OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [findvar.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Find a variable's value in memory, for GDB, the GNU debugger.
/* Find a variable's value in memory, for GDB, the GNU debugger.
   Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
   Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame.h"
#include "value.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "inferior.h"
#include "inferior.h"
#include "target.h"
#include "target.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "floatformat.h"
#include "floatformat.h"
#include "symfile.h"            /* for overlay functions */
#include "symfile.h"            /* for overlay functions */
 
 
/* This is used to indicate that we don't know the format of the floating point
/* This is used to indicate that we don't know the format of the floating point
   number.  Typically, this is useful for native ports, where the actual format
   number.  Typically, this is useful for native ports, where the actual format
   is irrelevant, since no conversions will be taking place.  */
   is irrelevant, since no conversions will be taking place.  */
 
 
const struct floatformat floatformat_unknown;
const struct floatformat floatformat_unknown;
 
 
/* Registers we shouldn't try to store.  */
/* Registers we shouldn't try to store.  */
#if !defined (CANNOT_STORE_REGISTER)
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#define CANNOT_STORE_REGISTER(regno) 0
#endif
#endif
 
 
static void write_register_gen PARAMS ((int, char *));
static void write_register_gen PARAMS ((int, char *));
 
 
static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame));
static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame));
 
 
/* Basic byte-swapping routines.  GDB has needed these for a long time...
/* Basic byte-swapping routines.  GDB has needed these for a long time...
   All extract a target-format integer at ADDR which is LEN bytes long.  */
   All extract a target-format integer at ADDR which is LEN bytes long.  */
 
 
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
  /* 8 bit characters are a pretty safe assumption these days, so we
  /* 8 bit characters are a pretty safe assumption these days, so we
     assume it throughout all these swapping routines.  If we had to deal with
     assume it throughout all these swapping routines.  If we had to deal with
     9 bit characters, we would need to make len be in bits and would have
     9 bit characters, we would need to make len be in bits and would have
     to re-write these routines...  */
     to re-write these routines...  */
you lose
you lose
#endif
#endif
 
 
LONGEST
LONGEST
extract_signed_integer (void *addr, int len)
extract_signed_integer (void *addr, int len)
{
{
  LONGEST retval;
  LONGEST retval;
  unsigned char *p;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;
  unsigned char *endaddr = startaddr + len;
 
 
  if (len > (int) sizeof (LONGEST))
  if (len > (int) sizeof (LONGEST))
    error ("\
    error ("\
That operation is not available on integers of more than %d bytes.",
That operation is not available on integers of more than %d bytes.",
           sizeof (LONGEST));
           sizeof (LONGEST));
 
 
  /* Start at the most significant end of the integer, and work towards
  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
     the least significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      p = startaddr;
      p = startaddr;
      /* Do the sign extension once at the start.  */
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (++p; p < endaddr; ++p)
      for (++p; p < endaddr; ++p)
        retval = (retval << 8) | *p;
        retval = (retval << 8) | *p;
    }
    }
  else
  else
    {
    {
      p = endaddr - 1;
      p = endaddr - 1;
      /* Do the sign extension once at the start.  */
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (--p; p >= startaddr; --p)
      for (--p; p >= startaddr; --p)
        retval = (retval << 8) | *p;
        retval = (retval << 8) | *p;
    }
    }
  return retval;
  return retval;
}
}
 
 
ULONGEST
ULONGEST
extract_unsigned_integer (void *addr, int len)
extract_unsigned_integer (void *addr, int len)
{
{
  ULONGEST retval;
  ULONGEST retval;
  unsigned char *p;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;
  unsigned char *endaddr = startaddr + len;
 
 
  if (len > (int) sizeof (ULONGEST))
  if (len > (int) sizeof (ULONGEST))
    error ("\
    error ("\
That operation is not available on integers of more than %d bytes.",
That operation is not available on integers of more than %d bytes.",
           sizeof (ULONGEST));
           sizeof (ULONGEST));
 
 
  /* Start at the most significant end of the integer, and work towards
  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
     the least significant.  */
  retval = 0;
  retval = 0;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = startaddr; p < endaddr; ++p)
      for (p = startaddr; p < endaddr; ++p)
        retval = (retval << 8) | *p;
        retval = (retval << 8) | *p;
    }
    }
  else
  else
    {
    {
      for (p = endaddr - 1; p >= startaddr; --p)
      for (p = endaddr - 1; p >= startaddr; --p)
        retval = (retval << 8) | *p;
        retval = (retval << 8) | *p;
    }
    }
  return retval;
  return retval;
}
}
 
 
/* Sometimes a long long unsigned integer can be extracted as a
/* Sometimes a long long unsigned integer can be extracted as a
   LONGEST value.  This is done so that we can print these values
   LONGEST value.  This is done so that we can print these values
   better.  If this integer can be converted to a LONGEST, this
   better.  If this integer can be converted to a LONGEST, this
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */
 
 
int
int
extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
{
{
  char *p, *first_addr;
  char *p, *first_addr;
  int len;
  int len;
 
 
  len = orig_len;
  len = orig_len;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = (char *) addr;
      for (p = (char *) addr;
           len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
           len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
           p++)
           p++)
        {
        {
          if (*p == 0)
          if (*p == 0)
            len--;
            len--;
          else
          else
            break;
            break;
        }
        }
      first_addr = p;
      first_addr = p;
    }
    }
  else
  else
    {
    {
      first_addr = (char *) addr;
      first_addr = (char *) addr;
      for (p = (char *) addr + orig_len - 1;
      for (p = (char *) addr + orig_len - 1;
           len > (int) sizeof (LONGEST) && p >= (char *) addr;
           len > (int) sizeof (LONGEST) && p >= (char *) addr;
           p--)
           p--)
        {
        {
          if (*p == 0)
          if (*p == 0)
            len--;
            len--;
          else
          else
            break;
            break;
        }
        }
    }
    }
 
 
  if (len <= (int) sizeof (LONGEST))
  if (len <= (int) sizeof (LONGEST))
    {
    {
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
                                                  sizeof (LONGEST));
                                                  sizeof (LONGEST));
      return 1;
      return 1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
CORE_ADDR
CORE_ADDR
extract_address (void *addr, int len)
extract_address (void *addr, int len)
{
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
     whether we want this to be true eventually.  */
  return (CORE_ADDR) extract_unsigned_integer (addr, len);
  return (CORE_ADDR) extract_unsigned_integer (addr, len);
}
}
 
 
void
void
store_signed_integer (void *addr, int len, LONGEST val)
store_signed_integer (void *addr, int len, LONGEST val)
{
{
  unsigned char *p;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;
  unsigned char *endaddr = startaddr + len;
 
 
  /* Start at the least significant end of the integer, and work towards
  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
     the most significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = endaddr - 1; p >= startaddr; --p)
      for (p = endaddr - 1; p >= startaddr; --p)
        {
        {
          *p = val & 0xff;
          *p = val & 0xff;
          val >>= 8;
          val >>= 8;
        }
        }
    }
    }
  else
  else
    {
    {
      for (p = startaddr; p < endaddr; ++p)
      for (p = startaddr; p < endaddr; ++p)
        {
        {
          *p = val & 0xff;
          *p = val & 0xff;
          val >>= 8;
          val >>= 8;
        }
        }
    }
    }
}
}
 
 
void
void
store_unsigned_integer (void *addr, int len, ULONGEST val)
store_unsigned_integer (void *addr, int len, ULONGEST val)
{
{
  unsigned char *p;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;
  unsigned char *endaddr = startaddr + len;
 
 
  /* Start at the least significant end of the integer, and work towards
  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
     the most significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = endaddr - 1; p >= startaddr; --p)
      for (p = endaddr - 1; p >= startaddr; --p)
        {
        {
          *p = val & 0xff;
          *p = val & 0xff;
          val >>= 8;
          val >>= 8;
        }
        }
    }
    }
  else
  else
    {
    {
      for (p = startaddr; p < endaddr; ++p)
      for (p = startaddr; p < endaddr; ++p)
        {
        {
          *p = val & 0xff;
          *p = val & 0xff;
          val >>= 8;
          val >>= 8;
        }
        }
    }
    }
}
}
 
 
/* Store the literal address "val" into
/* Store the literal address "val" into
   gdb-local memory pointed to by "addr"
   gdb-local memory pointed to by "addr"
   for "len" bytes. */
   for "len" bytes. */
void
void
store_address (void *addr, int len, LONGEST val)
store_address (void *addr, int len, LONGEST val)
{
{
  store_unsigned_integer (addr, len, val);
  store_unsigned_integer (addr, len, val);
}
}


/* Extract a floating-point number from a target-order byte-stream at ADDR.
/* Extract a floating-point number from a target-order byte-stream at ADDR.
   Returns the value as type DOUBLEST.
   Returns the value as type DOUBLEST.
 
 
   If the host and target formats agree, we just copy the raw data into the
   If the host and target formats agree, we just copy the raw data into the
   appropriate type of variable and return, letting the host increase precision
   appropriate type of variable and return, letting the host increase precision
   as necessary.  Otherwise, we call the conversion routine and let it do the
   as necessary.  Otherwise, we call the conversion routine and let it do the
   dirty work.  */
   dirty work.  */
 
 
DOUBLEST
DOUBLEST
extract_floating (void *addr, int len)
extract_floating (void *addr, int len)
{
{
  DOUBLEST dretval;
  DOUBLEST dretval;
 
 
  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
    {
    {
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
        {
        {
          float retval;
          float retval;
 
 
          memcpy (&retval, addr, sizeof (retval));
          memcpy (&retval, addr, sizeof (retval));
          return retval;
          return retval;
        }
        }
      else
      else
        floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
        floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
    }
    }
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
    {
    {
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
        {
        {
          double retval;
          double retval;
 
 
          memcpy (&retval, addr, sizeof (retval));
          memcpy (&retval, addr, sizeof (retval));
          return retval;
          return retval;
        }
        }
      else
      else
        floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
        floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
    }
    }
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
    {
    {
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
        {
        {
          DOUBLEST retval;
          DOUBLEST retval;
 
 
          memcpy (&retval, addr, sizeof (retval));
          memcpy (&retval, addr, sizeof (retval));
          return retval;
          return retval;
        }
        }
      else
      else
        floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
        floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
    }
    }
  else
  else
    {
    {
      error ("Can't deal with a floating point number of %d bytes.", len);
      error ("Can't deal with a floating point number of %d bytes.", len);
    }
    }
 
 
  return dretval;
  return dretval;
}
}
 
 
void
void
store_floating (void *addr, int len, DOUBLEST val)
store_floating (void *addr, int len, DOUBLEST val)
{
{
  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
    {
    {
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
        {
        {
          float floatval = val;
          float floatval = val;
 
 
          memcpy (addr, &floatval, sizeof (floatval));
          memcpy (addr, &floatval, sizeof (floatval));
        }
        }
      else
      else
        floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
        floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
    }
    }
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
    {
    {
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
        {
        {
          double doubleval = val;
          double doubleval = val;
 
 
          memcpy (addr, &doubleval, sizeof (doubleval));
          memcpy (addr, &doubleval, sizeof (doubleval));
        }
        }
      else
      else
        floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
        floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
    }
    }
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
    {
    {
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
        memcpy (addr, &val, sizeof (val));
        memcpy (addr, &val, sizeof (val));
      else
      else
        floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
        floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
    }
    }
  else
  else
    {
    {
      error ("Can't deal with a floating point number of %d bytes.", len);
      error ("Can't deal with a floating point number of %d bytes.", len);
    }
    }
}
}


 
 
/* Return the address in which frame FRAME's value of register REGNUM
/* Return the address in which frame FRAME's value of register REGNUM
   has been saved in memory.  Or return zero if it has not been saved.
   has been saved in memory.  Or return zero if it has not been saved.
   If REGNUM specifies the SP, the value we return is actually
   If REGNUM specifies the SP, the value we return is actually
   the SP value, not an address where it was saved.  */
   the SP value, not an address where it was saved.  */
 
 
CORE_ADDR
CORE_ADDR
find_saved_register (frame, regnum)
find_saved_register (frame, regnum)
     struct frame_info *frame;
     struct frame_info *frame;
     int regnum;
     int regnum;
{
{
  register struct frame_info *frame1 = NULL;
  register struct frame_info *frame1 = NULL;
  register CORE_ADDR addr = 0;
  register CORE_ADDR addr = 0;
 
 
  if (frame == NULL)            /* No regs saved if want current frame */
  if (frame == NULL)            /* No regs saved if want current frame */
    return 0;
    return 0;
 
 
#ifdef HAVE_REGISTER_WINDOWS
#ifdef HAVE_REGISTER_WINDOWS
  /* We assume that a register in a register window will only be saved
  /* We assume that a register in a register window will only be saved
     in one place (since the name changes and/or disappears as you go
     in one place (since the name changes and/or disappears as you go
     towards inner frames), so we only call get_frame_saved_regs on
     towards inner frames), so we only call get_frame_saved_regs on
     the current frame.  This is directly in contradiction to the
     the current frame.  This is directly in contradiction to the
     usage below, which assumes that registers used in a frame must be
     usage below, which assumes that registers used in a frame must be
     saved in a lower (more interior) frame.  This change is a result
     saved in a lower (more interior) frame.  This change is a result
     of working on a register window machine; get_frame_saved_regs
     of working on a register window machine; get_frame_saved_regs
     always returns the registers saved within a frame, within the
     always returns the registers saved within a frame, within the
     context (register namespace) of that frame. */
     context (register namespace) of that frame. */
 
 
  /* However, note that we don't want this to return anything if
  /* However, note that we don't want this to return anything if
     nothing is saved (if there's a frame inside of this one).  Also,
     nothing is saved (if there's a frame inside of this one).  Also,
     callers to this routine asking for the stack pointer want the
     callers to this routine asking for the stack pointer want the
     stack pointer saved for *this* frame; this is returned from the
     stack pointer saved for *this* frame; this is returned from the
     next frame.  */
     next frame.  */
 
 
  if (REGISTER_IN_WINDOW_P (regnum))
  if (REGISTER_IN_WINDOW_P (regnum))
    {
    {
      frame1 = get_next_frame (frame);
      frame1 = get_next_frame (frame);
      if (!frame1)
      if (!frame1)
        return 0;                /* Registers of this frame are active.  */
        return 0;                /* Registers of this frame are active.  */
 
 
      /* Get the SP from the next frame in; it will be this
      /* Get the SP from the next frame in; it will be this
         current frame.  */
         current frame.  */
      if (regnum != SP_REGNUM)
      if (regnum != SP_REGNUM)
        frame1 = frame;
        frame1 = frame;
 
 
      FRAME_INIT_SAVED_REGS (frame1);
      FRAME_INIT_SAVED_REGS (frame1);
      return frame1->saved_regs[regnum];        /* ... which might be zero */
      return frame1->saved_regs[regnum];        /* ... which might be zero */
    }
    }
#endif /* HAVE_REGISTER_WINDOWS */
#endif /* HAVE_REGISTER_WINDOWS */
 
 
  /* Note that this next routine assumes that registers used in
  /* Note that this next routine assumes that registers used in
     frame x will be saved only in the frame that x calls and
     frame x will be saved only in the frame that x calls and
     frames interior to it.  This is not true on the sparc, but the
     frames interior to it.  This is not true on the sparc, but the
     above macro takes care of it, so we should be all right. */
     above macro takes care of it, so we should be all right. */
  while (1)
  while (1)
    {
    {
      QUIT;
      QUIT;
      frame1 = get_prev_frame (frame1);
      frame1 = get_prev_frame (frame1);
      if (frame1 == 0 || frame1 == frame)
      if (frame1 == 0 || frame1 == frame)
        break;
        break;
      FRAME_INIT_SAVED_REGS (frame1);
      FRAME_INIT_SAVED_REGS (frame1);
      if (frame1->saved_regs[regnum])
      if (frame1->saved_regs[regnum])
        addr = frame1->saved_regs[regnum];
        addr = frame1->saved_regs[regnum];
    }
    }
 
 
  return addr;
  return addr;
}
}
 
 
/* Find register number REGNUM relative to FRAME and put its (raw,
/* Find register number REGNUM relative to FRAME and put its (raw,
   target format) contents in *RAW_BUFFER.  Set *OPTIMIZED if the
   target format) contents in *RAW_BUFFER.  Set *OPTIMIZED if the
   variable was optimized out (and thus can't be fetched).  Set *LVAL
   variable was optimized out (and thus can't be fetched).  Set *LVAL
   to lval_memory, lval_register, or not_lval, depending on whether
   to lval_memory, lval_register, or not_lval, depending on whether
   the value was fetched from memory, from a register, or in a strange
   the value was fetched from memory, from a register, or in a strange
   and non-modifiable way (e.g. a frame pointer which was calculated
   and non-modifiable way (e.g. a frame pointer which was calculated
   rather than fetched).  Set *ADDRP to the address, either in memory
   rather than fetched).  Set *ADDRP to the address, either in memory
   on as a REGISTER_BYTE offset into the registers array.
   on as a REGISTER_BYTE offset into the registers array.
 
 
   Note that this implementation never sets *LVAL to not_lval.  But
   Note that this implementation never sets *LVAL to not_lval.  But
   it can be replaced by defining GET_SAVED_REGISTER and supplying
   it can be replaced by defining GET_SAVED_REGISTER and supplying
   your own.
   your own.
 
 
   The argument RAW_BUFFER must point to aligned memory.  */
   The argument RAW_BUFFER must point to aligned memory.  */
 
 
void
void
default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     char *raw_buffer;
     int *optimized;
     int *optimized;
     CORE_ADDR *addrp;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     struct frame_info *frame;
     int regnum;
     int regnum;
     enum lval_type *lval;
     enum lval_type *lval;
{
{
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  if (!target_has_registers)
  if (!target_has_registers)
    error ("No registers.");
    error ("No registers.");
 
 
  /* Normal systems don't optimize out things with register numbers.  */
  /* Normal systems don't optimize out things with register numbers.  */
  if (optimized != NULL)
  if (optimized != NULL)
    *optimized = 0;
    *optimized = 0;
  addr = find_saved_register (frame, regnum);
  addr = find_saved_register (frame, regnum);
  if (addr != 0)
  if (addr != 0)
    {
    {
      if (lval != NULL)
      if (lval != NULL)
        *lval = lval_memory;
        *lval = lval_memory;
      if (regnum == SP_REGNUM)
      if (regnum == SP_REGNUM)
        {
        {
          if (raw_buffer != NULL)
          if (raw_buffer != NULL)
            {
            {
              /* Put it back in target format.  */
              /* Put it back in target format.  */
              store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr);
              store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr);
            }
            }
          if (addrp != NULL)
          if (addrp != NULL)
            *addrp = 0;
            *addrp = 0;
          return;
          return;
        }
        }
      if (raw_buffer != NULL)
      if (raw_buffer != NULL)
        read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
        read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
    }
    }
  else
  else
    {
    {
      if (lval != NULL)
      if (lval != NULL)
        *lval = lval_register;
        *lval = lval_register;
      addr = REGISTER_BYTE (regnum);
      addr = REGISTER_BYTE (regnum);
      if (raw_buffer != NULL)
      if (raw_buffer != NULL)
        read_register_gen (regnum, raw_buffer);
        read_register_gen (regnum, raw_buffer);
    }
    }
  if (addrp != NULL)
  if (addrp != NULL)
    *addrp = addr;
    *addrp = addr;
}
}
 
 
#if !defined (GET_SAVED_REGISTER)
#if !defined (GET_SAVED_REGISTER)
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
  default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
  default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
#endif
#endif
void
void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     char *raw_buffer;
     int *optimized;
     int *optimized;
     CORE_ADDR *addrp;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     struct frame_info *frame;
     int regnum;
     int regnum;
     enum lval_type *lval;
     enum lval_type *lval;
{
{
  GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
  GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
}
}
 
 
/* Copy the bytes of register REGNUM, relative to the input stack frame,
/* Copy the bytes of register REGNUM, relative to the input stack frame,
   into our memory at MYADDR, in target byte order.
   into our memory at MYADDR, in target byte order.
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
 
 
   Returns 1 if could not be read, 0 if could.  */
   Returns 1 if could not be read, 0 if could.  */
 
 
static int
static int
read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
     int regnum;
     int regnum;
     char *myaddr;
     char *myaddr;
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  int optim;
  int optim;
  if (regnum == FP_REGNUM && frame)
  if (regnum == FP_REGNUM && frame)
    {
    {
      /* Put it back in target format. */
      /* Put it back in target format. */
      store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
      store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
                     (LONGEST) FRAME_FP (frame));
                     (LONGEST) FRAME_FP (frame));
 
 
      return 0;
      return 0;
    }
    }
 
 
  get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
  get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
                      regnum, (enum lval_type *) NULL);
                      regnum, (enum lval_type *) NULL);
 
 
  if (register_valid[regnum] < 0)
  if (register_valid[regnum] < 0)
    return 1;                   /* register value not available */
    return 1;                   /* register value not available */
 
 
  return optim;
  return optim;
}
}
 
 
/* Copy the bytes of register REGNUM, relative to the current stack frame,
/* Copy the bytes of register REGNUM, relative to the current stack frame,
   into our memory at MYADDR, in target byte order.
   into our memory at MYADDR, in target byte order.
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
 
 
   Returns 1 if could not be read, 0 if could.  */
   Returns 1 if could not be read, 0 if could.  */
 
 
int
int
read_relative_register_raw_bytes (regnum, myaddr)
read_relative_register_raw_bytes (regnum, myaddr)
     int regnum;
     int regnum;
     char *myaddr;
     char *myaddr;
{
{
  return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
  return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
                                                     selected_frame);
                                                     selected_frame);
}
}
 
 
/* Return a `value' with the contents of register REGNUM
/* Return a `value' with the contents of register REGNUM
   in its virtual format, with the type specified by
   in its virtual format, with the type specified by
   REGISTER_VIRTUAL_TYPE.
   REGISTER_VIRTUAL_TYPE.
 
 
   NOTE: returns NULL if register value is not available.
   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */
   Caller will check return value or die!  */
 
 
value_ptr
value_ptr
value_of_register (regnum)
value_of_register (regnum)
     int regnum;
     int regnum;
{
{
  CORE_ADDR addr;
  CORE_ADDR addr;
  int optim;
  int optim;
  register value_ptr reg_val;
  register value_ptr reg_val;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  enum lval_type lval;
  enum lval_type lval;
 
 
  get_saved_register (raw_buffer, &optim, &addr,
  get_saved_register (raw_buffer, &optim, &addr,
                      selected_frame, regnum, &lval);
                      selected_frame, regnum, &lval);
 
 
  if (register_valid[regnum] < 0)
  if (register_valid[regnum] < 0)
    return NULL;                /* register value not available */
    return NULL;                /* register value not available */
 
 
  reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
  reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
 
 
  /* Convert raw data to virtual format if necessary.  */
  /* Convert raw data to virtual format if necessary.  */
 
 
  if (REGISTER_CONVERTIBLE (regnum))
  if (REGISTER_CONVERTIBLE (regnum))
    {
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
                                   raw_buffer, VALUE_CONTENTS_RAW (reg_val));
                                   raw_buffer, VALUE_CONTENTS_RAW (reg_val));
    }
    }
  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
            REGISTER_RAW_SIZE (regnum));
            REGISTER_RAW_SIZE (regnum));
  else
  else
    internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
    internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
                    REGISTER_NAME (regnum),
                    REGISTER_NAME (regnum),
                    regnum,
                    regnum,
                    REGISTER_RAW_SIZE (regnum),
                    REGISTER_RAW_SIZE (regnum),
                    REGISTER_VIRTUAL_SIZE (regnum));
                    REGISTER_VIRTUAL_SIZE (regnum));
  VALUE_LVAL (reg_val) = lval;
  VALUE_LVAL (reg_val) = lval;
  VALUE_ADDRESS (reg_val) = addr;
  VALUE_ADDRESS (reg_val) = addr;
  VALUE_REGNO (reg_val) = regnum;
  VALUE_REGNO (reg_val) = regnum;
  VALUE_OPTIMIZED_OUT (reg_val) = optim;
  VALUE_OPTIMIZED_OUT (reg_val) = optim;
  return reg_val;
  return reg_val;
}
}


/* Low level examining and depositing of registers.
/* Low level examining and depositing of registers.
 
 
   The caller is responsible for making
   The caller is responsible for making
   sure that the inferior is stopped before calling the fetching routines,
   sure that the inferior is stopped before calling the fetching routines,
   or it will get garbage.  (a change from GDB version 3, in which
   or it will get garbage.  (a change from GDB version 3, in which
   the caller got the value from the last stop).  */
   the caller got the value from the last stop).  */
 
 
/* Contents and state of the registers (in target byte order). */
/* Contents and state of the registers (in target byte order). */
 
 
char *registers;
char *registers;
 
 
/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
   register value was not available. */
   register value was not available. */
 
 
signed char *register_valid;
signed char *register_valid;
 
 
/* The thread/process associated with the current set of registers.  For now,
/* The thread/process associated with the current set of registers.  For now,
   -1 is special, and means `no current process'.  */
   -1 is special, and means `no current process'.  */
int registers_pid = -1;
int registers_pid = -1;
 
 
/* Indicate that registers may have changed, so invalidate the cache.  */
/* Indicate that registers may have changed, so invalidate the cache.  */
 
 
void
void
registers_changed ()
registers_changed ()
{
{
  int i;
  int i;
  int numregs = ARCH_NUM_REGS;
  int numregs = ARCH_NUM_REGS;
 
 
  registers_pid = -1;
  registers_pid = -1;
 
 
  /* Force cleanup of any alloca areas if using C alloca instead of
  /* Force cleanup of any alloca areas if using C alloca instead of
     a builtin alloca.  This particular call is used to clean up
     a builtin alloca.  This particular call is used to clean up
     areas allocated by low level target code which may build up
     areas allocated by low level target code which may build up
     during lengthy interactions between gdb and the target before
     during lengthy interactions between gdb and the target before
     gdb gives control to the user (ie watchpoints).  */
     gdb gives control to the user (ie watchpoints).  */
  alloca (0);
  alloca (0);
 
 
  for (i = 0; i < numregs; i++)
  for (i = 0; i < numregs; i++)
    register_valid[i] = 0;
    register_valid[i] = 0;
 
 
  if (registers_changed_hook)
  if (registers_changed_hook)
    registers_changed_hook ();
    registers_changed_hook ();
}
}
 
 
/* Indicate that all registers have been fetched, so mark them all valid.  */
/* Indicate that all registers have been fetched, so mark them all valid.  */
void
void
registers_fetched ()
registers_fetched ()
{
{
  int i;
  int i;
  int numregs = ARCH_NUM_REGS;
  int numregs = ARCH_NUM_REGS;
  for (i = 0; i < numregs; i++)
  for (i = 0; i < numregs; i++)
    register_valid[i] = 1;
    register_valid[i] = 1;
}
}
 
 
/* read_register_bytes and write_register_bytes are generally a *BAD*
/* read_register_bytes and write_register_bytes are generally a *BAD*
   idea.  They are inefficient because they need to check for partial
   idea.  They are inefficient because they need to check for partial
   updates, which can only be done by scanning through all of the
   updates, which can only be done by scanning through all of the
   registers and seeing if the bytes that are being read/written fall
   registers and seeing if the bytes that are being read/written fall
   inside of an invalid register.  [The main reason this is necessary
   inside of an invalid register.  [The main reason this is necessary
   is that register sizes can vary, so a simple index won't suffice.]
   is that register sizes can vary, so a simple index won't suffice.]
   It is far better to call read_register_gen and write_register_gen
   It is far better to call read_register_gen and write_register_gen
   if you want to get at the raw register contents, as it only takes a
   if you want to get at the raw register contents, as it only takes a
   regno as an argument, and therefore can't do a partial register
   regno as an argument, and therefore can't do a partial register
   update.
   update.
 
 
   Prior to the recent fixes to check for partial updates, both read
   Prior to the recent fixes to check for partial updates, both read
   and write_register_bytes always checked to see if any registers
   and write_register_bytes always checked to see if any registers
   were stale, and then called target_fetch_registers (-1) to update
   were stale, and then called target_fetch_registers (-1) to update
   the whole set.  This caused really slowed things down for remote
   the whole set.  This caused really slowed things down for remote
   targets.  */
   targets.  */
 
 
/* Copy INLEN bytes of consecutive data from registers
/* Copy INLEN bytes of consecutive data from registers
   starting with the INREGBYTE'th byte of register data
   starting with the INREGBYTE'th byte of register data
   into memory at MYADDR.  */
   into memory at MYADDR.  */
 
 
void
void
read_register_bytes (inregbyte, myaddr, inlen)
read_register_bytes (inregbyte, myaddr, inlen)
     int inregbyte;
     int inregbyte;
     char *myaddr;
     char *myaddr;
     int inlen;
     int inlen;
{
{
  int inregend = inregbyte + inlen;
  int inregend = inregbyte + inlen;
  int regno;
  int regno;
 
 
  if (registers_pid != inferior_pid)
  if (registers_pid != inferior_pid)
    {
    {
      registers_changed ();
      registers_changed ();
      registers_pid = inferior_pid;
      registers_pid = inferior_pid;
    }
    }
 
 
  /* See if we are trying to read bytes from out-of-date registers.  If so,
  /* See if we are trying to read bytes from out-of-date registers.  If so,
     update just those registers.  */
     update just those registers.  */
 
 
  for (regno = 0; regno < NUM_REGS; regno++)
  for (regno = 0; regno < NUM_REGS; regno++)
    {
    {
      int regstart, regend;
      int regstart, regend;
 
 
      if (register_valid[regno])
      if (register_valid[regno])
        continue;
        continue;
 
 
      if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
      if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
        continue;
        continue;
 
 
      regstart = REGISTER_BYTE (regno);
      regstart = REGISTER_BYTE (regno);
      regend = regstart + REGISTER_RAW_SIZE (regno);
      regend = regstart + REGISTER_RAW_SIZE (regno);
 
 
      if (regend <= inregbyte || inregend <= regstart)
      if (regend <= inregbyte || inregend <= regstart)
        /* The range the user wants to read doesn't overlap with regno.  */
        /* The range the user wants to read doesn't overlap with regno.  */
        continue;
        continue;
 
 
      /* We've found an invalid register where at least one byte will be read.
      /* We've found an invalid register where at least one byte will be read.
         Update it from the target.  */
         Update it from the target.  */
      target_fetch_registers (regno);
      target_fetch_registers (regno);
 
 
      if (!register_valid[regno])
      if (!register_valid[regno])
        error ("read_register_bytes:  Couldn't update register %d.", regno);
        error ("read_register_bytes:  Couldn't update register %d.", regno);
    }
    }
 
 
  if (myaddr != NULL)
  if (myaddr != NULL)
    memcpy (myaddr, &registers[inregbyte], inlen);
    memcpy (myaddr, &registers[inregbyte], inlen);
}
}
 
 
/* Read register REGNO into memory at MYADDR, which must be large enough
/* Read register REGNO into memory at MYADDR, which must be large enough
   for REGISTER_RAW_BYTES (REGNO).  Target byte-order.
   for REGISTER_RAW_BYTES (REGNO).  Target byte-order.
   If the register is known to be the size of a CORE_ADDR or smaller,
   If the register is known to be the size of a CORE_ADDR or smaller,
   read_register can be used instead.  */
   read_register can be used instead.  */
void
void
read_register_gen (regno, myaddr)
read_register_gen (regno, myaddr)
     int regno;
     int regno;
     char *myaddr;
     char *myaddr;
{
{
  if (registers_pid != inferior_pid)
  if (registers_pid != inferior_pid)
    {
    {
      registers_changed ();
      registers_changed ();
      registers_pid = inferior_pid;
      registers_pid = inferior_pid;
    }
    }
 
 
  if (!register_valid[regno])
  if (!register_valid[regno])
    target_fetch_registers (regno);
    target_fetch_registers (regno);
  memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
  memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
          REGISTER_RAW_SIZE (regno));
          REGISTER_RAW_SIZE (regno));
}
}
 
 
/* Write register REGNO at MYADDR to the target.  MYADDR points at
/* Write register REGNO at MYADDR to the target.  MYADDR points at
   REGISTER_RAW_BYTES(REGNO), which must be in target byte-order.  */
   REGISTER_RAW_BYTES(REGNO), which must be in target byte-order.  */
 
 
static void
static void
write_register_gen (regno, myaddr)
write_register_gen (regno, myaddr)
     int regno;
     int regno;
     char *myaddr;
     char *myaddr;
{
{
  int size;
  int size;
 
 
  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
     the registers array if something writes to this register.  */
     the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regno))
  if (CANNOT_STORE_REGISTER (regno))
    return;
    return;
 
 
  if (registers_pid != inferior_pid)
  if (registers_pid != inferior_pid)
    {
    {
      registers_changed ();
      registers_changed ();
      registers_pid = inferior_pid;
      registers_pid = inferior_pid;
    }
    }
 
 
  size = REGISTER_RAW_SIZE (regno);
  size = REGISTER_RAW_SIZE (regno);
 
 
  /* If we have a valid copy of the register, and new value == old value,
  /* If we have a valid copy of the register, and new value == old value,
     then don't bother doing the actual store. */
     then don't bother doing the actual store. */
 
 
  if (register_valid[regno]
  if (register_valid[regno]
      && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
      && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
    return;
    return;
 
 
  target_prepare_to_store ();
  target_prepare_to_store ();
 
 
  memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
  memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
 
 
  register_valid[regno] = 1;
  register_valid[regno] = 1;
 
 
  target_store_registers (regno);
  target_store_registers (regno);
}
}
 
 
/* Copy INLEN bytes of consecutive data from memory at MYADDR
/* Copy INLEN bytes of consecutive data from memory at MYADDR
   into registers starting with the MYREGSTART'th byte of register data.  */
   into registers starting with the MYREGSTART'th byte of register data.  */
 
 
void
void
write_register_bytes (myregstart, myaddr, inlen)
write_register_bytes (myregstart, myaddr, inlen)
     int myregstart;
     int myregstart;
     char *myaddr;
     char *myaddr;
     int inlen;
     int inlen;
{
{
  int myregend = myregstart + inlen;
  int myregend = myregstart + inlen;
  int regno;
  int regno;
 
 
  target_prepare_to_store ();
  target_prepare_to_store ();
 
 
  /* Scan through the registers updating any that are covered by the range
  /* Scan through the registers updating any that are covered by the range
     myregstart<=>myregend using write_register_gen, which does nice things
     myregstart<=>myregend using write_register_gen, which does nice things
     like handling threads, and avoiding updates when the new and old contents
     like handling threads, and avoiding updates when the new and old contents
     are the same.  */
     are the same.  */
 
 
  for (regno = 0; regno < NUM_REGS; regno++)
  for (regno = 0; regno < NUM_REGS; regno++)
    {
    {
      int regstart, regend;
      int regstart, regend;
 
 
      regstart = REGISTER_BYTE (regno);
      regstart = REGISTER_BYTE (regno);
      regend = regstart + REGISTER_RAW_SIZE (regno);
      regend = regstart + REGISTER_RAW_SIZE (regno);
 
 
      /* Is this register completely outside the range the user is writing?  */
      /* Is this register completely outside the range the user is writing?  */
      if (myregend <= regstart || regend <= myregstart)
      if (myregend <= regstart || regend <= myregstart)
        /* do nothing */ ;
        /* do nothing */ ;
 
 
      /* Is this register completely within the range the user is writing?  */
      /* Is this register completely within the range the user is writing?  */
      else if (myregstart <= regstart && regend <= myregend)
      else if (myregstart <= regstart && regend <= myregend)
        write_register_gen (regno, myaddr + (regstart - myregstart));
        write_register_gen (regno, myaddr + (regstart - myregstart));
 
 
      /* The register partially overlaps the range being written.  */
      /* The register partially overlaps the range being written.  */
      else
      else
        {
        {
          char regbuf[MAX_REGISTER_RAW_SIZE];
          char regbuf[MAX_REGISTER_RAW_SIZE];
          /* What's the overlap between this register's bytes and
          /* What's the overlap between this register's bytes and
             those the caller wants to write?  */
             those the caller wants to write?  */
          int overlapstart = max (regstart, myregstart);
          int overlapstart = max (regstart, myregstart);
          int overlapend   = min (regend,   myregend);
          int overlapend   = min (regend,   myregend);
 
 
          /* We may be doing a partial update of an invalid register.
          /* We may be doing a partial update of an invalid register.
             Update it from the target before scribbling on it.  */
             Update it from the target before scribbling on it.  */
          read_register_gen (regno, regbuf);
          read_register_gen (regno, regbuf);
 
 
          memcpy (registers + overlapstart,
          memcpy (registers + overlapstart,
                  myaddr + (overlapstart - myregstart),
                  myaddr + (overlapstart - myregstart),
                  overlapend - overlapstart);
                  overlapend - overlapstart);
 
 
          target_store_registers (regno);
          target_store_registers (regno);
        }
        }
    }
    }
}
}
 
 
 
 
/* Return the raw contents of register REGNO, regarding it as an integer.  */
/* Return the raw contents of register REGNO, regarding it as an integer.  */
/* This probably should be returning LONGEST rather than CORE_ADDR.  */
/* This probably should be returning LONGEST rather than CORE_ADDR.  */
 
 
CORE_ADDR
CORE_ADDR
read_register (regno)
read_register (regno)
     int regno;
     int regno;
{
{
  if (registers_pid != inferior_pid)
  if (registers_pid != inferior_pid)
    {
    {
      registers_changed ();
      registers_changed ();
      registers_pid = inferior_pid;
      registers_pid = inferior_pid;
    }
    }
 
 
  if (!register_valid[regno])
  if (!register_valid[regno])
    target_fetch_registers (regno);
    target_fetch_registers (regno);
 
 
  return (CORE_ADDR) extract_address (&registers[REGISTER_BYTE (regno)],
  return (CORE_ADDR) extract_address (&registers[REGISTER_BYTE (regno)],
                                      REGISTER_RAW_SIZE (regno));
                                      REGISTER_RAW_SIZE (regno));
}
}
 
 
CORE_ADDR
CORE_ADDR
read_register_pid (regno, pid)
read_register_pid (regno, pid)
     int regno, pid;
     int regno, pid;
{
{
  int save_pid;
  int save_pid;
  CORE_ADDR retval;
  CORE_ADDR retval;
 
 
  if (pid == inferior_pid)
  if (pid == inferior_pid)
    return read_register (regno);
    return read_register (regno);
 
 
  save_pid = inferior_pid;
  save_pid = inferior_pid;
 
 
  inferior_pid = pid;
  inferior_pid = pid;
 
 
  retval = read_register (regno);
  retval = read_register (regno);
 
 
  inferior_pid = save_pid;
  inferior_pid = save_pid;
 
 
  return retval;
  return retval;
}
}
 
 
/* Store VALUE, into the raw contents of register number REGNO.
/* Store VALUE, into the raw contents of register number REGNO.
   This should probably write a LONGEST rather than a CORE_ADDR */
   This should probably write a LONGEST rather than a CORE_ADDR */
 
 
void
void
write_register (regno, val)
write_register (regno, val)
     int regno;
     int regno;
     LONGEST val;
     LONGEST val;
{
{
  PTR buf;
  PTR buf;
  int size;
  int size;
 
 
  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
     the registers array if something writes to this register.  */
     the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regno))
  if (CANNOT_STORE_REGISTER (regno))
    return;
    return;
 
 
  if (registers_pid != inferior_pid)
  if (registers_pid != inferior_pid)
    {
    {
      registers_changed ();
      registers_changed ();
      registers_pid = inferior_pid;
      registers_pid = inferior_pid;
    }
    }
 
 
  size = REGISTER_RAW_SIZE (regno);
  size = REGISTER_RAW_SIZE (regno);
  buf = alloca (size);
  buf = alloca (size);
  store_signed_integer (buf, size, (LONGEST) val);
  store_signed_integer (buf, size, (LONGEST) val);
 
 
  /* If we have a valid copy of the register, and new value == old value,
  /* If we have a valid copy of the register, and new value == old value,
     then don't bother doing the actual store. */
     then don't bother doing the actual store. */
 
 
  if (register_valid[regno]
  if (register_valid[regno]
      && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
      && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
    return;
    return;
 
 
  target_prepare_to_store ();
  target_prepare_to_store ();
 
 
  memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
  memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
 
 
  register_valid[regno] = 1;
  register_valid[regno] = 1;
 
 
  target_store_registers (regno);
  target_store_registers (regno);
}
}
 
 
void
void
write_register_pid (regno, val, pid)
write_register_pid (regno, val, pid)
     int regno;
     int regno;
     CORE_ADDR val;
     CORE_ADDR val;
     int pid;
     int pid;
{
{
  int save_pid;
  int save_pid;
 
 
  if (pid == inferior_pid)
  if (pid == inferior_pid)
    {
    {
      write_register (regno, val);
      write_register (regno, val);
      return;
      return;
    }
    }
 
 
  save_pid = inferior_pid;
  save_pid = inferior_pid;
 
 
  inferior_pid = pid;
  inferior_pid = pid;
 
 
  write_register (regno, val);
  write_register (regno, val);
 
 
  inferior_pid = save_pid;
  inferior_pid = save_pid;
}
}
 
 
/* Record that register REGNO contains VAL.
/* Record that register REGNO contains VAL.
   This is used when the value is obtained from the inferior or core dump,
   This is used when the value is obtained from the inferior or core dump,
   so there is no need to store the value there.
   so there is no need to store the value there.
 
 
   If VAL is a NULL pointer, then it's probably an unsupported register.  We
   If VAL is a NULL pointer, then it's probably an unsupported register.  We
   just set it's value to all zeros.  We might want to record this fact, and
   just set it's value to all zeros.  We might want to record this fact, and
   report it to the users of read_register and friends.
   report it to the users of read_register and friends.
 */
 */
 
 
void
void
supply_register (regno, val)
supply_register (regno, val)
     int regno;
     int regno;
     char *val;
     char *val;
{
{
#if 1
#if 1
  if (registers_pid != inferior_pid)
  if (registers_pid != inferior_pid)
    {
    {
      registers_changed ();
      registers_changed ();
      registers_pid = inferior_pid;
      registers_pid = inferior_pid;
    }
    }
#endif
#endif
 
 
  register_valid[regno] = 1;
  register_valid[regno] = 1;
  if (val)
  if (val)
    memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
    memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
  else
  else
    memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
    memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
 
 
  /* On some architectures, e.g. HPPA, there are a few stray bits in some
  /* On some architectures, e.g. HPPA, there are a few stray bits in some
     registers, that the rest of the code would like to ignore.  */
     registers, that the rest of the code would like to ignore.  */
#ifdef CLEAN_UP_REGISTER_VALUE
#ifdef CLEAN_UP_REGISTER_VALUE
  CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
  CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
#endif
#endif
}
}
 
 
 
 
/* This routine is getting awfully cluttered with #if's.  It's probably
/* This routine is getting awfully cluttered with #if's.  It's probably
   time to turn this into READ_PC and define it in the tm.h file.
   time to turn this into READ_PC and define it in the tm.h file.
   Ditto for write_pc.
   Ditto for write_pc.
 
 
   1999-06-08: The following were re-written so that it assumes the
   1999-06-08: The following were re-written so that it assumes the
   existance of a TARGET_READ_PC et.al. macro.  A default generic
   existance of a TARGET_READ_PC et.al. macro.  A default generic
   version of that macro is made available where needed.
   version of that macro is made available where needed.
 
 
   Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
   Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
   by the multi-arch framework, it will eventually be possible to
   by the multi-arch framework, it will eventually be possible to
   eliminate the intermediate read_pc_pid().  The client would call
   eliminate the intermediate read_pc_pid().  The client would call
   TARGET_READ_PC directly. (cagney). */
   TARGET_READ_PC directly. (cagney). */
 
 
#ifndef TARGET_READ_PC
#ifndef TARGET_READ_PC
#define TARGET_READ_PC generic_target_read_pc
#define TARGET_READ_PC generic_target_read_pc
#endif
#endif
 
 
CORE_ADDR
CORE_ADDR
generic_target_read_pc (int pid)
generic_target_read_pc (int pid)
{
{
#ifdef PC_REGNUM
#ifdef PC_REGNUM
  if (PC_REGNUM >= 0)
  if (PC_REGNUM >= 0)
    {
    {
      CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
      CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
      return pc_val;
      return pc_val;
    }
    }
#endif
#endif
  internal_error ("generic_target_read_pc");
  internal_error ("generic_target_read_pc");
  return 0;
  return 0;
}
}
 
 
CORE_ADDR
CORE_ADDR
read_pc_pid (pid)
read_pc_pid (pid)
     int pid;
     int pid;
{
{
  int saved_inferior_pid;
  int saved_inferior_pid;
  CORE_ADDR pc_val;
  CORE_ADDR pc_val;
 
 
  /* In case pid != inferior_pid. */
  /* In case pid != inferior_pid. */
  saved_inferior_pid = inferior_pid;
  saved_inferior_pid = inferior_pid;
  inferior_pid = pid;
  inferior_pid = pid;
 
 
  pc_val = TARGET_READ_PC (pid);
  pc_val = TARGET_READ_PC (pid);
 
 
  inferior_pid = saved_inferior_pid;
  inferior_pid = saved_inferior_pid;
  return pc_val;
  return pc_val;
}
}
 
 
CORE_ADDR
CORE_ADDR
read_pc ()
read_pc ()
{
{
  return read_pc_pid (inferior_pid);
  return read_pc_pid (inferior_pid);
}
}
 
 
#ifndef TARGET_WRITE_PC
#ifndef TARGET_WRITE_PC
#define TARGET_WRITE_PC generic_target_write_pc
#define TARGET_WRITE_PC generic_target_write_pc
#endif
#endif
 
 
void
void
generic_target_write_pc (pc, pid)
generic_target_write_pc (pc, pid)
     CORE_ADDR pc;
     CORE_ADDR pc;
     int pid;
     int pid;
{
{
#ifdef PC_REGNUM
#ifdef PC_REGNUM
  if (PC_REGNUM >= 0)
  if (PC_REGNUM >= 0)
    write_register_pid (PC_REGNUM, pc, pid);
    write_register_pid (PC_REGNUM, pc, pid);
#ifdef NPC_REGNUM
#ifdef NPC_REGNUM
  if (NPC_REGNUM >= 0)
  if (NPC_REGNUM >= 0)
    write_register_pid (NPC_REGNUM, pc + 4, pid);
    write_register_pid (NPC_REGNUM, pc + 4, pid);
#ifdef NNPC_REGNUM
#ifdef NNPC_REGNUM
  if (NNPC_REGNUM >= 0)
  if (NNPC_REGNUM >= 0)
    write_register_pid (NNPC_REGNUM, pc + 8, pid);
    write_register_pid (NNPC_REGNUM, pc + 8, pid);
#endif
#endif
#endif
#endif
#else
#else
  internal_error ("generic_target_write_pc");
  internal_error ("generic_target_write_pc");
#endif
#endif
}
}
 
 
void
void
write_pc_pid (pc, pid)
write_pc_pid (pc, pid)
     CORE_ADDR pc;
     CORE_ADDR pc;
     int pid;
     int pid;
{
{
  int saved_inferior_pid;
  int saved_inferior_pid;
 
 
  /* In case pid != inferior_pid. */
  /* In case pid != inferior_pid. */
  saved_inferior_pid = inferior_pid;
  saved_inferior_pid = inferior_pid;
  inferior_pid = pid;
  inferior_pid = pid;
 
 
  TARGET_WRITE_PC (pc, pid);
  TARGET_WRITE_PC (pc, pid);
 
 
  inferior_pid = saved_inferior_pid;
  inferior_pid = saved_inferior_pid;
}
}
 
 
void
void
write_pc (pc)
write_pc (pc)
     CORE_ADDR pc;
     CORE_ADDR pc;
{
{
  write_pc_pid (pc, inferior_pid);
  write_pc_pid (pc, inferior_pid);
}
}
 
 
/* Cope with strage ways of getting to the stack and frame pointers */
/* Cope with strage ways of getting to the stack and frame pointers */
 
 
#ifndef TARGET_READ_SP
#ifndef TARGET_READ_SP
#define TARGET_READ_SP generic_target_read_sp
#define TARGET_READ_SP generic_target_read_sp
#endif
#endif
 
 
CORE_ADDR
CORE_ADDR
generic_target_read_sp ()
generic_target_read_sp ()
{
{
#ifdef SP_REGNUM
#ifdef SP_REGNUM
  if (SP_REGNUM >= 0)
  if (SP_REGNUM >= 0)
    return read_register (SP_REGNUM);
    return read_register (SP_REGNUM);
#endif
#endif
  internal_error ("generic_target_read_sp");
  internal_error ("generic_target_read_sp");
}
}
 
 
CORE_ADDR
CORE_ADDR
read_sp ()
read_sp ()
{
{
  return TARGET_READ_SP ();
  return TARGET_READ_SP ();
}
}
 
 
#ifndef TARGET_WRITE_SP
#ifndef TARGET_WRITE_SP
#define TARGET_WRITE_SP generic_target_write_sp
#define TARGET_WRITE_SP generic_target_write_sp
#endif
#endif
 
 
void
void
generic_target_write_sp (val)
generic_target_write_sp (val)
     CORE_ADDR val;
     CORE_ADDR val;
{
{
#ifdef SP_REGNUM
#ifdef SP_REGNUM
  if (SP_REGNUM >= 0)
  if (SP_REGNUM >= 0)
    {
    {
      write_register (SP_REGNUM, val);
      write_register (SP_REGNUM, val);
      return;
      return;
    }
    }
#endif
#endif
  internal_error ("generic_target_write_sp");
  internal_error ("generic_target_write_sp");
}
}
 
 
void
void
write_sp (val)
write_sp (val)
     CORE_ADDR val;
     CORE_ADDR val;
{
{
  TARGET_WRITE_SP (val);
  TARGET_WRITE_SP (val);
}
}
 
 
#ifndef TARGET_READ_FP
#ifndef TARGET_READ_FP
#define TARGET_READ_FP generic_target_read_fp
#define TARGET_READ_FP generic_target_read_fp
#endif
#endif
 
 
CORE_ADDR
CORE_ADDR
generic_target_read_fp ()
generic_target_read_fp ()
{
{
#ifdef FP_REGNUM
#ifdef FP_REGNUM
  if (FP_REGNUM >= 0)
  if (FP_REGNUM >= 0)
    return read_register (FP_REGNUM);
    return read_register (FP_REGNUM);
#endif
#endif
  internal_error ("generic_target_read_fp");
  internal_error ("generic_target_read_fp");
}
}
 
 
CORE_ADDR
CORE_ADDR
read_fp ()
read_fp ()
{
{
  return TARGET_READ_FP ();
  return TARGET_READ_FP ();
}
}
 
 
#ifndef TARGET_WRITE_FP
#ifndef TARGET_WRITE_FP
#define TARGET_WRITE_FP generic_target_write_fp
#define TARGET_WRITE_FP generic_target_write_fp
#endif
#endif
 
 
void
void
generic_target_write_fp (val)
generic_target_write_fp (val)
     CORE_ADDR val;
     CORE_ADDR val;
{
{
#ifdef FP_REGNUM
#ifdef FP_REGNUM
  if (FP_REGNUM >= 0)
  if (FP_REGNUM >= 0)
    {
    {
      write_register (FP_REGNUM, val);
      write_register (FP_REGNUM, val);
      return;
      return;
    }
    }
#endif
#endif
  internal_error ("generic_target_write_fp");
  internal_error ("generic_target_write_fp");
}
}
 
 
void
void
write_fp (val)
write_fp (val)
     CORE_ADDR val;
     CORE_ADDR val;
{
{
  TARGET_WRITE_FP (val);
  TARGET_WRITE_FP (val);
}
}


/* Will calling read_var_value or locate_var_value on SYM end
/* Will calling read_var_value or locate_var_value on SYM end
   up caring what frame it is being evaluated relative to?  SYM must
   up caring what frame it is being evaluated relative to?  SYM must
   be non-NULL.  */
   be non-NULL.  */
int
int
symbol_read_needs_frame (sym)
symbol_read_needs_frame (sym)
     struct symbol *sym;
     struct symbol *sym;
{
{
  switch (SYMBOL_CLASS (sym))
  switch (SYMBOL_CLASS (sym))
    {
    {
      /* All cases listed explicitly so that gcc -Wall will detect it if
      /* All cases listed explicitly so that gcc -Wall will detect it if
         we failed to consider one.  */
         we failed to consider one.  */
    case LOC_REGISTER:
    case LOC_REGISTER:
    case LOC_ARG:
    case LOC_ARG:
    case LOC_REF_ARG:
    case LOC_REF_ARG:
    case LOC_REGPARM:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
    case LOC_REGPARM_ADDR:
    case LOC_LOCAL:
    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
    case LOC_LOCAL_ARG:
    case LOC_BASEREG:
    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
    case LOC_BASEREG_ARG:
    case LOC_THREAD_LOCAL_STATIC:
    case LOC_THREAD_LOCAL_STATIC:
      return 1;
      return 1;
 
 
    case LOC_UNDEF:
    case LOC_UNDEF:
    case LOC_CONST:
    case LOC_CONST:
    case LOC_STATIC:
    case LOC_STATIC:
    case LOC_INDIRECT:
    case LOC_INDIRECT:
    case LOC_TYPEDEF:
    case LOC_TYPEDEF:
 
 
    case LOC_LABEL:
    case LOC_LABEL:
      /* Getting the address of a label can be done independently of the block,
      /* Getting the address of a label can be done independently of the block,
         even if some *uses* of that address wouldn't work so well without
         even if some *uses* of that address wouldn't work so well without
         the right frame.  */
         the right frame.  */
 
 
    case LOC_BLOCK:
    case LOC_BLOCK:
    case LOC_CONST_BYTES:
    case LOC_CONST_BYTES:
    case LOC_UNRESOLVED:
    case LOC_UNRESOLVED:
    case LOC_OPTIMIZED_OUT:
    case LOC_OPTIMIZED_OUT:
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Given a struct symbol for a variable,
/* Given a struct symbol for a variable,
   and a stack frame id, read the value of the variable
   and a stack frame id, read the value of the variable
   and return a (pointer to a) struct value containing the value.
   and return a (pointer to a) struct value containing the value.
   If the variable cannot be found, return a zero pointer.
   If the variable cannot be found, return a zero pointer.
   If FRAME is NULL, use the selected_frame.  */
   If FRAME is NULL, use the selected_frame.  */
 
 
value_ptr
value_ptr
read_var_value (var, frame)
read_var_value (var, frame)
     register struct symbol *var;
     register struct symbol *var;
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  register value_ptr v;
  register value_ptr v;
  struct type *type = SYMBOL_TYPE (var);
  struct type *type = SYMBOL_TYPE (var);
  CORE_ADDR addr;
  CORE_ADDR addr;
  register int len;
  register int len;
 
 
  v = allocate_value (type);
  v = allocate_value (type);
  VALUE_LVAL (v) = lval_memory; /* The most likely possibility.  */
  VALUE_LVAL (v) = lval_memory; /* The most likely possibility.  */
  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
 
 
  len = TYPE_LENGTH (type);
  len = TYPE_LENGTH (type);
 
 
  if (frame == NULL)
  if (frame == NULL)
    frame = selected_frame;
    frame = selected_frame;
 
 
  switch (SYMBOL_CLASS (var))
  switch (SYMBOL_CLASS (var))
    {
    {
    case LOC_CONST:
    case LOC_CONST:
      /* Put the constant back in target format.  */
      /* Put the constant back in target format.  */
      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
                            (LONGEST) SYMBOL_VALUE (var));
                            (LONGEST) SYMBOL_VALUE (var));
      VALUE_LVAL (v) = not_lval;
      VALUE_LVAL (v) = not_lval;
      return v;
      return v;
 
 
    case LOC_LABEL:
    case LOC_LABEL:
      /* Put the constant back in target format.  */
      /* Put the constant back in target format.  */
      if (overlay_debugging)
      if (overlay_debugging)
        store_address (VALUE_CONTENTS_RAW (v), len,
        store_address (VALUE_CONTENTS_RAW (v), len,
             (LONGEST) symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
             (LONGEST) symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
                                                 SYMBOL_BFD_SECTION (var)));
                                                 SYMBOL_BFD_SECTION (var)));
      else
      else
        store_address (VALUE_CONTENTS_RAW (v), len,
        store_address (VALUE_CONTENTS_RAW (v), len,
                       (LONGEST) SYMBOL_VALUE_ADDRESS (var));
                       (LONGEST) SYMBOL_VALUE_ADDRESS (var));
      VALUE_LVAL (v) = not_lval;
      VALUE_LVAL (v) = not_lval;
      return v;
      return v;
 
 
    case LOC_CONST_BYTES:
    case LOC_CONST_BYTES:
      {
      {
        char *bytes_addr;
        char *bytes_addr;
        bytes_addr = SYMBOL_VALUE_BYTES (var);
        bytes_addr = SYMBOL_VALUE_BYTES (var);
        memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
        memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
        VALUE_LVAL (v) = not_lval;
        VALUE_LVAL (v) = not_lval;
        return v;
        return v;
      }
      }
 
 
    case LOC_STATIC:
    case LOC_STATIC:
      if (overlay_debugging)
      if (overlay_debugging)
        addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
        addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
                                         SYMBOL_BFD_SECTION (var));
                                         SYMBOL_BFD_SECTION (var));
      else
      else
        addr = SYMBOL_VALUE_ADDRESS (var);
        addr = SYMBOL_VALUE_ADDRESS (var);
      break;
      break;
 
 
    case LOC_INDIRECT:
    case LOC_INDIRECT:
      /* The import slot does not have a real address in it from the
      /* The import slot does not have a real address in it from the
         dynamic loader (dld.sl on HP-UX), if the target hasn't begun
         dynamic loader (dld.sl on HP-UX), if the target hasn't begun
         execution yet, so check for that. */
         execution yet, so check for that. */
      if (!target_has_execution)
      if (!target_has_execution)
        error ("\
        error ("\
Attempt to access variable defined in different shared object or load module when\n\
Attempt to access variable defined in different shared object or load module when\n\
addresses have not been bound by the dynamic loader. Try again when executable is running.");
addresses have not been bound by the dynamic loader. Try again when executable is running.");
 
 
      addr = SYMBOL_VALUE_ADDRESS (var);
      addr = SYMBOL_VALUE_ADDRESS (var);
      addr = read_memory_unsigned_integer
      addr = read_memory_unsigned_integer
        (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
        (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
      break;
      break;
 
 
    case LOC_ARG:
    case LOC_ARG:
      if (frame == NULL)
      if (frame == NULL)
        return 0;
        return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
      if (!addr)
        return 0;
        return 0;
      addr += SYMBOL_VALUE (var);
      addr += SYMBOL_VALUE (var);
      break;
      break;
 
 
    case LOC_REF_ARG:
    case LOC_REF_ARG:
      if (frame == NULL)
      if (frame == NULL)
        return 0;
        return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
      if (!addr)
        return 0;
        return 0;
      addr += SYMBOL_VALUE (var);
      addr += SYMBOL_VALUE (var);
      addr = read_memory_unsigned_integer
      addr = read_memory_unsigned_integer
        (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
        (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
      break;
      break;
 
 
    case LOC_LOCAL:
    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
    case LOC_LOCAL_ARG:
      if (frame == NULL)
      if (frame == NULL)
        return 0;
        return 0;
      addr = FRAME_LOCALS_ADDRESS (frame);
      addr = FRAME_LOCALS_ADDRESS (frame);
      addr += SYMBOL_VALUE (var);
      addr += SYMBOL_VALUE (var);
      break;
      break;
 
 
    case LOC_BASEREG:
    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
    case LOC_BASEREG_ARG:
      {
      {
        char buf[MAX_REGISTER_RAW_SIZE];
        char buf[MAX_REGISTER_RAW_SIZE];
        get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
        get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
                            NULL);
                            NULL);
        addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
        addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
        addr += SYMBOL_VALUE (var);
        addr += SYMBOL_VALUE (var);
        break;
        break;
      }
      }
 
 
    case LOC_THREAD_LOCAL_STATIC:
    case LOC_THREAD_LOCAL_STATIC:
      {
      {
        char buf[MAX_REGISTER_RAW_SIZE];
        char buf[MAX_REGISTER_RAW_SIZE];
 
 
        get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
        get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
                            NULL);
                            NULL);
        addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
        addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
        addr += SYMBOL_VALUE (var);
        addr += SYMBOL_VALUE (var);
        break;
        break;
      }
      }
 
 
    case LOC_TYPEDEF:
    case LOC_TYPEDEF:
      error ("Cannot look up value of a typedef");
      error ("Cannot look up value of a typedef");
      break;
      break;
 
 
    case LOC_BLOCK:
    case LOC_BLOCK:
      if (overlay_debugging)
      if (overlay_debugging)
        VALUE_ADDRESS (v) = symbol_overlayed_address
        VALUE_ADDRESS (v) = symbol_overlayed_address
          (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
          (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
      else
      else
        VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
        VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
      return v;
      return v;
 
 
    case LOC_REGISTER:
    case LOC_REGISTER:
    case LOC_REGPARM:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
    case LOC_REGPARM_ADDR:
      {
      {
        struct block *b;
        struct block *b;
        int regno = SYMBOL_VALUE (var);
        int regno = SYMBOL_VALUE (var);
        value_ptr regval;
        value_ptr regval;
 
 
        if (frame == NULL)
        if (frame == NULL)
          return 0;
          return 0;
        b = get_frame_block (frame);
        b = get_frame_block (frame);
 
 
        if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
        if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
          {
          {
            regval = value_from_register (lookup_pointer_type (type),
            regval = value_from_register (lookup_pointer_type (type),
                                          regno,
                                          regno,
                                          frame);
                                          frame);
 
 
            if (regval == NULL)
            if (regval == NULL)
              error ("Value of register variable not available.");
              error ("Value of register variable not available.");
 
 
            addr = value_as_pointer (regval);
            addr = value_as_pointer (regval);
            VALUE_LVAL (v) = lval_memory;
            VALUE_LVAL (v) = lval_memory;
          }
          }
        else
        else
          {
          {
            regval = value_from_register (type, regno, frame);
            regval = value_from_register (type, regno, frame);
 
 
            if (regval == NULL)
            if (regval == NULL)
              error ("Value of register variable not available.");
              error ("Value of register variable not available.");
            return regval;
            return regval;
          }
          }
      }
      }
      break;
      break;
 
 
    case LOC_UNRESOLVED:
    case LOC_UNRESOLVED:
      {
      {
        struct minimal_symbol *msym;
        struct minimal_symbol *msym;
 
 
        msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
        msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
        if (msym == NULL)
        if (msym == NULL)
          return 0;
          return 0;
        if (overlay_debugging)
        if (overlay_debugging)
          addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
          addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
                                           SYMBOL_BFD_SECTION (msym));
                                           SYMBOL_BFD_SECTION (msym));
        else
        else
          addr = SYMBOL_VALUE_ADDRESS (msym);
          addr = SYMBOL_VALUE_ADDRESS (msym);
      }
      }
      break;
      break;
 
 
    case LOC_OPTIMIZED_OUT:
    case LOC_OPTIMIZED_OUT:
      VALUE_LVAL (v) = not_lval;
      VALUE_LVAL (v) = not_lval;
      VALUE_OPTIMIZED_OUT (v) = 1;
      VALUE_OPTIMIZED_OUT (v) = 1;
      return v;
      return v;
 
 
    default:
    default:
      error ("Cannot look up value of a botched symbol.");
      error ("Cannot look up value of a botched symbol.");
      break;
      break;
    }
    }
 
 
  VALUE_ADDRESS (v) = addr;
  VALUE_ADDRESS (v) = addr;
  VALUE_LAZY (v) = 1;
  VALUE_LAZY (v) = 1;
  return v;
  return v;
}
}
 
 
/* Return a value of type TYPE, stored in register REGNUM, in frame
/* Return a value of type TYPE, stored in register REGNUM, in frame
   FRAME.
   FRAME.
 
 
   NOTE: returns NULL if register value is not available.
   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */
   Caller will check return value or die!  */
 
 
value_ptr
value_ptr
value_from_register (type, regnum, frame)
value_from_register (type, regnum, frame)
     struct type *type;
     struct type *type;
     int regnum;
     int regnum;
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  CORE_ADDR addr;
  CORE_ADDR addr;
  int optim;
  int optim;
  value_ptr v = allocate_value (type);
  value_ptr v = allocate_value (type);
  char *value_bytes = 0;
  char *value_bytes = 0;
  int value_bytes_copied = 0;
  int value_bytes_copied = 0;
  int num_storage_locs;
  int num_storage_locs;
  enum lval_type lval;
  enum lval_type lval;
  int len;
  int len;
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  len = TYPE_LENGTH (type);
  len = TYPE_LENGTH (type);
 
 
  /* Pointers on D10V are really only 16 bits, but we lie to gdb elsewhere... */
  /* Pointers on D10V are really only 16 bits, but we lie to gdb elsewhere... */
  if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
  if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
    len = 2;
    len = 2;
 
 
  VALUE_REGNO (v) = regnum;
  VALUE_REGNO (v) = regnum;
 
 
  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
                      ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
                      ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
                      1);
                      1);
 
 
  if (num_storage_locs > 1
  if (num_storage_locs > 1
#ifdef GDB_TARGET_IS_H8500
#ifdef GDB_TARGET_IS_H8500
      || TYPE_CODE (type) == TYPE_CODE_PTR
      || TYPE_CODE (type) == TYPE_CODE_PTR
#endif
#endif
    )
    )
    {
    {
      /* Value spread across multiple storage locations.  */
      /* Value spread across multiple storage locations.  */
 
 
      int local_regnum;
      int local_regnum;
      int mem_stor = 0, reg_stor = 0;
      int mem_stor = 0, reg_stor = 0;
      int mem_tracking = 1;
      int mem_tracking = 1;
      CORE_ADDR last_addr = 0;
      CORE_ADDR last_addr = 0;
      CORE_ADDR first_addr = 0;
      CORE_ADDR first_addr = 0;
 
 
      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
 
 
      /* Copy all of the data out, whereever it may be.  */
      /* Copy all of the data out, whereever it may be.  */
 
 
#ifdef GDB_TARGET_IS_H8500
#ifdef GDB_TARGET_IS_H8500
/* This piece of hideosity is required because the H8500 treats registers
/* This piece of hideosity is required because the H8500 treats registers
   differently depending upon whether they are used as pointers or not.  As a
   differently depending upon whether they are used as pointers or not.  As a
   pointer, a register needs to have a page register tacked onto the front.
   pointer, a register needs to have a page register tacked onto the front.
   An alternate way to do this would be to have gcc output different register
   An alternate way to do this would be to have gcc output different register
   numbers for the pointer & non-pointer form of the register.  But, it
   numbers for the pointer & non-pointer form of the register.  But, it
   doesn't, so we're stuck with this.  */
   doesn't, so we're stuck with this.  */
 
 
      if (TYPE_CODE (type) == TYPE_CODE_PTR
      if (TYPE_CODE (type) == TYPE_CODE_PTR
          && len > 2)
          && len > 2)
        {
        {
          int page_regnum;
          int page_regnum;
 
 
          switch (regnum)
          switch (regnum)
            {
            {
            case R0_REGNUM:
            case R0_REGNUM:
            case R1_REGNUM:
            case R1_REGNUM:
            case R2_REGNUM:
            case R2_REGNUM:
            case R3_REGNUM:
            case R3_REGNUM:
              page_regnum = SEG_D_REGNUM;
              page_regnum = SEG_D_REGNUM;
              break;
              break;
            case R4_REGNUM:
            case R4_REGNUM:
            case R5_REGNUM:
            case R5_REGNUM:
              page_regnum = SEG_E_REGNUM;
              page_regnum = SEG_E_REGNUM;
              break;
              break;
            case R6_REGNUM:
            case R6_REGNUM:
            case R7_REGNUM:
            case R7_REGNUM:
              page_regnum = SEG_T_REGNUM;
              page_regnum = SEG_T_REGNUM;
              break;
              break;
            }
            }
 
 
          value_bytes[0] = 0;
          value_bytes[0] = 0;
          get_saved_register (value_bytes + 1,
          get_saved_register (value_bytes + 1,
                              &optim,
                              &optim,
                              &addr,
                              &addr,
                              frame,
                              frame,
                              page_regnum,
                              page_regnum,
                              &lval);
                              &lval);
 
 
          if (register_valid[page_regnum] == -1)
          if (register_valid[page_regnum] == -1)
            return NULL;        /* register value not available */
            return NULL;        /* register value not available */
 
 
          if (lval == lval_register)
          if (lval == lval_register)
            reg_stor++;
            reg_stor++;
          else
          else
            mem_stor++;
            mem_stor++;
          first_addr = addr;
          first_addr = addr;
          last_addr = addr;
          last_addr = addr;
 
 
          get_saved_register (value_bytes + 2,
          get_saved_register (value_bytes + 2,
                              &optim,
                              &optim,
                              &addr,
                              &addr,
                              frame,
                              frame,
                              regnum,
                              regnum,
                              &lval);
                              &lval);
 
 
          if (register_valid[regnum] == -1)
          if (register_valid[regnum] == -1)
            return NULL;        /* register value not available */
            return NULL;        /* register value not available */
 
 
          if (lval == lval_register)
          if (lval == lval_register)
            reg_stor++;
            reg_stor++;
          else
          else
            {
            {
              mem_stor++;
              mem_stor++;
              mem_tracking = mem_tracking && (addr == last_addr);
              mem_tracking = mem_tracking && (addr == last_addr);
            }
            }
          last_addr = addr;
          last_addr = addr;
        }
        }
      else
      else
#endif /* GDB_TARGET_IS_H8500 */
#endif /* GDB_TARGET_IS_H8500 */
        for (local_regnum = regnum;
        for (local_regnum = regnum;
             value_bytes_copied < len;
             value_bytes_copied < len;
             (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
             (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
              ++local_regnum))
              ++local_regnum))
          {
          {
            get_saved_register (value_bytes + value_bytes_copied,
            get_saved_register (value_bytes + value_bytes_copied,
                                &optim,
                                &optim,
                                &addr,
                                &addr,
                                frame,
                                frame,
                                local_regnum,
                                local_regnum,
                                &lval);
                                &lval);
 
 
            if (register_valid[local_regnum] == -1)
            if (register_valid[local_regnum] == -1)
              return NULL;      /* register value not available */
              return NULL;      /* register value not available */
 
 
            if (regnum == local_regnum)
            if (regnum == local_regnum)
              first_addr = addr;
              first_addr = addr;
            if (lval == lval_register)
            if (lval == lval_register)
              reg_stor++;
              reg_stor++;
            else
            else
              {
              {
                mem_stor++;
                mem_stor++;
 
 
                mem_tracking =
                mem_tracking =
                  (mem_tracking
                  (mem_tracking
                   && (regnum == local_regnum
                   && (regnum == local_regnum
                       || addr == last_addr));
                       || addr == last_addr));
              }
              }
            last_addr = addr;
            last_addr = addr;
          }
          }
 
 
      if ((reg_stor && mem_stor)
      if ((reg_stor && mem_stor)
          || (mem_stor && !mem_tracking))
          || (mem_stor && !mem_tracking))
        /* Mixed storage; all of the hassle we just went through was
        /* Mixed storage; all of the hassle we just went through was
           for some good purpose.  */
           for some good purpose.  */
        {
        {
          VALUE_LVAL (v) = lval_reg_frame_relative;
          VALUE_LVAL (v) = lval_reg_frame_relative;
          VALUE_FRAME (v) = FRAME_FP (frame);
          VALUE_FRAME (v) = FRAME_FP (frame);
          VALUE_FRAME_REGNUM (v) = regnum;
          VALUE_FRAME_REGNUM (v) = regnum;
        }
        }
      else if (mem_stor)
      else if (mem_stor)
        {
        {
          VALUE_LVAL (v) = lval_memory;
          VALUE_LVAL (v) = lval_memory;
          VALUE_ADDRESS (v) = first_addr;
          VALUE_ADDRESS (v) = first_addr;
        }
        }
      else if (reg_stor)
      else if (reg_stor)
        {
        {
          VALUE_LVAL (v) = lval_register;
          VALUE_LVAL (v) = lval_register;
          VALUE_ADDRESS (v) = first_addr;
          VALUE_ADDRESS (v) = first_addr;
        }
        }
      else
      else
        internal_error ("value_from_register: Value not stored anywhere!");
        internal_error ("value_from_register: Value not stored anywhere!");
 
 
      VALUE_OPTIMIZED_OUT (v) = optim;
      VALUE_OPTIMIZED_OUT (v) = optim;
 
 
      /* Any structure stored in more than one register will always be
      /* Any structure stored in more than one register will always be
         an integral number of registers.  Otherwise, you'd need to do
         an integral number of registers.  Otherwise, you'd need to do
         some fiddling with the last register copied here for little
         some fiddling with the last register copied here for little
         endian machines.  */
         endian machines.  */
 
 
      /* Copy into the contents section of the value.  */
      /* Copy into the contents section of the value.  */
      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
 
 
      /* Finally do any conversion necessary when extracting this
      /* Finally do any conversion necessary when extracting this
         type from more than one register.  */
         type from more than one register.  */
#ifdef REGISTER_CONVERT_TO_TYPE
#ifdef REGISTER_CONVERT_TO_TYPE
      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
#endif
#endif
      return v;
      return v;
    }
    }
 
 
  /* Data is completely contained within a single register.  Locate the
  /* Data is completely contained within a single register.  Locate the
     register's contents in a real register or in core;
     register's contents in a real register or in core;
     read the data in raw format.  */
     read the data in raw format.  */
 
 
  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
 
 
  if (register_valid[regnum] == -1)
  if (register_valid[regnum] == -1)
    return NULL;                /* register value not available */
    return NULL;                /* register value not available */
 
 
  VALUE_OPTIMIZED_OUT (v) = optim;
  VALUE_OPTIMIZED_OUT (v) = optim;
  VALUE_LVAL (v) = lval;
  VALUE_LVAL (v) = lval;
  VALUE_ADDRESS (v) = addr;
  VALUE_ADDRESS (v) = addr;
 
 
  /* Convert raw data to virtual format if necessary.  */
  /* Convert raw data to virtual format if necessary.  */
 
 
  if (REGISTER_CONVERTIBLE (regnum))
  if (REGISTER_CONVERTIBLE (regnum))
    {
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
      REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
                                   raw_buffer, VALUE_CONTENTS_RAW (v));
                                   raw_buffer, VALUE_CONTENTS_RAW (v));
    }
    }
  else
  else
    {
    {
      /* Raw and virtual formats are the same for this register.  */
      /* Raw and virtual formats are the same for this register.  */
 
 
      if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
      if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
        {
        {
          /* Big-endian, and we want less than full size.  */
          /* Big-endian, and we want less than full size.  */
          VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
          VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
        }
        }
 
 
      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
    }
    }
 
 
  if (GDB_TARGET_IS_D10V
  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_TARGET_TYPE (type)
      && TYPE_TARGET_TYPE (type)
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
    {
      /* pointer to function */
      /* pointer to function */
      unsigned long num;
      unsigned long num;
      unsigned short snum;
      unsigned short snum;
      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
      num = D10V_MAKE_IADDR (snum);
      num = D10V_MAKE_IADDR (snum);
      store_address (VALUE_CONTENTS_RAW (v), 4, num);
      store_address (VALUE_CONTENTS_RAW (v), 4, num);
    }
    }
  else if (GDB_TARGET_IS_D10V
  else if (GDB_TARGET_IS_D10V
           && TYPE_CODE (type) == TYPE_CODE_PTR)
           && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
    {
      /* pointer to data */
      /* pointer to data */
      unsigned long num;
      unsigned long num;
      unsigned short snum;
      unsigned short snum;
      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
      num = D10V_MAKE_DADDR (snum);
      num = D10V_MAKE_DADDR (snum);
      store_address (VALUE_CONTENTS_RAW (v), 4, num);
      store_address (VALUE_CONTENTS_RAW (v), 4, num);
    }
    }
 
 
  return v;
  return v;
}
}


/* Given a struct symbol for a variable or function,
/* Given a struct symbol for a variable or function,
   and a stack frame id,
   and a stack frame id,
   return a (pointer to a) struct value containing the properly typed
   return a (pointer to a) struct value containing the properly typed
   address.  */
   address.  */
 
 
value_ptr
value_ptr
locate_var_value (var, frame)
locate_var_value (var, frame)
     register struct symbol *var;
     register struct symbol *var;
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  CORE_ADDR addr = 0;
  CORE_ADDR addr = 0;
  struct type *type = SYMBOL_TYPE (var);
  struct type *type = SYMBOL_TYPE (var);
  value_ptr lazy_value;
  value_ptr lazy_value;
 
 
  /* Evaluate it first; if the result is a memory address, we're fine.
  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here. */
     Lazy evaluation pays off here. */
 
 
  lazy_value = read_var_value (var, frame);
  lazy_value = read_var_value (var, frame);
  if (lazy_value == 0)
  if (lazy_value == 0)
    error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
    error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
 
 
  if (VALUE_LAZY (lazy_value)
  if (VALUE_LAZY (lazy_value)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
    {
      value_ptr val;
      value_ptr val;
 
 
      addr = VALUE_ADDRESS (lazy_value);
      addr = VALUE_ADDRESS (lazy_value);
      val = value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
      val = value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
      return val;
      return val;
    }
    }
 
 
  /* Not a memory address; check what the problem was.  */
  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (lazy_value))
  switch (VALUE_LVAL (lazy_value))
    {
    {
    case lval_register:
    case lval_register:
    case lval_reg_frame_relative:
    case lval_reg_frame_relative:
      error ("Address requested for identifier \"%s\" which is in a register.",
      error ("Address requested for identifier \"%s\" which is in a register.",
             SYMBOL_SOURCE_NAME (var));
             SYMBOL_SOURCE_NAME (var));
      break;
      break;
 
 
    default:
    default:
      error ("Can't take address of \"%s\" which isn't an lvalue.",
      error ("Can't take address of \"%s\" which isn't an lvalue.",
             SYMBOL_SOURCE_NAME (var));
             SYMBOL_SOURCE_NAME (var));
      break;
      break;
    }
    }
  return 0;                      /* For lint -- never reached */
  return 0;                      /* For lint -- never reached */
}
}


 
 
static void build_findvar PARAMS ((void));
static void build_findvar PARAMS ((void));
static void
static void
build_findvar ()
build_findvar ()
{
{
  /* We allocate some extra slop since we do a lot of memcpy's around
  /* We allocate some extra slop since we do a lot of memcpy's around
     `registers', and failing-soft is better than failing hard.  */
     `registers', and failing-soft is better than failing hard.  */
  int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
  int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
  int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
  int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
  registers = xmalloc (sizeof_registers);
  registers = xmalloc (sizeof_registers);
  memset (registers, 0, sizeof_registers);
  memset (registers, 0, sizeof_registers);
  register_valid = xmalloc (sizeof_register_valid);
  register_valid = xmalloc (sizeof_register_valid);
  memset (register_valid, 0, sizeof_register_valid);
  memset (register_valid, 0, sizeof_register_valid);
}
}
 
 
void _initialize_findvar PARAMS ((void));
void _initialize_findvar PARAMS ((void));
void
void
_initialize_findvar ()
_initialize_findvar ()
{
{
  build_findvar ();
  build_findvar ();
 
 
  register_gdbarch_swap (&registers, sizeof (registers), NULL);
  register_gdbarch_swap (&registers, sizeof (registers), NULL);
  register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
  register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
  register_gdbarch_swap (NULL, 0, build_findvar);
  register_gdbarch_swap (NULL, 0, build_findvar);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.