OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [gdbserver/] [low-lynx.c] - Diff between revs 107 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 107 Rev 1765
/* Low level interface to ptrace, for the remote server for GDB.
/* Low level interface to ptrace, for the remote server for GDB.
   Copyright (C) 1986, 1987, 1993 Free Software Foundation, Inc.
   Copyright (C) 1986, 1987, 1993 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "server.h"
#include "server.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
 
 
#include <stdio.h>
#include <stdio.h>
#include <sys/param.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/dir.h>
#define LYNXOS
#define LYNXOS
#include <sys/mem.h>
#include <sys/mem.h>
#include <sys/signal.h>
#include <sys/signal.h>
#include <sys/file.h>
#include <sys/file.h>
#include <sys/kernel.h>
#include <sys/kernel.h>
#ifndef __LYNXOS
#ifndef __LYNXOS
#define __LYNXOS
#define __LYNXOS
#endif
#endif
#include <sys/itimer.h>
#include <sys/itimer.h>
#include <sys/time.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/resource.h>
#include <sys/proc.h>
#include <sys/proc.h>
#include <signal.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/ioctl.h>
#include <sgtty.h>
#include <sgtty.h>
#include <fcntl.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/wait.h>
#include <sys/fpp.h>
#include <sys/fpp.h>
 
 
static char my_registers[REGISTER_BYTES];
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
char *registers = my_registers;
 
 
#include <sys/ptrace.h>
#include <sys/ptrace.h>
 
 
/* Start an inferior process and returns its pid.
/* Start an inferior process and returns its pid.
   ALLARGS is a vector of program-name and args. */
   ALLARGS is a vector of program-name and args. */
 
 
int
int
create_inferior (program, allargs)
create_inferior (program, allargs)
     char *program;
     char *program;
     char **allargs;
     char **allargs;
{
{
  int pid;
  int pid;
 
 
  pid = fork ();
  pid = fork ();
  if (pid < 0)
  if (pid < 0)
    perror_with_name ("fork");
    perror_with_name ("fork");
 
 
  if (pid == 0)
  if (pid == 0)
    {
    {
      int pgrp;
      int pgrp;
 
 
      /* Switch child to it's own process group so that signals won't
      /* Switch child to it's own process group so that signals won't
         directly affect gdbserver. */
         directly affect gdbserver. */
 
 
      pgrp = getpid ();
      pgrp = getpid ();
      setpgrp (0, pgrp);
      setpgrp (0, pgrp);
      ioctl (0, TIOCSPGRP, &pgrp);
      ioctl (0, TIOCSPGRP, &pgrp);
 
 
      ptrace (PTRACE_TRACEME, 0, (PTRACE_ARG3_TYPE) 0, 0);
      ptrace (PTRACE_TRACEME, 0, (PTRACE_ARG3_TYPE) 0, 0);
 
 
      execv (program, allargs);
      execv (program, allargs);
 
 
      fprintf (stderr, "GDBserver (process %d):  Cannot exec %s: %s.\n",
      fprintf (stderr, "GDBserver (process %d):  Cannot exec %s: %s.\n",
               getpid (), program,
               getpid (), program,
               errno < sys_nerr ? sys_errlist[errno] : "unknown error");
               errno < sys_nerr ? sys_errlist[errno] : "unknown error");
      fflush (stderr);
      fflush (stderr);
      _exit (0177);
      _exit (0177);
    }
    }
 
 
  return pid;
  return pid;
}
}
 
 
/* Kill the inferior process.  Make us have no inferior.  */
/* Kill the inferior process.  Make us have no inferior.  */
 
 
void
void
kill_inferior ()
kill_inferior ()
{
{
  if (inferior_pid == 0)
  if (inferior_pid == 0)
    return;
    return;
  ptrace (PTRACE_KILL, inferior_pid, 0, 0);
  ptrace (PTRACE_KILL, inferior_pid, 0, 0);
  wait (0);
  wait (0);
 
 
  inferior_pid = 0;
  inferior_pid = 0;
}
}
 
 
/* Return nonzero if the given thread is still alive.  */
/* Return nonzero if the given thread is still alive.  */
int
int
mythread_alive (pid)
mythread_alive (pid)
     int pid;
     int pid;
{
{
  /* Arggh.  Apparently pthread_kill only works for threads within
  /* Arggh.  Apparently pthread_kill only works for threads within
     the process that calls pthread_kill.
     the process that calls pthread_kill.
 
 
     We want to avoid the lynx signal extensions as they simply don't
     We want to avoid the lynx signal extensions as they simply don't
     map well to the generic gdb interface we want to keep.
     map well to the generic gdb interface we want to keep.
 
 
     All we want to do is determine if a particular thread is alive;
     All we want to do is determine if a particular thread is alive;
     it appears as if we can just make a harmless thread specific
     it appears as if we can just make a harmless thread specific
     ptrace call to do that.  */
     ptrace call to do that.  */
  return (ptrace (PTRACE_THREADUSER,
  return (ptrace (PTRACE_THREADUSER,
                  BUILDPID (PIDGET (inferior_pid), pid), 0, 0) != -1);
                  BUILDPID (PIDGET (inferior_pid), pid), 0, 0) != -1);
}
}
 
 
/* Wait for process, returns status */
/* Wait for process, returns status */
 
 
unsigned char
unsigned char
mywait (status)
mywait (status)
     char *status;
     char *status;
{
{
  int pid;
  int pid;
  union wait w;
  union wait w;
 
 
  while (1)
  while (1)
    {
    {
      enable_async_io ();
      enable_async_io ();
 
 
      pid = wait (&w);
      pid = wait (&w);
 
 
      disable_async_io ();
      disable_async_io ();
 
 
      if (pid != PIDGET (inferior_pid))
      if (pid != PIDGET (inferior_pid))
        perror_with_name ("wait");
        perror_with_name ("wait");
 
 
      thread_from_wait = w.w_tid;
      thread_from_wait = w.w_tid;
      inferior_pid = BUILDPID (inferior_pid, w.w_tid);
      inferior_pid = BUILDPID (inferior_pid, w.w_tid);
 
 
      if (WIFSTOPPED (w)
      if (WIFSTOPPED (w)
          && WSTOPSIG (w) == SIGTRAP)
          && WSTOPSIG (w) == SIGTRAP)
        {
        {
          int realsig;
          int realsig;
 
 
          realsig = ptrace (PTRACE_GETTRACESIG, inferior_pid,
          realsig = ptrace (PTRACE_GETTRACESIG, inferior_pid,
                            (PTRACE_ARG3_TYPE) 0, 0);
                            (PTRACE_ARG3_TYPE) 0, 0);
 
 
          if (realsig == SIGNEWTHREAD)
          if (realsig == SIGNEWTHREAD)
            {
            {
              /* It's a new thread notification.  Nothing to do here since
              /* It's a new thread notification.  Nothing to do here since
                 the machine independent code in wait_for_inferior will
                 the machine independent code in wait_for_inferior will
                 add the thread to the thread list and restart the thread
                 add the thread to the thread list and restart the thread
                 when pid != inferior_pid and pid is not in the thread list.
                 when pid != inferior_pid and pid is not in the thread list.
                 We don't even want to muck with realsig -- the code in
                 We don't even want to muck with realsig -- the code in
                 wait_for_inferior expects SIGTRAP.  */
                 wait_for_inferior expects SIGTRAP.  */
              ;
              ;
            }
            }
        }
        }
      break;
      break;
    }
    }
 
 
  if (WIFEXITED (w))
  if (WIFEXITED (w))
    {
    {
      *status = 'W';
      *status = 'W';
      return ((unsigned char) WEXITSTATUS (w));
      return ((unsigned char) WEXITSTATUS (w));
    }
    }
  else if (!WIFSTOPPED (w))
  else if (!WIFSTOPPED (w))
    {
    {
      *status = 'X';
      *status = 'X';
      return ((unsigned char) WTERMSIG (w));
      return ((unsigned char) WTERMSIG (w));
    }
    }
 
 
  fetch_inferior_registers (0);
  fetch_inferior_registers (0);
 
 
  *status = 'T';
  *status = 'T';
  return ((unsigned char) WSTOPSIG (w));
  return ((unsigned char) WSTOPSIG (w));
}
}
 
 
/* Resume execution of the inferior process.
/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */
   If SIGNAL is nonzero, give it that signal.  */
 
 
void
void
myresume (step, signal)
myresume (step, signal)
     int step;
     int step;
     int signal;
     int signal;
{
{
  errno = 0;
  errno = 0;
  ptrace (step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT,
  ptrace (step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT,
          BUILDPID (inferior_pid, cont_thread == -1 ? 0 : cont_thread),
          BUILDPID (inferior_pid, cont_thread == -1 ? 0 : cont_thread),
          1, signal);
          1, signal);
  if (errno)
  if (errno)
    perror_with_name ("ptrace");
    perror_with_name ("ptrace");
}
}
 
 
#undef offsetof
#undef offsetof
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
 
 
/* Mapping between GDB register #s and offsets into econtext.  Must be
/* Mapping between GDB register #s and offsets into econtext.  Must be
   consistent with REGISTER_NAMES macro in various tmXXX.h files. */
   consistent with REGISTER_NAMES macro in various tmXXX.h files. */
 
 
#define X(ENTRY)(offsetof(struct econtext, ENTRY))
#define X(ENTRY)(offsetof(struct econtext, ENTRY))
 
 
#ifdef I386
#ifdef I386
/* Mappings from tm-i386v.h */
/* Mappings from tm-i386v.h */
 
 
static int regmap[] =
static int regmap[] =
{
{
  X (eax),
  X (eax),
  X (ecx),
  X (ecx),
  X (edx),
  X (edx),
  X (ebx),
  X (ebx),
  X (esp),                      /* sp */
  X (esp),                      /* sp */
  X (ebp),                      /* fp */
  X (ebp),                      /* fp */
  X (esi),
  X (esi),
  X (edi),
  X (edi),
  X (eip),                      /* pc */
  X (eip),                      /* pc */
  X (flags),                    /* ps */
  X (flags),                    /* ps */
  X (cs),
  X (cs),
  X (ss),
  X (ss),
  X (ds),
  X (ds),
  X (es),
  X (es),
  X (ecode),                    /* Lynx doesn't give us either fs or gs, so */
  X (ecode),                    /* Lynx doesn't give us either fs or gs, so */
  X (fault),                    /* we just substitute these two in the hopes
  X (fault),                    /* we just substitute these two in the hopes
                                   that they are useful. */
                                   that they are useful. */
};
};
#endif
#endif
 
 
#ifdef M68K
#ifdef M68K
/* Mappings from tm-m68k.h */
/* Mappings from tm-m68k.h */
 
 
static int regmap[] =
static int regmap[] =
{
{
  X (regs[0]),                   /* d0 */
  X (regs[0]),                   /* d0 */
  X (regs[1]),                  /* d1 */
  X (regs[1]),                  /* d1 */
  X (regs[2]),                  /* d2 */
  X (regs[2]),                  /* d2 */
  X (regs[3]),                  /* d3 */
  X (regs[3]),                  /* d3 */
  X (regs[4]),                  /* d4 */
  X (regs[4]),                  /* d4 */
  X (regs[5]),                  /* d5 */
  X (regs[5]),                  /* d5 */
  X (regs[6]),                  /* d6 */
  X (regs[6]),                  /* d6 */
  X (regs[7]),                  /* d7 */
  X (regs[7]),                  /* d7 */
  X (regs[8]),                  /* a0 */
  X (regs[8]),                  /* a0 */
  X (regs[9]),                  /* a1 */
  X (regs[9]),                  /* a1 */
  X (regs[10]),                 /* a2 */
  X (regs[10]),                 /* a2 */
  X (regs[11]),                 /* a3 */
  X (regs[11]),                 /* a3 */
  X (regs[12]),                 /* a4 */
  X (regs[12]),                 /* a4 */
  X (regs[13]),                 /* a5 */
  X (regs[13]),                 /* a5 */
  X (regs[14]),                 /* fp */
  X (regs[14]),                 /* fp */
  0,                             /* sp */
  0,                             /* sp */
  X (status),                   /* ps */
  X (status),                   /* ps */
  X (pc),
  X (pc),
 
 
  X (fregs[0 * 3]),              /* fp0 */
  X (fregs[0 * 3]),              /* fp0 */
  X (fregs[1 * 3]),             /* fp1 */
  X (fregs[1 * 3]),             /* fp1 */
  X (fregs[2 * 3]),             /* fp2 */
  X (fregs[2 * 3]),             /* fp2 */
  X (fregs[3 * 3]),             /* fp3 */
  X (fregs[3 * 3]),             /* fp3 */
  X (fregs[4 * 3]),             /* fp4 */
  X (fregs[4 * 3]),             /* fp4 */
  X (fregs[5 * 3]),             /* fp5 */
  X (fregs[5 * 3]),             /* fp5 */
  X (fregs[6 * 3]),             /* fp6 */
  X (fregs[6 * 3]),             /* fp6 */
  X (fregs[7 * 3]),             /* fp7 */
  X (fregs[7 * 3]),             /* fp7 */
 
 
  X (fcregs[0]),         /* fpcontrol */
  X (fcregs[0]),         /* fpcontrol */
  X (fcregs[1]),                /* fpstatus */
  X (fcregs[1]),                /* fpstatus */
  X (fcregs[2]),                /* fpiaddr */
  X (fcregs[2]),                /* fpiaddr */
  X (ssw),                      /* fpcode */
  X (ssw),                      /* fpcode */
  X (fault),                    /* fpflags */
  X (fault),                    /* fpflags */
};
};
#endif
#endif
 
 
#ifdef SPARC
#ifdef SPARC
/* Mappings from tm-sparc.h */
/* Mappings from tm-sparc.h */
 
 
#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
 
 
static int regmap[] =
static int regmap[] =
{
{
  -1,                           /* g0 */
  -1,                           /* g0 */
  X (g1),
  X (g1),
  X (g2),
  X (g2),
  X (g3),
  X (g3),
  X (g4),
  X (g4),
  -1,                           /* g5->g7 aren't saved by Lynx */
  -1,                           /* g5->g7 aren't saved by Lynx */
  -1,
  -1,
  -1,
  -1,
 
 
  X (o[0]),
  X (o[0]),
  X (o[1]),
  X (o[1]),
  X (o[2]),
  X (o[2]),
  X (o[3]),
  X (o[3]),
  X (o[4]),
  X (o[4]),
  X (o[5]),
  X (o[5]),
  X (o[6]),                     /* sp */
  X (o[6]),                     /* sp */
  X (o[7]),                     /* ra */
  X (o[7]),                     /* ra */
 
 
  -1, -1, -1, -1, -1, -1, -1, -1,       /* l0 -> l7 */
  -1, -1, -1, -1, -1, -1, -1, -1,       /* l0 -> l7 */
 
 
  -1, -1, -1, -1, -1, -1, -1, -1,       /* i0 -> i7 */
  -1, -1, -1, -1, -1, -1, -1, -1,       /* i0 -> i7 */
 
 
  FX (f.fregs[0]),               /* f0 */
  FX (f.fregs[0]),               /* f0 */
  FX (f.fregs[1]),
  FX (f.fregs[1]),
  FX (f.fregs[2]),
  FX (f.fregs[2]),
  FX (f.fregs[3]),
  FX (f.fregs[3]),
  FX (f.fregs[4]),
  FX (f.fregs[4]),
  FX (f.fregs[5]),
  FX (f.fregs[5]),
  FX (f.fregs[6]),
  FX (f.fregs[6]),
  FX (f.fregs[7]),
  FX (f.fregs[7]),
  FX (f.fregs[8]),
  FX (f.fregs[8]),
  FX (f.fregs[9]),
  FX (f.fregs[9]),
  FX (f.fregs[10]),
  FX (f.fregs[10]),
  FX (f.fregs[11]),
  FX (f.fregs[11]),
  FX (f.fregs[12]),
  FX (f.fregs[12]),
  FX (f.fregs[13]),
  FX (f.fregs[13]),
  FX (f.fregs[14]),
  FX (f.fregs[14]),
  FX (f.fregs[15]),
  FX (f.fregs[15]),
  FX (f.fregs[16]),
  FX (f.fregs[16]),
  FX (f.fregs[17]),
  FX (f.fregs[17]),
  FX (f.fregs[18]),
  FX (f.fregs[18]),
  FX (f.fregs[19]),
  FX (f.fregs[19]),
  FX (f.fregs[20]),
  FX (f.fregs[20]),
  FX (f.fregs[21]),
  FX (f.fregs[21]),
  FX (f.fregs[22]),
  FX (f.fregs[22]),
  FX (f.fregs[23]),
  FX (f.fregs[23]),
  FX (f.fregs[24]),
  FX (f.fregs[24]),
  FX (f.fregs[25]),
  FX (f.fregs[25]),
  FX (f.fregs[26]),
  FX (f.fregs[26]),
  FX (f.fregs[27]),
  FX (f.fregs[27]),
  FX (f.fregs[28]),
  FX (f.fregs[28]),
  FX (f.fregs[29]),
  FX (f.fregs[29]),
  FX (f.fregs[30]),
  FX (f.fregs[30]),
  FX (f.fregs[31]),
  FX (f.fregs[31]),
 
 
  X (y),
  X (y),
  X (psr),
  X (psr),
  X (wim),
  X (wim),
  X (tbr),
  X (tbr),
  X (pc),
  X (pc),
  X (npc),
  X (npc),
  FX (fsr),                     /* fpsr */
  FX (fsr),                     /* fpsr */
  -1,                           /* cpsr */
  -1,                           /* cpsr */
};
};
#endif
#endif
 
 
#ifdef SPARC
#ifdef SPARC
 
 
/* This routine handles some oddball cases for Sparc registers and LynxOS.
/* This routine handles some oddball cases for Sparc registers and LynxOS.
   In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
   In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
   It also handles knows where to find the I & L regs on the stack.  */
   It also handles knows where to find the I & L regs on the stack.  */
 
 
void
void
fetch_inferior_registers (regno)
fetch_inferior_registers (regno)
     int regno;
     int regno;
{
{
#if 0
#if 0
  int whatregs = 0;
  int whatregs = 0;
 
 
#define WHATREGS_FLOAT 1
#define WHATREGS_FLOAT 1
#define WHATREGS_GEN 2
#define WHATREGS_GEN 2
#define WHATREGS_STACK 4
#define WHATREGS_STACK 4
 
 
  if (regno == -1)
  if (regno == -1)
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
    whatregs = WHATREGS_STACK;
    whatregs = WHATREGS_STACK;
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
    whatregs = WHATREGS_FLOAT;
    whatregs = WHATREGS_FLOAT;
  else
  else
    whatregs = WHATREGS_GEN;
    whatregs = WHATREGS_GEN;
 
 
  if (whatregs & WHATREGS_GEN)
  if (whatregs & WHATREGS_GEN)
    {
    {
      struct econtext ec;       /* general regs */
      struct econtext ec;       /* general regs */
      char buf[MAX_REGISTER_RAW_SIZE];
      char buf[MAX_REGISTER_RAW_SIZE];
      int retval;
      int retval;
      int i;
      int i;
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_GETREGS,
      retval = ptrace (PTRACE_GETREGS,
                       BUILDPID (inferior_pid, general_thread),
                       BUILDPID (inferior_pid, general_thread),
                       (PTRACE_ARG3_TYPE) & ec,
                       (PTRACE_ARG3_TYPE) & ec,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
 
 
      memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
      memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
      supply_register (G0_REGNUM, buf);
      supply_register (G0_REGNUM, buf);
      supply_register (TBR_REGNUM, (char *) &ec.tbr);
      supply_register (TBR_REGNUM, (char *) &ec.tbr);
 
 
      memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
      memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
      for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
      for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
 
 
      supply_register (PS_REGNUM, (char *) &ec.psr);
      supply_register (PS_REGNUM, (char *) &ec.psr);
      supply_register (Y_REGNUM, (char *) &ec.y);
      supply_register (Y_REGNUM, (char *) &ec.y);
      supply_register (PC_REGNUM, (char *) &ec.pc);
      supply_register (PC_REGNUM, (char *) &ec.pc);
      supply_register (NPC_REGNUM, (char *) &ec.npc);
      supply_register (NPC_REGNUM, (char *) &ec.npc);
      supply_register (WIM_REGNUM, (char *) &ec.wim);
      supply_register (WIM_REGNUM, (char *) &ec.wim);
 
 
      memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
      memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
      for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
      for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
    }
    }
 
 
  if (whatregs & WHATREGS_STACK)
  if (whatregs & WHATREGS_STACK)
    {
    {
      CORE_ADDR sp;
      CORE_ADDR sp;
      int i;
      int i;
 
 
      sp = read_register (SP_REGNUM);
      sp = read_register (SP_REGNUM);
 
 
      target_xfer_memory (sp + FRAME_SAVED_I0,
      target_xfer_memory (sp + FRAME_SAVED_I0,
                          &registers[REGISTER_BYTE (I0_REGNUM)],
                          &registers[REGISTER_BYTE (I0_REGNUM)],
                          8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
                          8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
      for (i = I0_REGNUM; i <= I7_REGNUM; i++)
      for (i = I0_REGNUM; i <= I7_REGNUM; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
 
 
      target_xfer_memory (sp + FRAME_SAVED_L0,
      target_xfer_memory (sp + FRAME_SAVED_L0,
                          &registers[REGISTER_BYTE (L0_REGNUM)],
                          &registers[REGISTER_BYTE (L0_REGNUM)],
                          8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
                          8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
      for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
      for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
    }
    }
 
 
  if (whatregs & WHATREGS_FLOAT)
  if (whatregs & WHATREGS_FLOAT)
    {
    {
      struct fcontext fc;       /* fp regs */
      struct fcontext fc;       /* fp regs */
      int retval;
      int retval;
      int i;
      int i;
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_GETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
      retval = ptrace (PTRACE_GETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
 
 
      memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
      memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
      for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
      for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
 
 
      supply_register (FPS_REGNUM, (char *) &fc.fsr);
      supply_register (FPS_REGNUM, (char *) &fc.fsr);
    }
    }
#endif
#endif
}
}
 
 
/* This routine handles storing of the I & L regs for the Sparc.  The trick
/* This routine handles storing of the I & L regs for the Sparc.  The trick
   here is that they actually live on the stack.  The really tricky part is
   here is that they actually live on the stack.  The really tricky part is
   that when changing the stack pointer, the I & L regs must be written to
   that when changing the stack pointer, the I & L regs must be written to
   where the new SP points, otherwise the regs will be incorrect when the
   where the new SP points, otherwise the regs will be incorrect when the
   process is started up again.   We assume that the I & L regs are valid at
   process is started up again.   We assume that the I & L regs are valid at
   this point.  */
   this point.  */
 
 
void
void
store_inferior_registers (regno)
store_inferior_registers (regno)
     int regno;
     int regno;
{
{
#if 0
#if 0
  int whatregs = 0;
  int whatregs = 0;
 
 
  if (regno == -1)
  if (regno == -1)
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
    whatregs = WHATREGS_STACK;
    whatregs = WHATREGS_STACK;
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
    whatregs = WHATREGS_FLOAT;
    whatregs = WHATREGS_FLOAT;
  else if (regno == SP_REGNUM)
  else if (regno == SP_REGNUM)
    whatregs = WHATREGS_STACK | WHATREGS_GEN;
    whatregs = WHATREGS_STACK | WHATREGS_GEN;
  else
  else
    whatregs = WHATREGS_GEN;
    whatregs = WHATREGS_GEN;
 
 
  if (whatregs & WHATREGS_GEN)
  if (whatregs & WHATREGS_GEN)
    {
    {
      struct econtext ec;       /* general regs */
      struct econtext ec;       /* general regs */
      int retval;
      int retval;
 
 
      ec.tbr = read_register (TBR_REGNUM);
      ec.tbr = read_register (TBR_REGNUM);
      memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
      memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
 
 
      ec.psr = read_register (PS_REGNUM);
      ec.psr = read_register (PS_REGNUM);
      ec.y = read_register (Y_REGNUM);
      ec.y = read_register (Y_REGNUM);
      ec.pc = read_register (PC_REGNUM);
      ec.pc = read_register (PC_REGNUM);
      ec.npc = read_register (NPC_REGNUM);
      ec.npc = read_register (NPC_REGNUM);
      ec.wim = read_register (WIM_REGNUM);
      ec.wim = read_register (WIM_REGNUM);
 
 
      memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
      memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_SETREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & ec,
      retval = ptrace (PTRACE_SETREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & ec,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
    }
    }
 
 
  if (whatregs & WHATREGS_STACK)
  if (whatregs & WHATREGS_STACK)
    {
    {
      int regoffset;
      int regoffset;
      CORE_ADDR sp;
      CORE_ADDR sp;
 
 
      sp = read_register (SP_REGNUM);
      sp = read_register (SP_REGNUM);
 
 
      if (regno == -1 || regno == SP_REGNUM)
      if (regno == -1 || regno == SP_REGNUM)
        {
        {
          if (!register_valid[L0_REGNUM + 5])
          if (!register_valid[L0_REGNUM + 5])
            abort ();
            abort ();
          target_xfer_memory (sp + FRAME_SAVED_I0,
          target_xfer_memory (sp + FRAME_SAVED_I0,
                              &registers[REGISTER_BYTE (I0_REGNUM)],
                              &registers[REGISTER_BYTE (I0_REGNUM)],
                              8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);
                              8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);
 
 
          target_xfer_memory (sp + FRAME_SAVED_L0,
          target_xfer_memory (sp + FRAME_SAVED_L0,
                              &registers[REGISTER_BYTE (L0_REGNUM)],
                              &registers[REGISTER_BYTE (L0_REGNUM)],
                              8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
                              8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
        }
        }
      else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
      else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
        {
        {
          if (!register_valid[regno])
          if (!register_valid[regno])
            abort ();
            abort ();
          if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
          if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
              + FRAME_SAVED_L0;
              + FRAME_SAVED_L0;
          else
          else
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
              + FRAME_SAVED_I0;
              + FRAME_SAVED_I0;
          target_xfer_memory (sp + regoffset, &registers[REGISTER_BYTE (regno)],
          target_xfer_memory (sp + regoffset, &registers[REGISTER_BYTE (regno)],
                              REGISTER_RAW_SIZE (regno), 1);
                              REGISTER_RAW_SIZE (regno), 1);
        }
        }
    }
    }
 
 
  if (whatregs & WHATREGS_FLOAT)
  if (whatregs & WHATREGS_FLOAT)
    {
    {
      struct fcontext fc;       /* fp regs */
      struct fcontext fc;       /* fp regs */
      int retval;
      int retval;
 
 
/* We read fcontext first so that we can get good values for fq_t... */
/* We read fcontext first so that we can get good values for fq_t... */
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_GETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
      retval = ptrace (PTRACE_GETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
 
 
      memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
      memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
 
 
      fc.fsr = read_register (FPS_REGNUM);
      fc.fsr = read_register (FPS_REGNUM);
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_SETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
      retval = ptrace (PTRACE_SETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
        perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
    }
    }
#endif
#endif
}
}
#endif /* SPARC */
#endif /* SPARC */
 
 
#ifndef SPARC
#ifndef SPARC
 
 
/* Return the offset relative to the start of the per-thread data to the
/* Return the offset relative to the start of the per-thread data to the
   saved context block.  */
   saved context block.  */
 
 
static unsigned long
static unsigned long
lynx_registers_addr ()
lynx_registers_addr ()
{
{
  CORE_ADDR stblock;
  CORE_ADDR stblock;
  int ecpoff = offsetof (st_t, ecp);
  int ecpoff = offsetof (st_t, ecp);
  CORE_ADDR ecp;
  CORE_ADDR ecp;
 
 
  errno = 0;
  errno = 0;
  stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, BUILDPID (inferior_pid, general_thread),
  stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, BUILDPID (inferior_pid, general_thread),
                                (PTRACE_ARG3_TYPE) 0, 0);
                                (PTRACE_ARG3_TYPE) 0, 0);
  if (errno)
  if (errno)
    perror_with_name ("PTRACE_THREADUSER");
    perror_with_name ("PTRACE_THREADUSER");
 
 
  ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, BUILDPID (inferior_pid, general_thread),
  ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, BUILDPID (inferior_pid, general_thread),
                            (PTRACE_ARG3_TYPE) ecpoff, 0);
                            (PTRACE_ARG3_TYPE) ecpoff, 0);
  if (errno)
  if (errno)
    perror_with_name ("lynx_registers_addr(PTRACE_PEEKTHREAD)");
    perror_with_name ("lynx_registers_addr(PTRACE_PEEKTHREAD)");
 
 
  return ecp - stblock;
  return ecp - stblock;
}
}
 
 
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */
   marking them as valid so we won't fetch them again.  */
 
 
void
void
fetch_inferior_registers (ignored)
fetch_inferior_registers (ignored)
     int ignored;
     int ignored;
{
{
  int regno;
  int regno;
  unsigned long reg;
  unsigned long reg;
  unsigned long ecp;
  unsigned long ecp;
 
 
  ecp = lynx_registers_addr ();
  ecp = lynx_registers_addr ();
 
 
  for (regno = 0; regno < NUM_REGS; regno++)
  for (regno = 0; regno < NUM_REGS; regno++)
    {
    {
      int ptrace_fun = PTRACE_PEEKTHREAD;
      int ptrace_fun = PTRACE_PEEKTHREAD;
 
 
#ifdef PTRACE_PEEKUSP
#ifdef PTRACE_PEEKUSP
      ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
      ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
#endif
#endif
 
 
      errno = 0;
      errno = 0;
      reg = ptrace (ptrace_fun, BUILDPID (inferior_pid, general_thread),
      reg = ptrace (ptrace_fun, BUILDPID (inferior_pid, general_thread),
                    (PTRACE_ARG3_TYPE) (ecp + regmap[regno]), 0);
                    (PTRACE_ARG3_TYPE) (ecp + regmap[regno]), 0);
      if (errno)
      if (errno)
        perror_with_name ("fetch_inferior_registers(PTRACE_PEEKTHREAD)");
        perror_with_name ("fetch_inferior_registers(PTRACE_PEEKTHREAD)");
 
 
      *(unsigned long *) &registers[REGISTER_BYTE (regno)] = reg;
      *(unsigned long *) &registers[REGISTER_BYTE (regno)] = reg;
    }
    }
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
 
 
void
void
store_inferior_registers (ignored)
store_inferior_registers (ignored)
     int ignored;
     int ignored;
{
{
  int regno;
  int regno;
  unsigned long reg;
  unsigned long reg;
  unsigned long ecp;
  unsigned long ecp;
 
 
  ecp = lynx_registers_addr ();
  ecp = lynx_registers_addr ();
 
 
  for (regno = 0; regno < NUM_REGS; regno++)
  for (regno = 0; regno < NUM_REGS; regno++)
    {
    {
      int ptrace_fun = PTRACE_POKEUSER;
      int ptrace_fun = PTRACE_POKEUSER;
 
 
#ifdef PTRACE_POKEUSP
#ifdef PTRACE_POKEUSP
      ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
      ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
#endif
#endif
 
 
      reg = *(unsigned long *) &registers[REGISTER_BYTE (regno)];
      reg = *(unsigned long *) &registers[REGISTER_BYTE (regno)];
 
 
      errno = 0;
      errno = 0;
      ptrace (ptrace_fun, BUILDPID (inferior_pid, general_thread),
      ptrace (ptrace_fun, BUILDPID (inferior_pid, general_thread),
              (PTRACE_ARG3_TYPE) (ecp + regmap[regno]), reg);
              (PTRACE_ARG3_TYPE) (ecp + regmap[regno]), reg);
      if (errno)
      if (errno)
        perror_with_name ("PTRACE_POKEUSER");
        perror_with_name ("PTRACE_POKEUSER");
    }
    }
}
}
 
 
#endif /* ! SPARC */
#endif /* ! SPARC */
 
 
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
   in the NEW_SUN_PTRACE case.
   in the NEW_SUN_PTRACE case.
   It ought to be straightforward.  But it appears that writing did
   It ought to be straightforward.  But it appears that writing did
   not write the data that I specified.  I cannot understand where
   not write the data that I specified.  I cannot understand where
   it got the data that it actually did write.  */
   it got the data that it actually did write.  */
 
 
/* Copy LEN bytes from inferior's memory starting at MEMADDR
/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  */
   to debugger memory starting at MYADDR.  */
 
 
void
void
read_inferior_memory (memaddr, myaddr, len)
read_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -sizeof (int);
  register CORE_ADDR addr = memaddr & -sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  register int *buffer = (int *) alloca (count * sizeof (int));
 
 
  /* Read all the longwords */
  /* Read all the longwords */
  for (i = 0; i < count; i++, addr += sizeof (int))
  for (i = 0; i < count; i++, addr += sizeof (int))
    {
    {
      buffer[i] = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread), addr, 0);
      buffer[i] = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread), addr, 0);
    }
    }
 
 
  /* Copy appropriate bytes out of the buffer.  */
  /* Copy appropriate bytes out of the buffer.  */
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
}
 
 
/* Copy LEN bytes of data from debugger memory at MYADDR
/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   On failure (cannot write the inferior)
   returns the value of errno.  */
   returns the value of errno.  */
 
 
int
int
write_inferior_memory (memaddr, myaddr, len)
write_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -sizeof (int);
  register CORE_ADDR addr = memaddr & -sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  register int *buffer = (int *) alloca (count * sizeof (int));
  extern int errno;
  extern int errno;
 
 
  /* Fill start and end extra bytes of buffer with existing memory data.  */
  /* Fill start and end extra bytes of buffer with existing memory data.  */
 
 
  buffer[0] = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread), addr, 0);
  buffer[0] = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread), addr, 0);
 
 
  if (count > 1)
  if (count > 1)
    {
    {
      buffer[count - 1]
      buffer[count - 1]
        = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread),
        = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread),
                  addr + (count - 1) * sizeof (int), 0);
                  addr + (count - 1) * sizeof (int), 0);
    }
    }
 
 
  /* Copy data to be written over corresponding part of buffer */
  /* Copy data to be written over corresponding part of buffer */
 
 
  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
 
 
  /* Write the entire buffer.  */
  /* Write the entire buffer.  */
 
 
  for (i = 0; i < count; i++, addr += sizeof (int))
  for (i = 0; i < count; i++, addr += sizeof (int))
    {
    {
      while (1)
      while (1)
        {
        {
          errno = 0;
          errno = 0;
          ptrace (PTRACE_POKETEXT, BUILDPID (inferior_pid, general_thread), addr, buffer[i]);
          ptrace (PTRACE_POKETEXT, BUILDPID (inferior_pid, general_thread), addr, buffer[i]);
          if (errno)
          if (errno)
            {
            {
              fprintf (stderr, "\
              fprintf (stderr, "\
ptrace (PTRACE_POKETEXT): errno=%d, pid=0x%x, addr=0x%x, buffer[i] = 0x%x\n",
ptrace (PTRACE_POKETEXT): errno=%d, pid=0x%x, addr=0x%x, buffer[i] = 0x%x\n",
                       errno, BUILDPID (inferior_pid, general_thread),
                       errno, BUILDPID (inferior_pid, general_thread),
                       addr, buffer[i]);
                       addr, buffer[i]);
              fprintf (stderr, "Sleeping for 1 second\n");
              fprintf (stderr, "Sleeping for 1 second\n");
              sleep (1);
              sleep (1);
            }
            }
          else
          else
            break;
            break;
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}


void
void
initialize_low ()
initialize_low ()
{
{
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.