OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [f-valprint.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Support for printing Fortran values for GDB, the GNU debugger.
/* Support for printing Fortran values for GDB, the GNU debugger.
   Copyright 1993-1995, 2000 Free Software Foundation, Inc.
   Copyright 1993-1995, 2000 Free Software Foundation, Inc.
   Contributed by Motorola.  Adapted from the C definitions by Farooq Butt
   Contributed by Motorola.  Adapted from the C definitions by Farooq Butt
   (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
   (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "expression.h"
#include "expression.h"
#include "value.h"
#include "value.h"
#include "demangle.h"
#include "demangle.h"
#include "valprint.h"
#include "valprint.h"
#include "language.h"
#include "language.h"
#include "f-lang.h"
#include "f-lang.h"
#include "frame.h"
#include "frame.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "command.h"
#include "command.h"
 
 
#if 0
#if 0
static int there_is_a_visible_common_named PARAMS ((char *));
static int there_is_a_visible_common_named PARAMS ((char *));
#endif
#endif
 
 
extern void _initialize_f_valprint PARAMS ((void));
extern void _initialize_f_valprint PARAMS ((void));
static void info_common_command PARAMS ((char *, int));
static void info_common_command PARAMS ((char *, int));
static void list_all_visible_commons PARAMS ((char *));
static void list_all_visible_commons PARAMS ((char *));
static void f77_print_array (struct type *, char *, CORE_ADDR,
static void f77_print_array (struct type *, char *, CORE_ADDR,
                             struct ui_file *, int, int, int,
                             struct ui_file *, int, int, int,
                             enum val_prettyprint);
                             enum val_prettyprint);
static void f77_print_array_1 (int, int, struct type *, char *,
static void f77_print_array_1 (int, int, struct type *, char *,
                               CORE_ADDR, struct ui_file *, int, int, int,
                               CORE_ADDR, struct ui_file *, int, int, int,
                               enum val_prettyprint);
                               enum val_prettyprint);
static void f77_create_arrayprint_offset_tbl (struct type *,
static void f77_create_arrayprint_offset_tbl (struct type *,
                                              struct ui_file *);
                                              struct ui_file *);
static void f77_get_dynamic_length_of_aggregate PARAMS ((struct type *));
static void f77_get_dynamic_length_of_aggregate PARAMS ((struct type *));
 
 
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
 
 
/* Array which holds offsets to be applied to get a row's elements
/* Array which holds offsets to be applied to get a row's elements
   for a given array. Array also holds the size of each subarray.  */
   for a given array. Array also holds the size of each subarray.  */
 
 
/* The following macro gives us the size of the nth dimension, Where
/* The following macro gives us the size of the nth dimension, Where
   n is 1 based. */
   n is 1 based. */
 
 
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
 
 
/* The following gives us the offset for row n where n is 1-based. */
/* The following gives us the offset for row n where n is 1-based. */
 
 
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
 
 
int
int
f77_get_dynamic_lowerbound (type, lower_bound)
f77_get_dynamic_lowerbound (type, lower_bound)
     struct type *type;
     struct type *type;
     int *lower_bound;
     int *lower_bound;
{
{
  CORE_ADDR current_frame_addr;
  CORE_ADDR current_frame_addr;
  CORE_ADDR ptr_to_lower_bound;
  CORE_ADDR ptr_to_lower_bound;
 
 
  switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
  switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
    {
    {
    case BOUND_BY_VALUE_ON_STACK:
    case BOUND_BY_VALUE_ON_STACK:
      current_frame_addr = selected_frame->frame;
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0)
      if (current_frame_addr > 0)
        {
        {
          *lower_bound =
          *lower_bound =
            read_memory_integer (current_frame_addr +
            read_memory_integer (current_frame_addr +
                                 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
                                 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
                                 4);
                                 4);
        }
        }
      else
      else
        {
        {
          *lower_bound = DEFAULT_LOWER_BOUND;
          *lower_bound = DEFAULT_LOWER_BOUND;
          return BOUND_FETCH_ERROR;
          return BOUND_FETCH_ERROR;
        }
        }
      break;
      break;
 
 
    case BOUND_SIMPLE:
    case BOUND_SIMPLE:
      *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
      *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
      break;
      break;
 
 
    case BOUND_CANNOT_BE_DETERMINED:
    case BOUND_CANNOT_BE_DETERMINED:
      error ("Lower bound may not be '*' in F77");
      error ("Lower bound may not be '*' in F77");
      break;
      break;
 
 
    case BOUND_BY_REF_ON_STACK:
    case BOUND_BY_REF_ON_STACK:
      current_frame_addr = selected_frame->frame;
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0)
      if (current_frame_addr > 0)
        {
        {
          ptr_to_lower_bound =
          ptr_to_lower_bound =
            read_memory_integer (current_frame_addr +
            read_memory_integer (current_frame_addr +
                                 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
                                 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
                                 4);
                                 4);
          *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
          *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
        }
        }
      else
      else
        {
        {
          *lower_bound = DEFAULT_LOWER_BOUND;
          *lower_bound = DEFAULT_LOWER_BOUND;
          return BOUND_FETCH_ERROR;
          return BOUND_FETCH_ERROR;
        }
        }
      break;
      break;
 
 
    case BOUND_BY_REF_IN_REG:
    case BOUND_BY_REF_IN_REG:
    case BOUND_BY_VALUE_IN_REG:
    case BOUND_BY_VALUE_IN_REG:
    default:
    default:
      error ("??? unhandled dynamic array bound type ???");
      error ("??? unhandled dynamic array bound type ???");
      break;
      break;
    }
    }
  return BOUND_FETCH_OK;
  return BOUND_FETCH_OK;
}
}
 
 
int
int
f77_get_dynamic_upperbound (type, upper_bound)
f77_get_dynamic_upperbound (type, upper_bound)
     struct type *type;
     struct type *type;
     int *upper_bound;
     int *upper_bound;
{
{
  CORE_ADDR current_frame_addr = 0;
  CORE_ADDR current_frame_addr = 0;
  CORE_ADDR ptr_to_upper_bound;
  CORE_ADDR ptr_to_upper_bound;
 
 
  switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
  switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
    {
    {
    case BOUND_BY_VALUE_ON_STACK:
    case BOUND_BY_VALUE_ON_STACK:
      current_frame_addr = selected_frame->frame;
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0)
      if (current_frame_addr > 0)
        {
        {
          *upper_bound =
          *upper_bound =
            read_memory_integer (current_frame_addr +
            read_memory_integer (current_frame_addr +
                                 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
                                 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
                                 4);
                                 4);
        }
        }
      else
      else
        {
        {
          *upper_bound = DEFAULT_UPPER_BOUND;
          *upper_bound = DEFAULT_UPPER_BOUND;
          return BOUND_FETCH_ERROR;
          return BOUND_FETCH_ERROR;
        }
        }
      break;
      break;
 
 
    case BOUND_SIMPLE:
    case BOUND_SIMPLE:
      *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
      *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
      break;
      break;
 
 
    case BOUND_CANNOT_BE_DETERMINED:
    case BOUND_CANNOT_BE_DETERMINED:
      /* we have an assumed size array on our hands. Assume that
      /* we have an assumed size array on our hands. Assume that
         upper_bound == lower_bound so that we show at least
         upper_bound == lower_bound so that we show at least
         1 element.If the user wants to see more elements, let
         1 element.If the user wants to see more elements, let
         him manually ask for 'em and we'll subscript the
         him manually ask for 'em and we'll subscript the
         array and show him */
         array and show him */
      f77_get_dynamic_lowerbound (type, upper_bound);
      f77_get_dynamic_lowerbound (type, upper_bound);
      break;
      break;
 
 
    case BOUND_BY_REF_ON_STACK:
    case BOUND_BY_REF_ON_STACK:
      current_frame_addr = selected_frame->frame;
      current_frame_addr = selected_frame->frame;
      if (current_frame_addr > 0)
      if (current_frame_addr > 0)
        {
        {
          ptr_to_upper_bound =
          ptr_to_upper_bound =
            read_memory_integer (current_frame_addr +
            read_memory_integer (current_frame_addr +
                                 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
                                 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
                                 4);
                                 4);
          *upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
          *upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
        }
        }
      else
      else
        {
        {
          *upper_bound = DEFAULT_UPPER_BOUND;
          *upper_bound = DEFAULT_UPPER_BOUND;
          return BOUND_FETCH_ERROR;
          return BOUND_FETCH_ERROR;
        }
        }
      break;
      break;
 
 
    case BOUND_BY_REF_IN_REG:
    case BOUND_BY_REF_IN_REG:
    case BOUND_BY_VALUE_IN_REG:
    case BOUND_BY_VALUE_IN_REG:
    default:
    default:
      error ("??? unhandled dynamic array bound type ???");
      error ("??? unhandled dynamic array bound type ???");
      break;
      break;
    }
    }
  return BOUND_FETCH_OK;
  return BOUND_FETCH_OK;
}
}
 
 
/* Obtain F77 adjustable array dimensions */
/* Obtain F77 adjustable array dimensions */
 
 
static void
static void
f77_get_dynamic_length_of_aggregate (type)
f77_get_dynamic_length_of_aggregate (type)
     struct type *type;
     struct type *type;
{
{
  int upper_bound = -1;
  int upper_bound = -1;
  int lower_bound = 1;
  int lower_bound = 1;
  int retcode;
  int retcode;
 
 
  /* Recursively go all the way down into a possibly multi-dimensional
  /* Recursively go all the way down into a possibly multi-dimensional
     F77 array and get the bounds.  For simple arrays, this is pretty
     F77 array and get the bounds.  For simple arrays, this is pretty
     easy but when the bounds are dynamic, we must be very careful
     easy but when the bounds are dynamic, we must be very careful
     to add up all the lengths correctly.  Not doing this right
     to add up all the lengths correctly.  Not doing this right
     will lead to horrendous-looking arrays in parameter lists.
     will lead to horrendous-looking arrays in parameter lists.
 
 
     This function also works for strings which behave very
     This function also works for strings which behave very
     similarly to arrays.  */
     similarly to arrays.  */
 
 
  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
    f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
    f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
 
 
  /* Recursion ends here, start setting up lengths.  */
  /* Recursion ends here, start setting up lengths.  */
  retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
  retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
  if (retcode == BOUND_FETCH_ERROR)
  if (retcode == BOUND_FETCH_ERROR)
    error ("Cannot obtain valid array lower bound");
    error ("Cannot obtain valid array lower bound");
 
 
  retcode = f77_get_dynamic_upperbound (type, &upper_bound);
  retcode = f77_get_dynamic_upperbound (type, &upper_bound);
  if (retcode == BOUND_FETCH_ERROR)
  if (retcode == BOUND_FETCH_ERROR)
    error ("Cannot obtain valid array upper bound");
    error ("Cannot obtain valid array upper bound");
 
 
  /* Patch in a valid length value. */
  /* Patch in a valid length value. */
 
 
  TYPE_LENGTH (type) =
  TYPE_LENGTH (type) =
    (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
    (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
}
}
 
 
/* Function that sets up the array offset,size table for the array
/* Function that sets up the array offset,size table for the array
   type "type".  */
   type "type".  */
 
 
static void
static void
f77_create_arrayprint_offset_tbl (type, stream)
f77_create_arrayprint_offset_tbl (type, stream)
     struct type *type;
     struct type *type;
     struct ui_file *stream;
     struct ui_file *stream;
{
{
  struct type *tmp_type;
  struct type *tmp_type;
  int eltlen;
  int eltlen;
  int ndimen = 1;
  int ndimen = 1;
  int upper, lower, retcode;
  int upper, lower, retcode;
 
 
  tmp_type = type;
  tmp_type = type;
 
 
  while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
  while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
    {
    {
      if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
      if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
        fprintf_filtered (stream, "<assumed size array> ");
        fprintf_filtered (stream, "<assumed size array> ");
 
 
      retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
      retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
      if (retcode == BOUND_FETCH_ERROR)
      if (retcode == BOUND_FETCH_ERROR)
        error ("Cannot obtain dynamic upper bound");
        error ("Cannot obtain dynamic upper bound");
 
 
      retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
      retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
      if (retcode == BOUND_FETCH_ERROR)
      if (retcode == BOUND_FETCH_ERROR)
        error ("Cannot obtain dynamic lower bound");
        error ("Cannot obtain dynamic lower bound");
 
 
      F77_DIM_SIZE (ndimen) = upper - lower + 1;
      F77_DIM_SIZE (ndimen) = upper - lower + 1;
 
 
      tmp_type = TYPE_TARGET_TYPE (tmp_type);
      tmp_type = TYPE_TARGET_TYPE (tmp_type);
      ndimen++;
      ndimen++;
    }
    }
 
 
  /* Now we multiply eltlen by all the offsets, so that later we
  /* Now we multiply eltlen by all the offsets, so that later we
     can print out array elements correctly.  Up till now we
     can print out array elements correctly.  Up till now we
     know an offset to apply to get the item but we also
     know an offset to apply to get the item but we also
     have to know how much to add to get to the next item */
     have to know how much to add to get to the next item */
 
 
  ndimen--;
  ndimen--;
  eltlen = TYPE_LENGTH (tmp_type);
  eltlen = TYPE_LENGTH (tmp_type);
  F77_DIM_OFFSET (ndimen) = eltlen;
  F77_DIM_OFFSET (ndimen) = eltlen;
  while (--ndimen > 0)
  while (--ndimen > 0)
    {
    {
      eltlen *= F77_DIM_SIZE (ndimen + 1);
      eltlen *= F77_DIM_SIZE (ndimen + 1);
      F77_DIM_OFFSET (ndimen) = eltlen;
      F77_DIM_OFFSET (ndimen) = eltlen;
    }
    }
}
}
 
 
/* Actual function which prints out F77 arrays, Valaddr == address in
/* Actual function which prints out F77 arrays, Valaddr == address in
   the superior.  Address == the address in the inferior.  */
   the superior.  Address == the address in the inferior.  */
 
 
static void
static void
f77_print_array_1 (nss, ndimensions, type, valaddr, address,
f77_print_array_1 (nss, ndimensions, type, valaddr, address,
                   stream, format, deref_ref, recurse, pretty)
                   stream, format, deref_ref, recurse, pretty)
     int nss;
     int nss;
     int ndimensions;
     int ndimensions;
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     CORE_ADDR address;
     CORE_ADDR address;
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     int deref_ref;
     int deref_ref;
     int recurse;
     int recurse;
     enum val_prettyprint pretty;
     enum val_prettyprint pretty;
{
{
  int i;
  int i;
 
 
  if (nss != ndimensions)
  if (nss != ndimensions)
    {
    {
      for (i = 0; i < F77_DIM_SIZE (nss); i++)
      for (i = 0; i < F77_DIM_SIZE (nss); i++)
        {
        {
          fprintf_filtered (stream, "( ");
          fprintf_filtered (stream, "( ");
          f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
          f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
                             valaddr + i * F77_DIM_OFFSET (nss),
                             valaddr + i * F77_DIM_OFFSET (nss),
                             address + i * F77_DIM_OFFSET (nss),
                             address + i * F77_DIM_OFFSET (nss),
                             stream, format, deref_ref, recurse, pretty);
                             stream, format, deref_ref, recurse, pretty);
          fprintf_filtered (stream, ") ");
          fprintf_filtered (stream, ") ");
        }
        }
    }
    }
  else
  else
    {
    {
      for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
      for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
        {
        {
          val_print (TYPE_TARGET_TYPE (type),
          val_print (TYPE_TARGET_TYPE (type),
                     valaddr + i * F77_DIM_OFFSET (ndimensions),
                     valaddr + i * F77_DIM_OFFSET (ndimensions),
                     0,
                     0,
                     address + i * F77_DIM_OFFSET (ndimensions),
                     address + i * F77_DIM_OFFSET (ndimensions),
                     stream, format, deref_ref, recurse, pretty);
                     stream, format, deref_ref, recurse, pretty);
 
 
          if (i != (F77_DIM_SIZE (nss) - 1))
          if (i != (F77_DIM_SIZE (nss) - 1))
            fprintf_filtered (stream, ", ");
            fprintf_filtered (stream, ", ");
 
 
          if (i == print_max - 1)
          if (i == print_max - 1)
            fprintf_filtered (stream, "...");
            fprintf_filtered (stream, "...");
        }
        }
    }
    }
}
}
 
 
/* This function gets called to print an F77 array, we set up some
/* This function gets called to print an F77 array, we set up some
   stuff and then immediately call f77_print_array_1() */
   stuff and then immediately call f77_print_array_1() */
 
 
static void
static void
f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
                 pretty)
                 pretty)
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     CORE_ADDR address;
     CORE_ADDR address;
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     int deref_ref;
     int deref_ref;
     int recurse;
     int recurse;
     enum val_prettyprint pretty;
     enum val_prettyprint pretty;
{
{
  int ndimensions;
  int ndimensions;
 
 
  ndimensions = calc_f77_array_dims (type);
  ndimensions = calc_f77_array_dims (type);
 
 
  if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
  if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
    error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
    error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
           ndimensions, MAX_FORTRAN_DIMS);
           ndimensions, MAX_FORTRAN_DIMS);
 
 
  /* Since F77 arrays are stored column-major, we set up an
  /* Since F77 arrays are stored column-major, we set up an
     offset table to get at the various row's elements. The
     offset table to get at the various row's elements. The
     offset table contains entries for both offset and subarray size. */
     offset table contains entries for both offset and subarray size. */
 
 
  f77_create_arrayprint_offset_tbl (type, stream);
  f77_create_arrayprint_offset_tbl (type, stream);
 
 
  f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
  f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
                     deref_ref, recurse, pretty);
                     deref_ref, recurse, pretty);
}
}


 
 
/* Print data of type TYPE located at VALADDR (within GDB), which came from
/* Print data of type TYPE located at VALADDR (within GDB), which came from
   the inferior at address ADDRESS, onto stdio stream STREAM according to
   the inferior at address ADDRESS, onto stdio stream STREAM according to
   FORMAT (a letter or 0 for natural format).  The data at VALADDR is in
   FORMAT (a letter or 0 for natural format).  The data at VALADDR is in
   target byte order.
   target byte order.
 
 
   If the data are a string pointer, returns the number of string characters
   If the data are a string pointer, returns the number of string characters
   printed.
   printed.
 
 
   If DEREF_REF is nonzero, then dereference references, otherwise just print
   If DEREF_REF is nonzero, then dereference references, otherwise just print
   them like pointers.
   them like pointers.
 
 
   The PRETTY parameter controls prettyprinting.  */
   The PRETTY parameter controls prettyprinting.  */
 
 
int
int
f_val_print (type, valaddr, embedded_offset, address, stream, format, deref_ref, recurse,
f_val_print (type, valaddr, embedded_offset, address, stream, format, deref_ref, recurse,
             pretty)
             pretty)
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     int embedded_offset;
     int embedded_offset;
     CORE_ADDR address;
     CORE_ADDR address;
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     int deref_ref;
     int deref_ref;
     int recurse;
     int recurse;
     enum val_prettyprint pretty;
     enum val_prettyprint pretty;
{
{
  register unsigned int i = 0;   /* Number of characters printed */
  register unsigned int i = 0;   /* Number of characters printed */
  struct type *elttype;
  struct type *elttype;
  LONGEST val;
  LONGEST val;
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  switch (TYPE_CODE (type))
  switch (TYPE_CODE (type))
    {
    {
    case TYPE_CODE_STRING:
    case TYPE_CODE_STRING:
      f77_get_dynamic_length_of_aggregate (type);
      f77_get_dynamic_length_of_aggregate (type);
      LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
      LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
      break;
      break;
 
 
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_ARRAY:
      fprintf_filtered (stream, "(");
      fprintf_filtered (stream, "(");
      f77_print_array (type, valaddr, address, stream, format,
      f77_print_array (type, valaddr, address, stream, format,
                       deref_ref, recurse, pretty);
                       deref_ref, recurse, pretty);
      fprintf_filtered (stream, ")");
      fprintf_filtered (stream, ")");
      break;
      break;
#if 0
#if 0
      /* Array of unspecified length: treat like pointer to first elt.  */
      /* Array of unspecified length: treat like pointer to first elt.  */
      valaddr = (char *) &address;
      valaddr = (char *) &address;
      /* FALL THROUGH */
      /* FALL THROUGH */
#endif
#endif
    case TYPE_CODE_PTR:
    case TYPE_CODE_PTR:
      if (format && format != 's')
      if (format && format != 's')
        {
        {
          print_scalar_formatted (valaddr, type, format, 0, stream);
          print_scalar_formatted (valaddr, type, format, 0, stream);
          break;
          break;
        }
        }
      else
      else
        {
        {
          addr = unpack_pointer (type, valaddr);
          addr = unpack_pointer (type, valaddr);
          elttype = check_typedef (TYPE_TARGET_TYPE (type));
          elttype = check_typedef (TYPE_TARGET_TYPE (type));
 
 
          if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
          if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
            {
            {
              /* Try to print what function it points to.  */
              /* Try to print what function it points to.  */
              print_address_demangle (addr, stream, demangle);
              print_address_demangle (addr, stream, demangle);
              /* Return value is irrelevant except for string pointers.  */
              /* Return value is irrelevant except for string pointers.  */
              return 0;
              return 0;
            }
            }
 
 
          if (addressprint && format != 's')
          if (addressprint && format != 's')
            fprintf_filtered (stream, "0x%s", paddr_nz (addr));
            fprintf_filtered (stream, "0x%s", paddr_nz (addr));
 
 
          /* For a pointer to char or unsigned char, also print the string
          /* For a pointer to char or unsigned char, also print the string
             pointed to, unless pointer is null.  */
             pointed to, unless pointer is null.  */
          if (TYPE_LENGTH (elttype) == 1
          if (TYPE_LENGTH (elttype) == 1
              && TYPE_CODE (elttype) == TYPE_CODE_INT
              && TYPE_CODE (elttype) == TYPE_CODE_INT
              && (format == 0 || format == 's')
              && (format == 0 || format == 's')
              && addr != 0)
              && addr != 0)
            i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
            i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
 
 
          /* Return number of characters printed, plus one for the
          /* Return number of characters printed, plus one for the
             terminating null if we have "reached the end".  */
             terminating null if we have "reached the end".  */
          return (i + (print_max && i != print_max));
          return (i + (print_max && i != print_max));
        }
        }
      break;
      break;
 
 
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FUNC:
      if (format)
      if (format)
        {
        {
          print_scalar_formatted (valaddr, type, format, 0, stream);
          print_scalar_formatted (valaddr, type, format, 0, stream);
          break;
          break;
        }
        }
      /* FIXME, we should consider, at least for ANSI C language, eliminating
      /* FIXME, we should consider, at least for ANSI C language, eliminating
         the distinction made between FUNCs and POINTERs to FUNCs.  */
         the distinction made between FUNCs and POINTERs to FUNCs.  */
      fprintf_filtered (stream, "{");
      fprintf_filtered (stream, "{");
      type_print (type, "", stream, -1);
      type_print (type, "", stream, -1);
      fprintf_filtered (stream, "} ");
      fprintf_filtered (stream, "} ");
      /* Try to print what function it points to, and its address.  */
      /* Try to print what function it points to, and its address.  */
      print_address_demangle (address, stream, demangle);
      print_address_demangle (address, stream, demangle);
      break;
      break;
 
 
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
      format = format ? format : output_format;
      format = format ? format : output_format;
      if (format)
      if (format)
        print_scalar_formatted (valaddr, type, format, 0, stream);
        print_scalar_formatted (valaddr, type, format, 0, stream);
      else
      else
        {
        {
          val_print_type_code_int (type, valaddr, stream);
          val_print_type_code_int (type, valaddr, stream);
          /* C and C++ has no single byte int type, char is used instead.
          /* C and C++ has no single byte int type, char is used instead.
             Since we don't know whether the value is really intended to
             Since we don't know whether the value is really intended to
             be used as an integer or a character, print the character
             be used as an integer or a character, print the character
             equivalent as well. */
             equivalent as well. */
          if (TYPE_LENGTH (type) == 1)
          if (TYPE_LENGTH (type) == 1)
            {
            {
              fputs_filtered (" ", stream);
              fputs_filtered (" ", stream);
              LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
              LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
                             stream);
                             stream);
            }
            }
        }
        }
      break;
      break;
 
 
    case TYPE_CODE_FLT:
    case TYPE_CODE_FLT:
      if (format)
      if (format)
        print_scalar_formatted (valaddr, type, format, 0, stream);
        print_scalar_formatted (valaddr, type, format, 0, stream);
      else
      else
        print_floating (valaddr, type, stream);
        print_floating (valaddr, type, stream);
      break;
      break;
 
 
    case TYPE_CODE_VOID:
    case TYPE_CODE_VOID:
      fprintf_filtered (stream, "VOID");
      fprintf_filtered (stream, "VOID");
      break;
      break;
 
 
    case TYPE_CODE_ERROR:
    case TYPE_CODE_ERROR:
      fprintf_filtered (stream, "<error type>");
      fprintf_filtered (stream, "<error type>");
      break;
      break;
 
 
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
      /* FIXME, we should not ever have to print one of these yet.  */
      /* FIXME, we should not ever have to print one of these yet.  */
      fprintf_filtered (stream, "<range type>");
      fprintf_filtered (stream, "<range type>");
      break;
      break;
 
 
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
      format = format ? format : output_format;
      format = format ? format : output_format;
      if (format)
      if (format)
        print_scalar_formatted (valaddr, type, format, 0, stream);
        print_scalar_formatted (valaddr, type, format, 0, stream);
      else
      else
        {
        {
          val = 0;
          val = 0;
          switch (TYPE_LENGTH (type))
          switch (TYPE_LENGTH (type))
            {
            {
            case 1:
            case 1:
              val = unpack_long (builtin_type_f_logical_s1, valaddr);
              val = unpack_long (builtin_type_f_logical_s1, valaddr);
              break;
              break;
 
 
            case 2:
            case 2:
              val = unpack_long (builtin_type_f_logical_s2, valaddr);
              val = unpack_long (builtin_type_f_logical_s2, valaddr);
              break;
              break;
 
 
            case 4:
            case 4:
              val = unpack_long (builtin_type_f_logical, valaddr);
              val = unpack_long (builtin_type_f_logical, valaddr);
              break;
              break;
 
 
            default:
            default:
              error ("Logicals of length %d bytes not supported",
              error ("Logicals of length %d bytes not supported",
                     TYPE_LENGTH (type));
                     TYPE_LENGTH (type));
 
 
            }
            }
 
 
          if (val == 0)
          if (val == 0)
            fprintf_filtered (stream, ".FALSE.");
            fprintf_filtered (stream, ".FALSE.");
          else if (val == 1)
          else if (val == 1)
            fprintf_filtered (stream, ".TRUE.");
            fprintf_filtered (stream, ".TRUE.");
          else
          else
            /* Not a legitimate logical type, print as an integer.  */
            /* Not a legitimate logical type, print as an integer.  */
            {
            {
              /* Bash the type code temporarily.  */
              /* Bash the type code temporarily.  */
              TYPE_CODE (type) = TYPE_CODE_INT;
              TYPE_CODE (type) = TYPE_CODE_INT;
              f_val_print (type, valaddr, 0, address, stream, format,
              f_val_print (type, valaddr, 0, address, stream, format,
                           deref_ref, recurse, pretty);
                           deref_ref, recurse, pretty);
              /* Restore the type code so later uses work as intended. */
              /* Restore the type code so later uses work as intended. */
              TYPE_CODE (type) = TYPE_CODE_BOOL;
              TYPE_CODE (type) = TYPE_CODE_BOOL;
            }
            }
        }
        }
      break;
      break;
 
 
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_COMPLEX:
      switch (TYPE_LENGTH (type))
      switch (TYPE_LENGTH (type))
        {
        {
        case 8:
        case 8:
          type = builtin_type_f_real;
          type = builtin_type_f_real;
          break;
          break;
        case 16:
        case 16:
          type = builtin_type_f_real_s8;
          type = builtin_type_f_real_s8;
          break;
          break;
        case 32:
        case 32:
          type = builtin_type_f_real_s16;
          type = builtin_type_f_real_s16;
          break;
          break;
        default:
        default:
          error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
          error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
        }
        }
      fputs_filtered ("(", stream);
      fputs_filtered ("(", stream);
      print_floating (valaddr, type, stream);
      print_floating (valaddr, type, stream);
      fputs_filtered (",", stream);
      fputs_filtered (",", stream);
      print_floating (valaddr, type, stream);
      print_floating (valaddr, type, stream);
      fputs_filtered (")", stream);
      fputs_filtered (")", stream);
      break;
      break;
 
 
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_UNDEF:
      /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
      /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
         dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
         dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
         and no complete type for struct foo in that file.  */
         and no complete type for struct foo in that file.  */
      fprintf_filtered (stream, "<incomplete type>");
      fprintf_filtered (stream, "<incomplete type>");
      break;
      break;
 
 
    default:
    default:
      error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
      error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
    }
    }
  gdb_flush (stream);
  gdb_flush (stream);
  return 0;
  return 0;
}
}
 
 
static void
static void
list_all_visible_commons (funname)
list_all_visible_commons (funname)
     char *funname;
     char *funname;
{
{
  SAVED_F77_COMMON_PTR tmp;
  SAVED_F77_COMMON_PTR tmp;
 
 
  tmp = head_common_list;
  tmp = head_common_list;
 
 
  printf_filtered ("All COMMON blocks visible at this level:\n\n");
  printf_filtered ("All COMMON blocks visible at this level:\n\n");
 
 
  while (tmp != NULL)
  while (tmp != NULL)
    {
    {
      if (STREQ (tmp->owning_function, funname))
      if (STREQ (tmp->owning_function, funname))
        printf_filtered ("%s\n", tmp->name);
        printf_filtered ("%s\n", tmp->name);
 
 
      tmp = tmp->next;
      tmp = tmp->next;
    }
    }
}
}
 
 
/* This function is used to print out the values in a given COMMON
/* This function is used to print out the values in a given COMMON
   block. It will always use the most local common block of the
   block. It will always use the most local common block of the
   given name */
   given name */
 
 
static void
static void
info_common_command (comname, from_tty)
info_common_command (comname, from_tty)
     char *comname;
     char *comname;
     int from_tty;
     int from_tty;
{
{
  SAVED_F77_COMMON_PTR the_common;
  SAVED_F77_COMMON_PTR the_common;
  COMMON_ENTRY_PTR entry;
  COMMON_ENTRY_PTR entry;
  struct frame_info *fi;
  struct frame_info *fi;
  register char *funname = 0;
  register char *funname = 0;
  struct symbol *func;
  struct symbol *func;
 
 
  /* We have been told to display the contents of F77 COMMON
  /* We have been told to display the contents of F77 COMMON
     block supposedly visible in this function.  Let us
     block supposedly visible in this function.  Let us
     first make sure that it is visible and if so, let
     first make sure that it is visible and if so, let
     us display its contents */
     us display its contents */
 
 
  fi = selected_frame;
  fi = selected_frame;
 
 
  if (fi == NULL)
  if (fi == NULL)
    error ("No frame selected");
    error ("No frame selected");
 
 
  /* The following is generally ripped off from stack.c's routine
  /* The following is generally ripped off from stack.c's routine
     print_frame_info() */
     print_frame_info() */
 
 
  func = find_pc_function (fi->pc);
  func = find_pc_function (fi->pc);
  if (func)
  if (func)
    {
    {
      /* In certain pathological cases, the symtabs give the wrong
      /* In certain pathological cases, the symtabs give the wrong
         function (when we are in the first function in a file which
         function (when we are in the first function in a file which
         is compiled without debugging symbols, the previous function
         is compiled without debugging symbols, the previous function
         is compiled with debugging symbols, and the "foo.o" symbol
         is compiled with debugging symbols, and the "foo.o" symbol
         that is supposed to tell us where the file with debugging symbols
         that is supposed to tell us where the file with debugging symbols
         ends has been truncated by ar because it is longer than 15
         ends has been truncated by ar because it is longer than 15
         characters).
         characters).
 
 
         So look in the minimal symbol tables as well, and if it comes
         So look in the minimal symbol tables as well, and if it comes
         up with a larger address for the function use that instead.
         up with a larger address for the function use that instead.
         I don't think this can ever cause any problems; there shouldn't
         I don't think this can ever cause any problems; there shouldn't
         be any minimal symbols in the middle of a function.
         be any minimal symbols in the middle of a function.
         FIXME:  (Not necessarily true.  What about text labels) */
         FIXME:  (Not necessarily true.  What about text labels) */
 
 
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
 
 
      if (msymbol != NULL
      if (msymbol != NULL
          && (SYMBOL_VALUE_ADDRESS (msymbol)
          && (SYMBOL_VALUE_ADDRESS (msymbol)
              > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
              > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
        funname = SYMBOL_NAME (msymbol);
        funname = SYMBOL_NAME (msymbol);
      else
      else
        funname = SYMBOL_NAME (func);
        funname = SYMBOL_NAME (func);
    }
    }
  else
  else
    {
    {
      register struct minimal_symbol *msymbol =
      register struct minimal_symbol *msymbol =
      lookup_minimal_symbol_by_pc (fi->pc);
      lookup_minimal_symbol_by_pc (fi->pc);
 
 
      if (msymbol != NULL)
      if (msymbol != NULL)
        funname = SYMBOL_NAME (msymbol);
        funname = SYMBOL_NAME (msymbol);
    }
    }
 
 
  /* If comname is NULL, we assume the user wishes to see the
  /* If comname is NULL, we assume the user wishes to see the
     which COMMON blocks are visible here and then return */
     which COMMON blocks are visible here and then return */
 
 
  if (comname == 0)
  if (comname == 0)
    {
    {
      list_all_visible_commons (funname);
      list_all_visible_commons (funname);
      return;
      return;
    }
    }
 
 
  the_common = find_common_for_function (comname, funname);
  the_common = find_common_for_function (comname, funname);
 
 
  if (the_common)
  if (the_common)
    {
    {
      if (STREQ (comname, BLANK_COMMON_NAME_LOCAL))
      if (STREQ (comname, BLANK_COMMON_NAME_LOCAL))
        printf_filtered ("Contents of blank COMMON block:\n");
        printf_filtered ("Contents of blank COMMON block:\n");
      else
      else
        printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
        printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
 
 
      printf_filtered ("\n");
      printf_filtered ("\n");
      entry = the_common->entries;
      entry = the_common->entries;
 
 
      while (entry != NULL)
      while (entry != NULL)
        {
        {
          printf_filtered ("%s = ", SYMBOL_NAME (entry->symbol));
          printf_filtered ("%s = ", SYMBOL_NAME (entry->symbol));
          print_variable_value (entry->symbol, fi, gdb_stdout);
          print_variable_value (entry->symbol, fi, gdb_stdout);
          printf_filtered ("\n");
          printf_filtered ("\n");
          entry = entry->next;
          entry = entry->next;
        }
        }
    }
    }
  else
  else
    printf_filtered ("Cannot locate the common block %s in function '%s'\n",
    printf_filtered ("Cannot locate the common block %s in function '%s'\n",
                     comname, funname);
                     comname, funname);
}
}
 
 
/* This function is used to determine whether there is a
/* This function is used to determine whether there is a
   F77 common block visible at the current scope called 'comname'. */
   F77 common block visible at the current scope called 'comname'. */
 
 
#if 0
#if 0
static int
static int
there_is_a_visible_common_named (comname)
there_is_a_visible_common_named (comname)
     char *comname;
     char *comname;
{
{
  SAVED_F77_COMMON_PTR the_common;
  SAVED_F77_COMMON_PTR the_common;
  struct frame_info *fi;
  struct frame_info *fi;
  register char *funname = 0;
  register char *funname = 0;
  struct symbol *func;
  struct symbol *func;
 
 
  if (comname == NULL)
  if (comname == NULL)
    error ("Cannot deal with NULL common name!");
    error ("Cannot deal with NULL common name!");
 
 
  fi = selected_frame;
  fi = selected_frame;
 
 
  if (fi == NULL)
  if (fi == NULL)
    error ("No frame selected");
    error ("No frame selected");
 
 
  /* The following is generally ripped off from stack.c's routine
  /* The following is generally ripped off from stack.c's routine
     print_frame_info() */
     print_frame_info() */
 
 
  func = find_pc_function (fi->pc);
  func = find_pc_function (fi->pc);
  if (func)
  if (func)
    {
    {
      /* In certain pathological cases, the symtabs give the wrong
      /* In certain pathological cases, the symtabs give the wrong
         function (when we are in the first function in a file which
         function (when we are in the first function in a file which
         is compiled without debugging symbols, the previous function
         is compiled without debugging symbols, the previous function
         is compiled with debugging symbols, and the "foo.o" symbol
         is compiled with debugging symbols, and the "foo.o" symbol
         that is supposed to tell us where the file with debugging symbols
         that is supposed to tell us where the file with debugging symbols
         ends has been truncated by ar because it is longer than 15
         ends has been truncated by ar because it is longer than 15
         characters).
         characters).
 
 
         So look in the minimal symbol tables as well, and if it comes
         So look in the minimal symbol tables as well, and if it comes
         up with a larger address for the function use that instead.
         up with a larger address for the function use that instead.
         I don't think this can ever cause any problems; there shouldn't
         I don't think this can ever cause any problems; there shouldn't
         be any minimal symbols in the middle of a function.
         be any minimal symbols in the middle of a function.
         FIXME:  (Not necessarily true.  What about text labels) */
         FIXME:  (Not necessarily true.  What about text labels) */
 
 
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
 
 
      if (msymbol != NULL
      if (msymbol != NULL
          && (SYMBOL_VALUE_ADDRESS (msymbol)
          && (SYMBOL_VALUE_ADDRESS (msymbol)
              > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
              > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
        funname = SYMBOL_NAME (msymbol);
        funname = SYMBOL_NAME (msymbol);
      else
      else
        funname = SYMBOL_NAME (func);
        funname = SYMBOL_NAME (func);
    }
    }
  else
  else
    {
    {
      register struct minimal_symbol *msymbol =
      register struct minimal_symbol *msymbol =
      lookup_minimal_symbol_by_pc (fi->pc);
      lookup_minimal_symbol_by_pc (fi->pc);
 
 
      if (msymbol != NULL)
      if (msymbol != NULL)
        funname = SYMBOL_NAME (msymbol);
        funname = SYMBOL_NAME (msymbol);
    }
    }
 
 
  the_common = find_common_for_function (comname, funname);
  the_common = find_common_for_function (comname, funname);
 
 
  return (the_common ? 1 : 0);
  return (the_common ? 1 : 0);
}
}
#endif
#endif
 
 
void
void
_initialize_f_valprint ()
_initialize_f_valprint ()
{
{
  add_info ("common", info_common_command,
  add_info ("common", info_common_command,
            "Print out the values contained in a Fortran COMMON block.");
            "Print out the values contained in a Fortran COMMON block.");
  if (xdb_commands)
  if (xdb_commands)
    add_com ("lc", class_info, info_common_command,
    add_com ("lc", class_info, info_common_command,
             "Print out the values contained in a Fortran COMMON block.");
             "Print out the values contained in a Fortran COMMON block.");
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.