OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [d30v-tdep.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Target-dependent code for Mitsubishi D30V, for GDB.
/* Target-dependent code for Mitsubishi D30V, for GDB.
   Copyright (C) 1996, 1997, 2000 Free Software Foundation, Inc.
   Copyright (C) 1996, 1997, 2000 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/*  Contributed by Martin Hunt, hunt@cygnus.com */
/*  Contributed by Martin Hunt, hunt@cygnus.com */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "obstack.h"
#include "obstack.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "value.h"
#include "value.h"
#include "inferior.h"
#include "inferior.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
 
 
#include "language.h" /* For local_hex_string() */
#include "language.h" /* For local_hex_string() */
 
 
void d30v_frame_find_saved_regs PARAMS ((struct frame_info * fi,
void d30v_frame_find_saved_regs PARAMS ((struct frame_info * fi,
                                         struct frame_saved_regs * fsr));
                                         struct frame_saved_regs * fsr));
void d30v_frame_find_saved_regs_offsets PARAMS ((struct frame_info * fi,
void d30v_frame_find_saved_regs_offsets PARAMS ((struct frame_info * fi,
                                            struct frame_saved_regs * fsr));
                                            struct frame_saved_regs * fsr));
static void d30v_pop_dummy_frame PARAMS ((struct frame_info * fi));
static void d30v_pop_dummy_frame PARAMS ((struct frame_info * fi));
static void d30v_print_flags PARAMS ((void));
static void d30v_print_flags PARAMS ((void));
static void print_flags_command PARAMS ((char *, int));
static void print_flags_command PARAMS ((char *, int));
 
 
/* the following defines assume:
/* the following defines assume:
   fp is r61, lr is r62, sp is r63, and ?? is r22
   fp is r61, lr is r62, sp is r63, and ?? is r22
   if that changes, they will need to be updated */
   if that changes, they will need to be updated */
 
 
#define OP_MASK_ALL_BUT_RA      0x0ffc0fff      /* throw away Ra, keep the rest */
#define OP_MASK_ALL_BUT_RA      0x0ffc0fff      /* throw away Ra, keep the rest */
 
 
#define OP_STW_SPM              0x054c0fc0      /* stw Ra, @(sp-) */
#define OP_STW_SPM              0x054c0fc0      /* stw Ra, @(sp-) */
#define OP_STW_SP_R0            0x05400fc0      /* stw Ra, @(sp,r0) */
#define OP_STW_SP_R0            0x05400fc0      /* stw Ra, @(sp,r0) */
#define OP_STW_SP_IMM0          0x05480fc0      /* st Ra, @(sp, 0x0) */
#define OP_STW_SP_IMM0          0x05480fc0      /* st Ra, @(sp, 0x0) */
#define OP_STW_R22P_R0          0x05440580      /* stw Ra, @(r22+,r0) */
#define OP_STW_R22P_R0          0x05440580      /* stw Ra, @(r22+,r0) */
 
 
#define OP_ST2W_SPM             0x056c0fc0      /* st2w Ra, @(sp-) */
#define OP_ST2W_SPM             0x056c0fc0      /* st2w Ra, @(sp-) */
#define OP_ST2W_SP_R0           0x05600fc0      /* st2w Ra, @(sp, r0) */
#define OP_ST2W_SP_R0           0x05600fc0      /* st2w Ra, @(sp, r0) */
#define OP_ST2W_SP_IMM0         0x05680fc0      /* st2w Ra, @(sp, 0x0) */
#define OP_ST2W_SP_IMM0         0x05680fc0      /* st2w Ra, @(sp, 0x0) */
#define OP_ST2W_R22P_R0         0x05640580      /* st2w Ra, @(r22+, r0) */
#define OP_ST2W_R22P_R0         0x05640580      /* st2w Ra, @(r22+, r0) */
 
 
#define OP_MASK_OPCODE          0x0ffc0000      /* just the opcode, ign operands */
#define OP_MASK_OPCODE          0x0ffc0000      /* just the opcode, ign operands */
#define OP_NOP                  0x00f00000      /* nop */
#define OP_NOP                  0x00f00000      /* nop */
 
 
#define OP_MASK_ALL_BUT_IMM     0x0fffffc0      /* throw away imm, keep the rest */
#define OP_MASK_ALL_BUT_IMM     0x0fffffc0      /* throw away imm, keep the rest */
#define OP_SUB_SP_IMM           0x082bffc0      /* sub sp,sp,imm */
#define OP_SUB_SP_IMM           0x082bffc0      /* sub sp,sp,imm */
#define OP_ADD_SP_IMM           0x080bffc0      /* add sp,sp,imm */
#define OP_ADD_SP_IMM           0x080bffc0      /* add sp,sp,imm */
#define OP_ADD_R22_SP_IMM       0x08096fc0      /* add r22,sp,imm */
#define OP_ADD_R22_SP_IMM       0x08096fc0      /* add r22,sp,imm */
#define OP_STW_FP_SP_IMM        0x054bdfc0      /* stw fp,@(sp,imm) */
#define OP_STW_FP_SP_IMM        0x054bdfc0      /* stw fp,@(sp,imm) */
#define OP_OR_SP_R0_IMM         0x03abf000      /* or sp,r0,imm */
#define OP_OR_SP_R0_IMM         0x03abf000      /* or sp,r0,imm */
 
 
/* no mask */
/* no mask */
#define OP_OR_FP_R0_SP          0x03a3d03f      /* or fp,r0,sp */
#define OP_OR_FP_R0_SP          0x03a3d03f      /* or fp,r0,sp */
#define OP_OR_FP_SP_R0          0x03a3dfc0      /* or fp,sp,r0 */
#define OP_OR_FP_SP_R0          0x03a3dfc0      /* or fp,sp,r0 */
#define OP_OR_FP_IMM0_SP        0x03abd03f      /* or fp,0x0,sp */
#define OP_OR_FP_IMM0_SP        0x03abd03f      /* or fp,0x0,sp */
#define OP_STW_FP_R22P_R0       0x0547d580      /* stw fp,@(r22+,r0) */
#define OP_STW_FP_R22P_R0       0x0547d580      /* stw fp,@(r22+,r0) */
#define OP_STW_LR_R22P_R0       0x0547e580      /* stw lr,@(r22+,r0) */
#define OP_STW_LR_R22P_R0       0x0547e580      /* stw lr,@(r22+,r0) */
 
 
#define OP_MASK_OP_AND_RB       0x0ff80fc0      /* keep op and rb,throw away rest */
#define OP_MASK_OP_AND_RB       0x0ff80fc0      /* keep op and rb,throw away rest */
#define OP_STW_SP_IMM           0x05480fc0      /* stw Ra,@(sp,imm) */
#define OP_STW_SP_IMM           0x05480fc0      /* stw Ra,@(sp,imm) */
#define OP_ST2W_SP_IMM          0x05680fc0      /* st2w Ra,@(sp,imm) */
#define OP_ST2W_SP_IMM          0x05680fc0      /* st2w Ra,@(sp,imm) */
#define OP_STW_FP_IMM           0x05480f40      /* stw Ra,@(fp,imm) */
#define OP_STW_FP_IMM           0x05480f40      /* stw Ra,@(fp,imm) */
#define OP_STW_FP_R0            0x05400f40      /* stw Ra,@(fp,r0) */
#define OP_STW_FP_R0            0x05400f40      /* stw Ra,@(fp,r0) */
 
 
#define OP_MASK_FM_BIT          0x80000000
#define OP_MASK_FM_BIT          0x80000000
#define OP_MASK_CC_BITS         0x70000000
#define OP_MASK_CC_BITS         0x70000000
#define OP_MASK_SUB_INST        0x0fffffff
#define OP_MASK_SUB_INST        0x0fffffff
 
 
#define EXTRACT_RA(op)          (((op) >> 12) & 0x3f)
#define EXTRACT_RA(op)          (((op) >> 12) & 0x3f)
#define EXTRACT_RB(op)          (((op) >> 6) & 0x3f)
#define EXTRACT_RB(op)          (((op) >> 6) & 0x3f)
#define EXTRACT_RC(op)          (((op) & 0x3f)
#define EXTRACT_RC(op)          (((op) & 0x3f)
#define EXTRACT_UIMM6(op)       ((op) & 0x3f)
#define EXTRACT_UIMM6(op)       ((op) & 0x3f)
#define EXTRACT_IMM6(op)        ((((int)EXTRACT_UIMM6(op)) << 26) >> 26)
#define EXTRACT_IMM6(op)        ((((int)EXTRACT_UIMM6(op)) << 26) >> 26)
#define EXTRACT_IMM26(op)       ((((op)&0x0ff00000) >> 2) | ((op)&0x0003ffff))
#define EXTRACT_IMM26(op)       ((((op)&0x0ff00000) >> 2) | ((op)&0x0003ffff))
#define EXTRACT_IMM32(opl, opr) ((EXTRACT_UIMM6(opl) << 26)|EXTRACT_IMM26(opr))
#define EXTRACT_IMM32(opl, opr) ((EXTRACT_UIMM6(opl) << 26)|EXTRACT_IMM26(opr))
 
 
 
 
int
int
d30v_frame_chain_valid (chain, fi)
d30v_frame_chain_valid (chain, fi)
     CORE_ADDR chain;
     CORE_ADDR chain;
     struct frame_info *fi;     /* not used here */
     struct frame_info *fi;     /* not used here */
{
{
#if 0
#if 0
  return ((chain) != 0 && (fi) != 0 && (fi)->return_pc != 0);
  return ((chain) != 0 && (fi) != 0 && (fi)->return_pc != 0);
#else
#else
  return ((chain) != 0 && (fi) != 0 && (fi)->frame <= chain);
  return ((chain) != 0 && (fi) != 0 && (fi)->frame <= chain);
#endif
#endif
}
}
 
 
/* Discard from the stack the innermost frame, restoring all saved
/* Discard from the stack the innermost frame, restoring all saved
   registers.  */
   registers.  */
 
 
void
void
d30v_pop_frame ()
d30v_pop_frame ()
{
{
  struct frame_info *frame = get_current_frame ();
  struct frame_info *frame = get_current_frame ();
  CORE_ADDR fp;
  CORE_ADDR fp;
  int regnum;
  int regnum;
  struct frame_saved_regs fsr;
  struct frame_saved_regs fsr;
  char raw_buffer[8];
  char raw_buffer[8];
 
 
  fp = FRAME_FP (frame);
  fp = FRAME_FP (frame);
  if (frame->dummy)
  if (frame->dummy)
    {
    {
      d30v_pop_dummy_frame (frame);
      d30v_pop_dummy_frame (frame);
      return;
      return;
    }
    }
 
 
  /* fill out fsr with the address of where each */
  /* fill out fsr with the address of where each */
  /* register was stored in the frame */
  /* register was stored in the frame */
  get_frame_saved_regs (frame, &fsr);
  get_frame_saved_regs (frame, &fsr);
 
 
  /* now update the current registers with the old values */
  /* now update the current registers with the old values */
  for (regnum = A0_REGNUM; regnum < A0_REGNUM + 2; regnum++)
  for (regnum = A0_REGNUM; regnum < A0_REGNUM + 2; regnum++)
    {
    {
      if (fsr.regs[regnum])
      if (fsr.regs[regnum])
        {
        {
          read_memory (fsr.regs[regnum], raw_buffer, 8);
          read_memory (fsr.regs[regnum], raw_buffer, 8);
          write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
          write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 8);
        }
        }
    }
    }
  for (regnum = 0; regnum < SP_REGNUM; regnum++)
  for (regnum = 0; regnum < SP_REGNUM; regnum++)
    {
    {
      if (fsr.regs[regnum])
      if (fsr.regs[regnum])
        {
        {
          write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 4));
          write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], 4));
        }
        }
    }
    }
  if (fsr.regs[PSW_REGNUM])
  if (fsr.regs[PSW_REGNUM])
    {
    {
      write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 4));
      write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], 4));
    }
    }
 
 
  write_register (PC_REGNUM, read_register (LR_REGNUM));
  write_register (PC_REGNUM, read_register (LR_REGNUM));
  write_register (SP_REGNUM, fp + frame->size);
  write_register (SP_REGNUM, fp + frame->size);
  target_store_registers (-1);
  target_store_registers (-1);
  flush_cached_frames ();
  flush_cached_frames ();
}
}
 
 
static int
static int
check_prologue (op)
check_prologue (op)
     unsigned long op;
     unsigned long op;
{
{
  /* add sp,sp,imm -- observed */
  /* add sp,sp,imm -- observed */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
    return 1;
    return 1;
 
 
  /* add r22,sp,imm -- observed */
  /* add r22,sp,imm -- observed */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
    return 1;
    return 1;
 
 
  /* or  fp,r0,sp -- observed */
  /* or  fp,r0,sp -- observed */
  if (op == OP_OR_FP_R0_SP)
  if (op == OP_OR_FP_R0_SP)
    return 1;
    return 1;
 
 
  /* nop */
  /* nop */
  if ((op & OP_MASK_OPCODE) == OP_NOP)
  if ((op & OP_MASK_OPCODE) == OP_NOP)
    return 1;
    return 1;
 
 
  /* stw  Ra,@(sp,r0) */
  /* stw  Ra,@(sp,r0) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_R0)
    return 1;
    return 1;
 
 
  /* stw  Ra,@(sp,0x0) */
  /* stw  Ra,@(sp,0x0) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_IMM0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_IMM0)
    return 1;
    return 1;
 
 
  /* st2w  Ra,@(sp,r0) */
  /* st2w  Ra,@(sp,r0) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_R0)
    return 1;
    return 1;
 
 
  /* st2w  Ra,@(sp,0x0) */
  /* st2w  Ra,@(sp,0x0) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_IMM0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_IMM0)
    return 1;
    return 1;
 
 
  /* stw fp, @(r22+,r0) -- observed */
  /* stw fp, @(r22+,r0) -- observed */
  if (op == OP_STW_FP_R22P_R0)
  if (op == OP_STW_FP_R22P_R0)
    return 1;
    return 1;
 
 
  /* stw r62, @(r22+,r0) -- observed */
  /* stw r62, @(r22+,r0) -- observed */
  if (op == OP_STW_LR_R22P_R0)
  if (op == OP_STW_LR_R22P_R0)
    return 1;
    return 1;
 
 
  /* stw Ra, @(fp,r0) -- observed */
  /* stw Ra, @(fp,r0) -- observed */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_FP_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_FP_R0)
    return 1;                   /* first arg */
    return 1;                   /* first arg */
 
 
  /* stw Ra, @(fp,imm) -- observed */
  /* stw Ra, @(fp,imm) -- observed */
  if ((op & OP_MASK_OP_AND_RB) == OP_STW_FP_IMM)
  if ((op & OP_MASK_OP_AND_RB) == OP_STW_FP_IMM)
    return 1;                   /* second and subsequent args */
    return 1;                   /* second and subsequent args */
 
 
  /* stw fp,@(sp,imm) -- observed */
  /* stw fp,@(sp,imm) -- observed */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_STW_FP_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_STW_FP_SP_IMM)
    return 1;
    return 1;
 
 
  /* st2w Ra,@(r22+,r0) */
  /* st2w Ra,@(r22+,r0) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_R22P_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_R22P_R0)
    return 1;
    return 1;
 
 
  /* stw  Ra, @(sp-) */
  /* stw  Ra, @(sp-) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SPM)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SPM)
    return 1;
    return 1;
 
 
  /* st2w  Ra, @(sp-) */
  /* st2w  Ra, @(sp-) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SPM)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SPM)
    return 1;
    return 1;
 
 
  /* sub.?  sp,sp,imm */
  /* sub.?  sp,sp,imm */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_SUB_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_SUB_SP_IMM)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
CORE_ADDR
CORE_ADDR
d30v_skip_prologue (pc)
d30v_skip_prologue (pc)
     CORE_ADDR pc;
     CORE_ADDR pc;
{
{
  unsigned long op[2];
  unsigned long op[2];
  unsigned long opl, opr;       /* left / right sub operations */
  unsigned long opl, opr;       /* left / right sub operations */
  unsigned long fm0, fm1;       /* left / right mode bits */
  unsigned long fm0, fm1;       /* left / right mode bits */
  unsigned long cc0, cc1;
  unsigned long cc0, cc1;
  unsigned long op1, op2;
  unsigned long op1, op2;
  CORE_ADDR func_addr, func_end;
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
 
 
  /* If we have line debugging information, then the end of the */
  /* If we have line debugging information, then the end of the */
  /* prologue should the first assembly instruction of  the first source line */
  /* prologue should the first assembly instruction of  the first source line */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      sal = find_pc_line (func_addr, 0);
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
      if (sal.end && sal.end < func_end)
        return sal.end;
        return sal.end;
    }
    }
 
 
  if (target_read_memory (pc, (char *) &op[0], 8))
  if (target_read_memory (pc, (char *) &op[0], 8))
    return pc;                  /* Can't access it -- assume no prologue. */
    return pc;                  /* Can't access it -- assume no prologue. */
 
 
  while (1)
  while (1)
    {
    {
      opl = (unsigned long) read_memory_integer (pc, 4);
      opl = (unsigned long) read_memory_integer (pc, 4);
      opr = (unsigned long) read_memory_integer (pc + 4, 4);
      opr = (unsigned long) read_memory_integer (pc + 4, 4);
 
 
      fm0 = (opl & OP_MASK_FM_BIT);
      fm0 = (opl & OP_MASK_FM_BIT);
      fm1 = (opr & OP_MASK_FM_BIT);
      fm1 = (opr & OP_MASK_FM_BIT);
 
 
      cc0 = (opl & OP_MASK_CC_BITS);
      cc0 = (opl & OP_MASK_CC_BITS);
      cc1 = (opr & OP_MASK_CC_BITS);
      cc1 = (opr & OP_MASK_CC_BITS);
 
 
      opl = (opl & OP_MASK_SUB_INST);
      opl = (opl & OP_MASK_SUB_INST);
      opr = (opr & OP_MASK_SUB_INST);
      opr = (opr & OP_MASK_SUB_INST);
 
 
      if (fm0 && fm1)
      if (fm0 && fm1)
        {
        {
          /* long instruction (opl contains the opcode) */
          /* long instruction (opl contains the opcode) */
          if (((opl & OP_MASK_ALL_BUT_IMM) != OP_ADD_SP_IMM) &&         /* add sp,sp,imm */
          if (((opl & OP_MASK_ALL_BUT_IMM) != OP_ADD_SP_IMM) &&         /* add sp,sp,imm */
              ((opl & OP_MASK_ALL_BUT_IMM) != OP_ADD_R22_SP_IMM) &&     /* add r22,sp,imm */
              ((opl & OP_MASK_ALL_BUT_IMM) != OP_ADD_R22_SP_IMM) &&     /* add r22,sp,imm */
              ((opl & OP_MASK_OP_AND_RB) != OP_STW_SP_IMM) &&   /* stw Ra, @(sp,imm) */
              ((opl & OP_MASK_OP_AND_RB) != OP_STW_SP_IMM) &&   /* stw Ra, @(sp,imm) */
              ((opl & OP_MASK_OP_AND_RB) != OP_ST2W_SP_IMM))    /* st2w Ra, @(sp,imm) */
              ((opl & OP_MASK_OP_AND_RB) != OP_ST2W_SP_IMM))    /* st2w Ra, @(sp,imm) */
            break;
            break;
        }
        }
      else
      else
        {
        {
          /* short instructions */
          /* short instructions */
          if (fm0 && !fm1)
          if (fm0 && !fm1)
            {
            {
              op1 = opr;
              op1 = opr;
              op2 = opl;
              op2 = opl;
            }
            }
          else
          else
            {
            {
              op1 = opl;
              op1 = opl;
              op2 = opr;
              op2 = opr;
            }
            }
          if (check_prologue (op1))
          if (check_prologue (op1))
            {
            {
              if (!check_prologue (op2))
              if (!check_prologue (op2))
                {
                {
                  /* if the previous opcode was really part of the prologue */
                  /* if the previous opcode was really part of the prologue */
                  /* and not just a NOP, then we want to break after both instructions */
                  /* and not just a NOP, then we want to break after both instructions */
                  if ((op1 & OP_MASK_OPCODE) != OP_NOP)
                  if ((op1 & OP_MASK_OPCODE) != OP_NOP)
                    pc += 8;
                    pc += 8;
                  break;
                  break;
                }
                }
            }
            }
          else
          else
            break;
            break;
        }
        }
      pc += 8;
      pc += 8;
    }
    }
  return pc;
  return pc;
}
}
 
 
static int end_of_stack;
static int end_of_stack;
 
 
/* Given a GDB frame, determine the address of the calling function's frame.
/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
 */
 */
 
 
CORE_ADDR
CORE_ADDR
d30v_frame_chain (frame)
d30v_frame_chain (frame)
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  struct frame_saved_regs fsr;
  struct frame_saved_regs fsr;
 
 
  d30v_frame_find_saved_regs (frame, &fsr);
  d30v_frame_find_saved_regs (frame, &fsr);
 
 
  if (end_of_stack)
  if (end_of_stack)
    return (CORE_ADDR) 0;
    return (CORE_ADDR) 0;
 
 
  if (frame->return_pc == IMEM_START)
  if (frame->return_pc == IMEM_START)
    return (CORE_ADDR) 0;
    return (CORE_ADDR) 0;
 
 
  if (!fsr.regs[FP_REGNUM])
  if (!fsr.regs[FP_REGNUM])
    {
    {
      if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
      if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
        return (CORE_ADDR) 0;
        return (CORE_ADDR) 0;
 
 
      return fsr.regs[SP_REGNUM];
      return fsr.regs[SP_REGNUM];
    }
    }
 
 
  if (!read_memory_unsigned_integer (fsr.regs[FP_REGNUM], 4))
  if (!read_memory_unsigned_integer (fsr.regs[FP_REGNUM], 4))
    return (CORE_ADDR) 0;
    return (CORE_ADDR) 0;
 
 
  return read_memory_unsigned_integer (fsr.regs[FP_REGNUM], 4);
  return read_memory_unsigned_integer (fsr.regs[FP_REGNUM], 4);
}
}
 
 
static int next_addr, uses_frame;
static int next_addr, uses_frame;
static int frame_size;
static int frame_size;
 
 
static int
static int
prologue_find_regs (op, fsr, addr)
prologue_find_regs (op, fsr, addr)
     unsigned long op;
     unsigned long op;
     struct frame_saved_regs *fsr;
     struct frame_saved_regs *fsr;
     CORE_ADDR addr;
     CORE_ADDR addr;
{
{
  int n;
  int n;
  int offset;
  int offset;
 
 
  /* add sp,sp,imm -- observed */
  /* add sp,sp,imm -- observed */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
    {
    {
      offset = EXTRACT_IMM6 (op);
      offset = EXTRACT_IMM6 (op);
      /*next_addr += offset; */
      /*next_addr += offset; */
      frame_size += -offset;
      frame_size += -offset;
      return 1;
      return 1;
    }
    }
 
 
  /* add r22,sp,imm -- observed */
  /* add r22,sp,imm -- observed */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
    {
    {
      offset = EXTRACT_IMM6 (op);
      offset = EXTRACT_IMM6 (op);
      next_addr = (offset - frame_size);
      next_addr = (offset - frame_size);
      return 1;
      return 1;
    }
    }
 
 
  /* stw Ra, @(fp, offset) -- observed */
  /* stw Ra, @(fp, offset) -- observed */
  if ((op & OP_MASK_OP_AND_RB) == OP_STW_FP_IMM)
  if ((op & OP_MASK_OP_AND_RB) == OP_STW_FP_IMM)
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      offset = EXTRACT_IMM6 (op);
      offset = EXTRACT_IMM6 (op);
      fsr->regs[n] = (offset - frame_size);
      fsr->regs[n] = (offset - frame_size);
      return 1;
      return 1;
    }
    }
 
 
  /* stw Ra, @(fp, r0) -- observed */
  /* stw Ra, @(fp, r0) -- observed */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_FP_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_FP_R0)
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = (-frame_size);
      fsr->regs[n] = (-frame_size);
      return 1;
      return 1;
    }
    }
 
 
  /* or  fp,0,sp -- observed */
  /* or  fp,0,sp -- observed */
  if ((op == OP_OR_FP_R0_SP) ||
  if ((op == OP_OR_FP_R0_SP) ||
      (op == OP_OR_FP_SP_R0) ||
      (op == OP_OR_FP_SP_R0) ||
      (op == OP_OR_FP_IMM0_SP))
      (op == OP_OR_FP_IMM0_SP))
    {
    {
      uses_frame = 1;
      uses_frame = 1;
      return 1;
      return 1;
    }
    }
 
 
  /* nop */
  /* nop */
  if ((op & OP_MASK_OPCODE) == OP_NOP)
  if ((op & OP_MASK_OPCODE) == OP_NOP)
    return 1;
    return 1;
 
 
  /* stw Ra,@(r22+,r0) -- observed */
  /* stw Ra,@(r22+,r0) -- observed */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_R22P_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_R22P_R0)
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = next_addr;
      fsr->regs[n] = next_addr;
      next_addr += 4;
      next_addr += 4;
      return 1;
      return 1;
    }
    }
#if 0                           /* subsumed in pattern above */
#if 0                           /* subsumed in pattern above */
  /* stw fp,@(r22+,r0) -- observed */
  /* stw fp,@(r22+,r0) -- observed */
  if (op == OP_STW_FP_R22P_R0)
  if (op == OP_STW_FP_R22P_R0)
    {
    {
      fsr->regs[FP_REGNUM] = next_addr;         /* XXX */
      fsr->regs[FP_REGNUM] = next_addr;         /* XXX */
      next_addr += 4;
      next_addr += 4;
      return 1;
      return 1;
    }
    }
 
 
  /* stw r62,@(r22+,r0) -- observed */
  /* stw r62,@(r22+,r0) -- observed */
  if (op == OP_STW_LR_R22P_R0)
  if (op == OP_STW_LR_R22P_R0)
    {
    {
      fsr->regs[LR_REGNUM] = next_addr;
      fsr->regs[LR_REGNUM] = next_addr;
      next_addr += 4;
      next_addr += 4;
      return 1;
      return 1;
    }
    }
#endif
#endif
  /* st2w Ra,@(r22+,r0) -- observed */
  /* st2w Ra,@(r22+,r0) -- observed */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_R22P_R0)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_R22P_R0)
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = next_addr;
      fsr->regs[n] = next_addr;
      fsr->regs[n + 1] = next_addr + 4;
      fsr->regs[n + 1] = next_addr + 4;
      next_addr += 8;
      next_addr += 8;
      return 1;
      return 1;
    }
    }
 
 
  /* stw  rn, @(sp-) */
  /* stw  rn, @(sp-) */
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SPM)
  if ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SPM)
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = next_addr;
      fsr->regs[n] = next_addr;
      next_addr -= 4;
      next_addr -= 4;
      return 1;
      return 1;
    }
    }
 
 
  /* st2w  Ra, @(sp-) */
  /* st2w  Ra, @(sp-) */
  else if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SPM)
  else if ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SPM)
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = next_addr;
      fsr->regs[n] = next_addr;
      fsr->regs[n + 1] = next_addr + 4;
      fsr->regs[n + 1] = next_addr + 4;
      next_addr -= 8;
      next_addr -= 8;
      return 1;
      return 1;
    }
    }
 
 
  /* sub  sp,sp,imm */
  /* sub  sp,sp,imm */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_SUB_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_SUB_SP_IMM)
    {
    {
      offset = EXTRACT_IMM6 (op);
      offset = EXTRACT_IMM6 (op);
      frame_size += -offset;
      frame_size += -offset;
      return 1;
      return 1;
    }
    }
 
 
  /* st  rn, @(sp,0) -- observed */
  /* st  rn, @(sp,0) -- observed */
  if (((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_R0) ||
  if (((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_R0) ||
      ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_IMM0))
      ((op & OP_MASK_ALL_BUT_RA) == OP_STW_SP_IMM0))
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = (-frame_size);
      fsr->regs[n] = (-frame_size);
      return 1;
      return 1;
    }
    }
 
 
  /* st2w  rn, @(sp,0) */
  /* st2w  rn, @(sp,0) */
  if (((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_R0) ||
  if (((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_R0) ||
      ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_IMM0))
      ((op & OP_MASK_ALL_BUT_RA) == OP_ST2W_SP_IMM0))
    {
    {
      n = EXTRACT_RA (op);
      n = EXTRACT_RA (op);
      fsr->regs[n] = (-frame_size);
      fsr->regs[n] = (-frame_size);
      fsr->regs[n + 1] = (-frame_size) + 4;
      fsr->regs[n + 1] = (-frame_size) + 4;
      return 1;
      return 1;
    }
    }
 
 
  /* stw fp,@(sp,imm) -- observed */
  /* stw fp,@(sp,imm) -- observed */
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_STW_FP_SP_IMM)
  if ((op & OP_MASK_ALL_BUT_IMM) == OP_STW_FP_SP_IMM)
    {
    {
      offset = EXTRACT_IMM6 (op);
      offset = EXTRACT_IMM6 (op);
      fsr->regs[FP_REGNUM] = (offset - frame_size);
      fsr->regs[FP_REGNUM] = (offset - frame_size);
      return 1;
      return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Put here the code to store, into a struct frame_saved_regs, the
/* Put here the code to store, into a struct frame_saved_regs, the
   addresses of the saved registers of frame described by FRAME_INFO.
   addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special: the address we
   ways in the stack frame.  sp is even more special: the address we
   return for it IS the sp for the next frame. */
   return for it IS the sp for the next frame. */
void
void
d30v_frame_find_saved_regs (fi, fsr)
d30v_frame_find_saved_regs (fi, fsr)
     struct frame_info *fi;
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
     struct frame_saved_regs *fsr;
{
{
  CORE_ADDR fp, pc;
  CORE_ADDR fp, pc;
  unsigned long opl, opr;
  unsigned long opl, opr;
  unsigned long op1, op2;
  unsigned long op1, op2;
  unsigned long fm0, fm1;
  unsigned long fm0, fm1;
  int i;
  int i;
 
 
  fp = fi->frame;
  fp = fi->frame;
  memset (fsr, 0, sizeof (*fsr));
  memset (fsr, 0, sizeof (*fsr));
  next_addr = 0;
  next_addr = 0;
  frame_size = 0;
  frame_size = 0;
  end_of_stack = 0;
  end_of_stack = 0;
 
 
  uses_frame = 0;
  uses_frame = 0;
 
 
  d30v_frame_find_saved_regs_offsets (fi, fsr);
  d30v_frame_find_saved_regs_offsets (fi, fsr);
 
 
  fi->size = frame_size;
  fi->size = frame_size;
 
 
  if (!fp)
  if (!fp)
    fp = read_register (SP_REGNUM);
    fp = read_register (SP_REGNUM);
 
 
  for (i = 0; i < NUM_REGS - 1; i++)
  for (i = 0; i < NUM_REGS - 1; i++)
    if (fsr->regs[i])
    if (fsr->regs[i])
      {
      {
        fsr->regs[i] = fsr->regs[i] + fp + frame_size;
        fsr->regs[i] = fsr->regs[i] + fp + frame_size;
      }
      }
 
 
  if (fsr->regs[LR_REGNUM])
  if (fsr->regs[LR_REGNUM])
    fi->return_pc = read_memory_unsigned_integer (fsr->regs[LR_REGNUM], 4);
    fi->return_pc = read_memory_unsigned_integer (fsr->regs[LR_REGNUM], 4);
  else
  else
    fi->return_pc = read_register (LR_REGNUM);
    fi->return_pc = read_register (LR_REGNUM);
 
 
  /* the SP is not normally (ever?) saved, but check anyway */
  /* the SP is not normally (ever?) saved, but check anyway */
  if (!fsr->regs[SP_REGNUM])
  if (!fsr->regs[SP_REGNUM])
    {
    {
      /* if the FP was saved, that means the current FP is valid, */
      /* if the FP was saved, that means the current FP is valid, */
      /* otherwise, it isn't being used, so we use the SP instead */
      /* otherwise, it isn't being used, so we use the SP instead */
      if (uses_frame)
      if (uses_frame)
        fsr->regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->size;
        fsr->regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->size;
      else
      else
        {
        {
          fsr->regs[SP_REGNUM] = fp + fi->size;
          fsr->regs[SP_REGNUM] = fp + fi->size;
          fi->frameless = 1;
          fi->frameless = 1;
          fsr->regs[FP_REGNUM] = 0;
          fsr->regs[FP_REGNUM] = 0;
        }
        }
    }
    }
}
}
 
 
void
void
d30v_frame_find_saved_regs_offsets (fi, fsr)
d30v_frame_find_saved_regs_offsets (fi, fsr)
     struct frame_info *fi;
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
     struct frame_saved_regs *fsr;
{
{
  CORE_ADDR fp, pc;
  CORE_ADDR fp, pc;
  unsigned long opl, opr;
  unsigned long opl, opr;
  unsigned long op1, op2;
  unsigned long op1, op2;
  unsigned long fm0, fm1;
  unsigned long fm0, fm1;
  int i;
  int i;
 
 
  fp = fi->frame;
  fp = fi->frame;
  memset (fsr, 0, sizeof (*fsr));
  memset (fsr, 0, sizeof (*fsr));
  next_addr = 0;
  next_addr = 0;
  frame_size = 0;
  frame_size = 0;
  end_of_stack = 0;
  end_of_stack = 0;
 
 
  pc = get_pc_function_start (fi->pc);
  pc = get_pc_function_start (fi->pc);
 
 
  uses_frame = 0;
  uses_frame = 0;
  while (pc < fi->pc)
  while (pc < fi->pc)
    {
    {
      opl = (unsigned long) read_memory_integer (pc, 4);
      opl = (unsigned long) read_memory_integer (pc, 4);
      opr = (unsigned long) read_memory_integer (pc + 4, 4);
      opr = (unsigned long) read_memory_integer (pc + 4, 4);
 
 
      fm0 = (opl & OP_MASK_FM_BIT);
      fm0 = (opl & OP_MASK_FM_BIT);
      fm1 = (opr & OP_MASK_FM_BIT);
      fm1 = (opr & OP_MASK_FM_BIT);
 
 
      opl = (opl & OP_MASK_SUB_INST);
      opl = (opl & OP_MASK_SUB_INST);
      opr = (opr & OP_MASK_SUB_INST);
      opr = (opr & OP_MASK_SUB_INST);
 
 
      if (fm0 && fm1)
      if (fm0 && fm1)
        {
        {
          /* long instruction */
          /* long instruction */
          if ((opl & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
          if ((opl & OP_MASK_ALL_BUT_IMM) == OP_ADD_SP_IMM)
            {
            {
              /* add sp,sp,n */
              /* add sp,sp,n */
              long offset = EXTRACT_IMM32 (opl, opr);
              long offset = EXTRACT_IMM32 (opl, opr);
              frame_size += -offset;
              frame_size += -offset;
            }
            }
          else if ((opl & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
          else if ((opl & OP_MASK_ALL_BUT_IMM) == OP_ADD_R22_SP_IMM)
            {
            {
              /* add r22,sp,offset */
              /* add r22,sp,offset */
              long offset = EXTRACT_IMM32 (opl, opr);
              long offset = EXTRACT_IMM32 (opl, opr);
              next_addr = (offset - frame_size);
              next_addr = (offset - frame_size);
            }
            }
          else if ((opl & OP_MASK_OP_AND_RB) == OP_STW_SP_IMM)
          else if ((opl & OP_MASK_OP_AND_RB) == OP_STW_SP_IMM)
            {
            {
              /* st Ra, @(sp,imm) */
              /* st Ra, @(sp,imm) */
              long offset = EXTRACT_IMM32 (opl, opr);
              long offset = EXTRACT_IMM32 (opl, opr);
              short n = EXTRACT_RA (opl);
              short n = EXTRACT_RA (opl);
              fsr->regs[n] = (offset - frame_size);
              fsr->regs[n] = (offset - frame_size);
            }
            }
          else if ((opl & OP_MASK_OP_AND_RB) == OP_ST2W_SP_IMM)
          else if ((opl & OP_MASK_OP_AND_RB) == OP_ST2W_SP_IMM)
            {
            {
              /* st2w Ra, @(sp,offset) */
              /* st2w Ra, @(sp,offset) */
              long offset = EXTRACT_IMM32 (opl, opr);
              long offset = EXTRACT_IMM32 (opl, opr);
              short n = EXTRACT_RA (opl);
              short n = EXTRACT_RA (opl);
              fsr->regs[n] = (offset - frame_size);
              fsr->regs[n] = (offset - frame_size);
              fsr->regs[n + 1] = (offset - frame_size) + 4;
              fsr->regs[n + 1] = (offset - frame_size) + 4;
            }
            }
          else if ((opl & OP_MASK_ALL_BUT_IMM) == OP_OR_SP_R0_IMM)
          else if ((opl & OP_MASK_ALL_BUT_IMM) == OP_OR_SP_R0_IMM)
            {
            {
              end_of_stack = 1;
              end_of_stack = 1;
            }
            }
          else
          else
            break;
            break;
        }
        }
      else
      else
        {
        {
          /* short instructions */
          /* short instructions */
          if (fm0 && !fm1)
          if (fm0 && !fm1)
            {
            {
              op2 = opl;
              op2 = opl;
              op1 = opr;
              op1 = opr;
            }
            }
          else
          else
            {
            {
              op1 = opl;
              op1 = opl;
              op2 = opr;
              op2 = opr;
            }
            }
          if (!prologue_find_regs (op1, fsr, pc) || !prologue_find_regs (op2, fsr, pc))
          if (!prologue_find_regs (op1, fsr, pc) || !prologue_find_regs (op2, fsr, pc))
            break;
            break;
        }
        }
      pc += 8;
      pc += 8;
    }
    }
 
 
#if 0
#if 0
  fi->size = frame_size;
  fi->size = frame_size;
 
 
  if (!fp)
  if (!fp)
    fp = read_register (SP_REGNUM);
    fp = read_register (SP_REGNUM);
 
 
  for (i = 0; i < NUM_REGS - 1; i++)
  for (i = 0; i < NUM_REGS - 1; i++)
    if (fsr->regs[i])
    if (fsr->regs[i])
      {
      {
        fsr->regs[i] = fsr->regs[i] + fp + frame_size;
        fsr->regs[i] = fsr->regs[i] + fp + frame_size;
      }
      }
 
 
  if (fsr->regs[LR_REGNUM])
  if (fsr->regs[LR_REGNUM])
    fi->return_pc = read_memory_unsigned_integer (fsr->regs[LR_REGNUM], 4);
    fi->return_pc = read_memory_unsigned_integer (fsr->regs[LR_REGNUM], 4);
  else
  else
    fi->return_pc = read_register (LR_REGNUM);
    fi->return_pc = read_register (LR_REGNUM);
 
 
  /* the SP is not normally (ever?) saved, but check anyway */
  /* the SP is not normally (ever?) saved, but check anyway */
  if (!fsr->regs[SP_REGNUM])
  if (!fsr->regs[SP_REGNUM])
    {
    {
      /* if the FP was saved, that means the current FP is valid, */
      /* if the FP was saved, that means the current FP is valid, */
      /* otherwise, it isn't being used, so we use the SP instead */
      /* otherwise, it isn't being used, so we use the SP instead */
      if (uses_frame)
      if (uses_frame)
        fsr->regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->size;
        fsr->regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->size;
      else
      else
        {
        {
          fsr->regs[SP_REGNUM] = fp + fi->size;
          fsr->regs[SP_REGNUM] = fp + fi->size;
          fi->frameless = 1;
          fi->frameless = 1;
          fsr->regs[FP_REGNUM] = 0;
          fsr->regs[FP_REGNUM] = 0;
        }
        }
    }
    }
#endif
#endif
}
}
 
 
void
void
d30v_init_extra_frame_info (fromleaf, fi)
d30v_init_extra_frame_info (fromleaf, fi)
     int fromleaf;
     int fromleaf;
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  struct frame_saved_regs dummy;
  struct frame_saved_regs dummy;
 
 
  if (fi->next && (fi->pc == 0))
  if (fi->next && (fi->pc == 0))
    fi->pc = fi->next->return_pc;
    fi->pc = fi->next->return_pc;
 
 
  d30v_frame_find_saved_regs_offsets (fi, &dummy);
  d30v_frame_find_saved_regs_offsets (fi, &dummy);
 
 
  if (uses_frame == 0)
  if (uses_frame == 0)
    fi->frameless = 1;
    fi->frameless = 1;
  else
  else
    fi->frameless = 0;
    fi->frameless = 0;
 
 
  if ((fi->next == 0) && (uses_frame == 0))
  if ((fi->next == 0) && (uses_frame == 0))
    /* innermost frame and it's "frameless",
    /* innermost frame and it's "frameless",
       so the fi->frame field is wrong, fix it! */
       so the fi->frame field is wrong, fix it! */
    fi->frame = read_sp ();
    fi->frame = read_sp ();
 
 
  if (dummy.regs[LR_REGNUM])
  if (dummy.regs[LR_REGNUM])
    {
    {
      /* it was saved, grab it! */
      /* it was saved, grab it! */
      dummy.regs[LR_REGNUM] += (fi->frame + frame_size);
      dummy.regs[LR_REGNUM] += (fi->frame + frame_size);
      fi->return_pc = read_memory_unsigned_integer (dummy.regs[LR_REGNUM], 4);
      fi->return_pc = read_memory_unsigned_integer (dummy.regs[LR_REGNUM], 4);
    }
    }
  else
  else
    fi->return_pc = read_register (LR_REGNUM);
    fi->return_pc = read_register (LR_REGNUM);
}
}
 
 
void
void
d30v_init_frame_pc (fromleaf, prev)
d30v_init_frame_pc (fromleaf, prev)
     int fromleaf;
     int fromleaf;
     struct frame_info *prev;
     struct frame_info *prev;
{
{
  /* default value, put here so we can breakpoint on it and
  /* default value, put here so we can breakpoint on it and
     see if the default value is really the right thing to use */
     see if the default value is really the right thing to use */
  prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
  prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
              prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
              prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
}
}
 
 
static void d30v_print_register PARAMS ((int regnum, int tabular));
static void d30v_print_register PARAMS ((int regnum, int tabular));
 
 
static void
static void
d30v_print_register (regnum, tabular)
d30v_print_register (regnum, tabular)
     int regnum;
     int regnum;
     int tabular;
     int tabular;
{
{
  if (regnum < A0_REGNUM)
  if (regnum < A0_REGNUM)
    {
    {
      if (tabular)
      if (tabular)
        printf_filtered ("%08lx", (long) read_register (regnum));
        printf_filtered ("%08lx", (long) read_register (regnum));
      else
      else
        printf_filtered ("0x%lx %ld",
        printf_filtered ("0x%lx %ld",
                         (long) read_register (regnum),
                         (long) read_register (regnum),
                         (long) read_register (regnum));
                         (long) read_register (regnum));
    }
    }
  else
  else
    {
    {
      char regbuf[MAX_REGISTER_RAW_SIZE];
      char regbuf[MAX_REGISTER_RAW_SIZE];
 
 
      read_relative_register_raw_bytes (regnum, regbuf);
      read_relative_register_raw_bytes (regnum, regbuf);
 
 
      val_print (REGISTER_VIRTUAL_TYPE (regnum), regbuf, 0, 0,
      val_print (REGISTER_VIRTUAL_TYPE (regnum), regbuf, 0, 0,
                 gdb_stdout, 'x', 1, 0, Val_pretty_default);
                 gdb_stdout, 'x', 1, 0, Val_pretty_default);
 
 
      if (!tabular)
      if (!tabular)
        {
        {
          printf_filtered ("    ");
          printf_filtered ("    ");
          val_print (REGISTER_VIRTUAL_TYPE (regnum), regbuf, 0, 0,
          val_print (REGISTER_VIRTUAL_TYPE (regnum), regbuf, 0, 0,
                     gdb_stdout, 'd', 1, 0, Val_pretty_default);
                     gdb_stdout, 'd', 1, 0, Val_pretty_default);
        }
        }
    }
    }
}
}
 
 
static void
static void
d30v_print_flags ()
d30v_print_flags ()
{
{
  long psw = read_register (PSW_REGNUM);
  long psw = read_register (PSW_REGNUM);
  printf_filtered ("flags #1");
  printf_filtered ("flags #1");
  printf_filtered ("   (sm) %d", (psw & PSW_SM) != 0);
  printf_filtered ("   (sm) %d", (psw & PSW_SM) != 0);
  printf_filtered ("   (ea) %d", (psw & PSW_EA) != 0);
  printf_filtered ("   (ea) %d", (psw & PSW_EA) != 0);
  printf_filtered ("   (db) %d", (psw & PSW_DB) != 0);
  printf_filtered ("   (db) %d", (psw & PSW_DB) != 0);
  printf_filtered ("   (ds) %d", (psw & PSW_DS) != 0);
  printf_filtered ("   (ds) %d", (psw & PSW_DS) != 0);
  printf_filtered ("   (ie) %d", (psw & PSW_IE) != 0);
  printf_filtered ("   (ie) %d", (psw & PSW_IE) != 0);
  printf_filtered ("   (rp) %d", (psw & PSW_RP) != 0);
  printf_filtered ("   (rp) %d", (psw & PSW_RP) != 0);
  printf_filtered ("   (md) %d\n", (psw & PSW_MD) != 0);
  printf_filtered ("   (md) %d\n", (psw & PSW_MD) != 0);
 
 
  printf_filtered ("flags #2");
  printf_filtered ("flags #2");
  printf_filtered ("   (f0) %d", (psw & PSW_F0) != 0);
  printf_filtered ("   (f0) %d", (psw & PSW_F0) != 0);
  printf_filtered ("   (f1) %d", (psw & PSW_F1) != 0);
  printf_filtered ("   (f1) %d", (psw & PSW_F1) != 0);
  printf_filtered ("   (f2) %d", (psw & PSW_F2) != 0);
  printf_filtered ("   (f2) %d", (psw & PSW_F2) != 0);
  printf_filtered ("   (f3) %d", (psw & PSW_F3) != 0);
  printf_filtered ("   (f3) %d", (psw & PSW_F3) != 0);
  printf_filtered ("    (s) %d", (psw & PSW_S) != 0);
  printf_filtered ("    (s) %d", (psw & PSW_S) != 0);
  printf_filtered ("    (v) %d", (psw & PSW_V) != 0);
  printf_filtered ("    (v) %d", (psw & PSW_V) != 0);
  printf_filtered ("   (va) %d", (psw & PSW_VA) != 0);
  printf_filtered ("   (va) %d", (psw & PSW_VA) != 0);
  printf_filtered ("    (c) %d\n", (psw & PSW_C) != 0);
  printf_filtered ("    (c) %d\n", (psw & PSW_C) != 0);
}
}
 
 
static void
static void
print_flags_command (args, from_tty)
print_flags_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  d30v_print_flags ();
  d30v_print_flags ();
}
}
 
 
void
void
d30v_do_registers_info (regnum, fpregs)
d30v_do_registers_info (regnum, fpregs)
     int regnum;
     int regnum;
     int fpregs;
     int fpregs;
{
{
  long long num1, num2;
  long long num1, num2;
  long psw;
  long psw;
 
 
  if (regnum != -1)
  if (regnum != -1)
    {
    {
      if (REGISTER_NAME (0) == NULL || REGISTER_NAME (0)[0] == '\000')
      if (REGISTER_NAME (0) == NULL || REGISTER_NAME (0)[0] == '\000')
        return;
        return;
 
 
      printf_filtered ("%s ", REGISTER_NAME (regnum));
      printf_filtered ("%s ", REGISTER_NAME (regnum));
      d30v_print_register (regnum, 0);
      d30v_print_register (regnum, 0);
 
 
      printf_filtered ("\n");
      printf_filtered ("\n");
      return;
      return;
    }
    }
 
 
  /* Have to print all the registers.  Format them nicely.  */
  /* Have to print all the registers.  Format them nicely.  */
 
 
  printf_filtered ("PC=");
  printf_filtered ("PC=");
  print_address (read_pc (), gdb_stdout);
  print_address (read_pc (), gdb_stdout);
 
 
  printf_filtered (" PSW=");
  printf_filtered (" PSW=");
  d30v_print_register (PSW_REGNUM, 1);
  d30v_print_register (PSW_REGNUM, 1);
 
 
  printf_filtered (" BPC=");
  printf_filtered (" BPC=");
  print_address (read_register (BPC_REGNUM), gdb_stdout);
  print_address (read_register (BPC_REGNUM), gdb_stdout);
 
 
  printf_filtered (" BPSW=");
  printf_filtered (" BPSW=");
  d30v_print_register (BPSW_REGNUM, 1);
  d30v_print_register (BPSW_REGNUM, 1);
  printf_filtered ("\n");
  printf_filtered ("\n");
 
 
  printf_filtered ("DPC=");
  printf_filtered ("DPC=");
  print_address (read_register (DPC_REGNUM), gdb_stdout);
  print_address (read_register (DPC_REGNUM), gdb_stdout);
 
 
  printf_filtered (" DPSW=");
  printf_filtered (" DPSW=");
  d30v_print_register (DPSW_REGNUM, 1);
  d30v_print_register (DPSW_REGNUM, 1);
 
 
  printf_filtered (" IBA=");
  printf_filtered (" IBA=");
  print_address (read_register (IBA_REGNUM), gdb_stdout);
  print_address (read_register (IBA_REGNUM), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
 
 
  printf_filtered ("RPT_C=");
  printf_filtered ("RPT_C=");
  d30v_print_register (RPT_C_REGNUM, 1);
  d30v_print_register (RPT_C_REGNUM, 1);
 
 
  printf_filtered (" RPT_S=");
  printf_filtered (" RPT_S=");
  print_address (read_register (RPT_S_REGNUM), gdb_stdout);
  print_address (read_register (RPT_S_REGNUM), gdb_stdout);
 
 
  printf_filtered (" RPT_E=");
  printf_filtered (" RPT_E=");
  print_address (read_register (RPT_E_REGNUM), gdb_stdout);
  print_address (read_register (RPT_E_REGNUM), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
 
 
  printf_filtered ("MOD_S=");
  printf_filtered ("MOD_S=");
  print_address (read_register (MOD_S_REGNUM), gdb_stdout);
  print_address (read_register (MOD_S_REGNUM), gdb_stdout);
 
 
  printf_filtered (" MOD_E=");
  printf_filtered (" MOD_E=");
  print_address (read_register (MOD_E_REGNUM), gdb_stdout);
  print_address (read_register (MOD_E_REGNUM), gdb_stdout);
  printf_filtered ("\n");
  printf_filtered ("\n");
 
 
  printf_filtered ("EIT_VB=");
  printf_filtered ("EIT_VB=");
  print_address (read_register (EIT_VB_REGNUM), gdb_stdout);
  print_address (read_register (EIT_VB_REGNUM), gdb_stdout);
 
 
  printf_filtered (" INT_S=");
  printf_filtered (" INT_S=");
  d30v_print_register (INT_S_REGNUM, 1);
  d30v_print_register (INT_S_REGNUM, 1);
 
 
  printf_filtered (" INT_M=");
  printf_filtered (" INT_M=");
  d30v_print_register (INT_M_REGNUM, 1);
  d30v_print_register (INT_M_REGNUM, 1);
  printf_filtered ("\n");
  printf_filtered ("\n");
 
 
  d30v_print_flags ();
  d30v_print_flags ();
  for (regnum = 0; regnum <= 63;)
  for (regnum = 0; regnum <= 63;)
    {
    {
      int i;
      int i;
 
 
      printf_filtered ("R%d-R%d ", regnum, regnum + 7);
      printf_filtered ("R%d-R%d ", regnum, regnum + 7);
      if (regnum < 10)
      if (regnum < 10)
        printf_filtered (" ");
        printf_filtered (" ");
      if (regnum + 7 < 10)
      if (regnum + 7 < 10)
        printf_filtered (" ");
        printf_filtered (" ");
 
 
      for (i = 0; i < 8; i++)
      for (i = 0; i < 8; i++)
        {
        {
          printf_filtered (" ");
          printf_filtered (" ");
          d30v_print_register (regnum++, 1);
          d30v_print_register (regnum++, 1);
        }
        }
 
 
      printf_filtered ("\n");
      printf_filtered ("\n");
    }
    }
 
 
  printf_filtered ("A0-A1    ");
  printf_filtered ("A0-A1    ");
 
 
  d30v_print_register (A0_REGNUM, 1);
  d30v_print_register (A0_REGNUM, 1);
  printf_filtered ("    ");
  printf_filtered ("    ");
  d30v_print_register (A1_REGNUM, 1);
  d30v_print_register (A1_REGNUM, 1);
  printf_filtered ("\n");
  printf_filtered ("\n");
}
}
 
 
CORE_ADDR
CORE_ADDR
d30v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
d30v_fix_call_dummy (dummyname, start_sp, fun, nargs, args, type, gcc_p)
     char *dummyname;
     char *dummyname;
     CORE_ADDR start_sp;
     CORE_ADDR start_sp;
     CORE_ADDR fun;
     CORE_ADDR fun;
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
     struct type *type;
     struct type *type;
     int gcc_p;
     int gcc_p;
{
{
  int regnum;
  int regnum;
  CORE_ADDR sp;
  CORE_ADDR sp;
  char buffer[MAX_REGISTER_RAW_SIZE];
  char buffer[MAX_REGISTER_RAW_SIZE];
  struct frame_info *frame = get_current_frame ();
  struct frame_info *frame = get_current_frame ();
  frame->dummy = start_sp;
  frame->dummy = start_sp;
  /*start_sp |= DMEM_START; */
  /*start_sp |= DMEM_START; */
 
 
  sp = start_sp;
  sp = start_sp;
  for (regnum = 0; regnum < NUM_REGS; regnum++)
  for (regnum = 0; regnum < NUM_REGS; regnum++)
    {
    {
      sp -= REGISTER_RAW_SIZE (regnum);
      sp -= REGISTER_RAW_SIZE (regnum);
      store_address (buffer, REGISTER_RAW_SIZE (regnum), read_register (regnum));
      store_address (buffer, REGISTER_RAW_SIZE (regnum), read_register (regnum));
      write_memory (sp, buffer, REGISTER_RAW_SIZE (regnum));
      write_memory (sp, buffer, REGISTER_RAW_SIZE (regnum));
    }
    }
  write_register (SP_REGNUM, (LONGEST) sp);
  write_register (SP_REGNUM, (LONGEST) sp);
  /* now we need to load LR with the return address */
  /* now we need to load LR with the return address */
  write_register (LR_REGNUM, (LONGEST) d30v_call_dummy_address ());
  write_register (LR_REGNUM, (LONGEST) d30v_call_dummy_address ());
  return sp;
  return sp;
}
}
 
 
static void
static void
d30v_pop_dummy_frame (fi)
d30v_pop_dummy_frame (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  CORE_ADDR sp = fi->dummy;
  CORE_ADDR sp = fi->dummy;
  int regnum;
  int regnum;
 
 
  for (regnum = 0; regnum < NUM_REGS; regnum++)
  for (regnum = 0; regnum < NUM_REGS; regnum++)
    {
    {
      sp -= REGISTER_RAW_SIZE (regnum);
      sp -= REGISTER_RAW_SIZE (regnum);
      write_register (regnum, read_memory_unsigned_integer (sp, REGISTER_RAW_SIZE (regnum)));
      write_register (regnum, read_memory_unsigned_integer (sp, REGISTER_RAW_SIZE (regnum)));
    }
    }
  flush_cached_frames ();       /* needed? */
  flush_cached_frames ();       /* needed? */
}
}
 
 
 
 
CORE_ADDR
CORE_ADDR
d30v_push_arguments (nargs, args, sp, struct_return, struct_addr)
d30v_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
     CORE_ADDR sp;
     CORE_ADDR sp;
     int struct_return;
     int struct_return;
     CORE_ADDR struct_addr;
     CORE_ADDR struct_addr;
{
{
  int i, len, index = 0, regnum = 2;
  int i, len, index = 0, regnum = 2;
  char buffer[4], *contents;
  char buffer[4], *contents;
  LONGEST val;
  LONGEST val;
  CORE_ADDR ptrs[10];
  CORE_ADDR ptrs[10];
 
 
#if 0
#if 0
  /* Pass 1. Put all large args on stack */
  /* Pass 1. Put all large args on stack */
  for (i = 0; i < nargs; i++)
  for (i = 0; i < nargs; i++)
    {
    {
      value_ptr arg = args[i];
      value_ptr arg = args[i];
      struct type *arg_type = check_typedef (VALUE_TYPE (arg));
      struct type *arg_type = check_typedef (VALUE_TYPE (arg));
      len = TYPE_LENGTH (arg_type);
      len = TYPE_LENGTH (arg_type);
      contents = VALUE_CONTENTS (arg);
      contents = VALUE_CONTENTS (arg);
      val = extract_signed_integer (contents, len);
      val = extract_signed_integer (contents, len);
      if (len > 4)
      if (len > 4)
        {
        {
          /* put on stack and pass pointers */
          /* put on stack and pass pointers */
          sp -= len;
          sp -= len;
          write_memory (sp, contents, len);
          write_memory (sp, contents, len);
          ptrs[index++] = sp;
          ptrs[index++] = sp;
        }
        }
    }
    }
#endif
#endif
  index = 0;
  index = 0;
 
 
  for (i = 0; i < nargs; i++)
  for (i = 0; i < nargs; i++)
    {
    {
      value_ptr arg = args[i];
      value_ptr arg = args[i];
      struct type *arg_type = check_typedef (VALUE_TYPE (arg));
      struct type *arg_type = check_typedef (VALUE_TYPE (arg));
      len = TYPE_LENGTH (arg_type);
      len = TYPE_LENGTH (arg_type);
      contents = VALUE_CONTENTS (arg);
      contents = VALUE_CONTENTS (arg);
      if (len > 4)
      if (len > 4)
        {
        {
          /* we need multiple registers */
          /* we need multiple registers */
          int ndx;
          int ndx;
 
 
          for (ndx = 0; len > 0; ndx += 8, len -= 8)
          for (ndx = 0; len > 0; ndx += 8, len -= 8)
            {
            {
              if (regnum & 1)
              if (regnum & 1)
                regnum++;       /* all args > 4 bytes start in even register */
                regnum++;       /* all args > 4 bytes start in even register */
 
 
              if (regnum < 18)
              if (regnum < 18)
                {
                {
                  val = extract_signed_integer (&contents[ndx], 4);
                  val = extract_signed_integer (&contents[ndx], 4);
                  write_register (regnum++, val);
                  write_register (regnum++, val);
 
 
                  if (len >= 8)
                  if (len >= 8)
                    val = extract_signed_integer (&contents[ndx + 4], 4);
                    val = extract_signed_integer (&contents[ndx + 4], 4);
                  else
                  else
                    val = extract_signed_integer (&contents[ndx + 4], len - 4);
                    val = extract_signed_integer (&contents[ndx + 4], len - 4);
                  write_register (regnum++, val);
                  write_register (regnum++, val);
                }
                }
              else
              else
                {
                {
                  /* no more registers available.  put it on the stack */
                  /* no more registers available.  put it on the stack */
 
 
                  /* all args > 4 bytes are padded to a multiple of 8 bytes
                  /* all args > 4 bytes are padded to a multiple of 8 bytes
                     and start on an 8 byte boundary */
                     and start on an 8 byte boundary */
                  if (sp & 7)
                  if (sp & 7)
                    sp -= (sp & 7);     /* align it */
                    sp -= (sp & 7);     /* align it */
 
 
                  sp -= ((len + 7) & ~7);       /* allocate space */
                  sp -= ((len + 7) & ~7);       /* allocate space */
                  write_memory (sp, &contents[ndx], len);
                  write_memory (sp, &contents[ndx], len);
                  break;
                  break;
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          if (regnum < 18)
          if (regnum < 18)
            {
            {
              val = extract_signed_integer (contents, len);
              val = extract_signed_integer (contents, len);
              write_register (regnum++, val);
              write_register (regnum++, val);
            }
            }
          else
          else
            {
            {
              /* all args are padded to a multiple of 4 bytes (at least) */
              /* all args are padded to a multiple of 4 bytes (at least) */
              sp -= ((len + 3) & ~3);
              sp -= ((len + 3) & ~3);
              write_memory (sp, contents, len);
              write_memory (sp, contents, len);
            }
            }
        }
        }
    }
    }
  if (sp & 7)
  if (sp & 7)
    /* stack pointer is not on an 8 byte boundary -- align it */
    /* stack pointer is not on an 8 byte boundary -- align it */
    sp -= (sp & 7);
    sp -= (sp & 7);
  return sp;
  return sp;
}
}
 
 
 
 
/* pick an out-of-the-way place to set the return value */
/* pick an out-of-the-way place to set the return value */
/* for an inferior function call.  The link register is set to this  */
/* for an inferior function call.  The link register is set to this  */
/* value and a momentary breakpoint is set there.  When the breakpoint */
/* value and a momentary breakpoint is set there.  When the breakpoint */
/* is hit, the dummy frame is popped and the previous environment is */
/* is hit, the dummy frame is popped and the previous environment is */
/* restored. */
/* restored. */
 
 
CORE_ADDR
CORE_ADDR
d30v_call_dummy_address ()
d30v_call_dummy_address ()
{
{
  CORE_ADDR entry;
  CORE_ADDR entry;
  struct minimal_symbol *sym;
  struct minimal_symbol *sym;
 
 
  entry = entry_point_address ();
  entry = entry_point_address ();
 
 
  if (entry != 0)
  if (entry != 0)
    return entry;
    return entry;
 
 
  sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
  sym = lookup_minimal_symbol ("_start", NULL, symfile_objfile);
 
 
  if (!sym || MSYMBOL_TYPE (sym) != mst_text)
  if (!sym || MSYMBOL_TYPE (sym) != mst_text)
    return 0;
    return 0;
  else
  else
    return SYMBOL_VALUE_ADDRESS (sym);
    return SYMBOL_VALUE_ADDRESS (sym);
}
}
 
 
/* Given a return value in `regbuf' with a type `valtype',
/* Given a return value in `regbuf' with a type `valtype',
   extract and copy its value into `valbuf'.  */
   extract and copy its value into `valbuf'.  */
 
 
void
void
d30v_extract_return_value (valtype, regbuf, valbuf)
d30v_extract_return_value (valtype, regbuf, valbuf)
     struct type *valtype;
     struct type *valtype;
     char regbuf[REGISTER_BYTES];
     char regbuf[REGISTER_BYTES];
     char *valbuf;
     char *valbuf;
{
{
  memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
  memcpy (valbuf, regbuf + REGISTER_BYTE (2), TYPE_LENGTH (valtype));
}
}
 
 
/* The following code implements access to, and display of, the D30V's
/* The following code implements access to, and display of, the D30V's
   instruction trace buffer.  The buffer consists of 64K or more
   instruction trace buffer.  The buffer consists of 64K or more
   4-byte words of data, of which each words includes an 8-bit count,
   4-byte words of data, of which each words includes an 8-bit count,
   an 8-bit segment number, and a 16-bit instruction address.
   an 8-bit segment number, and a 16-bit instruction address.
 
 
   In theory, the trace buffer is continuously capturing instruction
   In theory, the trace buffer is continuously capturing instruction
   data that the CPU presents on its "debug bus", but in practice, the
   data that the CPU presents on its "debug bus", but in practice, the
   ROMified GDB stub only enables tracing when it continues or steps
   ROMified GDB stub only enables tracing when it continues or steps
   the program, and stops tracing when the program stops; so it
   the program, and stops tracing when the program stops; so it
   actually works for GDB to read the buffer counter out of memory and
   actually works for GDB to read the buffer counter out of memory and
   then read each trace word.  The counter records where the tracing
   then read each trace word.  The counter records where the tracing
   stops, but there is no record of where it started, so we remember
   stops, but there is no record of where it started, so we remember
   the PC when we resumed and then search backwards in the trace
   the PC when we resumed and then search backwards in the trace
   buffer for a word that includes that address.  This is not perfect,
   buffer for a word that includes that address.  This is not perfect,
   because you will miss trace data if the resumption PC is the target
   because you will miss trace data if the resumption PC is the target
   of a branch.  (The value of the buffer counter is semi-random, any
   of a branch.  (The value of the buffer counter is semi-random, any
   trace data from a previous program stop is gone.)  */
   trace data from a previous program stop is gone.)  */
 
 
/* The address of the last word recorded in the trace buffer.  */
/* The address of the last word recorded in the trace buffer.  */
 
 
#define DBBC_ADDR (0xd80000)
#define DBBC_ADDR (0xd80000)
 
 
/* The base of the trace buffer, at least for the "Board_0".  */
/* The base of the trace buffer, at least for the "Board_0".  */
 
 
#define TRACE_BUFFER_BASE (0xf40000)
#define TRACE_BUFFER_BASE (0xf40000)
 
 
static void trace_command PARAMS ((char *, int));
static void trace_command PARAMS ((char *, int));
 
 
static void untrace_command PARAMS ((char *, int));
static void untrace_command PARAMS ((char *, int));
 
 
static void trace_info PARAMS ((char *, int));
static void trace_info PARAMS ((char *, int));
 
 
static void tdisassemble_command PARAMS ((char *, int));
static void tdisassemble_command PARAMS ((char *, int));
 
 
static void display_trace PARAMS ((int, int));
static void display_trace PARAMS ((int, int));
 
 
/* True when instruction traces are being collected.  */
/* True when instruction traces are being collected.  */
 
 
static int tracing;
static int tracing;
 
 
/* Remembered PC.  */
/* Remembered PC.  */
 
 
static CORE_ADDR last_pc;
static CORE_ADDR last_pc;
 
 
/* True when trace output should be displayed whenever program stops.  */
/* True when trace output should be displayed whenever program stops.  */
 
 
static int trace_display;
static int trace_display;
 
 
/* True when trace listing should include source lines.  */
/* True when trace listing should include source lines.  */
 
 
static int default_trace_show_source = 1;
static int default_trace_show_source = 1;
 
 
struct trace_buffer
struct trace_buffer
  {
  {
    int size;
    int size;
    short *counts;
    short *counts;
    CORE_ADDR *addrs;
    CORE_ADDR *addrs;
  }
  }
trace_data;
trace_data;
 
 
static void
static void
trace_command (args, from_tty)
trace_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  /* Clear the host-side trace buffer, allocating space if needed.  */
  /* Clear the host-side trace buffer, allocating space if needed.  */
  trace_data.size = 0;
  trace_data.size = 0;
  if (trace_data.counts == NULL)
  if (trace_data.counts == NULL)
    trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
    trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
  if (trace_data.addrs == NULL)
  if (trace_data.addrs == NULL)
    trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
    trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
 
 
  tracing = 1;
  tracing = 1;
 
 
  printf_filtered ("Tracing is now on.\n");
  printf_filtered ("Tracing is now on.\n");
}
}
 
 
static void
static void
untrace_command (args, from_tty)
untrace_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  tracing = 0;
  tracing = 0;
 
 
  printf_filtered ("Tracing is now off.\n");
  printf_filtered ("Tracing is now off.\n");
}
}
 
 
static void
static void
trace_info (args, from_tty)
trace_info (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  int i;
  int i;
 
 
  if (trace_data.size)
  if (trace_data.size)
    {
    {
      printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
      printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
 
 
      for (i = 0; i < trace_data.size; ++i)
      for (i = 0; i < trace_data.size; ++i)
        {
        {
          printf_filtered ("%d: %d instruction%s at 0x%s\n",
          printf_filtered ("%d: %d instruction%s at 0x%s\n",
                           i, trace_data.counts[i],
                           i, trace_data.counts[i],
                           (trace_data.counts[i] == 1 ? "" : "s"),
                           (trace_data.counts[i] == 1 ? "" : "s"),
                           paddr_nz (trace_data.addrs[i]));
                           paddr_nz (trace_data.addrs[i]));
        }
        }
    }
    }
  else
  else
    printf_filtered ("No entries in trace buffer.\n");
    printf_filtered ("No entries in trace buffer.\n");
 
 
  printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
  printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
}
}
 
 
/* Print the instruction at address MEMADDR in debugged memory,
/* Print the instruction at address MEMADDR in debugged memory,
   on STREAM.  Returns length of the instruction, in bytes.  */
   on STREAM.  Returns length of the instruction, in bytes.  */
 
 
static int
static int
print_insn (memaddr, stream)
print_insn (memaddr, stream)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     struct ui_file *stream;
     struct ui_file *stream;
{
{
  /* If there's no disassembler, something is very wrong.  */
  /* If there's no disassembler, something is very wrong.  */
  if (tm_print_insn == NULL)
  if (tm_print_insn == NULL)
    internal_error ("print_insn: no disassembler");
    internal_error ("print_insn: no disassembler");
 
 
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    tm_print_insn_info.endian = BFD_ENDIAN_BIG;
    tm_print_insn_info.endian = BFD_ENDIAN_BIG;
  else
  else
    tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
    tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
  return (*tm_print_insn) (memaddr, &tm_print_insn_info);
  return (*tm_print_insn) (memaddr, &tm_print_insn_info);
}
}
 
 
void
void
d30v_eva_prepare_to_trace ()
d30v_eva_prepare_to_trace ()
{
{
  if (!tracing)
  if (!tracing)
    return;
    return;
 
 
  last_pc = read_register (PC_REGNUM);
  last_pc = read_register (PC_REGNUM);
}
}
 
 
/* Collect trace data from the target board and format it into a form
/* Collect trace data from the target board and format it into a form
   more useful for display.  */
   more useful for display.  */
 
 
void
void
d30v_eva_get_trace_data ()
d30v_eva_get_trace_data ()
{
{
  int count, i, j, oldsize;
  int count, i, j, oldsize;
  int trace_addr, trace_seg, trace_cnt, next_cnt;
  int trace_addr, trace_seg, trace_cnt, next_cnt;
  unsigned int last_trace, trace_word, next_word;
  unsigned int last_trace, trace_word, next_word;
  unsigned int *tmpspace;
  unsigned int *tmpspace;
 
 
  if (!tracing)
  if (!tracing)
    return;
    return;
 
 
  tmpspace = xmalloc (65536 * sizeof (unsigned int));
  tmpspace = xmalloc (65536 * sizeof (unsigned int));
 
 
  last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
  last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
 
 
  /* Collect buffer contents from the target, stopping when we reach
  /* Collect buffer contents from the target, stopping when we reach
     the word recorded when execution resumed.  */
     the word recorded when execution resumed.  */
 
 
  count = 0;
  count = 0;
  while (last_trace > 0)
  while (last_trace > 0)
    {
    {
      QUIT;
      QUIT;
      trace_word =
      trace_word =
        read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
        read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
      trace_addr = trace_word & 0xffff;
      trace_addr = trace_word & 0xffff;
      last_trace -= 4;
      last_trace -= 4;
      /* Ignore an apparently nonsensical entry.  */
      /* Ignore an apparently nonsensical entry.  */
      if (trace_addr == 0xffd5)
      if (trace_addr == 0xffd5)
        continue;
        continue;
      tmpspace[count++] = trace_word;
      tmpspace[count++] = trace_word;
      if (trace_addr == last_pc)
      if (trace_addr == last_pc)
        break;
        break;
      if (count > 65535)
      if (count > 65535)
        break;
        break;
    }
    }
 
 
  /* Move the data to the host-side trace buffer, adjusting counts to
  /* Move the data to the host-side trace buffer, adjusting counts to
     include the last instruction executed and transforming the address
     include the last instruction executed and transforming the address
     into something that GDB likes.  */
     into something that GDB likes.  */
 
 
  for (i = 0; i < count; ++i)
  for (i = 0; i < count; ++i)
    {
    {
      trace_word = tmpspace[i];
      trace_word = tmpspace[i];
      next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
      next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
      trace_addr = trace_word & 0xffff;
      trace_addr = trace_word & 0xffff;
      next_cnt = (next_word >> 24) & 0xff;
      next_cnt = (next_word >> 24) & 0xff;
      j = trace_data.size + count - i - 1;
      j = trace_data.size + count - i - 1;
      trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
      trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
      trace_data.counts[j] = next_cnt + 1;
      trace_data.counts[j] = next_cnt + 1;
    }
    }
 
 
  oldsize = trace_data.size;
  oldsize = trace_data.size;
  trace_data.size += count;
  trace_data.size += count;
 
 
  free (tmpspace);
  free (tmpspace);
 
 
  if (trace_display)
  if (trace_display)
    display_trace (oldsize, trace_data.size);
    display_trace (oldsize, trace_data.size);
}
}
 
 
static void
static void
tdisassemble_command (arg, from_tty)
tdisassemble_command (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  int i, count;
  int i, count;
  CORE_ADDR low, high;
  CORE_ADDR low, high;
  char *space_index;
  char *space_index;
 
 
  if (!arg)
  if (!arg)
    {
    {
      low = 0;
      low = 0;
      high = trace_data.size;
      high = trace_data.size;
    }
    }
  else if (!(space_index = (char *) strchr (arg, ' ')))
  else if (!(space_index = (char *) strchr (arg, ' ')))
    {
    {
      low = parse_and_eval_address (arg);
      low = parse_and_eval_address (arg);
      high = low + 5;
      high = low + 5;
    }
    }
  else
  else
    {
    {
      /* Two arguments.  */
      /* Two arguments.  */
      *space_index = '\0';
      *space_index = '\0';
      low = parse_and_eval_address (arg);
      low = parse_and_eval_address (arg);
      high = parse_and_eval_address (space_index + 1);
      high = parse_and_eval_address (space_index + 1);
      if (high < low)
      if (high < low)
        high = low;
        high = low;
    }
    }
 
 
  printf_filtered ("Dump of trace from %s to %s:\n",
  printf_filtered ("Dump of trace from %s to %s:\n",
                   paddr_u (low),
                   paddr_u (low),
                   paddr_u (high));
                   paddr_u (high));
 
 
  display_trace (low, high);
  display_trace (low, high);
 
 
  printf_filtered ("End of trace dump.\n");
  printf_filtered ("End of trace dump.\n");
  gdb_flush (gdb_stdout);
  gdb_flush (gdb_stdout);
}
}
 
 
static void
static void
display_trace (low, high)
display_trace (low, high)
     int low, high;
     int low, high;
{
{
  int i, count, trace_show_source, first, suppress;
  int i, count, trace_show_source, first, suppress;
  CORE_ADDR next_address;
  CORE_ADDR next_address;
 
 
  trace_show_source = default_trace_show_source;
  trace_show_source = default_trace_show_source;
  if (!have_full_symbols () && !have_partial_symbols ())
  if (!have_full_symbols () && !have_partial_symbols ())
    {
    {
      trace_show_source = 0;
      trace_show_source = 0;
      printf_filtered ("No symbol table is loaded.  Use the \"file\" command.\n");
      printf_filtered ("No symbol table is loaded.  Use the \"file\" command.\n");
      printf_filtered ("Trace will not display any source.\n");
      printf_filtered ("Trace will not display any source.\n");
    }
    }
 
 
  first = 1;
  first = 1;
  suppress = 0;
  suppress = 0;
  for (i = low; i < high; ++i)
  for (i = low; i < high; ++i)
    {
    {
      next_address = trace_data.addrs[i];
      next_address = trace_data.addrs[i];
      count = trace_data.counts[i];
      count = trace_data.counts[i];
      while (count-- > 0)
      while (count-- > 0)
        {
        {
          QUIT;
          QUIT;
          if (trace_show_source)
          if (trace_show_source)
            {
            {
              struct symtab_and_line sal, sal_prev;
              struct symtab_and_line sal, sal_prev;
 
 
              sal_prev = find_pc_line (next_address - 4, 0);
              sal_prev = find_pc_line (next_address - 4, 0);
              sal = find_pc_line (next_address, 0);
              sal = find_pc_line (next_address, 0);
 
 
              if (sal.symtab)
              if (sal.symtab)
                {
                {
                  if (first || sal.line != sal_prev.line)
                  if (first || sal.line != sal_prev.line)
                    print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
                    print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
                  suppress = 0;
                  suppress = 0;
                }
                }
              else
              else
                {
                {
                  if (!suppress)
                  if (!suppress)
                    /* FIXME-32x64--assumes sal.pc fits in long.  */
                    /* FIXME-32x64--assumes sal.pc fits in long.  */
                    printf_filtered ("No source file for address %s.\n",
                    printf_filtered ("No source file for address %s.\n",
                                 local_hex_string ((unsigned long) sal.pc));
                                 local_hex_string ((unsigned long) sal.pc));
                  suppress = 1;
                  suppress = 1;
                }
                }
            }
            }
          first = 0;
          first = 0;
          print_address (next_address, gdb_stdout);
          print_address (next_address, gdb_stdout);
          printf_filtered (":");
          printf_filtered (":");
          printf_filtered ("\t");
          printf_filtered ("\t");
          wrap_here ("    ");
          wrap_here ("    ");
          next_address = next_address + print_insn (next_address, gdb_stdout);
          next_address = next_address + print_insn (next_address, gdb_stdout);
          printf_filtered ("\n");
          printf_filtered ("\n");
          gdb_flush (gdb_stdout);
          gdb_flush (gdb_stdout);
        }
        }
    }
    }
}
}
 
 
extern void (*target_resume_hook) PARAMS ((void));
extern void (*target_resume_hook) PARAMS ((void));
extern void (*target_wait_loop_hook) PARAMS ((void));
extern void (*target_wait_loop_hook) PARAMS ((void));
 
 
void
void
_initialize_d30v_tdep ()
_initialize_d30v_tdep ()
{
{
  tm_print_insn = print_insn_d30v;
  tm_print_insn = print_insn_d30v;
 
 
  target_resume_hook = d30v_eva_prepare_to_trace;
  target_resume_hook = d30v_eva_prepare_to_trace;
  target_wait_loop_hook = d30v_eva_get_trace_data;
  target_wait_loop_hook = d30v_eva_get_trace_data;
 
 
  add_info ("flags", print_flags_command, "Print d30v flags.");
  add_info ("flags", print_flags_command, "Print d30v flags.");
 
 
  add_com ("trace", class_support, trace_command,
  add_com ("trace", class_support, trace_command,
           "Enable tracing of instruction execution.");
           "Enable tracing of instruction execution.");
 
 
  add_com ("untrace", class_support, untrace_command,
  add_com ("untrace", class_support, untrace_command,
           "Disable tracing of instruction execution.");
           "Disable tracing of instruction execution.");
 
 
  add_com ("tdisassemble", class_vars, tdisassemble_command,
  add_com ("tdisassemble", class_vars, tdisassemble_command,
           "Disassemble the trace buffer.\n\
           "Disassemble the trace buffer.\n\
Two optional arguments specify a range of trace buffer entries\n\
Two optional arguments specify a range of trace buffer entries\n\
as reported by info trace (NOT addresses!).");
as reported by info trace (NOT addresses!).");
 
 
  add_info ("trace", trace_info,
  add_info ("trace", trace_info,
            "Display info about the trace data buffer.");
            "Display info about the trace data buffer.");
 
 
  add_show_from_set (add_set_cmd ("tracedisplay", no_class,
  add_show_from_set (add_set_cmd ("tracedisplay", no_class,
                                  var_integer, (char *) &trace_display,
                                  var_integer, (char *) &trace_display,
                             "Set automatic display of trace.\n", &setlist),
                             "Set automatic display of trace.\n", &setlist),
                     &showlist);
                     &showlist);
  add_show_from_set (add_set_cmd ("tracesource", no_class,
  add_show_from_set (add_set_cmd ("tracesource", no_class,
                           var_integer, (char *) &default_trace_show_source,
                           var_integer, (char *) &default_trace_show_source,
                      "Set display of source code with trace.\n", &setlist),
                      "Set display of source code with trace.\n", &setlist),
                     &showlist);
                     &showlist);
 
 
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.