you
should see something likeStart Addrs = A1000000
should see something likeStart Addrs = A1000000
End Addrs = A1xxxxxx
End Addrs = A1xxxxxx
Transfer complete from the monitor.
Transfer complete from the monitor.
Set switch SW4-1 to OFF [boot from flash] and reboot the board. You
Set switch SW4-1 to OFF [boot from flash] and reboot the board. You
should now see the RedBoot banner.
should now see the RedBoot banner.
Special RedBoot Commands 
Special RedBoot Commands 
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels
and execution of Linux kernels
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the SE77x9 are:
exec parameters used for the SE77x9 are:
-b <addr>
-b <addr>
Parameter block address. This is normally the first
Parameter block address. This is normally the first
page of the kernel image and defaults to 0x8c101000
page of the kernel image and defaults to 0x8c101000
-i <addr>
-i <addr>
Start address of initrd
Start address of initrd
image
image
-j <size>
-j <size>
Size of initrd image
Size of initrd image
-c "args"
-c "args"
Kernel arguments string
Kernel arguments string
-m <flags>
-m <flags>
Mount rdonly flags. If set to a non-zero value the
Mount rdonly flags. If set to a non-zero value the
root partition will be mounted read-only.
root partition will be mounted read-only.
-f <flags>
-f <flags>
RAM disk flags. Should normally be 0x4000
RAM disk flags. Should normally be 0x4000
-r <device number>
-r <device number>
Root device specification. /dev/ram is 0x0101
Root device specification. /dev/ram is 0x0101
-l <type>
-l <type>
Loader type
Loader type
Finally the kernel entry address can be specified as an optional
Finally the kernel entry address can be specified as an optional
argument. The default is 0x8c102000
argument. The default is 0x8c102000
For the the SE77x9, Linux by default expects to be loaded at
For the the SE77x9, Linux by default expects to be loaded at
0x8c001000 which conflicts with the data space used by RedBoot.
0x8c001000 which conflicts with the data space used by RedBoot.
To work around this, either change the CONFIG_MEMORY_START kernel
To work around this, either change the CONFIG_MEMORY_START kernel
option to a higher address, or use the compressed kernel image and load
option to a higher address, or use the compressed kernel image and load
it at a higher address. For example, setting CONFIG_MEMORY_START to
it at a higher address. For example, setting CONFIG_MEMORY_START to
0x8c100000, the kernel expects to be loaded at address 0x8c101000 with
0x8c100000, the kernel expects to be loaded at address 0x8c101000 with
the entry point at 0x8c102000.
the entry point at 0x8c102000.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the SE77x9 board.
RedBoot sets up the following memory map on the SE77x9 board.
Physical Address Range  Description
Physical Address Range  Description
----------------------- -----------
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - 0x8dffffff DRAM
0x8c000000 - 0x8dffffff DRAM
0xb0000000 - 0xb03fffff Ethernet (DP83902A)
0xb0000000 - 0xb03fffff Ethernet (DP83902A)
0xb0800000 - 0xb08fffff 16C552A
0xb0800000 - 0xb08fffff 16C552A
0xb1000000 - 0xb100ffff Switches
0xb1000000 - 0xb100ffff Switches
0xb1800000 - 0xb18fffff LEDs
0xb1800000 - 0xb18fffff LEDs
0xb8000000 - 0xbbffffff PCMCIA (MaruBun)
0xb8000000 - 0xbbffffff PCMCIA (MaruBun)
Ethernet Driver
Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present,
The ethernet driver uses a hardwired ESA which can, at present,
only be changed in CDL.
only be changed in CDL.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=se77x9
export TARGET=se77x9
export ARCH_DIR=sh
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9
export PLATFORM_DIR=se77x9
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
SuperH/SH3(SH7729) Hitachi HS7729PCI
SuperH/SH3(SH7729) Hitachi HS7729PCI
Overview
Overview
Hitachi SH HS7729PCIinstalling
Hitachi SH HS7729PCIinstalling
and testinginstalling and testing
and testinginstalling and testing
Hitachi SH HS7729PCIRedBoot uses
Hitachi SH HS7729PCIRedBoot uses
the COM1 and COM2 serial ports (and the debug port on the
the COM1 and COM2 serial ports (and the debug port on the
motherboard).
motherboard).
The default serial port settings are 38400,8,N,1.
The default serial port settings are 38400,8,N,1.
Ethernet is also supported using a D-Link DFE-530TX PCI plugin
Ethernet is also supported using a D-Link DFE-530TX PCI plugin
card. Management of onboard flash is also supported. 
card. Management of onboard flash is also supported. 
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
A ROM mode RedBoot image must be programmed
A ROM mode RedBoot image must be programmed
into the two EPROMs. Two files with a split version of the ROM mode
into the two EPROMs. Two files with a split version of the ROM mode
image is
image is
provided: it is also possible to recreate these from the
provided: it is also possible to recreate these from the
redboot.bin
redboot.bin
file, but requires the split_word.c program in
file, but requires the split_word.c program in
class="directory">hal/sh/hs7729pci/VERSION/misc
class="directory">hal/sh/hs7729pci/VERSION/misc
to be built and executed with the redboot.bin
to be built and executed with the redboot.bin
filename as sole argument.
filename as sole argument.
After doing this it is advised that another ROM mode image of
After doing this it is advised that another ROM mode image of
RedBoot is programmed into the on-board flash, and that copy be used
RedBoot is programmed into the on-board flash, and that copy be used
for booting the board. This allows for software programmed updates of
for booting the board. This allows for software programmed updates of
RedBoot instead of having to reprogram the EPROMs.
RedBoot instead of having to reprogram the EPROMs.
Program the EPROMs with RedBoot. The .lo image should
Program the EPROMs with RedBoot. The .lo image should
go in socket M1 and the .hi image in socket M2.
go in socket M1 and the .hi image in socket M2.
Set switch SW1-6 to ON [boot from EPROM]
Set switch SW1-6 to ON [boot from EPROM]
Follow the instructions under Flash management for
Follow the instructions under Flash management for
updating the flash copy of RedBoot, but force the flash destination
updating the flash copy of RedBoot, but force the flash destination
address with
address with
-f 0x80400000 due to setting of
-f 0x80400000 due to setting of
the SW1-6 switch.
the SW1-6 switch.
Set switch SW1-6 to OFF [boot from flash] and reboot the board. You
Set switch SW1-6 to OFF [boot from flash] and reboot the board. You
should now see the RedBoot banner. At this time you may want to issue
should now see the RedBoot banner. At this time you may want to issue
the command fis init to initialize
the command fis init to initialize
the flash table with the correct addresses.
the flash table with the correct addresses.
Special RedBoot Commands 
Special RedBoot Commands 
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels
and execution of Linux kernels
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the HS7729PCI are:
exec parameters used for the HS7729PCI are:
-b <addr>
-b <addr>
Parameter block address. This is normally the first
Parameter block address. This is normally the first
page of the kernel image and defaults to 0x8c101000
page of the kernel image and defaults to 0x8c101000
-i <addr>
-i <addr>
Start address of initrd
Start address of initrd
image
image
-j <size>
-j <size>
Size of initrd image
Size of initrd image
-c "args"
-c "args"
Kernel arguments string
Kernel arguments string
-m <flags>
-m <flags>
Mount rdonly flags. If set to a non-zero value the
Mount rdonly flags. If set to a non-zero value the
root partition will be mounted read-only.
root partition will be mounted read-only.
-f <flags>
-f <flags>
RAM disk flags. Should normally be 0x4000
RAM disk flags. Should normally be 0x4000
-r <device number>
-r <device number>
Root device specification. /dev/ram is 0x0101
Root device specification. /dev/ram is 0x0101
-l <type>
-l <type>
Loader type
Loader type
Finally the kernel entry address can be specified as an optional
Finally the kernel entry address can be specified as an optional
argument. The default is 0x8c102000
argument. The default is 0x8c102000
On the HS7729PCI, Linux expects to be loaded at address 0x8c101000 with
On the HS7729PCI, Linux expects to be loaded at address 0x8c101000 with
the entry point at 0x8c102000. This is configurable in the kernel
the entry point at 0x8c102000. This is configurable in the kernel
using the CONFIG_MEMORY_START option.
using the CONFIG_MEMORY_START option.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the HS7729PCI board.
RedBoot sets up the following memory map on the HS7729PCI board.
Physical Address Range  Description
Physical Address Range  Description
----------------------- -----------
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80400000 - 0x807fffff EPROM (M27C800)
0x80400000 - 0x807fffff EPROM (M27C800)
0x82000000 - 0x82ffffff SRAM
0x82000000 - 0x82ffffff SRAM
0x89000000 - 0x89ffffff SRAM
0x89000000 - 0x89ffffff SRAM
0x8c000000 - 0x8fffffff SDRAM
0x8c000000 - 0x8fffffff SDRAM
0xa8000000 - 0xa800ffff SuperIO (FDC37C935A)
0xa8000000 - 0xa800ffff SuperIO (FDC37C935A)
0xa8400000 - 0xa87fffff USB function (ML60851C)
0xa8400000 - 0xa87fffff USB function (ML60851C)
0xa8800000 - 0xa8bfffff USB host (SL11HT)
0xa8800000 - 0xa8bfffff USB host (SL11HT)
0xa8c00000 - 0xa8c3ffff Switches
0xa8c00000 - 0xa8c3ffff Switches
0xa8c40000 - 0xa8c7ffff LEDs
0xa8c40000 - 0xa8c7ffff LEDs
0xa8c80000 - 0xa8cfffff Interrupt controller
0xa8c80000 - 0xa8cfffff Interrupt controller
0xb0000000 - 0xb3ffffff PCI (SD0001)
0xb0000000 - 0xb3ffffff PCI (SD0001)
0xb8000000 - 0xbbffffff PCMCIA (MaruBun)
0xb8000000 - 0xbbffffff PCMCIA (MaruBun)
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=hs7729pci
export TARGET=hs7729pci
export ARCH_DIR=sh
export ARCH_DIR=sh
export PLATFORM_DIR=hs7729pci
export PLATFORM_DIR=hs7729pci
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9
SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9
Overview
Overview
Hitachi SH SE77X9installing
Hitachi SH SE77X9installing
and testinginstalling and testing
and testinginstalling and testing
Hitachi SH SE77X9This
Hitachi SH SE77X9This
description covers the MS7729SE01 and MS7709SSE0101 variants. See 
description covers the MS7729SE01 and MS7709SSE0101 variants. See 
for instructions for the MS7709SE01 variant.
for instructions for the MS7709SE01 variant.
RedBoot uses
RedBoot uses
the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1.
the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the 10-base T connector. Management
Ethernet is also supported using the 10-base T connector. Management
of onboard flash is also supported.
of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
The Solution Engine ships with the Hitachi boot monitor in EPROM
The Solution Engine ships with the Hitachi boot monitor in EPROM
which allows for initial programming of RedBoot:
which allows for initial programming of RedBoot:
Set switches SW4-3 and SW4-4 to ON [boot from EPROM]
Set switches SW4-3 and SW4-4 to ON [boot from EPROM]
Connect a serial cable to COM2 and power up the board.
Connect a serial cable to COM2 and power up the board.
After the boot monitor banner, invoke the flash
After the boot monitor banner, invoke the flash
download/program command:Ready >fl
download/program command:Ready >fl
The monitor should now ask for input:
The monitor should now ask for input:
Flash ROM data copy to RAM
Flash ROM data copy to RAM
Please Send A S-format RecordAt this point copy the
Please Send A S-format RecordAt this point copy the
RedBoot ROM SREC file to the serial port:
RedBoot ROM SREC file to the serial port:
$ cat redboot_ROM.eprom.srec > /dev/ttyS0
$ cat redboot_ROM.eprom.srec > /dev/ttyS0
Eventually you
Eventually you
should see something likeStart Addrs = A1000000
should see something likeStart Addrs = A1000000
End Addrs = A1xxxxxx
End Addrs = A1xxxxxx
Transfer complete from the monitor.
Transfer complete from the monitor.
Set switch SW4-3 to OFF [boot from flash] and reboot the board. You
Set switch SW4-3 to OFF [boot from flash] and reboot the board. You
should now see the RedBoot banner.
should now see the RedBoot banner.
Special RedBoot Commands 
Special RedBoot Commands 
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels
and execution of Linux kernels
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the SE77x9 are:
exec parameters used for the SE77x9 are:
-b <addr>
-b <addr>
Parameter block address. This is normally the first
Parameter block address. This is normally the first
page of the kernel image and defaults to 0x8c101000
page of the kernel image and defaults to 0x8c101000
-i <addr>
-i <addr>
Start address of initrd
Start address of initrd
image
image
-j <size>
-j <size>
Size of initrd image
Size of initrd image
-c "args"
-c "args"
Kernel arguments string
Kernel arguments string
-m <flags>
-m <flags>
Mount rdonly flags. If set to a non-zero value the
Mount rdonly flags. If set to a non-zero value the
root partition will be mounted read-only.
root partition will be mounted read-only.
-f <flags>
-f <flags>
RAM disk flags. Should normally be 0x4000
RAM disk flags. Should normally be 0x4000
-r <device number>
-r <device number>
Root device specification. /dev/ram is 0x0101
Root device specification. /dev/ram is 0x0101
-l <type>
-l <type>
Loader type
Loader type
Finally the kernel entry address can be specified as an optional
Finally the kernel entry address can be specified as an optional
argument. The default is 0x8c102000
argument. The default is 0x8c102000
On the SE77x9, Linux expects to be loaded at address 0x8c101000 with
On the SE77x9, Linux expects to be loaded at address 0x8c101000 with
the entry point at 0x8c102000. This is configurable in the kernel
the entry point at 0x8c102000. This is configurable in the kernel
using the CONFIG_MEMORY_START option.
using the CONFIG_MEMORY_START option.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the SE77x9 board.
RedBoot sets up the following memory map on the SE77x9 board.
Physical Address Range  Description
Physical Address Range  Description
----------------------- -----------
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - 0x8dffffff SDRAM
0x8c000000 - 0x8dffffff SDRAM
0xb0000000 - 0xb03fffff Ethernet (DP83902A)
0xb0000000 - 0xb03fffff Ethernet (DP83902A)
0xb0400000 - 0xb07fffff SuperIO (FDC37C935A)
0xb0400000 - 0xb07fffff SuperIO (FDC37C935A)
0xb0800000 - 0xb0bfffff Switches
0xb0800000 - 0xb0bfffff Switches
0xb0c00000 - 0xbfffffff LEDs
0xb0c00000 - 0xbfffffff LEDs
0xb1800000 - 0xb1bfffff PCMCIA (MaruBun)
0xb1800000 - 0xb1bfffff PCMCIA (MaruBun)
Ethernet Driver
Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present,
The ethernet driver uses a hardwired ESA which can, at present,
only be changed in CDL.
only be changed in CDL.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=se77x9
export TARGET=se77x9
export ARCH_DIR=sh
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9
export PLATFORM_DIR=se77x9
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
SuperH/SH4(SH7751) Hitachi Solution Engine 7751
SuperH/SH4(SH7751) Hitachi Solution Engine 7751
Overview
Overview
Hitachi SH SE7751installing
Hitachi SH SE7751installing
and testinginstalling and testing
and testinginstalling and testing
Hitachi SH SE7751RedBoot uses
Hitachi SH SE7751RedBoot uses
the COM1 serial port. The default serial port settings are 38400,8,N,1.
the COM1 serial port. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the 10-base T connector. Management
Ethernet is also supported using the 10-base T connector. Management
of onboard flash is also supported.
of onboard flash is also supported.
The following RedBoot configurations are supported:
The following RedBoot configurations are supported:
      
      
        
        
          
          
            
            
              Configuration
              Configuration
              Mode
              Mode
              Description
              Description
              File
              File
            
            
          
          
          
          
            
            
              ROM
              ROM
              [ROM]
              [ROM]
              RedBoot running from the board's flash boot
              RedBoot running from the board's flash boot
              sector.
              sector.
              redboot_ROM.ecm
              redboot_ROM.ecm
            
            
            
            
              RAM
              RAM
              [RAM]
              [RAM]
              RedBoot running from RAM with RedBoot in the
              RedBoot running from RAM with RedBoot in the
              flash boot sector.
              flash boot sector.
              redboot_RAM.ecm
              redboot_RAM.ecm
            
            
Initial Installation Method 
Initial Installation Method 
The Solution Engine ships with the Hitachi boot monitor in EPROM
The Solution Engine ships with the Hitachi boot monitor in EPROM
which allows for initial programming of RedBoot:
which allows for initial programming of RedBoot:
Set switches SW5-3 and SW5-4 to ON [boot from EPROM]
Set switches SW5-3 and SW5-4 to ON [boot from EPROM]
Connect a serial cable to COM1 and power up the board.
Connect a serial cable to COM1 and power up the board.
After the boot monitor banner, invoke the flash
After the boot monitor banner, invoke the flash
download/program command:Ready >fl
download/program command:Ready >fl
The monitor should now ask for input:
The monitor should now ask for input:
Flash ROM data copy to RAM
Flash ROM data copy to RAM
Please Send A S-format RecordAt this point copy the
Please Send A S-format RecordAt this point copy the
RedBoot ROM SREC file to the serial port:
RedBoot ROM SREC file to the serial port:
$ cat redboot_ROM.eprom.srec > /dev/ttyS0
$ cat redboot_ROM.eprom.srec > /dev/ttyS0
Eventually you
Eventually you
should see something likeStart Addrs = A1000000
should see something likeStart Addrs = A1000000
End Addrs = A1xxxxxx
End Addrs = A1xxxxxx
Transfer complete from the monitor.
Transfer complete from the monitor.
Set switch SW5-3 to OFF [boot from flash] and reboot the board. You
Set switch SW5-3 to OFF [boot from flash] and reboot the board. You
should now see the RedBoot banner.
should now see the RedBoot banner.
Special RedBoot Commands 
Special RedBoot Commands 
The exec command which allows the loading
The exec command which allows the loading
and execution of Linux kernels
and execution of Linux kernels
is supported for this board (see ). The 
is supported for this board (see ). The 
exec parameters used for the SE7751 are:
exec parameters used for the SE7751 are:
-b <addr>
-b <addr>
Parameter block address. This is normally the first
Parameter block address. This is normally the first
page of the kernel image and defaults to 0x8c101000
page of the kernel image and defaults to 0x8c101000
-i <addr>
-i <addr>
Start address of initrd
Start address of initrd
image
image
-j <size>
-j <size>
Size of initrd image
Size of initrd image
-c "args"
-c "args"
Kernel arguments string
Kernel arguments string
-m <flags>
-m <flags>
Mount rdonly flags. If set to a non-zero value the
Mount rdonly flags. If set to a non-zero value the
root partition will be mounted read-only.
root partition will be mounted read-only.
-f <flags>
-f <flags>
RAM disk flags. Should normally be 0x4000
RAM disk flags. Should normally be 0x4000
-r <device number>
-r <device number>
Root device specification. /dev/ram is 0x0101
Root device specification. /dev/ram is 0x0101
-l <type>
-l <type>
Loader type
Loader type
Finally the kernel entry address can be specified as an optional
Finally the kernel entry address can be specified as an optional
argument. The default is 0x8c102000
argument. The default is 0x8c102000
On the SE7751, Linux expects to be loaded at address 0x8c101000 with
On the SE7751, Linux expects to be loaded at address 0x8c101000 with
the entry point at 0x8c102000. This is configurable in the kernel
the entry point at 0x8c102000. This is configurable in the kernel
using the CONFIG_MEMORY_START option.
using the CONFIG_MEMORY_START option.
Memory Maps 
Memory Maps 
RedBoot sets up the following memory map on the SE7751 board.
RedBoot sets up the following memory map on the SE7751 board.
Physical Address Range  Description
Physical Address Range  Description
----------------------- -----------
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - 0x8fffffff SDRAM
0x8c000000 - 0x8fffffff SDRAM
0xb8000000 - 0xb8ffffff PCMCIA (MaruBun)
0xb8000000 - 0xb8ffffff PCMCIA (MaruBun)
0xb9000000 - 0xb9ffffff Switches
0xb9000000 - 0xb9ffffff Switches
0xba000000 - 0xbaffffff LEDs
0xba000000 - 0xbaffffff LEDs
0xbd000000 - 0xbdffffff PCI MEM space
0xbd000000 - 0xbdffffff PCI MEM space
0xbe200000 - 0xbe23ffff PCI Ctrl space
0xbe200000 - 0xbe23ffff PCI Ctrl space
0xbe240000 - 0xbe27ffff PCI IO space
0xbe240000 - 0xbe27ffff PCI IO space
Ethernet Driver
Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present,
The ethernet driver uses a hardwired ESA which can, at present,
only be changed in CDL.
only be changed in CDL.
Rebuilding RedBoot
Rebuilding RedBoot
These shell variables provide the platform-specific information
These shell variables provide the platform-specific information
needed for building RedBoot according to the procedure described in
needed for building RedBoot according to the procedure described in
:
:
export TARGET=se7751
export TARGET=se7751
export ARCH_DIR=sh
export ARCH_DIR=sh
export PLATFORM_DIR=se7751
export PLATFORM_DIR=se7751
The names of configuration files are listed above with the
The names of configuration files are listed above with the
description of the associated modes.
description of the associated modes.
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.