OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [gdbserver/] [low-nbsd.c] - Diff between revs 107 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 107 Rev 1765
/* Low level interface to ptrace, for the remote server for GDB.
/* Low level interface to ptrace, for the remote server for GDB.
   Copyright (C) 1986, 1987, 1993, 2000 Free Software Foundation, Inc.
   Copyright (C) 1986, 1987, 1993, 2000 Free Software Foundation, Inc.
 
 
This file is part of GDB.
This file is part of GDB.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include <sys/types.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/wait.h>
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
 
 
#include <stdio.h>
#include <stdio.h>
#include <errno.h>
#include <errno.h>
 
 
/***************Begin MY defs*********************/
/***************Begin MY defs*********************/
int quit_flag = 0;
int quit_flag = 0;
static char my_registers[REGISTER_BYTES];
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
char *registers = my_registers;
 
 
/* Index within `registers' of the first byte of the space for
/* Index within `registers' of the first byte of the space for
   register N.  */
   register N.  */
 
 
char buf2[MAX_REGISTER_RAW_SIZE];
char buf2[MAX_REGISTER_RAW_SIZE];
/***************End MY defs*********************/
/***************End MY defs*********************/
 
 
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include <machine/reg.h>
#include <machine/reg.h>
 
 
extern int sys_nerr;
extern int sys_nerr;
// extern char **sys_errlist;
// extern char **sys_errlist;
extern char **environ;
extern char **environ;
extern int inferior_pid;
extern int inferior_pid;
void quit (), perror_with_name ();
void quit (), perror_with_name ();
 
 
#ifdef TM_I386_H
#ifdef TM_I386_H
/* i386_register_raw_size[i] is the number of bytes of storage in the
/* i386_register_raw_size[i] is the number of bytes of storage in the
   actual machine representation for register i.  */
   actual machine representation for register i.  */
int i386_register_raw_size[MAX_NUM_REGS] = {
int i386_register_raw_size[MAX_NUM_REGS] = {
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
  10, 10, 10, 10,
  10, 10, 10, 10,
  10, 10, 10, 10,
  10, 10, 10, 10,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
  16, 16, 16, 16,
  16, 16, 16, 16,
  16, 16, 16, 16,
  16, 16, 16, 16,
  4
  4
};
};
 
 
int i386_register_byte[MAX_NUM_REGS];
int i386_register_byte[MAX_NUM_REGS];
 
 
static void
static void
initialize_arch()
initialize_arch()
{
{
  /* Initialize the table saying where each register starts in the
  /* Initialize the table saying where each register starts in the
     register file.  */
     register file.  */
  {
  {
    int i, offset;
    int i, offset;
 
 
    offset = 0;
    offset = 0;
    for (i = 0; i < MAX_NUM_REGS; i++)
    for (i = 0; i < MAX_NUM_REGS; i++)
      {
      {
        i386_register_byte[i] = offset;
        i386_register_byte[i] = offset;
        offset += i386_register_raw_size[i];
        offset += i386_register_raw_size[i];
      }
      }
  }
  }
}
}
 
 
#endif
#endif
 
 
 
 
/* Start an inferior process and returns its pid.
/* Start an inferior process and returns its pid.
   ALLARGS is a vector of program-name and args.
   ALLARGS is a vector of program-name and args.
   ENV is the environment vector to pass.  */
   ENV is the environment vector to pass.  */
 
 
int
int
create_inferior (program, allargs)
create_inferior (program, allargs)
     char *program;
     char *program;
     char **allargs;
     char **allargs;
{
{
  int pid;
  int pid;
 
 
  pid = fork ();
  pid = fork ();
  if (pid < 0)
  if (pid < 0)
    perror_with_name ("fork");
    perror_with_name ("fork");
 
 
  if (pid == 0)
  if (pid == 0)
    {
    {
      ptrace (PT_TRACE_ME, 0, 0, 0);
      ptrace (PT_TRACE_ME, 0, 0, 0);
 
 
      execv (program, allargs);
      execv (program, allargs);
 
 
      fprintf (stderr, "Cannot exec %s: %s.\n", program,
      fprintf (stderr, "Cannot exec %s: %s.\n", program,
               errno < sys_nerr ? sys_errlist[errno] : "unknown error");
               errno < sys_nerr ? sys_errlist[errno] : "unknown error");
      fflush (stderr);
      fflush (stderr);
      _exit (0177);
      _exit (0177);
    }
    }
 
 
  return pid;
  return pid;
}
}
 
 
/* Kill the inferior process.  Make us have no inferior.  */
/* Kill the inferior process.  Make us have no inferior.  */
 
 
void
void
kill_inferior ()
kill_inferior ()
{
{
  if (inferior_pid == 0)
  if (inferior_pid == 0)
    return;
    return;
  ptrace (PT_KILL, inferior_pid, 0, 0);
  ptrace (PT_KILL, inferior_pid, 0, 0);
  wait (0);
  wait (0);
  /*************inferior_died ();****VK**************/
  /*************inferior_died ();****VK**************/
}
}
 
 
/* Return nonzero if the given thread is still alive.  */
/* Return nonzero if the given thread is still alive.  */
int
int
mythread_alive (pid)
mythread_alive (pid)
     int pid;
     int pid;
{
{
  return 1;
  return 1;
}
}
 
 
/* Wait for process, returns status */
/* Wait for process, returns status */
 
 
unsigned char
unsigned char
mywait (status)
mywait (status)
     char *status;
     char *status;
{
{
  int pid;
  int pid;
  int w;
  int w;
 
 
  pid = wait (&w);
  pid = wait (&w);
  if (pid != inferior_pid)
  if (pid != inferior_pid)
    perror_with_name ("wait");
    perror_with_name ("wait");
 
 
  if (WIFEXITED (w))
  if (WIFEXITED (w))
    {
    {
      fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
      fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
      *status = 'W';
      *status = 'W';
      return ((unsigned char) WEXITSTATUS (w));
      return ((unsigned char) WEXITSTATUS (w));
    }
    }
  else if (!WIFSTOPPED (w))
  else if (!WIFSTOPPED (w))
    {
    {
      fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
      fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
      *status = 'X';
      *status = 'X';
      return ((unsigned char) WTERMSIG (w));
      return ((unsigned char) WTERMSIG (w));
    }
    }
 
 
  fetch_inferior_registers (0);
  fetch_inferior_registers (0);
 
 
  *status = 'T';
  *status = 'T';
  return ((unsigned char) WSTOPSIG (w));
  return ((unsigned char) WSTOPSIG (w));
}
}
 
 
/* Resume execution of the inferior process.
/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */
   If SIGNAL is nonzero, give it that signal.  */
 
 
void
void
myresume (step, signal)
myresume (step, signal)
     int step;
     int step;
     int signal;
     int signal;
{
{
  errno = 0;
  errno = 0;
  ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid,
  ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid,
          (PTRACE_ARG3_TYPE) 1, signal);
          (PTRACE_ARG3_TYPE) 1, signal);
  if (errno)
  if (errno)
    perror_with_name ("ptrace");
    perror_with_name ("ptrace");
}
}
 
 
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */
   marking them as valid so we won't fetch them again.  */
 
 
void
void
fetch_inferior_registers (ignored)
fetch_inferior_registers (ignored)
     int ignored;
     int ignored;
{
{
  struct reg inferior_registers;
  struct reg inferior_registers;
  struct fpreg inferior_fp_registers;
  struct fpreg inferior_fp_registers;
 
 
  ptrace (PT_GETREGS, inferior_pid,
  ptrace (PT_GETREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
  memcpy (&registers[REGISTER_BYTE(0)], &inferior_registers,
  memcpy (&registers[REGISTER_BYTE(0)], &inferior_registers,
          sizeof(inferior_registers));
          sizeof(inferior_registers));
 
 
#if 0 /* def FP0_REGNUM */
#if 0 /* def FP0_REGNUM */
  ptrace (PT_GETFPREGS, inferior_pid,
  ptrace (PT_GETFPREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
  memcpy (&registers[REGISTER_BYTE(FP0_REGNUM)], &inferior_fp_registers,
  memcpy (&registers[REGISTER_BYTE(FP0_REGNUM)], &inferior_fp_registers,
          sizeof(inferior_fp_registers));
          sizeof(inferior_fp_registers));
#endif
#endif
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
 
 
void
void
store_inferior_registers (ignored)
store_inferior_registers (ignored)
     int ignored;
     int ignored;
{
{
  struct reg inferior_registers;
  struct reg inferior_registers;
  struct fpreg inferior_fp_registers;
  struct fpreg inferior_fp_registers;
 
 
  memcpy (&inferior_registers, &registers[REGISTER_BYTE(0)],
  memcpy (&inferior_registers, &registers[REGISTER_BYTE(0)],
          sizeof(inferior_registers));
          sizeof(inferior_registers));
  ptrace (PT_SETREGS, inferior_pid,
  ptrace (PT_SETREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
 
 
#if 0 /* def FP0_REGNUM */
#if 0 /* def FP0_REGNUM */
  memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
  memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
          sizeof (inferior_fp_registers));
          sizeof (inferior_fp_registers));
  ptrace (PT_SETFPREGS, inferior_pid,
  ptrace (PT_SETFPREGS, inferior_pid,
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
#endif
#endif
}
}
 
 
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
   in the NEW_SUN_PTRACE case.
   in the NEW_SUN_PTRACE case.
   It ought to be straightforward.  But it appears that writing did
   It ought to be straightforward.  But it appears that writing did
   not write the data that I specified.  I cannot understand where
   not write the data that I specified.  I cannot understand where
   it got the data that it actually did write.  */
   it got the data that it actually did write.  */
 
 
/* Copy LEN bytes from inferior's memory starting at MEMADDR
/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  */
   to debugger memory starting at MYADDR.  */
 
 
read_inferior_memory (memaddr, myaddr, len)
read_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -sizeof (int);
  register CORE_ADDR addr = memaddr & -sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  register int *buffer = (int *) alloca (count * sizeof (int));
 
 
  /* Read all the longwords */
  /* Read all the longwords */
  for (i = 0; i < count; i++, addr += sizeof (int))
  for (i = 0; i < count; i++, addr += sizeof (int))
    {
    {
      buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
      buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
    }
    }
 
 
  /* Copy appropriate bytes out of the buffer.  */
  /* Copy appropriate bytes out of the buffer.  */
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
}
 
 
/* Copy LEN bytes of data from debugger memory at MYADDR
/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   On failure (cannot write the inferior)
   returns the value of errno.  */
   returns the value of errno.  */
 
 
int
int
write_inferior_memory (memaddr, myaddr, len)
write_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -sizeof (int);
  register CORE_ADDR addr = memaddr & -sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  register int *buffer = (int *) alloca (count * sizeof (int));
  extern int errno;
  extern int errno;
 
 
  /* Fill start and end extra bytes of buffer with existing memory data.  */
  /* Fill start and end extra bytes of buffer with existing memory data.  */
 
 
  buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
  buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
 
 
  if (count > 1)
  if (count > 1)
    {
    {
      buffer[count - 1]
      buffer[count - 1]
        = ptrace (PT_READ_D, inferior_pid,
        = ptrace (PT_READ_D, inferior_pid,
                  (PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
                  (PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
    }
    }
 
 
  /* Copy data to be written over corresponding part of buffer */
  /* Copy data to be written over corresponding part of buffer */
 
 
  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
 
 
  /* Write the entire buffer.  */
  /* Write the entire buffer.  */
 
 
  for (i = 0; i < count; i++, addr += sizeof (int))
  for (i = 0; i < count; i++, addr += sizeof (int))
    {
    {
      errno = 0;
      errno = 0;
      ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
      ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
      if (errno)
      if (errno)
        return errno;
        return errno;
    }
    }
 
 
  return 0;
  return 0;
}
}


void
void
initialize_low ()
initialize_low ()
{
{
  initialize_arch ();
  initialize_arch ();
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.