OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [a29k-tdep.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Target-machine dependent code for the AMD 29000
/* Target-machine dependent code for the AMD 29000
   Copyright 1990, 1991, 1992, 1993, 1994, 1995
   Copyright 1990, 1991, 1992, 1993, 1994, 1995
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Cygnus Support.  Written by Jim Kingdon.
   Contributed by Cygnus Support.  Written by Jim Kingdon.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "frame.h"
#include "frame.h"
#include "value.h"
#include "value.h"
#include "symtab.h"
#include "symtab.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
 
 
/* If all these bits in an instruction word are zero, it is a "tag word"
/* If all these bits in an instruction word are zero, it is a "tag word"
   which precedes a function entry point and gives stack traceback info.
   which precedes a function entry point and gives stack traceback info.
   This used to be defined as 0xff000000, but that treated 0x00000deb as
   This used to be defined as 0xff000000, but that treated 0x00000deb as
   a tag word, while it is really used as a breakpoint.  */
   a tag word, while it is really used as a breakpoint.  */
#define TAGWORD_ZERO_MASK       0xff00f800
#define TAGWORD_ZERO_MASK       0xff00f800
 
 
extern CORE_ADDR text_start;    /* FIXME, kludge... */
extern CORE_ADDR text_start;    /* FIXME, kludge... */
 
 
/* The user-settable top of the register stack in virtual memory.  We
/* The user-settable top of the register stack in virtual memory.  We
   won't attempt to access any stored registers above this address, if set
   won't attempt to access any stored registers above this address, if set
   nonzero.  */
   nonzero.  */
 
 
static CORE_ADDR rstack_high_address = UINT_MAX;
static CORE_ADDR rstack_high_address = UINT_MAX;
 
 
 
 
/* Should call_function allocate stack space for a struct return?  */
/* Should call_function allocate stack space for a struct return?  */
/* On the a29k objects over 16 words require the caller to allocate space.  */
/* On the a29k objects over 16 words require the caller to allocate space.  */
int
int
a29k_use_struct_convention (gcc_p, type)
a29k_use_struct_convention (gcc_p, type)
     int gcc_p;
     int gcc_p;
     struct type *type;
     struct type *type;
{
{
  return (TYPE_LENGTH (type) > 16 * 4);
  return (TYPE_LENGTH (type) > 16 * 4);
}
}
 
 
 
 
/* Structure to hold cached info about function prologues.  */
/* Structure to hold cached info about function prologues.  */
 
 
struct prologue_info
struct prologue_info
{
{
  CORE_ADDR pc;                 /* First addr after fn prologue */
  CORE_ADDR pc;                 /* First addr after fn prologue */
  unsigned rsize, msize;        /* register stack frame size, mem stack ditto */
  unsigned rsize, msize;        /* register stack frame size, mem stack ditto */
  unsigned mfp_used:1;          /* memory frame pointer used */
  unsigned mfp_used:1;          /* memory frame pointer used */
  unsigned rsize_valid:1;       /* Validity bits for the above */
  unsigned rsize_valid:1;       /* Validity bits for the above */
  unsigned msize_valid:1;
  unsigned msize_valid:1;
  unsigned mfp_valid:1;
  unsigned mfp_valid:1;
};
};
 
 
/* Examine the prologue of a function which starts at PC.  Return
/* Examine the prologue of a function which starts at PC.  Return
   the first addess past the prologue.  If MSIZE is non-NULL, then
   the first addess past the prologue.  If MSIZE is non-NULL, then
   set *MSIZE to the memory stack frame size.  If RSIZE is non-NULL,
   set *MSIZE to the memory stack frame size.  If RSIZE is non-NULL,
   then set *RSIZE to the register stack frame size (not including
   then set *RSIZE to the register stack frame size (not including
   incoming arguments and the return address & frame pointer stored
   incoming arguments and the return address & frame pointer stored
   with them).  If no prologue is found, *RSIZE is set to zero.
   with them).  If no prologue is found, *RSIZE is set to zero.
   If no prologue is found, or a prologue which doesn't involve
   If no prologue is found, or a prologue which doesn't involve
   allocating a memory stack frame, then set *MSIZE to zero.
   allocating a memory stack frame, then set *MSIZE to zero.
 
 
   Note that both msize and rsize are in bytes.  This is not consistent
   Note that both msize and rsize are in bytes.  This is not consistent
   with the _User's Manual_ with respect to rsize, but it is much more
   with the _User's Manual_ with respect to rsize, but it is much more
   convenient.
   convenient.
 
 
   If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
   If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
   frame pointer is being used.  */
   frame pointer is being used.  */
 
 
CORE_ADDR
CORE_ADDR
examine_prologue (pc, rsize, msize, mfp_used)
examine_prologue (pc, rsize, msize, mfp_used)
     CORE_ADDR pc;
     CORE_ADDR pc;
     unsigned *msize;
     unsigned *msize;
     unsigned *rsize;
     unsigned *rsize;
     int *mfp_used;
     int *mfp_used;
{
{
  long insn;
  long insn;
  CORE_ADDR p = pc;
  CORE_ADDR p = pc;
  struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
  struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
  struct prologue_info *mi = 0;
  struct prologue_info *mi = 0;
 
 
  if (msymbol != NULL)
  if (msymbol != NULL)
    mi = (struct prologue_info *) msymbol->info;
    mi = (struct prologue_info *) msymbol->info;
 
 
  if (mi != 0)
  if (mi != 0)
    {
    {
      int valid = 1;
      int valid = 1;
      if (rsize != NULL)
      if (rsize != NULL)
        {
        {
          *rsize = mi->rsize;
          *rsize = mi->rsize;
          valid &= mi->rsize_valid;
          valid &= mi->rsize_valid;
        }
        }
      if (msize != NULL)
      if (msize != NULL)
        {
        {
          *msize = mi->msize;
          *msize = mi->msize;
          valid &= mi->msize_valid;
          valid &= mi->msize_valid;
        }
        }
      if (mfp_used != NULL)
      if (mfp_used != NULL)
        {
        {
          *mfp_used = mi->mfp_used;
          *mfp_used = mi->mfp_used;
          valid &= mi->mfp_valid;
          valid &= mi->mfp_valid;
        }
        }
      if (valid)
      if (valid)
        return mi->pc;
        return mi->pc;
    }
    }
 
 
  if (rsize != NULL)
  if (rsize != NULL)
    *rsize = 0;
    *rsize = 0;
  if (msize != NULL)
  if (msize != NULL)
    *msize = 0;
    *msize = 0;
  if (mfp_used != NULL)
  if (mfp_used != NULL)
    *mfp_used = 0;
    *mfp_used = 0;
 
 
  /* Prologue must start with subtracting a constant from gr1.
  /* Prologue must start with subtracting a constant from gr1.
     Normally this is sub gr1,gr1,<rsize * 4>.  */
     Normally this is sub gr1,gr1,<rsize * 4>.  */
  insn = read_memory_integer (p, 4);
  insn = read_memory_integer (p, 4);
  if ((insn & 0xffffff00) != 0x25010100)
  if ((insn & 0xffffff00) != 0x25010100)
    {
    {
      /* If the frame is large, instead of a single instruction it
      /* If the frame is large, instead of a single instruction it
         might be a pair of instructions:
         might be a pair of instructions:
         const <reg>, <rsize * 4>
         const <reg>, <rsize * 4>
         sub gr1,gr1,<reg>
         sub gr1,gr1,<reg>
       */
       */
      int reg;
      int reg;
      /* Possible value for rsize.  */
      /* Possible value for rsize.  */
      unsigned int rsize0;
      unsigned int rsize0;
 
 
      if ((insn & 0xff000000) != 0x03000000)
      if ((insn & 0xff000000) != 0x03000000)
        {
        {
          p = pc;
          p = pc;
          goto done;
          goto done;
        }
        }
      reg = (insn >> 8) & 0xff;
      reg = (insn >> 8) & 0xff;
      rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
      rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
      p += 4;
      p += 4;
      insn = read_memory_integer (p, 4);
      insn = read_memory_integer (p, 4);
      if ((insn & 0xffffff00) != 0x24010100
      if ((insn & 0xffffff00) != 0x24010100
          || (insn & 0xff) != reg)
          || (insn & 0xff) != reg)
        {
        {
          p = pc;
          p = pc;
          goto done;
          goto done;
        }
        }
      if (rsize != NULL)
      if (rsize != NULL)
        *rsize = rsize0;
        *rsize = rsize0;
    }
    }
  else
  else
    {
    {
      if (rsize != NULL)
      if (rsize != NULL)
        *rsize = (insn & 0xff);
        *rsize = (insn & 0xff);
    }
    }
  p += 4;
  p += 4;
 
 
  /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
  /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
   * We don't check the vector number to allow for kernel debugging.  The
   * We don't check the vector number to allow for kernel debugging.  The
   * kernel will use a different trap number.
   * kernel will use a different trap number.
   * If this insn is missing, we just keep going; Metaware R2.3u compiler
   * If this insn is missing, we just keep going; Metaware R2.3u compiler
   * generates prologue that intermixes initializations and puts the asgeu
   * generates prologue that intermixes initializations and puts the asgeu
   * way down.
   * way down.
   */
   */
  insn = read_memory_integer (p, 4);
  insn = read_memory_integer (p, 4);
  if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
  if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
    {
    {
      p += 4;
      p += 4;
    }
    }
 
 
  /* Next instruction usually sets the frame pointer (lr1) by adding
  /* Next instruction usually sets the frame pointer (lr1) by adding
     <size * 4> from gr1.  However, this can (and high C does) be
     <size * 4> from gr1.  However, this can (and high C does) be
     deferred until anytime before the first function call.  So it is
     deferred until anytime before the first function call.  So it is
     OK if we don't see anything which sets lr1.
     OK if we don't see anything which sets lr1.
     To allow for alternate register sets (gcc -mkernel-registers)  the msp
     To allow for alternate register sets (gcc -mkernel-registers)  the msp
     register number is a compile time constant. */
     register number is a compile time constant. */
 
 
  /* Normally this is just add lr1,gr1,<size * 4>.  */
  /* Normally this is just add lr1,gr1,<size * 4>.  */
  insn = read_memory_integer (p, 4);
  insn = read_memory_integer (p, 4);
  if ((insn & 0xffffff00) == 0x15810100)
  if ((insn & 0xffffff00) == 0x15810100)
    p += 4;
    p += 4;
  else
  else
    {
    {
      /* However, for large frames it can be
      /* However, for large frames it can be
         const <reg>, <size *4>
         const <reg>, <size *4>
         add lr1,gr1,<reg>
         add lr1,gr1,<reg>
       */
       */
      int reg;
      int reg;
      CORE_ADDR q;
      CORE_ADDR q;
 
 
      if ((insn & 0xff000000) == 0x03000000)
      if ((insn & 0xff000000) == 0x03000000)
        {
        {
          reg = (insn >> 8) & 0xff;
          reg = (insn >> 8) & 0xff;
          q = p + 4;
          q = p + 4;
          insn = read_memory_integer (q, 4);
          insn = read_memory_integer (q, 4);
          if ((insn & 0xffffff00) == 0x14810100
          if ((insn & 0xffffff00) == 0x14810100
              && (insn & 0xff) == reg)
              && (insn & 0xff) == reg)
            p = q;
            p = q;
        }
        }
    }
    }
 
 
  /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
  /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
     frame pointer is in use.  We just check for add lr<anything>,msp,0;
     frame pointer is in use.  We just check for add lr<anything>,msp,0;
     we don't check this rsize against the first instruction, and
     we don't check this rsize against the first instruction, and
     we don't check that the trace-back tag indicates a memory frame pointer
     we don't check that the trace-back tag indicates a memory frame pointer
     is in use.
     is in use.
     To allow for alternate register sets (gcc -mkernel-registers)  the msp
     To allow for alternate register sets (gcc -mkernel-registers)  the msp
     register number is a compile time constant.
     register number is a compile time constant.
 
 
     The recommended instruction is actually "sll lr<whatever>,msp,0".
     The recommended instruction is actually "sll lr<whatever>,msp,0".
     We check for that, too.  Originally Jim Kingdon's code seemed
     We check for that, too.  Originally Jim Kingdon's code seemed
     to be looking for a "sub" instruction here, but the mask was set
     to be looking for a "sub" instruction here, but the mask was set
     up to lose all the time. */
     up to lose all the time. */
  insn = read_memory_integer (p, 4);
  insn = read_memory_integer (p, 4);
  if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8)))      /* add */
  if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8)))      /* add */
      || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8))))  /* sll */
      || ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8))))  /* sll */
    {
    {
      p += 4;
      p += 4;
      if (mfp_used != NULL)
      if (mfp_used != NULL)
        *mfp_used = 1;
        *mfp_used = 1;
    }
    }
 
 
  /* Next comes a subtraction from msp to allocate a memory frame,
  /* Next comes a subtraction from msp to allocate a memory frame,
     but only if a memory frame is
     but only if a memory frame is
     being used.  We don't check msize against the trace-back tag.
     being used.  We don't check msize against the trace-back tag.
 
 
     To allow for alternate register sets (gcc -mkernel-registers) the msp
     To allow for alternate register sets (gcc -mkernel-registers) the msp
     register number is a compile time constant.
     register number is a compile time constant.
 
 
     Normally this is just
     Normally this is just
     sub msp,msp,<msize>
     sub msp,msp,<msize>
   */
   */
  insn = read_memory_integer (p, 4);
  insn = read_memory_integer (p, 4);
  if ((insn & 0xffffff00) ==
  if ((insn & 0xffffff00) ==
      (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
      (0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
    {
    {
      p += 4;
      p += 4;
      if (msize != NULL)
      if (msize != NULL)
        *msize = insn & 0xff;
        *msize = insn & 0xff;
    }
    }
  else
  else
    {
    {
      /* For large frames, instead of a single instruction it might
      /* For large frames, instead of a single instruction it might
         be
         be
 
 
         const <reg>, <msize>
         const <reg>, <msize>
         consth <reg>, <msize>     ; optional
         consth <reg>, <msize>     ; optional
         sub msp,msp,<reg>
         sub msp,msp,<reg>
       */
       */
      int reg;
      int reg;
      unsigned msize0;
      unsigned msize0;
      CORE_ADDR q = p;
      CORE_ADDR q = p;
 
 
      if ((insn & 0xff000000) == 0x03000000)
      if ((insn & 0xff000000) == 0x03000000)
        {
        {
          reg = (insn >> 8) & 0xff;
          reg = (insn >> 8) & 0xff;
          msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
          msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
          q += 4;
          q += 4;
          insn = read_memory_integer (q, 4);
          insn = read_memory_integer (q, 4);
          /* Check for consth.  */
          /* Check for consth.  */
          if ((insn & 0xff000000) == 0x02000000
          if ((insn & 0xff000000) == 0x02000000
              && (insn & 0x0000ff00) == reg)
              && (insn & 0x0000ff00) == reg)
            {
            {
              msize0 |= (insn << 8) & 0xff000000;
              msize0 |= (insn << 8) & 0xff000000;
              msize0 |= (insn << 16) & 0x00ff0000;
              msize0 |= (insn << 16) & 0x00ff0000;
              q += 4;
              q += 4;
              insn = read_memory_integer (q, 4);
              insn = read_memory_integer (q, 4);
            }
            }
          /* Check for sub msp,msp,<reg>.  */
          /* Check for sub msp,msp,<reg>.  */
          if ((insn & 0xffffff00) ==
          if ((insn & 0xffffff00) ==
              (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
              (0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
              && (insn & 0xff) == reg)
              && (insn & 0xff) == reg)
            {
            {
              p = q + 4;
              p = q + 4;
              if (msize != NULL)
              if (msize != NULL)
                *msize = msize0;
                *msize = msize0;
            }
            }
        }
        }
    }
    }
 
 
  /* Next instruction might be asgeu V_SPILL,gr1,rab.
  /* Next instruction might be asgeu V_SPILL,gr1,rab.
   * We don't check the vector number to allow for kernel debugging.  The
   * We don't check the vector number to allow for kernel debugging.  The
   * kernel will use a different trap number.
   * kernel will use a different trap number.
   * Metaware R2.3u compiler
   * Metaware R2.3u compiler
   * generates prologue that intermixes initializations and puts the asgeu
   * generates prologue that intermixes initializations and puts the asgeu
   * way down after everything else.
   * way down after everything else.
   */
   */
  insn = read_memory_integer (p, 4);
  insn = read_memory_integer (p, 4);
  if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
  if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
    {
    {
      p += 4;
      p += 4;
    }
    }
 
 
done:
done:
  if (msymbol != NULL)
  if (msymbol != NULL)
    {
    {
      if (mi == 0)
      if (mi == 0)
        {
        {
          /* Add a new cache entry.  */
          /* Add a new cache entry.  */
          mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
          mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
          msymbol->info = (char *) mi;
          msymbol->info = (char *) mi;
          mi->rsize_valid = 0;
          mi->rsize_valid = 0;
          mi->msize_valid = 0;
          mi->msize_valid = 0;
          mi->mfp_valid = 0;
          mi->mfp_valid = 0;
        }
        }
      /* else, cache entry exists, but info is incomplete.  */
      /* else, cache entry exists, but info is incomplete.  */
      mi->pc = p;
      mi->pc = p;
      if (rsize != NULL)
      if (rsize != NULL)
        {
        {
          mi->rsize = *rsize;
          mi->rsize = *rsize;
          mi->rsize_valid = 1;
          mi->rsize_valid = 1;
        }
        }
      if (msize != NULL)
      if (msize != NULL)
        {
        {
          mi->msize = *msize;
          mi->msize = *msize;
          mi->msize_valid = 1;
          mi->msize_valid = 1;
        }
        }
      if (mfp_used != NULL)
      if (mfp_used != NULL)
        {
        {
          mi->mfp_used = *mfp_used;
          mi->mfp_used = *mfp_used;
          mi->mfp_valid = 1;
          mi->mfp_valid = 1;
        }
        }
    }
    }
  return p;
  return p;
}
}
 
 
/* Advance PC across any function entry prologue instructions
/* Advance PC across any function entry prologue instructions
   to reach some "real" code.  */
   to reach some "real" code.  */
 
 
CORE_ADDR
CORE_ADDR
a29k_skip_prologue (pc)
a29k_skip_prologue (pc)
     CORE_ADDR pc;
     CORE_ADDR pc;
{
{
  return examine_prologue (pc, NULL, NULL, NULL);
  return examine_prologue (pc, NULL, NULL, NULL);
}
}
 
 
/*
/*
 * Examine the one or two word tag at the beginning of a function.
 * Examine the one or two word tag at the beginning of a function.
 * The tag word is expect to be at 'p', if it is not there, we fail
 * The tag word is expect to be at 'p', if it is not there, we fail
 * by returning 0.  The documentation for the tag word was taken from
 * by returning 0.  The documentation for the tag word was taken from
 * page 7-15 of the 29050 User's Manual.  We are assuming that the
 * page 7-15 of the 29050 User's Manual.  We are assuming that the
 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
 * convention today (1/15/92).
 * convention today (1/15/92).
 * msize is return in bytes.
 * msize is return in bytes.
 */
 */
 
 
static int                      /* 0/1 - failure/success of finding the tag word  */
static int                      /* 0/1 - failure/success of finding the tag word  */
examine_tag (p, is_trans, argcount, msize, mfp_used)
examine_tag (p, is_trans, argcount, msize, mfp_used)
     CORE_ADDR p;
     CORE_ADDR p;
     int *is_trans;
     int *is_trans;
     int *argcount;
     int *argcount;
     unsigned *msize;
     unsigned *msize;
     int *mfp_used;
     int *mfp_used;
{
{
  unsigned int tag1, tag2;
  unsigned int tag1, tag2;
 
 
  tag1 = read_memory_integer (p, 4);
  tag1 = read_memory_integer (p, 4);
  if ((tag1 & TAGWORD_ZERO_MASK) != 0)   /* Not a tag word */
  if ((tag1 & TAGWORD_ZERO_MASK) != 0)   /* Not a tag word */
    return 0;
    return 0;
  if (tag1 & (1 << 23))         /* A two word tag */
  if (tag1 & (1 << 23))         /* A two word tag */
    {
    {
      tag2 = read_memory_integer (p - 4, 4);
      tag2 = read_memory_integer (p - 4, 4);
      if (msize)
      if (msize)
        *msize = tag2 * 2;
        *msize = tag2 * 2;
    }
    }
  else
  else
    /* A one word tag */
    /* A one word tag */
    {
    {
      if (msize)
      if (msize)
        *msize = tag1 & 0x7ff;
        *msize = tag1 & 0x7ff;
    }
    }
  if (is_trans)
  if (is_trans)
    *is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
    *is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
  /* Note that this includes the frame pointer and the return address
  /* Note that this includes the frame pointer and the return address
     register, so the actual number of registers of arguments is two less.
     register, so the actual number of registers of arguments is two less.
     argcount can be zero, however, sometimes, for strange assembler
     argcount can be zero, however, sometimes, for strange assembler
     routines.  */
     routines.  */
  if (argcount)
  if (argcount)
    *argcount = (tag1 >> 16) & 0x1f;
    *argcount = (tag1 >> 16) & 0x1f;
  if (mfp_used)
  if (mfp_used)
    *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
    *mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
  return 1;
  return 1;
}
}
 
 
/* Initialize the frame.  In addition to setting "extra" frame info,
/* Initialize the frame.  In addition to setting "extra" frame info,
   we also set ->frame because we use it in a nonstandard way, and ->pc
   we also set ->frame because we use it in a nonstandard way, and ->pc
   because we need to know it to get the other stuff.  See the diagram
   because we need to know it to get the other stuff.  See the diagram
   of stacks and the frame cache in tm-a29k.h for more detail.  */
   of stacks and the frame cache in tm-a29k.h for more detail.  */
 
 
static void
static void
init_frame_info (innermost_frame, frame)
init_frame_info (innermost_frame, frame)
     int innermost_frame;
     int innermost_frame;
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  CORE_ADDR p;
  CORE_ADDR p;
  long insn;
  long insn;
  unsigned rsize;
  unsigned rsize;
  unsigned msize;
  unsigned msize;
  int mfp_used, trans;
  int mfp_used, trans;
  struct symbol *func;
  struct symbol *func;
 
 
  p = frame->pc;
  p = frame->pc;
 
 
  if (innermost_frame)
  if (innermost_frame)
    frame->frame = read_register (GR1_REGNUM);
    frame->frame = read_register (GR1_REGNUM);
  else
  else
    frame->frame = frame->next->frame + frame->next->rsize;
    frame->frame = frame->next->frame + frame->next->rsize;
 
 
#if 0                           /* CALL_DUMMY_LOCATION == ON_STACK */
#if 0                           /* CALL_DUMMY_LOCATION == ON_STACK */
  This wont work;
  This wont work;
#else
#else
  if (PC_IN_CALL_DUMMY (p, 0, 0))
  if (PC_IN_CALL_DUMMY (p, 0, 0))
#endif
#endif
    {
    {
      frame->rsize = DUMMY_FRAME_RSIZE;
      frame->rsize = DUMMY_FRAME_RSIZE;
      /* This doesn't matter since we never try to get locals or args
      /* This doesn't matter since we never try to get locals or args
         from a dummy frame.  */
         from a dummy frame.  */
      frame->msize = 0;
      frame->msize = 0;
      /* Dummy frames always use a memory frame pointer.  */
      /* Dummy frames always use a memory frame pointer.  */
      frame->saved_msp =
      frame->saved_msp =
        read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
        read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
      frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
      frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
      return;
      return;
    }
    }
 
 
  func = find_pc_function (p);
  func = find_pc_function (p);
  if (func != NULL)
  if (func != NULL)
    p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
    p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
  else
  else
    {
    {
      /* Search backward to find the trace-back tag.  However,
      /* Search backward to find the trace-back tag.  However,
         do not trace back beyond the start of the text segment
         do not trace back beyond the start of the text segment
         (just as a sanity check to avoid going into never-never land).  */
         (just as a sanity check to avoid going into never-never land).  */
#if 1
#if 1
      while (p >= text_start
      while (p >= text_start
          && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
          && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
        p -= 4;
        p -= 4;
#else /* 0 */
#else /* 0 */
      char pat[4] =
      char pat[4] =
      {0, 0, 0, 0};
      {0, 0, 0, 0};
      char mask[4];
      char mask[4];
      char insn_raw[4];
      char insn_raw[4];
      store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
      store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
      /* Enable this once target_search is enabled and tested.  */
      /* Enable this once target_search is enabled and tested.  */
      target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
      target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
      insn = extract_unsigned_integer (insn_raw, 4);
      insn = extract_unsigned_integer (insn_raw, 4);
#endif /* 0 */
#endif /* 0 */
 
 
      if (p < text_start)
      if (p < text_start)
        {
        {
          /* Couldn't find the trace-back tag.
          /* Couldn't find the trace-back tag.
             Something strange is going on.  */
             Something strange is going on.  */
          frame->saved_msp = 0;
          frame->saved_msp = 0;
          frame->rsize = 0;
          frame->rsize = 0;
          frame->msize = 0;
          frame->msize = 0;
          frame->flags = TRANSPARENT_FRAME;
          frame->flags = TRANSPARENT_FRAME;
          return;
          return;
        }
        }
      else
      else
        /* Advance to the first word of the function, i.e. the word
        /* Advance to the first word of the function, i.e. the word
           after the trace-back tag.  */
           after the trace-back tag.  */
        p += 4;
        p += 4;
    }
    }
 
 
  /* We've found the start of the function.
  /* We've found the start of the function.
     Try looking for a tag word that indicates whether there is a
     Try looking for a tag word that indicates whether there is a
     memory frame pointer and what the memory stack allocation is.
     memory frame pointer and what the memory stack allocation is.
     If one doesn't exist, try using a more exhaustive search of
     If one doesn't exist, try using a more exhaustive search of
     the prologue.  */
     the prologue.  */
 
 
  if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used))     /* Found good tag */
  if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used))     /* Found good tag */
    examine_prologue (p, &rsize, 0, 0);
    examine_prologue (p, &rsize, 0, 0);
  else                          /* No tag try prologue */
  else                          /* No tag try prologue */
    examine_prologue (p, &rsize, &msize, &mfp_used);
    examine_prologue (p, &rsize, &msize, &mfp_used);
 
 
  frame->rsize = rsize;
  frame->rsize = rsize;
  frame->msize = msize;
  frame->msize = msize;
  frame->flags = 0;
  frame->flags = 0;
  if (mfp_used)
  if (mfp_used)
    frame->flags |= MFP_USED;
    frame->flags |= MFP_USED;
  if (trans)
  if (trans)
    frame->flags |= TRANSPARENT_FRAME;
    frame->flags |= TRANSPARENT_FRAME;
  if (innermost_frame)
  if (innermost_frame)
    {
    {
      frame->saved_msp = read_register (MSP_REGNUM) + msize;
      frame->saved_msp = read_register (MSP_REGNUM) + msize;
    }
    }
  else
  else
    {
    {
      if (mfp_used)
      if (mfp_used)
        frame->saved_msp =
        frame->saved_msp =
          read_register_stack_integer (frame->frame + rsize - 4, 4);
          read_register_stack_integer (frame->frame + rsize - 4, 4);
      else
      else
        frame->saved_msp = frame->next->saved_msp + msize;
        frame->saved_msp = frame->next->saved_msp + msize;
    }
    }
}
}
 
 
void
void
init_extra_frame_info (frame)
init_extra_frame_info (frame)
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  if (frame->next == 0)
  if (frame->next == 0)
    /* Assume innermost frame.  May produce strange results for "info frame"
    /* Assume innermost frame.  May produce strange results for "info frame"
       but there isn't any way to tell the difference.  */
       but there isn't any way to tell the difference.  */
    init_frame_info (1, frame);
    init_frame_info (1, frame);
  else
  else
    {
    {
      /* We're in get_prev_frame.
      /* We're in get_prev_frame.
         Take care of everything in init_frame_pc.  */
         Take care of everything in init_frame_pc.  */
      ;
      ;
    }
    }
}
}
 
 
void
void
init_frame_pc (fromleaf, frame)
init_frame_pc (fromleaf, frame)
     int fromleaf;
     int fromleaf;
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
  frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
               frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
               frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
  init_frame_info (fromleaf, frame);
  init_frame_info (fromleaf, frame);
}
}


/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
   offsets being relative to the memory stack pointer (high C) or
   offsets being relative to the memory stack pointer (high C) or
   saved_msp (gcc).  */
   saved_msp (gcc).  */
 
 
CORE_ADDR
CORE_ADDR
frame_locals_address (fi)
frame_locals_address (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  if (fi->flags & MFP_USED)
  if (fi->flags & MFP_USED)
    return fi->saved_msp;
    return fi->saved_msp;
  else
  else
    return fi->saved_msp - fi->msize;
    return fi->saved_msp - fi->msize;
}
}


/* Routines for reading the register stack.  The caller gets to treat
/* Routines for reading the register stack.  The caller gets to treat
   the register stack as a uniform stack in memory, from address $gr1
   the register stack as a uniform stack in memory, from address $gr1
   straight through $rfb and beyond.  */
   straight through $rfb and beyond.  */
 
 
/* Analogous to read_memory except the length is understood to be 4.
/* Analogous to read_memory except the length is understood to be 4.
   Also, myaddr can be NULL (meaning don't bother to read), and
   Also, myaddr can be NULL (meaning don't bother to read), and
   if actual_mem_addr is non-NULL, store there the address that it
   if actual_mem_addr is non-NULL, store there the address that it
   was fetched from (or if from a register the offset within
   was fetched from (or if from a register the offset within
   registers).  Set *LVAL to lval_memory or lval_register, depending
   registers).  Set *LVAL to lval_memory or lval_register, depending
   on where it came from.  The contents written into MYADDR are in
   on where it came from.  The contents written into MYADDR are in
   target format.  */
   target format.  */
void
void
read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     CORE_ADDR *actual_mem_addr;
     CORE_ADDR *actual_mem_addr;
     enum lval_type *lval;
     enum lval_type *lval;
{
{
  long rfb = read_register (RFB_REGNUM);
  long rfb = read_register (RFB_REGNUM);
  long rsp = read_register (RSP_REGNUM);
  long rsp = read_register (RSP_REGNUM);
 
 
  /* If we don't do this 'info register' stops in the middle. */
  /* If we don't do this 'info register' stops in the middle. */
  if (memaddr >= rstack_high_address)
  if (memaddr >= rstack_high_address)
    {
    {
      /* a bogus value */
      /* a bogus value */
      static char val[] =
      static char val[] =
      {~0, ~0, ~0, ~0};
      {~0, ~0, ~0, ~0};
      /* It's in a local register, but off the end of the stack.  */
      /* It's in a local register, but off the end of the stack.  */
      int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
      int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
      if (myaddr != NULL)
      if (myaddr != NULL)
        {
        {
          /* Provide bogusness */
          /* Provide bogusness */
          memcpy (myaddr, val, 4);
          memcpy (myaddr, val, 4);
        }
        }
      supply_register (regnum, val);    /* More bogusness */
      supply_register (regnum, val);    /* More bogusness */
      if (lval != NULL)
      if (lval != NULL)
        *lval = lval_register;
        *lval = lval_register;
      if (actual_mem_addr != NULL)
      if (actual_mem_addr != NULL)
        *actual_mem_addr = REGISTER_BYTE (regnum);
        *actual_mem_addr = REGISTER_BYTE (regnum);
    }
    }
  /* If it's in the part of the register stack that's in real registers,
  /* If it's in the part of the register stack that's in real registers,
     get the value from the registers.  If it's anywhere else in memory
     get the value from the registers.  If it's anywhere else in memory
     (e.g. in another thread's saved stack), skip this part and get
     (e.g. in another thread's saved stack), skip this part and get
     it from real live memory.  */
     it from real live memory.  */
  else if (memaddr < rfb && memaddr >= rsp)
  else if (memaddr < rfb && memaddr >= rsp)
    {
    {
      /* It's in a register.  */
      /* It's in a register.  */
      int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
      int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
      if (regnum > LR0_REGNUM + 127)
      if (regnum > LR0_REGNUM + 127)
        error ("Attempt to read register stack out of range.");
        error ("Attempt to read register stack out of range.");
      if (myaddr != NULL)
      if (myaddr != NULL)
        read_register_gen (regnum, myaddr);
        read_register_gen (regnum, myaddr);
      if (lval != NULL)
      if (lval != NULL)
        *lval = lval_register;
        *lval = lval_register;
      if (actual_mem_addr != NULL)
      if (actual_mem_addr != NULL)
        *actual_mem_addr = REGISTER_BYTE (regnum);
        *actual_mem_addr = REGISTER_BYTE (regnum);
    }
    }
  else
  else
    {
    {
      /* It's in the memory portion of the register stack.  */
      /* It's in the memory portion of the register stack.  */
      if (myaddr != NULL)
      if (myaddr != NULL)
        read_memory (memaddr, myaddr, 4);
        read_memory (memaddr, myaddr, 4);
      if (lval != NULL)
      if (lval != NULL)
        *lval = lval_memory;
        *lval = lval_memory;
      if (actual_mem_addr != NULL)
      if (actual_mem_addr != NULL)
        *actual_mem_addr = memaddr;
        *actual_mem_addr = memaddr;
    }
    }
}
}
 
 
/* Analogous to read_memory_integer
/* Analogous to read_memory_integer
   except the length is understood to be 4.  */
   except the length is understood to be 4.  */
long
long
read_register_stack_integer (memaddr, len)
read_register_stack_integer (memaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     int len;
     int len;
{
{
  char buf[4];
  char buf[4];
  read_register_stack (memaddr, buf, NULL, NULL);
  read_register_stack (memaddr, buf, NULL, NULL);
  return extract_signed_integer (buf, 4);
  return extract_signed_integer (buf, 4);
}
}
 
 
/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
   at MEMADDR and put the actual address written into in
   at MEMADDR and put the actual address written into in
   *ACTUAL_MEM_ADDR.  */
   *ACTUAL_MEM_ADDR.  */
static void
static void
write_register_stack (memaddr, myaddr, actual_mem_addr)
write_register_stack (memaddr, myaddr, actual_mem_addr)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     CORE_ADDR *actual_mem_addr;
     CORE_ADDR *actual_mem_addr;
{
{
  long rfb = read_register (RFB_REGNUM);
  long rfb = read_register (RFB_REGNUM);
  long rsp = read_register (RSP_REGNUM);
  long rsp = read_register (RSP_REGNUM);
  /* If we don't do this 'info register' stops in the middle. */
  /* If we don't do this 'info register' stops in the middle. */
  if (memaddr >= rstack_high_address)
  if (memaddr >= rstack_high_address)
    {
    {
      /* It's in a register, but off the end of the stack.  */
      /* It's in a register, but off the end of the stack.  */
      if (actual_mem_addr != NULL)
      if (actual_mem_addr != NULL)
        *actual_mem_addr = 0;
        *actual_mem_addr = 0;
    }
    }
  else if (memaddr < rfb)
  else if (memaddr < rfb)
    {
    {
      /* It's in a register.  */
      /* It's in a register.  */
      int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
      int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
      if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
      if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
        error ("Attempt to read register stack out of range.");
        error ("Attempt to read register stack out of range.");
      if (myaddr != NULL)
      if (myaddr != NULL)
        write_register (regnum, *(long *) myaddr);
        write_register (regnum, *(long *) myaddr);
      if (actual_mem_addr != NULL)
      if (actual_mem_addr != NULL)
        *actual_mem_addr = 0;
        *actual_mem_addr = 0;
    }
    }
  else
  else
    {
    {
      /* It's in the memory portion of the register stack.  */
      /* It's in the memory portion of the register stack.  */
      if (myaddr != NULL)
      if (myaddr != NULL)
        write_memory (memaddr, myaddr, 4);
        write_memory (memaddr, myaddr, 4);
      if (actual_mem_addr != NULL)
      if (actual_mem_addr != NULL)
        *actual_mem_addr = memaddr;
        *actual_mem_addr = memaddr;
    }
    }
}
}


/* Find register number REGNUM relative to FRAME and put its
/* Find register number REGNUM relative to FRAME and put its
   (raw) contents in *RAW_BUFFER.  Set *OPTIMIZED if the variable
   (raw) contents in *RAW_BUFFER.  Set *OPTIMIZED if the variable
   was optimized out (and thus can't be fetched).  If the variable
   was optimized out (and thus can't be fetched).  If the variable
   was fetched from memory, set *ADDRP to where it was fetched from,
   was fetched from memory, set *ADDRP to where it was fetched from,
   otherwise it was fetched from a register.
   otherwise it was fetched from a register.
 
 
   The argument RAW_BUFFER must point to aligned memory.  */
   The argument RAW_BUFFER must point to aligned memory.  */
 
 
void
void
a29k_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
a29k_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
     char *raw_buffer;
     char *raw_buffer;
     int *optimized;
     int *optimized;
     CORE_ADDR *addrp;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     struct frame_info *frame;
     int regnum;
     int regnum;
     enum lval_type *lvalp;
     enum lval_type *lvalp;
{
{
  struct frame_info *fi;
  struct frame_info *fi;
  CORE_ADDR addr;
  CORE_ADDR addr;
  enum lval_type lval;
  enum lval_type lval;
 
 
  if (!target_has_registers)
  if (!target_has_registers)
    error ("No registers.");
    error ("No registers.");
 
 
  /* Probably now redundant with the target_has_registers check.  */
  /* Probably now redundant with the target_has_registers check.  */
  if (frame == 0)
  if (frame == 0)
    return;
    return;
 
 
  /* Once something has a register number, it doesn't get optimized out.  */
  /* Once something has a register number, it doesn't get optimized out.  */
  if (optimized != NULL)
  if (optimized != NULL)
    *optimized = 0;
    *optimized = 0;
  if (regnum == RSP_REGNUM)
  if (regnum == RSP_REGNUM)
    {
    {
      if (raw_buffer != NULL)
      if (raw_buffer != NULL)
        {
        {
          store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
          store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
        }
        }
      if (lvalp != NULL)
      if (lvalp != NULL)
        *lvalp = not_lval;
        *lvalp = not_lval;
      return;
      return;
    }
    }
  else if (regnum == PC_REGNUM && frame->next != NULL)
  else if (regnum == PC_REGNUM && frame->next != NULL)
    {
    {
      if (raw_buffer != NULL)
      if (raw_buffer != NULL)
        {
        {
          store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
          store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
        }
        }
 
 
      /* Not sure we have to do this.  */
      /* Not sure we have to do this.  */
      if (lvalp != NULL)
      if (lvalp != NULL)
        *lvalp = not_lval;
        *lvalp = not_lval;
 
 
      return;
      return;
    }
    }
  else if (regnum == MSP_REGNUM)
  else if (regnum == MSP_REGNUM)
    {
    {
      if (raw_buffer != NULL)
      if (raw_buffer != NULL)
        {
        {
          if (frame->next != NULL)
          if (frame->next != NULL)
            {
            {
              store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
              store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
                             frame->next->saved_msp);
                             frame->next->saved_msp);
            }
            }
          else
          else
            read_register_gen (MSP_REGNUM, raw_buffer);
            read_register_gen (MSP_REGNUM, raw_buffer);
        }
        }
      /* The value may have been computed, not fetched.  */
      /* The value may have been computed, not fetched.  */
      if (lvalp != NULL)
      if (lvalp != NULL)
        *lvalp = not_lval;
        *lvalp = not_lval;
      return;
      return;
    }
    }
  else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
  else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
    {
    {
      /* These registers are not saved over procedure calls,
      /* These registers are not saved over procedure calls,
         so just print out the current values.  */
         so just print out the current values.  */
      if (raw_buffer != NULL)
      if (raw_buffer != NULL)
        read_register_gen (regnum, raw_buffer);
        read_register_gen (regnum, raw_buffer);
      if (lvalp != NULL)
      if (lvalp != NULL)
        *lvalp = lval_register;
        *lvalp = lval_register;
      if (addrp != NULL)
      if (addrp != NULL)
        *addrp = REGISTER_BYTE (regnum);
        *addrp = REGISTER_BYTE (regnum);
      return;
      return;
    }
    }
 
 
  addr = frame->frame + (regnum - LR0_REGNUM) * 4;
  addr = frame->frame + (regnum - LR0_REGNUM) * 4;
  if (raw_buffer != NULL)
  if (raw_buffer != NULL)
    read_register_stack (addr, raw_buffer, &addr, &lval);
    read_register_stack (addr, raw_buffer, &addr, &lval);
  if (lvalp != NULL)
  if (lvalp != NULL)
    *lvalp = lval;
    *lvalp = lval;
  if (addrp != NULL)
  if (addrp != NULL)
    *addrp = addr;
    *addrp = addr;
}
}


 
 
/* Discard from the stack the innermost frame,
/* Discard from the stack the innermost frame,
   restoring all saved registers.  */
   restoring all saved registers.  */
 
 
void
void
pop_frame ()
pop_frame ()
{
{
  struct frame_info *frame = get_current_frame ();
  struct frame_info *frame = get_current_frame ();
  CORE_ADDR rfb = read_register (RFB_REGNUM);
  CORE_ADDR rfb = read_register (RFB_REGNUM);
  CORE_ADDR gr1 = frame->frame + frame->rsize;
  CORE_ADDR gr1 = frame->frame + frame->rsize;
  CORE_ADDR lr1;
  CORE_ADDR lr1;
  CORE_ADDR original_lr0;
  CORE_ADDR original_lr0;
  int must_fix_lr0 = 0;
  int must_fix_lr0 = 0;
  int i;
  int i;
 
 
  /* If popping a dummy frame, need to restore registers.  */
  /* If popping a dummy frame, need to restore registers.  */
  if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
  if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
                        read_register (SP_REGNUM),
                        read_register (SP_REGNUM),
                        FRAME_FP (frame)))
                        FRAME_FP (frame)))
    {
    {
      int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
      int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
      for (i = 0; i < DUMMY_SAVE_SR128; ++i)
      for (i = 0; i < DUMMY_SAVE_SR128; ++i)
        write_register (SR_REGNUM (i + 128), read_register (lrnum++));
        write_register (SR_REGNUM (i + 128), read_register (lrnum++));
      for (i = 0; i < DUMMY_SAVE_SR160; ++i)
      for (i = 0; i < DUMMY_SAVE_SR160; ++i)
        write_register (SR_REGNUM (i + 160), read_register (lrnum++));
        write_register (SR_REGNUM (i + 160), read_register (lrnum++));
      for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
      for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
        write_register (RETURN_REGNUM + i, read_register (lrnum++));
        write_register (RETURN_REGNUM + i, read_register (lrnum++));
      /* Restore the PCs and prepare to restore LR0.  */
      /* Restore the PCs and prepare to restore LR0.  */
      write_register (PC_REGNUM, read_register (lrnum++));
      write_register (PC_REGNUM, read_register (lrnum++));
      write_register (NPC_REGNUM, read_register (lrnum++));
      write_register (NPC_REGNUM, read_register (lrnum++));
      write_register (PC2_REGNUM, read_register (lrnum++));
      write_register (PC2_REGNUM, read_register (lrnum++));
      original_lr0 = read_register (lrnum++);
      original_lr0 = read_register (lrnum++);
      must_fix_lr0 = 1;
      must_fix_lr0 = 1;
    }
    }
 
 
  /* Restore the memory stack pointer.  */
  /* Restore the memory stack pointer.  */
  write_register (MSP_REGNUM, frame->saved_msp);
  write_register (MSP_REGNUM, frame->saved_msp);
  /* Restore the register stack pointer.  */
  /* Restore the register stack pointer.  */
  write_register (GR1_REGNUM, gr1);
  write_register (GR1_REGNUM, gr1);
 
 
  /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
  /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
  if (must_fix_lr0)
  if (must_fix_lr0)
    write_register (LR0_REGNUM, original_lr0);
    write_register (LR0_REGNUM, original_lr0);
 
 
  /* Check whether we need to fill registers.  */
  /* Check whether we need to fill registers.  */
  lr1 = read_register (LR0_REGNUM + 1);
  lr1 = read_register (LR0_REGNUM + 1);
  if (lr1 > rfb)
  if (lr1 > rfb)
    {
    {
      /* Fill.  */
      /* Fill.  */
      int num_bytes = lr1 - rfb;
      int num_bytes = lr1 - rfb;
      int i;
      int i;
      long word;
      long word;
 
 
      write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
      write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
      write_register (RFB_REGNUM, lr1);
      write_register (RFB_REGNUM, lr1);
      for (i = 0; i < num_bytes; i += 4)
      for (i = 0; i < num_bytes; i += 4)
        {
        {
          /* Note: word is in host byte order.  */
          /* Note: word is in host byte order.  */
          word = read_memory_integer (rfb + i, 4);
          word = read_memory_integer (rfb + i, 4);
          write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
          write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
        }
        }
    }
    }
  flush_cached_frames ();
  flush_cached_frames ();
}
}
 
 
/* Push an empty stack frame, to record the current PC, etc.  */
/* Push an empty stack frame, to record the current PC, etc.  */
 
 
void
void
push_dummy_frame ()
push_dummy_frame ()
{
{
  long w;
  long w;
  CORE_ADDR rab, gr1;
  CORE_ADDR rab, gr1;
  CORE_ADDR msp = read_register (MSP_REGNUM);
  CORE_ADDR msp = read_register (MSP_REGNUM);
  int lrnum, i;
  int lrnum, i;
  CORE_ADDR original_lr0;
  CORE_ADDR original_lr0;
 
 
  /* Read original lr0 before changing gr1.  This order isn't really needed
  /* Read original lr0 before changing gr1.  This order isn't really needed
     since GDB happens to have a snapshot of all the regs and doesn't toss
     since GDB happens to have a snapshot of all the regs and doesn't toss
     it when gr1 is changed.  But it's The Right Thing To Do.  */
     it when gr1 is changed.  But it's The Right Thing To Do.  */
  original_lr0 = read_register (LR0_REGNUM);
  original_lr0 = read_register (LR0_REGNUM);
 
 
  /* Allocate the new frame. */
  /* Allocate the new frame. */
  gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
  gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
  write_register (GR1_REGNUM, gr1);
  write_register (GR1_REGNUM, gr1);
 
 
#ifdef VXWORKS_TARGET
#ifdef VXWORKS_TARGET
  /* We force re-reading all registers to get the new local registers set
  /* We force re-reading all registers to get the new local registers set
     after gr1 has been modified. This fix is due to the lack of single
     after gr1 has been modified. This fix is due to the lack of single
     register read/write operation in the RPC interface between VxGDB and
     register read/write operation in the RPC interface between VxGDB and
     VxWorks. This really must be changed ! */
     VxWorks. This really must be changed ! */
 
 
  vx_read_register (-1);
  vx_read_register (-1);
 
 
#endif /* VXWORK_TARGET */
#endif /* VXWORK_TARGET */
 
 
  rab = read_register (RAB_REGNUM);
  rab = read_register (RAB_REGNUM);
  if (gr1 < rab)
  if (gr1 < rab)
    {
    {
      /* We need to spill registers.  */
      /* We need to spill registers.  */
      int num_bytes = rab - gr1;
      int num_bytes = rab - gr1;
      CORE_ADDR rfb = read_register (RFB_REGNUM);
      CORE_ADDR rfb = read_register (RFB_REGNUM);
      int i;
      int i;
      long word;
      long word;
 
 
      write_register (RFB_REGNUM, rfb - num_bytes);
      write_register (RFB_REGNUM, rfb - num_bytes);
      write_register (RAB_REGNUM, gr1);
      write_register (RAB_REGNUM, gr1);
      for (i = 0; i < num_bytes; i += 4)
      for (i = 0; i < num_bytes; i += 4)
        {
        {
          /* Note:  word is in target byte order.  */
          /* Note:  word is in target byte order.  */
          read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
          read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
          write_memory (rfb - num_bytes + i, (char *) &word, 4);
          write_memory (rfb - num_bytes + i, (char *) &word, 4);
        }
        }
    }
    }
 
 
  /* There are no arguments in to the dummy frame, so we don't need
  /* There are no arguments in to the dummy frame, so we don't need
     more than rsize plus the return address and lr1.  */
     more than rsize plus the return address and lr1.  */
  write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
  write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
 
 
  /* Set the memory frame pointer.  */
  /* Set the memory frame pointer.  */
  write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
  write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
 
 
  /* Allocate arg_slop.  */
  /* Allocate arg_slop.  */
  write_register (MSP_REGNUM, msp - 16 * 4);
  write_register (MSP_REGNUM, msp - 16 * 4);
 
 
  /* Save registers.  */
  /* Save registers.  */
  lrnum = LR0_REGNUM + DUMMY_ARG / 4;
  lrnum = LR0_REGNUM + DUMMY_ARG / 4;
  for (i = 0; i < DUMMY_SAVE_SR128; ++i)
  for (i = 0; i < DUMMY_SAVE_SR128; ++i)
    write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
    write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
  for (i = 0; i < DUMMY_SAVE_SR160; ++i)
  for (i = 0; i < DUMMY_SAVE_SR160; ++i)
    write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
    write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
  for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
  for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
    write_register (lrnum++, read_register (RETURN_REGNUM + i));
    write_register (lrnum++, read_register (RETURN_REGNUM + i));
  /* Save the PCs and LR0.  */
  /* Save the PCs and LR0.  */
  write_register (lrnum++, read_register (PC_REGNUM));
  write_register (lrnum++, read_register (PC_REGNUM));
  write_register (lrnum++, read_register (NPC_REGNUM));
  write_register (lrnum++, read_register (NPC_REGNUM));
  write_register (lrnum++, read_register (PC2_REGNUM));
  write_register (lrnum++, read_register (PC2_REGNUM));
 
 
  /* Why are we saving LR0?  What would clobber it? (the dummy frame should
  /* Why are we saving LR0?  What would clobber it? (the dummy frame should
     be below it on the register stack, no?).  */
     be below it on the register stack, no?).  */
  write_register (lrnum++, original_lr0);
  write_register (lrnum++, original_lr0);
}
}
 
 
 
 
 
 
/*
/*
   This routine takes three arguments and makes the cached frames look
   This routine takes three arguments and makes the cached frames look
   as if these arguments defined a frame on the cache.  This allows the
   as if these arguments defined a frame on the cache.  This allows the
   rest of `info frame' to extract the important arguments without much
   rest of `info frame' to extract the important arguments without much
   difficulty.  Since an individual frame on the 29K is determined by
   difficulty.  Since an individual frame on the 29K is determined by
   three values (FP, PC, and MSP), we really need all three to do a
   three values (FP, PC, and MSP), we really need all three to do a
   good job.  */
   good job.  */
 
 
struct frame_info *
struct frame_info *
setup_arbitrary_frame (argc, argv)
setup_arbitrary_frame (argc, argv)
     int argc;
     int argc;
     CORE_ADDR *argv;
     CORE_ADDR *argv;
{
{
  struct frame_info *frame;
  struct frame_info *frame;
 
 
  if (argc != 3)
  if (argc != 3)
    error ("AMD 29k frame specifications require three arguments: rsp pc msp");
    error ("AMD 29k frame specifications require three arguments: rsp pc msp");
 
 
  frame = create_new_frame (argv[0], argv[1]);
  frame = create_new_frame (argv[0], argv[1]);
 
 
  if (!frame)
  if (!frame)
    internal_error ("create_new_frame returned invalid frame id");
    internal_error ("create_new_frame returned invalid frame id");
 
 
  /* Creating a new frame munges the `frame' value from the current
  /* Creating a new frame munges the `frame' value from the current
     GR1, so we restore it again here.  FIXME, untangle all this
     GR1, so we restore it again here.  FIXME, untangle all this
     29K frame stuff...  */
     29K frame stuff...  */
  frame->frame = argv[0];
  frame->frame = argv[0];
 
 
  /* Our MSP is in argv[2].  It'd be intelligent if we could just
  /* Our MSP is in argv[2].  It'd be intelligent if we could just
     save this value in the FRAME.  But the way it's set up (FIXME),
     save this value in the FRAME.  But the way it's set up (FIXME),
     we must save our caller's MSP.  We compute that by adding our
     we must save our caller's MSP.  We compute that by adding our
     memory stack frame size to our MSP.  */
     memory stack frame size to our MSP.  */
  frame->saved_msp = argv[2] + frame->msize;
  frame->saved_msp = argv[2] + frame->msize;
 
 
  return frame;
  return frame;
}
}
 
 
int
int
gdb_print_insn_a29k (memaddr, info)
gdb_print_insn_a29k (memaddr, info)
     bfd_vma memaddr;
     bfd_vma memaddr;
     disassemble_info *info;
     disassemble_info *info;
{
{
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    return print_insn_big_a29k (memaddr, info);
    return print_insn_big_a29k (memaddr, info);
  else
  else
    return print_insn_little_a29k (memaddr, info);
    return print_insn_little_a29k (memaddr, info);
}
}
 
 
enum a29k_processor_types processor_type = a29k_unknown;
enum a29k_processor_types processor_type = a29k_unknown;
 
 
void
void
a29k_get_processor_type ()
a29k_get_processor_type ()
{
{
  unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
  unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
 
 
  /* Most of these don't have freeze mode.  */
  /* Most of these don't have freeze mode.  */
  processor_type = a29k_no_freeze_mode;
  processor_type = a29k_no_freeze_mode;
 
 
  switch ((cfg_reg >> 28) & 0xf)
  switch ((cfg_reg >> 28) & 0xf)
    {
    {
    case 0:
    case 0:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
      break;
      break;
    case 1:
    case 1:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
      break;
      break;
    case 2:
    case 2:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
      processor_type = a29k_freeze_mode;
      processor_type = a29k_freeze_mode;
      break;
      break;
    case 3:
    case 3:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
      break;
      break;
    case 4:
    case 4:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
      break;
      break;
    case 5:
    case 5:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
      break;
      break;
    case 6:
    case 6:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
      break;
      break;
    case 7:
    case 7:
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
      fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
      break;
      break;
    default:
    default:
      fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
      fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
      /* Don't bother to print the revision.  */
      /* Don't bother to print the revision.  */
      return;
      return;
    }
    }
  fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
  fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
}
}
 
 
#ifdef GET_LONGJMP_TARGET
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land.  We expect that we have just entered
/* Figure out where the longjmp will land.  We expect that we have just entered
   longjmp and haven't yet setup the stack frame, so the args are still in the
   longjmp and haven't yet setup the stack frame, so the args are still in the
   output regs.  lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
   output regs.  lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
   extract the pc (JB_PC) that we will land at.  The pc is copied into ADDR.
   extract the pc (JB_PC) that we will land at.  The pc is copied into ADDR.
   This routine returns true on success */
   This routine returns true on success */
 
 
int
int
get_longjmp_target (pc)
get_longjmp_target (pc)
     CORE_ADDR *pc;
     CORE_ADDR *pc;
{
{
  CORE_ADDR jb_addr;
  CORE_ADDR jb_addr;
  char buf[sizeof (CORE_ADDR)];
  char buf[sizeof (CORE_ADDR)];
 
 
  jb_addr = read_register (LR2_REGNUM);
  jb_addr = read_register (LR2_REGNUM);
 
 
  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
                          sizeof (CORE_ADDR)))
                          sizeof (CORE_ADDR)))
    return 0;
    return 0;
 
 
  *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
  *pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
  return 1;
  return 1;
}
}
#endif /* GET_LONGJMP_TARGET */
#endif /* GET_LONGJMP_TARGET */
 
 
void
void
_initialize_a29k_tdep ()
_initialize_a29k_tdep ()
{
{
  extern CORE_ADDR text_end;
  extern CORE_ADDR text_end;
 
 
  tm_print_insn = gdb_print_insn_a29k;
  tm_print_insn = gdb_print_insn_a29k;
 
 
  /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
  /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
    (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
                  (char *) &rstack_high_address,
                  (char *) &rstack_high_address,
                  "Set top address in memory of the register stack.\n\
                  "Set top address in memory of the register stack.\n\
Attempts to access registers saved above this address will be ignored\n\
Attempts to access registers saved above this address will be ignored\n\
or will produce the value -1.", &setlist),
or will produce the value -1.", &setlist),
     &showlist);
     &showlist);
 
 
  /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
  /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
    (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
                  (char *) &text_end,
                  (char *) &text_end,
                  "Set address in memory where small amounts of RAM can be used\n\
                  "Set address in memory where small amounts of RAM can be used\n\
when making function calls into the inferior.", &setlist),
when making function calls into the inferior.", &setlist),
     &showlist);
     &showlist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.